Mathcad Professional 14.0 <description/> <author>Vladimír Mostýn</author> <company/> <keywords/> <revisedBy>mos50</revisedBy> </userData> <identityInfo> <revision>11</revision> <documentID>59FF45C1-CD46-4F9E-A42C-253C0E283489</documentID> <versionID>3BE4CC8C-CD78-4A3F-87CC-486A2E5AD98F</versionID> <parentVersionID>00000000-0000-0000-0000-000000000000</parentVersionID> <branchID>00000000-0000-0000-0000-000000000000</branchID> </identityInfo> </metadata> <settings> <presentation> <textRendering> <textStyles> <textStyle name="Normal"> <blockAttr margin-left="0" margin-right="0" text-indent="0" text-align="left" list-style-type="none" tabs="inherit"/> <inlineAttr font-family="Arial" font-charset="0" font-size="11" font-weight="normal" font-style="italic" underline="false" line-through="false" vertical-align="baseline" color="#000080"/> </textStyle> <textStyle name="Czech" base-style="Normal"> <blockAttr margin-left="0" margin-right="0" text-indent="0" text-align="left" list-style-type="none" tabs="inherit"/> <inlineAttr font-family="@Arial Unicode MS" font-charset="238" font-size="11" font-weight="normal" font-style="normal" underline="false" line-through="false" vertical-align="baseline"/> </textStyle> </textStyles> </textRendering> <mathRendering equation-color="#000"> <operators multiplication="dot" derivative="derivative" literal-subscript="small" definition="colon-equal" global-definition="triple-equal" local-definition="left-arrow" equality="bold-equal" symbolic-evaluation="right-arrow"/> <mathStyles> <mathStyle name="Variables" font-family="Arial" font-charset="0" font-size="11" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="Constants" font-family="Arial" font-charset="0" font-size="11" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 1" font-family="Arial" font-charset="0" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 2" font-family="Courier New" font-charset="0" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 3" font-family="System" font-charset="238" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 4" font-family="Script" font-charset="255" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 5" font-family="Roman" font-charset="255" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 6" font-family="Modern" font-charset="255" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 7" font-family="Times New Roman" font-charset="0" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="Math Text Font" font-family="Arial" font-charset="0" font-size="11" font-weight="normal" font-style="normal" underline="false"/> </mathStyles> <dimensionNames mass="mass" length="length" time="time" current="charge" thermodynamic-temperature="temperature" luminous-intensity="luminosity" amount-of-substance="substance" display="false"/> <symbolics derivation-steps-style="vertical-insert" show-comments="false" evaluate-in-place="false"/> <results numeric-only="true"> <general precision="3" show-trailing-zeros="false" radix="dec" complex-threshold="10" zero-threshold="15" imaginary-value="i" exponential-threshold="3"/> <matrix display-style="auto" expand-nested-arrays="false"/> <unit format-units="false" simplify-units="false" fractional-unit-exponent="false"/> </results> </mathRendering> <pageModel show-page-frame="false" show-header-frame="false" show-footer-frame="false" header-footer-start-page="1" paper-code="8" orientation="landscape" print-single-page-width="false" page-width="1190.25" page-height="841.5"> <margins left="28.31811" right="28.31811" top="28.31811" bottom="28.31811"/> <header use-full-page-width="false"/> <footer use-full-page-width="false"/> </pageModel> <colorModel background-color="#fff" default-highlight-color="#ffff80"/> <language math="en" UI="en"/> </presentation> <calculation> <builtInVariables array-origin="1" convergence-tolerance="0.001" constraint-tolerance="0.001" random-seed="1" prn-precision="4" prn-col-width="8"/> <calculationBehavior automatic-recalculation="true" matrix-strict-singularity-check="true" optimize-expressions="false" exact-boolean="false" strings-use-origin="false" zero-over-zero="0"> <compatibility multiple-assignment="MC11" local-assignment="MC11"/> </calculationBehavior> <units> <currentUnitSystem name="none" customized="false"/> </units> </calculation> <editor view-annotations="false" view-regions="false"> <ruler is-visible="false" ruler-unit="in"/> <plotTemplate> <xy item-idref="1"/> </plotTemplate> <grid granularity-x="6" granularity-y="6"/> </editor> <fileFormat image-type="image/png" image-quality="75" save-numeric-results="true" exclude-large-results="false" save-text-images="false" screen-dpi="96"/> <miscellaneous> <handbook handbook-region-tag-ub="5858" can-delete-original-handbook-regions="true" can-delete-user-regions="true" can-print="true" can-copy="true" can-save="true" file-permission-mask="4294967295"/> </miscellaneous> </settings> <regions> <region region-id="1491" left="24" top="6" width="383.25" height="420" align-x="24" align-y="6" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="381.7417" y-extent="418.5071" item-idref="2"/> </picture> <rendering item-idref="3"/> </region> <region region-id="1425" left="468" top="36" width="365.25" height="402.75" align-x="468" align-y="36" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <ole clsid="{7EFFBE60-44F5-11CE-83C5-08003601A74E}" type="embedded" item-idref="4"/> <rendering item-idref="5"/> </region> <region region-id="1523" left="618" top="440.25" width="129.75" height="12" align-x="618" align-y="450" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Kinematická struktura</inlineAttr> </f> </p> </text> </region> <region region-id="1522" left="150" top="446.25" width="147" height="12" align-x="150" align-y="456" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">3D model v Pro/Engineer</inlineAttr> </f> </p> </text> </region> <region region-id="492" left="30" top="506.25" width="198.75" height="84" align-x="30" align-y="516" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Tabulka parametrů (Denavit-Hartenberg)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <sp count="10"/>theta<sp count="8"/>d<sp count="11"/>a<sp count="9"/>alfa</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">0<sp count="10"/>0<sp count="11"/>l0<sp count="12"/>0<sp count="10"/>0</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">1<sp count="9"/>q1<sp count="11"/>0<sp count="12"/>0<sp count="10"/>0</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">2<sp count="10"/>0<sp count="11"/>q2<sp count="10"/>l2<sp count="8"/>Pi/2</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">3<sp count="10"/>0<sp count="11"/>q3<sp count="11"/>0<sp count="10"/>0</p> </text> </region> <region region-id="986" left="306" top="548.25" width="39" height="15.75" align-x="321" align-y="558" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>0.5</ml:real> </ml:define> </math> <rendering item-idref="6"/> </region> <region region-id="987" left="306" top="578.25" width="51" height="15.75" align-x="321" align-y="588" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0.065</ml:real> </ml:define> </math> <rendering item-idref="7"/> </region> <region region-id="493" left="36" top="614.25" width="57.75" height="13.5" align-x="78.75" align-y="624" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">ORIGIN</ml:id> <ml:real>1</ml:real> </ml:define> </math> <rendering item-idref="8"/> </region> <region region-id="494" left="108" top="614.25" width="77.25" height="13.5" align-x="118.5" align-y="624" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">t</ml:id> <ml:range> <ml:sequence> <ml:real>0</ml:real> <ml:real>0.02</ml:real> </ml:sequence> <ml:real>0.2</ml:real> </ml:range> </ml:define> </math> <rendering item-idref="9"/> </region> <region region-id="1204" left="198" top="614.25" width="105.75" height="12" align-x="198" align-y="624" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">rozsah <f family="Arial CE" charset="238"> <inlineAttr line-through="false">času</inlineAttr> </f> </p> </text> </region> <region region-id="1205" left="36" top="656.25" width="518.25" height="12" align-x="36" align-y="666" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Parametry pohybu počátku LCS3 (na koncový bod nástroje je nutná další transformační matice</inlineAttr> </f>)</p> </text> </region> <region region-id="1190" left="24" top="686.25" width="65.25" height="12" align-x="24" align-y="696" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">zrychlení</p> </text> </region> <region region-id="1192" left="120" top="686.25" width="52.5" height="12" align-x="120" align-y="696" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">rychlost</p> </text> </region> <region region-id="1194" left="192" top="686.25" width="72" height="12" align-x="192" align-y="696" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">poč. poloha</inlineAttr> </f> </p> </text> </region> <region region-id="2009" left="36" top="722.25" width="47.25" height="15.75" align-x="53.25" align-y="732" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="x">a</ml:id> <ml:real>-5.0</ml:real> </ml:define> </math> <rendering item-idref="10"/> </region> <region region-id="2010" left="120" top="722.25" width="36.75" height="15.75" align-x="141.75" align-y="732" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="x0">v</ml:id> <ml:real>0</ml:real> </ml:define> </math> <rendering item-idref="11"/> </region> <region region-id="2008" left="192" top="722.25" width="59.25" height="15.75" align-x="209.25" align-y="732" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">x</ml:id> <ml:real>-0.065</ml:real> </ml:define> </math> <rendering item-idref="12"/> </region> <region region-id="2012" left="36" top="746.25" width="41.25" height="15.75" align-x="53.25" align-y="756" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="y">a</ml:id> <ml:real>5.0</ml:real> </ml:define> </math> <rendering item-idref="13"/> </region> <region region-id="2013" left="120" top="746.25" width="36.75" height="15.75" align-x="141.75" align-y="756" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="y0">v</ml:id> <ml:real>0</ml:real> </ml:define> </math> <rendering item-idref="14"/> </region> <region region-id="2011" left="192" top="746.25" width="48" height="15.75" align-x="210" align-y="756" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">y</ml:id> <ml:real>1.01</ml:real> </ml:define> </math> <rendering item-idref="15"/> </region> <region region-id="2015" left="36" top="770.25" width="42" height="15.75" align-x="54" align-y="780" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="z">a</ml:id> <ml:real>5.0</ml:real> </ml:define> </math> <rendering item-idref="16"/> </region> <region region-id="2016" left="120" top="770.25" width="36.75" height="15.75" align-x="141.75" align-y="780" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="z0">v</ml:id> <ml:real>0</ml:real> </ml:define> </math> <rendering item-idref="17"/> </region> <region region-id="2014" left="192" top="770.25" width="53.25" height="15.75" align-x="209.25" align-y="780" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">z</ml:id> <ml:real>1.454</ml:real> </ml:define> </math> <rendering item-idref="18"/> </region> <region region-id="1207" left="36" top="806.25" width="496.5" height="24" align-x="36" align-y="816" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Rovnice pohybu po<f family="Arial CE" charset="238"> <inlineAttr line-through="false">čátku LCS3 - rovnoměrně zrychlený pohyb, trajektorii je vhodné řešit po částech s použitím počáteční polohy a rychlosti z koncových hodnot předchozího segmentu trajektorie</inlineAttr> </f> </p> </text> </region> <region region-id="2022" left="36" top="852.75" width="140.25" height="29.25" align-x="60.75" align-y="870" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">x</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">x</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="x0">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="x">a</ml:id> </ml:apply> <ml:apply> <ml:pow/> <ml:id xml:space="preserve">t</ml:id> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="19"/> </region> <region region-id="2021" left="36" top="888.75" width="141.75" height="29.25" align-x="61.5" align-y="906" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">y</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">y</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="y0">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="y">a</ml:id> </ml:apply> <ml:apply> <ml:pow/> <ml:id xml:space="preserve">t</ml:id> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="20"/> </region> <region region-id="1446" left="300" top="918" width="316.5" height="271.5" align-x="300" align-y="918" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="21"/> <rendering item-idref="22"/> </region> <region region-id="2020" left="36" top="924.75" width="141.75" height="29.25" align-x="61.5" align-y="942" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">z</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">z</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="z0">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="z">a</ml:id> </ml:apply> <ml:apply> <ml:pow/> <ml:id xml:space="preserve">t</ml:id> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="23"/> </region> <region region-id="2019" left="30" top="980.25" width="55.5" height="192" align-x="38.25" align-y="990" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">x</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>-0.065</ml:real> <ml:real>-0.066</ml:real> <ml:real>-0.069</ml:real> <ml:real>-0.074</ml:real> <ml:real>-0.081</ml:real> <ml:real>-0.090000000000000011</ml:real> <ml:real>-0.101</ml:real> <ml:real>-0.11400000000000002</ml:real> <ml:real>-0.129</ml:real> <ml:real>-0.146</ml:real> <ml:real>-0.16500000000000004</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="24"/> </resultFormat> </math> <rendering item-idref="25"/> </region> <region region-id="2018" left="120" top="980.25" width="52.5" height="192" align-x="128.25" align-y="990" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">y</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1.01</ml:real> <ml:real>1.011</ml:real> <ml:real>1.014</ml:real> <ml:real>1.019</ml:real> <ml:real>1.026</ml:real> <ml:real>1.035</ml:real> <ml:real>1.046</ml:real> <ml:real>1.059</ml:real> <ml:real>1.074</ml:real> <ml:real>1.091</ml:real> <ml:real>1.11</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="26"/> </resultFormat> </math> <rendering item-idref="27"/> </region> <region region-id="2017" left="216" top="980.25" width="52.5" height="192" align-x="224.25" align-y="990" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">z</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1.454</ml:real> <ml:real>1.4549999999999999</ml:real> <ml:real>1.458</ml:real> <ml:real>1.4629999999999999</ml:real> <ml:real>1.47</ml:real> <ml:real>1.4789999999999999</ml:real> <ml:real>1.49</ml:real> <ml:real>1.503</ml:real> <ml:real>1.518</ml:real> <ml:real>1.535</ml:real> <ml:real>1.554</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="28"/> </resultFormat> </math> <rendering item-idref="29"/> </region> <region region-id="2023" left="360" top="1230" width="309" height="330.75" align-x="513.75" align-y="1230" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <component hide-arguments="false" clsid-buddy="013500E0-1122-11DB-9380-000D56C6051A" item-idref="30" disable-calc="false"> <inputs> <ml:parens xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:sequence> <ml:id xml:space="preserve">x</ml:id> <ml:id xml:space="preserve">y</ml:id> <ml:id xml:space="preserve">z</ml:id> </ml:sequence> </ml:parens> </inputs> <outputs/> </component> <rendering item-idref="31"/> </region> <region region-id="2094" left="30" top="1236" width="307.5" height="259.5" align-x="30" align-y="1236" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="32"/> <rendering item-idref="33"/> </region> <region region-id="512" left="36" top="1580.25" width="390.75" height="24" align-x="36" align-y="1590" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Výchozí hodnota kloubových proměnných odpovídající výchozí poloze konc.bodu nutná pro řešič inverzní úlohy (Given, Find)</inlineAttr> </f> </p> </text> </region> <region region-id="2035" left="54" top="1628.25" width="34.5" height="15.75" align-x="72" align-y="1638" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:id xml:space="preserve">π</ml:id> </ml:define> </math> <rendering item-idref="34"/> </region> <region region-id="2033" left="54" top="1652.25" width="54" height="15.75" align-x="72" align-y="1662" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>0.954</ml:real> </ml:define> </math> <rendering item-idref="35"/> </region> <region region-id="2032" left="54" top="1676.25" width="48" height="15.75" align-x="72" align-y="1686" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>1.01</ml:real> </ml:define> </math> <rendering item-idref="36"/> </region> <region region-id="2043" left="36" top="1712.25" width="350.25" height="12" align-x="36" align-y="1722" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Transformační matice mezi souřadnými systémy ve výchozí poloze</inlineAttr> </f> </p> </text> </region> <region region-id="2058" left="48" top="1756.5" width="99" height="69.75" align-x="73.5" align-y="1794" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="37"/> </region> <region region-id="2057" left="174" top="1755" width="159" height="72" align-x="199.5" align-y="1794" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="38"/> </region> <region region-id="2056" left="354" top="1755" width="108" height="72" align-x="379.5" align-y="1794" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="39"/> </region> <region region-id="2055" left="474" top="1756.5" width="102" height="69.75" align-x="499.5" align-y="1794" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="40"/> </region> <region region-id="2073" left="42" top="1850.25" width="140.25" height="12" align-x="60.75" align-y="1860" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Celkové transformační matice</p> </text> </region> <region region-id="2074" left="42" top="1886.25" width="51.75" height="15.75" align-x="66.75" align-y="1896" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b0">T</ml:id> <ml:id xml:space="preserve" subscript="b0">A</ml:id> </ml:define> </math> <rendering item-idref="41"/> </region> <region region-id="2075" left="42" top="1910.25" width="78.75" height="15.75" align-x="66.75" align-y="1920" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b1">T</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="42"/> </region> <region region-id="2076" left="42" top="1934.25" width="105.75" height="15.75" align-x="66.75" align-y="1944" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b2">T</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="43"/> </region> <region region-id="2077" left="42" top="1958.25" width="132.75" height="15.75" align-x="66.75" align-y="1968" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="44"/> </region> <region region-id="2079" left="36" top="1994.25" width="578.25" height="12" align-x="43.5" align-y="2004" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Pro sestavení rovnic inverzní úlohy je celková transformační matice vyjádřena symbolickým vynásobením jednotlivých matic</p> </text> </region> <region region-id="1452" left="36" top="2031" width="390.75" height="72" align-x="60.75" align-y="2070" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:apply> </ml:define> </math> <rendering item-idref="45"/> </region> <region region-id="1453" left="42" top="2126.25" width="277.5" height="74.25" align-x="66.75" align-y="2166" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real font="0">0</ml:real> <ml:real font="0">0</ml:real> <ml:real font="0">0</ml:real> <ml:real font="0">0</ml:real> <ml:real>1</ml:real> <ml:real font="0">0</ml:real> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:real font="0">0</ml:real> <ml:real font="0">0</ml:real> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="3">s</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">s</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="46"/> </region> <region region-id="1454" left="324" top="2129.25" width="135" height="67.5" align-x="348" align-y="2166" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-1</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.064999999999999877</ml:real> <ml:real>1.01</ml:real> <ml:real>1.454</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="47"/> </region> <region region-id="529" left="42" top="2234.25" width="330.75" height="12" align-x="42" align-y="2244" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Inverzní úloha pomocí řešení soustavy transcendentních rovnic</inlineAttr> </f> </p> </text> </region> <region region-id="530" left="48" top="2270.25" width="28.5" height="13.5" align-x="61.5" align-y="2280" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:id xml:space="preserve" xmlns:ml="http://schemas.mathsoft.com/math30">Given</ml:id> </math> <rendering item-idref="48"/> </region> <region region-id="531" left="48" top="2288.25" width="135.75" height="15.75" align-x="171" align-y="2298" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:equal/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve">x</ml:id> </ml:apply> </math> <rendering item-idref="49"/> </region> <region region-id="532" left="48" top="2312.25" width="136.5" height="15.75" align-x="171" align-y="2322" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:equal/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve">y</ml:id> </ml:apply> </math> <rendering item-idref="50"/> </region> <region region-id="533" left="114" top="2336.25" width="51" height="15.75" align-x="151.5" align-y="2346" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:equal/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> <ml:id xml:space="preserve">z</ml:id> </ml:apply> </math> <rendering item-idref="51"/> </region> <region region-id="534" left="42" top="2360.25" width="134.25" height="15.75" align-x="94.5" align-y="2370" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">Q</ml:id> <ml:boundVars> <ml:id xml:space="preserve">x</ml:id> <ml:id xml:space="preserve">y</ml:id> <ml:id xml:space="preserve">z</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:Find auto-method="false" method="levenberg" derivative-estimation="central" variable-estimation="tangent" linear-check="false" multistart="false" evolutionary="false"/> <ml:sequence> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:id xml:space="preserve" subscript="3">s</ml:id> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="52"/> </region> <region region-id="535" left="42" top="2402.25" width="140.25" height="19.5" align-x="73.5" align-y="2412" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve">Q</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve">x</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">y</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">z</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:sequence> </ml:apply> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="53"/> </region> <region region-id="536" left="42" top="2426.25" width="140.25" height="19.5" align-x="73.5" align-y="2436" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve">Q</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve">x</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">y</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">z</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:sequence> </ml:apply> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="54"/> </region> <region region-id="537" left="42" top="2450.25" width="140.25" height="19.5" align-x="73.5" align-y="2460" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve">Q</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve">x</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">y</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">z</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:sequence> </ml:apply> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="55"/> </region> <region region-id="1208" left="36" top="2486.25" width="372" height="12" align-x="36" align-y="2496" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Výpočet rychlosti a zrychlení jednotlivých kloubových proměnných</inlineAttr> </f> </p> </text> </region> <region region-id="564" left="18" top="2520" width="81" height="31.5" align-x="55.5" align-y="2538" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> </ml:define> </math> <rendering item-idref="56"/> </region> <region region-id="565" left="120" top="2520" width="81" height="31.5" align-x="157.5" align-y="2538" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> </ml:define> </math> <rendering item-idref="57"/> </region> <region region-id="566" left="228" top="2520" width="81" height="31.5" align-x="265.5" align-y="2538" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> </ml:define> </math> <rendering item-idref="58"/> </region> <region region-id="567" left="336" top="2528.25" width="85.5" height="12" align-x="336" align-y="2538" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">rychlosti</p> </text> </region> <region region-id="568" left="18" top="2568" width="93" height="31.5" align-x="61.5" align-y="2586" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> </ml:define> </math> <rendering item-idref="59"/> </region> <region region-id="569" left="120" top="2568" width="93" height="31.5" align-x="163.5" align-y="2586" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> </ml:define> </math> <rendering item-idref="60"/> </region> <region region-id="570" left="228" top="2568" width="93" height="31.5" align-x="271.5" align-y="2586" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> </ml:define> </math> <rendering item-idref="61"/> </region> <region region-id="571" left="336" top="2576.25" width="87.75" height="12" align-x="336" align-y="2586" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">zrychlení</p> </text> </region> <region region-id="1215" left="954" top="2612.25" width="70.5" height="24" align-x="954" align-y="2622" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Kontrola v Pro/E</p> </text> </region> <region region-id="1729" left="552" top="2646" width="259.5" height="217.5" align-x="552" align-y="2646" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="62"/> <rendering item-idref="63"/> </region> <region region-id="1726" left="6" top="2652" width="238.5" height="211.5" align-x="6" align-y="2652" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="64"/> <rendering item-idref="65"/> </region> <region region-id="1212" left="276" top="2652" width="251.25" height="205.5" align-x="276" align-y="2652" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="66"/> <rendering item-idref="67"/> </region> <region region-id="1768" left="12" top="2868" width="312.75" height="345.75" align-x="12" align-y="2868" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="68"/> </picture> <rendering item-idref="69"/> </region> <region region-id="1770" left="354" top="2868" width="312.75" height="345.75" align-x="354" align-y="2868" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="70"/> </picture> <rendering item-idref="71"/> </region> <region region-id="1772" left="690" top="2868" width="312.75" height="345.75" align-x="690" align-y="2868" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="72"/> </picture> <rendering item-idref="73"/> </region> <region region-id="1463" left="1002" top="2874" width="444.75" height="444.75" align-x="1002" align-y="2874" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="443.2535" y-extent="443.2535" item-idref="74"/> </picture> <rendering item-idref="75"/> </region> <region region-id="562" left="18" top="3302.25" width="210.75" height="24" align-x="18" align-y="3312" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Transformační matice mezi souřadnými systémy</inlineAttr> </f> </p> </text> </region> <region region-id="551" left="24" top="3328.5" width="99" height="69.75" align-x="49.5" align-y="3366" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="76"/> </region> <region region-id="552" left="144" top="3327" width="198.75" height="72" align-x="182.25" align-y="3366" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="77"/> </region> <region region-id="2101" left="366" top="3327" width="134.25" height="72" align-x="404.25" align-y="3366" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="78"/> </region> <region region-id="2102" left="522" top="3328.5" width="128.25" height="69.75" align-x="560.25" align-y="3366" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="79"/> </region> <region region-id="589" left="36" top="3459" width="271.5" height="72" align-x="73.5" align-y="3498" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b1">T</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:apply> </ml:define> </math> <rendering item-idref="80"/> </region> <region region-id="590" left="42" top="3542.25" width="199.5" height="74.25" align-x="79.5" align-y="3582" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b1">T</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real font="0">0</ml:real> <ml:real font="0">0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real font="0">0</ml:real> <ml:real font="0">0</ml:real> <ml:real font="0">0</ml:real> <ml:real font="0">0</ml:real> <ml:real>1</ml:real> <ml:real font="0">0</ml:real> <ml:real font="0">0</ml:real> <ml:real font="0">0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="81"/> </region> <region region-id="592" left="276" top="3545.25" width="138.75" height="67.5" align-x="315.75" align-y="3582" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="b1">T</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-1</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1.2246063538223773E-16</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.5</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="82"/> </region> <region region-id="596" left="30" top="3645" width="367.5" height="72" align-x="67.5" align-y="3684" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b2">T</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> </ml:define> </math> <rendering item-idref="83"/> </region> <region region-id="597" left="30" top="3734.25" width="260.25" height="74.25" align-x="67.5" align-y="3774" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b2">T</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="84"/> </region> <region region-id="598" left="324" top="3743.25" width="150.75" height="67.5" align-x="363.75" align-y="3780" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="b2">T</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-1</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.065</ml:real> <ml:real>7.9599412998454526E-18</ml:real> <ml:real>1.454</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="85"/> </region> <region region-id="599" left="18" top="3837" width="457.5" height="72" align-x="55.5" align-y="3876" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> </ml:define> </math> <rendering item-idref="86"/> </region> <region region-id="600" left="24" top="3932.25" width="357.75" height="74.25" align-x="61.5" align-y="3972" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="87"/> </region> <region region-id="601" left="408" top="3935.25" width="150.75" height="67.5" align-x="447.75" align-y="3972" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-1</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.064999999999999877</ml:real> <ml:real>1.01</ml:real> <ml:real>1.454</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="88"/> </region> <region region-id="2110" left="42" top="4052.25" width="451.5" height="12" align-x="42" align-y="4062" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Kontrola správnosti sestavení transformačních matic s průběhem konc. bodu (poč. LCS3)</inlineAttr> </f> </p> </text> </region> <region region-id="2116" left="48" top="4106.25" width="55.5" height="198" align-x="70.5" align-y="4116" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>-0.064999999999999877</ml:real> <ml:real>-0.065999999999999864</ml:real> <ml:real>-0.0690000000000001</ml:real> <ml:real>-0.073999999999999788</ml:real> <ml:real>-0.081000000000000072</ml:real> <ml:real>-0.089999999999999927</ml:real> <ml:real>-0.10100000000000012</ml:real> <ml:real>-0.11400000000000019</ml:real> <ml:real>-0.12900000000000023</ml:real> <ml:real>-0.14599999999999991</ml:real> <ml:real>-0.16500000000000023</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="89"/> </resultFormat> </math> <rendering item-idref="90"/> </region> <region region-id="2115" left="126" top="4106.25" width="55.5" height="192" align-x="134.25" align-y="4116" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">x</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>-0.065</ml:real> <ml:real>-0.066</ml:real> <ml:real>-0.069</ml:real> <ml:real>-0.074</ml:real> <ml:real>-0.081</ml:real> <ml:real>-0.090000000000000011</ml:real> <ml:real>-0.101</ml:real> <ml:real>-0.11400000000000002</ml:real> <ml:real>-0.129</ml:real> <ml:real>-0.146</ml:real> <ml:real>-0.16500000000000004</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="91"/> </resultFormat> </math> <rendering item-idref="92"/> </region> <region region-id="2114" left="210" top="4106.25" width="52.5" height="198" align-x="232.5" align-y="4116" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1.01</ml:real> <ml:real>1.011</ml:real> <ml:real>1.014</ml:real> <ml:real>1.019</ml:real> <ml:real>1.026</ml:real> <ml:real>1.0349999999999997</ml:real> <ml:real>1.046</ml:real> <ml:real>1.059</ml:real> <ml:real>1.074</ml:real> <ml:real>1.091</ml:real> <ml:real>1.11</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="93"/> </resultFormat> </math> <rendering item-idref="94"/> </region> <region region-id="2113" left="288" top="4106.25" width="52.5" height="192" align-x="296.25" align-y="4116" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">y</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1.01</ml:real> <ml:real>1.011</ml:real> <ml:real>1.014</ml:real> <ml:real>1.019</ml:real> <ml:real>1.026</ml:real> <ml:real>1.035</ml:real> <ml:real>1.046</ml:real> <ml:real>1.059</ml:real> <ml:real>1.074</ml:real> <ml:real>1.091</ml:real> <ml:real>1.11</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="95"/> </resultFormat> </math> <rendering item-idref="96"/> </region> <region region-id="2112" left="360" top="4106.25" width="52.5" height="198" align-x="382.5" align-y="4116" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1.454</ml:real> <ml:real>1.4549999999999999</ml:real> <ml:real>1.4580000000000002</ml:real> <ml:real>1.4629999999999996</ml:real> <ml:real>1.47</ml:real> <ml:real>1.4789999999999999</ml:real> <ml:real>1.49</ml:real> <ml:real>1.503</ml:real> <ml:real>1.518</ml:real> <ml:real>1.535</ml:real> <ml:real>1.554</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="97"/> </resultFormat> </math> <rendering item-idref="98"/> </region> <region region-id="2111" left="438" top="4106.25" width="52.5" height="192" align-x="446.25" align-y="4116" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">z</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1.454</ml:real> <ml:real>1.4549999999999999</ml:real> <ml:real>1.458</ml:real> <ml:real>1.4629999999999999</ml:real> <ml:real>1.47</ml:real> <ml:real>1.4789999999999999</ml:real> <ml:real>1.49</ml:real> <ml:real>1.503</ml:real> <ml:real>1.518</ml:real> <ml:real>1.535</ml:real> <ml:real>1.554</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="99"/> </resultFormat> </math> <rendering item-idref="100"/> </region> <region region-id="2119" left="42" top="4382.25" width="219" height="12" align-x="42" align-y="4392" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Výpočet dalších kinematických veličin</inlineAttr> </f> </p> </text> </region> <region region-id="2118" left="42" top="4418.25" width="120.75" height="12" align-x="42" align-y="4428" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">vektory na osách z</p> </text> </region> <region region-id="2230" left="48" top="4448.25" width="158.25" height="15.75" align-x="78.75" align-y="4458" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="0">k</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:id xml:space="preserve" subscript="b0">T</ml:id> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>3</ml:real> <ml:real>3</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="101"/> </region> <region region-id="2221" left="228" top="4448.25" width="171" height="15.75" align-x="258.75" align-y="4458" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">k</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve" subscript="b1">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>3</ml:real> <ml:real>3</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="102"/> </region> <region region-id="2219" left="420" top="4448.25" width="171" height="15.75" align-x="450.75" align-y="4458" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">k</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve" subscript="b2">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>3</ml:real> <ml:real>3</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="103"/> </region> <region region-id="2215" left="618" top="4448.25" width="171" height="15.75" align-x="648.75" align-y="4458" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">k</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>3</ml:real> <ml:real>3</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="104"/> </region> <region region-id="2229" left="48" top="4478.25" width="60" height="49.5" align-x="78.75" align-y="4506" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="0">k</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="105"/> </region> <region region-id="2182" left="228" top="4478.25" width="60" height="49.5" align-x="258.75" align-y="4506" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">k</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="106"/> </region> <region region-id="2218" left="420" top="4476" width="108.75" height="54" align-x="450.75" align-y="4506" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">k</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="107"/> </region> <region region-id="2214" left="618" top="4476" width="108.75" height="54" align-x="648.75" align-y="4506" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">k</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="108"/> </region> <region region-id="2228" left="48" top="4538.25" width="68.25" height="49.5" align-x="81" align-y="4566" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="0">k</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="109"/> </region> <region region-id="2178" left="228" top="4538.25" width="68.25" height="49.5" align-x="261" align-y="4566" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="1">k</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="110"/> </region> <region region-id="2217" left="420" top="4538.25" width="68.25" height="49.5" align-x="453" align-y="4566" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2">k</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="111"/> </region> <region region-id="2176" left="618" top="4538.25" width="68.25" height="49.5" align-x="651" align-y="4566" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3">k</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="112"/> </region> <region region-id="2245" left="48" top="4616.25" width="159" height="12" align-x="48" align-y="4626" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Submatice rotace</p> </text> </region> <region region-id="2244" left="48" top="4652.25" width="153" height="15.75" align-x="73.5" align-y="4662" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b0">R</ml:id> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:id xml:space="preserve" subscript="b0">T</ml:id> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>1</ml:real> <ml:real>3</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="113"/> </region> <region region-id="2220" left="228" top="4652.25" width="178.5" height="15.75" align-x="266.25" align-y="4662" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b1">R</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve" subscript="b1">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>1</ml:real> <ml:real>3</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="114"/> </region> <region region-id="2216" left="420" top="4652.25" width="178.5" height="15.75" align-x="458.25" align-y="4662" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b2">R</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve" subscript="b2">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>1</ml:real> <ml:real>3</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="115"/> </region> <region region-id="2213" left="618" top="4652.25" width="178.5" height="15.75" align-x="656.25" align-y="4662" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b3">R</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>1</ml:real> <ml:real>3</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="116"/> </region> <region region-id="2243" left="48" top="4694.25" width="204.75" height="12" align-x="48" align-y="4704" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">vzájemná (relativní) úhlová rychlost</p> </text> </region> <region region-id="2242" left="48" top="4730.25" width="62.25" height="49.5" align-x="81" align-y="4758" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="0">ω</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="117"/> </region> <region region-id="2234" left="132" top="4748.25" width="109.5" height="15.75" align-x="170.25" align-y="4758" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="01">ω</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="0">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="118"/> </region> <region region-id="2233" left="282" top="4730.25" width="67.5" height="49.5" align-x="320.25" align-y="4758" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="12">ω</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="119"/> </region> <region region-id="2232" left="372" top="4730.25" width="67.5" height="49.5" align-x="410.25" align-y="4758" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">ω</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="120"/> </region> <region region-id="2241" left="48" top="4796.25" width="111" height="15.75" align-x="81" align-y="4806" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="0">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="121"/> </region> <region region-id="841" left="258" top="4796.25" width="126" height="12" align-x="258" align-y="4806" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">v zákl. ss.</p> </text> </region> <region region-id="2240" left="48" top="4820.25" width="111" height="15.75" align-x="81" align-y="4830" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="122"/> </region> <region region-id="843" left="258" top="4820.25" width="138" height="12" align-x="258" align-y="4830" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">v zákl. ss.</p> </text> </region> <region region-id="2239" left="48" top="4844.25" width="111" height="15.75" align-x="81" align-y="4854" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">ω</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="23">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="123"/> </region> <region region-id="845" left="258" top="4844.25" width="111" height="12" align-x="258" align-y="4854" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">v zákl. ss.</p> </text> </region> <region region-id="2436" left="48" top="4898.25" width="150" height="12" align-x="48" align-y="4908" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">vektory mezi počátky ss</inlineAttr> </f> </p> </text> </region> <region region-id="2437" left="48" top="4934.25" width="204.75" height="15.75" align-x="84.75" align-y="4944" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">R</ml:id> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="124"/> </region> <region region-id="2448" left="282" top="4934.25" width="217.5" height="15.75" align-x="318.75" align-y="4944" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="12">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b1">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="125"/> </region> <region region-id="2454" left="522" top="4934.25" width="217.5" height="15.75" align-x="558.75" align-y="4944" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b2">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="126"/> </region> <region region-id="2438" left="48" top="4976.25" width="74.25" height="49.5" align-x="87" align-y="5004" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="127"/> </region> <region region-id="2447" left="282" top="4976.25" width="101.25" height="49.5" align-x="321" align-y="5004" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="12">p</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.065</ml:real> <ml:real>7.9599412998454526E-18</ml:real> <ml:real>0.954</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="128"/> </region> <region region-id="2453" left="522" top="4976.25" width="89.25" height="49.5" align-x="561" align-y="5004" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="23">p</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>1.2368524173606011E-16</ml:real> <ml:real>1.01</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="129"/> </region> <region region-id="2439" left="48" top="5060.25" width="207" height="15.75" align-x="84.75" align-y="5070" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:minus/> <ml:apply> <ml:id xml:space="preserve" subscript="b1">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="b0">T</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="130"/> </region> <region region-id="2446" left="282" top="5060.25" width="219.75" height="15.75" align-x="318.75" align-y="5070" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="12">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:minus/> <ml:apply> <ml:id xml:space="preserve" subscript="b2">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="b1">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="131"/> </region> <region region-id="2452" left="522" top="5060.25" width="219.75" height="15.75" align-x="558.75" align-y="5070" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:minus/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="b2">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="132"/> </region> <region region-id="2440" left="48" top="5102.25" width="74.25" height="49.5" align-x="87" align-y="5130" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="133"/> </region> <region region-id="2445" left="282" top="5102.25" width="101.25" height="49.5" align-x="321" align-y="5130" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="12">p</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.065</ml:real> <ml:real>7.9599412998454526E-18</ml:real> <ml:real>0.954</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="134"/> </region> <region region-id="2451" left="522" top="5102.25" width="89.25" height="49.5" align-x="561" align-y="5130" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="23">p</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>1.2490009027033011E-16</ml:real> <ml:real>1.01</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="135"/> </region> <region region-id="2392" left="720" top="5186.25" width="104.25" height="12" align-x="720" align-y="5196" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">v zákl. ss.</p> </text> </region> <region region-id="2441" left="48" top="5174.25" width="66" height="49.5" align-x="84.75" align-y="5202" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="136"/> </region> <region region-id="2444" left="282" top="5171.25" width="144.75" height="56.25" align-x="318.75" align-y="5202" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="12">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0.065</ml:real> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0.065</ml:real> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="137"/> </region> <region region-id="2450" left="522" top="5172" width="147.75" height="54" align-x="558.75" align-y="5202" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="138"/> </region> <region region-id="2456" left="48" top="5240.25" width="74.25" height="49.5" align-x="87" align-y="5268" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="139"/> </region> <region region-id="2457" left="282" top="5240.25" width="101.25" height="49.5" align-x="321" align-y="5268" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="12">p</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.065</ml:real> <ml:real>7.9599412998454526E-18</ml:real> <ml:real>0.954</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="140"/> </region> <region region-id="2455" left="522" top="5240.25" width="89.25" height="49.5" align-x="561" align-y="5268" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="23">p</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>1.2368524173606011E-16</ml:real> <ml:real>1.01</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="141"/> </region> <region region-id="2480" left="48" top="5330.25" width="127.5" height="12" align-x="63" align-y="5340" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Vektor do koncového bodu</p> </text> </region> <region region-id="2481" left="48" top="5366.25" width="207" height="15.75" align-x="84.75" align-y="5376" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="03">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:minus/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="b0">T</ml:id> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="142"/> </region> <region region-id="2482" left="48" top="5414.25" width="162.75" height="12" align-x="48" align-y="5424" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Rychlost článku 0 - podstavce</inlineAttr> </f> </p> </text> </region> <region region-id="2483" left="48" top="5438.25" width="60" height="49.5" align-x="78.75" align-y="5466" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="0">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="143"/> </region> <region region-id="2903" left="48" top="5510.25" width="228.75" height="12" align-x="48" align-y="5520" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Vzájemné rychlosti ručně zjednodušeně</inlineAttr> </f> </p> </text> </region> <region region-id="2931" left="48" top="5528.25" width="65.25" height="49.5" align-x="84" align-y="5556" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="01">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="144"/> </region> <region region-id="2930" left="348" top="5546.25" width="107.25" height="15.75" align-x="384" align-y="5556" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="12">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="145"/> </region> <region region-id="2929" left="690" top="5546.25" width="107.25" height="15.75" align-x="726" align-y="5556" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="146"/> </region> <region region-id="2928" left="840" top="5546.25" width="99" height="12" align-x="840" align-y="5556" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">v zákl. ss.</p> </text> </region> <region region-id="2925" left="48" top="5582.25" width="82.5" height="49.5" align-x="95.25" align-y="5610" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="01">v</ml:id> <ml:real>0.1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="147"/> </region> <region region-id="2926" left="348" top="5582.25" width="91.5" height="49.5" align-x="395.25" align-y="5610" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="12">v</ml:id> <ml:real>0.1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.49999999999999434</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="148"/> </region> <region region-id="2927" left="690" top="5582.25" width="109.5" height="49.5" align-x="737.25" align-y="5610" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="23">v</ml:id> <ml:real>0.1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.013090080263343719</ml:real> <ml:real>0.54233999302057734</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="149"/> </region> <region region-id="2900" left="48" top="5666.25" width="746.25" height="12" align-x="48" align-y="5676" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Vzájemné rychlosti univerzální obecný tvar - vystupuje zde parciální derivace vektoru p podle kloubové proměnné q - pomocí diferenciálních operátorů</inlineAttr> </f> </p> </text> </region> <region region-id="2920" left="54" top="5699.25" width="96.75" height="67.5" align-x="72.75" align-y="5736" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="r">D</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="150"/> </region> <region region-id="2921" left="168" top="5699.25" width="90" height="67.5" align-x="186" align-y="5736" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t">D</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="151"/> </region> <region region-id="2936" left="48" top="5786.25" width="263.25" height="15.75" align-x="84" align-y="5796" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="01">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="r">D</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="152"/> </region> <region region-id="2895" left="348" top="5786.25" width="302.25" height="15.75" align-x="384" align-y="5796" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="12">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="t">D</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="153"/> </region> <region region-id="2831" left="690" top="5786.25" width="342" height="15.75" align-x="726" align-y="5796" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="t">D</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="154"/> </region> <region region-id="2935" left="48" top="5816.25" width="82.5" height="49.5" align-x="95.25" align-y="5844" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="01">v</ml:id> <ml:real>0.1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="155"/> </region> <region region-id="2894" left="348" top="5816.25" width="91.5" height="49.5" align-x="395.25" align-y="5844" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="12">v</ml:id> <ml:real>0.1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.49999999999999434</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="156"/> </region> <region region-id="2830" left="690" top="5816.25" width="109.5" height="49.5" align-x="737.25" align-y="5844" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="23">v</ml:id> <ml:real>0.1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.013090080263343719</ml:real> <ml:real>0.54233999302057734</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="157"/> </region> <region region-id="2934" left="48" top="5906.25" width="849.75" height="12" align-x="75.75" align-y="5916" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Alternativně nejprve derivace vektoru p23 v lokálním souřadném systému, výsledkem je vektor rychlosti v lokálním ss., ten se vyjádří v základním ss. jen násobením submaticí rotace</p> </text> </region> <region region-id="2933" left="48" top="5936.25" width="275.25" height="15.75" align-x="84" align-y="5946" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b2">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">submatrix</ml:id> <ml:sequence> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="t">D</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>1</ml:real> <ml:real>3</ml:real> <ml:real>4</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="158"/> </region> <region region-id="2943" left="48" top="5972.25" width="109.5" height="49.5" align-x="95.25" align-y="6000" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="23">v</ml:id> <ml:real>0.1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.013090080263343719</ml:real> <ml:real>0.54233999302057734</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="159"/> </region> <region region-id="2945" left="48" top="6044.25" width="462.75" height="12" align-x="66.75" align-y="6054" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výpočet translačních rychlostí počátků lokálních ss. - vše vyjádřeno v souřadnicích základního ss.</p> </text> </region> <region region-id="883" left="48" top="6080.25" width="183" height="15.75" align-x="78.75" align-y="6090" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="0">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="0">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="160"/> </region> <region region-id="884" left="48" top="6104.25" width="183" height="15.75" align-x="78.75" align-y="6114" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="1">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="161"/> </region> <region region-id="885" left="48" top="6128.25" width="183" height="15.75" align-x="78.75" align-y="6138" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="23">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="23">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="162"/> </region> <region region-id="1239" left="48" top="6182.25" width="282.75" height="12" align-x="48" align-y="6192" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Kontrola integrací rychlosti konc. bodu (poč. LCS3)</inlineAttr> </f> </p> </text> </region> <region region-id="890" left="48" top="6216" width="90" height="224.25" align-x="92.25" align-y="6240" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">x</ml:id> <ml:apply> <ml:integral auto-algorithm="true" algorithm="adaptive"/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="3">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:lambda> <ml:bounds> <ml:real>0</ml:real> <ml:id xml:space="preserve">t</ml:id> </ml:bounds> </ml:apply> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>-0.065</ml:real> <ml:real>-0.066000000000001433</ml:real> <ml:real>-0.069000000000002615</ml:real> <ml:real>-0.0740000000000014</ml:real> <ml:real>-0.080999999999991967</ml:real> <ml:real>-0.089999999999995084</ml:real> <ml:real>-0.10100000000001372</ml:real> <ml:real>-0.11400000000000614</ml:real> <ml:real>-0.12900000000003509</ml:real> <ml:real>-0.14599999999998781</ml:real> <ml:real>-0.16500000000000192</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="163"/> </resultFormat> </math> <rendering item-idref="164"/> </region> <region region-id="891" left="216" top="6216" width="90.75" height="224.25" align-x="260.25" align-y="6240" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">y</ml:id> <ml:apply> <ml:integral auto-algorithm="true" algorithm="adaptive"/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="3">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:lambda> <ml:bounds> <ml:real>0</ml:real> <ml:id xml:space="preserve">t</ml:id> </ml:bounds> </ml:apply> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1.01</ml:real> <ml:real>1.0110000000000043</ml:real> <ml:real>1.0140000000000051</ml:real> <ml:real>1.0189999999999959</ml:real> <ml:real>1.0259999999999978</ml:real> <ml:real>1.0350000000000021</ml:real> <ml:real>1.0460000000000072</ml:real> <ml:real>1.0589999999999877</ml:real> <ml:real>1.0740000000000056</ml:real> <ml:real>1.091000000000004</ml:real> <ml:real>1.1100000000000043</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="165"/> </resultFormat> </math> <rendering item-idref="166"/> </region> <region region-id="892" left="402" top="6216" width="90" height="224.25" align-x="446.25" align-y="6240" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">z</ml:id> <ml:apply> <ml:integral auto-algorithm="true" algorithm="adaptive"/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="3">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:lambda> <ml:bounds> <ml:real>0</ml:real> <ml:id xml:space="preserve">t</ml:id> </ml:bounds> </ml:apply> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1.454</ml:real> <ml:real>1.4550000000000016</ml:real> <ml:real>1.4579999999999997</ml:real> <ml:real>1.4629999999999941</ml:real> <ml:real>1.4700000000000011</ml:real> <ml:real>1.4790000000000012</ml:real> <ml:real>1.4899999999999989</ml:real> <ml:real>1.5029999999999963</ml:real> <ml:real>1.5180000000000096</ml:real> <ml:real>1.5350000000000081</ml:real> <ml:real>1.5539999999999887</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="167"/> </resultFormat> </math> <rendering item-idref="168"/> </region> <region region-id="893" left="150" top="6242.25" width="55.5" height="192" align-x="158.25" align-y="6252" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">x</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>-0.065</ml:real> <ml:real>-0.066</ml:real> <ml:real>-0.069</ml:real> <ml:real>-0.074</ml:real> <ml:real>-0.081</ml:real> <ml:real>-0.090000000000000011</ml:real> <ml:real>-0.101</ml:real> <ml:real>-0.11400000000000002</ml:real> <ml:real>-0.129</ml:real> <ml:real>-0.146</ml:real> <ml:real>-0.16500000000000004</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="169"/> </resultFormat> </math> <rendering item-idref="170"/> </region> <region region-id="894" left="318" top="6242.25" width="52.5" height="192" align-x="326.25" align-y="6252" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">y</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1.01</ml:real> <ml:real>1.011</ml:real> <ml:real>1.014</ml:real> <ml:real>1.019</ml:real> <ml:real>1.026</ml:real> <ml:real>1.035</ml:real> <ml:real>1.046</ml:real> <ml:real>1.059</ml:real> <ml:real>1.074</ml:real> <ml:real>1.091</ml:real> <ml:real>1.11</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="171"/> </resultFormat> </math> <rendering item-idref="172"/> </region> <region region-id="895" left="504" top="6242.25" width="52.5" height="192" align-x="512.25" align-y="6252" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">z</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1.454</ml:real> <ml:real>1.4549999999999999</ml:real> <ml:real>1.458</ml:real> <ml:real>1.4629999999999999</ml:real> <ml:real>1.47</ml:real> <ml:real>1.4789999999999999</ml:real> <ml:real>1.49</ml:real> <ml:real>1.503</ml:real> <ml:real>1.518</ml:real> <ml:real>1.535</ml:real> <ml:real>1.554</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="173"/> </resultFormat> </math> <rendering item-idref="174"/> </region> <region region-id="1300" left="558" top="6300" width="187.5" height="133.5" align-x="558" align-y="6300" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="175"/> <rendering item-idref="176"/> </region> <region region-id="1301" left="744" top="6306" width="181.5" height="133.5" align-x="744" align-y="6306" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="177"/> <rendering item-idref="178"/> </region> <region region-id="1302" left="936" top="6306" width="181.5" height="133.5" align-x="936" align-y="6306" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="179"/> <rendering item-idref="180"/> </region> <region region-id="2947" left="42" top="6488.25" width="213.75" height="12" align-x="60.75" align-y="6498" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výpočet relativních úhlových zrychlení článků</p> </text> </region> <region region-id="899" left="42" top="6524.25" width="60" height="49.5" align-x="72.75" align-y="6552" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="0">ε</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="181"/> </region> <region region-id="2954" left="126" top="6542.25" width="113.25" height="15.75" align-x="162" align-y="6552" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="01">ε</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="0">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="182"/> </region> <region region-id="2955" left="252" top="6524.25" width="65.25" height="49.5" align-x="288" align-y="6552" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="12">ε</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="183"/> </region> <region region-id="2956" left="342" top="6524.25" width="65.25" height="49.5" align-x="378" align-y="6552" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">ε</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="184"/> </region> <region region-id="904" left="42" top="6596.25" width="184.5" height="15.75" align-x="72.75" align-y="6606" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">ε</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="0">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="0">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="185"/> </region> <region region-id="905" left="42" top="6620.25" width="184.5" height="15.75" align-x="72.75" align-y="6630" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">ε</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="186"/> </region> <region region-id="2957" left="42" top="6644.25" width="184.5" height="15.75" align-x="72.75" align-y="6654" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">ε</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="23">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="23">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="187"/> </region> <region region-id="2966" left="42" top="6692.25" width="465" height="12" align-x="42" align-y="6702" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Výpočet relativních translačních zrychlení počátků lokálních souřadných systémů</inlineAttr> </f> </p> </text> </region> <region region-id="3010" left="42" top="6728.25" width="60.75" height="49.5" align-x="73.5" align-y="6756" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="0">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="188"/> </region> <region region-id="3021" left="192" top="6746.25" width="250.5" height="12" align-x="216.75" align-y="6756" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Translační zrychlení pošátku lokálního ss. podstavce</p> </text> </region> <region region-id="3023" left="42" top="6806.25" width="248.25" height="15.75" align-x="78.75" align-y="6816" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="01">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="01">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="01">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="01">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="189"/> </region> <region region-id="3022" left="390" top="6806.25" width="107.25" height="12" align-x="390" align-y="6816" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Pro rotační</inlineAttr> </f> </p> </text> </region> <region region-id="3026" left="42" top="6866.25" width="114" height="15.75" align-x="78.75" align-y="6876" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="12">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="190"/> </region> <region region-id="3025" left="198" top="6847.5" width="96" height="51.75" align-x="234.75" align-y="6876" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="12">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="191"/> </region> <region region-id="3024" left="390" top="6866.25" width="105.75" height="12" align-x="390" align-y="6876" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Translační</inlineAttr> </f> </p> </text> </region> <region region-id="3033" left="42" top="6932.25" width="114" height="15.75" align-x="78.75" align-y="6942" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="192"/> </region> <region region-id="3034" left="198" top="6912" width="159.75" height="54" align-x="234.75" align-y="6942" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="23">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="193"/> </region> <region region-id="3035" left="390" top="6932.25" width="88.5" height="12" align-x="390" align-y="6942" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Translační</inlineAttr> </f> </p> </text> </region> <region region-id="3037" left="42" top="6998.25" width="332.25" height="12" align-x="60.75" align-y="7008" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výpočet translačních zrychlení počátků lokálních souřadných systémů</p> </text> </region> <region region-id="920" left="42" top="7040.25" width="406.5" height="15.75" align-x="73.5" align-y="7050" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="0">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="0">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="0">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="0">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="194"/> </region> <region region-id="921" left="42" top="7070.25" width="406.5" height="15.75" align-x="73.5" align-y="7080" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="12">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="195"/> </region> <region region-id="922" left="42" top="7100.25" width="406.5" height="15.75" align-x="73.5" align-y="7110" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="23">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="23">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="23">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="23">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="196"/> </region> <region region-id="3046" left="42" top="7142.25" width="493.5" height="12" align-x="42" align-y="7152" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Kontrola zrychlení - odpovídá zadání ax, ay a az - definice pohybu konc. bodu na začátku výpočtu</p> </text> </region> <region region-id="3346" left="168" top="7190.25" width="47.25" height="192" align-x="168.75" align-y="7200" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">t</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>0</ml:real> <ml:real>0.02</ml:real> <ml:real>0.04</ml:real> <ml:real>0.06</ml:real> <ml:real>0.08</ml:real> <ml:real>0.1</ml:real> <ml:real>0.12</ml:real> <ml:real>0.14</ml:real> <ml:real>0.16</ml:real> <ml:real>0.18</ml:real> <ml:real>0.2</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="197"/> </resultFormat> </math> <rendering item-idref="198"/> </region> <region region-id="3347" left="216" top="7190.25" width="41.25" height="198" align-x="235.5" align-y="7200" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="3">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>-4.999999999891422</ml:real> <ml:real>-5.0000000000921769</ml:real> <ml:real>-4.9999999999007212</ml:real> <ml:real>-5.0000000000463842</ml:real> <ml:real>-4.9999999999707541</ml:real> <ml:real>-5.0000000000230775</ml:real> <ml:real>-5.0000000000181695</ml:real> <ml:real>-5.0000000000260219</ml:real> <ml:real>-5.000000000034694</ml:real> <ml:real>-5.0000000000177716</ml:real> <ml:real>-4.9999999999848654</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="199"/> </resultFormat> </math> <rendering item-idref="200"/> </region> <region region-id="3348" left="288" top="7190.25" width="41.25" height="198" align-x="307.5" align-y="7200" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="3">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>4.9999999997850155</ml:real> <ml:real>4.999999999467458</ml:real> <ml:real>5.0000000000728679</ml:real> <ml:real>4.9999999999808518</ml:real> <ml:real>5.0000000001221592</ml:real> <ml:real>4.9999999999883524</ml:real> <ml:real>5.00000000000407</ml:real> <ml:real>4.9999999999764455</ml:real> <ml:real>5.0000000000196021</ml:real> <ml:real>4.9999999999824629</ml:real> <ml:real>5.000000000006688</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="201"/> </resultFormat> </math> <rendering item-idref="202"/> </region> <region region-id="3349" left="366" top="7190.25" width="41.25" height="198" align-x="385.5" align-y="7200" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="3">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>5.000000000007577</ml:real> <ml:real>5.0000000001619131</ml:real> <ml:real>5.0000000000171063</ml:real> <ml:real>4.9999999999998659</ml:real> <ml:real>5.0000000000006395</ml:real> <ml:real>5.0000000000003268</ml:real> <ml:real>4.9999999999994484</ml:real> <ml:real>5.0000000000007754</ml:real> <ml:real>5.0000000000005711</ml:real> <ml:real>5.0000000000001377</ml:real> <ml:real>5.0000000000001616</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="203"/> </resultFormat> </math> <rendering item-idref="204"/> </region> <region region-id="3053" left="42" top="7190.25" width="75" height="49.5" align-x="75.75" align-y="7218" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3">a</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-4.999999999891422</ml:real> <ml:real>4.9999999997850155</ml:real> <ml:real>5.000000000007577</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="205"/> </region> <region region-id="3352" left="42" top="7400.25" width="636.75" height="36" align-x="55.5" align-y="7410" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Tento úkon kontroly je velmi důležitý, pohyb koncového bodu byl řešením inverzní úlohy rozložen do jednotlivých kloubů, byly vypočteny průběhy rychlostí a zrychlení (translační i rotační) a ve zrychlení a3 se všechny veličiny skládají. Pokud tato veličina je shodná se zadáním, je jistota správnosti výpočtu až po toto místo řešení</p> </text> </region> <region region-id="3406" left="42" top="7484.25" width="129" height="12" align-x="42" align-y="7494" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Poloha težišť z Pro/E</inlineAttr> </f> </p> </text> </region> <region region-id="3708" left="42" top="7514.25" width="303" height="24" align-x="42" align-y="7524" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">CENTER OF GRAVITY with respect to LCS1 coordinate frame:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">X<sp count="3"/>Y<sp count="3"/>Z<sp count="4"/>-4.0325987e-02 -1.8024766e-06<sp count="2"/>7.3574162e-01<sp count="2"/>M</p> </text> </region> <region region-id="3704" left="384" top="7514.25" width="304.5" height="24" align-x="384" align-y="7524" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">CENTER OF GRAVITY with respect to LCS2 coordinate frame:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">X<sp count="3"/>Y<sp count="3"/>Z<sp count="4"/>-7.2368752e-02<sp count="2"/>0.0000000e+00 -4.7439674e-02<sp count="2"/>M</p> </text> </region> <region region-id="3701" left="732" top="7514.25" width="314.25" height="24" align-x="732" align-y="7524" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">CENTER OF GRAVITY with respect to LCS3 coordinate frame:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">X<sp count="3"/>Y<sp count="3"/>Z<sp count="5"/>2.5740416e-03<sp count="2"/>0.0000000e+00 -3.7039760e-01<sp count="2"/>M</p> </text> </region> <region region-id="3711" left="42" top="7562.25" width="124.5" height="21.75" align-x="66.75" align-y="7578" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t11">x</ml:id> <ml:apply> <ml:neg/> <ml:apply> <ml:mult/> <ml:real>4.0325987</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-2</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="206"/> </region> <region region-id="3710" left="384" top="7562.25" width="124.5" height="21.75" align-x="408.75" align-y="7578" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t22">x</ml:id> <ml:apply> <ml:neg/> <ml:apply> <ml:mult/> <ml:real>7.2368752</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-2</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="207"/> </region> <region region-id="3709" left="732" top="7562.25" width="118.5" height="21.75" align-x="756.75" align-y="7578" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t33">x</ml:id> <ml:apply> <ml:mult/> <ml:real>2.5740416</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-3</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="208"/> </region> <region region-id="3714" left="42" top="7586.25" width="125.25" height="21.75" align-x="67.5" align-y="7602" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t11">y</ml:id> <ml:apply> <ml:neg/> <ml:apply> <ml:mult/> <ml:real>1.8024766</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-6</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="209"/> </region> <region region-id="3713" left="384" top="7592.25" width="85.5" height="15.75" align-x="409.5" align-y="7602" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t22">y</ml:id> <ml:real>0.0000000</ml:real> </ml:define> </math> <rendering item-idref="210"/> </region> <region region-id="3712" left="732" top="7592.25" width="103.5" height="15.75" align-x="757.5" align-y="7602" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t33">y</ml:id> <ml:real>0.0000000000</ml:real> </ml:define> </math> <rendering item-idref="211"/> </region> <region region-id="3717" left="42" top="7610.25" width="118.5" height="21.75" align-x="66.75" align-y="7626" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t11">z</ml:id> <ml:apply> <ml:mult/> <ml:real>7.3574162</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="212"/> </region> <region region-id="3716" left="384" top="7610.25" width="124.5" height="21.75" align-x="408.75" align-y="7626" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t22">z</ml:id> <ml:apply> <ml:neg/> <ml:apply> <ml:mult/> <ml:real>4.7439674</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-2</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="213"/> </region> <region region-id="3715" left="732" top="7610.25" width="124.5" height="21.75" align-x="756.75" align-y="7626" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t33">z</ml:id> <ml:apply> <ml:neg/> <ml:apply> <ml:mult/> <ml:real>3.7039760</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-1</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="214"/> </region> <region region-id="973" left="30" top="7688.25" width="152.25" height="12" align-x="30" align-y="7698" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">vektory do těžiště v lokálních ss</inlineAttr> </f> </p> </text> </region> <region region-id="3735" left="210" top="7667.25" width="67.5" height="56.25" align-x="236.25" align-y="7698" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t11">p</ml:id> <ml:matrix rows="3" cols="1"> <ml:id xml:space="preserve" subscript="t11">x</ml:id> <ml:id xml:space="preserve" subscript="t11">y</ml:id> <ml:id xml:space="preserve" subscript="t11">z</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="215"/> </region> <region region-id="3729" left="306" top="7667.25" width="67.5" height="56.25" align-x="332.25" align-y="7698" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t22">p</ml:id> <ml:matrix rows="3" cols="1"> <ml:id xml:space="preserve" subscript="t22">x</ml:id> <ml:id xml:space="preserve" subscript="t22">y</ml:id> <ml:id xml:space="preserve" subscript="t22">z</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="216"/> </region> <region region-id="3730" left="402" top="7667.25" width="67.5" height="56.25" align-x="428.25" align-y="7698" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t33">p</ml:id> <ml:matrix rows="3" cols="1"> <ml:id xml:space="preserve" subscript="t33">x</ml:id> <ml:id xml:space="preserve" subscript="t33">y</ml:id> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="217"/> </region> <region region-id="3749" left="30" top="7760.25" width="156.75" height="24" align-x="30" align-y="7770" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">je nutno přepočítat do základního ss</inlineAttr> </f> </p> </text> </region> <region region-id="3736" left="210" top="7760.25" width="106.5" height="15.75" align-x="249" align-y="7770" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t1b">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b1">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t11">p</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="218"/> </region> <region region-id="3737" left="210" top="7784.25" width="106.5" height="15.75" align-x="249" align-y="7794" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t2b">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b2">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">p</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="219"/> </region> <region region-id="3738" left="210" top="7808.25" width="106.5" height="15.75" align-x="249" align-y="7818" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t3b">p</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">p</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="220"/> </region> <region region-id="3750" left="30" top="7838.25" width="68.25" height="74.25" align-x="57" align-y="7878" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t11">P</ml:id> <ml:matrix rows="4" cols="1"> <ml:id xml:space="preserve" subscript="t11">x</ml:id> <ml:id xml:space="preserve" subscript="t11">y</ml:id> <ml:id xml:space="preserve" subscript="t11">z</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="221"/> </region> <region region-id="3755" left="150" top="7868.25" width="107.25" height="15.75" align-x="189.75" align-y="7878" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t1b">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b1">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t11">P</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="222"/> </region> <region region-id="3758" left="294" top="7838.25" width="134.25" height="73.5" align-x="336" align-y="7878" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="t1b">P</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="1"> <ml:real>0.040325987</ml:real> <ml:real>1.8024765999950615E-06</ml:real> <ml:real>1.2357416200000002</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="223"/> </region> <region region-id="3759" left="30" top="7934.25" width="68.25" height="74.25" align-x="57" align-y="7974" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t22">P</ml:id> <ml:matrix rows="4" cols="1"> <ml:id xml:space="preserve" subscript="t22">x</ml:id> <ml:id xml:space="preserve" subscript="t22">y</ml:id> <ml:id xml:space="preserve" subscript="t22">z</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="224"/> </region> <region region-id="3760" left="150" top="7964.25" width="107.25" height="15.75" align-x="189.75" align-y="7974" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t2b">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b2">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">P</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="225"/> </region> <region region-id="3761" left="294" top="7934.25" width="134.25" height="73.5" align-x="336" align-y="7974" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="t2b">P</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="1"> <ml:real>0.0073687520000000062</ml:real> <ml:real>-0.047439674</ml:real> <ml:real>1.454</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="226"/> </region> <region region-id="3752" left="30" top="8030.25" width="68.25" height="74.25" align-x="57" align-y="8070" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t33">P</ml:id> <ml:matrix rows="4" cols="1"> <ml:id xml:space="preserve" subscript="t33">x</ml:id> <ml:id xml:space="preserve" subscript="t33">y</ml:id> <ml:id xml:space="preserve" subscript="t33">z</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="227"/> </region> <region region-id="3753" left="150" top="8060.25" width="107.25" height="15.75" align-x="189.75" align-y="8070" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t3b">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">P</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="228"/> </region> <region region-id="3756" left="294" top="8033.25" width="113.25" height="67.5" align-x="345" align-y="8070" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="t3b">P</ml:id> <ml:real>0.0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="1"> <ml:real>-0.067574041599999926</ml:real> <ml:real>0.6396024</ml:real> <ml:real>1.454</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="229"/> </region> <region region-id="3762" left="30" top="8132.25" width="300" height="12" align-x="30" align-y="8142" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Výpočet rychlosti a zrychlení těžišť - vše v základním ss</inlineAttr> </f> </p> </text> </region> <region region-id="983" left="30" top="8168.25" width="146.25" height="15.75" align-x="63" align-y="8178" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t1">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="1">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t1b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="230"/> </region> <region region-id="984" left="30" top="8192.25" width="146.25" height="15.75" align-x="63" align-y="8202" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t2">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t2b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="231"/> </region> <region region-id="985" left="30" top="8216.25" width="146.25" height="15.75" align-x="63" align-y="8226" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t3">v</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="3">v</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t3b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="232"/> </region> <region region-id="1313" left="234" top="8210.25" width="106.5" height="49.5" align-x="278.25" align-y="8238" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="t3">v</ml:id> <ml:real>0.1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.32577005026903827</ml:real> <ml:real>0.50299397012811642</ml:real> <ml:real>0.49999999999999434</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="233"/> </region> <region region-id="3775" left="30" top="8294.25" width="270.75" height="15.75" align-x="63.75" align-y="8304" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t1">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t1b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t1b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="234"/> </region> <region region-id="3776" left="30" top="8324.25" width="270.75" height="15.75" align-x="63.75" align-y="8334" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t2">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t2b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t2b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="235"/> </region> <region region-id="3777" left="30" top="8354.25" width="270.75" height="15.75" align-x="63.75" align-y="8364" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="t3">a</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="3">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t3b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t3b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="236"/> </region> <region region-id="3858" left="228" top="8390.25" width="107.25" height="49.5" align-x="273" align-y="8418" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="t3">a</ml:id> <ml:real>0.0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-3.1663485147827259</ml:real> <ml:real>4.9872572195872724</ml:real> <ml:real>5.000000000007577</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="237"/> </region> <region region-id="3897" left="228" top="8450.25" width="117.75" height="12" align-x="228" align-y="8460" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Kontrola s Pro/E OK</p> </text> </region> <region region-id="3901" left="24" top="8486.25" width="372.75" height="12" align-x="24" align-y="8496" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ověření výpočtu rychlosti koncového bodu pomocí Jakobiho matice</p> </text> </region> <region region-id="1274" left="30" top="8530.5" width="234" height="69.75" align-x="60" align-y="8568" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="p">J</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="3"> <ml:apply> <ml:indexer/> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="0">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="03">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="0">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="03">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:parens> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="0">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="03">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="1">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="1">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="1">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="2">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="2">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:apply> <ml:id xml:space="preserve" subscript="2">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="238"/> </region> <region region-id="1278" left="306" top="8540.25" width="123" height="49.5" align-x="338.25" align-y="8568" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="p">J</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>-1.01</ml:real> <ml:real>-0.064999999999999877</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="239"/> </region> <region region-id="3904" left="66" top="8633.25" width="117.75" height="56.25" align-x="99" align-y="8664" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">dw</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="p">J</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:matrix> </ml:apply> </ml:define> </math> <rendering item-idref="240"/> </region> <region region-id="3903" left="234" top="8636.25" width="94.5" height="49.5" align-x="278.25" align-y="8664" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">dw</ml:id> <ml:real>0.1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.50000000000001921</ml:real> <ml:real>0.49999999999999689</ml:real> <ml:real>0.49999999999999434</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="241"/> </region> <region region-id="3902" left="342" top="8636.25" width="92.25" height="49.5" align-x="384" align-y="8664" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3">v</ml:id> <ml:real>0.1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.50000000000001921</ml:real> <ml:real>0.49999999999999689</ml:real> <ml:real>0.49999999999999434</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="242"/> </region> <region region-id="1575" left="30" top="8725.5" width="422.25" height="21" align-x="30" align-y="8742" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Newton-Eulerovy vztahy - výpočet silového působení</inlineAttr> </f> </p> </text> </region> <region region-id="1591" left="30" top="8778" width="94.5" height="157.5" align-x="30" align-y="8778" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="93.00472" y-extent="155.9906" item-idref="243"/> </picture> <rendering item-idref="244"/> </region> <region region-id="1738" left="30" top="8960.25" width="475.5" height="216" align-x="30" align-y="8970" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">MASS =<sp count="2"/>4.8824683e+01 KILOGRAM </p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">CENTER OF GRAVITY with respect to LCS1 coordinate frame:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">X<sp count="3"/>Y<sp count="3"/>Z<sp count="4"/>-4.0325987e-02 -1.8024766e-06<sp count="2"/>7.3574162e-01<sp count="2"/>M</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA with respect to LCS1 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>4.6443693e+01 -7.9670815e-06<sp count="2"/>2.0478701e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz -7.9670815e-06<sp count="2"/>4.7356949e+01<sp count="2"/>1.4573962e-04</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz<sp count="2"/>2.0478701e+00<sp count="2"/>1.4573962e-04<sp count="2"/>1.4139746e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA at CENTER OF GRAVITY with respect to LCS1 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>2.0014124e+01 -4.4181788e-06<sp count="2"/>5.9926583e-01</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz -4.4181788e-06<sp count="2"/>2.0847982e+01<sp count="2"/>8.0990420e-05</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz<sp count="2"/>5.9926583e-01<sp count="2"/>8.0990420e-05<sp count="2"/>1.3345766e+00</p> </text> </region> <region region-id="3928" left="30" top="9224.25" width="393" height="12" align-x="30" align-y="9234" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="0" margin-right="0" text-indent="0" text-align="left" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Článek ROT1 - matice setrvačnosti k těžišti, vyjádřeno (orientace) podle LCS1</inlineAttr> </f> </p> </text> </region> <region region-id="3929" left="30" top="9254.25" width="105" height="15.75" align-x="51" align-y="9264" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:real>48.8246830000</ml:real> </ml:define> </math> <rendering item-idref="245"/> </region> <region region-id="3930" left="30" top="9278.25" width="110.25" height="21.75" align-x="54" align-y="9294" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="x1t">J</ml:id> <ml:apply> <ml:mult/> <ml:real>2.0014124</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="246"/> </region> <region region-id="3931" left="30" top="9302.25" width="127.5" height="21.75" align-x="57.75" align-y="9318" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xy1t">J</ml:id> <ml:apply> <ml:neg/> <ml:apply> <ml:mult/> <ml:real>4.4181788</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-6</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="247"/> </region> <region region-id="3945" left="186" top="9302.25" width="110.25" height="21.75" align-x="210" align-y="9318" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="y1t">J</ml:id> <ml:apply> <ml:mult/> <ml:real>2.0847982</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="248"/> </region> <region region-id="3951" left="30" top="9326.25" width="121.5" height="21.75" align-x="57.75" align-y="9342" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xz1t">J</ml:id> <ml:apply> <ml:mult/> <ml:real>5.9926583</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="249"/> </region> <region region-id="3950" left="186" top="9326.25" width="121.5" height="21.75" align-x="213.75" align-y="9342" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="yz1t">J</ml:id> <ml:apply> <ml:mult/> <ml:real>8.0990420</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-5</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="250"/> </region> <region region-id="3949" left="336" top="9332.25" width="84" height="15.75" align-x="360" align-y="9342" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="z1t">J</ml:id> <ml:real>1.3345766</ml:real> </ml:define> </math> <rendering item-idref="251"/> </region> <region region-id="3982" left="30" top="9389.25" width="141" height="56.25" align-x="52.5" align-y="9420" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="11">J</ml:id> <ml:matrix rows="3" cols="3"> <ml:id xml:space="preserve" subscript="x1t">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy1t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz1t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy1t">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="y1t">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz1t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz1t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz1t">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="z1t">J</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="252"/> </region> <region region-id="3975" left="192" top="9383.25" width="268.5" height="67.5" align-x="213.75" align-y="9420" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="11">J</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>20.014124</ml:real> <ml:real>4.4181788E-06</ml:real> <ml:real>-0.59926583000000011</ml:real> <ml:real>4.4181788E-06</ml:real> <ml:real>20.847982</ml:real> <ml:real>-8.0990420000000011E-05</ml:real> <ml:real>-0.59926583000000011</ml:real> <ml:real>-8.0990420000000011E-05</ml:real> <ml:real>1.3345766</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="253"/> </region> <region region-id="3983" left="30" top="9470.25" width="282" height="12" align-x="30" align-y="9480" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Matice setrvačnosti přepočtená do základního GCS</inlineAttr> </f> </p> </text> </region> <region region-id="3984" left="30" top="9518.25" width="140.25" height="21.75" align-x="60" align-y="9534" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">J</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b1">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="11">J</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:apply> <ml:id xml:space="preserve" subscript="b1">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="254"/> </region> <region region-id="3978" left="192" top="9497.25" width="267" height="67.5" align-x="224.25" align-y="9534" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="1">J</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>20.014124</ml:real> <ml:real>4.4181788001021146E-06</ml:real> <ml:real>0.59926583000000011</ml:real> <ml:real>4.4181788001021146E-06</ml:real> <ml:real>20.847982</ml:real> <ml:real>8.0990419999926624E-05</ml:real> <ml:real>0.59926583000000011</ml:real> <ml:real>8.0990419999926624E-05</ml:real> <ml:real>1.3345766</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="255"/> </region> <region region-id="1662" left="36" top="9606" width="205.5" height="166.5" align-x="36" align-y="9606" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="204.0094" y-extent="165.0047" item-idref="256"/> </picture> <rendering item-idref="257"/> </region> <region region-id="1663" left="30" top="9782.25" width="512.25" height="240" align-x="30" align-y="9792" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">TRAN2</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">MASS =<sp count="2"/>4.2894906e+01 KILOGRAM </p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">CENTER OF GRAVITY with respect to LCS2 coordinate frame:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">X<sp count="3"/>Y<sp count="3"/>Z<sp count="4"/>-7.2368752e-02<sp count="2"/>0.0000000e+00 -4.7439674e-02<sp count="2"/>M</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA with respect to LCS2 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>1.0344896e+00<sp count="2"/>0.0000000e+00 -1.2186605e-01</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz<sp count="2"/>0.0000000e+00<sp count="2"/>1.7935719e+00<sp count="2"/>0.0000000e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz -1.2186605e-01<sp count="2"/>0.0000000e+00<sp count="2"/>1.4614205e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA at CENTER OF GRAVITY with respect to LCS2 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>9.3795366e-01<sp count="2"/>0.0000000e+00<sp count="2"/>2.5398594e-02</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz<sp count="2"/>0.0000000e+00<sp count="2"/>1.4723852e+00<sp count="2"/>0.0000000e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz<sp count="2"/>2.5398594e-02<sp count="2"/>0.0000000e+00<sp count="2"/>1.2367697e+00</p> </text> </region> <region region-id="4001" left="30" top="10064.25" width="436.5" height="12" align-x="30" align-y="10074" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="0" margin-right="0" text-indent="0" text-align="left" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Článek TRAN2 - matice setrvačnosti k těžišti, vyjádřeno (orientace) podle LCS2</inlineAttr> </f> </p> </text> </region> <region region-id="4002" left="30" top="10088.25" width="107.25" height="21.75" align-x="51" align-y="10104" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:apply> <ml:mult/> <ml:real>4.2894906</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="258"/> </region> <region region-id="4003" left="30" top="10118.25" width="117.75" height="21.75" align-x="54" align-y="10134" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="x2t">J</ml:id> <ml:apply> <ml:mult/> <ml:real>9.3795366</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="259"/> </region> <region region-id="4019" left="30" top="10148.25" width="87.75" height="15.75" align-x="57.75" align-y="10158" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xy2t">J</ml:id> <ml:real>0.0000000</ml:real> </ml:define> </math> <rendering item-idref="260"/> </region> <region region-id="4018" left="174" top="10148.25" width="84" height="15.75" align-x="198" align-y="10158" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="y2t">J</ml:id> <ml:real>1.4723852</ml:real> </ml:define> </math> <rendering item-idref="261"/> </region> <region region-id="4022" left="30" top="10166.25" width="121.5" height="21.75" align-x="57.75" align-y="10182" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xz2t">J</ml:id> <ml:apply> <ml:mult/> <ml:real>2.5398594</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-2</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="262"/> </region> <region region-id="4021" left="174" top="10172.25" width="87.75" height="15.75" align-x="201.75" align-y="10182" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="yz2t">J</ml:id> <ml:real>0.0000000</ml:real> </ml:define> </math> <rendering item-idref="263"/> </region> <region region-id="4020" left="294" top="10172.25" width="84" height="15.75" align-x="318" align-y="10182" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="z2t">J</ml:id> <ml:real>1.2367697</ml:real> </ml:define> </math> <rendering item-idref="264"/> </region> <region region-id="4006" left="30" top="10229.25" width="141" height="56.25" align-x="52.5" align-y="10260" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="22">J</ml:id> <ml:matrix rows="3" cols="3"> <ml:id xml:space="preserve" subscript="x2t">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy2t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz2t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy2t">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="y2t">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz2t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz2t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz2t">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="z2t">J</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="265"/> </region> <region region-id="4024" left="204" top="10232.25" width="160.5" height="49.5" align-x="225.75" align-y="10260" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="22">J</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>0.93795366</ml:real> <ml:real>0</ml:real> <ml:real>-0.025398594</ml:real> <ml:real>0</ml:real> <ml:real>1.4723852</ml:real> <ml:real>0</ml:real> <ml:real>-0.025398594</ml:real> <ml:real>0</ml:real> <ml:real>1.2367697</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="266"/> </region> <region region-id="4007" left="30" top="10310.25" width="273" height="12" align-x="30" align-y="10320" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Matice setrvačnosti přepočtená do základního GCS</inlineAttr> </f> </p> </text> </region> <region region-id="4008" left="30" top="10352.25" width="140.25" height="21.75" align-x="60" align-y="10368" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">J</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b2">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="22">J</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:apply> <ml:id xml:space="preserve" subscript="b2">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="267"/> </region> <region region-id="4023" left="204" top="10340.25" width="159" height="49.5" align-x="236.25" align-y="10368" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2">J</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>0.93795366</ml:real> <ml:real>0.025398594000000038</ml:real> <ml:real>0</ml:real> <ml:real>0.025398594000000038</ml:real> <ml:real>1.2367697</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1.4723852</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="268"/> </region> <region region-id="1677" left="36" top="10446" width="341.25" height="165" align-x="36" align-y="10446" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="339.7606" y-extent="163.5024" item-idref="269"/> </picture> <rendering item-idref="270"/> </region> <region region-id="4031" left="36" top="10628.25" width="507" height="240" align-x="36" align-y="10638" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="0" margin-right="0" text-indent="0" text-align="left" list-style-type="none" tabs="inherit">TRAN3</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">MASS =<sp count="2"/>5.9261161e+01 KILOGRAM </p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">CENTER OF GRAVITY with respect to LCS3 coordinate frame:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">X<sp count="3"/>Y<sp count="3"/>Z<sp count="5"/>2.5740416e-03<sp count="2"/>0.0000000e+00 -3.7039760e-01<sp count="2"/>M</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA with respect to LCS3 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>3.3435680e+01<sp count="2"/>0.0000000e+00<sp count="2"/>1.9296398e-01</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz<sp count="2"/>0.0000000e+00<sp count="2"/>3.4142950e+01<sp count="2"/>0.0000000e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz<sp count="2"/>1.9296398e-01<sp count="2"/>0.0000000e+00<sp count="2"/>1.0075258e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA at CENTER OF GRAVITY with respect to LCS3 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>2.5305381e+01<sp count="2"/>0.0000000e+00<sp count="2"/>1.3646327e-01</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz<sp count="2"/>0.0000000e+00<sp count="2"/>2.6012259e+01<sp count="2"/>0.0000000e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz<sp count="2"/>1.3646327e-01<sp count="2"/>0.0000000e+00<sp count="2"/>1.0071331e+00</p> </text> </region> <region region-id="4062" left="36" top="10910.25" width="471" height="12" align-x="36" align-y="10920" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="0" margin-right="0" text-indent="0" text-align="left" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Článek TRAN3 - matice setrvačnosti k těžišti, vyjádřeno (orientace) podle LCS3</inlineAttr> </f> </p> </text> </region> <region region-id="4063" left="36" top="10934.25" width="107.25" height="21.75" align-x="57" align-y="10950" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:apply> <ml:mult/> <ml:real>5.9261161</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="271"/> </region> <region region-id="4064" left="36" top="10964.25" width="110.25" height="21.75" align-x="60" align-y="10980" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="x3t">J</ml:id> <ml:apply> <ml:mult/> <ml:real>2.5305381</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="272"/> </region> <region region-id="4065" left="36" top="10994.25" width="87.75" height="15.75" align-x="63.75" align-y="11004" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xy3t">J</ml:id> <ml:real>0.0000000</ml:real> </ml:define> </math> <rendering item-idref="273"/> </region> <region region-id="4046" left="186" top="10988.25" width="110.25" height="21.75" align-x="210" align-y="11004" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="y3t">J</ml:id> <ml:apply> <ml:mult/> <ml:real>2.6012259</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="274"/> </region> <region region-id="4066" left="36" top="11012.25" width="121.5" height="21.75" align-x="63.75" align-y="11028" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xz3t">J</ml:id> <ml:apply> <ml:mult/> <ml:real>1.3646327</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="275"/> </region> <region region-id="4047" left="186" top="11018.25" width="87.75" height="15.75" align-x="213.75" align-y="11028" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="yz3t">J</ml:id> <ml:real>0.0000000</ml:real> </ml:define> </math> <rendering item-idref="276"/> </region> <region region-id="4051" left="324" top="11018.25" width="84" height="15.75" align-x="348" align-y="11028" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="z3t">J</ml:id> <ml:real>1.0071331</ml:real> </ml:define> </math> <rendering item-idref="277"/> </region> <region region-id="4073" left="36" top="11075.25" width="141" height="56.25" align-x="58.5" align-y="11106" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="33">J</ml:id> <ml:matrix rows="3" cols="3"> <ml:id xml:space="preserve" subscript="x3t">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy3t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz3t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy3t">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="y3t">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz3t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz3t">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz3t">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="z3t">J</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="278"/> </region> <region region-id="4072" left="228" top="11078.25" width="166.5" height="49.5" align-x="249.75" align-y="11106" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="33">J</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>25.305380999999997</ml:real> <ml:real>0</ml:real> <ml:real>-0.13646327</ml:real> <ml:real>0</ml:real> <ml:real>26.012259</ml:real> <ml:real>0</ml:real> <ml:real>-0.13646327</ml:real> <ml:real>0</ml:real> <ml:real>1.0071331</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="279"/> </region> <region region-id="4068" left="36" top="11156.25" width="222" height="24" align-x="36" align-y="11166" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Matice setrvačnosti přepočtená do základního GCS</inlineAttr> </f> </p> </text> </region> <region region-id="4071" left="36" top="11204.25" width="140.25" height="21.75" align-x="66" align-y="11220" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">J</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="33">J</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">R</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="280"/> </region> <region region-id="4070" left="228" top="11192.25" width="171" height="49.5" align-x="260.25" align-y="11220" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3">J</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>25.305380999999997</ml:real> <ml:real>0.136463269999997</ml:real> <ml:real>0</ml:real> <ml:real>0.136463269999997</ml:real> <ml:real>1.0071331</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>26.012259</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="281"/> </region> <region region-id="1698" left="42" top="11299.5" width="600" height="21" align-x="42" align-y="11316" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Rovnováha sil a momentů pro jednotlivé články - rekurentní vzorce</inlineAttr> </f> </p> </text> </region> <region region-id="1970" left="42" top="11335.5" width="867.75" height="63" align-x="42" align-y="11352" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Pozor !!!!!<sp count="2"/>Zatím není uvažován vliv vnitřních převodů a rozvodů, také výsledky z Pro/E jsou pro mechanismus s odpojenými (uvnitř nepohyblivými) vnitřními převody - vystupují tam jen jako hmotnost, nejsou zahrnuty jejich redukované momenty setrvačnosti při roztáčení !!!!!!!!!!!!!!!!!!!!!!!</inlineAttr> </f> </p> </text> </region> <region region-id="4080" left="42" top="11414.25" width="328.5" height="12" align-x="42" align-y="11424" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Síly a momenty na koncový bod v zákl.ss</p> </text> </region> <region region-id="4092" left="42" top="11444.25" width="57.75" height="49.5" align-x="70.5" align-y="11472" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="4">f</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="282"/> </region> <region region-id="4093" left="126" top="11444.25" width="60.75" height="49.5" align-x="157.5" align-y="11472" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="4">n</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="283"/> </region> <region region-id="4094" left="42" top="11522.25" width="61.5" height="13.5" align-x="55.5" align-y="11532" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">g</ml:id> <ml:real>9.80665</ml:real> </ml:define> </math> <rendering item-idref="284"/> </region> <region region-id="4095" left="126" top="11504.25" width="51" height="49.5" align-x="141.75" align-y="11532" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">G</ml:id> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:id xml:space="preserve">g</ml:id> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="285"/> </region> <region region-id="4096" left="210" top="11504.25" width="77.25" height="49.5" align-x="225" align-y="11532" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">G</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-9.80665</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="286"/> </region> <region region-id="1554" left="42" top="11576.25" width="180" height="12" align-x="42" align-y="11586" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Rovnováha sil - třetí článek</inlineAttr> </f> </p> </text> </region> <region region-id="1555" left="42" top="11600.25" width="163.5" height="15.75" align-x="70.5" align-y="11610" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">f</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve">G</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="t3">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="4">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="287"/> </region> <region region-id="1699" left="402" top="11582.25" width="105" height="49.5" align-x="432.75" align-y="11610" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3">f</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>187.64148911665</ml:real> <ml:real>-295.5506530383737</ml:real> <ml:real>-877.459269521099</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="288"/> </region> <region region-id="4085" left="420" top="11646" width="312.75" height="345.75" align-x="420" align-y="11646" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="289"/> </picture> <rendering item-idref="290"/> </region> <region region-id="4101" left="36" top="11676" width="374.25" height="280.5" align-x="36" align-y="11676" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="291"/> <rendering item-idref="292"/> </region> <region region-id="4098" left="42" top="12008.25" width="327" height="12" align-x="42" align-y="12018" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Moment tečných a odstředivých sil vyjádřený v zákl. ss.</inlineAttr> </f> </p> </text> </region> <region region-id="1557" left="42" top="12038.25" width="223.5" height="15.75" align-x="74.25" align-y="12048" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">N</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:neg/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">J</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">J</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="293"/> </region> <region region-id="1558" left="42" top="12068.25" width="285.75" height="12" align-x="42" align-y="12078" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Rovnováha momentů k těžišti 3.článku v zákl. ss</inlineAttr> </f> </p> </text> </region> <region region-id="1559" left="42" top="12092.25" width="304.5" height="15.75" align-x="73.5" align-y="12102" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">n</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="4">n</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">N</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="23">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t3b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> <ml:apply> <ml:id xml:space="preserve" subscript="3">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="t3b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="4">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="294"/> </region> <region region-id="1700" left="396" top="12074.25" width="108" height="49.5" align-x="429.75" align-y="12102" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3">n</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-561.22505468794179</ml:real> <ml:real>-2.2586166620528525</ml:real> <ml:real>-248.02874650589953</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="295"/> </region> <region region-id="4104" left="420" top="12138" width="312.75" height="345.75" align-x="420" align-y="12138" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="296"/> </picture> <rendering item-idref="297"/> </region> <region region-id="4102" left="36" top="12150" width="360" height="277.5" align-x="36" align-y="12150" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="298"/> <rendering item-idref="299"/> </region> <region region-id="1560" left="42" top="12536.25" width="216.75" height="12" align-x="42" align-y="12546" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Rovnováha sil - druhý článek</inlineAttr> </f> </p> </text> </region> <region region-id="1561" left="42" top="12560.25" width="163.5" height="15.75" align-x="70.5" align-y="12570" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">f</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve">G</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="t2">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="300"/> </region> <region region-id="1744" left="396" top="12539.25" width="121.5" height="55.5" align-x="426.75" align-y="12570" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2">f</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>177.5676259638953</ml:real> <ml:real>-297.11541504020761</ml:real> <ml:real>-1512.589129446324</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="301"/> </region> <region region-id="1820" left="438" top="12612" width="312.75" height="345.75" align-x="438" align-y="12612" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="302"/> </picture> <rendering item-idref="303"/> </region> <region region-id="1818" left="42" top="12624" width="383.25" height="280.5" align-x="42" align-y="12624" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="304"/> <rendering item-idref="305"/> </region> <region region-id="1562" left="42" top="12980.25" width="270" height="12" align-x="42" align-y="12990" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Moment tečných a odstředivých sil vůči zákl. ss.</inlineAttr> </f> </p> </text> </region> <region region-id="1563" left="42" top="13004.25" width="210" height="15.75" align-x="74.25" align-y="13014" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">N</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">J</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">J</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="306"/> </region> <region region-id="4122" left="402" top="12986.25" width="90.75" height="49.5" align-x="436.5" align-y="13014" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2">N</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>7.2890356434060708</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="307"/> </region> <region region-id="1564" left="42" top="13040.25" width="228.75" height="12" align-x="42" align-y="13050" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Rovnováha momentů k těžišti v zákl. ss</inlineAttr> </f> </p> </text> </region> <region region-id="1565" left="42" top="13076.25" width="304.5" height="15.75" align-x="73.5" align-y="13086" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">n</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:id xml:space="preserve" subscript="3">n</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">N</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="12">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t2b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> <ml:apply> <ml:id xml:space="preserve" subscript="2">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="t2b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="308"/> </region> <region region-id="1750" left="402" top="13058.25" width="108" height="49.5" align-x="435.75" align-y="13086" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2">n</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-247.64659523706544</ml:real> <ml:real>114.78616041421554</ml:real> <ml:real>-236.59642082882917</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="309"/> </region> <region region-id="1825" left="438" top="13134" width="312.75" height="345.75" align-x="438" align-y="13134" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="310"/> </picture> <rendering item-idref="311"/> </region> <region region-id="1822" left="36" top="13170" width="360" height="277.5" align-x="36" align-y="13170" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="312"/> <rendering item-idref="313"/> </region> <region region-id="1566" left="42" top="13484.25" width="231" height="12" align-x="42" align-y="13494" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Rovnováha sil - první článek</inlineAttr> </f> </p> </text> </region> <region region-id="1567" left="42" top="13508.25" width="163.5" height="15.75" align-x="70.5" align-y="13518" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">f</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve">G</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="t1">a</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="314"/> </region> <region region-id="1760" left="402" top="13487.25" width="121.5" height="55.5" align-x="432.75" align-y="13518" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="1">f</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>177.5680616339379</ml:real> <ml:real>-306.86246222780346</ml:real> <ml:real>-1991.395706988274</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="315"/> </region> <region region-id="1831" left="438" top="13554" width="312.75" height="345.75" align-x="438" align-y="13554" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="316"/> </picture> <rendering item-idref="317"/> </region> <region region-id="1829" left="12" top="13560" width="374.25" height="280.5" align-x="12" align-y="13560" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="318"/> <rendering item-idref="319"/> </region> <region region-id="1568" left="42" top="13916.25" width="270.75" height="12" align-x="42" align-y="13926" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Moment tečných a odstředivých sil vůči zákl. ss.</inlineAttr> </f> </p> </text> </region> <region region-id="1569" left="42" top="13952.25" width="210" height="15.75" align-x="74.25" align-y="13962" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">N</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">J</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">ε</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">J</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">ω</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="320"/> </region> <region region-id="4142" left="396" top="13931.25" width="126.75" height="55.5" align-x="430.5" align-y="13962" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="1">N</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>2.9666625246880534</ml:real> <ml:real>0.00040094267325825681</ml:real> <ml:real>6.606814851341678</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="321"/> </region> <region region-id="1570" left="42" top="13994.25" width="221.25" height="12" align-x="42" align-y="14004" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Rovnováha momentů k těžišti v zákl ss</inlineAttr> </f> </p> </text> </region> <region region-id="1571" left="42" top="14018.25" width="304.5" height="15.75" align-x="73.5" align-y="14028" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">n</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">n</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">N</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="01">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="t1b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:parens> <ml:apply> <ml:id xml:space="preserve" subscript="1">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:crossProduct/> <ml:apply> <ml:id xml:space="preserve" subscript="t1b">p</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="322"/> </region> <region region-id="1764" left="396" top="14000.25" width="108" height="49.5" align-x="429.75" align-y="14028" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="1">n</ml:id> <ml:real>0</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-243.44281251138722</ml:real> <ml:real>134.0944278335964</ml:real> <ml:real>-243.5962949791315</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="323"/> </region> <region region-id="4144" left="438" top="14064" width="312.75" height="345.75" align-x="438" align-y="14064" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="324"/> </picture> <rendering item-idref="325"/> </region> <region region-id="1833" left="30" top="14088" width="360" height="277.5" align-x="30" align-y="14088" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="326"/> <rendering item-idref="327"/> </region> <region region-id="1836" left="48" top="14413.5" width="255" height="21" align-x="48" align-y="14430" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Zobecněné síly Newton-Euler</inlineAttr> </f> </p> </text> </region> <region region-id="1837" left="48" top="14450.25" width="113.25" height="15.75" align-x="90" align-y="14460" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1ne">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="0">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve" subscript="1">n</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="328"/> </region> <region region-id="4146" left="438" top="14484" width="312.75" height="345.75" align-x="438" align-y="14484" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="329"/> </picture> <rendering item-idref="330"/> </region> <region region-id="1838" left="48" top="14480.25" width="110.25" height="15.75" align-x="90" align-y="14490" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2ne">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve" subscript="2">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="331"/> </region> <region region-id="1839" left="48" top="14510.25" width="110.25" height="15.75" align-x="90" align-y="14520" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3ne">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">k</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve" subscript="3">f</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="332"/> </region> <region region-id="1842" left="42" top="14550" width="351" height="274.5" align-x="42" align-y="14550" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="333"/> <rendering item-idref="334"/> </region> <region region-id="1846" left="72" top="14864.25" width="66" height="175.5" align-x="88.5" align-y="14874" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="1ne">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>243.5962949791315</ml:real> <ml:real>243.12018158439389</ml:real> <ml:real>241.70977694540252</ml:real> <ml:real>239.41834806706169</ml:real> <ml:real>236.33283706574139</ml:real> <ml:real>232.57099562211036</ml:real> <ml:real>228.2772068719942</ml:real> <ml:real>223.6169471089257</ml:real> <ml:real>218.76995905595106</ml:real> <ml:real>213.9223756059298</ml:real> <ml:real>209.25821273394007</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="335"/> </resultFormat> </math> <rendering item-idref="336"/> </region> <region region-id="1851" left="168" top="14864.25" width="74.25" height="175.5" align-x="184.5" align-y="14874" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2ne">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1512.589129446324</ml:real> <ml:real>1512.5891294620903</ml:real> <ml:real>1512.5891294472976</ml:real> <ml:real>1512.5891294455362</ml:real> <ml:real>1512.5891294456153</ml:real> <ml:real>1512.5891294455832</ml:real> <ml:real>1512.5891294454937</ml:real> <ml:real>1512.5891294456292</ml:real> <ml:real>1512.5891294456083</ml:real> <ml:real>1512.5891294455641</ml:real> <ml:real>1512.5891294455664</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="337"/> </resultFormat> </math> <rendering item-idref="338"/> </region> <region region-id="1854" left="282" top="14864.25" width="66" height="175.5" align-x="298.5" align-y="14874" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3ne">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>295.5506530383737</ml:real> <ml:real>296.06250155556285</ml:real> <ml:real>297.58218912688085</ml:real> <ml:real>300.06297123515179</ml:real> <ml:real>303.42965647371045</ml:real> <ml:real>307.58250549831371</ml:real> <ml:real>312.40234413032607</ml:real> <ml:real>317.75655608401161</ml:real> <ml:real>323.50555175459681</ml:real> <ml:real>329.50926790295387</ml:real> <ml:real>335.63325183043111</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="339"/> </resultFormat> </math> <rendering item-idref="340"/> </region> <region region-id="1845" left="48" top="15073.5" width="843.75" height="21" align-x="48" align-y="15090" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Zahrnutí vlivu vnitřních převodů a rozvodů na dynamiku mechanismu (redukované momenty a hmotnosti)</inlineAttr> </f> </p> </text> </region> <region region-id="4172" left="48" top="15122.25" width="100.5" height="15.75" align-x="70.5" align-y="15132" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="p1">J</ml:id> <ml:real>5.8702800000</ml:real> </ml:define> </math> <rendering item-idref="341"/> </region> <region region-id="4180" left="234" top="15122.25" width="570.75" height="12" align-x="234" align-y="15132" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zahrnutí vlivu momentu setrvačnosti rotoru motoru, převodovky a vnitřních kroužků velkých ložisek</inlineAttr> </f> </p> </text> </region> <region region-id="4165" left="48" top="15152.25" width="87.75" height="15.75" align-x="75.75" align-y="15162" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="p21">J</ml:id> <ml:real>1.4780800</ml:real> </ml:define> </math> <rendering item-idref="342"/> </region> <region region-id="4179" left="234" top="15152.25" width="511.5" height="12" align-x="234" align-y="15162" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zahrnutí vlivu zrychlení vnitřních převodů TRAN2 na zobecněnou sílu tau1</inlineAttr> </f> </p> </text> </region> <region region-id="4167" left="48" top="15182.25" width="60.75" height="15.75" align-x="79.5" align-y="15192" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="p12">m</ml:id> <ml:id xml:space="preserve" subscript="p21">J</ml:id> </ml:define> </math> <rendering item-idref="343"/> </region> <region region-id="4178" left="234" top="15182.25" width="447.75" height="12" align-x="234" align-y="15192" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zahrnutí vlivu zrychlení ROT1 na vnitřní převody TRAN2</inlineAttr> </f> </p> </text> </region> <region region-id="4168" left="48" top="15212.25" width="104.25" height="15.75" align-x="74.25" align-y="15222" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="p2">m</ml:id> <ml:real>123.09124685</ml:real> </ml:define> </math> <rendering item-idref="344"/> </region> <region region-id="4177" left="234" top="15212.25" width="654" height="12" align-x="234" align-y="15222" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zahrnutí zvýšení redukované hmotnosti článku TRAN2 vlivem zrychlení rotoru MOT2 a jeho převodovky a pohybového šroubu</inlineAttr> </f> </p> </text> </region> <region region-id="4174" left="48" top="15242.25" width="110.25" height="15.75" align-x="74.25" align-y="15252" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="p3">m</ml:id> <ml:real>51.5751826083</ml:real> </ml:define> </math> <rendering item-idref="345"/> </region> <region region-id="4176" left="234" top="15242.25" width="730.5" height="12" align-x="234" align-y="15252" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zahrnutí zvýšení redukované hmotnosti vlivem zrychlení rotoru motoru MOT3, ozubeného kola a matice pohybového šroubu (řemen neuvažován)</inlineAttr> </f> </p> </text> </region> <region region-id="1891" left="48" top="15278.25" width="319.5" height="12" align-x="48" align-y="15288" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Pozn. - Nejsou uvažovány gyroskopické efekty</p> </text> </region> <region region-id="1709" left="42" top="15331.5" width="381.75" height="21" align-x="42" align-y="15348" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Zobecněné síly s uvažováním vnitřních převodů</inlineAttr> </f> </p> </text> </region> <region region-id="1710" left="42" top="15368.25" width="245.25" height="15.75" align-x="89.25" align-y="15378" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1nep">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="1ne">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="p1">J</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="p12">m</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="346"/> </region> <region region-id="1711" left="42" top="15398.25" width="245.25" height="15.75" align-x="89.25" align-y="15408" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2nep">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2ne">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="p2">m</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="p21">J</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="347"/> </region> <region region-id="1715" left="42" top="15428.25" width="167.25" height="15.75" align-x="89.25" align-y="15438" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3nep">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="3ne">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="p3">m</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="348"/> </region> <region region-id="4185" left="36" top="15464.25" width="66" height="175.5" align-x="55.5" align-y="15474" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="1nep">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>265.26668705769714</ml:real> <ml:real>264.6127069884156</ml:real> <ml:real>262.67261859494033</ml:real> <ml:real>259.51138725804691</ml:real> <ml:real>255.235269171047</ml:real> <ml:real>249.9886224598749</ml:real> <ml:real>243.94919339937147</ml:real> <ml:real>237.32177699856143</ml:real> <ml:real>230.33029075396649</ml:real> <ml:real>223.20850290360377</ml:real> <ml:real>216.18988026326747</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="349"/> </resultFormat> </math> <rendering item-idref="350"/> </region> <region region-id="4187" left="138" top="15464.25" width="74.25" height="175.5" align-x="157.5" align-y="15474" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2nep">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>2120.728135974643</ml:real> <ml:real>2120.7729211259557</ml:real> <ml:real>2120.9062903643348</ml:real> <ml:real>2121.1252982472943</ml:real> <ml:real>2121.4250816515305</ml:real> <ml:real>2121.79894132593</ml:real> <ml:real>2122.2384767533404</ml:real> <ml:real>2122.7337878602834</ml:real> <ml:real>2123.2737518631588</ml:real> <ml:real>2123.8463746408606</ml:real> <ml:real>2124.4392049478352</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="351"/> </resultFormat> </math> <rendering item-idref="352"/> </region> <region region-id="4189" left="258" top="15464.25" width="66" height="175.5" align-x="277.5" align-y="15474" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3nep">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>570.02254067010608</ml:real> <ml:real>571.19684773408642</ml:real> <ml:real>574.68307884680564</ml:real> <ml:real>580.37298240099938</ml:real> <ml:real>588.0921033782505</ml:real> <ml:real>597.60837725206284</ml:real> <ml:real>608.6434620391434</ml:real> <ml:real>620.88612233821</ml:real> <ml:real>634.00682544740619</ml:real> <ml:real>647.67260633567287</ml:real> <ml:real>661.56123313402713</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="353"/> </resultFormat> </math> <rendering item-idref="354"/> </region> <region region-id="4199" left="36" top="15650.25" width="325.5" height="12" align-x="43.5" align-y="15660" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Pro porovnání zobecněné síly bez zahrnutí pohybu vnitřních převodů</p> </text> </region> <region region-id="4184" left="36" top="15674.25" width="66" height="200.25" align-x="52.5" align-y="15684" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="1ne">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>243.5962949791315</ml:real> <ml:real>243.12018158439389</ml:real> <ml:real>241.70977694540252</ml:real> <ml:real>239.41834806706169</ml:real> <ml:real>236.33283706574139</ml:real> <ml:real>232.57099562211036</ml:real> <ml:real>228.2772068719942</ml:real> <ml:real>223.6169471089257</ml:real> <ml:real>218.76995905595106</ml:real> <ml:real>213.9223756059298</ml:real> <ml:real>209.25821273394007</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="355"/> </resultFormat> </math> <rendering item-idref="356"/> </region> <region region-id="4186" left="138" top="15674.25" width="74.25" height="200.25" align-x="154.5" align-y="15684" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2ne">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>1512.589129446324</ml:real> <ml:real>1512.5891294620903</ml:real> <ml:real>1512.5891294472976</ml:real> <ml:real>1512.5891294455362</ml:real> <ml:real>1512.5891294456153</ml:real> <ml:real>1512.5891294455832</ml:real> <ml:real>1512.5891294454937</ml:real> <ml:real>1512.5891294456292</ml:real> <ml:real>1512.5891294456083</ml:real> <ml:real>1512.5891294455641</ml:real> <ml:real>1512.5891294455664</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="357"/> </resultFormat> </math> <rendering item-idref="358"/> </region> <region region-id="4188" left="258" top="15674.25" width="66" height="200.25" align-x="274.5" align-y="15684" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3ne">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>295.5506530383737</ml:real> <ml:real>296.06250155556285</ml:real> <ml:real>297.58218912688085</ml:real> <ml:real>300.06297123515179</ml:real> <ml:real>303.42965647371045</ml:real> <ml:real>307.58250549831371</ml:real> <ml:real>312.40234413032607</ml:real> <ml:real>317.75655608401161</ml:real> <ml:real>323.50555175459681</ml:real> <ml:real>329.50926790295387</ml:real> <ml:real>335.63325183043111</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="359"/> </resultFormat> </math> <rendering item-idref="360"/> </region> <region region-id="4194" left="36" top="15877.5" width="840.75" height="42" align-x="36" align-y="15894" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Z porovnání vyplývá, že zobecněné síly s uvažováním vnitřních převodů jsou výrazně vyšší (u třetí osy téměř dvojnásobek), není možno redukované momenty vnitřních převodů zanedbat</inlineAttr> </f> </p> </text> </region> <region region-id="1870" left="414" top="15948" width="312.75" height="345.75" align-x="414" align-y="15948" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="361"/> </picture> <rendering item-idref="362"/> </region> <region region-id="1871" left="6" top="16008" width="356.25" height="274.5" align-x="6" align-y="16008" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="363"/> <rendering item-idref="364"/> </region> <region region-id="1894" left="426" top="16304.25" width="351.75" height="12" align-x="426" align-y="16314" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zobecněné síly z úplného modelu v ProE včetně vnitřních převodů</inlineAttr> </f> </p> </text> </region> <region region-id="4212" left="24" top="16435.5" width="449.25" height="21" align-x="24" align-y="16452" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Lagrangeova pohybová rovnice - maticově ruční výpočet</inlineAttr> </f> </p> </text> </region> <region region-id="5858" left="36" top="16488" width="144" height="46.5" align-x="36" align-y="16488" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <png item-idref="365" display-width="142.5" display-height="45"/> </picture> <rendering item-idref="366"/> </region> <region region-id="5857" left="204" top="16488" width="129.75" height="42" align-x="204" align-y="16488" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <png item-idref="367" display-width="128.25" display-height="40.5"/> </picture> <rendering item-idref="368"/> </region> <region region-id="4213" left="24" top="16562.25" width="437.25" height="12" align-x="24" align-y="16572" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Totální diferenciály transformačních matic podle času pomocí diferenciálních operátorů</inlineAttr> </f> </p> </text> </region> <region region-id="4214" left="24" top="16616.25" width="83.25" height="12" align-x="24" align-y="16626" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Prorotační kloub</inlineAttr> </f> </p> </text> </region> <region region-id="4215" left="126" top="16589.25" width="96.75" height="67.5" align-x="144.75" align-y="16626" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="r">D</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="369"/> </region> <region region-id="4216" left="246" top="16616.25" width="95.25" height="12" align-x="246" align-y="16626" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Pro translační kloub</inlineAttr> </f> </p> </text> </region> <region region-id="4217" left="354" top="16589.25" width="90" height="67.5" align-x="372" align-y="16626" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t">D</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="370"/> </region> <region region-id="4219" left="30" top="16694.25" width="412.5" height="12" align-x="48.75" align-y="16704" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výpočet totálního diferenciálu (analogie derivace) transformační matice Tb1 podle času</p> </text> </region> <region region-id="71" left="24" top="16724.25" width="396" height="74.25" align-x="67.5" align-y="16764" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b1">dT</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="371"/> </region> <region region-id="72" left="24" top="16821" width="288" height="72" align-x="67.5" align-y="16860" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b1">dT</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="372"/> </region> <region region-id="4227" left="24" top="16940.25" width="412.5" height="12" align-x="42.75" align-y="16950" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výpočet totálního diferenciálu (analogie derivace) transformační matice Tb2 podle času</p> </text> </region> <region region-id="73" left="30" top="16977" width="511.5" height="142.5" align-x="73.5" align-y="17016" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b2">dT</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> <ml:parens> <ml:apply> <ml:plus split="true"/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="373"/> </region> <region region-id="74" left="30" top="17168.25" width="383.25" height="74.25" align-x="73.5" align-y="17208" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b2">dT</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="374"/> </region> <region region-id="4238" left="30" top="17282.25" width="412.5" height="12" align-x="48.75" align-y="17292" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výpočet totálního diferenciálu (analogie derivace) transformační matice Tb3 podle času</p> </text> </region> <region region-id="4240" left="30" top="17313" width="601.5" height="213" align-x="73.5" align-y="17352" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b3">dT</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> <ml:parens> <ml:apply> <ml:plus split="true"/> <ml:apply> <ml:plus split="true"/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="375"/> </region> <region region-id="1500" left="30" top="17576.25" width="611.25" height="74.25" align-x="73.5" align-y="17616" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="b3">dT</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="376"/> </region> <region region-id="1896" left="30" top="17702.25" width="453.75" height="228" align-x="30" align-y="17712" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">ROT1</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">MASS =<sp count="2"/>4.8824683e+01 KILOGRAM </p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">CENTER OF GRAVITY with respect to LCS1 coordinate frame:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">X<sp count="3"/>Y<sp count="3"/>Z<sp count="4"/>-4.0325987e-02 -1.8024766e-06<sp count="2"/>7.3574162e-01<sp count="2"/>M</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA with respect to LCS1 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>4.6443693e+01 -7.9670815e-06<sp count="2"/>2.0478701e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz -7.9670815e-06<sp count="2"/>4.7356949e+01<sp count="2"/>1.4573962e-04</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz<sp count="2"/>2.0478701e+00<sp count="2"/>1.4573962e-04<sp count="2"/>1.4139746e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA at CENTER OF GRAVITY with respect to LCS1 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>2.0014124e+01 -4.4181788e-06<sp count="2"/>5.9926583e-01</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz -4.4181788e-06<sp count="2"/>2.0847982e+01<sp count="2"/>8.0990420e-05</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz<sp count="2"/>5.9926583e-01<sp count="2"/>8.0990420e-05<sp count="2"/>1.3345766e+00</p> </text> </region> <region region-id="4265" left="30" top="17965.5" width="867.75" height="42" align-x="30" align-y="17982" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Pozor - pro Lagrangeovu pohybovou rovnici se použije matice setrvačnosti k lokálnímu souřadnému systému (ta první v pořadí), pro N-E vztahy byla předtím použita matice setrvačnosti k těžišti (druhá matice)</inlineAttr> </f> </p> </text> </region> <region region-id="4249" left="30" top="18020.25" width="142.5" height="24" align-x="30" align-y="18030" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Článek 1</inlineAttr> </f> </p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">momenty k lokálnímu ss</inlineAttr> </f> </p> </text> </region> <region region-id="4299" left="30" top="18056.25" width="107.25" height="21.75" align-x="51" align-y="18072" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:apply> <ml:mult/> <ml:real>4.8824683</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="377"/> </region> <region region-id="4251" left="30" top="18086.25" width="107.25" height="21.75" align-x="51" align-y="18102" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="x1">J</ml:id> <ml:apply> <ml:mult/> <ml:real>4.6443693</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="378"/> </region> <region region-id="4297" left="30" top="18110.25" width="124.5" height="21.75" align-x="54.75" align-y="18126" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> <ml:apply> <ml:neg/> <ml:apply> <ml:mult/> <ml:real>7.9670815</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-6</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="379"/> </region> <region region-id="4296" left="192" top="18110.25" width="107.25" height="21.75" align-x="213" align-y="18126" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="y1">J</ml:id> <ml:apply> <ml:mult/> <ml:real>4.7356949</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="380"/> </region> <region region-id="4295" left="30" top="18140.25" width="84.75" height="15.75" align-x="54.75" align-y="18150" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xz1">J</ml:id> <ml:real>2.0478701</ml:real> </ml:define> </math> <rendering item-idref="381"/> </region> <region region-id="4294" left="192" top="18134.25" width="118.5" height="21.75" align-x="216.75" align-y="18150" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="yz1">J</ml:id> <ml:apply> <ml:mult/> <ml:real>1.4573962</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-4</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="382"/> </region> <region region-id="4293" left="348" top="18140.25" width="81" height="15.75" align-x="369" align-y="18150" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="z1">J</ml:id> <ml:real>1.4139746</ml:real> </ml:define> </math> <rendering item-idref="383"/> </region> <region region-id="4366" left="30" top="18188.25" width="354.75" height="12" align-x="51" align-y="18198" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Přepočet momentů setrvačnosti k osám na momenty setrvačnosti k rovinám</p> </text> </region> <region region-id="4257" left="30" top="18214.5" width="102.75" height="31.5" align-x="54.75" align-y="18234" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xx1">J</ml:id> <ml:apply> <ml:div/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="y1">J</ml:id> <ml:id xml:space="preserve" subscript="z1">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="x1">J</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:define> </math> <rendering item-idref="384"/> </region> <region region-id="4258" left="30" top="18250.5" width="102.75" height="31.5" align-x="54.75" align-y="18270" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="yy1">J</ml:id> <ml:apply> <ml:div/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="z1">J</ml:id> <ml:id xml:space="preserve" subscript="x1">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="y1">J</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:define> </math> <rendering item-idref="385"/> </region> <region region-id="4259" left="192" top="18230.25" width="68.25" height="74.25" align-x="219" align-y="18270" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t11">P</ml:id> <ml:matrix rows="4" cols="1"> <ml:id xml:space="preserve" subscript="t11">x</ml:id> <ml:id xml:space="preserve" subscript="t11">y</ml:id> <ml:id xml:space="preserve" subscript="t11">z</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="386"/> </region> <region region-id="4260" left="300" top="18230.25" width="124.5" height="73.5" align-x="326.25" align-y="18270" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t11">P</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="1"> <ml:real>-0.040325987</ml:real> <ml:real>-1.8024766E-06</ml:real> <ml:real>0.7357416200000001</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="387"/> </region> <region region-id="4261" left="30" top="18286.5" width="102.75" height="31.5" align-x="54.75" align-y="18306" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="zz1">J</ml:id> <ml:apply> <ml:div/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="x1">J</ml:id> <ml:id xml:space="preserve" subscript="y1">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="z1">J</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:define> </math> <rendering item-idref="388"/> </region> <region region-id="4368" left="30" top="18326.25" width="135.75" height="12" align-x="50.25" align-y="18336" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Normální matice setrvačnosti</p> </text> </region> <region region-id="93" left="30" top="18353.25" width="126.75" height="56.25" align-x="47.25" align-y="18384" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">J</ml:id> <ml:matrix rows="3" cols="3"> <ml:id xml:space="preserve" subscript="x1">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz1">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="y1">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz1">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz1">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz1">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="z1">J</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="389"/> </region> <region region-id="285" left="180" top="18347.25" width="263.25" height="67.5" align-x="196.5" align-y="18384" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">J</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>46.443693</ml:real> <ml:real>7.9670815E-06</ml:real> <ml:real>-2.0478701</ml:real> <ml:real>7.9670815E-06</ml:real> <ml:real>47.356949</ml:real> <ml:real>-0.00014573962</ml:real> <ml:real>-2.0478701</ml:real> <ml:real>-0.00014573962</ml:real> <ml:real>1.4139746</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="390"/> </region> <region region-id="4370" left="30" top="18428.25" width="147.75" height="12" align-x="56.25" align-y="18438" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Homogenní matice setrvačnosti</p> </text> </region> <region region-id="95" left="24" top="18456.75" width="228" height="76.5" align-x="43.5" align-y="18498" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">H</ml:id> <ml:matrix rows="4" cols="4"> <ml:id xml:space="preserve" subscript="xx1">J</ml:id> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> <ml:id xml:space="preserve" subscript="xz1">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">x</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> <ml:id xml:space="preserve" subscript="yy1">J</ml:id> <ml:id xml:space="preserve" subscript="yz1">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">y</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="xz1">J</ml:id> <ml:id xml:space="preserve" subscript="yz1">J</ml:id> <ml:id xml:space="preserve" subscript="zz1">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">z</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">x</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">y</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">z</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="391"/> </region> <region region-id="96" left="270" top="18449.25" width="342.75" height="91.5" align-x="288.75" align-y="18498" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">H</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>1.1636153</ml:real> <ml:real>-7.9670815E-06</ml:real> <ml:real>2.0478701</ml:real> <ml:real>-1.9689035319371211</ml:real> <ml:real>-7.9670815E-06</ml:real> <ml:real>0.25035930000000306</ml:real> <ml:real>0.00014573962</ml:real> <ml:real>-8.80053486099178E-05</ml:real> <ml:real>2.0478701</ml:real> <ml:real>0.00014573962</ml:real> <ml:real>46.193333700000004</ml:real> <ml:real>35.922351366406467</ml:real> <ml:real>-1.9689035319371211</ml:real> <ml:real>-8.80053486099178E-05</ml:real> <ml:real>35.922351366406467</ml:real> <ml:real>48.824683</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="392"/> </region> <region region-id="97" left="24" top="18572.25" width="194.25" height="12" align-x="24" align-y="18582" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Kinetická energie prvního článku</inlineAttr> </f> </p> </text> </region> <region region-id="98" left="24" top="18594.75" width="183.75" height="29.25" align-x="56.25" align-y="18612" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:id xml:space="preserve">tr</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b1">dT</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="1">H</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:apply> <ml:id xml:space="preserve" subscript="b1">dT</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="393"/> </region> <region region-id="99" left="24" top="18638.25" width="669.75" height="12" align-x="24" align-y="18648" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Pro odvození výrazu pro kinetickou energii pro ruční použití v Lagr.rov. II. druhu provedeme symbolicky roznásobení (Shift+F9)</p> </text> </region> <region region-id="100" left="24" top="18669" width="770.25" height="80.25" align-x="56.25" align-y="18714" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:id xml:space="preserve">tr</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:id xml:space="preserve" subscript="xx1">J</ml:id> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> <ml:id xml:space="preserve" subscript="xz1">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">x</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> <ml:id xml:space="preserve" subscript="yy1">J</ml:id> <ml:id xml:space="preserve" subscript="yz1">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">y</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="xz1">J</ml:id> <ml:id xml:space="preserve" subscript="yz1">J</ml:id> <ml:id xml:space="preserve" subscript="zz1">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">z</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">x</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">y</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">m</ml:id> <ml:id xml:space="preserve" subscript="t11">z</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:matrix> </ml:apply> <ml:apply> <ml:transpose/> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="394"/> </region> <region region-id="1059" left="24" top="18774.75" width="1531.5" height="29.25" align-x="56.25" align-y="18792" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>-1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xx1">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="yy1">J</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xx1">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xy1">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="yy1">J</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="395"/> </region> <region region-id="1060" left="24" top="18816.75" width="213" height="29.25" align-x="56.25" align-y="18834" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xx1">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="yy1">J</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="396"/> </region> <region region-id="103" left="24" top="18858.75" width="158.25" height="29.25" align-x="56.25" align-y="18876" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="xx1">J</ml:id> <ml:id xml:space="preserve" subscript="yy1">J</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="397"/> </region> <region region-id="104" left="24" top="18894.75" width="117" height="29.25" align-x="56.25" align-y="18912" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="z1">J</ml:id> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="398"/> </region> <region region-id="105" left="192" top="18902.25" width="79.5" height="12" align-x="192" align-y="18912" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">jen rotace</p> </text> </region> <region region-id="1898" left="24" top="18962.25" width="474" height="228" align-x="24" align-y="18972" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">TRAN2</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">MASS =<sp count="2"/>4.2894906e+01 KILOGRAM </p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">CENTER OF GRAVITY with respect to LCS2 coordinate frame:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">X<sp count="3"/>Y<sp count="3"/>Z<sp count="4"/>-7.2368752e-02<sp count="2"/>0.0000000e+00 -4.7439674e-02<sp count="2"/>M</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA with respect to LCS2 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>1.0344896e+00<sp count="2"/>0.0000000e+00 -1.2186605e-01</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz<sp count="2"/>0.0000000e+00<sp count="2"/>1.7935719e+00<sp count="2"/>0.0000000e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz -1.2186605e-01<sp count="2"/>0.0000000e+00<sp count="2"/>1.4614205e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA at CENTER OF GRAVITY with respect to LCS2 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>9.3795366e-01<sp count="2"/>0.0000000e+00<sp count="2"/>2.5398594e-02</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz<sp count="2"/>0.0000000e+00<sp count="2"/>1.4723852e+00<sp count="2"/>0.0000000e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz<sp count="2"/>2.5398594e-02<sp count="2"/>0.0000000e+00<sp count="2"/>1.2367697e+00</p> </text> </region> <region region-id="4303" left="24" top="19226.25" width="129" height="24" align-x="24" align-y="19236" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Článek 2</inlineAttr> </f> </p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">momenty k lokálnímu ss</inlineAttr> </f> </p> </text> </region> <region region-id="4331" left="24" top="19274.25" width="107.25" height="21.75" align-x="45" align-y="19290" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:apply> <ml:mult/> <ml:real>4.2894906</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="399"/> </region> <region region-id="4332" left="24" top="19304.25" width="81" height="15.75" align-x="45" align-y="19314" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="x2">J</ml:id> <ml:real>1.0344896</ml:real> </ml:define> </math> <rendering item-idref="400"/> </region> <region region-id="4353" left="24" top="19328.25" width="39.75" height="15.75" align-x="48.75" align-y="19338" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xy2">J</ml:id> <ml:real>0</ml:real> </ml:define> </math> <rendering item-idref="401"/> </region> <region region-id="4354" left="174" top="19328.25" width="81" height="15.75" align-x="195" align-y="19338" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="y2">J</ml:id> <ml:real>1.7935719</ml:real> </ml:define> </math> <rendering item-idref="402"/> </region> <region region-id="4350" left="24" top="19346.25" width="124.5" height="21.75" align-x="48.75" align-y="19362" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> <ml:apply> <ml:neg/> <ml:apply> <ml:mult/> <ml:real>1.2186605</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-1</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="403"/> </region> <region region-id="4352" left="174" top="19352.25" width="39.75" height="15.75" align-x="198.75" align-y="19362" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="yz2">J</ml:id> <ml:real>0</ml:real> </ml:define> </math> <rendering item-idref="404"/> </region> <region region-id="4351" left="288" top="19352.25" width="81" height="15.75" align-x="309" align-y="19362" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="z2">J</ml:id> <ml:real>1.4614205</ml:real> </ml:define> </math> <rendering item-idref="405"/> </region> <region region-id="4375" left="24" top="19394.25" width="354.75" height="12" align-x="45" align-y="19404" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Přepočet momentů setrvačnosti k osám na momenty setrvačnosti k rovinám</p> </text> </region> <region region-id="115" left="30" top="19420.5" width="102.75" height="31.5" align-x="54.75" align-y="19440" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xx2">J</ml:id> <ml:apply> <ml:div/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="y2">J</ml:id> <ml:id xml:space="preserve" subscript="z2">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="x2">J</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:define> </math> <rendering item-idref="406"/> </region> <region region-id="4361" left="192" top="19430.25" width="68.25" height="74.25" align-x="219" align-y="19470" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t22">P</ml:id> <ml:matrix rows="4" cols="1"> <ml:id xml:space="preserve" subscript="t22">x</ml:id> <ml:id xml:space="preserve" subscript="t22">y</ml:id> <ml:id xml:space="preserve" subscript="t22">z</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="407"/> </region> <region region-id="4362" left="300" top="19433.25" width="88.5" height="67.5" align-x="326.25" align-y="19470" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t22">P</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="1"> <ml:real>-0.072368752000000008</ml:real> <ml:real>0</ml:real> <ml:real>-0.047439674</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="408"/> </region> <region region-id="119" left="30" top="19456.5" width="102.75" height="31.5" align-x="54.75" align-y="19476" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="yy2">J</ml:id> <ml:apply> <ml:div/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="z2">J</ml:id> <ml:id xml:space="preserve" subscript="x2">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="y2">J</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:define> </math> <rendering item-idref="409"/> </region> <region region-id="121" left="30" top="19492.5" width="102.75" height="31.5" align-x="54.75" align-y="19512" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="zz2">J</ml:id> <ml:apply> <ml:div/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="x2">J</ml:id> <ml:id xml:space="preserve" subscript="y2">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="z2">J</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:define> </math> <rendering item-idref="410"/> </region> <region region-id="4376" left="30" top="19538.25" width="135.75" height="12" align-x="50.25" align-y="19548" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Normální matice setrvačnosti</p> </text> </region> <region region-id="4384" left="30" top="19571.25" width="126.75" height="56.25" align-x="47.25" align-y="19602" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">J</ml:id> <ml:matrix rows="3" cols="3"> <ml:id xml:space="preserve" subscript="x2">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy2">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy2">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="y2">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz2">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz2">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="z2">J</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="411"/> </region> <region region-id="4385" left="252" top="19574.25" width="143.25" height="49.5" align-x="268.5" align-y="19602" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">J</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>1.0344896</ml:real> <ml:real>0</ml:real> <ml:real>0.12186605</ml:real> <ml:real>0</ml:real> <ml:real>1.7935719</ml:real> <ml:real>0</ml:real> <ml:real>0.12186605</ml:real> <ml:real>0</ml:real> <ml:real>1.4614205</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="412"/> </region> <region region-id="4377" left="36" top="19652.25" width="147.75" height="12" align-x="62.25" align-y="19662" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Homogenní matice setrvačnosti</p> </text> </region> <region region-id="124" left="30" top="19680.75" width="228" height="76.5" align-x="49.5" align-y="19722" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">H</ml:id> <ml:matrix rows="4" cols="4"> <ml:id xml:space="preserve" subscript="xx2">J</ml:id> <ml:id xml:space="preserve" subscript="xy2">J</ml:id> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="xy2">J</ml:id> <ml:id xml:space="preserve" subscript="yy2">J</ml:id> <ml:id xml:space="preserve" subscript="yz2">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="t22">y</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> <ml:id xml:space="preserve" subscript="yz2">J</ml:id> <ml:id xml:space="preserve" subscript="zz2">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="t22">z</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="t22">y</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="t22">z</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="413"/> </region> <region region-id="125" left="276" top="19685.25" width="198.75" height="67.5" align-x="294.75" align-y="19722" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">H</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>1.1102514</ml:real> <ml:real>0</ml:real> <ml:real>-0.12186605</ml:real> <ml:real>-3.1042508143773122</ml:real> <ml:real>0</ml:real> <ml:real>0.35116909999999979</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.12186605</ml:real> <ml:real>0</ml:real> <ml:real>0.6833205</ml:real> <ml:real>-2.0349203569006442</ml:real> <ml:real>-3.1042508143773122</ml:real> <ml:real>0</ml:real> <ml:real>-2.0349203569006442</ml:real> <ml:real>42.894906</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="414"/> </region> <region region-id="4382" left="30" top="19796.25" width="201.75" height="12" align-x="30" align-y="19806" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Kinetická energie druhého článku</inlineAttr> </f> </p> </text> </region> <region region-id="4383" left="30" top="19812.75" width="183.75" height="29.25" align-x="62.25" align-y="19830" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:id xml:space="preserve">tr</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b2">dT</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">H</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:apply> <ml:id xml:space="preserve" subscript="b2">dT</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="415"/> </region> <region region-id="4395" left="240" top="19820.25" width="57.75" height="192" align-x="252" align-y="19830" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>0</ml:real> <ml:real>0.22214456666777624</ml:real> <ml:real>0.88820446956187693</ml:real> <ml:real>1.9970819737411847</ml:real> <ml:real>3.547024759083742</ml:real> <ml:real>5.5357361571256618</ml:real> <ml:real>7.9605184133456506</ml:real> <ml:real>10.818438422976984</ml:real> <ml:real>14.106503354114697</ml:real> <ml:real>17.821832551456382</ml:real> <ml:real>21.961812412232625</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="416"/> </resultFormat> </math> <rendering item-idref="417"/> </region> <region region-id="4378" left="24" top="20036.25" width="669.75" height="12" align-x="24" align-y="20046" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Pro odvození výrazu pro kinetickou energii pro ruční použití v Lagr.rov. II. druhu provedeme symbolicky roznásobení (Shift+F9)</p> </text> </region> <region region-id="129" left="24" top="20060.25" width="936.75" height="81" align-x="56.25" align-y="20106" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:id xml:space="preserve">tr</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>0</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:id xml:space="preserve" subscript="xx2">J</ml:id> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="yy2">J</ml:id> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="zz2">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="t22">z</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="t22">z</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:matrix> </ml:apply> <ml:apply> <ml:transpose/> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="418"/> </region> <region region-id="1024" left="24" top="20160.75" width="3424.5" height="29.25" align-x="56.25" align-y="20178" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>-1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xx2">J</ml:id> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="zz2">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">z</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">z</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xx2">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xz2">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="zz2">J</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">z</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">z</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="419"/> </region> <region region-id="1025" left="24" top="20220.75" width="525" height="29.25" align-x="56.25" align-y="20238" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xx2">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="zz2">J</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="420"/> </region> <region region-id="1028" left="450" top="20258.25" width="57.75" height="192" align-x="462" align-y="20268" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>0</ml:real> <ml:real>0.22214456666777627</ml:real> <ml:real>0.888204469561877</ml:real> <ml:real>1.9970819737411851</ml:real> <ml:real>3.5470247590837416</ml:real> <ml:real>5.5357361571256609</ml:real> <ml:real>7.9605184133456506</ml:real> <ml:real>10.818438422976984</ml:real> <ml:real>14.106503354114697</ml:real> <ml:real>17.821832551456382</ml:real> <ml:real>21.961812412232625</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="421"/> </resultFormat> </math> <rendering item-idref="422"/> </region> <region region-id="1027" left="24" top="20274.75" width="378.75" height="29.25" align-x="56.25" align-y="20292" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="xx2">J</ml:id> <ml:id xml:space="preserve" subscript="zz2">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="423"/> </region> <region region-id="1031" left="24" top="20346.75" width="345" height="29.25" align-x="56.25" align-y="20364" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="y2">J</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="424"/> </region> <region region-id="1905" left="312" top="20402.25" width="57.75" height="192" align-x="324" align-y="20412" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>0</ml:real> <ml:real>0.22214456666777627</ml:real> <ml:real>0.88820446956187715</ml:real> <ml:real>1.9970819737411851</ml:real> <ml:real>3.5470247590837416</ml:real> <ml:real>5.5357361571256609</ml:real> <ml:real>7.9605184133456506</ml:real> <ml:real>10.818438422976984</ml:real> <ml:real>14.106503354114697</ml:real> <ml:real>17.821832551456382</ml:real> <ml:real>21.961812412232625</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="425"/> </resultFormat> </math> <rendering item-idref="426"/> </region> <region region-id="4397" left="30" top="20414.25" width="236.25" height="24" align-x="48" align-y="20424" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Důležitá je neustálá kontrola úprav výrazu jeho vyčíslením před úpravou a po úpravě</p> </text> </region> <region region-id="1907" left="24" top="20648.25" width="551.25" height="228" align-x="24" align-y="20658" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">TRAN3</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">MASS =<sp count="2"/>5.9261161e+01 KILOGRAM </p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">CENTER OF GRAVITY with respect to LCS3 coordinate frame:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">X<sp count="3"/>Y<sp count="3"/>Z<sp count="5"/>2.5740416e-03<sp count="2"/>0.0000000e+00 -3.7039760e-01<sp count="2"/>M</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA with respect to LCS3 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>3.3435680e+01<sp count="2"/>0.0000000e+00<sp count="2"/>1.9296398e-01</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz<sp count="2"/>0.0000000e+00<sp count="2"/>3.4142950e+01<sp count="2"/>0.0000000e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz<sp count="2"/>1.9296398e-01<sp count="2"/>0.0000000e+00<sp count="2"/>1.0075258e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA at CENTER OF GRAVITY with respect to LCS3 coordinate frame:<sp count="2"/>(KILOGRAM * M^2)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">INERTIA TENSOR:</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Ixx Ixy Ixz<sp count="2"/>2.5305381e+01<sp count="2"/>0.0000000e+00<sp count="2"/>1.3646327e-01</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Iyx Iyy Iyz<sp count="2"/>0.0000000e+00<sp count="2"/>2.6012259e+01<sp count="2"/>0.0000000e+00</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Izx Izy Izz<sp count="2"/>1.3646327e-01<sp count="2"/>0.0000000e+00<sp count="2"/>1.0071331e+00</p> </text> </region> <region region-id="4415" left="24" top="20894.25" width="129" height="24" align-x="24" align-y="20904" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Článek 3</inlineAttr> </f> </p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">momenty k lokálnímu ss</inlineAttr> </f> </p> </text> </region> <region region-id="4420" left="24" top="20930.25" width="107.25" height="21.75" align-x="45" align-y="20946" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:apply> <ml:mult/> <ml:real>5.9261161</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="427"/> </region> <region region-id="4419" left="24" top="20960.25" width="107.25" height="21.75" align-x="45" align-y="20976" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="x3">J</ml:id> <ml:apply> <ml:mult/> <ml:real>3.3435680</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="428"/> </region> <region region-id="4439" left="24" top="20990.25" width="84.75" height="15.75" align-x="48.75" align-y="21000" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xy3">J</ml:id> <ml:real>0.0000000</ml:real> </ml:define> </math> <rendering item-idref="429"/> </region> <region region-id="4440" left="174" top="20984.25" width="107.25" height="21.75" align-x="195" align-y="21000" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="y3">J</ml:id> <ml:apply> <ml:mult/> <ml:real>3.4142950</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="430"/> </region> <region region-id="4436" left="24" top="21008.25" width="118.5" height="21.75" align-x="48.75" align-y="21024" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> <ml:apply> <ml:mult/> <ml:real>1.9296398</ml:real> <ml:apply> <ml:pow/> <ml:real>10</ml:real> <ml:real>-1</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="431"/> </region> <region region-id="4438" left="174" top="21014.25" width="84.75" height="15.75" align-x="198.75" align-y="21024" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="yz3">J</ml:id> <ml:real>0.0000000</ml:real> </ml:define> </math> <rendering item-idref="432"/> </region> <region region-id="4437" left="312" top="21014.25" width="81" height="15.75" align-x="333" align-y="21024" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="z3">J</ml:id> <ml:real>1.0075258</ml:real> </ml:define> </math> <rendering item-idref="433"/> </region> <region region-id="4445" left="24" top="21056.25" width="354.75" height="12" align-x="45" align-y="21066" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Přepočet momentů setrvačnosti k osám na momenty setrvačnosti k rovinám</p> </text> </region> <region region-id="4410" left="24" top="21082.5" width="102.75" height="31.5" align-x="48.75" align-y="21102" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xx3">J</ml:id> <ml:apply> <ml:div/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="y3">J</ml:id> <ml:id xml:space="preserve" subscript="z3">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="x3">J</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:define> </math> <rendering item-idref="434"/> </region> <region region-id="4411" left="24" top="21118.5" width="102.75" height="31.5" align-x="48.75" align-y="21138" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="yy3">J</ml:id> <ml:apply> <ml:div/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="z3">J</ml:id> <ml:id xml:space="preserve" subscript="x3">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="y3">J</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:define> </math> <rendering item-idref="435"/> </region> <region region-id="1908" left="192" top="21098.25" width="68.25" height="74.25" align-x="219" align-y="21138" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t33">P</ml:id> <ml:matrix rows="4" cols="1"> <ml:id xml:space="preserve" subscript="t33">x</ml:id> <ml:id xml:space="preserve" subscript="t33">y</ml:id> <ml:id xml:space="preserve" subscript="t33">z</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="436"/> </region> <region region-id="1910" left="294" top="21098.25" width="118.5" height="73.5" align-x="320.25" align-y="21138" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t33">P</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="1"> <ml:real>0.0025740416</ml:real> <ml:real>0</ml:real> <ml:real>-0.3703976</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="437"/> </region> <region region-id="4412" left="24" top="21154.5" width="102.75" height="31.5" align-x="48.75" align-y="21174" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="zz3">J</ml:id> <ml:apply> <ml:div/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="x3">J</ml:id> <ml:id xml:space="preserve" subscript="y3">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="z3">J</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:define> </math> <rendering item-idref="438"/> </region> <region region-id="4446" left="24" top="21212.25" width="135.75" height="12" align-x="44.25" align-y="21222" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Normální matice setrvačnosti</p> </text> </region> <region region-id="4449" left="24" top="21239.25" width="126.75" height="56.25" align-x="41.25" align-y="21270" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">J</ml:id> <ml:matrix rows="3" cols="3"> <ml:id xml:space="preserve" subscript="x3">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy3">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xy3">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="y3">J</ml:id> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz3">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="yz3">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="z3">J</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="439"/> </region> <region region-id="4448" left="246" top="21242.25" width="161.25" height="49.5" align-x="262.5" align-y="21270" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">J</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>33.43568</ml:real> <ml:real>0</ml:real> <ml:real>-0.19296398</ml:real> <ml:real>0</ml:real> <ml:real>34.14295</ml:real> <ml:real>0</ml:real> <ml:real>-0.19296398</ml:real> <ml:real>0</ml:real> <ml:real>1.0075258</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="440"/> </region> <region region-id="4447" left="24" top="21320.25" width="147.75" height="12" align-x="50.25" align-y="21330" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Homogenní matice setrvačnosti</p> </text> </region> <region region-id="158" left="24" top="21342.75" width="228" height="76.5" align-x="43.5" align-y="21384" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">H</ml:id> <ml:matrix rows="4" cols="4"> <ml:id xml:space="preserve" subscript="xx3">J</ml:id> <ml:id xml:space="preserve" subscript="xy3">J</ml:id> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="xy3">J</ml:id> <ml:id xml:space="preserve" subscript="yy3">J</ml:id> <ml:id xml:space="preserve" subscript="yz3">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">y</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> <ml:id xml:space="preserve" subscript="yz3">J</ml:id> <ml:id xml:space="preserve" subscript="zz3">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">y</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:matrix> </ml:define> </math> <rendering item-idref="441"/> </region> <region region-id="159" left="270" top="21347.25" width="186.75" height="67.5" align-x="288.75" align-y="21384" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">H</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>0.85739790000000227</ml:real> <ml:real>0</ml:real> <ml:real>0.19296398</ml:real> <ml:real>0.15254069367829762</ml:real> <ml:real>0</ml:real> <ml:real>0.15012790000000109</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.19296398</ml:real> <ml:real>0</ml:real> <ml:real>33.285552100000004</ml:real> <ml:real>-21.9501918076136</ml:real> <ml:real>0.15254069367829762</ml:real> <ml:real>0</ml:real> <ml:real>-21.9501918076136</ml:real> <ml:real>59.261161</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="442"/> </region> <region region-id="160" left="24" top="21458.25" width="195.75" height="12" align-x="24" align-y="21468" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Kinetická energie třetího článku</inlineAttr> </f> </p> </text> </region> <region region-id="161" left="24" top="21480.75" width="183.75" height="29.25" align-x="56.25" align-y="21498" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:id xml:space="preserve">tr</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">dT</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="3">H</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:apply> <ml:id xml:space="preserve" subscript="b3">dT</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="443"/> </region> <region region-id="4464" left="234" top="21488.25" width="57.75" height="192" align-x="246" align-y="21498" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3">K</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>0</ml:real> <ml:real>0.83740675238908024</ml:real> <ml:real>3.3493738846883394</ml:real> <ml:real>7.5352853737020222</ml:real> <ml:real>13.394572861856371</ml:real> <ml:real>20.927336933791629</ml:real> <ml:real>30.135091556700644</ml:real> <ml:real>41.021523044489456</ml:real> <ml:real>53.593147357480753</ml:real> <ml:real>67.859757921022023</ml:real> <ml:real>83.834580654695827</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="444"/> </resultFormat> </math> <rendering item-idref="445"/> </region> <region region-id="4465" left="24" top="21704.25" width="669.75" height="12" align-x="24" align-y="21714" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Pro odvození výrazu pro kinetickou energii pro ruční použití v Lagr.rov. II. druhu provedeme symbolicky roznásobení (Shift+F9)</p> </text> </region> <region region-id="164" left="24" top="21740.25" width="1416.75" height="81" align-x="56.25" align-y="21786" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:id xml:space="preserve">tr</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>0</ml:real> </ml:matrix> <ml:matrix rows="4" cols="4"> <ml:id xml:space="preserve" subscript="xx3">J</ml:id> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="yy3">J</ml:id> <ml:id xml:space="preserve" subscript="yz3">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">y</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> <ml:id xml:space="preserve" subscript="yz3">J</ml:id> <ml:id xml:space="preserve" subscript="zz3">J</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">y</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:matrix> </ml:apply> <ml:apply> <ml:transpose/> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="446"/> </region> <region region-id="1035" left="24" top="21836.25" width="198.75" height="12" align-x="24" align-y="21846" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Po symbolickém vynásobení</p> </text> </region> <region region-id="1016" left="24" top="21858.75" width="5332.5" height="29.25" align-x="56.25" align-y="21876" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>-1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xx3">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="zz3">J</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xx3">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:parens> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xz3">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="zz3">J</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:parens> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:parens> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="447"/> </region> <region region-id="4472" left="24" top="21906.75" width="1121.25" height="29.25" align-x="56.25" align-y="21924" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xx3">J</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="zz3">J</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="448"/> </region> <region region-id="4473" left="24" top="21954.75" width="813" height="29.25" align-x="56.25" align-y="21972" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="xx3">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="zz3">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="449"/> </region> <region region-id="4474" left="24" top="21996.75" width="779.25" height="29.25" align-x="56.25" align-y="22014" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="y3">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="450"/> </region> <region region-id="4610" left="852" top="22004.25" width="57.75" height="192" align-x="864" align-y="22014" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3">K</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>0</ml:real> <ml:real>0.83740675238908013</ml:real> <ml:real>3.349373884688339</ml:real> <ml:real>7.5352853737020213</ml:real> <ml:real>13.39457286185637</ml:real> <ml:real>20.927336933791629</ml:real> <ml:real>30.135091556700647</ml:real> <ml:real>41.021523044489456</ml:real> <ml:real>53.593147357480753</ml:real> <ml:real>67.859757921022023</ml:real> <ml:real>83.834580654695813</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="451"/> </resultFormat> </math> <rendering item-idref="452"/> </region> <region region-id="4611" left="588" top="22064.25" width="236.25" height="24" align-x="606" align-y="22074" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Důležitá je neustálá kontrola úprav výrazu jeho vyčíslením před úpravou a po úpravě</p> </text> </region> <region region-id="5779" left="18" top="22153.5" width="213" height="21" align-x="18" align-y="22170" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Potenciální energie článků</inlineAttr> </f> </p> </text> </region> <region region-id="5773" left="30" top="22194" width="133.5" height="42" align-x="30" align-y="22194" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <png item-idref="453" display-width="132" display-height="40.5"/> </picture> <rendering item-idref="454"/> </region> <region region-id="1915" left="30" top="22250.25" width="61.5" height="13.5" align-x="43.5" align-y="22260" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">g</ml:id> <ml:real>9.80665</ml:real> </ml:define> </math> <rendering item-idref="455"/> </region> <region region-id="1913" left="126" top="22250.25" width="139.5" height="12" align-x="126" align-y="22260" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">matice gravitačního zrychlení</inlineAttr> </f> </p> </text> </region> <region region-id="1914" left="276" top="22223.25" width="51" height="67.5" align-x="291.75" align-y="22260" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">G</ml:id> <ml:matrix rows="4" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:id xml:space="preserve">g</ml:id> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="456"/> </region> <region region-id="179" left="30" top="22298.25" width="152.25" height="21.75" align-x="62.25" align-y="22314" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:id xml:space="preserve">G</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="b1">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="t11">P</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="457"/> </region> <region region-id="180" left="30" top="22337.25" width="306" height="77.25" align-x="62.25" align-y="22380" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:matrix rows="4" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:id xml:space="preserve">g</ml:id> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:apply> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="1"> <ml:id xml:space="preserve" subscript="t11">x</ml:id> <ml:id xml:space="preserve" subscript="t11">y</ml:id> <ml:id xml:space="preserve" subscript="t11">z</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:apply> </ml:define> </math> <rendering item-idref="458"/> </region> <region region-id="181" left="384" top="22340.25" width="124.5" height="73.5" align-x="410.25" align-y="22380" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t11">P</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="1"> <ml:real>-0.040325987</ml:real> <ml:real>-1.8024766E-06</ml:real> <ml:real>0.7357416200000001</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="459"/> </region> <region region-id="4612" left="30" top="22436.25" width="141" height="12" align-x="30" align-y="22446" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Vynásobeno symbolicky</p> </text> </region> <region region-id="303" left="30" top="22466.25" width="153.75" height="15.75" align-x="62.25" align-y="22476" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t11">z</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="460"/> </region> <region region-id="1079" left="30" top="22502.25" width="123.75" height="15.75" align-x="62.25" align-y="22512" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="t11">z</ml:id> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="461"/> </region> <region region-id="1080" left="528" top="22508.25" width="63" height="192" align-x="540" align-y="22518" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="1">P</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>591.681215798345</ml:real> <ml:real>591.681215798345</ml:real> <ml:real>591.681215798345</ml:real> <ml:real>591.681215798345</ml:real> <ml:real>591.681215798345</ml:real> <ml:real>591.681215798345</ml:real> <ml:real>591.681215798345</ml:real> <ml:real>591.681215798345</ml:real> <ml:real>591.681215798345</ml:real> <ml:real>591.681215798345</ml:real> <ml:real>591.681215798345</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="462"/> </resultFormat> </math> <rendering item-idref="463"/> </region> <region region-id="4643" left="30" top="22622.25" width="152.25" height="21.75" align-x="62.25" align-y="22638" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:id xml:space="preserve">G</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="b2">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="t22">P</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="464"/> </region> <region region-id="4630" left="30" top="22655.25" width="366" height="77.25" align-x="62.25" align-y="22698" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:matrix rows="4" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:id xml:space="preserve">g</ml:id> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:apply> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="1"> <ml:id xml:space="preserve" subscript="t22">x</ml:id> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="t22">z</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:apply> </ml:define> </math> <rendering item-idref="465"/> </region> <region region-id="186" left="408" top="22661.25" width="88.5" height="67.5" align-x="434.25" align-y="22698" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t22">P</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="1"> <ml:real>-0.072368752000000008</ml:real> <ml:real>0</ml:real> <ml:real>-0.047439674</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="466"/> </region> <region region-id="4631" left="30" top="22742.25" width="130.5" height="15.75" align-x="62.25" align-y="22752" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="467"/> </region> <region region-id="4621" left="696" top="22754.25" width="63" height="192" align-x="708" align-y="22764" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2">P</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>611.63284971080452</ml:real> <ml:real>612.05350504072931</ml:real> <ml:real>613.31547103050423</ml:real> <ml:real>615.41874768012849</ml:real> <ml:real>618.36333498960289</ml:real> <ml:real>622.149232958927</ml:real> <ml:real>626.776441588101</ml:real> <ml:real>632.24496087712453</ml:real> <ml:real>638.55479082599811</ml:real> <ml:real>645.70593143472138</ml:real> <ml:real>653.69838270329456</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="468"/> </resultFormat> </math> <rendering item-idref="469"/> </region> <region region-id="4640" left="30" top="22838.25" width="152.25" height="21.75" align-x="62.25" align-y="22854" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:id xml:space="preserve">G</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="t33">P</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="470"/> </region> <region region-id="1084" left="510" top="22874.25" width="118.5" height="73.5" align-x="536.25" align-y="22914" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t33">P</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="1"> <ml:real>0.0025740416</ml:real> <ml:real>0</ml:real> <ml:real>-0.3703976</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="471"/> </region> <region region-id="4633" left="30" top="22877.25" width="464.25" height="77.25" align-x="62.25" align-y="22920" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:apply> <ml:transpose/> <ml:matrix rows="4" cols="1"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:id xml:space="preserve">g</ml:id> </ml:apply> <ml:real>0</ml:real> </ml:matrix> </ml:apply> </ml:apply> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> <ml:real>1</ml:real> </ml:matrix> </ml:apply> <ml:matrix rows="4" cols="1"> <ml:id xml:space="preserve" subscript="t33">x</ml:id> <ml:id xml:space="preserve" subscript="t33">y</ml:id> <ml:id xml:space="preserve" subscript="t33">z</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:apply> </ml:define> </math> <rendering item-idref="472"/> </region> <region region-id="4634" left="30" top="22970.25" width="198.75" height="15.75" align-x="62.25" align-y="22980" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">y</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="473"/> </region> <region region-id="4635" left="30" top="23000.25" width="161.25" height="15.75" align-x="62.25" align-y="23010" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">y</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="474"/> </region> <region region-id="4647" left="336" top="23006.25" width="63" height="192" align-x="348" align-y="23016" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3">P</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>844.997137413025</ml:real> <ml:real>845.57829087754567</ml:real> <ml:real>847.32175127110781</ml:real> <ml:real>850.22751859371078</ml:real> <ml:real>854.29559284535549</ml:real> <ml:real>859.52597402604124</ml:real> <ml:real>865.9186621357685</ml:real> <ml:real>873.47365717453692</ml:real> <ml:real>882.19095914234674</ml:real> <ml:real>892.07056803919772</ml:real> <ml:real>903.1124838650901</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="475"/> </resultFormat> </math> <rendering item-idref="476"/> </region> <region region-id="195" left="30" top="23233.5" width="645.75" height="21" align-x="30" align-y="23250" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Celková kinetická (bez vnitřních převodů) a potenciální energie článků</inlineAttr> </f> </p> </text> </region> <region region-id="4658" left="678" top="23262" width="352.5" height="368.25" align-x="678" align-y="23262" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="350.9858" y-extent="366.7465" item-idref="477"/> </picture> <rendering item-idref="478"/> </region> <region region-id="196" left="30" top="23264.25" width="136.5" height="15.75" align-x="57.75" align-y="23274" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="1">K</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">K</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="479"/> </region> <region region-id="197" left="30" top="23288.25" width="135.75" height="15.75" align-x="57" align-y="23298" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="1">P</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">P</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">P</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="480"/> </region> <region region-id="4659" left="240" top="23310" width="382.5" height="313.5" align-x="240" align-y="23310" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="481"/> <rendering item-idref="482"/> </region> <region region-id="4660" left="24" top="23352" width="216" height="184.5" align-x="24" align-y="23352" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="483"/> <rendering item-idref="484"/> </region> <region region-id="4661" left="42" top="23546.25" width="63" height="192" align-x="51.75" align-y="23556" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">K</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>0</ml:real> <ml:real>1.0664536166872598</ml:real> <ml:real>4.2648511632125539</ml:real> <ml:real>9.5924910252368019</ml:real> <ml:real>17.045475604960359</ml:real> <ml:real>26.619542037136824</ml:real> <ml:real>38.311078814017492</ml:real> <ml:real>52.118199631665561</ml:real> <ml:real>68.041734356724831</ml:real> <ml:real>86.086003445651571</ml:real> <ml:real>106.25926722334818</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="485"/> </resultFormat> </math> <rendering item-idref="486"/> </region> <region region-id="4662" left="156" top="23546.25" width="70.5" height="192" align-x="165" align-y="23556" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">P</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>2048.3112029221747</ml:real> <ml:real>2049.31301171662</ml:real> <ml:real>2052.3184380999573</ml:real> <ml:real>2057.3274820721845</ml:real> <ml:real>2064.3401436333033</ml:real> <ml:real>2073.3564227833131</ml:real> <ml:real>2084.3763195222145</ml:real> <ml:real>2097.3998338500064</ml:real> <ml:real>2112.42696576669</ml:real> <ml:real>2129.4577152722641</ml:real> <ml:real>2148.49208236673</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="487"/> </resultFormat> </math> <rendering item-idref="488"/> </region> <region region-id="4666" left="36" top="23790.75" width="117" height="29.25" align-x="68.25" align-y="23808" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="z1">J</ml:id> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="489"/> </region> <region region-id="1063" left="36" top="23826.75" width="345" height="29.25" align-x="68.25" align-y="23844" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="y2">J</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="490"/> </region> <region region-id="1066" left="36" top="23862.75" width="779.25" height="29.25" align-x="68.25" align-y="23880" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="y3">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="491"/> </region> <region region-id="4668" left="36" top="23904.75" width="1194.75" height="29.25" align-x="63.75" align-y="23922" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="z1">J</ml:id> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="y2">J</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:parens> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="y3">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="492"/> </region> <region region-id="4936" left="36" top="23954.25" width="405" height="12" align-x="36" align-y="23964" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">M<f family="Arial CE" charset="238"> <inlineAttr line-through="false">ísto hmotnostních parametrů pro zjednodušení použity nové konstanty</inlineAttr> </f> </p> </text> </region> <region region-id="4740" left="870" top="23966.25" width="66" height="15.75" align-x="894" align-y="23976" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="zz2">J</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.6833205</ml:real> </result> </ml:eval> </math> <rendering item-idref="493"/> </region> <region region-id="4930" left="36" top="23978.25" width="357.75" height="21.75" align-x="54.75" align-y="23994" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">a</ml:id> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="z1">J</ml:id> <ml:id xml:space="preserve" subscript="y2">J</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="y3">J</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t22">x</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:id xml:space="preserve" subscript="2">l</ml:id> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="494"/> </region> <region region-id="4741" left="870" top="23984.25" width="60" height="15.75" align-x="894" align-y="23994" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="xx2">J</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>1.1102514</ml:real> </result> </ml:eval> </math> <rendering item-idref="495"/> </region> <region region-id="4931" left="36" top="24002.25" width="82.5" height="15.75" align-x="54.75" align-y="24012" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">z</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="496"/> </region> <region region-id="4742" left="870" top="24002.25" width="62.25" height="15.75" align-x="890.25" align-y="24012" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="y2">J</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>1.7935719</ml:real> </result> </ml:eval> </math> <rendering item-idref="497"/> </region> <region region-id="4932" left="36" top="24020.25" width="41.25" height="15.75" align-x="54.75" align-y="24030" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:define> </math> <rendering item-idref="498"/> </region> <region region-id="4933" left="36" top="24038.25" width="67.5" height="15.75" align-x="54.75" align-y="24048" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">b</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="499"/> </region> <region region-id="4934" left="36" top="24056.25" width="40.5" height="15.75" align-x="54" align-y="24066" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">c</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:define> </math> <rendering item-idref="500"/> </region> <region region-id="4935" left="36" top="24074.25" width="110.25" height="15.75" align-x="54.75" align-y="24084" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">d</ml:id> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="2">l</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">m</ml:id> <ml:id xml:space="preserve" subscript="t33">x</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="501"/> </region> <region region-id="4942" left="36" top="24110.25" width="319.5" height="12" align-x="57" align-y="24120" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výsledný upravený výraz pro kinetickou energii celého mechanismu</p> </text> </region> <region region-id="4940" left="36" top="24138.75" width="510.75" height="29.25" align-x="63.75" align-y="24156" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="502"/> </region> <region region-id="5022" left="594" top="24146.25" width="63" height="192" align-x="603.75" align-y="24156" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">K</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>0</ml:real> <ml:real>1.0664536166872598</ml:real> <ml:real>4.2648511632125548</ml:real> <ml:real>9.5924910252368019</ml:real> <ml:real>17.045475604960359</ml:real> <ml:real>26.619542037136824</ml:real> <ml:real>38.311078814017485</ml:real> <ml:real>52.118199631665554</ml:real> <ml:real>68.041734356724817</ml:real> <ml:real>86.086003445651585</ml:real> <ml:real>106.25926722334818</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="503"/> </resultFormat> </math> <rendering item-idref="504"/> </region> <region region-id="4958" left="36" top="24212.25" width="123.75" height="15.75" align-x="68.25" align-y="24222" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="t11">z</ml:id> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="505"/> </region> <region region-id="4959" left="36" top="24248.25" width="130.5" height="15.75" align-x="68.25" align-y="24258" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="506"/> </region> <region region-id="4960" left="36" top="24284.25" width="161.25" height="15.75" align-x="68.25" align-y="24294" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">y</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="507"/> </region> <region region-id="5023" left="36" top="24320.25" width="353.25" height="15.75" align-x="63" align-y="24330" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="t11">z</ml:id> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t33">y</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="508"/> </region> <region region-id="5024" left="36" top="24356.25" width="395.25" height="15.75" align-x="63" align-y="24366" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="t11">z</ml:id> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:id xml:space="preserve" subscript="t33">y</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="509"/> </region> <region region-id="5077" left="450" top="24362.25" width="70.5" height="192" align-x="459" align-y="24372" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">P</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>2048.3112029221747</ml:real> <ml:real>2049.31301171662</ml:real> <ml:real>2052.3184380999569</ml:real> <ml:real>2057.3274820721845</ml:real> <ml:real>2064.3401436333033</ml:real> <ml:real>2073.3564227833131</ml:real> <ml:real>2084.3763195222145</ml:real> <ml:real>2097.3998338500064</ml:real> <ml:real>2112.4269657666896</ml:real> <ml:real>2129.4577152722641</ml:real> <ml:real>2148.4920823667294</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="510"/> </resultFormat> </math> <rendering item-idref="511"/> </region> <region region-id="5027" left="36" top="24386.25" width="405" height="12" align-x="36" align-y="24396" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">M<f family="Arial CE" charset="238"> <inlineAttr line-through="false">ísto hmotnostních parametrů pro zjednodušení použity nové konstanty</inlineAttr> </f> </p> </text> </region> <region region-id="5038" left="36" top="24416.25" width="264" height="15.75" align-x="54.75" align-y="24426" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">e</ml:id> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="1">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="t11">z</ml:id> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="2">m</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">l</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">l</ml:id> <ml:id xml:space="preserve" subscript="t33">y</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="512"/> </region> <region region-id="5039" left="36" top="24434.25" width="90" height="15.75" align-x="54.75" align-y="24444" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">e</ml:id> <ml:apply> <ml:mult/> <ml:id xml:space="preserve">g</ml:id> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="2">m</ml:id> <ml:id xml:space="preserve" subscript="3">m</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="513"/> </region> <region region-id="5079" left="36" top="24458.25" width="302.25" height="12" align-x="57" align-y="24468" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výsledný upravený výraz pro potenciální energii celého systému</p> </text> </region> <region region-id="5044" left="36" top="24488.25" width="104.25" height="15.75" align-x="63" align-y="24498" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">e</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">e</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="514"/> </region> <region region-id="5045" left="162" top="24488.25" width="70.5" height="192" align-x="171" align-y="24498" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">P</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>2048.3112029221747</ml:real> <ml:real>2049.31301171662</ml:real> <ml:real>2052.3184380999569</ml:real> <ml:real>2057.3274820721845</ml:real> <ml:real>2064.3401436333033</ml:real> <ml:real>2073.3564227833135</ml:real> <ml:real>2084.3763195222145</ml:real> <ml:real>2097.3998338500064</ml:real> <ml:real>2112.42696576669</ml:real> <ml:real>2129.4577152722641</ml:real> <ml:real>2148.49208236673</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="515"/> </resultFormat> </math> <rendering item-idref="516"/> </region> <region region-id="202" left="30" top="24703.5" width="578.25" height="21" align-x="30" align-y="24720" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Výpočet zobecněné síly pomocí Lagrangeovy pohybové rovnice II. druhu</inlineAttr> </f> </p> </text> </region> <region region-id="5160" left="36" top="24744" width="144" height="46.5" align-x="36" align-y="24744" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <png item-idref="517" display-width="142.5" display-height="45"/> </picture> <rendering item-idref="518"/> </region> <region region-id="5196" left="36" top="24812.25" width="99.75" height="12" align-x="36" align-y="24822" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Výpočet τ1</inlineAttr> </f> </p> </text> </region> <region region-id="5195" left="36" top="24836.25" width="255" height="12" align-x="54.75" align-y="24846" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výpočet prvního členu Lagr. pohybové rovnice - L11(t)</p> </text> </region> <region region-id="5194" left="36" top="24860.25" width="345" height="12" align-x="36" align-y="24870" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Parciální derivaci K(t) podle dq1(t) je třeba udělat ručně:</inlineAttr> </f> </p> </text> </region> <region region-id="5193" left="36" top="24888.75" width="510.75" height="29.25" align-x="63.75" align-y="24906" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="519"/> </region> <region region-id="5192" left="36" top="24920.25" width="282.75" height="21.75" align-x="69.75" align-y="24936" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">dK</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="520"/> </region> <region region-id="5191" left="36" top="24956.25" width="372" height="12" align-x="36" align-y="24966" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Derivaci podle času provede Mathcad, je ji potřeba ale ručně upravit</inlineAttr> </f> <sp/> </p> </text> </region> <region region-id="5190" left="36" top="24996" width="305.25" height="31.5" align-x="74.25" align-y="25014" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">L11</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:parens> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:lambda> </ml:apply> </ml:define> </math> <rendering item-idref="521"/> </region> <region region-id="5189" left="36" top="25038" width="540.75" height="31.5" align-x="74.25" align-y="25056" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">L11</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="522"/> </region> <region region-id="5188" left="36" top="25082.25" width="519.75" height="21.75" align-x="74.25" align-y="25098" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">L11</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="523"/> </region> <region region-id="5187" left="36" top="25142.25" width="218.25" height="12" align-x="36" align-y="25152" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Druhý člen Lagr. rovnice L12(t)</inlineAttr> </f> </p> </text> </region> <region region-id="5186" left="36" top="25166.25" width="569.25" height="12" align-x="36" align-y="25176" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Mathcad neumí symbolicky, proto ručně, v kinetické energii nikde není q1(t), proto výsledek druhého členu je 0</inlineAttr> </f> </p> </text> </region> <region region-id="5185" left="36" top="25196.25" width="53.25" height="13.5" align-x="74.25" align-y="25206" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">L12</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:real>0</ml:real> </ml:define> </math> <rendering item-idref="524"/> </region> <region region-id="5184" left="36" top="25232.25" width="200.25" height="12" align-x="36" align-y="25242" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Třetí člen L13(t)</inlineAttr> </f> </p> </text> </region> <region region-id="5183" left="36" top="25262.25" width="104.25" height="15.75" align-x="63" align-y="25272" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">e</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">e</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="525"/> </region> <region region-id="5182" left="36" top="25290" width="108" height="33.75" align-x="36" align-y="25308" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:boundVars> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">e</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">e</ml:id> </ml:apply> </ml:parens> </ml:lambda> </ml:apply> </math> <rendering item-idref="526"/> </region> <region region-id="5181" left="36" top="25334.25" width="109.5" height="12" align-x="36" align-y="25344" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">roven také nule</p> </text> </region> <region region-id="5198" left="36" top="25370.25" width="264" height="12" align-x="57" align-y="25380" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výsledná zobecněná síla τ1 je tedy rovna prvnímu členu</p> </text> </region> <region region-id="5180" left="36" top="25412.25" width="513" height="21.75" align-x="67.5" align-y="25428" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="527"/> </region> <region region-id="5200" left="36" top="25472.25" width="426.75" height="12" align-x="60" align-y="25482" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Porovnání s výsledkem získaným z Newton-Eulerových vztahů (bez vlivu vnitřních převodů)</p> </text> </region> <region region-id="777" left="36" top="25500" width="394.5" height="307.5" align-x="36" align-y="25500" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="528"/> <rendering item-idref="529"/> </region> <region region-id="1920" left="504" top="25500" width="421.5" height="295.5" align-x="504" align-y="25500" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="530"/> <rendering item-idref="531"/> </region> <region region-id="5335" left="30" top="25874.25" width="240.75" height="12" align-x="30" align-y="25884" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Druhá zobecněná síla τ2, první člen L21(t)</p> </text> </region> <region region-id="5324" left="30" top="25904.25" width="246" height="12" align-x="30" align-y="25914" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Kinetická energie po ruční derivaci podle dq2</p> </text> </region> <region region-id="5325" left="30" top="25926.75" width="510.75" height="29.25" align-x="57.75" align-y="25944" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="532"/> </region> <region region-id="5326" left="30" top="25976.25" width="51" height="15.75" align-x="63.75" align-y="25986" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> </ml:apply> </math> <rendering item-idref="533"/> </region> <region region-id="5327" left="30" top="25998" width="115.5" height="31.5" align-x="68.25" align-y="26016" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">L21</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:parens> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> </ml:apply> </ml:parens> </ml:lambda> </ml:apply> </ml:define> </math> <rendering item-idref="534"/> </region> <region region-id="5328" left="30" top="26042.25" width="103.5" height="15.75" align-x="68.25" align-y="26052" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">L21</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="535"/> </region> <region region-id="5329" left="30" top="26084.25" width="386.25" height="12" align-x="30" align-y="26094" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">druhý člen L22(t) roven nule - v kinetické energii není nikde q2(t)</inlineAttr> </f> </p> </text> </region> <region region-id="5330" left="30" top="26112" width="108" height="33.75" align-x="30" align-y="26130" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:boundVars> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">e</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">e</ml:id> </ml:apply> </ml:parens> </ml:lambda> </ml:apply> </math> <rendering item-idref="536"/> </region> <region region-id="5205" left="30" top="26162.25" width="280.5" height="12" align-x="30" align-y="26172" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">třetí člen L23(t) - derivace potenciální energie podle q2(t)</inlineAttr> </f> </p> </text> </region> <region region-id="5339" left="30" top="26186.25" width="104.25" height="15.75" align-x="57" align-y="26196" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">P</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">e</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">e</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="537"/> </region> <region region-id="5331" left="30" top="26210.25" width="58.5" height="15.75" align-x="68.25" align-y="26220" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">L23</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:id xml:space="preserve" subscript="1">e</ml:id> </ml:define> </math> <rendering item-idref="538"/> </region> <region region-id="5332" left="30" top="26240.25" width="158.25" height="12" align-x="30" align-y="26250" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Druhá zobecnìná síla</p> </text> </region> <region region-id="5333" left="30" top="26264.25" width="120.75" height="15.75" align-x="61.5" align-y="26274" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="1">e</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="539"/> </region> <region region-id="5347" left="30" top="26336.25" width="426.75" height="12" align-x="54" align-y="26346" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Porovnání s výsledkem získaným z Newton-Eulerových vztahů (bez vlivu vnitřních převodů)</p> </text> </region> <region region-id="1921" left="6" top="26364" width="438" height="286.5" align-x="6" align-y="26364" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="540"/> <rendering item-idref="541"/> </region> <region region-id="1923" left="492" top="26370" width="429" height="280.5" align-x="492" align-y="26370" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="542"/> <rendering item-idref="543"/> </region> <region region-id="5379" left="30" top="26726.25" width="455.25" height="12" align-x="30" align-y="26736" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Třetí zob síla, první člen L31(t), derivace K(t) ručně derivaci podle dq3(t) a pak podle času</inlineAttr> </f> </p> </text> </region> <region region-id="5378" left="30" top="26766.75" width="510.75" height="29.25" align-x="57.75" align-y="26784" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">K</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="2">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="544"/> </region> <region region-id="5377" left="30" top="26804.25" width="132" height="12" align-x="50.25" align-y="26814" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Derivace ručně podle dq3(t)</p> </text> </region> <region region-id="5376" left="30" top="26828.25" width="113.25" height="15.75" align-x="85.5" align-y="26838" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </math> <rendering item-idref="545"/> </region> <region region-id="5375" left="30" top="26852.25" width="96" height="12" align-x="50.25" align-y="26862" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Derivace podle času</p> </text> </region> <region region-id="5374" left="30" top="26868" width="131.25" height="31.5" align-x="30" align-y="26886" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:parens> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:parens> </ml:lambda> </ml:apply> </math> <rendering item-idref="546"/> </region> <region region-id="5373" left="30" top="26910" width="134.25" height="31.5" align-x="96" align-y="26928" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:lambda> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </math> <rendering item-idref="547"/> </region> <region region-id="5372" left="30" top="26960.25" width="171.75" height="15.75" align-x="68.25" align-y="26970" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">L31</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="548"/> </region> <region region-id="5371" left="30" top="27032.25" width="240.75" height="12" align-x="30" align-y="27042" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">druhý člen L32(t) , parciálně K(t) podle q3(t)</inlineAttr> </f> </p> </text> </region> <region region-id="5370" left="30" top="27060.75" width="175.5" height="29.25" align-x="109.5" align-y="27078" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">a</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </math> <rendering item-idref="549"/> </region> <region region-id="5369" left="30" top="27096.75" width="200.25" height="29.25" align-x="68.25" align-y="27114" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">L32</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:define> </math> <rendering item-idref="550"/> </region> <region region-id="5368" left="30" top="27134.25" width="345" height="12" align-x="30" align-y="27144" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">třetí člen L33(t) derivace P(t) podle q3(t) - nikde není, roven nule</inlineAttr> </f> </p> </text> </region> <region region-id="5367" left="30" top="27162" width="108" height="33.75" align-x="30" align-y="27180" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:derivative/> <ml:lambda> <ml:boundVars> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:boundVars> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">e</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">e</ml:id> </ml:apply> </ml:parens> </ml:lambda> </ml:apply> </math> <rendering item-idref="551"/> </region> <region region-id="5366" left="30" top="27240.75" width="330.75" height="29.25" align-x="61.5" align-y="27258" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="552"/> </region> <region region-id="5365" left="408" top="27248.25" width="340.5" height="12" align-x="408" align-y="27258" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">První člen je zrychlující síla, druhý tečná, třetí odstředivá síla</p> </text> </region> <region region-id="5382" left="30" top="27314.25" width="426.75" height="12" align-x="54" align-y="27324" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Porovnání s výsledkem získaným z Newton-Eulerových vztahů (bez vlivu vnitřních převodů)</p> </text> </region> <region region-id="801" left="6" top="27342" width="364.5" height="331.5" align-x="6" align-y="27342" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="553"/> <rendering item-idref="554"/> </region> <region region-id="1925" left="468" top="27348" width="391.5" height="331.5" align-x="468" align-y="27348" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="555"/> <rendering item-idref="556"/> </region> <region region-id="5509" left="36" top="27722.25" width="304.5" height="12" align-x="57" align-y="27732" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výsledné Lagrangeovy pohybové rovnice - bez vnitřních převodů</p> </text> </region> <region region-id="5495" left="36" top="27758.25" width="474" height="21.75" align-x="67.5" align-y="27774" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">a</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="557"/> </region> <region region-id="5496" left="36" top="27800.25" width="120.75" height="15.75" align-x="67.5" align-y="27810" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="1">e</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="558"/> </region> <region region-id="5497" left="36" top="27828.75" width="330.75" height="29.25" align-x="67.5" align-y="27846" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="559"/> </region> <region region-id="5498" left="36" top="27883.5" width="601.5" height="42" align-x="36" align-y="27900" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Zahrnutí vlivu vnitřních převodů a rozvodů na dynamiku mechanismu (redukované momenty a hmotnosti)</inlineAttr> </f> </p> </text> </region> <region region-id="5524" left="36" top="27962.25" width="100.5" height="15.75" align-x="58.5" align-y="27972" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="p1">J</ml:id> <ml:real>5.8702800000</ml:real> </ml:define> </math> <rendering item-idref="560"/> </region> <region region-id="5525" left="210" top="27962.25" width="577.5" height="12" align-x="210" align-y="27972" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zahrnutí vlivu momentu setrvačnosti rotoru motoru, převodovky a vnitřních kroužků velkých ložisek</inlineAttr> </f> </p> </text> </region> <region region-id="5526" left="36" top="27986.25" width="87.75" height="15.75" align-x="63.75" align-y="27996" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="p21">J</ml:id> <ml:real>1.4780800</ml:real> </ml:define> </math> <rendering item-idref="561"/> </region> <region region-id="5527" left="210" top="27986.25" width="441.75" height="12" align-x="210" align-y="27996" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zahrnutí vlivu zrychlení vnitřních převodů TRAN2 na zobecněnou sílu tau1</inlineAttr> </f> </p> </text> </region> <region region-id="5514" left="36" top="28010.25" width="60.75" height="15.75" align-x="67.5" align-y="28020" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="p12">m</ml:id> <ml:id xml:space="preserve" subscript="p21">J</ml:id> </ml:define> </math> <rendering item-idref="562"/> </region> <region region-id="5515" left="210" top="28010.25" width="420" height="12" align-x="210" align-y="28020" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zahrnutí vlivu zrychlení ROT1 na vnitřní převody TRAN2</inlineAttr> </f> </p> </text> </region> <region region-id="5516" left="36" top="28034.25" width="104.25" height="15.75" align-x="62.25" align-y="28044" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="p2">m</ml:id> <ml:real>123.09124685</ml:real> </ml:define> </math> <rendering item-idref="563"/> </region> <region region-id="5517" left="210" top="28034.25" width="623.25" height="12" align-x="210" align-y="28044" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zahrnutí zvýšení redukované hmotnosti článku TRAN2 vlivem zrychlení rotoru MOT2 a jeho převodovky a pohybového šroubu</inlineAttr> </f> </p> </text> </region> <region region-id="5522" left="36" top="28058.25" width="110.25" height="15.75" align-x="62.25" align-y="28068" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="p3">m</ml:id> <ml:real>51.5751826083</ml:real> </ml:define> </math> <rendering item-idref="564"/> </region> <region region-id="5523" left="210" top="28058.25" width="747.75" height="12" align-x="210" align-y="28068" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zahrnutí zvýšení redukované hmotnosti vlivem zrychlení rotoru motoru MOT3, ozubeného kola a matice pohybového šroubu (řemen neuvažován)</inlineAttr> </f> </p> </text> </region> <region region-id="5532" left="36" top="28088.25" width="249.75" height="12" align-x="36" align-y="28098" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Pozn. - Nejsou uvažovány gyroskopické efekty</p> </text> </region> <region region-id="5549" left="36" top="28154.25" width="579.75" height="21.75" align-x="67.5" align-y="28170" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="p1">J</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">a</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="p21">J</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="565"/> </region> <region region-id="5550" left="36" top="28190.25" width="247.5" height="15.75" align-x="67.5" align-y="28200" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="p12">m</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">b</ml:id> <ml:id xml:space="preserve" subscript="p2">m</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">e</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="566"/> </region> <region region-id="5551" left="36" top="28212.75" width="369.75" height="29.25" align-x="67.5" align-y="28230" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">c</ml:id> <ml:id xml:space="preserve" subscript="p3">m</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="567"/> </region> <region region-id="5552" left="36" top="28274.25" width="361.5" height="12" align-x="57.75" align-y="28284" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Zavedení nových koeficientů - zahrnují hmotnostní parametry a polohy těžišť</p> </text> </region> <region region-id="5584" left="36" top="28298.25" width="66.75" height="15.75" align-x="54.75" align-y="28308" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">a</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">a</ml:id> <ml:id xml:space="preserve" subscript="p1">J</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="568"/> </region> <region region-id="5585" left="36" top="28322.25" width="70.5" height="15.75" align-x="54.75" align-y="28332" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">b</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">b</ml:id> <ml:id xml:space="preserve" subscript="p2">m</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="569"/> </region> <region region-id="5586" left="36" top="28346.25" width="69" height="15.75" align-x="54" align-y="28356" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">c</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="0">c</ml:id> <ml:id xml:space="preserve" subscript="p3">m</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="570"/> </region> <region region-id="5587" left="36" top="28370.25" width="45" height="15.75" align-x="51.75" align-y="28380" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">f</ml:id> <ml:id xml:space="preserve" subscript="p21">J</ml:id> </ml:define> </math> <rendering item-idref="571"/> </region> <region region-id="5588" left="36" top="28411.5" width="405.75" height="21" align-x="36" align-y="28428" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f size="18">V</f> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">ýsledné Lagrangeovy pohybové rovnice</inlineAttr> </f> </p> </text> </region> <region region-id="5589" left="36" top="28454.25" width="540" height="21.75" align-x="67.5" align-y="28470" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="1">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:minus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">a</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">f</ml:id> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="572"/> </region> <region region-id="5590" left="36" top="28496.25" width="192.75" height="15.75" align-x="67.5" align-y="28506" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="2">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">f</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">e</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="573"/> </region> <region region-id="5591" left="36" top="28524.75" width="330.75" height="29.25" align-x="67.5" align-y="28542" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve" subscript="3">τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:minus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:define> </math> <rendering item-idref="574"/> </region> <region region-id="1965" left="510" top="28548" width="312.75" height="345.75" align-x="510" align-y="28548" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <metafile mapping-mode="8" x-extent="311.2441" y-extent="344.2394" item-idref="575"/> </picture> <rendering item-idref="576"/> </region> <region region-id="5592" left="36" top="28574.25" width="78.75" height="12" align-x="36" align-y="28584" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">kde</p> </text> </region> <region region-id="5593" left="36" top="28604.25" width="66" height="15.75" align-x="54" align-y="28614" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">a</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>59.261161</ml:real> </result> </ml:eval> </math> <rendering item-idref="577"/> </region> <region region-id="5605" left="120" top="28604.25" width="60" height="15.75" align-x="138" align-y="28614" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">a</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>-43.9003836152272</ml:real> </result> </ml:eval> </math> <rendering item-idref="578"/> </region> <region region-id="5617" left="228" top="28604.25" width="66" height="15.75" align-x="246" align-y="28614" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">a</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>43.268663567384124</ml:real> </result> </ml:eval> </math> <rendering item-idref="579"/> </region> <region region-id="5627" left="312" top="28604.25" width="60" height="15.75" align-x="330" align-y="28614" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">d</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>4.0045161586782978</ml:real> </result> </ml:eval> </math> <rendering item-idref="580"/> </region> <region region-id="5631" left="384" top="28604.25" width="57" height="15.75" align-x="399" align-y="28614" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">f</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>1.47808</ml:real> </result> </ml:eval> </math> <rendering item-idref="581"/> </region> <region region-id="5594" left="36" top="28628.25" width="72" height="15.75" align-x="54" align-y="28638" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">b</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>225.24731385</ml:real> </result> </ml:eval> </math> <rendering item-idref="582"/> </region> <region region-id="5606" left="120" top="28628.25" width="96" height="15.75" align-x="138" align-y="28638" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">e</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>1001.80879444555</ml:real> </result> </ml:eval> <resultFormat numeric-only="true"> <decimal precision="6" show-trailing-zeros="false" radix="dec" complex-threshold="10" zero-threshold="15" imaginary-value="i"/> <matrix display-style="auto" expand-nested-arrays="false"/> <unit format-units="false" simplify-units="false" fractional-unit-exponent="false"/> </resultFormat> </math> <rendering item-idref="583"/> </region> <region region-id="5618" left="228" top="28628.25" width="71.25" height="15.75" align-x="245.25" align-y="28638" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="0">c</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>110.8363436083</ml:real> </result> </ml:eval> </math> <rendering item-idref="584"/> </region> <region region-id="5648" left="36" top="28700.25" width="66" height="175.5" align-x="47.25" align-y="28710" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="1">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>265.26668703174892</ml:real> <ml:real>264.61270696262613</ml:real> <ml:real>262.67261856962386</ml:real> <ml:real>259.51138723350692</ml:real> <ml:real>255.23526914757017</ml:real> <ml:real>249.98862243772405</ml:real> <ml:real>243.94919337877926</ml:real> <ml:real>237.32177697972563</ml:real> <ml:real>230.33029073704546</ml:real> <ml:real>223.20850288871344</ml:real> <ml:real>216.18988025047941</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="585"/> </resultFormat> </math> <rendering item-idref="586"/> </region> <region region-id="5649" left="120" top="28700.25" width="70.5" height="192" align-x="131.25" align-y="28710" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="2">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>2120.7281359746435</ml:real> <ml:real>2120.7729211259557</ml:real> <ml:real>2120.9062903643348</ml:real> <ml:real>2121.1252982472938</ml:real> <ml:real>2121.4250816515309</ml:real> <ml:real>2121.79894132593</ml:real> <ml:real>2122.2384767533404</ml:real> <ml:real>2122.7337878602834</ml:real> <ml:real>2123.2737518631588</ml:real> <ml:real>2123.84637464086</ml:real> <ml:real>2124.4392049478352</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="587"/> </resultFormat> </math> <rendering item-idref="588"/> </region> <region region-id="5650" left="198" top="28700.25" width="63" height="192" align-x="209.25" align-y="28710" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve" subscript="3">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>570.02254067010608</ml:real> <ml:real>571.19684773408642</ml:real> <ml:real>574.68307884680564</ml:real> <ml:real>580.37298240099938</ml:real> <ml:real>588.09210337825039</ml:real> <ml:real>597.60837725206284</ml:real> <ml:real>608.6434620391434</ml:real> <ml:real>620.88612233821</ml:real> <ml:real>634.00682544740619</ml:real> <ml:real>647.67260633567275</ml:real> <ml:real>661.56123313402725</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="589"/> </resultFormat> </math> <rendering item-idref="590"/> </region> <region region-id="5651" left="294" top="28700.25" width="50.25" height="175.5" align-x="294.75" align-y="28710" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">t</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="11" cols="1"> <ml:real>0</ml:real> <ml:real>0.02</ml:real> <ml:real>0.04</ml:real> <ml:real>0.06</ml:real> <ml:real>0.08</ml:real> <ml:real>0.1</ml:real> <ml:real>0.12</ml:real> <ml:real>0.14</ml:real> <ml:real>0.16</ml:real> <ml:real>0.18</ml:real> <ml:real>0.2</ml:real> </ml:matrix> </result> </ml:eval> <resultFormat> <table item-idref="591"/> </resultFormat> </math> <rendering item-idref="592"/> </region> <region region-id="1966" left="528" top="28922.25" width="281.25" height="24" align-x="528" align-y="28932" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zobecněné síly z úplného modelu v ProE včetně vnitřních převodů</inlineAttr> </f> </p> </text> </region> <region region-id="5653" left="36" top="28946.25" width="231.75" height="12" align-x="60" align-y="28956" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Porovnání výsledků s výpočtem podle N-E vztahů</p> </text> </region> <region region-id="1967" left="18" top="28986" width="396" height="298.5" align-x="18" align-y="28986" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="593"/> <rendering item-idref="594"/> </region> <region region-id="1964" left="438" top="28986" width="392.25" height="298.5" align-x="438" align-y="28986" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="595"/> <rendering item-idref="596"/> </region> <region region-id="1968" left="36" top="29323.5" width="325.5" height="21" align-x="62.25" align-y="29340" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238" size="18"> <inlineAttr line-through="false">Lagrangeova pohybová rovnice maticově</inlineAttr> </f> </p> </text> </region> <region region-id="5667" left="30" top="29384.25" width="568.5" height="12" align-x="30" align-y="29394" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">zob.síla tau =<sp count="21"/>A(q,t)<sp count="2"/>.<sp count="35"/>ddq(t)<sp count="3"/>+<sp count="17"/>C(dq,q,t)<sp count="33"/>+<sp count="2"/>G(q)</p> </text> </region> <region region-id="5668" left="42" top="29423.25" width="528" height="67.5" align-x="70.5" align-y="29460" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">Τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:matrix rows="3" cols="3"> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">f</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">f</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:matrix> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:matrix> </ml:apply> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>-1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:matrix> </ml:apply> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="1">e</ml:id> <ml:real>0</ml:real> </ml:matrix> </ml:apply> </ml:parens> </ml:define> </math> <rendering item-idref="597"/> </region> <region region-id="5669" left="42" top="29509.5" width="548.25" height="75.75" align-x="70.5" align-y="29550" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDFunction" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">Τ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:plus/> <ml:apply> <ml:minus/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> </ml:parens> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="0">f</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="0">d</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">a</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">f</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="0">b</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="2">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">e</ml:id> </ml:apply> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="1">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="0">c</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">ddq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">a</ml:id> </ml:apply> </ml:parens> </ml:apply> </ml:apply> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="598"/> </region> <region region-id="5673" left="42" top="29606.25" width="516.75" height="12" align-x="60" align-y="29616" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Opačná úloha - zjištění počátečního vektoru zrychlení DDQ(t)<sp count="2"/>při buzení známým průběhem zobecněných sil</p> </text> </region> <region region-id="5671" left="42" top="29654.25" width="771.75" height="70.5" align-x="85.5" align-y="29694" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">DDQ</ml:id> <ml:boundVars> <ml:id xml:space="preserve">t</ml:id> </ml:boundVars> </ml:function> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:neg/> <ml:apply> <ml:pow/> <ml:matrix rows="3" cols="3"> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">f</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">f</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:matrix> <ml:real>-1</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="1">a</ml:id> </ml:apply> </ml:parens> </ml:apply> <ml:real>0</ml:real> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:div/> <ml:real>-1</ml:real> <ml:real>2</ml:real> </ml:apply> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="1">dq</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:parens> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:real>2</ml:real> <ml:id xml:space="preserve" subscript="2">a</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> </ml:parens> </ml:apply> </ml:matrix> <ml:matrix rows="3" cols="1"> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="1">e</ml:id> <ml:real>0</ml:real> </ml:matrix> </ml:apply> </ml:parens> </ml:apply> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:matrix rows="3" cols="3"> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="2">a</ml:id> <ml:apply> <ml:pow/> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:real>2</ml:real> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="1">a</ml:id> <ml:apply> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve" subscript="0">a</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">f</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">f</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="0">b</ml:id> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:id xml:space="preserve" subscript="0">d</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="0">c</ml:id> </ml:matrix> <ml:real>-1</ml:real> </ml:apply> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:id xml:space="preserve" subscript="1">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="2">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve" subscript="3">τ</ml:id> <ml:id xml:space="preserve">t</ml:id> </ml:apply> </ml:matrix> </ml:apply> </ml:apply> </ml:parens> </ml:define> </math> <rendering item-idref="599"/> </region> <region region-id="1327" left="90" top="29808" width="190.5" height="157.5" align-x="90" align-y="29808" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="600"/> <rendering item-idref="601"/> </region> <region region-id="1328" left="462" top="29808" width="175.5" height="157.5" align-x="462" align-y="29808" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <plot disable-calc="false" item-idref="602"/> <rendering item-idref="603"/> </region> <region region-id="1366" left="330" top="29858.25" width="143.25" height="24" align-x="341.25" align-y="29868" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">stejné jako požadované zrychlení</inlineAttr> </f> </p> </text> </region> </regions> <binaryContent> <item item-id="1" content-encoding="gzip">H4sIAAAAAAAA/4yQwW7CMAyG7aZbS9etu3AhSOUZeIIdENph2iT2ACiUAkVUTF2ROPLm3W8n u+w0R3b+Ot/vRsmJiJGfyEy1QS228/W+c1+H9e7cta5PSGKMHGl74XqnLZog07b62Bzrqvet ld8omqGYMF+8hWr5yty1+V7q6FjZKfKNA+tjwCKe/r/7OzzpO1fV84XRIxvAkp+JLQ+imG0E U8kRWwNryYZtPEgnBkMDxB2Y2wuO7oURV6IMRCqMwCOZI/YMjNofwKg9B6P2R/0XxJMyEIUw AvvrFu+Xtu6ayp38g6R67VfklhosE14uC6/5J3IpPwAAAP//AwARvY6sxgEAAA==</item> <item item-id="2" content-encoding="gzip">H4sIAAAAAAAA/+y9B5jU1rbvuc6535337tx3X5g73+SZ785733uTj8PxOc4RbIzJOdk+zmBj sAkmmdSEBjqRc86xCQ1003STc87OGBsbG5yNExjjnr2lKrVK2lJJVZK2wt/f73CqqyuopLV/ e9Veq6U/0D8Q/d3wgv+KiF5R/v179r9//COlbv2bP665e/Yd/DcN/t2/0FF2z5/+ePMP/Lf8 fv7//yf7H7/nT+w5f6D/gd9FE/74T2T878CZcwAAAJIDvA8AAMkC3gcAgGQB7wMAQLKA9wEA IFnA+wAAkCzowOlzAAAAkgO8DwAAyQLeBwCAZMG8fxYAAEBygPcBACBZ0P7TZwEAZpquoBZr qVUFta6kttXUrobab0shfdsAyAdEMACcx2aRnsaLyMb77Wqp3VZqU0WtNlKLcgwiEDEQsiCh GESfj/c1pH8oAJyASAWJwN7yXnkfcwCIBIhOEE/cit5z72MCAKEFQQnigFut39Vvld0DZmd4 v01+3scEAMIGYhFEjzxzeSfef8IH72MOACGB9p86K+a0xf0ABE7+og+b9+snANn7FiQQhB0I HZ5bPszexwQAgsdJtJ2RvpUg3gQg+vB7HxMACAxStA5AcARv+Wh5P3MOkH+8QPxAYAF/ka54 V95ncneLr97HBAD8gPadOgOAh0h3uivv5yB6uROA9OMLYgDCCOSFdIO7QnM0876HxscEAKIF oge4Q7q7cxO9AV+9jzkAhBxEDLAjADV7+O7OdezQ+y03KCXcGl7dfXw+3T0MEwCIAwgUkEHw KXk+G5OzhQPL9zEBgBCC+Eg0wVs+H+97KF+J3scEAKSDsEgQ0hUv5E8l/2zYTnaPeqd/zpXi fZtDgzkABAntO3kGxBXpTneY7+vVr0l/X5K8rz0moAlAdmQCuSAC4oN0g7vCYEPN9fo5QKBO i88eG+9jAgABgAMfYaS7OzfRC22o6l6f7IfW++ztOj31dA4boBe9YXXL5lmYAIDnsON9GkQC 6eL2xPJm9p46o6JKX/txb4i9v8+kfudPVOHed7/9Qc0B8qMd+AqOcXiR7m6fRG/0/snTKinv p39kmB9ssC37Ub0neO8b1B+M9zEBAE/AoQ0L0sUdjOWtvK9KP6v32Y5SbHtavaHdTpr3MQGA fCD9MAOBIV3csixv433Djb26yUDv/X1p9WvS3xe091Pb4HYD9p48o6F8zPof89+NwUwA0gcO 8AQcyICQ7u7wiN7sfUOmr93WHqNNAJpn9c6V5X39Zjj8pNoHNHxkb3cp5gBgDw6eL0gXd2gt b8a8vKPdY/Vg/tsT3LnsXxX9Y1pvptaV/GIpbarSbKG2W/i1U1Js5d7XXqr+K0Vtiva1ysVV vPO+/jMabqs3fNq3mACAEBwzz3iwmBpOky/x8IvegM0uVR/QfDU1X8PhijmRWmDRK5vd2Woj v/RV602K9EXeN1iei35rvZT1M4rmfSv2KrrXNlK9LZycDOtU6hSlbrDhtt87GRMA0IND5QG3 9+Bnagyt96Wb3QlPLKYnllCTpdRkGTVdzq9x2HQlNWOsyvC+Kn3Nm+o0oOlV877ZvOZ83+B9 jpLs658l9n7mVw3DJMSfVVv/1SFjhjuRTvZ126/+GOSuxgQAcIQ8gHn/njB5X7rE7Wk0hxrN pcfn8TMbN15AjRfyi9mavd9M5H29MfWo+X79BOBgncfo/VrjOg9DOAGYJxWm/oy5oTbj1bQP bpa+NhNIORD4EpBYLAeSl5z0/y2kItf70j2eFbZbHp1Oj85QNnh2nt4/JURb5+HS1+X7eXpf aHlhDDjxvk0IyT1AAU0Asscp0MDB8IAgvS9d4k54eDw9PIEemUQNJlODqRK8r+X7GUs9zrxv XLTRTQDpdR7BBjjxPnvHtirqZmzhE1JqZqpMVyY2YQIAvoNj4AG+el+6xB3ywDh6sIgeLKGH SkPkfS3f1zfw6L0vqMFa1HUD8776WVpVKFf7ivUcIH3kJhbLgeQPp4N9u4BIeb/EA+9L17db 7htJ942m+8cE5P0Wa6nFOmrJWM+1yGB+5GTzvrbOY+jgbJdtnUeu99nHZJ+Xferm5XGeAGxm dOAH2N0ekI/3pYs7N+4ewj/yvQVh9z6zvAF1nUft41Tvcev97PjjfbYH2N5g+wQTAMgT7GUP cO596b7OnzsH0l1vhtT7qsT1lreq6xr697XHR8L7bOewvSQxBjABRB3ac+IUyBMb70vXtIfc 0Yf+2i9c3jfk8k7WeYTe5zcUR+tfLeTeZ/uK7TTpURHABCB9gMcP7FMP0LwvfRD6xO096c+9 QuF9g+hzWN+39z4jyMjJ3/ts77HdKD1C/J4A2IdlUSR9pMcG7EoPkD7kfOW2V0Pk/fzrurH0 Ptuf4fly6Zf3p0JWnoFd6QFuBwaTIBvq7bdxB7Hx3HA6d6v04Srk1pfhfR/x1vsskKQHjE8T ALzvLdiV3iB9jPnBLV0zvd83od5nD3B4p/YrDeH92j2ee5/tcOlh48ccAO97C3alx0gfYB5K P2Le3+Sl9+/qt0o7pmaDO79T+1F/v3bb0vsVuXuf7XzpweP5BMA+bAN43ztoz/FTwCekjzF4 P3/vO8zczXK3R32kT95/YKz8+PF2Akh5X/aIjg3YlUEgfYzB+668b0j2zU63vxPe93wCgPe9 BbsyUKSPMXg/q/d3H+feZ/+qsN8abmS90x7tuwK7De87nAO496dAVp4Rzl15UvYG+I70AQbv W3v/pOL9k4y0oFO3DTdsbgvRGT91D7zvcAKA972FFMkCmUgfY7l4f2gW7z8SF+8bxG11Z1bv G4wP77uaAJosUb0vf7TGA+zKECF9jCXK++bTL2ve19Tvyvv26hf+Ct53DrzvIWT/zRRIQfoY y8v7ZYr3J4bL+wLRb834vIZFGO10zfrjIszZDd63+TZgniES5X225WzGZTMr+5hs+x8sdv0K 0gdmbMCuDDUR835xWLxvtrzNOk8Ki+ttGY6IMG0XTg9W04b+/kR5P0+kD8Y4gb0ZGeB9h97/ k4Prqtt4P8hj6pP374+L96UPuriCPRs9wuL94S69PzM/75c78r5qTy2tzsH7VtdVd3oSZk/O w5xU70sfXAkBOzrCBOz9v0TH+1mvq27lffMCkQvdw/uwfETAro8D8L6V9/X5fv0EoPO+sKtH eL0teB+ijw0kfQuAt8D7Qu/vPnZSI0P02kfOdn1dV/jr/eXR8L70sQCsyBgPIE746P3Bjr0/ JT/vr/LF+7sV9Rv3kt77+Uk/md6XHvDAOSR9C4DfwPtR9H7L0HtfemCDnCHpWwACw3vvjzB6 /yF4PwzeHwPLAzto97ETIIEkzfudnnpaD/M++3c3vG8nevlRCnwCRzfpJMT7TPGq8dV8JwL5 /gaT91dbe39Ovt6XHocgSHC8QQrp3m/ik/e31K/zwPsQPWDQrmMnANATY+9r6k+a96UHFQgV CAggRuz9/ibvj4qG93cdPaGhru+rt+PqfenxA8IM4gOIgffhfRBXEB9ATPy8b+7ngfdBMkF8 ADHx874e5PsgycQ0Po7K3oDoA+974/2aAL0/Dd4HjjCOBwBUXHi/EN6X6v15Iu/Ljh8QZhAf QIxz799v6/2G8D68D0IG4gOIiZn366+3tdXB9bbgfRBrWHwcB8AMvB9x78sPIRBaEB9ADLwf pPdb5+z9BfA+cA3iA4iJkvc3Rtz7lZ56vwzeB1mgnUePA2Cm3vvdFe/3hvej5H3p8QPCDOID iDF4/w54H94HcQHxAcR47P0Z8L4P3l8E74NcQHwAMfA+vA/iCuIDiAnO+4vgfQvvr4f3gS8g PoCYmHnf5pNGy/tNs3n/IXgfZIN2HjkOgBl4P+zeX2Lt/UKMa2AH4gOIgffhfRBXEB9ADLwP 74O4wuLjGJB+GEJIzLz/p5J/tiJO3n8E3gcOgPeBAFX6QXh/YVD5/pHjquXNYyCm3pcfRSC0 ID6AgKC9vzgI76vqh/cBQHwAAfHz/o4jx1WY+rXbKvA+SBpsPBwDwIDR+69FwPuts3g/9dHU 1R79h42l96WHEAgziA8gIMbe32FSP7wPkgbiAwiIt/d3KOrXbufi/e3wPogwiA8gIIbeP3zM AFe/csPg/fbI90HcQXwAASH1/lqPva+qH94HSUMwHgDI1/sT3Ht/ie/ed/h3W9H2/qS092WH EAgziA8gIHfvl4bX+1bA+yBpID6AgPh533D+fYbV+fej6v2Z8D5wCuIDCID34X0QY1h8HAXA gNj7b8D70fD+fYUY18AOxAcQYOf9QfB+6L0/GuMa2IH4AALgfXgfxBjafvgoAAbkeH8pvG/y /rocvS89hECYQXwAAfB+AN5vA+8DSSA+gAB4P7zeXwHvg3xBfAAB8D68D2IM4gMIgPfhfRBj aPuhowAYyPD+qw68PxbeD5n3ZYcQCDOIDyAA3o+c9x+F94FjEB9AALwfOu+vgfeBZyA+gAB4 PyDvV/ng/VJ4H2SBxccRAAzA+9H3vvwoAqEF8QEEwPvwPogxiA8gQPP+LfA+vA9iB+IDCID3 w+/9J+B9kCu07dARAAzA+354v22A3pceQiDMID6AAHg/2t4fhXEN7EB8AAHwPrwPYgziAwiA 9+F9EGNo28EjABiA9yPvfdkhBMIM4gMIyMf7D8P78D4IN4gPICAg7y+A9+F9IAHEBxAA78P7 IMaw+DgMZHBE9gbYEW/v39VvVTy9P1XvfflRBEIL4gMIgPdD5P218D7wGMQHEADvw/sgxiA+ gAB4H94HMYZqDx4GctkmewPMOPJ+AbwfXu9LDyEQZhAfQAC8HwnvN4b3QU4gPoAAeB/eBzEG 8QEEhMj7q+F9eB94DNUeOAyAAXjfju1R8L7sEAJhBvEBBMD7kc/3ZYcQCDOIDyAA3o+K9x8X en8kxjWwA/EBBETF+xnidgzzvqvHw/sgZiA+Qs4hKe8bBu/bu/jLQvpyDH01hr4eS9+MpW8Z 4+i7cfR9EedqEf1QzPmxhH5S+JlRyvmllHv/WhkxrjPG0686bqhMSPFbJs6nB3gfhBlSzAJA BoF5XyjQC8Poo+H0cQFdLKBPRtCnI+nSSPpsFH0+ii6Ppiuj6YvCHL3/S37et0d9is3EkOH9 LX57X34UgdCC+AACnHp/pDvvGzx4bhC9NYjefpPeHUzvDaH3h9AHQ+n8sGh7P4XuNdlbsDcy zgH+eb8E3gdZQHwAAV55X2+6o2/QsX50oh+d7E+nB9CZgcnyvvqO6gaoK076nZOP9xvB+8Al iA8gQPP+re69r7lsz+u0rxcd6E0H+9DhvhbefzO23r+Rzftsq9jmqdvJNlg/DWjebwHvAx+g mgOHADDg1vuasGq60/ZXaUdP2vWaU++/A+8r3meb/Z3yEdjH0fana+9P5N5nx0V6CIEwg/gA Aiy9PyDD+5qeNnelqpep+pWU93cG4v2vfPL+hIDWeWy8zz4U+2jsM17RzanwPvAKxAcQYO99 zURrn6f1L9LGl7z0/ofx9n6Z0fs/Znr/W4P3R/OPzD442wPabof3QZ5Qzf5DABiw8r7qnaVP 04pnaPVz8H6g3v90BN8hbM+oR0Hv/cd03n9Q9b7sEAJhBvEBBJi9r7pmQRda9BQt/Ru8L9P7 bBedH8r3GDsi8D7IAcQHEKD3vmr8GR1oTqccvX8I3vfH+2zXnVOW3eB94ArEBxCgeZ85ZUIb mtLOhfe3Beh9ZvDweP83Sd5nO/NEf36k4H3gEMQHEKBJv6yV0fuLM72/Qar3VfWrJNz7R/ry 4wXvAyew+DgIgAFV+iUts3vf13xfjdFOTz1tiFrhOo82Afjqfe1dVGR5/wOR99muZkct7X35 UQRCC+IDCGDeH9fCjfe7Gb2/29r7p2z/XtfsfbP67df39V7O0/sGyzPU/eNBvl9i6/0xOXp/ t1KBv3cExjWwA/EBBDB3FOXh/R223rc/T4PQ+wb1O6/rar526H2D5ZnBhfvHQ+//YO39L3Ly /tZX4H2QBcQHEMCS/XB4v36TFO+nbufQz6OpXO99czp/w5TyC/dPyL0vPX5AyEGIAAGq94s9 9/4bOXqfST9P76v5vsHyWc/PE0nvd8egBllAiAABIfR+jS7ld+h9czpvuN6Wdr+V9/WTTY1u +nHu/euZ3r/mqfffhvdBTtDW/QcBMGDv/WUOvC/u5/HZ+wbLO7rOYlnGsr4539feVP+dw533 y/z3fr8M70uPHxByaOu+gyCe7M/9uQF4/6yD8+/X7DvI4LZVbmi3Ve+b0/lcrq9bJq7r6td5 DLNOBLwvPfZAuEGIAAGeeH9v3t5XN4YJV9sw9XaqR3Mi/TSJfplM16b84frUP/w644835vz9 jQX/cGPpv/lt1b/7be0//7bxv7tZ9T/drP1fb+78l993/0fOHsZ/Ys/9fd9//n3/f/n9wP/x +8H/6+bB//vmof/n5uH/9+aR/+/m0T8FsHvV5n14H8gCIQIEeOv9g469f2E4XRpFX4yhr4vo 21IenOrqin7b2I91i/6ubsnf1y3/V3Ur/6FuzT/Wrfunug3/vm7Tf1NX9d/WVf5z3ab/ULfx 39dV/Nu6Df9Ut+4f69b+13Xl/7puzb/itzf+27rK/8C8X7ftv6/b8T/W7fyf63b/L3V7/7e6 /f9Sd+B/rzv0n+qO/OcAdm9u3v8E3gcegRABAuz7ON2u85i9f2Ygt/zFEXS5kL4poh9L6fpE ujGFbk6juplUN4vqZlPdnD9s3XdAyM1Z9Nt0ujGVbkymXyfS9Qnp8qkzeCeP9W8D2L2+er8G 3gfZQIgAAZ57n4mJSYo56/PR9M04+qmMfptMdczy09Oin0N1czm/z6GbM+i3qfTrJLLyvivL 5+B9Q9nAsHOsfmX1ePVX+h9vTKdrk+nnMu+9vwveBw6wHFogyWjeL83N+z24g1hSz/T06Qiu sB9KeFaecv0MxfWz6SbL2SfRr9bZutXmBeB94WgRut5wQ/h0wz11S0jhD78voBtz6Np0Xqj4 odRD78sPIRBmECJAQG7eZ7pn9nlnMJcUy15/Ks1w/e/T6bcpdpZ37n21Z0aK9x3mU1bTg8qN aXRzDqXsv1hhEdUtoOuz6Mcp9P14vvbl0Ptn4X3gHoQIEODK+zt78rV7VfcsY/25jGfxdVPp 5mS6MdGFjtmL6Dk7kJ9tmL3ml4XKLFLCmyD1zfXsx59LeIKsmtFv7zuXflbvG97xBttX89L2 X8gngLr5dHMW/TyFviulK2Ocen8/vA+cgRABApx4v/oV7hqmHuajr8fynnRm+d8cu95geTNu va+Rr/f3HuCa3nvAgPBO4cNSy0HWz7V59xuT6eZsZQJQ54D5Ss1jJv04gdfAP7b3fi94HzgC IQIE2Hi//Hna1ZMvKzMHMSMzHTPRO1m9ySp6597/Le39n0TezzoB2Hu/WtE0+9eA8E7DA1Sy Ptfh95IbU+j3uelvAPPo91n0wyS6UkQfFWR4/5Te+z3hfZAdhAgQIOznWfo3qu3Os8tPR9DV 4tSfoaqnNrNi5bP89JAHe7uWfsr7w/LyvtUE4If3rYyfj/c1fp2oNDvNU7qeZvFeoG+K6ZOR ivcHwvvANVS97wAABgzen9WRNnWlw334CsPXY7PrXmVqO1oVDu8b5oDcvG+v/qyzQj7e1/ht imL/2bxOfnMK75JiR4R5/3im96XHDwg5ZP/VFSQTvfdZzr77NXprENcr86wT42d4v3u4vM9g FrZZBaq29b7hV9qPhl8Z7vfK+xo3p6fsXzeFvh7H/+w5w/uy4weEHIQIEKB5n6X5LJf8uICb 17nxjd7vk5P3B/nrfatVoGpnSzrCOcBqid9z76fS/6l0cyYvBX9XxP/+Gd4HDkGIAAGq99e9 wE/s/tUYJc13byVfvD/Be+8bJoAAdq9X3r+unPKzbiZf8VfXfOB94ASECBDAvL/oKX5itU9H 8gbN3JQUnPfdSN/G+847QcPGzcl0fTJdLeF9PlvhfZANhAgQUNKSKrvxpYOcpa95vwbeDwT+ xxNKpXd/bwxqkAUWIvsBMLDyWb7Cw5Saj4mmtc/L++cG8YULeN+V+q9N4DVe6fEDQg5CBAhY 8CT/K9xf8kj2vfT+GA+8L/yYMfM+V/8k/ge90uMHhByECBBzYXi+DgrI+2Md5fjCzxg/7/86 gV/VQHrwgJCDEAFiDvT2wvvPce8fgveDgu0Tqw8LgAZCBIhZ/RzvCs/T+6vh/cC9Lz1yQPhB lABLPs5vqScY73/jwPvqRXoNVMfR+2+jqAscgCgBdjDtxsD7mvoNny5m3r9ahOEMHEFb9u4H wJ4YeJ/Fery9/0MxxjJwCm3Zsx+ArMTA+2b1B+x99qF8eourxRjIwAUIF+CUjwvcyWh6mLy/ Zc8+FaZ+7bZE73v4dtIDA0QOBA1wx1djIu99Tf15ev94P37Rq09H8C38oZif0+LX9OlCf3Xj fZVP3ZdSpAcDiCgIHZAjwXj/M0/runpy9v6kNvxz7eiR9v5IfspSg/fZw9iPbNvYrHB6gFPv vzUIxgdBgAACeXHOWlX+en98jvm+nsh5/2oRBizwAPF4AMAtQu+v8cL7X4XP+2sU75/w1vsj LL3PPqn04wviBOIJeE/UvW+v/sC8L/04griC2AJ+EWnv20wAVt7/ReT9T0bw655rHyqr99lH ln7gQOxBkAG/mN6B+7HWC+9fzdv7+cPeKOX9tj56f8OLGJLAdxBkwC/i5311G/zzPvvI617A kAS+gyADfjEj7f3DMfL+ddX7z7vxfn8X3i9/HkMS+A5V7dkHgDfszvgR3le9f9KN99kek38c QdwhPlYB8AHu/efj6f1ynfcveer9Vc9iSALfQZABv0h5/9W4eX+y6v2eAu/fyNv7K5/BkAS+ gyADfsG8X656v28u3n9rEF0Ivfff9877nyjeX/43DEngOwgy4BfeeH9USL2/k3m/vyPvn3Dj /aXwPvAfBBnwi3y8fyyp3l/yNIYk8B0WZHsB8AN4P+X9fi68v+gpDEngOwgy4Bfx8/7P7r1/ 0aX3FzyJIQl8B0EG/CLG3l/r3PsF7rw/vwuGJPAdBBnwi5kJ935JyvvH3Xh/bmcMSeA7CDLg F8F4/+sgvV/qzvtfu/e+9KMGkgDiDPhF7L1/0sb7ZfA+CC+IM+AXzPvMj9vy8f7wMHp/CvP+ C754/yy8DwKBKnftBcAPZnZMef+Ib97/MQreP+bG+9KPGkgCiDPgF7H1fjuX3n/DsfcHYjyC IECcAb/I1/tvRtv7P8H7IKwgzoBfxNj7616gXfA+iCyIM+AX3PsvwPsZn8vm9S/C+yAoWJzt AcAPZnnt/evh9/4Eo/c/du79AtX78g8ciD2IM+AXMfP+t9be/xreB5ECcQb8At6H90E4QZwB v2DeXxd77w914P2+8D4IF4gz4Bfeev/n0Hh/qur917j3P3Dg/SPwPggZiDPgF3l5v1/K+5+r 3i8OgffH1Xt/vUPvj4H3QRhBnAG/yNP7b6e9/7XI+7/K9f6L8D6IMLR55x4A/CB/73/kxPtj 4uP9MwMxHkEQIM6AX8D7qvcPw/sgZCDOgF/MVry//dWMhhaHHDd7vzRc3t8N74PIgjgDfpHy fg/X0o+K908p3v9sJK8xWHp/OLwPQgfiDPjF7E7+e784Ct7vA++DcIE4A34RV+9Pa08bHHuf fYRD8D4IGSzOdgPgB8z76+Pl/V9cev8rN97/OOV9+QcOxB7EGfCLOHn/MrwPYgTiDPgF9/6L 8D68D0IH4gz4Rfy9P8CR9w/C+yBkIM6AX3jm/bF23v8K3gfAJYgz4Bdz4uT90Xl4vze8D8IF bd6xGwA/CMD7P8jw/vT2VPGSL94/PQDjEQQBbdqxGwDPGdeC/Pb+L1K8P97k/VFp75d54H3p Bw4kAcQZ8IXYe3+P4v3zDrx/AN4HIQNxBnxB9f4GeB/eB+EDcQZ8wVvv/xB67/9o4f0L8D4I H4gz4Aua93fEz/sd/PH+cHgfBASLs10AeE78vf+6U+/vd+d9+ccOxB7EGfCFhHv/mt77vRx5 /yN4HwQF4gz4Avd+53h6f0ba+6fhfRBNEGfAF/L3/jsW3v9Nkve/s/b+N/A+iBSIM+ALzPtz 4+v9jSLvXxN6fxjtg/dByECcAV/I0/sn4H0AfIM2bd8FgOd44v2PDd4fnwDvyz5wIAnQxu27 APCcILxfGjfvnxqA8QiCAHEGfCH23t+ren+YA++/Du+DcIE4A74QY+/PdOP9D4fxR8L7IFQg zoAvqN6veCkP7w/mp6yJrvd/LKEv4X0QShBnwBfqvd8zL+9fDr33P4f3QdRgcbYTAM/x0Pvf hM37HWljV3+835+kHziQBEj6FoBYwrw/LwHe/9CB9/c49v5JeB8EAknfAhBLNO/vhPfhfRAy SPoWgFjimfdHh8L7V7J6vyRf71+A90FQkPQtALEkMO9/Gbj3Z3WkTa68/xq8D8IFSd8CEEuK 4P2093fD+yBk0MZtOwHwHO79Lnl4v38svF/o3vuyDxxIAiR9C0AsCcb7V+V5f9/rdAbeB9GE KrbtBMBz4u/9Xo68f96N99mnln7gQBIg6VsAYkkivD/Qkfd3wfsgZJD0LQCxhHl/Przv1vv9 SPqBA0mApG8BiCUx9v5st97v6cz7w+B9EBBUsW0HAJ4TV+//6sD7N1TvFyveH+rW+/KPHYg9 iDPgC6r3N+bh/XdD6/1O8D6INogz4AvBeb8wKO8X5ej9nY69fxzeB4GAOAO+kKf3T4q8/2to vL8Z3gdRBnEGfCEg7xfB+wC4BnEGfEHz/q64eP97a+9/64X3P4T3QVBQRe0OADzHE+9fDL33 Lzjwvv4Kw9m9L/vAgSSAOAO+UNyCFsTU+3MU7+935v0P4H0QPmhD7Q4APMdz7/8SZu+PE3if bfMXLr1/rB/GIwgCxBnwhZh7v5s/3n8D4xEEAeIM+AL3/pPwPrwPwgjiDPhCPL1flov3t8P7 IGQgzoAvpLzfFd6H90HoYHG2HQDPibP3O6e8f9YX78s/diD2IM6ALxS3THv/tVh7fzhdhvdB 1ECcAV+Im/cL670/tzNVuvL+q069fxTeB4GAOAO+wLy/8El+3kp4fxu8D0IG4gz4Qsy8/4XZ +73hfRBVaEPNdgA8xyvvXwm/90fbef99x94/r3pf9oEDSQBxBnzBW+//aOH97+V5/4BD7w+B 90HooPU12wHwHM37u+F9597vi/EIggBxBnzBV+/fiJT3ax17/wi8DwIBcQZ8oSQo738RuPfn wfsg4iDOgC/k7/33wuf9a756fyi8L5O7+q2Svg2BgTgDvuCh978Nsfc/cuL97vB+QJQWDm7T onGzxg1yeG7SvL8NAM/J0/unoub9nzzzvvxjF0VefKbT+6d2HdlVUTZm8JtvvMrUr+L8FRTv y/8gwYA4A77AvL8ort7v4s77NfC+z0wuHn7mYDWTvsbEomHPPtlOs7+TOQDeByBfvPH+iOze Z/8F7/0q1fuDPPb+YXjfPbUVS/XGZ4wrGMAY2r/nyMF9DOq3sT+8D0C+cO8/5a/3zf/B+0nj 3OEaofQ12FeBnt2ecaJ+eB+AfPHA+0PoE9X74wTeF/4XjPfnM++/DO9L5oW/dXz/5E576WsU jRzYqlkje/vD+wDkSzDer0v/57f6hd4/l+n96zrv/1JGV4v5WTzhfRuYfBfMKFFx9USWxZ/a X2WWvtrPI1T/xKJh/Xt1s1E/vA9Avqje3+yP97X/6nT/Bez9g868/54r7/eJ+XjUO7dFk0c1 6evJ+iLbNy3XXP/YrGOq8bs+1yXdzzPkzb7d1bcw27+scHDn9i2E9k+Y97duA8Bz8vX+gNB5 /6q197+z8v5o/im2OvP+B6r3ZR84zxnYlphbmz/RsFWzRm1bPtGhddOnOrZ67qn23Z7rIvR+ /QQgejUmegMtyi+r6HP/SUXDnunSVmj/sQX9hw14zVzv5d6Xva8Cg9Zt3QaA5/jqfSnrPLl7 /xWn3j/UJ/LjkVleY1A7GtKBhnUkpuCXnunU/aWne3V/vt9rXQf17c7MO2pIH9XvOypXWKnf bHkb7+th6h8+8PVRQ/paJf4Ti4Z1fbazwfvS915gRD7OQDjRvL/HT+8HWdeF94XoRT+4PQ3t SAWdaVQXKvobjX+epnalWd1pSP+eI97sXTisn0G+Kb9PL5laOtK56J14X2NycUGPrn+zsv+Y 4f2aN26oeV+9IX2XBkD04gxEAub9xR56vyR7H6d/0of3NfSWf1NJ54d3opFdaMzTVPocTXqR ZrxM83rQ4l60oi+VD6CKN2nTELJqs1Fd36V9y+ZPNPTJ+xotmz5mZX/1rTXvJ0H9YY8zEFH8 9v71wP9eV/P+gsR4X295NZ0fpqTzo5+komdowgs0rRvNfpUWvEbL+tDqfrR+ELe8GXvvu13Y yc37eqy8r21G7O3P4qwWAM8pjb33+9h6v7Te+9Ui7z82i9NqI7WqoFu66r0v86gZ0vmh6XR+ 7NNU9hxNfolmvkLzevJ0fuUbtHYAbRwsFn3IvW+YAMze15A+jnwC3ge+kPJ+N9rzegy9v8WJ 94syvK+K3gDzfssN1KK8niCPUUYNNp3Oj+hMhU9R8TM08QWa3o3mvEoLX+fp/Jr+tOFNR5aP kPc1rLwfV/XD+8AX4uz9J7N5f7zY8jbeb1eTwtcJICOdb8/T+QIlnR+n1GCnKDXY+T1pSW+e zq8bSJucpfMx8D6DeV+dAOB9AHKktFWyvO9Q9Ebvb+Le16SvJ/8JwNxSObxTKp0veZbXYKe/ THN70KLXaXlfWpOuwfpBhLxv+BIA7wPggrh6v6gF935uljfT2tr75gkg6xwgbql8sr6lcnZ3 XoNd2ptW9aN1FjXYHPhgRgax8b6G9NHkOfA+8IU4ed8ry4u9vz6L960mAPuWyskvmVoqPVq0 MViecX4mfTyHPp1HlxfSl4tj6P34TQDwPvCFYLz/nT/e90/0OXtf2FI5QmmpLE63VPIarNpS 2d+ypdIT0V+YTZ/Mpc8W0BeLuOjZvypXGAvj7H3hBNDpqafNSB+A9tC66loAPId5f8nTkfR+ YNK39759S+UUpaWS12DVlsqBTlsqc0nnZ/F0/tL8VDpvsDyDTQAs2b84hz6azXP/JHg/Yw6o rhW7XvYYtIHWVtcC4Dmeeb8wEd63a6l8lia+mGqpTNVg82ipzC76mVzfLJ3/fAG3vFn07H42 B7AHfDSHPpzFH//edHp7Kp2bTKcm0rGyxHlfTf/N3pc+Bm2A94EvqN6vzMP77zvx/riIe38z tVhX31I5StRSyWuwA31ctGHuvqik81dE6TzL8T+bz9N5lvJfUNL592fQO9PorSl0ehKdGE9H SuhAEe0ZQztGUc0IqhqWTO/XMBT112hIH4M2wPvAFzTv783J+6eT5H31tDa8pbIXT+fLvWup NFteTeeZx9V0PsPyunT+4lz+MJ7Oz6B3lXT+7GQ6OYGOltHBYto7lnaNpm0jqXo4bXawGUF6 n+k7N4Pn4/21zPIKTP3a7dSvZI9EIfA+8AV437n3/a3BzuISZzm7sAarpvOf6NL596an0/mJ dHw8HS6h/eNo9xjaztL5AqoamstWBZ/vq/Z3pfK8vF9do6Iu9Ku3TY+RPyo14H3gC155/4sE eN9DyxtaKs012M/VGmw6nX+fpfPTeDp/Rk3nS+lgEU/nd46m2hG0Zbg3s5HEdR7nE0DO3mdP NPfzmL0fqgmAtJkKAA+B9/3wvtuWSmZ/tQb7sa4Gy9L5c1NSNdhDJbSPpfOFtH0kbS2gypzS +TB73zwBWPndoff1r6OimFQwBJx/SwgeeB/4Qpn/3v857t4X1mA/tq7B6lsqtRosS+ffYum8 WoMtTddgR/Ma7BZRDTau3s/6JcBmPjDMGaIMWjAEXG1SwMMT3ge+AO/n4H1xS+U8Y0vllWwt lWfTLZWHimnfWNpVmK7B+pPOy/J+u5pfVXJbnzFMANq/ZtE7WKgRDAF4HyQO5v2leXv/U733 y8TevxJp71dSi7WilkrrGqxVS2WqBqu1VBaIWyqj633N8jbko37nlQCtcqti+FED3geJI4re Z2Neivcv27RUzrNuqSxNtVTyGqzjlsoIed+J6N1OADaW125nnQDW6lxv08AD74NEoDdacN4f HXnvC1sq9TXYjJbKQt5S6V8NVq73Gfno3oCrXN78W6tnqdGu6l6f7EfK+1tqAMgfg9HgfSe0 qUyl8+dnZdZgJ6RqsPUtlaFZtBFyS9d68vR+PhOAwfKuVoFsZgXDBKDZ07DCk5f3gx2t8D7w Bng/N+/Xt1QW85ZKtQYb8nReb3kzXnnf4RxgI3pXq0B2CzuyB5fnUPmWGgDyB97Pzfs2p7UJ CfaWV7n1ZbrtVbq9J/35dV+878cqkGEOkO79IEcrvA+8Ad7PzfvStZ6L6LvRrd3pth50+2v0 5170l7701/5050C6y+Jc0B56378JAN4HwDXMYrd0HafBvf83L71/LZber4qC5Vk6/0o6ne9F d/Shv7xBfx1Ad71Jdw+he4bTvSPovlF0fyE9MDY476uwwPPQ+1arQGqEG4oH+uDPer+TBwcJ vA9yRy96A6r3q7rRPng/ZN7PLvqX6bbudHsPvmhzR+90Oj+Ip/P3DKN7C+i+kXTfaLp/DD0w jh4spodK6eHx9MhEajBZgvf1eOJ98xKQ+uJCTQu1bn68k9tBAu8Dp9hY3gRf51mmer8XvC/T +44WbdR0/rV0Ot+P7lTT+aHGdF5v+UcmU4Mp1HAaPTqDf5ZGc6jRPMne13BlfPWlbMrC6mta ed/h8LF6pBT1M+9vBUCIG9HX06L8c3hflved1mC7p2qwPJ1/I5XO321I58fSA0X0YAk9VEYP T6BHJuksP5Mem02N5tLj86nxAnpiET2xhJoso6bLg/d+lhh25X2r4oGVoF0p24H3gxva8D4w wsStuDsX6XO6UYvytPdfhvf99b7TdF5fg+2n1GD16bzFok2DqdRwOj06M5XOPz6PHl9AjRfS E4upyVJF9Cuo2Spqvpqal/M/QGu5PnTe13DlfcMEkKf3bVbzM+8PbozD+6Ce3F2fhinm1u6K 91t76f2f4H1X6Xy6pbK+BjtIqcEOy1y0sUrn2bbNSafzCzPS+WYrFdGv4Ye4xTou+pYbqNVG fqHg1pst25PC4H09eulrmyH0vqr+8qqtDC5o5YaG+R7zA1Jmt/hVxp0BjnR4H6TINbsvvvXl kltfKb21e9ltr064vYdihHIaD+878f4WL9L5dEtlfQ1Waank6XwB3Wtdg22opfOzU+l8Y5bO L0ql88zy5nSeW75CEf1mfpIJNm+13UJtq6ntVn51+Ha1LqQvy/tb1i48vmcTo1yZAPzzvpXx LV8hwMEO7wOOY8sX3fJyMbf8K2W3dR+viH7S7T0n3/7alD+/PpUlmH/uBe/n7v1cWiq1Gqyp pZKl8w+V0MOidL6RPp1nll+SXrRh6fxqJZ1fm0rnU5ZX0/kqvsF6y7ffRu23U4cd1GEnp+Ou sHu/ev1iVfoaTry/pmrrGsXR6g09wjuz/kr4sCDHO9lPRyAhWIi+SEvnVcvf1mPi7T0npSzf a9odvaff0XvGHX1n/eWN2X/pN+ev/Xiy6Yn3z2T1fhn3/rfR976jGmwPYw1W3FKpLdqk0/lH tXR+ri6dX5KZzq9R0vl1unQ+vWijpfPtRKJnlu+4mzruoU6MvdRpH3XeF7j33QR5TcUSg/TL l8xQb+TjfcP92o+GX+nvF3s/QOD9JDKwLenRp/O6RRtTOt9LsXyfmX/pO/svbzDLz/1r/3l/ HbDgzoEL7xy06K43lzAZqdL3zPsjufe/S473TS2Vghqsms6PM7VUTs1I53kNdr6pBqtL51uu 0y3aOEnnd6VEr1mei36/wgFOl4OcPL1fPGpQxzbNmjVu4Ln3t21cZpD++uWz9D+yo6/NAc69 r1e8cA5wfn+QBiAn30RA1NFb/s12NLQDDe9EI7vQ2Kep7DmyS+f76NJ5bvn5dw5coFh+8V2D l949ZNndQ5ffPWzlPcNX3TN8NUs/PfP+QHp/aPy9z7JpY0vlAKWlckh9Os8sb9dSOcuypTJr DZan85rla6i9KvodpnR+b306b7B8ikP15On9o6X8ugJTSgq6PtuZ2T/rBOAw/rdvXm6QfsXK uYZ7NO9ruHqLaAHvxxC95Qe1oyHtaVhHGtGZCp+ikmdp4os0vRvNeZUWvU7L+5KzdH6xks4z 0S+/e+iKe7jomeXX3Dui/N6Ra+8bte6+Uev5akNhcr0vPBBOvF9fgx1uV4NtYKrB6lsqs9Rg N6VqsFnS+d3Z03mD5etRfsUe5on3VWZNGtOnx4uq/a0mACfDYWfVSoPQN6+Zb7hH6H2G4aW8 OieE+U+CA1YEvB8HMtL59jS0IxV0olFdaNzfaPzzNKUrzepO83vS0t60qh+tG5gxLN2k81z0 941ULb/h/sKK+8dsvH/MpgfGVj4wroo3BRZneH95ft7/IBne19dghel8o6wtlcIabGX2GmwO 6bzB8pz9yiSxl79ah7zrunrvM9hjZk8eO3zg61bqzzo0dm9ZbVC51s+T1fv2r+yV+qUYA96P HsZ0Xlm0GdGFxijp/KQXacbLNLcHLepFK/pS+QCqeNOuU9BxOl9xf6Fq+c0PjKt8oKjqweLq B4u3PlRS81Bp7UNl21hmypwF7+vJ7v1qH1sqBTXY3Rk1WC2d7+I4nVefwi2/RxH9Dv4u7B3Z ZlgFWJ7eV5k5sbBk1CBz7m8/UvZuXWNQ+dYNxtKulfedj8dIiN4AvB92DDXYwcqiTUFnGvUk FT1DE16gqV1pdnda8Bot7cPT+fWD3P0p0D1qOl9gkc4zy6fS+S1c9CVbHyqtUSy//eHxOx6e sPORibsembT7kUl7Gihna0mm99WLrBpY48z7xpZKUQ22hdsarDCdFy7aOEznVcvv5G/B3ot9 mWAb5jDAPPG+xtTSEd2e66JNADYDZ1/NWoPZDaVdqye6kr6e0FreDLwfOgw12CG6GmzpczT5 JZr5Cs3rSYtZOv8GT+c3Wpz03AmpdH70BlM6r7N8Kp3f/vCEHY9MVEXPLL+3wZR9Dabubzj1 QMNpBxtOP8RbBmcIvL8/Ad7X1G84lE68n0rnhTXY/Foq69N5B5avT+f3pdP5Xel0vppvTM4x 5sr7hcP6tWnR2Mb7KrMnj+3bs37p3zwBHNi2ziD9nZUrhMs45qOWBJj3q4FEMhZt0un8iM40 +kkqfoYmvkDTlBrswtdpWR9a3d91Om/DBzOoftGGi16/aJOZzk9Oib4hE/20Aw2nH3yUiX7G kUdnHn1s1rHHZh1/bPZxdYEiw/vP0JbEeF9oECfeF7RUOqnBOmipzL5oI0zna/hMwyYhr8Is h/79ieOGPfdUe2Zzm+calv7T9udj6tCODQbF7642rvLrk3rTgZOvBb+B94PG3FJZoKTz4/7G WyqnKOn8/J60pDetfIPWDswrnTdY3sD5maQs2tQ+zEVvWLQxpfMzDj8688hjqui55U80mnOy 0dxTjeaefnzemcfnn1X7CDXvT/DH+7+F2PtmgzjxvrilUrF8ni2V9jVYNZ3nizZb+DcMryzv ifdVpo0f1av7c6rQbV5kcklB8ahB7Vs1UR95ZGeFwe/7asqFC/r6I5V54ORbwm/gfX/J3lKp 1mCVlso1/WmDbQ02T9FfmE2fzKPPF9CXi+mLRRzn6XyjOSnRPz4vLfoF5xovfKvxwrcbL3rn icXvPrGYt5p46/1LOXlf/0cxgXl/dWW1CjOIdtuJ9520VHbOLZ1P12Dr0/ltSjq/yUfL5+D9 Tavn2difJfVD+vfMan8+ARQXHN1tlPuBbeutCrn6cap4X74uAgPe9xhDDdbQUjlVaankNVhR S6W3lv9wFl2cQ5/N537XRM+4wlhIlxfSZwvITTp/trEq+kVvP6GKfsl7TZa832TpB02WMc43 VZoLA/L+eKf5vqsJwCvva+p34n3va7DplspUDbaKH44gRe/I+yMGlI5+UzV7VfmCrH+XO2vS mDHD+7Vp/nhW++vNftiU+wu9n67NyLdHYNCaymqQM8KWypFdaMzTVKprqVzsrKUyH8t/MJM+ mk2fzuNCN1peET1L8y/Np0/m8oexKeH9GfTuNLJJ5xsb0/n3uOiXqqJnlv+w6fIPm6640HTF R81Wftxs5cVmq/iisOfe/zI/77uaANx6X//FwtzP49D7ebVU7jO1VFbbtVRK9H7xqEHjxw5h Kfn08aNYCj9/WvGimWWq09kc4PCsDOrS/wtPd8hqf8Yxa+Obvb9Gn/LLtkoAwPsusGqpHJ1u qZzWjWa/ytN5XoN131LpSvQ8nZ/Lc3bLdH4+nwY+nkMXZvFZ4b3p9M5UOjeFTk2kY2V0qJj2 jaP6dH5BtnSeWX45t3zTlYroVzHRf9Js9afNGWsuNS//rIXSV673/oowed/JKpC99/VPTJ1Z RRcbq0Vk9/7WvGuwlbypX7rchVQNo60FNGtS4dypRQtmlC6ZPX75vEmrFk4tXzJj3bJZFSvm qCp3fjYeDTZ5vP6K3dL/ib2V9tJnrK6qVuGTdPrf1fA+sGmpLMtsqeQ12PxaKu0tf34mN/il edzplun8PD4TsHT+fDqdf2sKnZlEJ8bTkVI6UER7xtCO0VQzgg9I9Y3cpPMXm63+JGV5VfRr P2+x9nKLdVcYLdd/0XL9ly03RMD7Nl8CDN43WD6jimsKldy9b26pPGDRUlnLWznzaan0lc1D qXo41Y6knaNp71geb0dK6Ph4nmesWzZzw4rZG1fN3bxmftXaBdXrF9VsWFJbsXTbpmVujW9Y +h/cr4fZ/if3b8kqfe59Uz1GvS1dOwFAwnhNJm5bKjf4mc7zGuzcVA32y0XidJ49gE0GH6bT +ben0tnJdHICHVXT+bG0q5C2jeSjkY1J4fuqlrdK5xXLa+m8avnLact/0XIDE/1XrSq+5mz8 ptXGb3mz+aa099sE5P3LXvTzmHN5g+gNeOl9qxpsuqVSutCtYNkDyyG2j6LdY2j/ODpUwgOP hR9LNVjCwdKO95VvpSwR2bphcW3Fkm0bl23fvHxn5Yp6qlbm430G28mzJo0ZO7x/88YNVfuf PljtRPo23k8Cifa+XUulelqbzJbKTf6l87OUdH4+17p50eaKUoP9dB6v07L5gOX+bES9o6Tz pyfxlOpwCR94bPjtGEU1BfXpfFZS6fwqQzr/mT6db7nui3Q6/1VK9Nzy37Ta9G3rTd+13sz4 vnXl1TacVBUxEt43WN5wj72v+VqwTvpWvnDifbWlsv2OdA3Wz5bKfKhU0nmWRrBkgqXzB4v5 l0g1nT83mS8hssyDRSaLTxbJLFZZMLOshSUoV5RIVkS/kv3L1M8mgJqKJZXlC9iXgPXLU7jS /baNSzXva0wYO/Ts4Rq30jccu4SoP0HeF9RgdS2Vk3xrqRTUYGc4rsGq6fwMelefzpfyUcfG HvtCXTuCtrB0Ptdtq1+0MabzX5rT+dYp0X/PUCz/Q5uqHzlbfmrLqP5Z7UBXvT8xZN43p/P2 dV37OUB1vSZ97bbzmrDmfelCt2KLks6zTGKPks6z3OKYls5P5QGpFplYiLJAZeH6mSJ6Fr1q wUnjKyXCWairf4Krid4Kh+v7pYWDDd5XcS791ZVbLJAvK7+Js/cFLZXqaW3SLZWz9S2VAdRg bVoqtRqsks7zGuy0+hpsKp0v5N+ptxbwzMurTTUt2tim81U/ZFqe8UvbrYxr7WoY1/kJSWpN 3u8tx/tZLe+8n8c8AWjG108AkfY+CyoWWtuVdH6fks4zR58Yz79Qsjh8R1m0UdP5i0o6/5ku nTdYnv3L7vxc+YbK8hvzcMh/AtBKwTbDP5v0q+H9OGBVgx2TPq3NjJdpnr6l0rdFG4ctlRcz WypZDsVrsBPqa7CpdN7xok1u2KbzBtGnLb9Vtfz1drVM9L+2r73Rfhvjt/bbb/K/Mt0uwftO 0vmcvf/YrICGSWCWZ18Q2ddEFl0sxliksXhjucXxMp5nsO+UbyuLNiyMP1SWH1PpPLO8bTrP HsBCWv166pD8JwCHO1Yk/eqEe9/qw4caYUulVoPVWioXBtVSWV+DtUjnP8lsqWRD69zkjJZK rQbrYTrvBJfpPCNt+ZTob3bY8XuKnb+rJ4MM2Pu5WT5R3uc12AKlBlvIg42F3NEynmSc1tVg zyv5CnO3Pp03W56n8wtT6fwFUTqfAw4nAPMcIF1EESUy3re/UqDWUrmkVxCntUnVYK3T+U+1 lkpTDfZISbqlclRGS6UsXKbzN9tnWF5h1+8dOXUdd6vw1kPN+wckrfMk2fub0zVYtaXyYFF9 DVafzl9Q03l9DTZT9F+l8xg1d2EPZvHsiejtJ4Csc8DqRVOlGynShNT7Vi2VhU9R8bO8pXJ6 uqVyeZ9ATmszN+O0NoZ0/pK+pdJQgy1L1WB3jU63VEq1vJl6yxvS+e2q6K0tXy/6uo576jqp 7K1TTzbAvL+Sef+VHL1/NpTeNywl6ZWd9X6rB+t/m/NB1Gqwu8012MyWSpaOXJqXpQar5i4s pC+4WbTxaQ5QRb9wZql0KcWJsHjfeKXADuIrBS7x/7Q2521Pa2NuqVRrsDydn5jRUqnWYKuC XbRxxS1dU1gv2gjTeYPl0+xL0ZmT8n51fLzPo1QRtDF00+LOuMf8eKvH6HF44NQarKGlktdg J6ZqsIaWys8yWyrNNVg1d2EP/sDndD4rbIqS7qIkIG0vC64U2Nl0pUC1pdLX09q4bKlUa7As nT8zmS+P8pbKooyWSuk2dyJ6A1ktLxC93vL7MznAULz/bFK87zDms6rf6sCpNdgduhqsms7X L9oYWioXZGmp/Nx9DdYn2KeQLsEEQqs3bwmeoforBT5vvFJgEC2VTk5rM1t0WpuSVA12+0iP WyoDs7yeW1+h214l1+m80fL1dDmYIgjvl8j3vnPpO3m6euCq9C2Vag22NFWD9bylMmDYLCVF OMCAnMMw45V0S+Ub/rdU5nBam6ni09r43VLpt+hvfZlu606396A/v0539Ka/vEF/7U93DqK7 BpNdOm8tes3yZiYF4/2xAXl/VeWWVYqm1Rsa5nuEaOv4wl9pt9V0XliDNbZUimqwX+lqsBf9 r8E6gX0Q6Y4DZmjV5i3B45XpzHGWcVobq5ZK4WlttJZKB6e1CQPZ0/luqXT+9tfoz73ojr70 135050C66026eyjdM5zuHUH3jaL7x9AD48htOi/gUAYBeP+nIL2vxC13dGYkm+8xPyBlfOsH aLfrWypnSWupzAc2jqT4BLglSt43x1l9S6V50SazpdLytDZFuZzWJoyW19L5nrp0fgBP5+8e QvcMo3sLFMsX0gNj6YEierCEHiqjhyfQI5OowRRqOI1cpfNm0Xvu/fPR97698c0v8onptDbC lspLgbRUZoWNJun+ArkRau9rzbwaF0Q1WHNLZfbT2oSypdKd6NV0vkcqnf9LX2XRZiBftOHp fAHdO5LuG51K5x8spodK6eHx9MhEajCZGkylhtPp0ZmkXgz98Xn0+AJylc5nJSHet7oz66+E D7NpqQxDDZZlS9KFBTwhRN7/YIZA9GbMLZXC09rUt1T6cFobaen8q+l0vk8qneeLNkN0izZK Ov9gET1kSucfncH9xSzfaC7xa6AvpCcWU5Ml1ES5PmKzlfxqWTlbXrC+3zYI738TnPerGIqg qwykk/qMe4S/ynqbt1QqBaePQtBSyYaSdD0BnwiL950YXyXLaW3GBnRamyDSebUG+5qyaNO3 vgabWrSxTucbmtL5xguo8SJ+3fMmS7nlm67glm++mporF8lquZ5fzaNVBb9EX26izygDKOtF zPurkuF9veKFc4Dwfv2vtHvkip59J5buIxAMZBXHvpKP9xnm09pEPp031GBZOt+P7rRK59OW f3iiKJ2fp0vnlyrp/AolnWeWX6NcCnFdveVbb+JX9mhTRW22kHoWZYfpvFn0jFRxeC9vDYql 9/0mSMu/NUXO2AdhIJLeD8NpbfIUvaAGq6TzdxvSeYsa7KNaOq8u2hjSeWXRhlu+XLG8ls6r lleujtJWEX27rfyiTu1q+SW522/nF/PrsJOcpPMczfKK6Pmfd6nt/7vqOuz8PWbe9wn1tNXB iJ6lStJ1A0JCJL0vXes5pvP6Gqy5pTJrDXZWfQ3WnM7XL9oY0vnKjHTebPkOu/j1njru5lf4 46fW2ccRWH6/neU77LjJz+ez7QY/w0/N9bZbf9G8fzBP74+Jv/f9UL/SUinfLyCcwPs+WN6q Bqu1VGbWYAXpvLJoU5/OM8ur6byuBmtM57VFGzWdF1peEb1q+Y6q5RXRd96nXN9VuZx36tLe B8k+nc8Q/dZrbbf81KbyautN37VYd6XZqots4yfD+w5oX1t/Jfp8LP/e9KCXpECkgfc9Sue7 p9L5+hqss5ZKcw32cXXRZnH2GiyzfGvdoo1lOr87I51PWd4k+i6HBDDLtyj/3JjOV//cpurH 1pu/b1XxdfM1l9S9ZDCar97/NbLe5wfIAlcTwOmJlm8h3Skg/NCqTVXBE2bvO0rnX0mn81lr sEpL5cNuWyr1Ndj1mTXYSttFG2E6L7S8UPRqpq88kj2Fr/ns5a/GJo/WlVdbbfpWTeeF+y2K 3lejsdNTTxviMwDLO5kAtDngnWku3lTKiAbRAt53IHrr09oIWiq1RZt0Op9Rg7VvqXRfg623 vCid75Itna8X/X7+RG75PYrod/B3YW/KtsThbhR6f2sUvL/KpP6ARe9kDoD3gYckzvs5tFSK T2tTaFy0eWSy65ZKYw12s8sarE06b295LZ1XLb+TvwV7u9aVfAbKbcdG2vurMtUvy/I5TAAs q2DpBYtA9s2SxSR7gHSnCFkpewOAHlqpHJKACdL7ubRUGk5rM5KPKMuWSmb5zJZKfQ3WbUtl e1fpvINFmy6GRZs9/DV5Ol/L35dtj1dfm8zeX/1cHt4fpPN+ka3381jQ14+ErN4P0vIOV4FY /sFC9K5BfKWR5SgsWWF3ShnRIFrEzfu5t1QOTqfzTk5r47Clcr0XLZU5pPPKU/graOn8NiWd 3+yZ5YPx/mdBeZ9J3+x96Yp3PgGosa3elu4UEH6i7f18Wyodn9Ym95ZKtzVYUUulqxose832 O/h7sTmGbZJ/onfq/T7R8L4+5Zfu9HzmAOlOAeEnYt533lL5Z1FL5b0uWyobe9pS2dG2pdJd DXa/rgarpPPsHVttCs7yWb0/Bd6XNAFIdwoIPyxKKoPHofe9b6ksddNSaT6tjdyWyj2plkpe g63l786mH4mi99X755j3h/nufXUMMN1r40G9LV3fOSBlIIOIEjrvO6rBOmmpNNRgnbdUrvGn pdLe8lYtlbtyaakMmM1D+MUMjN5vFwXvb6xkcNcrN7Tb0iUOywNfCZH3s7dU2l4p0NhSOTUj nX/c75bKnGuwVi2Vm/m2SXe6kKph/PJk20fxS5XtH8evc3CszEfvf2/r/Zylr3pfrehq3lfv ka51WB74Sri8n+eVAo01WCctlYbT2mxJW15tqdzOa6R+t1TyRRtPWyo9TueH8nR+20h+YYO9 Y/k1y9jBOjGenyrgnO7C32Lvdw+794VA9CDehMj7+V8pUEvnmy6zrcE6bKnc7WdLpdQarD1b hvEzXe8YRXvG8EvZqOn8yYl0ZjK/ys270/kVbz5MX/j7UvrC31beP+SP96/FyPtsSy6NpLcG UVU3GB8EgWXo+4rQ+05bKudka6lM12Bb5lmD9aSlcnu6pXKtfKELqRzKr1rD0vldhfw6NofU dH4Cv5jquSn8zDDvT+fXsLwwm1/P8tO05c0X/vbV+z/Hy/vmLVG9X9lNzngESSNE3o9qS6X5 tDZb+WZIF7plOj+cX4dy5+hUOn+klF+L+NREfsb21KKNms7P4ZfzvjSfX8SYif7KwgzLaxf+ vqxc5Zgl/mbvr4H3FdS2evahbLYE3gdBEiLv59VS6awG63FL5U5dS+Ua+UIXUqWk87wGW8hr sIfURZsJ/KLEqXR+Riqdv2hK5w2WZ/+yOz9XrmX/0WzjmYGF3q/J2/tfWXv/x7y9L8Qr0RuA 90F4oBUbK4NH6P2wtFQetEjndS2VbGOkC12I2lKppvNqDVaQzs/k6fzHunSeWz4znf9Kn87P 5w9mc4P9GeEN3p+at/c/jIL3Px3Bv5H8UEw/l/Ifb0ywnAMcel/KeARJI0Teb27VUhnwaW2E LZWr5DtdnM4rLZU71JZKrQarpPNvTaF31XTeVIO9LFq04en8Qv7bT+bx9N/tJZ8M5y/zxvuj Qur97T3oeD96bwh9OrLe+2yrbiibd308/5Ftm/4p9t7/VPH+ZngfBEKIvO/5lQJd1GANLZUB ntbGFZXplkpegx2brsGmWyrfSafzWg32kkUNVrW8ms5fUtL5D7Kl81kxmDGu3p/Uhterd+i8 /5W199m3AXfe7wrvgyAIkffRUmkm1VKp1WBLUos25pbK1KLNfLsabCqdn8uf4vmFvA1zQHS9 bz8HMO+vceP9k/2dev8cvA+CIkTe97WlsoO+pbJcvtCt0nlegx3Ja7D7lBrs0bLMlkr3NdhL ohpsAHDvP++d90vleN88AWjeP+HM+yf6p6TvxPub4H0QCCzONgeP0PtJa6ncrGuptKzBzjDV YB20VPqdzifQ++yN2DZcL8vF+9qHsvP+CM37EsYjSBoh8r4Hp7WpzetKgX5TNSzdUqk7rY1W g9XSebUGmz2dX5hqqcyhBus5bPsNhzi23m8r9v4vIu9/MoI/DN4HYSNE3nd9pcCQt1RqNdjM 09oYWiov+NBSGQBsxrI/xMz75fC+S+9vhPdBIITI+yqWNdh0S2We11X3NZ0XnNYms6XSfFqb LC2Vc/nEIN3ybKJye4intg/C+1+H3vvHXXn/JXgfBAGtqNgcPDbeV1GvFOjJddV9IqOlUj2t TWYN9r3M09oE2VKZJ2zL8z/E02Ls/ef99L6M8QiSRki9n/N11f1jy7D6GqzhtDZqS+UHhtPa 2LZUXlbS+ZDUYNmn8PwQa94/HGvvX4L3QQSB9y3Tef1pbbRFm3xaKoWntQketvEBHOK4en9y W/65dvQUeP9G3t6vgPdBIMD7nNRpbUa6PK2NfUvlfD4lnA9BOn9igoSjnATvv2/l/TJ4H4Qa Wl6xOXjy8b4notdOa2NTgxW2VNrUYEPSUsm+jkg5pgbi7f2dPXljvhPvH3PpfekHDiSBsHvf m3Te+rQ2gpZKfQ3WuqXyUphaKqWHkZl67/dNtvffcOT9TxTvb3gxjIcSxI/Qed8T0QtOa5Nr S+UXi4M7rY0T2EeQHjROUL1f66v3i+Pm/fXwPgiEsHg/H/SntdkvOq2Nq5ZKduflBfwxH4Wg pfLd6VEVAfP+2ly9z1z5VvK8f3YQrX0hqocbRAsWZ5uCJ9903va0NlFvqZRyRDwH3mdPuTgi 43Nl9T57ZekHDiSBCHi/aiivwQpPaxP1lko2S0mPAJ+YHkvvj+feX+vc+wVuvD+Qn9lf+oED SSB03ldbKg012BxaKr8yt1TKXrRhsA8i/ZAHQ8r7rybV+0rN2a33Vz6blPAAcpHvfSentdGu FOiwpTK3KwV6zrnJyR3Gnnj/84R5X/pRAwmBlm/YFDwZp7XRXSnQVUtl2E5rw+YnKTsznHDv vxBT77/AvX/SmfeP9HXjfdlHDSQEOaEmvFLgxTBdKdAJpydhoFoSV+9PgfdB9JETalpL5WfZ WiolXinQwLvTMCxdML1Dvt6/kM37PwTo/W/hfRAj5IRaJK4UeHICxmHuaN4/EjPvt4P3QeSh ZRs2SSFsp7V5a6q0XRFLYuz9dS/Qrmze/ykn70s/aiAhSA411blHSyWI/vh4DDMfmREz74/L 0fuH4X0QPsISan5PAGcnh+WTJoSAvD8G3gfANWEMtfwt/970MH6uRJEc73+teX+C0fsfO/b+ xRF0Bt4HQcFCbWNocS760xND/UESCPM+8+O2nL3/Zly838eZ9wtU78s/cCAJRCPUDKtA70yL xmYnmUR4fyi8DyIJQg34Aryvev8QvA/CB0IN+EJcvT+1Ha1n3n+Ne/8De++PgfdBSKFl6zcC 4DkeeH94hvevJ8H7so8aSAgINeALeXm/n533b0j3/ovwPog2CDXgCzPhfXgfhBWEGvAFeF/1 /kF4H4QPhBrwhXh7f3fa+5/Ze384vA/CCC1dvxEAz9G871b6jONR8P4pzftjLb3/EfN+bxfe l37UQEJAqAHvGdeCZnb0zPtXrb3/VfDeb0/wPog6CDXgPfl7/+2wen9ae9rgk/cHYDCCgECo Ae+Jmfcv5+T9rxTvH3Dm/Y8L6DS8D4KChVoFAN6ieX87vO/O+/KPHUgCCDXgPfXe7xFf7w+A 90FUQagB72Hen9WRn88gf+9/De8D4DW0dF0FAN4SP+9/F4z3ZR84kBAQasB74ub90Snv/+re +/vhfRA+EGrAe1LefzEv738USu9Pb08VL7nxfi94H4QOhBrwngR5f1Ta+2X13r+W9v4FeB+E EoQa8B7Pvf9LyLy/R/H+eXgfRBNasq4CAG+B93PzvvQDBxICQg14j1fevxwR7/8I74NIgVAD 3sO8Pzuu3u+geP91p97f59D7w+F9EBwINeA9wXj/ary8fwreB0HBQm0DAN7Cvd8pnt6f4cr7 w5x6/6OU9+UfO5AEEGrAezzz/ujwev902vvfwPsgaiDUgPdo3t8RI+//kvb+RpH3r1l5/3V4 H4QOWrJ2AwDe4rf3r0fH+3tdeV/2gQMJAaEGvAfeV73/IbwPQglCDXiP6v0NuXr/BLwPgJ8g 1ID3xN77e1XvD4P3QSRBqAHvYd6f45X3x4bL+zP9835/DEYQEAg14D3wvub9PfA+CB+0eO0G ALwlf++/E3Hv/1hCX7r3vvQDBxICQg14Twy9XyT2/ufwPoggCDXgPQF5v0iG9zvSxq5uvP8a vA9CBwu19QB4S0K8/6HI+zdy9f5J7n35xw4kAZK+BSB+eOz9Yvne/97e+yWW3t/tzPsX4H0Q ICR9C0D8qPd+zzh4/0qm9zc59v55eB+EElpcvh4Ab+He7xxP78/y1fuyDxzwhbWyN8AESd8C ED807+/02ftfhtn7hfA+CCkkfQtA/GDen5un9wfzS1DZeP+XSHh/KLwPwghJ3wIQP1LefylX 7/cPu/f3vU5nnHl/F7wPwgdJ3wIQP1TvV8TY+73ozEB4H0QVkr4FIH544/2CWHi/pzPvD4P3 QXDQovL1AHgLvJ+b96UfOJAQSPoWgPgRY+/Pduj9YngfhBeSvgUgfsTZ+51ceP+DoRl7AN4H IYEWla8DwFvg/Ry8f6I/BiMICIQa8B7m/XnwvhvvfwjvgwBBqAHvCc77hRK8vxneBxGHFq1Z B4C3wPs5el/2gQMJAaEGvCdR3v/W1vs74H0QPhBqwHvy9P7JEHt/js77F5x4v4dj7/fDYAQB gVAD3sO934V7f5cX3v9B6P1S7mJZ3t+fzfs/wPsgxCDUgPfE3PvdMr0/Tuz9L+B9EFYQasB7 fPL+DXgfAC+ghWvWAeAtqvc35uH9d2Ph/fddel/6gQMJAaEGvId5fz68z7w/hLbD+yB8INSA 93jo/W+E3i8L2vtXTd4/C++DyIJQA94TN+8X6rzfWef94fA+iCQs1NYC4C0x8/4XOu/PzfT+ Ze+8f7wfBiMICIQa8J56778WQ+9XuvL+q468fx7eBwGCUAPeE3/v93bq/W3wPggftHD1WgC8 xRPvXyzgBVWB98fH1/uyDxxICAg14D2x9/4Bzfuj4X0QPRBqwHvgfdfeHwrvg+BAqAHvYd5f wLzf1Z33r4/PBXgfALcg1ID3aN7fbev93EQf/ASQs/ffG0K18D4IHwg14D3c+08ave+t5YOc A/Tenwfvg+hDC1avBcBbVO97q/Jmq6l5ObVYRy3XU6sKarWJWm+mNpXUZgu1raa2W6kdo4ba 1XLabzPih/c/8tr70g8cSAgINeA9eSr+0Rn02Bx6fB41XkhPLKEmy6jpiny9z1F+xR+zVXnK Fs+8/5ON97s79f4xeB8EBUINeE8Orn9gHD1USo9MpAZTg/N+myr+Iq02UssN2bxf7L/338Bg BAHBQq0cAD9wovs7B9Ldw+i+UUbvNwrG+5X13m+xlpqvpqbLs3m/C1Wp3h/kyPs17rwv/6iB JIBQA0FgNv6t3enPvWR6v42F959YTI3mBe39D+B9ECAINRAoeu/f0Tu83m84Dd4HkWVVlgcQ fwQAwXJLV1vvz5Tj/WYW3tdg3p/PvP8y9/45a+//UsbnCe79wS69L/u4gISAUAMS0Hv/nkzv NxR6f6UD79d47P0Hxlr+NcBBk/eva94fn/L+FZfePwrvg6BAqAEJ5OD95vK8b//nYJbeH83P MgTvgxCCUAMSCLv354q9bz8BCL2/Fd4H4QOhBiQQde/bTwAZ3n/FqfeP9MVgBAGBUAMSiI33 7ecAeB+EE5q/qhyAgMnL+xvy9X5bJ96f6tr79l8CnHhf+nEBCQGhBiQQOu+v99L79hOAlfcP w/sgKBBqQAKR8P79eXvf+QQA74MgYaG2BoCAcev9ZhH3ftY5IO19+YcGJAGEGpCA2PtlifC+ cALg3u+DwQgCAqEGJODG++81WXa+2cqPm6/+tHn5Zy3WXWm54ctWFV+32vRt683ft6n8oc2W n9pW/9x26y/taq61q7nervbXdrU32m9j/JbJjfa1N/hvnXt/jL/e108A7w+hQ/A+CAqav3IN AAFj7f3dDafuf3TmkUZzTjw+/0zjhW/74P3rbbdea1v9C3siezp7EaP3FwXtfQ3pxwUkBIQa kIDR+6PXPzCu6qGyWkne/6bl+i9brL0M74OEgFADEmDev417f8adAxfeM2xlvfcnCb3/YVDe /6Tp8g+fWPRO8N6XfkRAokDAAQko3i9TvL9I8f4GxfvbFO8fyPT++0LvtxZ7/1ePvH+KTT9+ e1/6UQCJBcEHJNCuJnHel77PAdBAOAIJMPmG3/tscmKbCtGD+IHoBBK4peu4lPcHhdf79xdW mLcclgcxgOatXANAwLjyflMZ3m8wdT/bKuk7CgA/gPeBBBTvjw+Z9z83en/Ueuk7CgA/YN5f DUDAhNT7qwzeXyd9RwHgB/A+kEA27x9tNOck9/4ixfvLrb1f5aP37x25VvqOAsAP4H0ggWh4 f0S59B0FgB/QvBWrAQiYlPf7qN5fFYz327n1fsEa6TsKAD+A94EE0t6fGWbv31Mgf0cB4Afw PpBANLw/fJX0HQWAH8D7QAJ5e/8b/7zfWPP+sJXSdxQAfgDvAwmEyfvfib0/Zf/d8D6IKfA+ kICv3m/vlfeHrpC+owDwA3gfSMAf71/31Pv77h6yXPqOAsAPaO6K1QAETIb3h1t5/6xc7981 eJn0HQWAH8D7QAIC7xeJvd9EpveXSt9RAPgBvA8kYOf9aZ54/7ds3v850/tfmL0vfS8B4BPM +6sACJiIeF/+jgLAD+B9IAF4HwCJ0NzlqwAImGh4X/ZeAsAn4H0ggdy83yIg778N74N4A+8D CeTr/Y1+e/8kvA9iDLwPJKDz/mKp3r8q9v4ceB/EGXgfSCBc3q/QvH+x6TJ4H8QfeB9IgHv/ VaP3HxZ4/x14HwDPgfeBBJx7X7G5d2TzfhN4HyQAeB9IIO39WQbve2x5B8D7IIHQnOWrAAgY zft3Kd4PXvdCDN6XvpcA8Al4H0hA9b500QuB90HsYd5fCUDAMO9L97s9Dabslb6XAPAJeB9I wFtHV1dXX7169dq1a96+rPS9BIBP0JxlKwEIGM/Tc/WU+m23/OSl92XvJQB8At4HcvBc/Z4j fRcB4BPwPpCGdLND+iCZwPtAMkyyzdd8Kl30jHsL1sD4IAnA+yAsqPJVzr7wY2CubzB5LxJ8 kDTgfRBGMuysu056zn7n595ZfqHJ0g+wmAMAvA8iRg7Sl77NAIQKeB8AAJIFvA8AAMkC3gcA gGRBs5etAAAAkBzgfQAASBY0e+kKAAAAyQHeBwCAZAHvAwBAsoD3AQAgWcD7AACQLOB9AABI FvR3xP/7/wUAAAD//wMAgeCFFgADDQA=</item> <item item-id="3">iVBORw0KGgoAAAANSUhEUgAAAf8AAAIwCAYAAACIp2JCAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAJLzSURBVHhe7b0H1CXFseeZb/fM2Z2d 3dmZfXt2z9ozu3Nm96wb2Sf3JD1JIAPCm8YJJCEDCO8a3wbT3tGGNnRD09imoZs2NK7x3lt5 CdknLyEhIRAg5f6jqrJu3rplsty9Zf6ck/T3fbe++9XNioxfRGREpNL8jzPAGeAMcAY4A5yB Xs2Akk97w7WXc3AOKAOUAcoAZYAy0AMZEO4T/j140DTuaNxSBigDlAHKgJEBwp/gp5VPGaAM UAYoAz2TAcK/Zw+clj8tf8oAZYAyQBkg/Al/WvyUAcoAZYAy0DMZIPx79sBp8dPipwxQBigD lIEB/K/DZHBwDigDlAHKAGWAMtB5GSD8KeSdF3IatTTsKQOUAcrAsAyE8N943VrNwTmgDFAG KAOUAcpA92WA8KfRQ6OPMkAZoAxQBnomA4R/zx44LfruW/R8xnzGlAHKQJYMEP6EPy3+BsvA X+46WJcdWUqArxMUlIH+yQDh32DFzwXZ7QUZhfpbuw7Wb909Rb8djLLQt3//xzfurX9w/V76 e9d+dsSYoJx1W874fPl842SA8Cf86fmPSQYMjP9w6wH6T7cdWNqjr9I4eGjZbuH9EBaEBWWg +zJA+I9J8XMxdX8xxT1jAfRPb9qnUaB3MRpumvmP3j1Tbvspt3zu3X/uhD/hTwVfgwy4ALZN 1xAG3YcBn3G/njHhX4Pi5yLq1yKKPu82QT3PvVKu+y3XfP7dev6EP+FPz79CGcgD07LXvnHn Qfr1Ow7Sr91+0Fi2Faj8u6X8+Tz7/TwH8L8eE8HBOaAMlJKBskB3/f077rhDv/rqq/qNN94Y C/i9/X/KBueAMtAZGSD8KcydEeYmwGnuMe8YG4xdDYUqrnto+W6UE+oKykCHZCCE/434UByc A8pAORkQ+C8+4V2dMQC+uWEP/dzaT+uHAX/KRjnZ4Pxx/pokA4Q/jR4q9QplwMB/zenv1Vef +wF944wPtdIQkKZAL1/3WU34E1hNAhbvpTp5tOC/DhDg4BxQBsrIwDD83+/Bf+slH9a3zfuo vnvRxxtrCPwejYd+t21//atb9tM/37yvjoc/ZaOMbPB3KT9NkgHCnwYPjb4KZcDAf7Xn+Y/C /4Gln9CPXra7fmr1J71w+ktXfkZ/C6H1KvblXd7jTbQQluukUuDPXqXAgfrVnQdqwp9gahKY eC/1yyPhX6Hip8DWL7BNn+Oi8P/uNZ/VL6P3/o827q1/umkf/bOb99W/3LKv/vXW/fTvtu+v X9lxgJa2wH9EW2ABtoD7dQBcQP6mDDkXYNfgXABzPoD5V84MkLMD8sF/r0jYn8+36fLH+6OM usoA4U/40/OvUAY8+B//Lh3v+X9Mx3n+sq9O+FNpuyptXkdZqUIGCP8KFX8VD4Tv0e6F3Wr4 I8Jg9vx/Igl/iEQMJ/y1+9lwbfH5UQYGMkD4E/70/CuUARv+G0b2/Jvp+f/R7PknwX+dKfUj PAgPykBXZIDwr1Dxd0Uo+DmKK7ha4I8s/Dr3/LPg/zzhTwOZerJzMkD4U6g7J9STNF6qg/8+ g4S/CcJfKhEI/+LG4CRlkX+bzy1NBgbwvwETxcE5oAyUkoFOw5+yUUo2qF/JmCbJAOFPhUaF VqEMEP5U8E1S8LwXymOSDITw3wQFyME5oAyUk4Euw5+yUU42OH+cvybJAOFPo4dGX4Uy4AT/ FcMd/uLr/Ivt+Uszn2iDH/k+rsnP60GHPzvh79dBe19T6mfv+V97/gcoKxXKSpNAwHvpn2FC +HMxU6FXKAOJ8J8rvf2DUr9Y+O8Z6fDXPPhfR/hzrVS4VmhwTNbgsOB/BQSbg3NAGSgjAyPw nx4c7JMA/xfR29/3/JsP/+sv+CB1BHUkZaAjMkD4d+RBlgEWf7c6g2fc8H8j0tu/rrD/I8t3 0zdMI/y5VqpbK5zLyc4l4U/405KvUAYmC38c7lPTnr/Af+N0wp/AmiywOP/VzT/hX6Hip2BW J5htncu2wl9ODJTTA5MS/h5ZIfD/EA1F6gvKQEdkgPDvyINsKyy7dt91wP+3KR3+hsP+xT3/ ZPjv6XX4E/jfOIPw75q88vP012Eh/Al/WvIVykCX4b9pJuFPWPYXll179oR/hYq/a8LBz5Nf 0Rn4rzr9vdo71a+CbP+meP43zfxHGorUF5SBjsjAAP4boeg4OAeUgVIyEML/NB/+sk++9ZIP 69tKlPpVB/8p+s1dB+u/oELgjTsP0naTH5ew/80XAv6UD84BZaATMkD4U5A7IchNgVKX4b/5 IsK/KXLG+6CzWlYGCH/Cn/CvUAZc4f/k6k/qZ9d+WntNfq4Kmvxct5f+0ca99U837aN/dvOg w9+Q57/zQP3a7QfqP6M17+vw3vMl/JXz/Ldc/GHKSoWyUlZ58/dpAJSRgRD+N0GoOTgHlIFy MtAZ+G/a22s3/K0Ng2z/WwB/ykc5+eD8cf6aIgOEP40eKvQKZUDgv+j4d+lVGXv+Tfb8f7F5 X/2TGPhL7kJTFBfvgxClDJSTAQv+V2Jhc3AOKANlZKAc/D/biLB/PPx319tmfSRRR6jFf9Fp o8yc8ne5JikD1csA4U+Dh0ZfhTIgmfSh539OcrZ/vOffbPgrfDZRwlmgz/M6lXr1Sp1zyjl1 kQHCv0LF7zLhvKbbC1MA2Vn4z/5IpeBPMhK4Rrq9Rvh8m/F8CX/Cn55/hTKg7D3/rnn+Y4I/ jYJmwIGQ7vZzIPwrVPxcLN1eLC7PV+CvgoS/qwL43xI0+dm16GP6gaWfQJ/83XU07P+da/bU L1+XFvbfX0sjnj/GlPrJVoM073lLRuqpfm6lftE9f4Xe/gr3rCYM/6hR4PI8eA3XJGUgXgYI f8Kfnn+FMuDD/51aIdtfAf4KHf6G4H9pMvy/3yD4K2T7K5T6KZT6NRX+xhigcifgKQP5ZYDw r1DxUwDzC2DX5iwO/gr18QrtfZV4/g2Gv8KRvuqW/bRCqR/hT1nu2trk5xmW6QH8b8QLHJwD ykApGciCvwL8vRA6OvwpdPhTV3xGK3T4k7D/uDx/SUpU6A6o0CVQoVugwlaCwpZCLPyvbqjn f/HPtbrgu1qd/nip50WdR73fVxkg/Ak7Ks8KZaAo/BXgrxD2V2jvq9DeV6G9r9oCD3wrPPFt 8Mh3YAigBdQCbAG3AFxALgP7/d7Ann/i2IXX5Jqi8J8znmz/xFJBAb49pn0P8H+C8luh/PYV hH383IQ/Fw6VZ4UykAr/hR/TSZ4/4Z/QJCgK/Cj8zyD8+wgufubyEZsQ/jdDAXJwDigD5WSg PPyRZNdnzz8N9nGeP+BPmS0ns5y/fs4f4U+jh8qzQhnoNvyRtJjRxrfQ63mAH+P5E179hBef e7nnTvhXqPgpjOWEsQvz13r4S46Bne1vJ/zNqRD+acA/86nhvf2ka2XP/4wnabxSh1EGCsiA Bf/1mEAOzgFloIwMVA5/Kb2rJeEPiX9x2f5J8L8MFQpl4Z8E8fO/rdXX7tRKoG+GSzQghD9l tozM8nf7KT+EPw0eGn0VygDhbyXupQF80etazX9Vq0t+qRXhzzVY4RqkMeNmzBD+FDoqngpl oPfwTwP+kre0krEYIwr/4wt6/ogUUNm7KXvOE+fJlgHCv0LFz8XFxdVJ+F+BZkRpYf804M99 RasFrwH2iAikwv+uYmF/wp/GD3V4IRkg/Ck4hQSHhk68oVMN/NHoxzT5acKefxz8k4B/2mNa nft1rWb8ECH9X6CtcQb8Z0nY/zs4D4Hw55qi8zBOGSD8CX/Cv0IZGIX/B5G5HvT2D5v87DbS 3jds8nOD1PnngP+dRTv85Uj4M/BPAv7iN7U64kqtjrsNBxo9mgD/Nwaev0QATNh/1q9Kwv9p ym+F8jtO+PBvTdbYGcB/E26Eg3NAGSgkA0P17UOn+iXAf9Vwb//mwR/theVUPyn1i4O/QFsS 9hYicc+D/xVaHWvg/1KM5x+FP76f/0et5H0uKOP5A/6UWc4BZcCXATEEHeeC8HecKNcJ5XXu wtf2uUpsaCPwP/U9wZG+HYF/1Osn/J2VbNvlnPffTZ1G+BP+VGKOMpC7e90579dqetPhj8OB 7FP9wjr/wPNPCvU3Av7fR5IgPX/CuZtwrvu5hvDfDAXIwTmgDIzKQG7ox7XAnYvuePaevxf2 /1R4pO/kwv6A/23Wkb4Cf5cGO1H4Hy5h/53+nv85RcL+uwpk+/vwp8xSb1EG8ssA4U+jh8oz QwYqgX/UIGgS/F1gHxf2n2ft+U8K/lMJf4IvP/g4Z+uF/VrJ/zgZFCDKQLwMqH3navW59fUc ahMXJagj278I4NN+Rzx/Z/j/Cdn9GQl/JxT0/Kc+Q91FB4YyUEAGLPhfhQnk4BxQBqIyEML/ mO1anfzAcHi6jlPuyrxn1ZBP2/NPhf8PrDr/uuFPmaXeogzklQHCnwYPjb4MGfDgfwQ8/zj4 24fR2F+XAXie3x0X7DPD/usie/6Ef15lzOsJ8HHKAOFP+BP+ueB//7DnnwT/uJ/ngXratZMC vv13R8L+ZeD/Xa1OuLtYwp8X9ic0OAeUgbwyQPhTcVB5OsEfHey+KmH/EvC3DYKznvNPs5v5 Y/9kuzm/85veSNMc6YMvh98seTs4BAffy8/n/QFNcX7tlo1ft4FA+HPdUHe2WgYIfwpwqwU4 r7Vb5Ho/7E/4D5UANgH+01HqR8+f65c6vJAMEP4UnEKCUwSibf0dwv/no9GGRPg/EtT5Y8// YnOwT1bCX8GwP+HPtUv9XVgGBvC/CXsmHJwDysCIDNQL/x/5WfFJYX/vEJw2hf0nAH/KLPUW ZSC3DBD+FJrcQtM3I5Hwz+H5n1oU/vfkT/gznj/XMNcwZSC3DBD+FJrcQtNr+J9UdcJflzz/ W3GgUUH4n1gE/i/7e/5cw5wDykBuGQjhvwWTx8E5oAyMysCQ50/4+/v/s1ChMNTkZy3q/KPw x3VzX9FqgcOef2H4P0u9Rd1NGSggA4R/gUkjIPtlJBH+MWF/KU+04X9YBP7TJeGP8Keu6Jeu aNPzJvwJf1rNGTIwHvj/Nr7OXxL+pOFP0+r8Pfij74Dc1+I3tRqC/4s4ypjwbxMIeK/9M1II f8Kf8HeCP46slSY/tYX9ewz/aSj1O/HeAgl/sufPsD/B3T9wV/HMLfhvAAQ4OAeUgagM+J6/ wH9bxfD/Fjr8mYS/PsP/eyXhT5ml3qIM5JUBwp8GD42+DBmYDPwRSpf2vn0I+08j/PMqbl5P 2JeVAcKf8Cf8Cf/85wXE7fkfY7L9rT3/OVnZ/jirgPDnGqQeHrsMEP4UurELXVmLddy/73n+ h5uw/33FT/UbOdgnGvZ/1TrYJ+L5L5KDffB6Uw72SYT/w2jv6wp/lADK5yH8uQaph8cuA4Q/ hW7sQjdueJf9e/XA/1mc6tcl+F+ulef5G/gjGU9K/VI9fwv+JxVM+DtLEv4YAuYcUAbyygDh T8VB5ekS9q/c8+8L/HFUcWKTHxv+kYiKy5HE02FgEP5cv9ThhWRgAP+bYTlxcA4oAyMyQM8/ qcmPXeef5PmPAf6UWeotykBuGSD8KTS5haZvRmKj4D8be+QuXnHd14zs+Qv8d8SE/Qn/vq0X ft52ONKEP+FP+GfIgA//dUGdf1UJfwXD/oT/wPiRLoIS9uca5hxQBnLLQAj/WzB5HJwDysCo DBD+rmH/cXv+Av/nqLeouykDBWSA8C8waQRkv4wkwt8B/oeWCft/f7Rzosu2hef5E/7UR/3S R1U9b8Kf8KfVnCEDhL8L/Nfk3/OXKgCvzp/wr0qh831oCLjKgAX/qwEBDs4BZSAqA4R/0+FP maXeogzklQHCnwYPjb4MGagV/jPsg30cOvw1NeHv0JKe/8n35z/Vb4YJ+1Px51X8vJ4yQ/gT /oS/M/y3Ym+64mz/rsH/FHT4O1va+5oOfymlfnbYn/DnOqQuHqsMEP4UuLEKXBs9jtDz/0qF 8Mc59F57387B/yHA/4UC8H+Anj91EXXRGGWA8B/jZLcRfLznq7UP/7VaVQ3/8wT+P9Tqkl+g B/5vtZqfFvZ/wz/Yp+lh/1MKwH86Ev5OJvy51hiKH6cMEP6EP61tp7C/gX/kABr7pL48X4vn Xwj+v2lmhz+z558X/mLMEP5cg23Tw5vbb6gM4C8fhoNzQBkYkQHP8z+M8B9qKxxt73voar/U bxLwp8xSb1EGcssA4U+hyS00fTMSh+B/Ij1/zwiQrYp51sE+Hvy3F4Q/kgPLhP25hrmGKQO5 ZYDwp9DkFhrC/6nh5LQ84X5zbVzYX/b0F76u1aK/aLX4Ta2WvI3xFr7G94vMnn9Twv4C/9/7 9yv3mgb/+WjmI/cvn8UM+V6y/b2wv8D/wQIJf8iXkA5/XMOcA8pAbhkI4b8Vk8fBOaAMjMrA 2Dz/TsEfSXwSIZiDUr8R+MOoqQz+z1NvUXdTBgrIAOFfYNIIyH4ZSY2Bv1QDzG6o538Iwv5f tcP+OeF/SlHPn/CnPuqXPqrqeRP+hD+t5gwZIPzj2vsi7D/XCvvHwv9n7p4/4c91SF08Vhmw 4H8N/jAH54AyEJWB+uD/zeE6/6ywf9M8/9Lwf82PZMiefyn4U2aptygDeWWA8KfBQ6MvQwYI /7o8fxv+aA5kJ066HOkrDZLOkrA/FT/ngDKQVwYIfyoOKk8n+OO8eunwV2mpn+X5z0aHv1Z7 /qti9vyzwv4VwP9swj+v0uf1NBREBgh/wp/wJ/zzdw2UOv+hsL+BPxL3pLf/NEn4I/wJWoK2 qTJA+BP+hL8z/G+p0PN/Bu19u+j5E/5NVfa8LxoitgwQ/oQ/4U/4T9jz/4HfGbDInj/D/ly/ 1OGFZGAA/y2wijg4B5SBERnwE/5kz39Snj866ElTnEZn+5cJ+wv8Hy4Of8os9RZlILcMEP4U mtxC0zcjcRj+95Rv7Sse7tQ8Yf8mw//PfnvfQwT+2/ySvdg9f7QBDtv7mg5/JuEP8D+V8O/b uuLnnazDTfgT/oR/hgzUDv+LkTyXmu3fNvg/byX8oYrBa+9L+BN2k4Ud5394/kP4b4MC5OAc UAZGZcCD/6Em7F+D598J+K+0PP+c8J9R1PP/EaIMz1NvUXdTBgrIAOFfYNIIyH4ZSc2B/x+b 1dvfK/UzYf9Jwf8FKn7qMMpAARkg/AtMGuHfR/ivCRL+Jun5Nxj+UwL4y9G88MYHdf4OYX/P 838kf8LfTPH8CX/qo37po6qeN+FP+NNqzpAB3/OvE/5on+u0599W+OO+0/b8CX+uQerhscuA Bf9r8cc5OAeUgagMEP5pvf2DsH+q5183/Cmz1FuUgbwyQPjT4KHRlyED44U/YLroL3753BKU xEl5nHzt1fm3wfN/IAj7fy9o7ythf8I/r2Lm9YR53TJA+BP+hD/hX6LDX9Tzt+B/kfT2D+C/ MFrqBwNnQVDnL6fzldrzJyjqBgXfv3syRvgT/oS/K/y/LB3+qk74Q7KbHF8b7vm31fO/zD/1 8OSC8D+tTMJf9xQzYctnWrcMEP6EP+FP+Of3/KU3QVjqBy9+Sln4P1oi25+gqBsUfP/uydgA /rfgw3FwDigDIzIQ7vnT87eMBIH/K0Gd/4ThT5ml3qIM5JYBwp9Ck1to+mYk+vBfrdWXt9QY 9v+NVvNe9WHahoQ/z/Mn/Pu2Fvh5u+MkE/6EP+GfIQND8D+hrj3/DsH/LGnyg2z/PAl/p5UI +3MNcw1TBnLLQAj/7Zg8Ds4BZWBUBobhf3fFp/qZhD/CX8lph2ZIEmTWCDr8UWaptygD+WWA 8KfRQ6MvQwYI/wQQJ4X9c3n+KAWUUr/THiuQ8Pdj9BR4kfJLHUYZKCADhH+BSaOVmd/KbPOc 1Qf/bwB8bfX8YRAMwX+Ff/aBlPqNE/7nEP5tXlu898npUsKf8KfV7CAD6pAg4e+EKsP+Ufj/ wSHhD55yVjh8XK/b8D+Y8CfIJgcyzn3+ubfgfx0gwME5oAzEycAQ/M94svy+/9SntTqvq/B/ bpDwJ82LpL1vYoc/CfvjdL7TC4b9Pc+fMss5oAzklQHCn4qDytNBBgj/mH3/WM//foT9Dfz/ 2e9cmAV/Sdwj/LkOHdZhXsDx+mSjiPCnwFHpOMgA4V83/B8vlvBHz5/r12H90ggYNQIIfwoO lYeDDKhDVvlNfmTPn2F/P++gUs+f8CegGLofpwwQ/g6Kf5wPhH+rmQqgcvif6brnj2N9h470 bXDCn7Q/Prlo2J/w59pv5trv6nMZwH8rJp6Dc0AZiJWB2uA/3S71M9n+b/jAXwLwyyD84ysc ZqLOX8L+lFnOAWUgtwwQ/hSa3ELTR2VL+Gft+S/3t0VOMp7/d9He1yHhbw4iGV7CXwnPn2uY a5gykFsGegF/tQp9xmUsRPtQ8/Vl38o9WX2EHj+zHxEj/OuG/xPFE/6o+KnLKAO5ZaCz8A8h b2Dv+u+lL+SeRAKy+1tGhH9O+F+Q1/Mn/KlHuq9HmvSMQ/jvgOXU9lEY+FmGwcrvtH5u2v5s J33/Pvw3I9t/VzXZ/pLwdy6a/HRmzz8S9s8L/zMKwP9Cf89/0rLBv99+dvTxGbYa/rHh/CyQ V/n6speoeDpgNLosfMK/qOeP0wpNk5/FbyGBUQaSGBf9RasFr2nl7fkD4oXg/xPAn2vQRX55 DQ2UqAy0Dv4TB76L8bD4GRoFHTMKGgN/geW4evdn/Z2hOv8kz5/wJ3gJ3ibKQGvgr67+tVZX /VKr9fBArvipVpejRMoFxE25ZsU3aBC02CBQh6xsRti/SfCf84p/ENFiePEHl4V/5LyELMND Xr+Qnn8TocJ7aoexY8H/esCpmcOD/oZfac8AGBrwKuTnV/0CRsHPtFqH8OGal9tlFCx5rrHz 3lR5mMR9Ef4xYf8R+CMn4qT7/N7+4Z5/mucPwyEM+5eBfzP11iTklH+TsuAqA+2Av3j5a1EL LB7/lYC8eP8C/A1xRgGUjRgI8poXJUCt8eU/bJdBcNm3aRA0zBAdhn8kOe1MlJDmHgUT/prq +R8knj/h76p4eR0hPWkZaAf8L31eq2UvaoXQuVr5bYAcZUTi4QvUxdu/EoAPjYKsKEFgFKxD yLBtUYKlL9AomJBRoKbYYf8q4Q85lhD2bBit87I6/P3J95RdQuLjuGbO7wZhf8Kfa3NCa3PS EG3r328H/C/CYSqz0Dls7sPIHEYnMGnWs/hZrVCTr5Z9HUbBN2EUfEer1Wjks8ZECQB3MQpM lCB268BECYKtA7leIgzyPk3JFci8j+9S6YxB6RD+cWF/G/7L6PmPQQ7bChred/MiHQP4b8PN NXSoC3ZgD9Ea029Dss9d8IDuhcf0IDymR1E2BG9sEUKp2ENXSxElWI4oAcLnfpTg+4MowcjW QUIuwVCCIQyJtiUYwihq6vNs43158P+SqfOn5+9FH4Y8f8Bf5sfb84dhnnfPP7pt4hK5MAl/ DdVbbZRz3nNzOVj1s2kn/KPGgPf9rVrNuAP9xIMowRw7SvAMogSydfBSJEqAkKt4+rIF4EUJ JJ8AuQSJUQIrwVC2GdZiy2E1DItM77xBkQQpQ6SyzD0H9cIfstT6sP/k4K++uDH38+Qa6A/k +Kzjn3WH4B+JDhgDYRqiBDMlSnAPFOwD2Dp4JCZKgK0D9Pr3ogQCcy/BEGCPSzCMqzgYSjCU MsSWJRhi24QLJF0ZhvA/Xjr8Ve359xT+UiYo0QNp8lPC81dHb6L80qCnDOSUge7DPzZKAENh xu3YOoAivwRhyjkPIZfgMeQSoNwInvFwlEC2DiSXQKIEkmAYRAmcEwylDBEh0jaWISJaQqPA NwrUlMv8sDbhP0g4NGF/6dZ3kHj+N+cL+xv4S5veovA/F9E8/F3KKT15ykA+GQjhfysUXFPH yJ5/EtDL/nzaTnghd2LrAFGCWSZKgATDRUgwXIJ9TGTbq+VBlMBLMDRRAlOGaCUYZpYhwijw EgxhULQpwRDVFk2Vkzrvi/BPSfgrDX8Y1HLWgW0AuO75C/xRYljns+d7N5cNfDbFn0274S9Z /2aUBX/a70+XKAG2Di6xEwwRJViEKEFsgqFVhih9BoZ6EyQlGErFQZvLEF/stAL24Q/PtjLP H7J7LgzJ6VLq1/Kw/0Thjzn8yi2dlj0CrjjgOHfJc9cd+NuGwDgMgmlpCYamDDGaYJi3DNFO MDRliC1LMEQFRhcW4AD+MAIr2fMvAP8FDa3znzj8t3ZCxrqwTvgZ2mOodBv+cQaB/KzWKIFJ MHQsQ/S2DoJmRYXKEFt4zgG2TtqmJIbgf3oVCX+Ev3cugOQNSMne1CJhf8i+RE++uq118tQ2 +ef9tgfqrs/Kgv8NWEDNHImwToK7y8/rNABG3ttECVwSDE2zojxliHLmQUwZovQ3aFMZIvIq GiuDYdgfnj/h7yf9xSb8weid6ljnPwR/bKHl3vO34d9M3dVUeeZ9UV4I/7EaAZFyRJNgKGWI YYKh3azISjDsaxkiSjCboKjo+bsm/Bn4w4i9CFtV0r9g/h+Rm/M6KmneQo6MjLf9kwAJ/0bI dhPWF+9h/MYI4T9J+Cf9bS/B0IoSSAfDkTJEc85Bf8sQx6kwCP8s+C9FQuRNWp2YBv83a4L/ dkK0oVHbca5R/q18BkT34H/vFK12HTyoApjEvn8dBoVECewOhuacg8rLEFt8zgHKL+tSAMPw R/ln7lP8Yk7+y5vt3+iEvzj4Iyw/5PkT/nXJJ983H/g4XzcI+7WS/926HZPX0OG05//YEVo9 erhWjwTjocO0ehDjgUO1uu8Qre6BUXAXjIJbD/ANgzoAPYn3zH3OQZEyROQUDJUhomqhTbkE aOtcVrbVlBVBqZ/s+RP+o3v+gP/RUc9/jPBvqO4qK3f8/eZyqe3Ppv3wfxzQjxtiDHgGgWUU PAxjwDMKYBDcj3EvjIK7YRTccZBWW/frjkFglyFegtMQww6G5jTEuHMOgjJE+5yDq/KccyCn IbYswVDKEB2hoQ5uCvyRHe/SAGcc1wwl/JWFP5IEiyb8HYOwv+Nz5HWEKWXAl4H2w1+8fRkG 9vJvkkEgPw+NguD3JFIgRkE0SiBbBzsRJdi0T3eMAokSSAfD1HMO5DRE+5yDpDJENCRKOufA RAmkdLFtpyHiNMg45eDDH57t8ZP2/An/0Pi5MMj2P2YH4U/jhzKQUwbaD3+BtnjzAvCHrbC/ ZxRYsM9jFHgGAYaJEsjWgYkS3Ikowfb9u2MQeKchup5zgAzu8JwD19MQI2WIcnJiG885IPxH Iw62539gluePmv7FSXv+gLgcA1zY8yf86c0yopFXBkL474TV0NSRuucvUJY9fRkSyhdQS1hf wB01CuKiBGlGQVKUQN5X/s79QS6BRAluO1Crm/ftjlEwcs4BjkhekHDOQSVliCgLa/JpiIT/ KPwlh8aMKuAv72UMAJdti4sGnn9TdRfvq7lc6fuzaT/8Zb9evHFRHAJh2cOX5D5jFAigBdSe UWAbBPjaJAeW2TpISjCU+5B72oGtg0kkAtb1N5POOQhPQ3xRqxWmDBFHJMtpiF4Hw7ynITbo nAN5jgJ/SWirO+y/AB7yojcCLxn18F5NPDxm+ZmX7T/hsL8N/ET4o2HPBVLnbyf8ZXn+zw0M CTEAcsH/1sY6Ln0HDD9/c42f9sNfQvACWMni3wnvWzzwNIMgNArGGCWwEwzFQLkd97ilSwmG kTLEOYgSzEeUQKoqFptzDtCGdQVyCbzTENGbQHIB1uY9DXFMZYhxgOsr/JNgH/255/lvCur8 C8Dffr9c8IeheQzhT8g2F7JNfTbth78k5N2EsRkhdwGqZO1vg0FgjAJJ2hODQIDrEiUItw5q jBLEJRiaMsQb9+5OpMBLMESC3MVyzgGOSJ73CLxXu4MhogRIsFOXfRu5BBIlsM85cD0N0SpD vALRhSoSDNd8CvcSDAMlwn/gmacZBCeiW+VUG/54Pl6HvxTPP/p+eeF/LOHfVMDwvpprlLQf /hv20OqaPbW69rNaXb+XVjdgCEDFILgZYwuMglsso2AHDAM7SnA7tgw8oyDYv4zdOrCiBGkJ hnbFgUsugd2bwE4w7HIZopdgeMdwB8P5j8V0MPzmIEogWwcSJRhXGaINf/N1nfC/yDrSt2lh f1fPP+46ycafbcFfrpH2vnHXSr6MGc7wh4F4LozHY3cy7N/gnC0aAM00ACz4b8QCauZITfhb 9UnfS1v7acAB48rPoCENDIKrYRBcA4PgOgwxCDbCINgUGAVelCAwCuwogRgFhaIEkQTDtFwC F6PA5CCkliEikiEGTl17++N+32lWGWJ4zoEkGOK0tyXYD14qUQJsHQyVIcrWwY+1GjkNMaUM cUOQS+CVISIXIa5ZUSz8l9e0549oR1fhn2Y42LCPfl0I/s3UXU3Vqbwvykv74b/wY9hX/rhW l35Cq2W7YV95d3iMGKthFFweGAVXwCBYD4NAogRiFESjBLJ1IFECMQrsKIFsHXhRAmMUmChB WoJhECUYSTBkGWIhQ8UuQ5z9ILYO4s45CKIEYRmilWAopYXr0Zdeeg9sQM5AXG8C+bk0NArL EK2wf+j5G/ijT0KlHf4M/OEhz/sDtkXSEv5eqyXhLwsEsZ56mYhA0u+W8vypzLOeI1+njNgy 0H74X/iP2FP+ME7F+wgU40ehQP8JChQGwSKMJTAKlsIoWA6j4DIYBGGUAMrdjhJskCgBhkQJ ZOtAogRm62AoSoDtg2iCoUsuwUTKEGGESNWDKUOUzzFub76uvxeWId6N544OhuacA0kwxLHA aql1GuJK5BJI58GhBENjEAD4EgmIGgWJnj8S2o4n/MdmDBgjISnzX04NDMP+VOyEO2UgjwwM 4L8DE9fQkRr2P+Mf0CDkfVqd836tzv+AVtM+iCSzDyGUCqPgEhgFs2EUzIVRMB9GwUiUAEZB bJTA2jqQKMF1Vi5BWpRAqg7yJhiyDLE6o8SUIXoJhkGUwCQYXoqtg2VJZYiydWAlGE4U/vDu E0v9Ou7554kmiEEQwv+2xuqupupU3ldzeTeuZ9N++B/zDq2Oeyc8sndpddK7tTrlPVqd9l40 C4FRcDaMgnNhFFwAg2A6DIKZ0SgBjIIFMArSogSydWCiBN7WQTRKYCcYWrkEUnUQV4YoCYam L4HXm8D0JbB7E9SUYJh1zoEpQ5Stj7q89nG/79A5B/fFnHOAKMEyKUO0EwyTwv7G80eCYmWn +kXD/knw/wtklfDPijqMS3Hy7xCebZeBbsBfDIDoOBY/+xqMghNgFJwMo+BUGAVnwCiYGkQJ zguiBDNgFJitg8QoAbYOVkS3DpBcKLkEdoKhFyVISjCMKUMsnGBYQxmiORExrQxREibHDe+6 /l5YhojSNClDnGuVIaZ5/l+TsH/34H/UkYdpGdGwofwsC7hNf73tSpr3T0OjDhloP/xln1dG nAEQ9zMTJTgxEiWQrQOJEsjWgYkSXIRtA7N1MC8mShAmGCK50CQYSpTATjBsWxli9PCj6DkH 0TJEqZaoC9Bjf9+gDHFi8P+9793Hhv1tzx+5Ci4d8ByvMcCPwt9833S4F72/OhQq35OgbosM dAf+xgjIawwYA8FECWTrQKIEp0uUQLYOYBBIlEC2DuwogZ1gKLkEi5BcmJhgWFEZonQwLJtg WFcZon3OgdynVE+MHd47qvmbcfA/SLL9Efav1fOfDPxvQ66PDIG9+dr+vihc2/p7bVHevE8a GmVkIIS/veib9nVqwl8U+lnfu0YI5DrZOjgeWwcnytZBkEsQm2CIXAKnBMMelCGKcWGfhiiV DnLOgeQ5SIOlNhgEY4P/S0hQtff8JwX/GwF9f/gGwOBf+bqtEC993yg9bJou5P34hipH+Tno H/yNcWBDKI9BYBIMJZfAJBhKlCBMMMyIEmSVIdoJhtKsKK0MUeqi7Q6GbSpDvNcqQ5TP0CSj IBb+y2rw/An/0oDOUyHgcm2k4RAhUx4ynMNmziHhnwadPEaBSTD0ogQmwRDbBibB0JQhytaB U5TAKkM0HQy9XIJoGaKdYJjSrKhIGeI4zjnwogTBEckmSmDOOZiUQZAF/9OqSvhrJvyN92+i ASPnHLhAtC3XRLsLmjUf/Jzgaia4+FzKPxfCvwhg8hgFecoQJcHQyyXAiEswtJsVrUY5Wpky REnUyzznAN75yBHJkypDxL1ImeQ4yhDHDn/0GJAe+PMmH/aPhvy9sH/cfEQPPmoL7OU+o8CX JmGS5HsuonaS5yM5PxLZY9if4fUObzFY8B/s+xmLvyn/VrrnHxf2L2IARH8nj0EQV4boJRim lCGKURDbrCiug6FUHETOORh3GaJ49FI2mJZgKJUFScMckpR1zoEoc2msJM2XqniO8h5J8P8i QCgJf1V5/ucYzz+A/1xH+F9SbbZ/dJ0nev5pRkD0taYZAzbw4z7HSlTsSPWOtAqXLqGy3jz4 N1cv5rs38RS78ln4Oap4loR/VcBIep88RsFxkmAIjyNvGaIYBXazoqFzDnKWIZoOhuM8DVGa D9knIroaBdEyROmWeG+QYCgnNRYtQ+wx/KPgz/T88xgEcu04jYIs4DvcexVKlu9BWDdRBgj/ uuEf9/55DAK5tkwZopdgWLAM0Zxz4HIaYhPLECX6IAYByhBfRXTgFWxz/BJGzY/l3Ia0554K fxxH3FHPPw78lcM/bm6rMgii4XxzYqOcBOkA+rhrmqi0eU80JqqQgQH8b8WENnS0IuxfhRGR xygYKkNEgqG0NC51zkFSGSISDMdyGiI89thzDqKnIeJ7xyiBRsLizwGEvyIa8DYOOXoL+Qtv ooXxXwCbPyMy8Ccc3/wHdFn8LSIE/2wfj9wz+Mc1DLpxKva/pUlQQWhW8nsuRoEN/LjjmdN+ dilaO2d8vqbqRN5Xc3nVlmdD+FcB7TrfI49B4FqGKMlNsach5jjnoGwZIsCrJDRvzjmQcwXs 5EIJ3xc8DVE/fLjWyDfQ8Py9gWoC/eChWsO48AaMgr/hvaNGwRt3HqxfQ1Lhq4hi/B7VEWGU QABxEEr9vD3/SXj+byF6Y3X4q3jPv7HwjwOznIVRBvhZBsLK7wwZBG1R5LxPGgN5ZYDwrxPc db53HqMgqwwxes5BntMQi5Qhbok55yDvaYgJZYgaCYLhQE6AtkcBg0CiBK+LgXLQUsJ/klEA 87fFSDTwzwJ5la8ve6mxkdG8Sp/X01AQGegv/C+8C+U9t1WXIV4n6PO8dx6jIKkMMTznwDoN 0ZxzkFWGKFnT9jkHcvCRdxoihn3OwcaU0xCdyhAjkQJ48hqJghpbAiPDNgjk6yGDwC1KMAz/ R6s51c/O9p+FUr/EbH96/mF43sC/SrCXea9FT9MoaOh2MY2cdCOnv/C/9HmEUp/Wav7jULoP o7TnfjTfuRvH/qKUa9rObhkFeQyCxDJEh3MO5mPbQM45kHKpSzGWVlGGiO5/cjyyGAR2B0PZ NrDOOfDAnzTiDAL5WapRgK0CEymQJkRDnj/hLzBuinJVZeBdx+8u/0Zj5qYpz4j30bxoQwj/ 22G9NXVUnvC37sdokPND7O29rNWq72p12bdxZO83AKsXcTjPswDYk6j1hYKf8yBO9cMZ8Bfu QpTg9m4ZBBJNyGsUeOccILkwes5B2mmIsb0JUE+9IuOcg7jTEE0Z4mYYBNLsxzIKUuGfxyhI MAgIf+Q9RML+RqFLcmCWcpdr7BG9Put1uT7p9xsH/ySDYslzjdWxTdX9vK/6uNxu+AvAZKFl HeYTfX3DrxCG/qVWVwVj/c/QFOenWq39EYyCHyBsjcNWJPFHSoSWfx1eLKIEi59BLf0T/rnv s3D++8U4B77vUYKsBMOs0xCzzjlYm3IaoilDRNneUJg/LQLg8lpClMCH/8Yg4Y+ev+35p8Hf ADsO9rbxEH2PPN97a3k9Gh9dgWZJa2HUr4ZOqMOjr+M9oWMIuPoAx7lNntv2wz9pPzzJIBC4 C+ivgrK4GvusniFgD2MU4PUroUzW/cRXKF6UAEplpUQJvoluYOjOBkveMzzmo9f7nIf8KMFF iBLMQEb4BTgbPs9efdOvzRslkN4E0XMOJJfgHByRbM45mFngnANpaSxGQXDOgRe6Twrr2z93 AX/KNerApsD/FchZtR3+imb7G8UqoE5Ssmmvufy+y/t663ho/MZf02Lcr0e5oqxhs37rAHgd 77n0BRoFDY5Gd8Go6C7842CatEjF0xevX2AvXsSIUYCfmUiBKBMxHrytgyBK4G0dSJRAtg5Q O2yiBPMQJZgtUYJ7ESXoYIJhHoPARAmkg6E5DVF6E4SnIcIouMBKMJR+6945B+hemHLOQZi8 Fw3XuxgEco2jUUD4j4b9s+DtAn55DxMdyKNQ7fdWVwDusnZlbYpRL2tV4B81CMy6lmvkelnz svbrgHct7/ldGgQ0CCqTgX7BP8m7TlqoAnfxGkSpGEWSGCXA1oEXJYBCES9DQo+ydWCiBJci SmASDOdYCYYSJZjGKIF3kEp4GmLGOQez/XMOvIS8cESy+CWjP2oQlIgS1Ad/yMlFAJFztn97 PH9X+NsGgMvvRK/xjG7J2xEjfA1gLvk8YpyLkX4l1mVoFEQNAokYIEoga9tECeR3ZN3XAu+a tiMQhcxjOPFabjOIDFjw3wQBauZQX1uFEPIVOG3raniKN2h19s0IHW+rN6yeGCXAApZtANlf FIWRGSWQrQOTYCheRiTBcLGVYDhbEgwRJfDKEHueYGjKEFPOOfCb91jNfKShT9QgkIY/0Xr/ AlGCZsD/z4iENAj+O6FEMTwYB1/b/yb9PO5a8zM7qS/puuj7Klk3kqAriboSdZMcHdmWE8Nb DHAxxMUgF8NcDHQvSgCjQCIAsoZjowRm60CiBLh2LdZwq6IE+MyYi6bqdN7X5FnbDvgfOk2r w2dq9bmLtfrCPK2+tASZ6itwCM7l8BbXa3X6tTgRD93Xzt1Sr0FgEgzjDANRLgJ5USpGmaRF CYYSDE2UwEowlCjBArsMkQmGXnVCcM7B39DkRzr1hV37pHOfdPGLMwjijIIsgyASJVAHXlpT wl8ezx/wn9sk+EOB7dwUwN//2h4+pEd/7vKzpN+N+3mYWzMNfTskCfcirBUp3ZUSXinllbwc qeKRLTlJ4JUtOjHCBebi5QvYR6IEgWEfu3UQ5BJ4UQI4Am2KEsAgIngnD94mPIMB/AsuUpeF XMU16qBzUGsdjIPP1eqQC7Q6bAaMggu1OnI2FPMCrb6CpKzjJEqwTqtTNqDX/fWIEtyk1XkT ihKIUhDlkJhgGMklGEkwNFECSTA0ZYhQZPOsBEMpQ5zRvyjB39D+V1r0hgOH9yQbBAlGQda2 QbB1oORY4SbAf2G74J9mGGTphDjIJxkEmYm1sj5knUhUzUQJpHJHDGxJ2rWjBLJmvSiBbB1Y UQJv6yAuShBsHXgJhogSeAmGMCbalmAoZYgNZwDvr5ghnTRvrYF/3AcYMgjEMJhyHowCRAkO Q5TgCEQJPj8XUYLFiBIsR5RgDRLNrsQBONf4UYJzJhklkARDKAgJJ6ZGCcTDMGWIVoJhWIaI vU45nMQuQ/QSDE2UoGMdDK0Ew7dxDoCMv+LAHhmeMWCGs1EQs20QEyVQ2Drw4P+FOkr9cnj+ LYV/Fsijr2ddH9UFmfCPy/WRRl5elACNvSRKINU6UrXjbR0gSiDrykQJvK0DEyXA1kFclCAx wVCqh+wEw5r2/euIPiCPgsCtFrhNms9Ww9/JIDgIUYIp52t16PQgSjALUYL5Wn0ZyvzYlVqd sBZRgquwdYAowVkSJdg6ua2DaIKhUxlikGAYV4a4yC5DDDoYdqAMUQ7gkZ77Mt6UgZavb8kI DAI5wc8zCGyjIMkgyNg6UHIssIwQ/vAiT6uyzr+98L8DnqKMaIMe+d68lnRN2utZv2v+nrmu EPyTkn8l10ZybqRCRwxp6ethRwmkEdhQgiGiBGGCIXIJwgTDrCiBXYbYkgTDoHz68utv0TIW rr6KxkGLoyWdg3+SZTUSJTjYRAmwdXDERVodNUeroxdp9VWc3va11YgSSIIhogRnwts7ZzMS DLfXaxS4lCE6JRiaMkRpdmISDKNliEEHQwmBipJr2TkHr6Gtr5y+J8fyvi4DB++84Q3LKIAx 4BsF/lG+w1ECK1KQESXwjhlGLoEPfySbHlcl/AGSae2HfxTW4/6+UvjHRglQjSNGs0QJpJeH RAlk6y01wVByCSRKEClDTEwwDHqOeFECSTBsQBmi1SvFAD/r3xUbuuspN8lrr+JeegN/tyiB bB1YUYLPXQKFL1ECJBgeexmiBJJgKFGC67B1sAkJhrfUaxBkJhjmKEMUJeSVIUpvArsMMehg GHfOgVeG2LxzDv5w6wE4dlfGgfqP6PH/JwzbIBgxCtKiBClbB96RwjLkFLkh+MMbPBNRlbLj nOLwF+83rjlPVT8L3z/lJL9xQz7p79UO/8QogSQYSpRAEgwlShAkGErELUwwtMoQva2Dhpch Rrz7LNib1xesWq+jowpA8T3qM6ZC+DdlITfhPuKjBEGCoRclQILh0Qv9KIGXYBiUIZ7RgDLE 3AmGjucceGWIzTjn4Lc45Od3OOTnFRk7DtC/xxCDwDcKYBAkGAV5owQK2wbeaCD8BfJx4faq jALCH63DC3XdlCiBSTDEehlKMMxRhijtip0SDKW/SMkEwwLAj4N99GdFdPmOB5/RZkR/P8sQ KPL3+vw7hH+wb+kiBKMJhhIlsMoQPy9liJJgaJUhntagMsTMBMMg5Jh1zoFXhjiZcw5+uWVf /Ssc6iPj1zjY5zcyYAwYg8AzCnbs7xkEvw8NgmJRAmWfHd8wzz/Nw48zCvJGBLLgb/8N+8Cf O3behP3+m/RRRx429K/5efRwoNzfY3unGJSLwryi3wsTDIMyRGn05SUYIkogCYbjLkOsCfi7 7bF3GAFw0ak27OO+tt+D8PdzbKoahH/JyRyNEgRliIeaMkRJMDRliEgwtMsQx5FgmJYFnDtK kPOcg7AMsboOhv980z5axs9u3kf/HB75L3DC3y9gEBij4NeWUSAGgUuUQLYNolsHCrkESkAj Xn/U8z918mH/IjDPYxRE4R/93SRo2+A3XxtDQL7PDfvotkNb4e+UYIjoWlyCoZw4KmeKxJUh OicYwrCvCfi2x3/x4pX6/FkLPQMgCVJZwI++bt6H8K8O/DKnhH9J+CfuQ9p9CeTrMMFQyhCx deCVISLBUMoQv2aVIYYJhhV5HHlbGkt71KxzDkZOQ3Q450CUWgXnHPzwhr30jzburX+M0/xk /GTT3vqnOOrXMwiMUSAGAYZnEGwJogQwCrwoAYZLlEBh60DBKBjAH3kfJuGvhfBPMhaSDAJX 2EdhboN+OAqQrLhyGQQCf0nCRJWGuhdbMhKdkeeEZ93KiEBSGaJJMBwpQzRbB8jVWYFE3tgy xNFzDm7YeZ/eiCH/Xn/rPfq67Xfra7bdpdffvFNffsNWL3s/bf/eJcwv11yL9zXXRnXjtDlL 9F1PvBSG9fMYAea9RL58GRuWp7ifVeUhd/V9CP+a4B8nMCNRgmgZYphgKGWIkmBoyhCRYHiW JBg2qQwxeiKi1DObmuaMcw6ksYpXhojuaznPOfjetZ/V37/OHy/jWN8fYIhB8MONA6PgJzAK xCD4aUaUwN46iEYJFLYOFLYOug7/qFGQlEfgRQJSkv/Mawb4o/9WCH8cyOQ1XkITJm9IKSY6 O3pGgSRoSp4GkjwVtn06YxCIkTAdCYZeGSK2DsIyRKwhL8EQayqhDPHqrXcC9Ls84Av4xQCw x8bb7htJ1nOFfdp1ogNnL12jz5oxR+++xz5atgTOnjlX3/HYC6UNAFu/EvzFIgIW/P29Oo7x z0F2gmFcGaKcc4AyxLMbUIZY9pwD7zREZL4nnnMwaFb0zav20N/asIf+9tV76u/IuGZP/V0Y BMYoePm6vXyjQAwCEyUIIgV2lCDcOrCiBPbWgUKEIAS/hP0PaJLnDyMLCX9VjaH9++B94/b8 Y6MEEYNgLPDHSYzKHmIMeAaBZRRIYybPKDBRAhgFKPtUKBH1nm2hZL6ao3FF7kkOBfOiBNLB 0JQhog/FgsE5B6uv2+J59+tu3K6vvOlWvX7zbXrDLXfoa7bepa8Vo2DHwFuvAvryHnOWXa5P nHq+B3wDfQG/Gbc/8lxuA8D2/uPhP37d3WZeEv4NNXhGowR2GaKccyBliEgwHCpDlHMOmlKG WOCcg6EyROlNMFqG+MK6T+sXr/iMfulKjPWf0V9fv4f+BgyCb8Ig+NaGPX2jQAyCa3yD4HtO UQJr6wC5BB70YRR0Ff4jIf0YQyIr4c94+kmRgto9fwP8qCEQaxTAEDCRArR0jo0SoHRUIVrU GaNAogToYDgLnve8Fev0QgB58eXX6KVXXK9XXHWjXnXNzXoNjIK1N2wLvX47Wa+oESB7/kd/ 7ZRE6NsGwM6Hns1lANxxGzzcYHjePr42/3o/b6gub+p9Ef4tE5jEBEM558CUIX4RZYj2OQdy GqIpQ5zUOQfSW6BIgqH8jtcn3T/n4Gl4ms/IuPxT+tm1n9bPYTwPg+AFGATGKAgNgoJRAoVt A2+YZL/Q80cXSGnyM/E9//yef5x3n1Ux4L3uEOqPuyZqFJi92ui/4sHl+huSiCkAF8/ehP0F 7OL1G4NA/nU1CuQ97CiBbB2gTbRC/wcv6RPVI202CAxsz714vr5gzmI9c/4yLYAWz3z+ZVfq Ras3hPA/+8K5hcP/0+deqg856suxXr4N/OjXOx582tkAuOM2ePbB8KEfVJWYn7dMl0/aKBjA 35pYe5L59UDgmjwXiWWII+ccSBkiEgzlNERThjjRcw7kEBWXcw7k0JSf6UdX7K4fu2x3/fjK 3fUTqz6pn1z9Sf3U6k/5RoEYBBihQWBHCRApcI0SKGwdKGwdjBf+OBhm7u8Rrn0Ne7hvYAvk Tezjvu2PxW/hZ39BtrY52McN/nmBbxsDrp6/K7ijYVp7n9b1PbzrBMiyry8Jf6b7omnBLEbB kEEAsNsGQZpREG4dRKIE8t5egmGQS2ASDMUgLBKmH/PvpIFXYH/eJX5mvoz1N9+WC/6ynz91 xmz9mX0OzAX9aKLftvuecDIAovA3BkCT9XKT743w77DRExslmIJmRUPnHEgZIhIMj5tAGWJa B0M550C6EsopaXKsanDOwf2XfkI/sPQT+sFln9APLdtNP7x8N/0IDIJHYRA8BoPg8ZUwCGAU PAWjwC1K8Bl/28CKEihsHShsHTQG/kvc4O8SznfNE6gb/rYxkBv+kswnEBbvXJL7xFP3DAIM AbVnFARnMsRGCSJGQZ4oQVyCodyH3JMkiI4Z7ll/LxX+wR68gf8Vm3Y4wV+iBieddYFTaN/+ +xJ12PHAU7Ggv+XuRzMNgChICf9yjinh32H4J1mdyeccWGWI3jkHUoYo5xwEpyE24JyDuxZ+ TO9a9DF996KP63sXf1zft+TjOjQIYBQMDILdCkcJFKIECrkE44M/zmOYleL5O8LfFewu11UN /zuxzmSIwjZfm39zw1+y+E0ppunHIPCVERoEtlGQECUwWwfetkGVUYJg60AMFJxDMckyxDzw z9rnv3jxZfro40/NBf2ZC5Zp2XL47P5Twt/bdt+TsaC/+a6HUw2AqNxEZanJXnYT743w7yH8 4wSxfBnieM45uHXOR/XOuR/Vt837qL593j/pO+f/k75rAQwCGAV3wyi4BwbBiFGQM0qgsHWg kEswDH90bvxCXXv+SfCHx++F/t08fxeou15TB/zjwC8KPTf8JRkT/Ru8rH00cvL25cXrlqQ9 qfkX4NpGQVKUINw6sKMEGVsHrlGCrARDMWAkr6TmSEEV8Jf9/ClHHp0rtC/RgVPOmREC32T9 G92z9d7HY0G/6Y4HEg0AG/5xstREwDb5nkL4R60qfu97Kn0fbmWIwTkH4WmIUoZozjmo9jTE zRf9o95y8Yf11ks+rLdhbJ/1Eb1j9ke0MQpuh1FwBwyCOxfAKJAogW0UIEpwH7YNJFLwYEqU QGHrQGHrYAT+nxf4I4u68oS/7sPfJPrFrafc8EcVh5eTgd4OHkDRz8F7VtLoB82cQqNAejXY UQIp8/OMgiBKEGsUWFGCtK2DvLkEdm+CuDJEk2BYcRliGfhPnT5L77EvDCnrdL+s9xPof+Wk M0agH/fctySE+qUHQVwDoLToUd/1dJHPT/gT8LkNnOwyxIsHZYj2OQenm3MOykUJNk7/kL5x xof0ppkf0jfN/Ed984UwCC76sL7FGAUwCLZ7BsFH9E5ECm5DpECiBLZRkBglgFGgkEugkEuQ DH/0ZS97op/8fniqX7fhn5Tpb7y33PCXqAySOb3tGeRqeDkaYhCgrFOht4NCXweFzo+eUeBF CTCiUQIxClyjBONMMIw2KxIDRbY45LMUiBJkwVpeTwr329A3Xye934ULV+gjjj52CPouQNqc EOqXhkRRAyDr/eT6rGtcX38TW0hJw/U9mn4d4U/4V7Zg0ssQL9TqSJyGGJ5zIKchroMXvSF3 GeJV57xfX33u+/U1531AX3v+B/T1F3xQ3zDtg1qMgk0wCoxBYKIEYhTERQlk68AzCCJbBwpb BwpRAsK/eKlfFOhpijA3/BG58Qw0JHoqJHkqJHeGWzUo+fTyNdD3ITQKJEogRoFECaSWX3o5 iFFgRwlk68CLEhijwEQJ8G9igmEQJchMMCxRhhgmGAZ/y5QhSptjhzLEOuE/69LV2M9fMAR8 25Bwhd9Ndz4U6+lfg86EWS2AZXsqr5GQdF9pwHd5zfXzNuU6wp/wrwz+SUI9WoZ4nn8a4kgZ IhIMpQzRSzAMogQxZYhrznivvvzMf9Brp/6DvuKs9+krz36fXg+DYAMMgqsDg+A6GATXewbB B/0ogWUUxEUJZOvARAkUogQKBgHh30D4S+gekR2FiI73nJDvoZDr4RlrErWRiA0qP7xtGykN jEYJ0AjKq+SQKIG3dRD0dLCjBGIU2LkEZuvAJZcgLUpQW4IhqhwSogJ1wD+6n58UOcgDuU23 x+/1X7X59lQDIA7+eSIALlAvc02eORj3tYQ/4V87/GP3eUcOPsJpiElliMeiDNE750CiBNfr ZSe9Wy8/+d16xSnv0StPfY9eddp79erTYRCcAYMARsG6qe/zjIL1MAqKRAkUcgk8wAw1+UHC 3+fRPdHb868y7I/mRRd1O+wvEK7M8xf4w9BTiPgoGHcKRp1CHoj3zGDAKWzxeIYbcj28CE4Y JYBREBsliGwduEYJiiQYxpYhVpRgOAb4S13/V048PdHTjxoBeWEmZwzEefrSkjgpApAE/yQD oAzI8/7uL+TU0WDknYtxXE/4E/4Tgb9zlCA8DdF0MPTPOVj4tXfqxce/Sy854V360hPfpZda BsFlMAhWwiBYBYOgaJRAIZeA8K/O888V2k/rKijwx3NXeN4Kxp/Cc1Yw+BQMPYXIj0LER2H7 x3t+yAPxowQY2OJRSAJNjRJIlYfJJfC2DlKiBNEEQ1NxkFaGKGcLSGKfnEYY9iaoqAyxRvjP XLBcH/7FY0LoZ5UEmteLAEwOHooD/bqN22J/ngT/MvdQ5L7b+DsW/G8GBDg4B82TgbgEw7nH vEObMe/Yd+gFx73TMwgWHQ+jAAaBGAVLT3x37iiBbB1ILoHnWdbt+Z+Nw4wu6IfnXx38kfyG Zz808PwVnr3CM1eICCkYfwqGn0IEyIsSyPM0UQIkhyrkgHhGQWyUAFsHK2K2DiSXwDnBMKYM MU+CoTQryluGWAP8pT5/7wMP9aDvCvzhPf9iuiQu2U8MgjU4djhqGNjwj7tH8dYNmOXaLEhH G2VFry/3erH5qItJhD8NntYafbYBEP16HgAx3zIKMqME8CDtKIEHDmwdhAbAATWE/Q38LzRh /1ci7X27U+dfK/yjxoD5HgahFyWAETgUJZDnKlECMfDsKIG9dWBHCYYSDJFLYBIMJUpgJxhK LoEpQzQJhl4ZIkbdZYg1wL8I8KuAv8Dumm13xXr6ciCRMQDkbwmM0+7TFf4G6nGwt42HqAFh fx9nXAz/rKnwvx03xsE5aJEMpME/6TWJEsw/7h1+lMDaOohGCTxYiAdpvP9a4P+C7/m7wH+x 6e2P/v+XuPX2d23oE3dd1U1+KoV/FHRJ8E/6uYkSyNZBGCWQrYMgSiBbB5JLYEcJhhIMg2oQ lwRDr1V0RhliXIJh3jLEJsK/pC65GscOx20B2OWJVcLfJSqQdU2a8dA0vg48/5IPqmkfjPfT D2OuiAEQ9zt2lEC2DmTbwPMYCf98HfgKngLobBxIxr1rvXseo0C2DvDcFfJHvK0DySVAAqkX /bETDNFbwi3BcMxliB2Ev+hwO9tfvhdPPj/8fY/b98JHve+kn0evHUQH3Dz4kfdtGGMJ/4Y9 EBot+Y2WqgyA6Pt4+8gCBO9IX5x1UHW2/9n0/J2hb4wK8Yhd4R93XR6DQK6VrQMxBE2CoeQS hAmG2DYwCYaxUYKMBMO1VoKhNCsqk2CYMidZ5X5lw/uJpX4V6dZolv2k4G8MiCwjIPH1iuaj KkYQ/g17IFU92D6+z88BaRlVGgNKPEKB//7jgv+frCN9rT1/hv39CERZ+CdBMo9RYBIMTZRA tg4kSpCUYJinDNH0JvByCRI6GMY1K+oQ/F1K6ozBkRb2N+9zF3S8DLnWfG3/m/TzuGvt9zKQ T7ou+nrTdDLhT/h3Ms+hKgNAjAkvs9zA/9gK6/xjPX/CPzUaUBf8q4oSxJUhhgmGkTJEMQpc yhBXw+jJKkNsOfxdgG9fkwT/uPepA/5Z7xn3emPhn2bl8DXfcuRo9xwUNQgIf8Cn7r181/cf J/yrjBKMlCFaCYZxZYiSYDjSrCihg+EVqDpoIPyz9GVe4CfBP+t9XEBdxPtPiya4/M2s+an7 9dDzr/sP8f3bDc4uPz8Xo8D3/NFyWDz/Uyrq8EfPP79R0QT4V2EUoOJkpAzRJBhmlSHGdTBs CfyzQJ33dYF23O/Y3fVcQJwUwreNgqiBkPf7pulQwp8ePSMaERkQL3ck+S+E/07A/6FqTvUj /LsF/yq2DuLKEE2CoTQrSipDbCj888I87/U2/G3gJ8E/2qQnCuQ8r+f9XcKfsCVsGy4DsSFu gf9R4vmPA/6voy/9mzishgl/I89Cjrctk+3flN/Nm2BolyGaBEO7DLFB8M8L8DLXC6yToG9+ ftftm6FzmzCaFf2l599wEDXNWuzD/RD+P/cyo73mP6578eO6TuB/8b1owHMXuvNhC6YpMK/i PvIYBHFliAVr/aso9SsD8Ly/a8Oe8C9uUFjwb4JlxHtohoXa7+dA+Dcc/su/jtP6nkdJ5NNI inscPfqRgzHrfjTfuRsH+tyJPv6IzlQB46a8h6tRMGb4u0A7GkZ3+Z3oNWmefbvg3yy9Svg3 IhzULKHouwFC+Dcc/ut+jNK3HyIq8X2tVqE98mXfxmE839BqKQ5KWvIsjvN9Eqf4PYoyOuRm XHIfogS7ECW4vVsGgYA+ahTUDP8i4I7+TtQYcEnYKwt/+2+GWwF3QOcG46gjDwu/Nj/L2krI +3oTdeoA/tZkmAngvwMB4Vz0ay5GDADu+TdjC2DnAVptRu+FDTjf4CoZv8Bpez/DATs/0Wrt j2AU/AAH73xPq5XfgVHwLa28KAE6KS5+BocmPYEowSOIEjyArYN7uhkliDEAynT4qwL4We8R ZxC4ePQC4KTr4oA/lAQYAX/UAMgL96zrm8gPwp9Gz4jV20RBnfQ9eaV+TUn4m9Xjg30M/NcD +lf/GkbAr6yBeTFGwXrkK1zxz1qFUYKXESUQo0CiBN/UatlLiBI8hyjBU9g6eGwQJbgIUYIZ dyBKcGtnIgVF4f808jjskQXxvK9nAdPFKLDhnwX8KPxt4MvX9vdZ95b39Unrr7i/T/gT/oS/ gwz0Df7hSX/jSuRz/TsG/gJyM9YA7GuxFXAlYC/wjzMKhqIEOEI5jBKYrQOJEsjWgRUlmIco wewH/QTDme1NMKwK/lFjQL6vGvguUHUxCrLeJy7UH/czG5pZ75n2OuHvoGSbOEm8p36F/OOe tw//a2oq9UPIehY82LmvIDSN9r4LM0r95FrJxB/HcIXyuK67FWH/LQj72+Ft2xAwX0voX/IC ZDtAogBiEAwZBZEogRgO62TrQHIJYEyYrQMTJbATDOdYCYYSJZjW7ChBnfCPMwiiRkEZaEZ/ N+rdG88/r0GwCyyKG2m6vsznaCJD6PnTIKHn7yADhH9DWvzGwT8u0S3OIJCfeVEC5AYI7CUa kBglwGvrJZdAogSSYCi5BDEJhoutBEOJElxiyhCbk2A4Cfgbo6AMMM3vpoXzs3ID4owCeV/C f7OwXyv5XxMtE94TPe6myIDaf2EDPH9EBOb+3o8SjMPrb2Kdvyv8k8r0kowCgbt4/gJ8ySNI 3TowUQIYEXaUIEwwDMoQF5gyRCQYXjS5BMO2wT8K7LLZ/mnRA/tviUFQleffFL2Vdh8h/JMs If48PjzEeenXvBD+LfP889ToJxkE4ulLlEC8f6kqSI0SSIIhrhtKMDRliJJgKGWIQYLhPCvB UMoQZ9QbJWgD/PMk6+Vt8uMafZB7MIl/0X8Folnv0zYmEP4Jez9te5C833qNkfrhjzBz5p4/ PX9lPP9zb6k/Gz9x60CiBJJg6BIliJYhwqAIyxCRYBgtQ5xtyhCRYDitmg6GTYV/UeDXBX95 X9tTdqkAaLPeJfwJ/8T9rzYLdtX3Tvg3zPP/ylKtjlul1YnrtDp1g1ZnXK/V2Tdrdd62eo2C xCiBSTCE928SDNPKEL0EQ9OsKKEMcZFdhhh0MCxQhtg0+BvoZ3nSLq9n7fm7vMdQCeCdCP0H w8v+t74311WtWyb1foQ/4U/4O8jAMPyR2HUmFHPZcTb2hi9AaPhCyfan5+90joDx/Kecp9Uh 07Q6bKZWR1yM45bnavWlxeh6txxH5a7R6qQrtToN1RlTb9TqnC31GgSyxZCaYBiUIaYmGJpm RVlliEgwXBB0MDRliBnnHDQN/nmBXPWef2pJ3p1bAPwtfs1/8LX5d1KQruvvEv4Oir+uyef7 1huqr3J+B/BHWdcpVcIfnejywH9ezxP+dqDU75b9tLrrYK0OOicyztVqyvlaHTpdq8Mv1OrI WVp9cb5WX7kUJZortTphLZ5dECU46yZECbZOxigwZYhegmFcGaI0Lgo6GMrrqWWI1jkHFbf3 TSrjy/PzKkEf915Ve/67AvDLvyOjY6yw4I8PewcH54AyECcDtcP/EkfPn/AfwF8MgLgRNQoO NlGCGYgSXISqjTlaHY2+DV9FlOBrq/0owamIEpy5EVGCzVqdv71eoyAxShAkGHpliFkJhnYZ InoTSHIi4Z+ZlJdmjMi6N/v88fDvlm4cwD/O0uHPRq0/zkkv58SD/5FXw4OsyfNvKvybVu5n e/5J8HcxCMRAsKMEn7tEqy8gSvDlJXjGl/lRgpOv0ur067Q6a5NWk0wwdC1DJPxzwT8K+KRM f/l5rDHQchYQ/i1/gF0UyiZ+pubA/w/jrfNP6icwro5+0b9TFP5iECCb2x4iZyNbB16U4ALk EpgowWxECWD4fXVZkGB4BaIEMALPuMFPMDx/UgmGMWWIhH8m/JuoWyZ1T4Q/4d9Jq7bqBUX4 x7QTlmZD817VatEbWu07T6vPra//5D+B/9Zgz9/F848BvotsjBgFXpQACYaHI8Hwc5JgiM/r JRiuQILh5YgS4LOfdq2fYHjuhBIMCf9Y+Ls87z5eQ/gT/oS/gwwQ/hnwX/ymD//j0LDmdDSx OReJaDOwF30J9q6lK2FVkYId+2fD3wJ+lUp9NEqABEMTJQgTDBcgwVDKEJFgKGWIJsHwbEkw rDlKQPiH8F+war2WUeXz79p7Ef4Oir9rD52fJyaTN0MO1H5N2fNvSNhftgNszz8L/gteQ4Tg L+hy95Y/FmMUMQi2B/AXwNuef03Ad1kro1ECuwwRCYZJZYhegiGiBOejVDBPR8Kc1/ah1M/A Pvqvy/Pr6zWEP+FP69hBBgh/B8//iBTPPwp/MQDk9ELZNpBkxwtQ8vg1nJAnvRPSjAIb/hME fhYwnMoQvQRDuwzRJBhWW4bYVfgL6KXULwn89PzTnRzC30HxZy10vp7fk27bnIXwPwbZ/ifX UOfvnO3fYM/fgz9a0saF/ZPgPz8G/qZ5kp1saAwCgf82jGPe4R9uNA2d9U5/vDUGbHyCoTQr ipYhIsHQK0MMEgwlSnB2sTLELsHffBYD/DT4t03HjPt+Q/jfDQhycA4oA/EyoPbDXq6U+hH+ gxMFo2F/A//TYvb84+C/CJ7/EPzvHO6a6HJyYQD/NsvtaJTALkOUBEMpQ0SCYViGGCQYShni 1OwyxLbDP+7+k+C/2x57axltlodx3TvhT6OHC8VBBiYPfyTUKTU6XABZ1zUj8EezHPH8Cf9K 1pRzGWJ4zkGkDDFIMHSF/35TjtC777lPGEbP08kv6doiHf4+tdd+HsBlJN27DX9zLaGfz3kl /B0U/7gsMf6dfMI7zvny4Y/WsHV7/vP/5O+FSwKdlxz3tv9vHPjNz+qCe9b7Ev6VQD6vHKeW IXrnHNhliGv0SWddoE8770I9dfqsWJiGe+Yr1+uLFq6YCPxnzl+mP3/MiZnQnzpjtt59j33C 6yTsT2+/mN4k/An/iSiwvApv0tcPwx/HrpY91Ed+3zvYJ+jtb/b8M+AvC9b8N2QQZIG6jtcJ /8asncQyRJxzcNARX9CHfeGr+qivHq+/dPyp+piTp+rjzzhXn3z2dH36BReHsL9h572pyXNi JOSNBqR5/tvuf1Kfcs4MfQbuIcvTnz7vUn34F48JrzPXC/wnrRva+vct+N+CSeTgHFAG4mRg ovC3vH4b/t7inaT3XzX8jy+65/8EdVeC7hajQEAp4fxP772/3nO/g/ReBxyi9z/0SD3lyKP1 EUcfmwl8ExlI040uYX+BvT2mz1vqGSZp4D9r5hzPSLFD+/bXPvyps4rMwQD+d2ECOTgHlIFY GagF/mc5ev6Nhj+qD6TDn2xTHJG05/8KjqGN1PnLVoZJ+JPjjCUCcvxdBRL+0Ob2dMCfcus0 B1GIfvKz+6bCP8+8Xr/jniG4i0EgsJd9+yOOPkbf//x3ve8vmL0IkYfzMr3982ct0vtOOTwW /Oa+PPjz2ReaA8KfglNIcPq24AbwR0OWkysK+7vC39rzb17YPw7+j0Y6/LnA/7vF4X8G4V9m PYpBYNfKl3mvGdi7v+2R54eMAOPtixFw/qyFeo99D0xM5JNrJMR/7KlnpUKf8C/vrBP+hD/h 7yADTYF/ozL+vbB/Evxfstr7GvgjQmA6/HmeP76f/0e/U+AFhH8Z6Dbpdw/9/Jf1fc/5Xn50 ZFUenHPRPG97Ii7MH/cZ6fkXNwIIfwfF36SFxXspLuxl5q42+J8vCX8/9rvczQEkkxL+JKye lPFfRzKfy3uOwB+lZsdKqZ94/oR/GXnrwu/e9cTXnQ0AiRh84diTnKFPz7+8HiT8CX96/g4y 4MH/c1LqV3HYPw/8vXa48LTFCHCBc93XEP5cOxlr59ptu1INgJPOmqZPP/+ixIS+LCOInn9x I4Dwd1D8WQLI14sLYFvmrlb4z3T0/A38Bbp1g93l/WPhv9P3/M8Zp+f/JCHcYD0mXv0dj704 YgTI3v7Bn/tibm/f1hmEf3HdS/g3eNG0BYx9uE8f/jh4pQ7PvyvwP1zC/mXgv6tYtv8ZhH/T 1+BhX/hKmO1/PrL9TzhzkO3vdeYrqIcJ/wrgfw8mn4NzQBmIl4F64P8cjnPFnn8v4I/OhZLg l5rwVxz+lNt26C6T7S/Ar+KZCfyreJ8+vkfo+ffxw/Mzt0NhNOE5jQf+v0tP+Gt62H/E8/8B Ehl/odVcyfZ3gP8JhH8TZL1N90D4F9fhhD8jHrScHWSgPvh/2/L82wr/4CyCScB/Opr8IOzf JmDxXosDi3NX3dwR/g6KnwJXncC1dS7VfvNr2POXsH8R+P+6YQl/Bv7rInv+Y/D8CX8aPtTh hWSA8KfgFBKctkK86H1PFv442U/q/MOwf1fhf3f+hD8P/k9RhqnHKAM5ZcCC/1ZMHgfngDIQ JwPD8L+/mlP9znL1/An/xNJGgT9OSOS65bqlDOSTAcKfBg8Vp4MMjA/+aHcrHr54+l5mPMAv I/T8X0U73KZ7/o8Edf45wv7T0N73hIKeP+HPNeywhmkcDBsHA/jvwgscnAPKQKwM1A9/ZMXP kYS/jsH/Ysds/2nfKwj/l33Pn3LLOaAM5JIBwp8Ck0tg+qpkCf+fjyYZylG83sE+kYS/Uy3P n/Dn+qKObaQMEP4UzEYKZtOMDB/+69HhbzuO9K1jz7+Nnn/V8L+nQMIfPf+mrRXeTzui6IQ/ 4U/4O8gA4R/j+ctJhEOe/1qU+t2qVVHP/8Si8H+aMuwgw4RyO6A8rudE+HPRUHE6yIDa1/L8 T6Ln72XfZ8F/OhL+5DqXDn+y50/4cy06rMVxwbHrfyeE/72YdA7OAWUgXgYIfwfP/zDb839R qzHCn3JL3UUZyCcDhD+NHhp9DjIQwv+r2POn5+979FHPn/DnWnJYS4R0PkjXNV+EP4WVCstB Bgj/FM/f9CUoDf97Cyb8PU0ZdpDhuiDC920GzPM+B8Kfi4aK00EGPPgfgWx/ev6Dkj/j+RP+ XEMOaygvnHh9vUYF4U+hpeJykAHC39HzP8Zk+xfZ8y/o+U+l509Q1gvKLs6vBf9tgAAH54Ay ECcD44X/n9vR3jfO84+D/5xXtFrwJzQDeiNoWSxtizHk+/n4ubQr9rL9i8L/Geou6m7KQE4Z IPxzThiNg34aB2rfeQj7XzmmsH9b4X85miCJ5/8wevtbnr8T/HFAD+FPgFEfj00GBvC/G0qd g3NAGYiVgXrh/yNkztsd/roCf3Tfk6oAV/ifdF+xhL+p8Pwpt5wDykAuGSD8KTC5BKavSnYY /hFI4WAZOVwm9wiP9G0z/H8/OIXwsKjnb+CPA4syw/7w/AvBH42ECH+uYerx3DJA+FNocgtN Hw2AxsB/foOO9PX2/An/Pq4Hfub2R8oJf8Kf8HeQgXrg/6xW539bq5lxnv9fguS4t/EvxuI3 fQ+78fDfYe350/MnJNsPya4+Q8LfQfF39eHzc7krpkbBfzay42UvfdJDPP+5Uc+/DPwjZya4 fD5pITz1WRqw1GOUgZwyQPjnnDAC0x2YXZqrAfy3je5NF9nvl985Szz/b+X3/JsK/0Nlz5/w 75Lc87N0V9+F8L8PEOTgHFAG4mWA8E9o8hN6/timyAV/bGVInb8kAkqd/3RJ+Cvu+VNuqbso A/lkgPCn0UOjz0EGCH8X+K/J4fnHwP/kAvCf4Yf9qfjzKX7OF+eL8HdQ/FwoXCg+/K9Akx+G /cNcg6E9f/H8JwR/bJ9wjXKNUgbyyQDhT/hTcTrIAOGf0/M/Wzr8pWX7x3n+D+Rv8iOeP+HP NeywhmkcDBsHFvy3Q4A4OAeUgTgZIPxzwP8UtPfNDX8YCicXhf9z1F3U3ZSBnDJA+OecMBoH /TQOmgP/P2rVyGx/K+x/ykOA/ws5PX/Cn7qln7plUs99AP97MPEcnAPKQKwMePA/vOI9fySq 5S/16yD8xZiRLYIynj/llrqLMpBLBgh/Ckwugemrgaj2nUv4R5vuJCX85fX8Q/g/WHDPH2F/ rmPOAWUglwwQ/hSYXALTVyXbLPj/ZvLd/cQQGIH/apT6bdeqKPxPIfz7ur74uccfeSf8CX/C 30EGaof/xdEjfZN6+0vYvynwxz0PNflJgf98NPORpj5L3hqcWWCa/BjPvxD8f4hsf3r+hOf4 4dn2OSf8HRR/2x8y77+8YhiG/735j++NawFs7/kT/ogYFPH8CX+u7/Lru49zSPgT/vT8HWTA h/+6oMkP4e81+rkky/NHy165bs7vcBqhi+ePKgHbSHI52GeGwP95yrCDDPcRcPzMyYZRCP/7 ITwcnAPKQLwMjAf+vwUkEdZf+Gcc4dvCsP8hCPt/1d7zHxP8z36euov6mzKQUwYI/5wTRjj2 00Aagv+JdXj+4iF3Ef4/q9/zJ/wJPurx3DJA+FNocgtNHw2gEP5f2apVlfA/D0f6zvhREB7v I/xf8xMYpc5fqgSKhP0Jf65h6vHcMkD4U2hyCw3hX6Hn3yn4r4oJ+2d5/gb+6NEvbYEJf65H 6uSxyADhT0Ebi6C13WCg5x/X2z+S8HeIgT+y9qW97zTZ888B/1MJ/7avE95/e7ZFLfjvAAQ4 OAeUgTgZaAT8F73uJwQ2tc5/YvB/gbqLupsykFMGBvC/F0qfg3NAGYiVgXrhj3I1ryTO2vNf FJPtT/iPdjaUUj9EGai7qL8pA/lkgPAn7Kg4HWSgHvg/o5W350/4q+nY8y8c9if8Cb584ON8 7RD2ayX/42RQeCgDyTLgw3+tVpVm+3cR/tv8Tn2xe/7Ythhp7xsk/M0Q+D9SMOGP8Ofapf7O KwOEv4PXl3dSeX33FmJ98P9mhucvvfDfRtOfN9Ebv4l7/q+gKRHuS5oSeXv+cfCX7Qzp8Ef4 Uzd0Tze09ZkS/oQ/oz4OMuDB/7A6PP8uwX+lBf/nrWx/wr+tgOB9d9dYIfwdFD8XQHcXgOuz JfyTSv1szz8v/BEtWGCF/U8rEvZHgyQm/NGApx7PLQMh/B/A5HFwDigD8TJA+OeA/8my5+/i +Ufh/2iBPX8f/pRb6i7KQD4ZIPxp9FBxOsjAMPzvqehIX0n461DYf0rg+Y8T/jMJf0IvH/Q4 X/58Ef4Oip/CwsU1Pvi/6p/qF9b5tyjhLxX+aE40kvBne/4odzytgOdP+NN4pw4vJAOEPwWn kOD0zSAawP8WHOxTp+dP+If9/aXxUdYg/Ll+qcMLyQDhT8EpJDiE/1PlQ/9T48L+XYD/A8Ge //eC3v5B58JMz/+x/Hv+hD/XL3V4IRmw4H8r3oCDc0AZSJIBv9Rvkp7/Gw3s7R9k+8s2RRj2 t+B/kRzsY9oWR+v8o2H/MvCn3FJ3UQbyyMAA/vdh4jg4B5SBRBloBvzRLKdRB/vY8L/M74B4 8pjhf86LXLdct5SBnDJA+OecMBpI/TUS1WGXN8DzbxD8L5YjfSuE/+kFPX/Cn+CjHs8tA4Q/ hSa30PTVAKod/rMlPJ625y9hf4E/rstKhBvL64R/X9cCP3f7nSDCn/An/B1lgPCPZt+nwP8s afKDhL88e/6nP14s4Y+eP9ew4xqm0TIwWgh/Cg0Vh6MMePD/co0Jf13y/Al/rivHdUUgTyaK QPhTQKmkHGWA8I+pu0/a8yf8ua4c1xXhP2H4P4gHxcE5oAwky4AP/y31NflpnecPY8CDf9CR cIqV7Z8L/shhmIEOf4XC/j/WCmF/yi11F2UgnwyEnj8nLt/Ecb76N1+Ef5LnH8D/4BV+NYSU +uWGP3r0n/5EgT1/wp+6qH+6qIpnTvgz4kGvyVEG1KEN8PwXNCnbP+L5l4X/GYR/FUqd70Fj wEUGCH9Hxe8ymbym24suhP8J6O1/Rg3tfV3C/q2B/3NBtv8/+6WJ83Gwz8KkDn94Xdr0Ev40 xKmPxyYDhD+FbWzC1nbjSB26xt/zP+FugOrJCnr7Pz18pK+B/4KkU/1Q598K+N+PsD/h33Z5 5/1325kh/Al/wt9RBgh/1z3/ovCPGFQujYpmcs+fkO42pOt6vgP4379TP8jBOaAMJMpAffD/ gd+xz9Xzl4NyXMA4jmvsbP9wz3/c8H+J65brljKQUwYI/5wTRgOpv0ZiPfD/BsrcDPx/47f3 jQ37v6XVoiDs32T4SxOkkwl/6on+6om2PHvCn/CnxewoA5XD/0zZ8zfwx9G3clrfvJbBf45V 5y+ev+RE5IW/GDNewl/RsD89/7YAh/fZHKOI8HdU/BTa5gjtpJ7F+OD/Grx8nHW/BN6+N97W anFDPf8h+C/34X+S8fy/i97+Dtn+IfwjFRQu2xbenj/hP6k1wb/bXr1I+BP+9PwdZcCH/+bq sv0TPf+OwP+CnPA/k/AnTNsL07Y9O8LfUfG37cHyfqtXIoR/TLZ/mudP+NOwpn5trAwQ/hTO xgpn0wwYwj8O/r8b9PY/OBL2D+EviYwpTX5M2J+eP9ci9fHYZCCE/0OYdA7OAWUgWQbUoavH GPZHZn8r9vxzwl9yF0weg+Q1LMAWhwd/7N0Xgf+F/p4/5Za6izKQTwYIfxo9VJyOMuDB/0vj 2vPvI/xR/WAbAC4Jfxf+hPB3lF/CMR8cuz5fhD8XDuHvKAOEv0vYH8bRSff57X3jwv6pnj/h 33Xg8PM1xwAh/B0VP4W2OUI7qWdRC/zPjavzl2z/tnr+eeGPcwzCsD/hPynZ5t/tn34j/Al/ ev6OMkD4Z3j+B0nCXwn4Ty0I/3O550949w/eZZ/5AP4P3KYf4uAcUAYSZUAdYu/5R86ejyar OX0P2OX2/IMEOZf98HFcM8dK+CsN/2eK7fkL/Cm3nAPKQC4ZIPwpMLkEps9K1of/zWjys2v0 7Hkn2Eea2EiTH4H/dOntb7f3TQv7Nxn+y/yEyFx7/lbYf2pR+H+dMkw9RhnIKQOEf84J6zP8 +v7ZCf+ssL8N/2ezE/4WS6kf4d/3dcXPP5moO+FP+NNidpSB5sAfofZxhPRd/oaE/c0phAcV hT/eQ+r8S3j+6vB1lGNHOSZsJwPbps074c8FQ6XpKAPqkFUNCft3CP4LxfM38Ee0oEid/7lf 1+qIKynHjnLcNAjxfiZjjBD+XDBUmo4yQPgnhP2HPH/kRHh7/o5hfwN/6dQ3tQT8P7eecuwo x4TtZGDbtHkn/LlgqDQdZYDwT4J/cAqhF/YvCn906isD/yM3UI4d5bhpEOL9TMYYCeH/MASH g3NAGUiWAcK/ZvhLtKBo2P+oa6i/qMMpAzlkgPDPMVkEY7+No+rhj9K/QqV+Tdvzr8jzLwP/ z19LxU9dRhnIIQOEf47JIvwJ/2rr/C34X5Snzr/p8L/XD+Fn9faXUr9wzx9hfzkPoKjn//nr qfipyygDOWSA8M8xWYQ/4a++dJPf5Of0Kjr8CfyRqT79Za06Cf/v4HP9s1azf6PV/D8C9K9r ZR/sUwn8f+rP4Rc2UvFTl1EGcsgA4Z9jsgh/wt+D//GEf9hnwKvzN2H/pX7C34nG84+D/5ta LXkL420YAlV4/gH8v3gjFT91GWUghwwM4P8gFDsH54Ay4MuALKLIXHh7/kcT/kMNhkbgj/kZ gj/gPOT51wR/PBfqL+pwyoC7DFjwvx2Lh4NzQBlIkgHCPyvbXzz/MvB/vsCef+D5I+LAtcu1 SxlwlwHCnwYPlaajDKhDVlqe/+PDoCp0sE+X9vzf0OogwF8iI0U9/7NLwP/LWyjHjnJMQLoD sstzRfhzwVBpOsoA4Z/g+cvevYyJwR8nI35lK+XYUY67DDR+NnfDhvDngqHSdJQBNcV4/nch 278uz/8PQQIdPGkvMc4kx+HfRfiZJNfJPrvLoTvWNWlKMe97eaCPGwdOyvOXY5Ffphw7yjEB 6Q7ILs8V4c8FQ6WZIQMh6PoM/yTg2z/PhD8O8VmclPCHvfuzXxgYFbKN4mLgXCh7/oB/5P66 rLT52QjvKmSA8Cf8Cf+IDCR6tn2Fvwv45ZoGwX/oGSJiUoWy5HsQul2SgRD+j0ABcnAO+ioD XqOYLMh58N+EOv+6wv6/1mpeA8P+WfNiXvfgj/nxEv6eQYc/qfO3S/1q8Pzl/WM8/8RnOe9V 6jnqesoAZIDw50Lo9ULIBL4NvknCX/b+S+z5H3XkYTpuiCeTGV7vEvytz9JXQ5efm06eyADh T/j3Dv5e0xlXoI0N/tIGN8XzLwl/O1xpjADzs8rgb8+V8fxlT14+l9feN+r5Y/8/6Tm47vmL 51/kWdII6N26p9EzbPQQ/oR/b5SAmvmjcqCo1fMfL/xtY6AW+JcEsnfAT1rCX9n3j/l9woEe cZ9kgPAn/HsB/7Leoff7Uy6rcc+/Xvg/8tAdWoZ4/eZr828r4F8D7GNlYj5zAvoEwD5/1gH8 H4LVx8E56KAMVAL+DsA/DvxiADQS/uOCfdzfwRYFdSF50HUZsODvewYcnIOuyIB3nGyVEGmx 52/2+eOeLeEf07RIqgKoDzkHHZYBwr/DD7fPykvNKLm/H2c0tBT+SZn+JhJA+Cd0LDzvm4Qf 9WNnZYDwp3B3Tri9WvN5v6/W629U2P+V7FB9JFkuzRAk/BPgj9LKPhvQ/OzdjgIT/oR/5xSc Ou3R6sEfwv/Gmpr85En4I/wr3c5J2hqSvgowogjBbkOwr8+X8Cf8O6fc1Iwf1Af/Lxr4P1bx kb6E/1iAnicHZAn6EFz4486tj77Cjp972Igj/An/Tik39bn1UNg/QUOZ16s3AGTPvwnwnyue /y9yhf4Z9k8I7acZA0vRVXHGDzu1PghARjGMDBD+hH+nlJv64katznpWKwFkHi/P5dq64T/L scNfAfhH9/VvnPoBd+PBZW66ds2lcpQywv7nfaNT64PwJ/xH4P8oIMjBOWi7DKj9Fmh17E4c KvPdoJ1sAY8vCWQHr6jB838JZ9F/HwfgIOxP+FdvsBUxSgT8y9/WagFaEp/2CPUi2dBJGQg9 /7Yrfd4/DReRAbXvXK2O3KDVKQ/5J8p5/eQrMgBC+N+p1elV7fkT/pU9nyqe87K/arUM8rLg Va2mfQ/JnXd2UvFTX1JfEv60ajul3Dz47ztPqy9v8cP/cojPgteqMQCaBP9L8u355w77ByBt AiTGYxwguW+1BvgR6hePf/rLWp10v1fZ0YQ54D0Q1lXLAOFP+HdKuYXwl/D/MTv8c+XlQJ95 f8CRuCUjAOOG/2LZd5aBELR9qp/s+dcB/xjPWRSO5Ae4KB65zh7R38l6Pelv1Q7/FZjf1eLx Y66lP4RsGZ36COFP3egk9y5ro4nXEP4U8E4J+BD891+EPXokAJ78gFbnfsMHpkQBihoBNvxP qyjsf05K2H8c8M8IlbvA30A9DvbmZ3HX2EZFmtFQG/xXAviXw9tfhbEcY+5vvQQ/dcaThD/1 Yqf0YpzxMYD/wwircHAOWi4DI/A/cIlWh67xowCnP+GHc+dAyYsBkNcIMPD/Gvb82wx/AN/L 9nfYI3eFf5Znkyd6EH0vl/t0vkYS+a4A6EPowwAwYf6zn/cjRVH4t3xNUK+TbXEyYMEfiS0P c3AO2i0DsfA/eLlWh6zS6vPXYg93l1Znv4BeAEgGxPGtoRHgaghIJKFt8I+BfFXwzwN1l2vj rnEGe5Ixcyn289cB+AL9tRhrgr39+b9DUih6QqCHv5IIjAd/5ImMwL/da4I6jc8vTgYIfxo8 nTL6huG/UCvx/A38D1ur1RFoAvSlm/393HO/7ucDSImdbAd4td0AhYNHHF5z5lPlOv0JdKYl lPqVCftnfIZxw99EEJK2COztgUo8/+V4luv+ptVVAP36APxr8P1SJPPN+yWe+w/9bP4LvuPD /1zCn0ZCv4wEwp/w7x/8j7waUYDrtPrCDfDiUR4onp4AQDoDypaAlAeKIbAMIWL5N48xINfm MQic4B8k/kmv+QW4t6SEvxz36Q7/O4OEPyl5Gx2+px7/WtLPh/f3h3837v2c5l+S9S5HCH8D QC9DoH8lhnj8qwH9JX+CkYecDzH20LXP2/4ZgT8iQrbnf3KQ7U8d0SkdQSPHN3IIfy7sTi1s J8/fhr+cAPilzVp95RZEA+7zwX3+t/ymO3OR+b0IsJU2ryskVAy4FDEGDJTjjIKy8M8BfBui rvB/DOtDrpV/40baa0m/Y34e97txP4uF/wo8kyvwPK62YC8evgB/DX6+HM9tIZ7fbHj5csKh PE8x7mb+2A3+aO6jCP9O6QZCfziyQfgT/p1a4KXg/9Xt6A54q1bH3abViff6EQFjCEip4EJs DSyBZy8RgcuCLPGV8ColiSzvdoEF7Syl5Jf7FYhApBgGVcE/yzhIMwCc4X8ZPvtaAP0azLkM Ab6BvgB/DZ7Jcnj2i/GM5mEfX3o7zPoVqjsAflMSmRv+OBmS8O+UbshaZ317nfAn/Du1wCuD v2wHoMGLOuFu3xCQY4LPedEPFUuyoNc8CPvHUWNAGsVIJrmUkUnEwMEoyFI6TmHvnBGAquGf BfLo60kRg1jPP4D+38m/62FsrcW8rsQWyFIYYwvxDCRCI1shcwT82LYpBH/kf0giqAn7y/Mm /DulG7LWWd9eD+GfFaLj6/FhT85Ls+YlNdvfJPwlhf1tz9+G/0mAv4DglAdR//2wbwhIe18B heQKyB7yJQgtzwV8FgFIJjKwUvabg+xyyTKX/WcZawGwVTAOpLnM0jczFWwT4B9t0JO0BWBf F70m7bW0rQC1UvIvAHvZglkAD38+gC9jHqo1JCJTM/y5xpu1xvk8qnkehH/CXiYFrBoBG/c8 jhX+Z6BvgLeP/7RvCJz1nB8dkA5xOAfeSzCTMPRCAOtSCU0DYpcB+sYgQITg72AUZHkc3h72 ShgKss8tiW1SuiYRh5zeftE9/3E/w+jf8xIwpRrDG+OEP5pDIfoz6c/Pv99OXdT050b4E/6d Um4D+M/XSjr8xZX6Ffb8cViQ7fnHwV9Cx5LEJ2WE0i1OIgPnf9svKROjYMYPkICG5LPZ2JOe J5UFr3jzf9SRh3kjqjDkZ/8pstf/BULe/9n1Wv/LjVr/q5u0/q+2aP1vtmr93+zQ+r+9Teu/ 36n1v8XX/2a71v96G17Ha/8K1/wXm7X+z2/G7+J35Pt/jdf/La4VL/y/v1vr/+Ferf+n+7T+ nx/Q+n99SOt/94jW/9ujWv/7x7X+D0/qRsjGZOFP8DQdYry/YjJK+BP+jVDwVS3g8cH/cSQE xnj+WfCXnAE5wnc6jADZLkDpmfnsUfib7024XF0Kr1f2uZe9rv9u+Rv671b8Rf8nq97U/wJ7 4P9y/Vv6v7z2Lf1f3/i2/vvNb+v/bvvb+n+87a/6f9n1V/3v7vur/t8f+Js/Hvyb/vcY8p7/ 4eG/6f/jkb/p//PRv+n/67G/6f/7sb/q/+fxv+r/94m/6v/vyb/q//jUXxshG9XBH7kaidn+ cXv+4vkXU6xVyTPfh/NflwwQ/oT/ZBX8I9Uu7nrhb+/5Vwl/CS3fFXj+/tf2917mOhoRRffd Q6NA9rxl79sb2Ac3e+ISIg/D5VL6Zsbrfntf6RvgDdPqWBocDYb998KKA1QdPPZIcK/Wv/Iz Gf4hRGnDHFYk1QsyzN8L7sG7F3Nf+Hfh6/59S3+D0mF/wr8ukPB9q9Vj45jPAfxFCXNwDlou A82AP/b9k8L+nuePBjO25x+AMwmqBv5eFrsMaUQkme1zkOGOLPc4o8AzAArAfwj4HpwtWAcl h15EIrjncLuiy/Bv+ZqgXifb4mTAgr9vuXNwDtosA+7wR59/6fBnN/lJzfZHCHgo2z/N8x8v /L1s94jnnxgl8Lz/Yc9/GPi29z8Kfxv8cQZAKc9fEhgn7fmfhcRN6e/glfoFYX/qRXKhgzJA +HfwobYZ3mXvvQvwjwI2y/OPg3+S5x8bJQgPNRoO+/th+VHPP+0ZFYd/cKbCEPwl5D+OsD86 OkqkRvI1CH+CvidMIPx78qDLQrUtv+9e6leh5z/VKvXzEv6Ke/526D/cRw/2/JPC/i7wH/Lu Uzx/l7B/r+CPExzbIvu8T0Zt88gA4U/4d0q5qbsO1mrfeVrttyCj1K858H8cMmgP8fzt74t6 /kMgl4S5IOQfDft7oXavZ0Bywl+YXBgk/CUpmc55/nJ884X/2Kk1kgcQvLa7BgXhT/h3SrGp Y94B+M+tGP448Ef2f5P2/EPPH+fBF/D808Avr7nCPxrSj0/480PpI9n+MfCPC/kn5RKUz/bP E/YPGv2kdvj7dUxv/6Rs/5SwvxiThH+ndAQNGt+gIfwJ/04tbA/+orCLev7HBAf7DLX3FfhH 2/taCX+pYX+AxW7yE5Ptb+Af9fjNz9PgP+TdO5X6lYN/kmcfm0sQW/KXVOqXAf+wy5+APwX+ Ugnh9favAP4iRwv+CScC0vMnMLsXAQjhHw098vvhUCznox3z4cHfGACpHf6iYf+tWkm2/wTg 7zWekeNmL4JnKqfPXfwz/xhaOZFOTqaL7PkPAV8OtMlV518P/LPD/ab2v0nwR7Ml6bx4Xozn L+C/9BMh/Ln+27H++ZzcnxPhH9lvpfC4C08T5yqEvzEAYtv7btDq8wl7/g2Hvxeuj9T5E/7W qX65PP8E+Av4V+xO+FM3DuXeNFHflbknwp8C3ikBH4L/ce/0twBkHLJKq/BUvzzwv0erk+oN ++f1/NsL/0jZ4FCHv0mE/SPwFzlZ+ykcvPRJwp96sVN6Mc5IIPwp5J0S8hH4n/Au7Ne/e2AE HLFeqyOrgD+O9DW9/Uvu+RP+0Ra/pr2vVedfy55/AH+B/vrPaHXFpwl/6sNO6cO0yADhT2Hv lLAnwv+09+Lo3X8YGAFHuYb9kzx/wt99nz9mv19aBU/S8zcRoWv21GrDHoQ/9WCn9KDLdsAA /o9ir5eDc9ByGciE/9nvQze39w+MAIHAlzZr9ZVbEhL+CH/7UJ/8wLcP+Zlw2N8AX/69fi+t rvusViPwh/c/FPb/mJftT91IPnRNBgj/lsOuawJZ9vM4w/98JM5N+yCOeP3QsCEwkvBXB/yH j/Rl2D8h7O+19g3a+w6F/XFokRxcNFTnj6Q/77Ajq9RvFiolbOBv2kerG/fW6gaAn/CnQdNz 3U/491wAysK2ab+fCf+zAs/fhj88O3Xxh1FS95FhWByPBjsnCPzvjanzLxP2Lwp/1K7HnOpX a7b/SG//rCN7HY/zDcP+ccf6Bnv+ReBvw37LvlptDsZNAD/hT+BT34cyYMF/F37IwTlotwyU hv8cGABzPwrPEs1dFiLka8NkqMOfK/y/GdPkh/D3thLMwUFhW+HIqX4u8Lefj3y9bX+ttu6n 1S0YZeG/VOr8Jez/YepGsqFzMkD4U6g7JdTD8EfDH5PtbxL+sjz/KPwXfVyrJRjS8EVgEIXN mU9plZTtf+430ECG8B/kCeTc84/CPzr3Ow/Q6tZg7MC/2wH+IfjDACjj+RP+ndINdOyGHTvC n/Dv1AKvHf7Ld/NrwC/DWIV6cEkOi0JJvpcjYgl/GE4FEv7i5vP2g7S6/UCtbgvGTvxbOfxR 7rfWSvgj/DulGwh/wp8C3WGDpxD8cXBLuOef5fnHwX8NGsNcjiHgWIdxBSAideNxEDM/m/4D rWb8EAmHP8Jwbe/bkT3/tHkxr90J2Jtxh4B/QvCXrR+G/akzO6gzQ8//CXw4Ds5BlgyI9Zx1 zSRfbxT8r0L9uNSQX41acikpuxalZTKkxEyyzSXr3AWEco0cVDO7CvjL0b45TvVzSfhz/Qx3 T9HKHrvwucyIvkcU/p4BMAHPP4D/JGWaf7vZOqetz4fwbzjM2ipYk7rv1sF/I0rPpPxskwxk pEtW+s0YZq9akta2BAlsksjmCtqM67wzAsq8VxTkRb4n/BttSE9qDfPvjsfYIfwJ/04poM7D XwwASWqT5DYZkugmwyS+yT647IebvXHxlr0Bz1m8Zxnwqj34e951cPaBbQjYUN4V8daLQD7p dwj/Tq09Qns80K5qngl/wr9TCojwJ/wHpX55sv2xPSO5GtGEPwn7owdEVQqX79MuQHb5eRH+ hH+nFBvhP0H435MzStAoz5/w7zLo+NlGja4B/B/Dixycg5bLAOE/Qfjn3RJoE/xbvi6o28m3 qAwQ/lzUnTJ4Wgt/L+nPIeGPe/5+PkPldf4Znj/1RKf0BI2hXcJ+reR/nAxahl2QAcKfnn8t e/6EPxnRMRkg/Dv2QMsB/O7WL3DCn/DPD3/0YFhPz7+c7qDz1Lb5s+Avip+Dc9BuGcgN/xk4 0reuDn8uTX5MnT/D/sN9B8ba5McF/u1eF9RrfH5RGSD8afB0yugj/On51+P5Ex40ILolA4Q/ 4U/40/Mf9rp71+SHnj/B3i2wuzxPwr/H8H+yg5+dnj89/yHPX9ojS6tkaZss1RSyvSJnKsjZ CnLGgpy5sIHwd4EFr+mWgRDCX0DAwTlouwwQ/m7wD0/M63p736LwlyOb5UjfoMNf29cF75+6 PSoDhD+Nnk4ZfYQ/4V+J50/4d0ov0PgZNX4If8K/U4u8MfC/En3iG5ztT88/I+xP+HdKLxD+ hD8FuuPGTvXwx8EuSz6u1aUIAUsYePluWq1ASFjgsOqTWq3GWPMprS7HkENh1mHIATGEv1ZZ 7X7H0d6XYX/qvI7rvKKGzcDzfxyWAQfnoOUyQPgz7F9L2L/l64K6nXyLygDhz0XdKYOH8Cf8 CX+CjsZOtgwQ/oQ/4Z9a58+wf2b4Piu8n/R6m8L+1BOd0hM0Du4eHOzDyci2lDhHzZ8jev70 /Cv3/C/5MMFH46dzMmB5/vfgw3FwDtotA4R/V+B/sA4rEu44SCsZt+MoXznON8+RvlUk/Hnw b/e64P3z+UVlgPDnou6UYiP8Cf98nj+6/MV1+LNL/Qj/TukIGkK+IUT4E/6dWtjD8H+nVie8 S6uT363Vae/V6sx/0Oqs92l17vu1Ov8DWk37oFaZp/pxz38ye/7j8vwJf8Kwn1EBwp/wJ/yZ 8NfAg30If0K5n1Ae13MP4f8UIMjBOWi7DNDzZ9i/jrB/29cF75+6PSoDhD+Nnk4ZfYR/x+Fv kv52IvFvJz7rrcHYgX+376/VNoyt+2l1C8YWGVmn+mWE/Rdh2wd7/oQn4dk1GSD8Cf9OKTbC n/CPhf/NSUf6Ev5dgxo/j5uhRvgT/oQ/9/zbs+df1PPPBX+c02Cy/en5d0o/0DAYGAYD+D+B H3JwDlouAyOe//E5s/1nf0SruR/Vav4/+We5i/LnwT7Zh/QU6fKX2uEvIeFvUvBv+bqgbiff ojJA+HNRd8rgIfwZ9i8f9o/x/KknOqUnaAxZdf6cDFqGXZABwp/wJ/ypy7qgy+r+DPT8adF3 yqIn/An/TPhv3Eur6zGuQ7LfNXEJf/T86wYP33/yBhrhT/gT/nbCH/f8tbL34ndNqWe/X3IE cu/5W/3985b62Ql/hH+n1jwNiWKGhAX/eyEQHJyDdstAoz1/8TKvxRCPUzzPGzA27q3VjcHY hHK0mzAEVJuD+nSpU5d6dalbl/p1GVLLLjXtMqS+XYapd5fadwGjOQBHEuS8ERyOIwfk3GkP JNbdFRldgb9X6x/MY2n4t3tdUK/x+UVlgPCnwdMpo4/wJ/zDsD/h36m1TQOmWgOG8Cf8O6Ug nOB/TsrBPnWG/en5D28h1B32rwr+s9Dhj3qCc9AxGQjh/zQ+GAfnoO0ykAr/M4JT/Qh/K/TP sP/okb6RhL9ZH6FuJB86JwOEP4W6U0JN+DPsX3nYn/DvlI5ou4NT1f0T/oR/pxY24R8PfxeF ESb+9T3hbw09fxd54TXtjhQT/oQ/4Z9U6reg4va+E9zzF0X99wv+Y+og/D+j1dpPa0X4d0on 0EiJN1IG8H8SF3BwDlouA5V6/gb+iz+u1aWf0GopxvLdtFqxu3/wy6pParUaQ2BxOYaAYx3G FYDIlRhX7aHVBoyr9/THhOEfpwSNQSCvEf4R+C/D85azHSTs3/J1wfsn36IyQPhzUXdKsXUG /jdXW+ef5P0I/M1rhD/hTyOhP0YC4U/4E/5ZYf9JeP5Vwz9Gzj3wWz+Phz+qAfKc2HdPjo6A TS31M2F/ev6d0g00bIYNG8Kf8O/UAqfnn5DwF5HzMNxfNfzzGAqEf6fWHuHarqgB4U/4d0oB Ef7Z8I8DvyjuSjx/wr9T64lAbxfQ8zwvC/73QWg5OAftloFY+J/0bq1Oe69WeZv8TDLhzzns H/T3z+jt/wzgbobA3/7efE34p+35t3tdUK/x+UVlgPCnwdMpo4/wj/f8n4Gcy/DB738dHYQ/ 4U8joT9GAuFP+BP+dSf8bShQ6le55++Dn/DHCYpZR/rGJvz1Bwo0APrxrAn/McA/ydPiz+M9 0LLzEnr/x71Tq+PfpdWkwv7rgzr/BsA/q8GPvE7PP9nzLyuT/P161jrntfi8hvDnJBafRM5d s+aO8D9Qq9uCcTv+xXjmKTyjjEH4R+GPhk5Bkx+u8WatcT6P8s+D8E/Y/6RwlReuSc0h4U/4 KznOt+iRvmHYn/Cf1Brm361f/xL+hH9iAlhbFyDhT/gT/vXDo636gffty8YA/g5hwaywIV/P Dq1yjuqfI8Kf8HeG/7WfxfkLSMiU/Aw5k8E+2GdZ4PnP/kjmlgnXdf3rmnNc7RwT/jR6OqfY CP9R+KvbD9LqjmDciX8xvCS/O9G+967IGDrSN2d731Y0+UHG//V7aXUdwJ8JfxzqRPh3TkfQ kKDnT6HuoPHTKPh7J/tNvtSvd/DfmrbnT/gTftV60W2cT3r+HYRfGwWxynsm/On5K8Kfjg11 e6oMEP4UkM4pibHBf+UntVqNIdnhl2PIfvE6DNk7vhJD9pHp+SefCljnwT554H912p4/w/5V GuZ8r+ZEHAh/wr8n8H9P9b39Cf98x/1G8wEI/86tPcK9OXDPehYW/O+HIHJwDtovA0Oe/wlB h79TCf9eJfxV7vm3f11Qt/EZ2jJA+NPg6ZzR1wv4b8NpftvlRD+3U/06l/AnHQx34hAjc5rh Dnwt8yHzIuCvCv6LTdif4KDx0C0ZIPwJf8K/6ME+kwz7E/6APwyAquAvuRlxdf6Ef+f0A40Y 34gJ4f8svuHgHHRBBuj59yDb3/P8xwf/LqwLfgbqd1sGCH8aPZ0z+gj/UfjHKX5p8mN+PtTo pw1Nfgj/zq1bGifjNU4If8K/c0qkOPw/7HVzU3M/qtX8f9Jqwcf8U90k9HvpJ7RairEcLV9X YFy2u1YtCvsT/vtotQnjRjT42Rhp8iOlfhlhf4JpvGDifNc/3wP4P40/xhE/B2IgcG5aMweF 4X8J4e9FAPrq+Utvhmhv/2DPn+ufOrBrMkD4E+qtgbrr4iP8Wxj2F4PDPmNAzhwIziAISxTl fILbrc9W9Z6/Df+ViOzIwT6Ef+f0g6se6fp1hD/h37nFTfjHw/+oIw/T9pA9f/leQqwT3/Mn /Du3DrsOz7Z/PsKf8O+c0iH8sz1/gX6jEv4I/86tw7bDsev3T/gT/p1TOoQ/4Z+7yY8k/DHs 3zld0HWAl/l8hD/h35kFH4auj3mH9gyA496pVbS979T3aXXO+7U6/wNaTfugVjM+pJU0+bkI yX4dTvh77ukHtBni9cvX4vmbnzHsnw7/ofkJchPKKF7+LhMIJy0DFvwfAAQ4OAftkoE4pZzq +fcc/gb8hP9eWl33Wa2uxTClfimef6yc2QmK1tfUIe3SIX19XoQ/DZ7WGX2Zirixnj/qyQU2 Ap3rAZ8bMKTmXGrPZUgd+k0YN8vYV6vNGFtkoFf9LUG/eulZL619Xdv7SjMcZMgL7E2yn/H2 6fnXA//4KAGB2FfINvVzE/6Efyvgnwl82wsj/LUS6JsB+Ecz/U3Cn4kEdCrsvy3hYB8xrNKa /Ijnv+7TWq35FBo4DZf65ZK/hIgAjQIaQE0yBEL423uC/HqwP8q5mMxclFK2hP8I/OPkuLOe f4vgHyfn1DmT0Tl9m3fC30qE6tvDb9rnLQX8Mp7/zKSEP7T4rbS972TD/tHnTfjHhP3jPP85 aPmcw5uv69qmrVfeT7uNFMKf8A8zviexmGtRlHk9f8K/W01+JB9CciMkT0JyJiR3QvIoiob9 GwJ/RgnaDdtJ6Ne0vzmA/zOYWA7OwRhkoBbg5/X8z7NK/fLAX1q+Fj7YJ8HzN0l/NSf82YpA vH57pO7575qi1d01jOgZAlW19+0R/JPWEnU5eZYlA4T/GGCX9RC6/nrtsI+GZF08/57BX6Ev /hDs0TdfvlfSQx/zFzUGvNdCONcBfrznJOEvlRZxpX4NDvtXsY66rmv4+dyNHsKf8K8l2lGF oir8HoS/l/A34t3fgYNxzIjAP87zjzMIPKOgiiiARBMI/2bkElAH1qIDm26IEP4U/MoEvzCs q06mSoT/e7UyTX466vkPefdWqZ94/iH4xQBwgH+S5z/0N4oaAoR/I8CftmabDi/en7uXHzdX hD/hXwr+jQG+055/DPyno71vmT3/VZ/068Ivx5Cz4CVsfAXqxaVmfD1axkrP+A3Y65cuctc4 7vl7jX7yNfkxQFY7D9BKjrqN1PkXhX/TFKzTkb4ue/49DfuXXa9NkwfeT3EDgPAn/HPBv6zy GMvv5/H8OwR/desBsXv3Xqi+oOcfF/qPU7he2WDCWop7Lfq+0d9Nen0y8P9o4730sayrmAgd 4VscvpOeO8Kf8M+E/6QUS+G/WwX856HGf0FMnX80279Bnr/AP8nzT9y/DxL+7Lm2rzUK6sap HwgNiyRQuxgF5r3j3sP8LO4aY0AQ/n6CZqEhVSXY7vG2c0RWJOFxPmS86PsFvzdpiPHvFzNA LPg/CAhwcA58GSirECb6+1XCf+HHtFr8ca2WfEKrpRgthX+S55+e5X9waBgK/EXJJnnxWa/Z YM9S1mlRBMK/IPhLAj5xPS/fjdxoKTcJ/5Y+uDqMlIkCu0rlRPgX2vP3tgfkOVhZ+AJqA/4s wKcZBkm/mxQtSDIACP8GwF/yUWRcg8gB4d9a4yeE//OAYNuHALHtn2Gc998Z2DvX+UcS/i74 oFZJe/4m7B96/vD+O+j5mzp/U+vvAn8bzElfx8E+zaNP2/O3XyP8JwR/A3z7XzmhEvAfp87i 36qOcZ2CPwUjWzA6C/wi2f6Ef9jkJwn+zweev/xrhkA87mv5metr9vulfW1vS8h1hP8Y4R8H fMK/M8YO4d+DaEEvgE/4+0lcJUr94sL+zz/7oBf2l3/N8AAffG9/LT9zfc1+P5evzfsS/jXC Pwv20dfF80erazpd2U5XE+eI8O8o/HsHfMK/NvhHDYAhb9wyCgz8zetxUI8aCy7gt40Kwr9i +OcFftTzJ/xba/wM4B9ZxK6LktcNPKJJzkWvYc89f79Pf02ef5L3nwTyLPjH/Z5rxGAi8K8y GbUJ71UG+HHwJzuGImOT5ECev034t1hwCfwUL0gy/o97p1YnvEurk96t1anv0eqMDib8bcfx tTv85j51wj+qVNI8eBfvPlpiGPf+cUZEJvxlPqrs8NcEWFdxD1UBfwT+u7cSfHkg2dVrCf+W wr80+FeiLa20gJXe7NLrXc47X7m7D8sqlE0T3iMK/9MJ/7SDfZL2/Juk/MYK/ybIcNF7qAP2 sXv+hH+T1keeeyH8+wr/okqlbb9ne/6Ef+qpfoQ/zmMwR/q2Tc7lfscBfHr+nYl0EP5thf+J CGVLjbq0oG2johrnPZuwf8vgL1n20aG27ueHtWVIiHtCYf88HkaV19bu+Y9TLqv4W+MGfhT+ l9Hzr1K+x/lehH8X4I8F6J0sFx1VKJcuvUfL4K82o4vaFhkA/i0YAH+sQVDTnv+I4RFzfK8X LShyrG9dR/oW3fNvk5xPEvjB3x4npPi36kkqt+D/EMIZHG2ZA2V7/knwp0EQHxU55/1anfcB rbrQ5AewM4fujMDaHOt7O3I7HE71E5Db7zFo84u8kATAtx7+bYB+A2AvWwpt0Y28TzeOE/4t NXgKwz/OIJCftUEJVn2PHYF/UrZ/XJRAfuYl/eF0Nw/cONXPXBe35+8bAB2Ef9WyVPX7Efg0 NmpmU2Ph/0LNH7zt1mHl8O97lOCiD2t1Ccbsj2g1F+e3t6W3f4E9f/t4XlNOl9TeNw/809bU SORgEmH/qgFd9fsR+AT+GLkXwl9gy9GeOQjhL+dx5wn7J3n+eX5etdJr2vs1BP5ZBmqehL8o 8MXz96IA8PwN+KO1914kIIfn3zj4N02u4u6nAcCn3m+P3q/yWRH+LTV6Jgr/vkUJFuNEvyXj P9WvLPyjMA9r/IOwvw3/JM8/1iCw9v/tPf+Jw5+wdy73qxIifK92Gg/Ngv9z7ZzESQh/4+Df t1wCibZIo6RVGPLZL8dY+2m/TvwK1ItfibF+D62uwtiwp1ZXY1yDIYehXIdx/V5a3YCxcW9/ 3IixCY2WbgqGQ4JVnOdvw9pr4iQjIeHPBf5xnn+cQSA/S1sHecP+LmuqNXkqDfDuJWHPZU55 TX8YNIC/gJejNXPQGvj3ySioGP5ZitjAfwj4OU71KwL/ob8VqQBIMgqOOvKw0WqBjD1/815x c2DnKTTWAGgK8KnTW6PTx81fwr+li8OH/we1msSef578gDzXtiFsW/QeEz3/wPuP8fwFmjKi AJSfDUEYdf5eX3+MJADHlfolwl8+o7fXf/DI+6XV9Mt9Ru83eq8huKPwj8yrvFeSAWCiDI0D fwOAP26A8O+112km/FsKf7PoOgX/DkYJXJRjCLFI2N/ANA6g8pod9jfwVwmef6JRECT82Xv+ Q4ZFRsKfbQzIZ/Xgb60p830U1In3ExgBxuCJbifY308c/g2AvRfOb7kO4/1PxoAg/Du2cGI7 /eXxvttybVEPfMy/F3qvETmzf54EMRuQcV71yO/lPNI3ruQvvtY/qPPPmLsXnnsYIHo4MAAG /8rPXEEdna+470PDd8zP0vsMBD6NjY4wg/DvyIPMsp5pFKQc/1sjROS5xBkAngcbyJ4NxiHg BzC1gWoAmweoSeD1wv4VfvYq4G/ux5bn4TkZeElV3nvqexH4BH4HOUH4d/ChZhkCIXTa4uWX vc8KAZcXOGaubdjbX9vGQeh1m9B3iifddPj74X4/ElDkXl/EurSHzE30Z3mfhfP1hD1h3wMu WPAfLFR70fLr/s0LowTVRQls+CdtASRBKerxhwmABYEa/TtVe/4v4r7MkHu1v3cGb2D42L8r X/vwH7y/fJ33Pdvh3fdP35Axk3nmhL/lnVAI04WQRkF+oyAufB2NzCRBKQpQAZ4xAKqAX+/h 3xgPfzLKn/qu3/NO+BP+Q+HZvAqBBkG6QfDi8whfB8N4/vbP5Osk+Ec93ao937rgH2e05PXS a/P8CfxS6z2vfuD1zTUwQvhnKRq+Phxy5HykzweNAt8oePF5zBOGF7YO/jVfm9e6BP848BeJ Upi5ic6f/XMng6IhsKe+oP5smgwQ/pF9xKY9oC7dTx8Ngjh4dRX+TjB2TL6Mwj/u+8S/R+CP 5Ed0SY/ws1RjSBH+hP/EFUWXjQLb67cNAdsAqBKaed6r6rB/nr+ddW1u+BP4E1/HhHI1UB7X PA7gH4QnXRYdr/FDuRz1zUFXDIKolx9nAGSBsK7XWw//pgCfuoC6sIUyQPi38KH12ehom1Hg 8qxiP5NjeLyMYdBk+Md+LsKekKW+rkwGCH8KU2XC5AK6uq5pqlHg8nlz3XuFRkEr4E/gd2J9 uqwDXlNfJDVubgl/wr+zyiUXVMt2EUz4fReFVvo+CxoEheC/dT//xD/5m9v21+rKz/inSxa8 B3r441X4LvLIa/rxTAh/wr+z8E9SYqVhW5OhUPl9ZQC5EPyrhLz9XvTwe7cOaWRM1sgg/Al/ Kh3IQOXgbaqBYAF3ovAn7LnuqHsnKgOEPwVwogLYdOu/y0aBB39jpNTl0dO75/qijm2kDFjw fwQ3yME5oAxkyUBXDIIh+MdFKqowCBrj4VOus+Sar/dLRgh/Gjw0+iqSgbYZBZnwNwbB5Z/S asOeWt2wl1ab9/UT/XYeqNUdB/mJfndPGQxJBrwT4za8vh3XTRD+hFm/YMbnne95h/B/CQrQ dcgku17L6zhXfZeBphoFXYN/3+WMn5+6No8MFIJ/nj/AaymQlIFRGWiCQdAF+FO2qF8oA8Vk wB3+LxT7A3wwnDfKgLsMjNMoaCv8KU/u8sS54lwlycAA/gJ3Ds4BZaBxMlCXQdAm+FM3UT9T BqqVAcKfsGsc7LjI3RZ5WaMgH/z3GGvCH2XATQY4T5ynojJA+BP+hH/HZKCsURD7+xui8D+g 8mz/okqMv0cAUgbyywDh3zHFz0WQfxH0Yc5KGwQ1wb8Pc8/PyDXZRBkg/Al/ev49lgFno6Ai +DdRCfKeCOc+ygDh32PF30eB52fOVvRVh/0559lzzjniHI1bBgh/wp+eP2XASQaGO/zF7/mP W4Hx7xGalIFiMmDB/1EoAA7OAWWAMkAZoAxQBrouA4Q/DR4afZQBygBlgDLQMxkI4f91fHAO zgFlgDJAGaAMUAa6LwOEP40eGn2UAcoAZYAy0DMZIPx79sBp0Xffoucz5jOmDFAGsmRgAP8X MVkcnAPKAGWAMkAZoAx0XgYIfwp554WcRi0Ne8oAZYAyMCwDhD/hT/hTBigDlAHKQM9kgPDv 2QOn9UsPiDJAGaAMUAYIf8KfFj9lgDJAGaAM9EwGCP+ePXBa/LT4KQOUAcoAZSCEv3zB/zgD nAHOAGeAM8AZ6McM/P+CBrS8xX7TfgAAAABJRU5ErkJggg==</item> <item item-id="4" content-encoding="gzip">H4sIAAAAAAAA/+xdB2AURReevX6XXElCghQlNAWkJJRQBDahBBBCCU06CSSABBJIqCqCgBQL RRAQkBZ6C0UEFAmiSDcgggVEBLEAgggoRfjf29m929tre9z9XgiZ8LH7ZvfN7My8ee/N7Oxc MCGEAbQHGLhzFfwf1LhNWkqT9D4tslIGES6YAFq7mCCAvm96n8SUfgPSB6u4uLoA3aA+bZJf TOmTRW9L5BJVwP+azP4ZjdJH0uhWmB5EJFpvTABkwH1RcOwMybVQ2GgMM9T0GEoUSu6RQ62Z x2VlDR2QPCwrheHuqAcwE3FQ1StjR6vr2V/XSK5rJdd1kut6yXWD5HqQ5Hqw5LpRct0kuW6W XLdIrodIrodKrodJrheRXI8oznDNXpnQ1uf/h9i8L0N+XLKp+DkiCQ2Jktx/oCcaUZzCyo2P SGmUg/sPHjwQotMBDwrDIxP+BWAbPgnADqcFYJvrCNUPekJ7fjDASGg/M9Hmh54JkonShxIH CAcURWkDPIHiBSgGKAEoCXgKEAmoDSgFKA0oC0BZLQcoD3gaUAHwDKAi4FlAJUIltwqgKqEa ohogGlADUB1QE1ALEEOoVqoD6E2obqgPeA7QgJNrQlhAHCAW0AjQBNAY0BQQD2gGaAFoDnie UN3VklCN1RPQC9AG0BbQjlCVh/q0A6AjoBOgM+AFQBdAV0A3QHdAD76/pMIxiT9PhmMfQF9A CqAfAJVuf8AAwIuAgYA0wGCe5z7fdkOAHgrIBKBiHQYYDhgBQNU7CjAa8BLgZcArgDGAVwFj uWdPh78saJemkHYWpIUc8kMESI0gS9hWvT95MOZmk6Mh4z/XkRhmZWvxvdd2/7KgQdxeRol1 z1uB56HmBkC+KVzreR9MhGHwiTF/TFd5VMHF59LL2Jwkdl5if8xXOIr5GWjJNK7WHy4YiIIR 9ye5fEWs+TeG+h9EMuA5krmW9i6AdWSwxNh35eaPFTCAP0c5UvBHFZ8O9n/UA6gDsP+jHhDr ABOxyWAIoXogTBQXwZ+jDsD+j3pA0AGoZ1APYP+PJFQHlBHxCjrgGVFcJf5crAOw/0cRqgOw /6MeEOsAgRd1AeqA50RxDfnzWEL1AOoA7P+oB8Q6APs/6oHnRbyoA1Co24jiEvlzuf2/p4gX dYDQ/4W4VP7cWf9HvYA6AO1sBkDo/wKvuP8LcaP5c2f9n6Fm3C7gNfFzCXoJnwt1k/i5GEhZ aeD7n6TvoRwkJGX17zAqIyWyZtWoyKZDhiVlgf/GSZL1StN4zqoIF6s2aZ/QoSa5UXfzEPFD Yeemyd+rLYoW+r2KloWjhQIdhIiaQKxS4DWQZGUHrrjUJUVJVzAMf8YosPPgWVWmGB8XrRCu BikEjmAFUSxmUNqf1phBommfC+XsYS6crwf0Brb1DO0zeFewtaxoMzAVPaanwLMiiu3Maa5n 3FUY+N47nXsqeFBLhwGDUjIjW6eMiExMH5Q0mGyYdGVEXr+rI27oDK2xX2KpqzC0l1bHbsrV QfKoywxNuzfTkk978X3naSt4/dcWpCgFrEgU9yc/PAFJeav/sL1+4hvpeS7ndJDlFDhmgVyl cLbMi/wZrAXUWXLzR2nT8edNoQcNA2nHnNOhZ0VC76bUcFlWIfIhym8B3OLPbfYvRg6rQ0D7 hy2KehmlwFv75yhbd3SGLjbZouPDaw4yNnJUrgL7Ecr3Rat8d+z4HVEjC+3DJKzzgMFxaWmN kjIH9Gmc3jelbVK/lEwSopbKdYiy/ahByelpcKlx+rChA1KG4kUSokroENl0ZNbQJOhhutKl mpmbmOPa3rCYm/WKa3u91FNwHm6OIzea3ih/Y1qjXnBmMTeGw/VSkb0iIao00BBpbn6j6I1p EB0Od/bi/lmuBTNQDkYB3Rn+sA6VdCxswMHr+JFAgskK4gjQg1wd2/oztjTD+YWE718WzmIS 8jFW/x+Qbpn2ozJx7Dzini61h5ZMZbBO8SicC32X1i/D9QpnIWzfpe7ZC9gjJVedP6vNYaGc PcCAmvkSt2nVFF1P8qtCxcHbEuPTK8hfe75DOYlJ4HK8HdOMqP4ILcAtaZN5Z/ZPKus13OjT /8z+uWgFd/bviiz799/7v0WIf/1f1OXYN+Xmj+NUwf8NhP3DMbI/7R8KKkqU3PxxzC3Yv4fx f3I9+D9jvfR/rnvt/zzQGcbK83+6efB/nPpWCZ7t36iCbf9G+c/+MfrUe77YP/dBsH8PGwq8 /XPakrYQCP8X5/oc/d/a7lhcBvR/hbzRij4K8z84v+lP+4fzMTgPIzd/nFcV7J8z/6c5aRMq N///zP9xEQrC+P+41/avrt4w/dEd/+M8sT/9Hwuhc5By80dNE8jxP76bcNR/deSwOgTUf2h5 cT4V/Vrfx/9P6w1PefZ/Rhds/2e0//yfOvrUEYX+T/5qSVtwPv6XHx59+/ff+z/4Ptaf/g+m hWNqufnje+BAjv/x/bM/7Z/wvl1u/vgu25fxv7/9nx8d/B/u4Mb/GaM3POfa/4nywv9xTPsp vSGicP5bpDUnR/lk/1roU9P+//bPm/4nDgXe/jltSVsIhP+LcuPo/9aV22R2QTz+xzUGj8L4 vy3xr/3D9RW4rkJu/rhmyd34fySj8ig3gt/zn/k/LvgLwvj/pNf2L0NvqOof+xcI/wcVtj/9 H2Ftodz8cf1eIMf/vYkz/RftVb0LwQIdE+UV103hWirfx/8D9AZL4fjff/5PI33qNl/8H/fr BwT/xxv/6YKyN2Mgn5oV5DHwf5y2pC0U5PF/fn3/j+sJ/en/RBL6Tltu/ljaQI7/cQ2lP+2f sH5ebv6Yfn56/3/La/9nsN7QU57/4/37/0F6w7HC9//+s39D9amRhfPf+aslbSEQ/i9++uHM /42W22iiYBGN//GbgUdh/I96w5/2D7+XwHf6cvPH72Ueh/f/E/5P4//eHuxfpJf2b7fX9u8j vSHOtf2Lzufjf/wWzZ/+D66nwW+E5OY/iQR2/D+ZONd/1eUwSwLqP5RG/L4Iv41yq/8MHR30 3zjAa4DxgAmAiYDXie3boSlwPhXwhijubf58OhxnAGYC3gHMAswGvAuYA5gLmAd4T8S7EM7f BywSxS3lz7PhuBywArASsAqwGrAGsBawDrAesEHEuwnONwO2iOK28efb4bgDsBPwEeBjwC7A J4DdfB3tAXwq4v0czvcBvhDFHeTPD8PxCOAo4EtAHgBcRXIc8BXgBOBrwEkR77dwjr7F96K4 H/jzH+F4DvAT4DzgAuBnwEXAL4BfAb8BfhfxXoHzPwBXRXHX+fMbcLxJqGz9DfgHcBtwB3AX cA/wL94r4nXULdv1htKF8z9irynaJ/93pz61VKH/m79a0hYK8vzPynw6//Mm8a//i98F4/fA cvN/iwR2/mca8a//I+yJIDf/+cS3+Z+xHvzfWC/937Ne+79z9Yah8vxf7+d/FugN2sL5H//Z v8/0qTGF9i9/taQtBGL8s4A4H//UkN1qtiCe/0F+p+MfftzjbPwTCPu3mPjX/uG4Efe9kJv/ EuJ+/ic2a7tZGucqPPr+T+Dt3wGv7d9yuzWKj9r8zzLiX/8H933B3RPk5r+RBHb+J4c41381 5TBLAuo/nDfHNc24gs5b/ecoWyv0hgqF61/95//M16cuLfR/8ldL2kJBHv/n1+8/thL/+j/4 5Rzu7yU3/w9IYMf/HxL/2j9hj0O5+e8l+ev7j++89n8WmAwdXPs/1X36/mOyyXC0cP5brDWr +2T/3jClmvO7/Yv6tMDaP6ctaQuB8H8/I87931qyW80WxON//K7uURj/7yf+tX+4n2Ucka// D5DHY/3HozL+d9z/gTu4m/82GX5wbf/c7VeWH8b/h4h//Z9YQvdwlZv/KRLY8f83xLn+e5gd IFH/4X4WbQjdu9b38f8Gk2Fgof8jtpo1fPJ/GppSxxf6P/mrJW2hcPz/3/s/p4l//Z8mhO7X LTf/MySw4/+zxL/2D5U87lUuN/9LJH+N/x33v+YObvyfGSZDjn/8H8e0G5oMDQvnv/1n/940 pd4qtH/5qyVtIRD+72Xi3P99mB0gxeN/3NfmURj/XyP+tX/4+xQouXLz/5M8HuP/R2X/B8f9 j7mDGxu10ORu/4caXqx/C4T/8xfxr/+Ddgh/k0Vu/nhTIMf/2EjO9N/D7ACJ+g9/o6Yjofu6 +D7+X2kydC9c/+g//2eWKXVN/vN/LjHEhI+KBUM1p2Rs34Ro+HMdtjrDVQnWBIEqI0aACWAG WAAhgFARbzicRwCKiuKK8+cl4fgk4ClAKQB+J1caUAZQFlAOUB7wtIi3IpxXAjwriqvKn0fB MRpQHVADdT2gFiAGUBtQB1AXUE/E2wDOGwJYQKwovjF/3hSO8YBmgOaAFoDnAS0BrQAJgNaA NiLeRDhvD0Dr0lEU/wJ/3hWO3QDdAT0APQG9AGgnkgDJgD6AviLefnDeHzAA8CIfnya6ni46 HwrnmYAswDDAcMAIBvdxgn4KGA14CfAy4BXAGMCrgLHMY+D/Ou3JNn5n/o9nftv6yEd//6v/ 3v9VMf71f9sSuqeU3PzVTGDnf7SMf/2fREJ/e1Ju/mFM/pr/ueC1/7vIZIj8f63/WGYq3P/T ftbAt/Ufa0yp2b74P+75Pe9/5b6mCrz9c9qSNv5AjH+KMM7HPw+zA6h4/gd/c/NRmP95ws/2 D39vFH9nVG7+xRj38z/91SrZ+efn+R95+58Ffv+rO17bv8Umw2J59i8/zv+U8LP/g7+zi7+x Kzf/Z5jAzv9UcKr/qj/s/p/cbxfjbwLjbwu7039RHTrLmP+ZZDI0KJz/8Z//85op9VD+m/8R QoH3f5y2pC04s3/eBNn2r1bg1j+us9q/TlxxX+WuBm78X9nP/g/+rjru6Sw3/yoBHv9Xg/z/ 8KP9w9+T703kl/85meN/T6teE7xe9frA6vV8xHwp2+v58PN9I3IBkbkHRuBOF56/en1O9qjf edqurN4QsHqv8uW7IbJ6v6KuVDPYc2s9mrrSovqVM0CJKX2JmeE05xA530DS4MEGEtQTpTm7 R0PwxVCyY8++EXJtYOu41i2cX/GP/Wv+Ke619c+v9LV3EbKD5P0a+li0aSD83/oMnQPGIPZ/ ox+i/cTj/z7Euf8r+L3O/N9A2L84P9u/ZEL3tJabfyP78b9PoSD7Twdl+U9y7afjrHmC17Pm Yvv5k1/sZyD8nyZ+9n/6wjGVyJf/tgEe/7dzof8edv/PJDiikcU+7a3+c75qqNB/8retdbWG hIbA+0+fMo1C4QGILmebWddb/v4/j7P/5Lia1vsQaPsZCP+nk5/9n/5wHEjk6//OAR7/d/Gz /cNaSyNe/P6JyP49vv7T736ef6heaD99mqu117ZSXetqDp6GwNvPhw2Btp+B8H9TRf5ve9If 8kmBHOs+5Psv7+0PrhXv8RQ9bwtPkMBp4HR4Bm80Lw1of/D3nIYS+fp3IJS9CX8eB5pfsH0p pA/32yjehCIPUf5BvMRjyA992pcwND09C4SQmAjKUhYZxVnzViC/ydAmSYAB8P9gTnuizWsC 7dyHuzOds/iBDqA/ErDXo+XQAFCD4XOi3ke1j/oOvTUjoWVES20BhBCUPdALhPpS4YCIh8i/ yc3pae0I+hE4+sRfUcc36T25a/gs0y+1ieiaPp8dcarCug/zlrEC3edq7xong1awlO8JOz58 /sozJzUsUX4jW6fDlptJbA4r0FtP9SpZVLuW5yvmwLfg+8mzQ8puZJ8f92TV0vq17MYTG3vV bbKZrR61LLZh7fU8X3EHvrTYvdn7gS91eUTtTpq1bInBVT5+s9Rm9sLbBz57O2wVz1fCge/+ qBcObym5mT1xv/uZ4PBVbJXq7/xd7L1N7PXJ+0rl1l3N85X0yHe6u/LyzZ6b2D15Pwx5baSQ 35MOfDmS8jTWZPzQfdwmdv8vpQ91Ngjle8oj39f1frbEb9jEhr+1vl/neut4vlIe22HX+R1r j2/ZwIZ/fbR5Fe1Gni/SI9/82I7H+ry7UcJX2oFv46l2Y07OXs3qBt/vueazTezJesdfetKy iv3qQINyteF5KV8Zj3x3ln3849UBq9hRC8Zfj4kX+Mo68L2cO+rfMdWz2QqVetcc1H8LK9AH 95w+/O66HJ6vnEe+S4ObTf9iWTY7OrbI+SXrNvN85R34dg7+oE/l6Gx2aYU6XWMg/QmGhNqv tFrNflqvbKPlKRt4vqcd+C7rX+owLCqbnfXuR1/PX5/DbpCUl/I94/E5jaHrXozZs0zynBUc +FqWWdb5UPxqduuabV3L9tvAan/95902h1ayS16uc3XuQeE5K3rkWzXziQ1z4laxx2tGLjz5 xka2AfcrJZXs+EIm5zYR9BUdB+Df4fcrjhuwZCw7/UBEvKLBTJbYhWtW+se0zD6jPx3Kzht3 8J+/i42Q3GcL0vQEPuF6tegmk+5u+YvlxhXkmbbSfKT5O38+uL8TPaMlfVZGSW902/rh1n/X slfMw+sMvP2ey5JO/6f14dHRWexcDyWVpifwCde3dFp483zCdVYjs6TOn89WUioLlYlUFq4s HH7hn86z2HNk+va/9q9ka+x6o3bv5HfZvcOfHh6bvYKXhSoyamjOX3cPLP1pDmu6p9tt6rXV oyws9lBD0vSkslCLlwWtzBpy/nzSGqrqUEPpz51Zv3/c+2yHgS8MfMOwjZ3xQ9zk2osWsivG BRfPbf0B38uqeeRLmDvyqy59F0n4ohz4WnYouaBOwxw2N+qzyEGbF7Ndzr64d7ZmI7tz34pe rSou4fmiPfL1jUk+WFO5kZ3cIm79nvjFPF91B776GTdWdU6ZwM7/Zfr8ndFT2e5QmDlPT2Jf VhcdOXHtNJ6vhke+JxNuTQrZPoWd1uL4hAPPvcXz1XRZLzViznQc9l02+2nk0ejO/y630pSv lke+SiWSp0ycNoe1rFi0t32SUC8xDnzS9Kdv+Htv8QnZ7N3WXX86MDibl/DaxLOEH39n2cge ibPY073rtEhOXOhRwj3pAGl6Ugmvyks4lkKOhDt/PqmE17ErKfqeRwetPzEjbSnb4EyjXSll VrCN44MSc88sZQcPbbP1zZTlfM3WdahZqe4YFnoo5VrrOeyNqqZyY1JW8nz1HPL79W7dEwv1 S9l1s+tff/HOclagp5KmfQ/Wz2HHEPzK/zkHvs7MKOPfRS+yydrr+9ZpQ2KlEjF04MLsyplj rfVzOPt25tiEsyxf8PoOBZCKxoTOZNdLk7LZKod3z+rQTih4Awc+qejVO9+vVflrc9nJVfaM 3rd7Kc/X0CPffP35kT/VeY996/7VV06VFfhYBz6pKhHofX+aZ+zduZgX4VjiWYSD5jRq+/rT 89hq0/ptm9Bktc8GW5qeK4NNX0N6FmHnzycV4TiHGmpz9Gy3D155n+01/8jSIx8vZvOKt5jS vNsEds2l3d2LtJ/K12wjlzX7GV+TC397evstEEGBpnyN7ficDZlWNv1gaYmDi6005WvikF8G n1/iR/tXVrm9mp3JG5O/f4lSzxm3im/JpjJa8l6/HgMrXV3BFi3S3Pxl76U+OyTS9Fw5JAba knmeWtL580ldr3gZJT2bufhO4vhlbOg7/85tPHiLy5JO5p/Yk2MhTW+ypKR7+JKGEXky6/z5 pCVtLqOkM8pta6hZsISd16/G61XWLnZZ0qhzc+6Maj/EY5tK0xP4hOsvdMRwky1C5LWp8+eT 9s4WxJPUt+ZdIUHqKd/zDnyjB34+tumKbLbEz8n9Z+pgYHO06Zg3I5exmxacu772e2FioqVH vs9rR53vOXoZez9u0LS11gmNVg58npxhypfgkU9qCKkEtJYhAftvf5XRtuhqtsmPt3tW/miT z060ND1XTnQokSfrzp9PKgFtHGrIqE48HDP+fbZN15M915zKZkceKVN+dqtZ7LGMsseGHBRc hbYOfFITL21ZyteOSPWzVB8LtDClRVskUUaLLDDvHFqx2yJ2x7QzSUcau7aYlrUjy/61P91j i0jTE/iE663Un2y/E/c3GySzRZw/n1T7tJdR0m2328etbjadZV9d2nRw9VUetY+nkkrTk2qf Xrz2CZZZUufPJ5W9DkTqNv6S+HGJNRdXsLO6db3xTd1NbKvQlKrLLuewLYO6DZxfWphW6+jA J73vpYOLuuhfzGEHzP5sfet4YRqvk0e+SjfNrX+umsPWOXP6gWXiOl72Ostokca3N1f+u+Ja dumVdh9WvLvRZ29Nmp4rbRAus0WcP59U9oRPt9yVdGD4K+qe/TewH88Zq1G3zPF5aCVNz9XQ KkRmSZ0/n7SkXWSUtO/5hNMNQHOeO3B77vfV1vtcUml6rkpqkVlS588n7WXdiKtBnTCIG5WQ Ftdx7hJ2R5Xr5e8zwmRyd498nddo+10cvdTKR2u2h4yandj5z5yl95eyX1xe+uLFOmt8rllp eq5qNoLI856cP59UhnrJKOnv7Z+v3C51GZu4zvJ00JMrXZa0jkxNLU2vjkRTd+Q1tZHIkyHn zyctaZKMkl4+HWLe0HITm7TDzJZ6drnPHrE0PVcesVlmSZ0/n7S3JBOp1EunXEird7ZuabCM VcT8snrDr8LMQx8i9Wuk/pBArxu16U785M18b+kro2Z3N67edkjllWyb4rOavrl1rc+9RZqe q95iklmzzp9PWrMpDjX0y+4J7xobLGa3ndrRe+zujWyxa691rROxjG368WeJxkzhZVGqy5oV PEaB3jWzl27it8JMQD8Hvp/bVf5jU7El7L970hpvmr6Jlb6kpHz9HfgGV1ct7/ZaNtvwgWVu elXg+6R9zK2MFWBTG91auUh4zgEOfMUrfR9y6amlbOPda8sO2Qn3bau0bKIxm22+48y41c8K fC+6rJf3qk7/LnfLBlagG5e9kJM+QuAb6MC3K2zfpe7ZC9gNpZ+IXXJiPSvQR0quOn9WK7XU hSEfBtv680xu1USmlytQIoiCSYcjrhWUu/5kMEOHcxjoeoxO3OrHTH4Nkjfr4HH942g+b7n5 ZzB0TQUGuv6nD0kjw7iy43NEeZc/yYDjcCK//EMg/2/14vwzIY0keIoUMgiOGV7lb/v+yVXL uVv/X030BRAum9Pl7DB7s/8rrh/BVRXDOAlwXM1zjWVwBRD6QYKgiRc7ZXKZ4nIOugA3lWuA FBACrIz23MIw5A8m4qVimdblSyoSzD+4kLWCfEIIxyPERMBZOLeVB0Mi+GNR/sgoGnBHhQIX 5TJEyR9VCpqmGtfEw1HDLUVliFbRmjvq+Pv0/NHA3x/E3x/M329UvMIdTfx1M3/dwl8P5ePD +PgiXPzr3EhVWFJL72S4sum4OuljXa4XTfiC4OohWwVF4zosgberNR3csgDrS21rn3Fw5TXA eMAEwETA64BJgMmAKQBcN/kG4E3AW4C3AdMYumJ2BmAm4B3ALMBswLuAOYC5DN2j8D04zgcs ACwEvA9YBFgMWAJYCljG2PYzXMHQb9dXAVYD1gDWAtbxK3w3ADYCcgCbAJsBWwBbAR8AtgE+ BGwH7ADsBHwE+BiwC/AJYDcgF7CHwW8fCMFe8Rngc8A+wBeA/YADDF3HfAhwmH/Go6Jnvf/g 0Q68RGhEXZbGaB1idA4xeocYg0NMkENMsEOM0SHG5BBjdoixOMSEOMSEOsSEOcQUcYgJd4gR L60bzm1G2ozYB+xh0srFJRX4irMV31GwltuDH4VdtA/n9/E9E//DbprGnUeSc+VK7jV8uz6W eAj8fbky77OmN+VMse/SZ9bLbXF1YpuhP2RJ8rnGcpIhCpahA8K0h1/e3fXENzMOLNy2++vh KuOgytdsjrck7AH9G8sisGRlSUk1LZ/9vlKUDydo8SRPWVV1TKkJUnOv8Joyy5k8ZZRKzb2Y w2uldNWAwtdtg5Q3VDVUN1XB3CAoTxmjPqZsog/mHHegIBW8VpS/c7ByvDqYW7FkYJopljBo j3BVzwNNL+US7RMquoLlnqKa4R3lbwa6ymOLcqWBPks1Ls2VhiscFYVl01aGZ2kJz4LrLHK1 IUBVAQpXQcQzy5gFzAlGzfkwSGUyd4HCFQRTFWuUpZV9VfRlc2l1jHqsuqNaza1KiFSXAKo2 UNgU5ZTtNB8pDVr6mvhPxQuq5sopkEMDnnpKmQMUvgj8SD1X1VPTTk1fJ25RRmqOKV/VqLnX LHlAXeEonMq+pGyrGajCNHG6V6cI1sxS7NPQKYVvVV+oU9RjNbQtqquwdrHO2vK1W0m9F54M J+6nKGpBXf8FVCuuRKvURxRIJXDUt+rfOQpf1uxXbeP58BXMD6rXeKoWX4ZjSixtTT4HWnZc 3Res7qQzqj/Qq7k1dEilas7r1NxKvGD1PG0HTSegcN2aRTNPm6g5r1Vzq9+uq5HaAhSuSVRq TvJ8uNKwuGYpT+H6umuqTnqaQzmag74iR+Ea1gPaPZqD2ki4E1em7td+qimjbw1pFucolcai /xTqE/2dwzq1xqxvAxSuDd3IUaWAwhWfubpGWsqH6zhP6kw8VQqoddo9WppDJM1Pe5GjcHA1 SzlMO1up0gVzQzSzap3WoqoPFA70JqnCdSp1T6D6c/LSRrdQPRcoHHTGq/ZoDmgPAJXC8V3V 7lPVAwqH+ofUVzTJmhVaOqWyXPe8Olqv0tDpyDO6ltosvVpHp2HnacvronVndfRlVFPNGd1p zRw9fQ37o2qbfrw6w0BXXnRXfqD6RjUFWqyynRTUtZMCXEsyX9VFvZ27M5mjRqvzOApfeKaq Kqmuqy6o6LT8DrVOO0K3EGoCJ9tr6pBKhDrDEX1RjioDFE6MH9Tc1yZpt+uoan1NNUY9Hnqg mpt2TFXlainVnbuWq13EUThFuFv1tqaTupkWvzUizlwmR99K5CeJg+c166g/35uHYQeLHsJL RTY0Ozfa1bq3a+w4Tuv0FF1rxx/RDDfhHOMk8LHTRKOzRpxW6S3iEQbnjDitEKePG8OJbZqE WSic1La5CVmZKf2eAXcbP7JREwX/Bz4Yp3E/gCoWxz3LxWnt4qpwcTq7uNpcnN4uLpaLM9jF NeXiguziErm4YLu49lyc0S6uFxdnsovry8WZ7eKSuDiLXVwXLi7ELu4FLi7ULq41FxdmFxfP xRWxi2vOxYXbxXXm4iLs4npwcc34mGZcXBr3f1doA/zrTfD3pcVXeuJXGfBHr1Tivs5gONHG 9ogiI/lvHm1/3oQI/vuTYUT++HceQ78JxCDOv/rD5e/190fZovG/7ZuRxnZzAHJDcSg/fjU0 gsgv/3LI/0u78b/9/EMWyFyyzK9yI/n6H+lF/kcY+rwYqDSgY4o9kVJaQvsgpXSE9j5K6Qnt d5QyECrRlAojVJYpVYTQHkCpUEL7JqWCCO2VlAomVN4pFU5ob6JUCKH9jVIWQnsBpSII7ceU MhLaWyllJrQ/U8rEUc4C6i+UhmCnVz0HnP9A3q5Eg85tpO2KkUTlrn9nW3BeyOb5OhJT5pT1 O+/jh4r/bvjpaMjsgxDfvK4i8kJ67/IkL2TJOaCXfKmwKux6xTvXaHA0ZGcHiGfe/6W05D6l i/vKSO4jLu4rK7lPMHfTz85QtupxNOSjqnjfrtXlJPeJB4sYcukhvryrfCX35TYL6TjQlBcy ti2mv+WEcH1xyUWrT1T5MmTzEIh/rZNi7JbhC7qUPx6y9hrQ9d9UurrPsjaH6ZWQFzJ+B9BF 1dZ8l0wyl8+OzwvJnor5XKi/JKNXiakZeSGziiH9SaKrelkq8774J199q/+WYyEfNwL6nXMu 6xmlnbYp1lxr7ssznOej5peb5hHJjdblndwUkOhOhds7laI7lW7vVInuVLm9Uy26U229Pw7u bU9aWO/SiO6ydz6wJrSR4mktcUDvQCe6SuXsSS6HYdwXe4P4b1NH87OlkSSDi8U55CtAJcBz RMJIJRX+BnB3YEDdo3f5THjV4PIq6rsgyRMjUPPZbEcm+G8DwBendqMqN6YTtyljlypXLhhu fLFz+1uaazF2XuGzBGezFXa80o6k5HawcR/a6qLs2FYY4ssPU7zo8pWM8CyVOE/UXnYkX0WP RY/Wlvg1tjI3UhRLESMZ6UM92iKMrp8Fx/70i800sEbokooljpE45LbJHc/7VTvOUdQi5xl7 WbWfBoM2Y4JxrKBWMmoglEpGhR+3KhiqoO1LcY2lNRjPUr//NyvNMApgUSq0TttMeC5dLB8R ay8VP0qOQhDuxyPDzWkI/IyCn7pT8MXg8xk7lr/DeuIs/Tw2lQsn2Rpc+Mp6nZbrAH/9opWm 951nhfGO9Hkln/hKyhnPKuzF2/q8+wn9PlR2wMaziY8tRHGChGrHlofWekaVo/gZhAeTmy9N X2eXvnh7TSUPMpbG3Vv95/GE5CjZ6ZcgB4m9AhOC7cnvOfx2YtKo+w7OIMZxCsyuScQCJzSi q6NUhr3ZtJjyTt5P1aO9yjU4ud+ZeqR1HWTHG2Q9s9W1UHRv69rr0CctMwsztBD6FTRjMxWu Xi3iZBLDWC2J6xEIpsnQ9nW5TUJmVlKyijz8h/TC+8cUsF6DuBdvWd6OP7wef30pGn/5Yf8h r/PPY2yT/oHY/ycD0PdhfuzURfA2f3FgfNx/CvN0tf/PpJKEvF6KkDJ+LGth8G8YB3gNMB4w ATCR4OtnaDvAZMAUwFTAG4S+8ywMBS/I6b90/64ZJVDjvcpdle7QdaLo9HBM6SnRzl7oBt1R WFO27pyF7tc9BY0j1j2vMLaE6uuiM7j3rwIv98J2rHCXgosvr1SQY5o+gI4Wgc7TdLBcILER tusdLd9b6HVMpxZfKpqO0prOZfUU0zbtFJON7w/jMc1LKhs9xXRM09givv+yur4R03mGobVH y2xWdPjt3QdYilDViaIbmenhPRnPu5z9P35R7bTD3maceyB7/zGVZN+xZOPD/KKa87TV/G5b 0jxGGgv0L4qIf4drfLKL3czk/aJILET8ZTT0ctV2tH5pPdtLKJVEZ5Lb9XLYVbHkjpIpuf7+ LSTH38L2VrpcS66n30LylLbGWrOS38Ip2JI7yr+Sm2w0dHWvGTReSW69B9F38oPOPe6j5Gqk kmvyn87VWmvWPo/RpgItuaP9K7lljIY33WsGrVvJlXov0zQNGTEdprXRZyxdLUpLuEVMM5Z5 VvoiaRqxjvkqXEy3YkaGO+shla4MupsfesiPPu64qpVIb5Qfe4jO2oISr6Rg9xC7XweN8rmH FDUZ3nWvgXSye8gnhj+MF/SrjWL6J30VkzMJH39jz+38IOEnfZRwnVTC/eh3660tILEBBdt7 Ge1fCd9qNJR2r0H0siX8kOqGeYZ6vFlMR6srmJ1J+K6rs6/nB//8lo8Srncj4b765wZrCzy2 /rkfJPwPo+Et9xrE4IWXc90wTXMkSEyHaY8EOZPwcTeW/C2W8IoyJby3BwmP9FLCd/so4Qbp 79L5UYcHWVvg8dXh0T5LeI7JsNC9BgnyagT6+V+n7oklt4lMyXX8RcVQr39RUSy5Z32U3CCp 5Jr8p5uDrTUr0c0F278e5V/J/VZrWOdeMwR7JbmqvzQ3xZLbOECSe8BHyQ2WSi7xn841WmtW MjIkBVpyR/pXcvUmwxvuNYPRg1dhe2ODb2u2aekbGHtv4w/jLf3qYBt9zXhKWcdKfw/nmarz dvR21VArjbxh+r12dDN9faM4ffTRxTSOSgV6i36Ycot+uUagN+uzNaeCe6lt9ArNuuCeOoFe HdxDFxK8WSumDweVtV5H3htBo9RiukLwdbU4vyH6tioxfVNEh1vKa8MtHQwCHWZpb6gbZtIL dBFLR4MpzGgtb1BYcPDQ0KQgMV0l9LiVRt6OoRX0Ynpq6BK9OL+vzA+0Yrqz5YFW2n7xms26 eE2K9b6+2ihdX+15a729oputWaivb71+Tm/SKIK2Wq//rJ2vxme38c/SGvW/apxpuBq3BlzP DzMD3/mo4YzSXxvyo4YzWXugxKss2BrOzqus7rOGUxgNm9xbEJNXtnndn2N+zw+22fG9hneS a5JIVY1V/pNcs7VmJZK76vGRXFe/LClfciOMhufcawazd2/k/v75t/ygcx1XQXgnuWap5Prx fYPFWrOP7/sG3yV3jtHQ0r1msHglubNup1zJD5LruArCO8m1SCXXj7OsIdaafXxnWX2X3FfN hhruNUOIV5I78274n/lBci/4KLkhUj/Xj7OnodaafWxXnvnBz1WZDMPda4ZQryT30r+XbgiS uwEkd2SA3mzd8VFyQ91Irq86N8xas4+vzvVdcsNMhq/da4Ywl5IrXo1sW7Mcxu05VF4ZTdbo qhlzdfWNX+meN/6s62K8petvVOlHGEP0k4wl9XOM5fUrjVX0243V9QeMtfTfGWvrfzfG6O8a a+qDTdX0T5oq6quaIvUNTRH6NiaDvpfpnm6w6bLuFdP3ujdN+3XvmbboVpkW6j4wTdTtMaXp jpja6b4xxeh+MhXTXTbd1d4wndbeM+3SKs0LtHrzS1qTuYs2zFxbG2EO1z5hvq4pbs4DrAdM 1Txh7q+JMMdrQs3lNCazUqM3n1crzXvV90zS+TRX82VC2YV4LPtl3UKjmC6nb+t0hfS0Pxrf 8s+oNsHrUe0D0a8/f+ljby8inXE2++/Xn8N5aZTmMcRcUH/92f53Yrm+P0TO/DOR3fc/CzYc ctWStLbDPcw/2+Q9PojRrArJsc574rklRG1HH7IM1zuT/4q3V1z1j5/m26+f/+Sj/Ie7GWH4 Kv8R1haRyL/xcZV/V+MN+fKvNhlKuNc2EbLlP0MXb8zQVdDa6AraqjqlTkxvAdqZ/D97s83N /CD/v/so/xFu5uN9lf+i1haRyD8pqPIv95fCH17+ZxoNF91rm6IeRy30PgV/v5I/uv4IvnVc 6xYuLuWb8D8AAAD//wMAR4AyDRAcAQA=</item> <item item-id="5">iVBORw0KGgoAAAANSUhEUgAAAecAAAIZCAYAAACcffegAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAD9kSURBVHhe7Z2Nlao8EEC3LguyjleC 1diMxfgIgiIGSEJ+ZibXc/Z879sNZHJn3LsJAf+evCAAAQhAAAIQEEXgT1Q0BAMBCEAAAhCA wBM5UwQQgAAEIAABYQSQs7CEEA4EIAABCEAAOVMDEIAABCAAAWEEkLOwhBAOBCAAAQhAADlT AxCAAAQgAAFhBJCzsIQQDgQgAAEIQAA5UwMQgAAEIAABYQSQs7CEWAzn79/f033xggAEIACB MAL8xgzjRKsTBGY5I+gTEDkUAhDoigBy7irdbQaLnNtwp1cIQEAvAeSsN3dqIkfOalJFoBCA gBACyFlIIqyGsRQz156tZplxQQACuQkg59xEOd8XAeRMQUAAAhCIJ4Cc45lxRAQB5BwBi6YQ gAAEJgLImVIoRmAtZtcRS9vFcHNiCEDAEAHkbCiZ0oaCnKVlhHggAAEtBJCzlkwpjBM5K0wa IUMAAiIIIGcRabAXxHL5er2UzdK2vXwzIghAIC8B5JyXJ2ebCCBnSgECEIBAOgHknM6OI3cI IGfKAwIQgEA6AeSczo4jNwiELGOztE35QAACENgmgJypjuwEkHN2pJwQAhDojABy7izhNYaL nGtQpg8IQMAyAeRsObsNxuZbrt5awmZpu0GC6BICEFBBADmrSJOeIJGznlwRKQQgIJcAcpab G5WRIWeVaSNoCEBAGAHkLCwhmsOJXb5mWVtztokdAhAoSQA5l6Rb9dz35/Xv7/m3+XV93qvG 8+kMCTcCT7cQgIBaAshZbepWgd+vIsXsokTOVoqMcUAAArUIIOdapAv3c79enrfHbyeP263Z jHmOBjkXTj6nhwAEzBFAziZS+ng+vGK+PC8+Y1ceM3KuDJzuIAAB9QSQs/oU+gfwuPnE/Hje LvN16XrXoJGz0SJjWBCAQDECyLkY2nYn9ov5E4/7+d+13vYw5NyuFugZAhDQSQA568zbZtRH Yn4OV6Ddru6ay93I2ViRMRwIQKA4AeRcHHG9Dvxivj9vy+vOj9vz8uffPFYqUuRciiznhQAE rBJAzkYye7/6Z8PrXdzjkvbl9vTsHytGAjkXQ8uJIQABowSQs4HEOjFvPnxkJeKx7XC9eZT0 9MCS0kvcyNlAkTEECECgKgHkXBV3/s52xezk+7Xxa7refPns5H5JuuwyN3LOn3fOCAEI2CaA nG3n93t00/Xm632xqD1+7+9ZcvM2cu6pyBgrBCCQgwByzkFRyTm815srbBBDzkoKhDAhAAEx BJCzmFSUD8S3aazGBjHkXD639AABCNgigJxt5XNnNK/rzV/L1xWWtF1AyLmbImOgEIBAJgLI ORNI8acZRbx4ZOck5tI7tZGz+MogQAhAQCAB5CwwKaVCWt4+VXqH9nIMzJxLZZTzQgACVgkg Z6uZFTQu5CwoGYQCAQioIICcVaRJd5DIWXf+iB4CEKhPADnXZ95dj8i5u5QzYAhA4CQB5HwS IIcfE0DOx4xoAQEIQGBJADlTD8UJIOfiiOkAAhAwRgA5G0uoxOEgZ4lZISYIQEAyAeQsOTtG YkPORhLJMCAAgWoEkHM11P12hJwfz9vl9bGePx8wMj0M5vvTw/qtFUYOAQi8CCBnKqE4gZ7l /P3gl/VHeA7o79fpc7UXT28rnhE6gAAEpBNAztIzZCC+nuX8Tt8s4cvtufjAzunHw3PPvd83 kHyGAAEIJBFAzknYOCiGAHIeaM3L18vnm88Qh59db7/KjmFMWwhAwBYB5GwrnyJHg5xdWl6f Cvb3I2d3PZolbZGFS1AQaEgAOTeE30vXyNllet4UdnkuJ8numvT3JrHP5jG3gexX5r1UDeOE QN8EkHPf+a8yeuS8IWe31P39AdvDLHop763ZdpW00QkEINCQAHJuCL+XrpHzK9P36/J2Ks9y 9v32NaseD6r4udu91CPjhIAGAshZQ5aUx4icf+X8uF1/RezN82v2fGHDmPJ3AeFDII4Aco7j ResEAsj5BW2+5/kyLF2Hy9bJ+fs6dUIKOAQCEFBGADkrS5jGcJHzlLX5Xuefx4TtZNUdE9Ne Y4EQMwQg8EMAOVMUxQkg54Wco0TLbVbFi5MOICCUAHIWmhhLYSFnl81heTpKzG4DGcvZlt4H jAUCMQSQcwwt2iYRQM7xM+Df+5+T0HMQBCCglAByVpo4TWH3J+fpQSLj87LjN3Q5Ma83jIXv 7tZUGcQKAQhsEUDO1EZxAv3JeX54SPwTvn4+xWp8StjwxQdjFK9TOoCAJALIWVI2jMbSn5zT Ejk/pOT12M7vr/Bbr9L65igIQEAWAeQsKx8mo0HOJtPKoCAAgYIEkHNBuJz6RQA5UwkQgAAE 4ggg5zhetE4ggJwToHEIBCDQNQHk3HX66wweOdfhTC8QgIAdAsjZTi7FjgQ5i00NgUEAAkIJ IGehibEUFnK2lE3GAgEI1CCAnGtQ7rwP5Nx5ATB8CEAgmgByjkbGAbEEkHMsMdpDAAK9E0DO vVdAhfEjZ24nq1BmdAEBUwSQs6l0yhwMcv7I2bHgBQEIQOCIAL8pjgjx89MEkDNyPl1EnAAC nRFAzp0lvMVwkTNyblF39AkBzQSQs+bsKYm9dznP41/+V0nqCBMCEGhEADk3At9Tt8h5+ISp 4Vozcu6p6hkrBM4RQM7n+HF0AAHkjJwDyoQmEIDAggByphyKE+hZzr4Zc888ihcbHUDACAHk bCSRkofRs4yQs+TKJDYIyCWAnOXmxkxkyPmzrO2S2jMPM0XNQCBQmAByLgyY0/cro6WE10JG 0LwzIACBPQLImfooTqBXESHn4qVFBxAwSwA5m02tnIEh59/Vg16ZyKlKIoGAbALIWXZ+TETX o4hClrF75GKioBkEBCoQQM4VIPfeRY8SQs69Vz3jh8A5Asj5HD+ODiCAnP2b4nrkElAuNIEA BAYCyJkyKE6gNwn5xrvFoDc2xYuNDiBghAByNpJIycPoTUDIWXI1EhsEdBBAzjrypDpK5Lx9 r3dPbB63y/Pvb3ggy/X+Vc/36/A9z/dVFz3BQ+AkAeR8EiCHHxPoSUCxy9d9sLk/r06+76/L 8/Z41c1bzO5nl9tz+vZxUdECAsYJIGfjCZYwvD4EtE8aBo7P43m7vCR9GezsZtLuv7wgAIFf AsiZqihO4DNj6rfckPNUZvfrZwa9Wt4uXoh0AAFFBPr9bakoSZpDXYp5/rfm8aTGjpxncvMS 9/X5feU5lSzHQcAmAeRsM69iRoWcX6lAzp+SnDeGMXEW8zYlEIEEkLPApFgKCTkj5+96/mwO 277e/Lk2/aofZtmWficwljACyDmME60SCSBn5LwsncftNixnT4L27s52Yv7s5h72c087vRF0 4luQw5QSQM5KE6clbOSMnN+1+rg9r+Pu7HlmPAt3+P/rdBvV/fa+zWp53GXa4a2l7okTAmcJ IOezBDl+lwBy7lvO433M4wx5mAEvZsrL687363Km7Cun1+yZ2674ZdMTAeTcU7YbjBU5I2fv deNhFu1mw+5nxxvDnJyPBN6guOkSAgUJIOeCcDn1sEv568lQr1/GPb7YrX0i6+7e6GODn+iA QyEgj0Cfvynl5cFsRMi575nz+cJ216fZDHaeI2fQRgA5a8uYsniRM3I+U7LH16PPnJ1jISCX AHKWmxsTkSFn5JxayG7TGKvZqfQ4TjsB5Kw9g8LjR87IOaVEfR+K8bhdf2+zSjk5x0BAAQHk rCBJmkNEzsg5tn7fn/u83kzIR0rGoqS9YgLIWXHyNISOnJFzTJ1+fb7zSs7c5xxDkrbaCSBn 7RkUHj9yRs7CS5TwICCSAHIWmRY7QSFn5GynmhkJBOoRQM71WHfZE3JGzl0WPoOGwEkCyPkk QA7fJ4CckTPvEQhAIJ4Aco5nxhERBJAzco4oF5pCAAITAeRMKRQlgJyRc9EC4+QQMEoAORtN rJRhIWfkLKUWiQMCmgggZ03ZUhgrcu5bzvOncYX8V2F5EzIEihFAzsXQcmJHADnblHOIbGPb 8I6BAAQ+BJAz1VCUAHJGznOB7cm6aBFycggoJICcFSZNU8g15LzsQyqbWUxS4ysVV8jsuVTf nBcCmgkgZ83ZUxB7aTn7zu++J+3Vm5xDpOza8IIABPwEeHdQGUUJtJKzNEH3IOctIfuWtYsW HSeHgAECyNlAEiUPoaWc574l8LEs5yMpO/7LNhLyQQwQkE4AOUvPkPL4Sst5/MW//tzfjf9v idKanEOEzIy5ZcXRt3YCyFl7BoXHX0PObwkIlrQVOcdImRmz8Dcn4YkmgJxFp0d/cDXlLHkW rV3OPinvVee6vf5KZgQQqEsAOdfl3V1vteUsdRatUc6xs2TfMjY7srt7yzPgTASQcyaQnMZP oJWcpUlak5xTpcwyNr8FIJCPAHLOx5IzeQi0lrMUSUuX8xkh+2bMvBlCCDyet8vfuKHxel+1 f9yeF7eH4ucHIeeljQUCyNlCFgWPQYqcx1ldww1jazlLeapZDimv5Sy4HMWE9rhdvutxLeH7 dfr59bn2tphBEEhRAsi5KF5OLknOLWfRSzm3fqrZOxb3JLXpi2vDjd6rs4Qvt+fjJ4T78+r9 fqNY6bYqAeRcFXd/nUmUcwtJh8i59FPNfnZQL+Q8SppXfQLz8vWfZ4Y8/Ox6+1V2/SDpsQUB 3pEtqHfUp2Q5x0j6bMpC5Zz7qWZBy9ZI+mx6Txw/zI7Hyy1rObvr0SxpnwCr/lDkrD6Fsgeg Qc6OYOnr0XvXnPf6Ts1ukJSXJ18Lmpl0KvrI4+ZNYZfncpLsrkmzFywSpbHmyNlYQqUNR4uc Y2bRKcvPW7u1c/5REC1kX7Eg6cpvIY+c3VK3x8zfm8iYVVdOVPXukHN15H11qE3OpSS9dyvV WUFnkfK6LFnqrvZGvV+Xt1NtLGcPG8cu76n1tBTO1Lpajlp0hJxbUO+oT61yzr3UHXKfc6yk Yx+pmVR2miU9CG3ejT7cMPwa/iDC59/l6dkanYQnx0FLOT9u16/l7df5B2Hfvm+oes2imT3n 4C/1HMhZamaMxKVZzjln0SFyju1vKeei5aJuqXsQ2Rzz22nDP66TrIfbkyS95uXqy+WymB3v R+iE/plJSxoNseQigJxzkeQ8XgIW5BwrTR+IGDnn6K9IOaqQ9Cxmz+x4mG2O0pZ2e9J8r3Pg MvU40w5sW6QOOGkVAsi5CuZ+O7Ek5zPSTJLzv9e1yJCvqhUmdql7uCd4eBzmKGDfY7UELmmP eXNyDpHt+6lhria+d3dXzT+dVSGAnKtg7rcTi3J22QwR5nJXd4ycvRu8kPTxm2ieGXtFN82o hS1pu78iriFiXo7+/eASBH1cFHpbIGe9uVMRuWQ553i+daikj+QcuuM6tL9qxSFmqXtnOdvB ELmkfeJBI9MsOtbr1eqCjk4TQM6nEXKCPQJS5Zz7+dap0gyV8ppxan/FqrW1pOed2b6Z8TDT fG0Q27kOPf582tFdDNJ0T/P4vGx3O9SZme/rdirkXCxZzU+MnJunwHYA2uSc8oCRZQaDpOmu JXu+YishqK/aT/pqdT16c0l7cR16LW4n9MW9w6PAi9puflSn73Gdsdk/K/fY/mhfmwByrk28 s/40yvns861DpXm01B1aKqH9hZ4vS7vakp5nzuud2G4T2G2aOX/9bJD26t7h19J36dlzAt3p GvPy1ilupUrgqOwQ5KwsYdrClSpnx7G01EqfP2Wpu2r91Fzqfi9dL+TqxOx2bc+z6qMPRh5F LvFToJYz7uXTxKpmk84qE0DOlYH31p1kOc+5CJHombyFnP/scnro0vqZcSQfW2sW/fVEsPl2 qnlZ+2BG7MRcdEk7mR4HdkoAOXea+FrD1iDnnmbRtfLu7aeWpJedzzPqLfF+CV3WYz2b5orO mxNAzs1TYDuAVDnnuM0phWzpWW7p8+8tdafwyH5MzaVuF3zokvbeju7sEDghBI4JIOdjRrQ4 QSBFzinHnAhxY5J3/GSuM33WlvSZWIscW0XSgUva8wDnWfTRtekiQDgpBL4JIGcqoiiBFNGm HFNiEDUEWqOPEmyynbPkUvfuE8N8I5geZIKcs6WXE6UTQM7p7DgygECKaFOOCQglqkmoNHMs v4f2FTUAbY2zSXpxX/PXOUNukXJy5rqzttKxGi9ytppZIeNKEW3KMTmGGyrJvXZn4gjt/0wf oo+tstQ9EZivMS9vnRJ7K5XorBFcIQLIuRBYTvsikCLalGPO8A6VYky7GvGc6UP0sVUkvfjM 55/PfhZNh+A6IYCcO0l0q2GmiDblmNjxxYjWt3QdenxsXMv2Nfo4E1/xY7MtdRePlA4gkJ0A cs6OlBMeCeaIUEk5hwov9FpyyPmOxrv385DzuzamX0jadHoZnJ+A8Xc1aW9NIEW0KcfECu71 KUX7t0uFsqsh0Bp9hI63SbsqS91NRhbUaa7nsAd1RiMRBJCziDTYDSJFtCnH+Ajubtxa/LIP nSUfZSlEoEfnOPp5SB+mZ9KdSnr5KWZHNcLPbRBAzjbyKHYUKaJNOeZoKX19znnmPM+ecwIs tZs7eow5ByXtXJ0tdSNnaQVYPh7kXJ5x1z2kiDbXMaEz5xIJ2uo7Z1/dz6IdzE4kjZxzvnN0 nAs568iTqChjloFziXYLQKigvmKuuDQawyo1yaEMUs8v/riK+WzBYilmrj23yECbPpFzG+5q e42VbWz712Tod6NW7JLuzzL29wlMzriQ9GuT39eX2nfaJ3DkbCCJCUNAzgnQej7kSJxrNrHt 9+QcKp/D2arhmVYoI9M1bEzQyNl0tW4ODjn3mffkUcfKNrb9lpxDpTO32654z8xq/mWeTEXe gaG85EWeMSIDkl6LeXx//BtWloYvXrYJkGHb+c0+uljZxrY/I+egwfp+YRuU88yie0krXyVB zkHvapONkLPJtJYbVKxsY9unyDlqtJ3JGUlPBJTOopFz1LvbVGPkbCqd5QcTK9vY9qFyThrp coa89e+kE+s4qPtZ9Ku41GwYWy5fr5eyWdrW8Z47EyVyPkOvw2NjZRvb/kjOp5DvCdnw0vaa WfeSVrLUjZxPvdvVH4yc1aew7gBiZRvbfkvOWUaJnL8w5pK02lmccEkj5yzverUnQc5qU9cm 8FjZxrZHzvXzGiLpvajUP71K4FJ3yDK22j+K6pe4yh6Rs8q0tQs6Vrax7YvJeb1s7VvG7mhp O/dStwlRCJI0cm73O05Kz8hZSiaUxBEr29j2yLltIYTMol0b38ukoDfGWjpLyLk0YfnnR87y cyQqwljZxrZHzjLSnSJp9cvbS/QNr0f7/sjZ+sNH+x9Ej9vl9bje6/2r8O/X6RG+q+/LeHfU iQI51+FsppdY2ca2LyLnmCXsjpe2cyx1mxL0qxir33rVh5zvz6uT8vvr8rw9XhX4FrP72eX2 nL5t5ndo6ECQcygp2o0EYmUb2z6lj8PUIOdDRHsNYmfR5gRdWdJ9yHmuuMfzdnlJ+jLY2c2k 3X95Db9rgQCBGAKxso1tj5xjslG3bYyktS+3eslWWOqOXb42wfl+/fzR3/Ey9s/KVd23N71p JxAr29j22eW8tUwd+33ticsYf6ikTYjDx62CpH9+Uf+z/GEX8xL39fl95Tlj0So8FTNnhUlr GXKsbGPbZ5fzFiyuLZ8qo+4FLWCp+1QChR08bwzbmji/N46N16j7kDhyFlak0sOJlW1se+Qs swJ8H8CwlSuvuIeZn9lXhU1jZlchxqL4bA7zXm8elr0/35/adrD8bfgdY/ZXQdOBxco2tj1y bprezc7Xcv75/6+dt8tduN//ljm6DFEVXuq2LOfH7TboeZLuz+7sYcPY7Xux+zWLtj97Rs4Z 3pc9nSJWtrHtkbP8atoVdYCk5Y/wRISFZtFm5fy4Pa/j7ux51/Ys3eH/r/7bqNytVj3s6EbO J96HPR4aK9vY9shZX1Uxi/bkLLOkLcl5vI95nCEPs+XFTHl53fl+/dz3vKQ7HtvBkvb4e1Df rwIibkkgVrax7eexLY8rMl42hJXBOu0qHmUSMIt2bcy+Mi51m5Ozb2PXMIu+TDXz49/l7VZ/ fnFbqyPD7wxrqZIxnljZxravNkrkXBz1e0aNpE8/acySnE8V3lvg9gWNnE9VSn8Hx8o2tn01 osi5GuqtSxVia6MUmRNL3ch5kZRpFm19dRs5l3ojGj1v7C/U2PbVsCHnaqiXHXW/1P36SyX6 ed3I+evK8/hcbuTc5C1Mp1IJxMo2tn21cSPnaqh9HXUv6cjr0ch5LWeWtZu+gelcHoFY2ca2 rzZi5FwN9V5HSHo1i97YINetnKdrzMtbp7iVSsRblyCkEYiVbWz7auNFztVQH3XUvaADlrq7 lfPi6WFznVhfzp7fL1xzPvrNwc+/CMTKNrZ9NdzIuRrq0I6Q9Pb16H7lHFo99tohZ3s5LTqi WNnGti8a/PLkyLka6tiOupe053o0co6tIv3tkbP+HFYdQaxsY9tXGwxyXqD+fPCAX4xtnmMc Iulq9dKio8hNYy1CpM9yBJBzObYmzxwr29j21aAh5w/qr6cvrZ/s1UbM7+tuvT/AxIFIuPWq 2vuIjooRQM7F0No98VK4R6NEzkeE2v986znGr08LkvEKmUW7NlZfblkbSVvNrn9cdqu5rzyK HS1yFpuaKbDH8+E+FGj1ch9CIPGTf3qV9PuaM0vd0t9Q2eJDztlQciIfAeSsry6kirnnpe6f DWFIWt8bKzJi5BwJjOZxBJBzHK/WrY/FPH/u7nxtut016Z5m0Zu7tbke3fotU6x/5FwMLSd2 BJCznjoIE/PysYnzLu92gt6qMbF1l1gOh7dSIelEsnIPQ85yc2MiMrG/JNmt/VVffjHfn7fb 4oL0/fZc/u94As/jFVsVruWZ9KGcX3+lpG0a473QqmR3+0XOItNiJyjkLD+XW88q3trF/T2i 1+xZyuYxq4IOkvOcmNhZ9LK9sHJ9fyb4sFv96N/CQj8dDnI+jZAT7BFAzrLrw4l5U2iX29Oz kXs1ICdneZ8QZE3SUXJOkXRlQR+JNuXnst9p8dEh53hmHBFBADlHwKrcdFfM7uEfIZ8w4B5g EtKu8tg+ftr542PxgJNG4QV3myTn2KXuioKOke87lzuz52CQihoiZ0XJ0hgqctaYtdCY3c7t tpvBQiPVPpNOlvPWLHrrgS0VBR2SuxCJh5xHYxvkrDFrimJGzoqSFRlq2DXpyJMWbK5Z0Kfl HLPULUDQIVIen5pm+GV7dIYTp2VoyFlLpuLidLu7Ba9m7w5Go6SzyTlU0g0EvSVk37J2XLXq bI2cdeZNTdTIWU2qggP13Xb1uF1/b7MKPmObhpoknV3ODvnRrVeVbrE6kvIY6uJ6c5tqqd8r cq7PvKsekbOtdDsxe6UWtLNbJosQSbeOvIict2bRy+vRhQQdIuReZ8zvcbcuOvq3TQA528nv 3u5uKfc5p9IOEXTLT70qKue9pe7My9sxUu51xoycU9/FHBdFADlH4aJxYwJSJZ1FzkfL2Hsz 6ZMzaJ+U91K9bt+4LJp0z7J2E+z9dIqc+8m1pZFKk3QxOW89Tcwn8khBx86SfcvY1ndk7/6B YukNxVjkETAt5+EBHJ9NNcO/3Wt44tZzeGJWwKO15CWLiL4ISBJ0Fjmv87sn4KOf7dRKqpR7 X8b+SQ/vRwiUJGBTzvePlId/vl7DP66TrIfNUbzsEJAg6SJyPivrxfFnhOybMdupnvSRsKyd zo4jAwjYk/MsZs/seNjJPM6kfz66KQAUTcQTaCnpKnJOkHUOKa/lLL4QKgWInCuB7rUbW3Ie PgbiMn0s33vGvMgsS9pdlHkLSTeRc4Cse7z/uFaRI+dapDvtx5Sc55mx99FY04yaJe0uKr22 oCXIOecsuYsiOTlI5HwSIIfvE7Aj553lbIfAu6S9mGmPG2ymTWMUjRkCtSTdSs4IuV2pIud2 7Lvo2Yyc553ZvpnxY9gANsp3eR3aiXn5/7PcEbTFwi8t6dpyRsrtqxQ5t8+B6QjMyHlzSXsx O16K+z4Ie/jR12uWOBvGzNZ8iKRTBl9Dzgg5JTPljkHO5dhy5oGAGTnPM+e1WN0msNs0cz6U 7jR7PmxH6WgmECLo2EeBlpQzUpZZbchZZl7MRGVGzu+l68WytBOz27U9z6p9O7i/MunkzANK zBT3wUBySrqEnGMfqdlL3qSMEzlLyYTROMzI2eXn64lgk5jd2vV4e1XAtWR3vNYPQTZanzWG lUPSueTMLLlGxvP0gZzzcOQsGwRMydk3xnlGfShdJ/EAgVNJJgmcFfRZOSNlfWWFnPXlLDHi +/DY5z//Z/GO37+OK7S5X2lyrhBr5EP8N7mELmlfWc7OXVsaz5cq6RQ5I2SNFfKJGTnrzl94 9MOS6vYvhjJidsElyblGrFnkHLik7QRe4i+f8OzTUhiBWEnHyBkpC0t2YjjIORGctsPuw8zN t0n4Mew0LumNFDlXiTWHnHefGDZViGuzBn8blrfXt1lpKyjizUIgVNJHckbIWdIh6iTIWVQ6 SgXzeD48MngM4rgUvq0nXs6VYk2W8/qpX9Oztn0bwmZ5rz9+j0d8lip0leeNEfR6gEhZZcqD gkbOQZjsNaoh5uRl7RXuIrEmyzmwFsYPwdj4KvwHUWCENBNGIEbS3AYlLHkFwkHOBaBKP+Wx 7JYbss5dj46fOX/TO441kXZpOSeGxWEQCJL0v2ET5/QFMZsEkLPNvG6O6lh2LzG/7wwaN2el C/qMnA9jnTaOHd7F5KOBnDurfH3D3ZO0vtEQcSwB5BxLTHF7v+zuw9MnPxekXZu/4Zro8hL1 fVii/UsyYOJu7YHxfqyP4aFcn9vCkkJDzooruZ/QNwU9zJp52SZAhm3n9z06J1jf5q/vndGv WfO63SjsxNlzysw5LNbR4MPDuRaz/JhcIucYWrRtTODrfbRY0nZL27xsEiCzNvP6Napx5rv1 AJLlLHlLduPysf9WrCN8sXIOjtV1jJyP8PNzowTYEGY0sYthIWfjOd6VnRP2ck24sZyjYkXO xiuX4YUQQNIhlHS2Qc4681Ym6sZyjh4UM+doZBxgk8Ba0jZH2deokHNf+d4fLXKmGiCgmgCS Vp2+r+CRs51cZhiJjA1hwQNh5hyMiob9EGCp20aukfNXHj+36PzcnjOJIPWWIi3lMl73FXAr VRAv5ByEiUZ9EmAWrTvvyHnK3+t2ocWu5rWd35+UlP5ADh2lIuchJIe8kPMhIhpAAEnrrAHk vM7bLOHV7PHVbBCX9/s6k78Z9bxKkOFznmNvpYoiiZyjcNG4XwIsdevLPXJe5+wtJs8MefjZ lQ8tiKryUnL+ue0q9o8mHkISlUca2yCApPXkETn/5Gr+0Ie1nN31aOtL2vkLt5ScT0eKnE8j 5AR6CbDULT93yPknR/OmsO8nYrlr0l+Xoc986IL8usgWIXLOhpITQSA7ASSdHWm2EyLnEDm7 pe63mTN86EK29Mk/0Sjn+VnA04Y7EVEzcxaRBoJoT4Cl7vY58EWAnD1U5uuZLx9vLGef2Ywk sxaKRPUlZydpJ0UJL+QsIQvEIIgAs2hByRhCEfKbUhaUpZwft+vTuwcMOQclDTkHYaIRBMQQ QNIyUoGcPXmY73m+XC7ej1kcD0HOQRWMnIMw0QgCogiw1N0+HcjZl4P5Xuefx4QtGiPnoOr9 ut48XXsOOrB0I5a1SxPm/AYIIOl2SUTOW3LeEzMz5+CKRc7BqGgIAbEEWOqunxrk/MN8uM/5 SMzIObhSkXMwKhpCQDwBJF0vRcj5i3XEg0ZY1j6s0vUtVMvrz4cHl27AsnZpwpzfKAGWuusk tnM5T/csj49+dE8G+37wyG4KkPNhhfYo5/cHqKxWX96PGw1ZlTkkSwMItCeApMvmoHM5z4/q dPffRj6aEzkfVmZfcl7Wkqunzx96X88Bj30G+CFlGkCgLYGzS93z8W1HIa/3zuWclpDTH7qQ 1q2qo7xinj+SU8Ku7WLL2p8nyF2GG+TdTNr9lxcErBNIlfTyOOuMYsaHnGNo0TaYQL9yHhC9 P/t7mEGzjB1cMzTUTyB1qZvZ82/ukbP+94PIEXQt53H/QsKlEpGZJCgIxBNImUUj6G/OyDm+ 7jjigMDyTbb1qVTN34jFlrVfcOaNYbsTZz7ZjPeScQIxkmZ5Gzkbfzu0Hx5y/mwO819v5pPN 2lcpEdQiELPUjaA/WWHmXKtCO+qndzk/brdhYXsS9N7ubHb8d/SuYKihkkbQr1pBzrxnshJY L1dvLWuPxddy13apZe1BuNdxd/Y8O55v0Rv+/+rup1+8kHPW2uNkOgiELHU3/d0gBCNyFpII K2H0KOfx1rr5QTaLmfLyuvP96nnADXK2UvaMI4HAkaR7FzRyTigqDtkm0K2cfbuzJ/m61QPv xjDkzFupcwJ7S929L28j587fHDmH7/tLt7tl7RigyDmGFm2VE9ibKW/9rGdBI2flBS89/D05 N4291DXnmEEh5xhatFVOwDdL/llpm/ahfG0qXXxPOYKo8JFzFC4axxJAzjvEkHNsOdHeCIE9 UR/9zAiCw2Eg50NENDhDADkj5zP1w7H2CRzJ+GjjmFVCyNlqZoWMCzkjZyGlSBgKCISKWsFQ ToeInE8j5AR7BJCznw6fbMb7BgLHBEKuUx+fRWcL5Kwzb2qiRs5qUkWgEBBNoLflbeQsuhz1 B4ec9eeQEUAAAvUJIOf6zLvqETl3lW4GCwEIZCKAnDOB9J2mt2UYL4PxyVnfXwWRh59awn3O 4dHSEgIQ6IwAci6Y8KOdhwW7FnNqZs5iUkEgEICAIgLIuXCyjgRt/eHuyLlwgXF6CEDAJAHk XCGtoYK2KGrkXKHA6AICEDBHADlXSmmsoK088B05VyowuoEABEwRQM4V0xlyQ/2RxCuGm6Ur 5JwFIyeBgFIC9+fVsyn083vh+rwrHVnpsJFzacKr869nxEc7uo9+Xjn86O6QczQyDoCAHQL3 68/dGog5LL3IOYxT1lZHH5Pmfm7lhZytZJJxQCCewP16ed4ev8c9bjdmzAc47Vggvm6aHuHb /KV9luwDipyblhmdQ6Ahgcfz4RXz5XnxGbthpBK7Rs6NsrK34cuSpJFzowKjWwgIJPC4IebQ tCDnUFIF2sUIWutSN3J+FY61jX4F3g6c0jiBIzG7n3M9+lMEyLnxG+LolinfL/XGIUd135uc jyS89fMoqDSGgDICR2J+DhvHPkvd0w7va9/7uJGzgCI/ErRv5iUg7KAQLMo5VcCIOahkaGSM gF/M9+ftfd35Mfz7W8SvWXTft1khZyFvhBBBa5R0j3KeSypE4kLKjzAgUITA/frn3fy1tYt7 DmLruCJBCj0pchaUmFRBS74ebVHORyUTImXJOTsaHz+HQAgBJ1jf+3/83uX29GzkHk87Htf5 kvY4EQuBTJt6BGKer61hV3cvcj5asg79w6tepdETBMoR2BWzk7NPvl8PLPHfH10uYnlnRs7y chIdkWRJW5fzkZTXlyKik8sBEOiNwOP2vIyP/Oxb0MjZSOFL3dVtUc4hQp7LihmzkTcYw6hL YJpF97y6jZzrllzx3qRJ2pKcY6TMjLl4qdOBaQKv26mQs+kk9zk4KUvdFuQc+wePFPZ9Vj6j tkHAyZllbRu5ZBReAq1FoVXOsbNk3zI2O7J5U0IggMB0jXn5vG1upWK3dkDl6G8SPfNbfP7q 2dGXkPPynMnxDWMcdpz8HJ4qZZaxkzPBgd0T+P3M556Xs99/6HdfFx0BCJF0bpmKPd9Czl+b tubvb8h7q1zY+NXRG4mhQqACATaEVYAsrYu9pW6xMp0gZotvku8Pi7WcA2Udc3+6tHogHghA QB4B5CwvJ9Ui8kk6m/xyyzTT+d4SXcn5C/qRoCNn1dUSSkcQgIAZAsjZTCrTBuK9xrq45uxk feYlRfZR15J9cnYQAmfRZ3hxLAQgAIHx1w0YIDAWwr/hiTzLr0ybwlrKOUrI6zLYEjTlAgEI QKACAeRcAbKmLnySPhN/CzmfkvI82L2l7TNAOBYCEIBAAAHkHACppyajTNez6OH/U1+15JxF yFuz53FpYbr16uQyfypHjoMABPoikP5bty9O3Yz2S6YZJF1czp4Ysz78Y735i81g3bwXGCgE WhJAzi3pC+zb+/mrKwHGhF1Mzhn+cAgax5acmUEH4aMRBCCQRgA5p3Eze9SeTFMeBZpTzkWW rkMyyew5hBJtIACBjASQc0aYFk51JNPY69FH5wthtiXl+dwh5zjVxreUzfL2KaQcDAEI7BNA zlTIF4FQmYbOokPPt07DkZCzPF/7TO4zyDmU4ZkwORYCENBJADnrzFuxqGNleiSYs+dbPxYz 9nwFQXk/OCOmv80/QKbr6THnoi0EIGCLAHK2lc/To0mR395Sd8j5Yq4lh5zvNITQE2SYPc9d IepQ6LSDQB8EkHMfeQ4e5Rn5hTwKdPk40BgpvyW2erTo2ceLBoPxNcwo5+Bl/RP3nJ8aKwdD AAJVCSDnqrjld3ZGzpuzwKVQT96XnCO+bFkoKOdljMyqs2WME0FADQHkrCZVdQLNKb8jqWj/ +fzUMEnjqFMl9AIBCJQmgJxLE1Z2/pxydkOXJK7csSBnZcVNuBBQRAA5K0pWjVCLynla3j4z jtzxnYnl/bztUyeJO/joD4y4s221fjxvl+EZ60O+rvdVm8fteXF5/PlBnp45CwQg8CKAnKmE LwI55ef7CMqzuHPGdzaWWnKuI+QXjcftMkr5/bWW8P06/ez6XHv7NE9OAAEIvAkgZ4qhiJxj nyQWmoZe5Lwn5FBWp9rNEr7cno+fE92fV+/3T/XIwRCAwIIAcqYcsst5KZZxeSbjQzXEyDnz R0jWnB0Hlfy8fP3nmSEPP7vefpUddF4aQQACQQSQcxCmfhqdld9azOblfKI0xAn5ayzD7Hhc 3l7L2V2PZkn7RNo5FAJBBJBzEKZ+Gp2Rs0/MyHm7do4efdq26uZNYZfncpLsrkmzF6xtZui9 DwLIuY88B48yVc5bYjYp58xL2sHJqdrQI2e31O018zzL9s20qwZNZxAwQwA5m0llnoGkyHlP zObk3IWYX7V0vy5vp9pazn6J+e3scSMZy9553o2cpWcCyLnn7HvGHivnIzGblXMHdbOU8+N2 /Vrenoc/3nq12rk9HsfadwcVwhBLEkDOJekqPHeMnEPEbErOlZ6lLaVs5nueL5fL8+Ldnf2a Na9/9jqO2bOUPBKHTgLIWWfeikUdKudQMZuRc0fL2e/imu913poFT7db/fx4PO57I1mxguXE EDBKADkbTWzqsHxy/vne8pOlPB/hGHSOjMeljjXquM5mzSMbJ9m95WnkHFVCNIZADAHkHEOr g7aHYhUm5uKf59zjjPll5uf16Loxcu7gNwJDbEUAObciL7TfXTkLFHMxOS+l3N2sOfBBI8hZ 6LuYsCwQQM4WsphxDJtyFirmInJeizkjX5mnmu5pHnddu01eodeL2RAmM59EZYEAcraQxcxj kH6NeRlf1qF3J+WZXvpDRMbbpriVKmsZcjIIOALImTrYJRCzK9t3otDd303T0PUS9lnyPITk LEGOh4D3dydYILBF4KyYx7/+PLuyRRHvdracMQvvT7Di8Z0ZqXKqzgkwc+68AEqKWbSckTKV DwEICCaAnAUnp1VoOWbMc+wiZs6+Zetub5FqVVX0CwEIxBBAzjG0OmibU8zNZ85IuYOKZYgQ sEkAOdvMa9Kocou5iZy3hJxEhIMgAAEItCGAnNtwl9droWuwRZe1j2bG7ud7r+HxlMOOtelr +Ld7DbcGDfcGPYcbfnlBAAIQaEYAOTdDL6djN2P+SOrg35FhZ5FziISjriHfP+Md/vl6Df+4 TrIe7tvlBQEIQKAlAeTckr6Avr1L2bEybNk+muEsZs/sePiow/GPFO/HI0Z3xAEQgAAEkgkg 52R0+g+MvsasSsK+/Axr1ZdpZeA9Y160Y0lbf1EzAggYIYCcjSQydhjRYo7tYGqfZVk7se+f w+aZsffTlqYZNUvauWhzHghA4AQB5HwCnsRDZ+nuxVZLzC4GOXLeWc52gbKkLbGciQkC3RJA zsZSfyTnmmIWJed5Z7ZvZjw8fvK1Ic5zHXo+zrcMbqx2GA4EICCHAHKWk4vTkUgTsyg5by5p L65Df4l78X0nbuR8uj45AQQgEE4AOYezEt9yT861Z8wzLDHL2vMMeL0T220Cu00zZ98u7XlW jZzF1z8BQsASAeRsJJsSxSxq5vxeup4eNuKCc2J20p1n1T4BI2cj7xCGAQFdBJCzrnxtRrsl 51YzZnEzZxfQ1xPB5qXqefl6Ie0lZeRs5B3CMCCgiwBy1pUvb7RSxSxq5ryV51m+3turhoOQ s4F3CEOAgD4CyFlfzn4i9sm59YxZ5MzZl+u9JW3XHjkbeIcwBAjoI4Cc9eXsK+JYMdeWtpgN Yd48HyxpI2fl7w7Ch4BeAshZb+7GyNdy3pLv8vtHt1zlRCJazrtPDJsoMHPOWQ6cCwIQCCSA nANBSWyWKuaaY5En59X9y+uPjFzDQc41y4W+IACBiQByVlwKSzn7Zszr2XKLocqTcyQF5BwJ jOYQgEAOAsg5B8UG59gTc6slbB8G1XIeP6Vq8cWHYjSodLqEQJ8EkLPSvPsELEnKM1bVclZa G4QNAQjoJ4CcFeYwRMxShoWcpWSCOCAAAU0EkLOmbM0bBf79vXdpS7iuvIcQOSssMEKGAASa E0DOzVMQF8DWrDnuLPVaI+d6rOkJAhCwQwA5K8ulxOvKzJyVFRHhQgAC4gkgZ/Ep+gQofQnb h5KZs6ICI1QIQEAMAeQsJhU2A0HONvPKqCAAgbIEkHNZvt2fHTl3XwIAyEBA46pZhmF3fQrk XDn9j+F5zqOwVh9ReB8eeOH7fuXwsneHnLMj5YQdEtC2EbTDFGUfMnLOjnTrhPfn1Un5/XV5 3obHPLvXW8zuZ8NTqKZvV4usZEfIuSRdzt0jAUTdR9aRc/U8P563y0vSl8HObibt/mv1hZyt ZpZxtSaw9zCi1rHR/3kCyPk8w/gz3K+fGfRqeTv+ZLKPQM6y80N0Ngggaht5XI4COTfJ6bzE fX3em/Rfr1OfnEMeP0qb7afAwQY2Z2ug3m8AekolgJxTyZ08bt4Ytj9xXl6n1ily5IxIzoqE 4/PX0MlfXxxegQByrgD5t4uPdLevN7/avOU9LoXrE/T4i3WxEa4JbjqFQMcEtD1VsONUfQ0d OTeohMftNixnT4Le2J09zqxXPxt3dSu6Rr38pdAAM11CoEsCISsNXYJRNmjkXDthj9vzOu7O nndtz7Ph4f+v821UL3GvZ9WvpXAds2fEXLuw6K9XAsjYZuaRc4W8jjPecRY8SHcxG15ed75f P/c9D/dXPS/LJe05xnFpe9GuQuwpXSDmFGocA4EwAsg4jJP2Vsi5QgY/DxlZzXonCbtrsl+r 1YrljJgrFBRddEUAGXeV7vdgkbPEvCuVM2KWWEzEpJ0AG7q0ZzAtfuScxq3sUQrljJjLlgRn hwAE+iKAnEXmW9eGMMQssogICgIQUEwAOQtN3mcT2SdAibdSIWahBURYEICAagLIWWz65D+E BDGLLR4Cy0Lg8yE1P48XmDdzKnruQBYknKQaAeRcDXVCR4vd3NLub0bMCfnkEDUE3p+7Pj/d bi3h94fX6HjugBrwBPomgJwphmgCiDkaGQdoJTBL2Pskv+/nFmgdInHLJICcZeZFbFSIWWxq CKwEgffqlWeG/H7aX4mOOWfvBJBz7xUQMX7EHAGLpkYIbH28q7sevRT25/q0tEtQRhLR3TCQ c3cpTxswYk7jxlHaCczS/X5srrsm7dsLNl6rZpOY9qSLiB85i0iD7CAQs+z8EF1JAh45u6Vu r4D9zycoGR3ntksAOdvNbZaRIeYsGDmJYgLzs/FfPl4vZy8GNl6flv/BNIpT0VXoyLmrdMcN FjHH8aK1TQJLOT9u1+f4ia+el+8z2G0SYVQ1CCDnGpQV9oGYFSaNkIsQmO95vlwuP5+xvuxw foLf8h7p9WeyFwmQk5okgJxNpvXcoBDzOX4cbYzAfK/z7kav6XrzQuAvSbPMbawaqg0HOVdD raMjxKwjT0RZkYCT89EO7Ol68/W+WPPe+nS5iqHTlV4CyFlv7rJHjpizI+WE6gkMM+IjMQ9j 9F5vZoOY+uy3HABybklfUN+IWVAyCEUIgZ2d2asI3fXm9fVlNogJSaPSMJCz0sTlDBsx56TJ ufQSmO5pHp+j7a4hh14vXn2CnAPAkrbeMhASOXIWkohWYSDmVuTpVx6B+VGdf8NGrohPmxpF vGg/iZmd2vIyrCki5KwpW5ljRcyZgXK6bgl8f8Rk6Iy7W1wMPIAAcg6AZLEJYraYVcYEAQhY IYCcrWQyYhyIOQIWTSEAAQg0IICcG0Bv2SVibkmfviEAAQiEEUDOYZxMtELMJtLIICAAgQ4I IOcOkuyGiJg7STTDhAAETBBAzibSuD8IxNxBkhkiBCBgigByNpXO38EgZuMJZngQgIBJAsjZ ZFpfg0LMhpPL0CAAAdMEkLPR9CJmo4llWBCAQBcEkLPBNCNmg0llSBCAQFcEkLOxdCNmYwll OBCAQJcEkLOhtCNmQ8lkKBCAQNcEkLOR9CNmI4lkGBCAAAQGAsjZQBkgZgNJZAgQgAAEFgSQ s/JyQMzKE0j4EIAABDwEkLPiskDMipNH6BCAAAR2CCBnpeWBmJUmjrAhAAEIBBBAzgGQpDVB zNIyQjwQgAAE8hJAznl5Fj8bYi6OmA4gAAEINCeAnJunIDwAxBzOipYQgAAENBNAzkqyh5iV JIowIQABCGQggJwzQCx9CsRcmjDnhwAEICCLAHKWlY+faBCz8AQRHgQgAIECBJBzAai5TomY c5HkPBCAAAR0EUDOQvOFmIUmhrAgAAEIVCCAnCtAju0CMccSoz0EIAABWwSQs7B8ImZhCSEc CEAAAg0IIOcG0Le6RMyCkkEoEIAABBoSQM4N4S+7RsxCEkEYEIAABAQQQM4SkvDv7znLWUA4 hAABCEAAAo0JIOfWCUDMjTNA9xCAAATkEUDODXPCUnZD+HQNAQhAQDAB5NwoOYi5EXi6hQAE IKCAAHJukCTE3AA6XUIAAhBQRAA5V04WYq4MnO4gAAEIKCSAnCsmDTFXhE1XEIAABBQTQM6V koeYK4GmGwhAAAIGCCDnCklEzBUg0wUEIAABQwSQc+FkIubCgDk9BCAAAYMETsn5cbs8//6G p1td719o7tfhe57vG+S3OaSllN2/eUEAAhCAAARCCSRa4/68Ovm+vy7P2+PV5VvM7meX23P6 dmg8JtohZhNpZBAQgAAEmhFIlPMc7+N5u7wkfRns7GbS7r89v1jG7jn7jB0CEIBAHgIn5TxO lT8z6NXydp4Q9ZwFMevJFZFCAAIQkEzgvJyf8xL3dfjX1uszw/7722snGdV+bIhZb+6IHAIQ gIA0Ahnk/ByXs93S9tHEeWx31EgaoYB4EHMAJJpAAAIQgEAwgQxy/mwO27/e/Gpn7Zo0Yg6u NRpCAAIQgEAggdNyftxuw3L2JOi93dmP2/Py99nVHRif6GaIWXR6CA4CEICAWgLn5DwI9zru zp6vKc/Xk4f/v37fRjUuaRu6tQoxq615AocABCAgnkC0nMf7mEfJDrPlhWyX153v198Z8njc cL35/eASxUvciFl8XRMgBCAAAdUE0uQ8Pnxktet6XLZ+3fP8u+drut58+dwH/ZK0vmVuxKy6 3gkeAhCAgAoC0XJOGtV0vfl6XzygZJK5ps3biDkp+xwEAQhAAAKRBKrI2Xu9WdkGMcQcWVk0 hwAEIACBZAJV5OyuN69vodK0QQwxJ9cXB0IAAhCAQAKBCnJ+XW/+Wr5WtKSNmBOqikMgAAEI QOAUgfJyHkW82Dw2iVnDw0gQ86na4mAIQAACEEgkUF7OQ2DL26e07NBGzIkVxWEQgAAEIHCa QBU5n46y8gkQc2XgdAcBCEAAAl8EkPOqIBAz7xAIQAACEGhNADkvMoCYW5cj/UMAAhCAgCOA nKc6QMy8ISAAAQhAQAoB5Oz+Qvk3PHZ0+pKSGOKAAAQgAIF+CXQvZ8Tcb/EzcghAAAJSCXQt Z8QstSyJCwIQgEDfBLqVM2Luu/AZPQQgAAHJBLqUM2KWXJLEBgEIQAAC3ckZMVP0EIAABCAg nUBXckbM0suR+CAAAQhAwBHoRs6ImYKHAAQgAAEtBLqQM2LWUo7ECQEIQAACXcycETOFDgEI QAAC2giYnjkjZm3lSLwQgAAEIGB65oyYKXAIQAACENBKwOTMGTFrLUfihgAEIAABkzNnxExh QwACEICAdgKmZs6IWXs5Ej8EIAABCJiaOSNmChoCEIAABKwQMDFzRsxWypFxQAACEICAiZkz YqaQIQABCEDAGgHVM2fEbK0cGQ8EIAABCKieOSNmChgCEIAABKwSUDlzRsxWy5FxQQACEICA ypkzYqZwIQABCEDAOgFVM2fEbL0cGR8EIAABCKiaOSNmChYCEIAABHohoGLmjJh7KUfGCQEI QAACKmbOiJlChQAEIACB3giInjkj5t7KkfFCAAIQgIDomTNipkAhAAEIQKBXAiJnzoi513Jk 3BCAAAQg0GTmPIt3Cz9ipjAhAAEIQKB3AtVnzntyRsy9lyPjhwAEIACB6jNnxEzRQQACEIAA BI4JVJ05b8mZGfNxomgBAQhAAAL9EKgmZ8TcT1ExUghAAAIQOEegqZyZMZ9LHkdDAAIQgIBN AlXk7Js1I2abBcWoIAABCEDgPIEmckbM5xPHGSAAAQhAwC6B4nJez5qPxHz0c7upYGQQgAAE IACBF4Gqct4T7/JnRw8qIXkQgAAEIAABywSKynkp2RgxWwbO2CAAAQhAAAJHBKrIeUvM69ny UbD8HAIQgAAEINADgWJy3lumZgm7h9JijBCAAAQgkEqgmpzHC9z//n6+UgPnOAhAAAIQgIBV AkXk7JMwS9hWS4hxQQACEIBAbgLV5Zx7AJwPAhCAAAQgYI1AdjlvzZqtgWM8EIAABCAAgVIE qsi5VPCcFwIQgAAEIGCRQFY5c13ZYokwJghAAAIQqE0gq5xrB09/EIAABCAAAYsEkLPFrDIm CEAAAhBQTQA5q04fwUMAAhCAgEUCyNliVhkTBCAAAQioJoCcVaeP4CEAAQhAwCIB5Gwxq4wJ AhCAAARUE0DOqtNH8BCAAAQgYJEAcraYVcYEAQhAAAKqCSBn1ekjeAhAAAIQsEgAOVvMKmOC AAQgAAHVBJCz6vQRPAQgAAEIWCSAnC1mlTFBAAIQgIBqAshZdfoIHgIQgAAELBJAzhazypgg AAEIQEA1AeSsOn0EDwEIQAACFgkgZ4tZZUwQgAAEIKCaAHJWnT6ChwAEIAABiwSQs8WsMiYI QAACEFBNADmrTh/BQwACEICARQLI2WJWGRMEIAABCKgmgJxVp4/gIQABCEDAIgHkbDGrjAkC EIAABFQTQM6q00fwEIAABCBgkQBytphVxgQBCEAAAqoJIGfV6SN4CEAAAhCwSAA5W8wqY4IA BCAAAdUEkLPq9BE8BCAAAQhYJICcLWaVMUEAAhCAgGoCyFl1+ggeAhCAAAQsEkDOFrPKmCAA AQhAQDUB5Kw6fQQPAQhAAAIWCSBni1llTBCAAAQgoJoAcladPoKHAAQgAAGLBJCzxawyJghA AAIQUE3gPyqmy+/dkAXkAAAAAElFTkSuQmCC</item> <item item-id="6">iVBORw0KGgoAAAANSUhEUgAAADQAAAAVCAYAAAAJiM14AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAE6SURBVFhH7ZeJDcMgDEU9lwdiHqZh mQzj1hwJCeYUORSlUqVKgPnfz3ZSoJd94GV+6DP0dKIRIUMKkPRyl+SFNAIBuC/WhCya0O8N ZwB1XHJ3GvJmlPHZZC0VU0YRrPs3CM8gZLN9qA4W/M94rmCMAhL8zCDUkM1aFUvirUlFgdk+ BBNFwqhEg/kCISfU1mchUzWtLeuLxvQOidoaTEgi78/3kKvpgNReKPE9qOUyWBv02LCF8/2G pDR5ANtSPBT4d4S7iL+FQWVPd8lJ8fxgEQ15fFtDtk3AUUIkJaw0FHgt6S+nUe6hJFiboXFW vWN73xL2Xq9ZNtRFaMKUs4rKD1amv3/YRkMrGlyZd7mLe2gcbXIyY8hlK2SkdcpN1DUcqvC2 fd1zaFi9cPD7+zAzm2fE+gidkdWZMX/a2NqGwj8dcgAAAABJRU5ErkJggg==</item> <item item-id="7">iVBORw0KGgoAAAANSUhEUgAAAEQAAAAVCAYAAAD/wUjgAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGHSURBVFhH7ZeLjcQgDESpi4Koh2po JsX4Yj4bcAxjnfYnLSudtCcciJ/HY9bR/gwE3OYxEthAhCI2kDmQRMF5isenmuig6B05V/48 fBEcn8K1n5O5HZF8Paud6XykTiGfBFKTC6lWg99lBQXHM4wBagon6EDtBOL/H+ddIvgOILla Qp38wmfFVMGieG1dCJ+BKTyeoRBUTUMLasnnpLqK9tug+BXMvA8rzJPvWrTBnytE9JhG05Cq KeSI/q6GRZVRfFtPvO/DJ3q4ShH5vLmHCD8xSJAzH02sN7Tz+4IoSlBSRfF5XXqQ9JBbqQok XSGK4cx6ziQBFIRaQD4P4lVguU103yjbV6O+zlpNGdsE+q9CSPMLaKrCX/p49dkOiKqWkqNh ypSN8L0AyWC1jsfo+DSKV9QwQJis43uIZYJYYiyw1het272iSXx6kRv3G+4g+XWqZzTTrSN+ fnWvU+aV08WC6d0xOpAfhcHwVSBtbF0zvIzQX1DL/rUrenID2UDWNr0VIvj8AZWVeR2FSEcg AAAAAElFTkSuQmCC</item> <item item-id="8">iVBORw0KGgoAAAANSUhEUgAAAE0AAAASCAYAAAAe0VOSAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHFSURBVFhH7VeLrcMgDGQuBmKOjsA0 WSbDuMEGYgymkE+lVnlS9dQEn+3j/KmB52+aATNt8RjAQ9oBETykXUPaCt4aMIZ9rIe1AG+c Sef52dWDNQ4WEdjiBL6x4LmDwm4Bt2Hb4sAGqGAf4GDAhPJ1MRGhNArQpLcRjpLkiZUgu1d6 nhOsEmvjw+LwkrLbBmml/2+StgukQZpIWPC/egsmq0gjbTMKBKRzgjQkX1xIclPgV6RtF+Y3 XG77BaVhTEFE1oFrKg2DEGXCiSveHyEtqKyDX/lKZZ3sgk9m3yVNKemBQizD8LG1aOWJJVL3 nx2EAqHL1kgTwfLEZpTRUlroeeF5UtsM3iRZ9fELSSuGRRoEWgm1ksRnfChEJWmkYfXHixsk rR46zJ/SKsZJO1meFJxQaif5KjDuv2cX3oWeOUjaaZEhQGd6DjdqpTwr4iYGAa0Qn5UWUkC1 +fY6I0m6V2no7ezKIey1lUPufblMx0jLcXZ78DUaI5TunkZHqttRlttmS4g7F64HSgnlUc76 WYE1UNaEoQ2ua6bnTvsAaVfe0T9i5V8E5lX+OPj173deFjIVCOIk/fr3OwlDvhJp//T/btLe v3PeMLMxPCwAAAAASUVORK5CYII=</item> <item item-id="9">iVBORw0KGgoAAAANSUhEUgAAAGcAAAASCAYAAABGrsCLAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGhSURBVFhH7ZjrbcUgDIWZi4GYh2my DMO4JZD0mqcPtJGl5krR/WPHHz4Ymxh6f2ozYNSSvWD0iqN4E1TihBAU4/4vtA9xAnlryPq/ FifFMSY9eDzUf2Z/kMssicnRsb0HZjHLAG2Gh8XJ0O5afoKSC4T6z+zr+MHbTYFmMdvCfObg YsjicKXNnbztLcRfEDxZY4kV5+HIWE+iekX9Z/YxdlUpUbCCEUnDLGalTZ8BqBx0lzdW1BLi XIzwKEH9UfuI3EouIs5KzPL9mQEQByFs257lWlYJkAzUH7X/Vib1w42TA49ZKXMzLIlzuJ+G fjX2+3+wsF1w1B+z3xcmFd7OBuQMS+Is19BuyaP+UvuzepHBZJABaczmUcYZlsRZrZx0nhf9 BR4IAH9JvHMo2BgAmkkGGKN/h2FJnOXKqc50dMhAx9SJPdDv5GsGGQcM7AtBmq97DRFNZG85 kgtavpQ1R+yxf6xqfm/q29/rZZfQ1E956ywTPutPcsYRg+pva8H7X7ity/e8Nkul4jz1KUmb HJxHqTi6k/YU3SvOU5leiPMFTr6e/wBqzvkAAAAASUVORK5CYII=</item> <item item-id="10">iVBORw0KGgoAAAANSUhEUgAAAD8AAAAVCAYAAADxaDaPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFpSURBVFhH7VaLDYQwCGWuDtR5Oo3L OAxX6F/R4FmNpl5iLlEKvPf4FHDgHwyMHT/wo6r/TuVnhwYAoX6Mw3lTxRmdKfbGBct3gp8s gp2UBRuBZ/sJrSeNCGjBC4yqYyhT6WE2WUB1XozJYBQ7hCfyfKVU4AMjtVMKAmBRy7H3mlnt AVL2QUoaNFUZE5DNko9Am+9MiCdgN0k6eAj8dZCLZ4FgArNBwOwMq7wG79+v0w3OyzA5onyV IlfNxqOuWS2Z66pNJ5XgC+g0Dbk3ovLUAuk9O+wOILXjP6SFoSampCp7yagpeyKHqiD976sS 5sUFyoutSDkthlqRnvu7mVurgbd0mid/ccqKxzWhLcj+doLKknA5sHLVtWollatyktZGg+6O ac+7qp1Li4FWt2hIr8Mlh/erPXLB6K97T4/6G15eJ2HPNpeGnhnd6EsJftFnuz12Y/YnQynB n4zy0OMf+IcKc3laQyv/Az4uQi3F5kj1AAAAAElFTkSuQmCC</item> <item item-id="11">iVBORw0KGgoAAAANSUhEUgAAADEAAAAVCAYAAADvoQY8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFASURBVFhH7ZUNDsMgCIU9lwfyPJ7G y3gYJgj1d865xa1NmyxLSKl8vAcquMCjLsAAN8S/qHgyJTxYrUCp+NPWUx9PBMEAxrEBHBgG OSCcCXTHC/G9XuxnFvIWtNLAzZcCQWmbKeFMkMiAcAYEIq24FhlS1xY/gB2lgqOB+CGwEE+R qugGqnd8zCGP1gcsV9tP9FY/gQjxPCW3z2srRY+KUnTIhGz0XQGv/wf50xAkGVmqVAUPlk2Q isV3MvuxtMmOX5Zizk40ynEObPRaOR8Cx3EsurAQ5laD1+FYVQJ6TWKwZsVSp1HmSlqJiyLt oM1BrOszsWLLie9spXrFvaXEF7YTFfjhZYc2MCbMTHHZbJyJgYRzN/bRdeyE+D52pR34dcOs Zk5AlKu0nIV998QIcAJitT/78m6Ifb0en3QJJR6Ze+wTGsFjWAAAAABJRU5ErkJggg==</item> <item item-id="12">iVBORw0KGgoAAAANSUhEUgAAAE8AAAAVCAYAAAAHIbMXAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHISURBVFhH7ZeJkcMwCEVVlwpyPa5G zbgYxegyIGTkK8dEO7OzcQJIeXyONX78nCZgTnsORz/gXRDBgPd/8BY/W+ONib92XhQEur2b tnjGWE9CLrO36ax8prHzL5ZtAjG5BMz5aRegbg/gSALctCZl8vkED8/lvC1PpWyX2XqgGXPI D7yg7btdgwqYMuDLlbuzAzV76XMWAuAK7LDyYgaDEQRsXWYXhqaCG0hKoAIApBR8jGa/B74I ya48UFknNnRgJHnWpCOUUO+noN4ALYWgFVLerNXYaZ/jOai80tdwIgRBJHGxaSuVa3wvyzYc JmlYkPp2GdyM19cd/i3cj8DjPZP3vOoySUz0/awwTh4975XIDQKjU0+ArpUhv4NiLyYj9fx2 jpPI8FkQCKZO/htLnvc/AMwatgBNhXAWtJQ8dWCwfojtRV9UbaIKI4OtbMmlEKAqeB+8s2x0 P331oDE0e9qWgi8B1vgc73lBKUin5fmQ8t4wbcsEbC/J1d6WV6/mUk2XaLLjRZrbwERDs+Pf M3B8X8/Tlfc9Fh3wYlbyBt47bb/nKz53kw54TLYf3vOeQ3E8cie844H/wWPAu5DlAW/Au0Dg gusL7+bqaOcjJqIAAAAASUVORK5CYII=</item> <item item-id="13">iVBORw0KGgoAAAANSUhEUgAAADcAAAAVCAYAAADiv3Z7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFuSURBVFhH7ZYNDsMgCIU9FwfyPJ7G y3gYJmr9qdhi08Su25Imy+aA7z3AKXzxS72YDf9w3+ruM51zBkEpVPUDBt1QZYcGynkw8eQz 4axGpa2wYRJYPm9Re1EIsIVjFBPnEJYiOWa1QnHeUDNgMiuGJ3G80xVcJK6DUhKlNEo19FGz ahII/gw5AQhVm1Ghw5ZMIM33AdgDHhZBP5yCu45UfskIRMUOAJ2B4FIP5z/vy4nByzDPOFeV GFwfPOKe2+L1XbV9I4QrUNu2Cb2bnGvm4EDJO7zrY8SlwWoiakvuUN2W/n0Nnd8PaOK8XnCO HQUSfrc0inVhvpq90C2UfdC8ObegPkHqbasHiW6xjXGJEz7nEl4FrdqkRt3rcYsZVyBH83rm 6rkGu7nfLQyqs81xwyVOw6t11Z7nVS49MfcPhbswl5Z/nHwOzt8mBq5dDSs0mIMj56bvqBVY MacYLlyWo3W8rv7DzGK4h9b/u3AfsM68cuL0IZoAAAAASUVORK5CYII=</item> <item item-id="14">iVBORw0KGgoAAAANSUhEUgAAADEAAAAVCAYAAADvoQY8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFeSURBVFhH7ZWLDcMgDESZi4GYh2lY JsO4+PiTn0uTtIkaqWpFA/bznY2iBzzqAQz0h/gVFW+mxERWK1IqfLSdUMcbQUQA46IBHJkI kiGc8XT5hfDe0trXLDRZ0kpTLH5KkJS2lRLOeIkMJU6PANKOa5ChVG3wAK4oEg4Gig/A/HpZ 6ZKeQS2FD3vg0T7AcLbLGyerVyD8er2lts++lYJHk1IIIpAN5ybw/ntjvxgCksFSrSocOJ/P EqLq/E5lvyhtsePBUsjshFYOfWCD13JC/oA0zhgUvzNMSpb3do23wDGqBOI1PYvJ0zV27hVv C5a5kdYnGD3vTEx0VhkZxLg+ghHbdnw/lfgATr7AvKfEAdMJCX542XFjGVPZ6uqe2JBQfmPP LptQldQr0uk0bqf1nXIISFlfhmUQXHFPbMHLIVgJwT1wRqX3zhRBwCqC8bkX7Kz/RRBnBT/q 3EdAvADbru41FH8T5gAAAABJRU5ErkJggg==</item> <item item-id="15">iVBORw0KGgoAAAANSUhEUgAAAEAAAAAVCAYAAAD2KuiaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFzSURBVFhH7VeJDcMgDGQuBmIepmEZ hnHDkxgMBCeCFCmpVFXi8XO+M66Al3/Ey/OHD4CPAcsjYEFLAcr0Ag3nhAhfqW3jQm5vcQlg UucAxHPHIQOqCkJp7wDAqA054sVqWaz16jBq3/t21ZQKVI8BVoMUErKiG7Xd1bDzoGUPGeAu CAXINC71aMot9K9BY7WOsTDiIMl6Tx4UzKdlL5FACPwgATEAWzhuP1QFkb2W1p3TfQB8dWlM NVYEZLKekvWAVAY5/fNLXGl4ezto9Lff1SJaDwKAtKFOXfUTeRTsuFNZ7p0+AMCQAHo7fQXi 5qa/VD8emIxiDhDSdCr5PMUAqncfSg2UngRC74jdN6VoYYwHALfG5+cYDIi6xlfsrBH35gBP bzJ4XGLAmFegRdl93bErH3ZGDUJVff+zB4zhUctKMQk6CZRjZEB3X+e+AnNDH2MdAYjUb7/x /5oDxiTKZsBcd+tZX/zP0HzAPgDmY7y2hx8wpJahrYEVrgAAAABJRU5ErkJggg==</item> <item item-id="16">iVBORw0KGgoAAAANSUhEUgAAADgAAAAVCAYAAAATtC32AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFVSURBVFhH7VbrEYMwCGauDJR5Mo3L OAwNIeYdRWOr9exd/igC3wNSwIf/4OH48AX47wrfV8HZoAJASI8yOHcZn9GoGK8MR94X4KQR 9CQ0kAcX4ifUlhgCmQNssCauIWxFGjZpQHFt17dCLxqXIIKs4glARp0mpSIAGqU8+syBPSmY Oo4UUagSy1GzXXt6MNl7B9qCXG2CPtwN8Dis+GW0WHhGDXdAzkY5tWqA9nndDiePw71XwaRN 54DOEftvyVc7bHkjBBiBLRvI+dgryHZNzu4GR5XlRdIsK7JoK6hpUZ6PbKA7vVekSAlq1iUB OnX9vGW7oloyZdKwUfOkZIeg8KgoG3daplZLgDigfAduXRM54zR7he9XBn11QRwiotgFxRKh XnOihy96uTUP4fnSR+J/Mr+x5vkohQDLq4O36fdncRywEOB4oasyvACvYv6suo9X8AMHaApp H2RuPQAAAABJRU5ErkJggg==</item> <item item-id="17">iVBORw0KGgoAAAANSUhEUgAAADEAAAAVCAYAAADvoQY8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAE/SURBVFhH7ZWJDcMgDEWZi4GYh2lY hmFcsE04k7qUHokSqapEYvDz/zYKLvCoCzDADfEvKp5MCQ9WK1CKftp6rOOJIBjAODaAA8Mg G4QzgW77gL4brf3MQt6CVhq4+ClBUNoWSjgTJDKQOAMCkjZckwy5apMbxIpiwmQgfhAsrOeV JukOanQ8xaBH2wOmsx0Heqt3IMJ6GVLa57mVyKNJKTxEIBvum8Db/4N4MQRKhpaqVekOxsPi N4X9WNpsx8VSyOyErUx9YMlrfUKx+txcMenKQjG2abwBx6wSMCoSg3UjFmWLMg+kje/SbO4b TQYxr49gxNYdP5hKbeVfUmLBdMIE37rsChtttF/uiQMJRTd2ZaMsGU6nZC/pdJq3036kAKK4 C4qRSMl/7544ghdAfKJ2a/e8IdbWc363SyjxADMW6HEXZ3xXAAAAAElFTkSuQmCC</item> <item item-id="18">iVBORw0KGgoAAAANSUhEUgAAAEcAAAAVCAYAAAAU9vPjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGlSURBVFhH7ZbrbQQhDISpi4JoIimC arYZinHOPHYxGDSsTtk7iUj5kQvjsz/GNob2z5CA2WzGBDaciTs2nO+FE8hbQ+5YaP7gyRpL PlSa+JkhU/9aT/WR83Sl/2DnJDBcEA6naBo4hyMDBZH6E07wVpJlylDAhVsFj565WEduwTms s851zjkcBrjV687RrAkVdpB7QbXC05BQHAreU+qkhbbinLlVutw5xgtadmFsLa2lFL0CJyUk C0xFDwOv1w8qUDgJQLyTDo5yYQXENWhUfQcnWlqQlQnG/wPtxlYWA7AehoA+5Y3Bie1Q3Aq5 PgEraYz0Ek6e6jJ3DuSyzcvNVH+DHrh3DIDTugCCU8Wd6Cs4eVK3t9pZkGE120Cp/L+coy6S 7NJYCm+q+nJjrlcNM32zrRRHcHDRZhice05pVYBzOkn7zlFidDW1b6J0+RnO9aZo54T9/Ulb 4NTP4LxnW12p6nDYlcONqLZVtVBG26p86doj8MmZ8x7/3Y0CvJDlake31d2EPkkHwCkD7Il3 zrOoQDjPJvnUt284E/IbzoZzrzH/ABrbjfqdvHmdAAAAAElFTkSuQmCC</item> <item item-id="19">iVBORw0KGgoAAAANSUhEUgAAALsAAAAnCAYAAABXNDlSAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQ3SURBVHhe7VwLcoUgDPRcHsjzeJp3 GQ9j5acBgiYUBTHOdDptkWyWJQTC67DKIwx8hIHhI36Km8LAKmIXEXyGARH7Z4ZaHBWxiwYQ BpZ1Hod1+vVFjoi9r/Es4I0R+jCI2AuQKV20ysAyj1rkwzit09sj+zKvo/LFfqlVSiJ7q8qr gGuZ59VkLm9PY37rBFem37SJfpvIFTgVk80z8HKxK3GP8zZl3WNTs+Z5F4AVGHi52CPGTKSX yF5BSu2b7Evsei+yRXoRe/vKq4CwH7GbTfek9yIi9gpSat9kH2I3Qh/X2SbvRcS+LMdWoP2B fD/C+/l+p9ghLzCiuxFni/03wWKDIWV0U2dbLCYwk94vq9Y8CPluDV8tPAEv+oz9iOhZYtez xashI+QrQ96xTy0CerQrYsdH1edFBWRXTPK+7yeRdsdqEhJ7LukJW0Vtk+ib5ygr6w5BW2Xs iPb3iM7tsNN477GriQwujWC/K289zXd5W4V7DKqZZa8i0HkBaQyoOiHROY7qh+AjYUeH+iF5 xtb/JsQ5XvZwbZhJF590NQ5O+qBaxzbMeYER2an+cMxntY35MZEXcpjVMXiJxoufs6uB3Ebc z8tPRG2jeyzah3L3JF5bRND3PGAl7YRUsjiwUvTVwGXgQaHSBlW/Svbnv0LLeD8KGBl9eK/Q eAk2qFj6opnz7xrshlJG6Lv5ZH4VpEY4HRhe3za+IiG9McQB05brFCYTT3diBxNeX866ChCc CZAldgcoBJKK1Odi/1+aQnEWwxvsLXS+iBObPdH2yOQHAbhXOSYZHc9qc9t0OnU+qLn+oJs5 cGNQ/T35XGI+RL7rAUR2nLPA2qWNDLGrAVKA3PfDZJuRHcUb7TeIKRUjsu8r3XZL0J9ITthA 4Ll4eons2P7NS2MQzihx7l9pjBcBQ4FwIzhRYGyn4J4ECg3Yi8glYmGJfTuLcne/gzDsfu9F MW/fQMTTk9jhyrqfzBzn4BFnbF0wI3uYe4Y/p3JfdNAfOI1J4s2NpEyxJ1OOsKCRiycx4KlJ FjXn+sMWGP0FP71SKWWQKSSKQHQL6eAD+2BUUOkR6Ylz9jQRjByZwyaxrT7Jmsyplnnq4iHC rtos5uweOAyx29lzdRhdvYLqL2nk05gS/O6+Kwxuma6Ih+3TnScmyaXKVtwhZ2zgpBdYYr/+ uBY9+pPQZTcqda7NARAct3qpXA08HOxuBfILfdhlKm6v5+3POCtrSfXGFHt5ANJjIwyghZ5W glcZjkTsZXjss5cCG8eWiBGxtzQaTWFJVdObAskCI2Jn0fWVxv0JXXL2r2iX46ct+tx/1YMD qkxbiexleOyjF/vPhPYPnvXh1e6FiL2zAc12p7PNKMaDiD1bHX29uF9DCG47lv1UUV3OROx1 +RfrDzIgYn+QbDFVlwERe13+xfqDDIjYHyRbTNVl4A9mmKwr9cru6AAAAABJRU5ErkJg gg==</item> <item item-id="20">iVBORw0KGgoAAAANSUhEUgAAAL0AAAAnCAYAAABaKkkVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARVSURBVHhe7ZyLseMgDEVdlwtyPa4m zbgYx4DNV4AgmF+UmZ3dmReQuByEAL1dTvqQAn+mwPJn46XhkgInQU8Q/J0CBP3fTTkNmKAn BgIKHOe+Luf2mUskgn6u+Sw4GgH8shD0BUWlrnpV4NhXDvuybuc2eqQ/9nNlY7n/sF2LIn2v 5DX069j3U2Q0o6c3n3PTd6rPdsF/LeiG2pLp7hUYHHoG+bpfS/f53Clb97qTgw0VGBx6RzkR +SnSN0Sqf9NzQc/PKlfkJ+j7J6+hh/NALw7nGz+rEPQNkerf9BzQC+DXc7+T+2LQH4c6LvQ/ mXN4+L7mY0Kv66JH+GfWs6D/bPqDhRBmfZbRtYFs2qqaA6/eRmFr3pt/rfyxdOF39CrCZ0PP V47xLg1MADNmXBW1EmFWuwQ9PLOmLiw4P49Sxt9PY/4Fq8jCBZxFcXEYEB/1VM071dqz/lT0 fwc+nM/1bEP+lLfu17y8rcI9Wq+jZUsc8Lqo9Ia/VrlA6+vAXQQKfAdw52HAFlDcmf60MBA+ J0/b1SeqwMqxbb3+JRtOaZAQ6bHjSTGf9V1XHxGJdeayOtYa4XTRcnrLKb4q3UXgQuozVCO3 j/l8P0bwOhL9ZS4gLhoS6Ik7NoEZ/oCu4iaXN0WP51fgMto7gSOjD6MJThfjIKtvz3BqA1Xc +QzhT/7e3MtKmSBJ/D6b9uFdCugxARLddjy1yfRnOui1hc+LwGKBImUhZEB/yugOAeuL3GHo f0pfMOP1+mydP5ydS3WevehkpDKjvnG7JQ/1eH/EPIRKesOTmzse8NCnVSiyn3s/UZ8V7JIJ LdLDmlnWojZyoH+q6q4qOzO14fukWbEm/Wkb6WUloO2zc4OETLcSIr3UxLZ99aFPLP93rj+z RHrojKenN5BmmKD3a3rD2staauc0lxrRkZAlD8xtAPrsiIz0Jwl6n16XrfsM8dnue+Jcf2aC Xk9l5E3Oc48OaJbMRlak59R7t1ZfXoyDzh5Bgdubp0vI59zImgg9rBcTn02mmsiykT4UnCyd U8eTDBq+gZl2sVxezx4AzfBdq7zj+QWYwBWcm6QFcl+xnbsvXL4D5uv5vAG9fSBKyKEzxI01 YYFg27Q0h2un+RjUOdb7nD93NXtnnA70zHAIVtQtSOUXWdhnc6tD+V1SY+cJvLE/SWN784Yl 4IinbCDJdcSXFfRPjhW9z45dReJ3A4R/4a9EfS51L57jKdMJ2n3up/Gozjk2S7Rx006oaKuE JeB0BmhW3lJWwVl5NybskS1I1NNuZ2MHH4wqBbJKmhH0LzBn12+/YKJulxXSjpqaEfR18RnQ 2l3INeKu5VGboB8Qw3ouzwc8046gr0fQWJbuS4Jq184V1SHoK4o9jKn7P0WSvww3jOM4Rwl6 nE7/860Kh9bWYhL0rWegM/uypMSqriz7W05tB03Qt9WfrDdQgKBvIDqZbKsAQd9Wf7LeQAGC voHoZLKtAl/17Mv0T+v0KQAAAABJRU5ErkJggg==</item> <item item-id="21" content-encoding="gzip">H4sIAAAAAAAA/4xUS28SURQ+d95DoSBClQ4wiCjWJgZutIldYdMYEx9N8Ac0UxhbjAhOp6bu iD/AuHHtxvgLjHt3rvxLeB4INW68N2fuOd/9zuOeHMgCgEJ5jpJh3cSvF7/px8ejyWsbaN1F 8YeTgWAWY/eJNh4cHL2MBykj0Gd/A7/O6cl0b3Iu8BMUF4H+kvgU5SNm/YmhdjCfdlY2ra+2 FGWAYbJSXCZ/kKbJ6OgsjRUzd1HycHFZu82/bJsDWGkSxwEDGiU3ZdXRlR8AM9vVn/HsOZ6c ri+nl5HTX9MGJnmL/bGV1YU70MUNWUa/r9AOoZBjp5m/rqmyXo4qZHWW46QFXfyFhneJ3YcF fKZ6h0/UH7CoWQEuM/6lSLj0qyQR3bKUU9qQs3xFytogpuoAXJWCljZUxLG8KaVUEAqklAoH ropRYqMmZKcu0WuhnPWG/vQYYC+Eaxz+WwP7puwOv3cH7qFnkxnvQ7gujOaS0V0woCXB6zek khZCNyV5i5O3pSm1W9KUNj0Bx2dLmtKG29KUrVVTtnnQ8kN9eJxE05PDF5NkHKUu35VpXhne j9JI5mBzMQ9GgwdLBmyb6mCdrEx0Pjp9yHFkEKs0vWrBlTXHDar6/+if4G6aRINY75t8FSyI oSqAChTy6rZSKsDC5qEyVGCib6hMFVhzQiwkwRwVGzmzHl45xKEALnNQ8YhDZJ/ikHsGOey+ hhx2zyKH3XOcC5V15qCSJw6Rpd78s7NxnIwG0SvpiMd1P0IZwgi3ufjl0Z+GCf+s7EXjNwAA AP//AwDutVF9ZQQAAA==</item> <item item-id="22">iVBORw0KGgoAAAANSUhEUgAAAaYAAAFqCAYAAABRW/7MAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB87SURBVHhe7d0NduI4EIXRrIsFsZ6s hs1kMQwkQ5qADf6RXCXr9jl9pqfblkrfK9WjbMd8nP1CAAEEEEAgEYGPRLEIBQEEEEAAgTNj kgQIIIAAAqkIMKZUcggGAQQQQIAxyQEEEEAAgVQEGFMqOQSDAAIIIMCY5AACCCCAQCoCjCmV HIJBAAEEEGBMcgABBBBAIBUBxpRKDsEggAACCDAmOYAAAgggkIoAY0olh2AQQAABBBiTHEAA AQQQSEWgTWP6+jwfPo7n0xSUQ8d+/93H+eP2+/B5/poylmMQQAABBKoTaNCYTufjt6FMMaaR Y0/H88dxkq1VF8AECCCAAAJ/CTRlTF+fh+8u53A8vu2YXh17Ol7G+NQj2QwIIIBARgJtGdPp 9HPJbcKlvK/RY7/On4fD+ZUv/V7iu7/c58//Ln1igYUc6CIHokyrKWP6hTTBmMaPvV7eO5wP h9s9pmeTGjOmKJHMO07gqpVfbRCgVU6dXn0Qj4q4zV29xpi+z703o6tR/b1fZQNFpeP8eWk1 n1nUGbSKIr9s3ki9+jOmJ41+Oqj7S3uRgixLoX7PolU72tOqHa2ukUbqxZguD50zprY2zH20 kZunXWoxkdMqhvvSWSP16s+Yro+K31+6u17ae/g5pkhBliZRr+fRqh3ladWOVjqmJVoN3GMa fQR84Njbo+Q/N/2efx7KBloiinMQQGBPBCLrYJsdU2X1IwWpvDTDI4AAApMIRNZBxjQgUaQg kzLGQQgggEBlApF1kDExpsrpbXgEEGiRAGNKplqkIMlQCAcBBDolEFkHdUw6pk63nWUjgMAr AowpWX5ECpIMhXAQQKBTApF1UMekY+p021k2AgjomBrKgchPCg1hEioCCOyYQGQd1DHpmHa8 tSwNAQSWEmBMS8lVOi9SkEpLMiwCCCAwi0BkHdQx6ZhmJauDEUCgDwKMKZnOkYIkQyEcBBDo lEBkHdQx6Zg63XaWjQACrwgwpmT5ESlIMhTCQQCBTglE1kEdk46p021n2QggoGNqKAciPyk0 hEmoCCCwYwKRdVDHpGPa8dayNAQQWEqAMS0lV+m8SEEqLcmwCCCAwCwCkXVQx6RjmpWsDkYA gT4IMKZkOkcKkgyFcBBAoFMCkXVQx6Rj6nTbWTYCCLwiwJiS5UekIMlQCAcBBDolEFkHdUw6 pk63nWUjgICOqaEciPyk0BAmoSKAwI4JRNZBHZOOacdby9IQQGApAca0lFyl8yIFqbQkwyKA AAKzCETWQR2TjmlWsjoYAQT6IMCYkukcKUgyFMJBAIFOCUTWQR2TjqnTbWfZCCDwigBjSpYf kYIkQyEcBBDolEBkHdQx6Zg63XaWjQACOqaGciDyk0JDmISKAAI7JhBZB3VMOqYdby1LQwCB pQQY01Jylc6LFKTSkgyLAAIIzCIQWQd1TDqmWcnqYAQQ6IMAY0qmc6QgyVAIBwEEOiUQWQd1 TDqmTredZSOAwCsCjClZfkQKkgyFcBBAoFMCkXVQx6Rj6nTbWTYCCOiYGsqByE8KDWESKgII 7JhAZB3UMemYdry1LA0BBJYSYExLyVU6L1KQSksyLAIIIDCLQGQd1DHpmGYlq4MRQKAPAowp mc6RgiRDIRwEEOiUQGQd1DHpmDrddpaNAAKvCDCmZPkRKUgyFMJBAIFOCUTWQR2TjqnTbWfZ CCCgY2ooByI/KTSESagIILBjApF1UMekY9rx1rI0BBBYSoAxLSVX6bxIQSotybAIIIDALAKR dVDHpGOalawORgCBPggwpmQ6RwqSDIVwEECgUwKRdVDHpGPqdNtZNgIIvCLAmJLlR6QgyVAI BwEEOiUQWQd1TDqmTredZSOAgI6poRyI/KTQECahIoDAjglE1kEdk45px1vL0hBAYCkBxrSU XKXzIgWptCTDIoAAArMIRNZBHZOOaVayOhgBBPogwJiS6RwpSDIUwkEAgU4JRNZBHZOOqdNt Z9kIIPCKAGNKlh+RgiRDIRwEEOiUQGQd1DHpmDrddpaNAAI6poZyIPKTQkOYhIoAAjsmEFkH dUw6ph1vLUtDAIGlBBjTUnKVzosUpNKSDIsAAgjMIhBZB3VMOqZZyepgBBDogwBjSqZzpCDJ UAgHAQQ6JRBZB3VMOqZOt51lI4DAKwKMKVl+RAqSDIVwEECgUwKRdVDHpGPqdNtZNgII6Jga yoHITwoNYTqfPy6fa26/mwpcsAgg8I5AZB3UMemY3uXn8L9fDen+1+P/LxvVWQggkIQAY0oi xC2MSEGSoZhmSv/ANRG+IBFA4D2ByDqoY9Ixvc/QxyPGuiNd03yWzkAgKQHGlEyYSEGSoZjW Md0MiTE1IZ8gEZhCILIO6ph0TFNy9PkY95iWcXMWAo0QYEzJhIoUJBmK1+E8PpWnY2pKPsEi 8IpAZB3UMemYyu5O5lSWp9EQCCLAmILAj00bKUgyFMvCYU7LuDkLgUQEIuugjknHVGcrMKc6 XI2KwEYEGNNGoKdOEynI1BibOI45NSGTIBEYIhBZB3VMOqa6u5I51eVrdAQqEWBMlcAuHTZS kKUxpz6POaWWR3AI6JgayAHGVEEkL3utANWQCNQjEFkHXcpzKa9eZg9/DNt2PrMhgMAiAoxp EbZ6J0UKUm9ViUZ2aS+RGEJBYJhAZB3UMemYYvYlc4rhblYEJhJgTBNBbXVYpCBbrTHFPMwp hQyCQGD4qntc3xI3c+JcYEwbisOcNoRtKgSmE4isg4zJpbzpmVrrSOZUi6xxEVhMgDEtRjdw 4tfn+fBxPJ+mjDlybKQgU8Le5THMaZeyWlS7BCLr4M46ptP5eClwH5OMafzYSEHaTeMCkTOn AhANgUAZApF1cDfG9PV5uBjSx/lwPL7tmN4dGylImZRqeBTm1LB4Qt8Tgcg6uB9jOp3OX9es mHAp7+vNsZGC7CmxF6+FOS1G50QEShGIrIO7MaZfMSYY07tjr4IM/S4luHEmEGBOEyA5BIH1 BMbqHWNaz/bfCIWMqWRIxlpIgDktBOc0BNYTYEzrGTKmkgwzjcWcMqkhlo4IMKaSYuuYStLM MRZzyqGDKLoiwJhKys2YStLMMxZzyqOFSLogwJhKyjxgTKfj5THyz+9n9v7+8gO2JcnXH4s5 1WdsBgT+J8CYkqVCpCDJUOQLhznl00REuyQQWQf397h4gRSJFKRA+PsfgjntX2MrDCcQWQcZ 04D8kYKEZ2MrAfiq9laUEmejBCLrIGNiTI1um98L4W3HL3oEkhJgTMmEiRQkGYo2wnFprw2d RNkUgcg6qGPSMTW1WUaDZU770NEq0hBgTGmk+AkkUpBkKNoKhzm1pZdoUxOIrIM6Jh1T6s0x OzjmNBuZExAYIsCYkuVFpCDJULQZDnNqUzdRpyIQWQd1TDqmVJuhWDA3c7o9Vs6siqE1UB8E GFMynSMFSYai7XAezYg5ta2n6DclEFkHdUw6pk2TfbPJ7jum+0mZ02YSmKhtAowpmX6RgiRD 0W449wY09ud2VydyBKoTiKyDOiYdU/UED5lg7DKejilEDpO2R4AxJdMsUpBkKNoOxz2mtvUT fSiByDqoY9IxhSZ/9ckfn8rTMVVHboJ9EGBMyXSMFCQZin2Gw5z2qatVFSUQWQd1TDqmosnc zGDMqRmpBBpDgDHFcB+dNVKQZCj2HQ5z2re+VreKQGQd1DHpmFYlb/MnM6fmJbSAOgQYUx2u i0eNFGRx0E5cTsC34S5n58zdEoisgzomHdNuN9bshemeZiNzwn4JMKZk2kYKkgxFf+Ewp/40 t+JBApF1UMekY7ItHwkwJzmBQOgXpjImxmQLDhFgTvKicwI6pmQJEClIMhR9h8Oc+ta/89VH 1kEdk46p8+33ZvnMSX50SoAxJRM+UpBkKIRzJcCc5EGHBCLroI5Jx9ThlluwZOa0AJpTWibA mJKpFylIMhTCuSfAnORDRwQi66COScfU0VYrsFTmVACiIVogwJiSqRQpSDIUwhkiwJzkRQcE IuugjknH1MEWq7BE5lQBqiEzEWBMmdS4xBIpSDIUwnlFgDnJjx0TiKyDOiYd04631gZLY04b QDZFBAHGFEH9xZyRgiRDIZwpBJjTFEqOaYxAZB3UMemYGtsuScNlTkmFEdZSAoxpKblK50UK UmlJht2CgC8c3IKyOTYiEFkHdUw6po3SvKNpdE8dib3fpTKmZNpGCpIMhXCWEmBOS8k5LwmB yDpYrGP6+jycD59fw0i/Ps+H4ykJ7vdhRAryPjpHNEOAOTUjlUCfCUTWwULGdDofP47nX+u5 GtH9/1/WfDp+nFvxpkhBbJCdEWBOOxO0n+VE1sEixvTULQ0Y08WZzh+Hz/NIT5VK7UhBUoEQ TBkCzKkMR6NsSiCyDr41pmun8/HQ6lyN6N/ffZ0/D4fzv6t41+7pcs7378e/v///TRnPmixS kFmBOrgdAjdzuj25x6za0a7TSCPr4FtjOj91P1cjurssN9QdDf3dpVf6c15isSMFSYxFaGsJ PJoRc1pL1PkVCUTWwffG9Ggoj6ZzvUT3cD/p2cx+6F27r9EHJCoCnjt0pCBzY3V8IwTuO6b7 kJlTIwL2F2ZkHZxgTOeLz/y7dPd0P2no3tFgx8SY+kttK/4lcG9AY3+GC4FEBNIb08VS/n/q 7vF+0oXi5Et5jClRzgllawJjl/F0TFsrYb6JBBowpv8f9/68PAb++GTdqDE9PujgHtPEfHDY Xgm4x7RXZXe5riaM6ftx78vGev5ZpCHD+fm7v8dfuy5P5e0ygy1qOoHHp/J0TNPZOXJTAm0Y 08h9oyupl299uKH0c0ybJpXJGiLAnBoSq59QmzCmvz+79CjOw5sfBrTz5od+EtpKFxDwZvIF 0JxSk0BuY/rulK6X5e5eOTRA4+278hp568N1aZGC1Ew0YzdAQPfUgEh9hBhZByc9Lt6HDP9W GSlIb6ytd4AAc5IWCQhE1kHGNFgXYEmwL/oOgTn1rX+C1ec2prnv9qp9/AaCRQqywfJM0QoB 5tSKUruMM7IOvm4N5v7cRe3jN5I/UpCNlmiaVggwp1aU2l2ckXVw3JjGNkTU328oe6QgGy7T VK0QYE6tKLWrOCPr4Gtjur8st+Wfg+WNFCR46abPSoA5ZVVmt3FF1kEdk4cfdruxdrcw5rQ7 STMvKKcxXYnVvmc0d/yNVIwUZKMlmqZVAsypVeWaizuyDr5/Lrr2U3Zzx99A3khBNlieKVon 4C0RrSvYRPyRdfC9MTWBsGyQkYKUXYnRdk1A97RreaMXF1kHGZN7TNH5b/41BJjTGnrOfUGA MSVLj0hBkqEQTgsEmFMLKjUXY2Qd1DHpmJrbMAIeTFpYEChKgDEVxbl+sEhB1kdvhG4J6Jy6 lb7GwiProI5Jx1Qjp40ZRYA5RZHf3byMKZmkkYIkQyGcFgkwpxZVSxdzZB3UMemY0m0IARUg wJwKQOx7CMaUTP9IQZKhEE7LBJhTy+qFxx5ZB3VMOqbwDSCAigS8JaIi3H0PzZiS6RspSDIU wtkLAd3TXpTcbB2RdVDHpGPaLNFNFEzgZk4J308ZTMb0yeogY0omiB2CQFUCSd/oX3XNBl9E QMe0CFu9kyIFqbcqI3dP4L5juofhMl/3qTEEILIO6ph0TDZlLwTuDWjsz72wsM63BBjTW0Tb HhApyLYrNVtXBMYu4+mYukqDqYuNrIM6Jh3T1Dx13B4IuMe0BxU3WQNj2gTz9EkiBZkepSMR WEjg8ak8HdNCkPs+LbIO6ph0TPveXVY3jQBzmsapo6MYUzKxIwVJhkI4PRFgTj2p/XatkXVQ x6RjepugDuiIAHPqSOzXS2VMyVIhUpBkKITTIwHm1KPqT2uOrIM6Jh2TTYjAMwHm1H1WMKZk KRApSDIUwumZAHPqWf1zZB3UMemYut58Fv+GAHPqNkUYUzLpIwVJhkI4CJwvH51R6JBAZB2U cTqmDrecJc8mwJxmI2v9BMaUTMFIQZKhEA4C/wj4NtyusiGyDuqYdExdbTaLLUBA91QAYv4h GNNcjb4+z4eP4/n08ryv8+fh4/vJko/HY7/Pv/3b5b+Hz/PX3ViRgsxF4XgEQggwpxDsW04a WQcb7JhO5+OQ2TwodjpeDOf4Y133f/7/L37/bUjoSEG2TDxzIbCKAHNahS/7yZF1sClj+vo8 fHdAh+PxTcd0Na/D+fPWBj10WFejOvz+43N6RAqSPVnFh8AfAsxptwkRWQfbMqbT6eeS27tL eU//fm9U10t8d6Y1kFaRguw2yy1svwSY0y61jayDTRnTr/qrjOnHpA6/95+eTernvtTz711m n0UhUIIAcypBMWSMsXrHmObKscaYvs+9N6OrUf19kCJSkLkoHI9AGgLMKY0UJQKJrIMddkyP kj3cj7r8c6QgJRLKGAiEEWBOYehLTxxZB/dpTJcHyV89/PBXQMZUOqGN1zkB5rSLBGBMc2V8 dynvMt7o4+Kn49+fa7qO5eeY5irgeAReE2BOzWcIY5or4YAxPT8Cfvt5p+cfsL09dj74w7cu 5c1Vw/EIDBO4mdPtVUbMqqlMYUzJ5IoUJBkK4SCwjsCjGTGndTw3PDuyDrZ5j6myOJGCVF6a 4RHYjsB9x3Q/K3PaToMVM0XWQcY0IFykICvyyKkI5CJwb0Bjf84VsWjuCETWQcbEmGxGBOoQ GLuMp2Oqw7vwqIypMNC1w0UKsjZ25yOQioB7TKnkmBNMZB3UMemY5uSqYxGYT+DxqTwd03yG AWcwpgDor6aMFCQZCuEgUIcAc6rDteCokXVQx6RjKpjKhkJgBgHmNAPW9ocypu2Zv5wxUpBk KISDQF0CzKku3xWjR9ZBHZOOaUXqOhWBAgSYUwGI5YdgTOWZrhoxUpBVgTsZgVYJMKd0ykXW QR2TjindhhBQpwSYUyrhGVMqOXwfUzI5hNMTAeaURm3GlEaKn0AiBUmGQjgIbE/g9nNP289s xjsCkXXQpTyX8mxGBHIS0D2F6sKYQvE/Tx4pSDIUwkEglgBzCuMfWQd1TDqmsMQ3MQKTCDCn SZhKH8SYShNdOV6kICtDdzoC+yTAnDbXNbIO6ph0TJsnvAkRWESAOS3CtvQkxrSUXKXzIgWp tCTDIrAPAsxpMx0j66COSce0WaKbCIEiBJhTEYzvBmFM7wht/O+Rgmy8VNMh0CaBmzk9ftdT m6tJGXVkHdQx6ZhSbgpBIfCWgG/HfYtozQGMaQ29CudGClJhOYZEYH8E7jum+9W5zFdM68g6 qGPSMRVLZAMhsBmBewMa+/NmwexzIsaUTNdIQZKhEA4COQmMXcbTMRXTK7IO6ph0TMUS2UAI bErAPaaquBlTVbzzB48UZH60zkCgYwKPT+XpmIolQ2Qd1DHpmIolsoEQSEGAORWRgTEVwVhu kEhByq3CSAh0TIA5rRY/sg7qmHRMqxPYAAikJMCcVsnCmFbhK39ypCDlV2NEBDomwJwWix9Z B3VMOqbFietEBJogwJwWycSYFmGrd1KkIPVWZWQEOiZwe3qvYwRzlx5ZB3VMOqa5+ep4BNol oHuarB1jmoxqmwMjBdlmhWZBoGMCzGmS+JF1UMekY5qUpA5CYFcEmNNbORnTW0TbHhApyLYr NRsCHRNgTi/Fj6yDOiYdU8eVydK7J8CcRlOAMSXbHZGCJEMhHAT2T8C34Q5qHFkHdUw6pv0X HitE4B0Bbyp/IsSY3iXNxv8eKcjGSzUdAgj4NlwdUwu7gDG1oJIYEShEwLfhMqZCqVR1GMZU Fa/BEchFwLfhMqZcGTkcDWNqQSUxIlCQgHtM7jEVTKcqQzGmKlgNikBuAr4N948+kXXQU3kD WyVSkNw7V3QIdEag459ziqyDjIkxdVZpLBeBmQQ6NSfGNDNPah8eKUjttRkfAQQWEOjQnCLr oI5Jx7RglzoFgQ4JdPadTowpWY5HCpIMhXAQQOCRQCfdU2Qd1DHpmBQeBBCYS6ADc2JMc5Oi 8vGRglRemuERQKAUgZ2bU2Qd1DHpmEptU+Mg0B+BHb+ZnDElS+dIQZKhEA4CCLwjsNO3RkTW QR2TjundtvPvCCAwRmDHbyZnTMnSPlKQZCiEgwACrwjs+M3kkXVQx6RjUngQQGApgR2/mZwx LU2KSudFClJpSYZFAIFaBNxjKk5Wx6RjKp5UBkSgOwI7fDN55Ad0xsSYuqshFozAJgQa/zkn xrRJlkyfJFKQ6VE6EgEE0hNo2Jwi66COSceUfm8LEIGmCTRqTowpWdZFCpIMhXAQQKAEgQbN KbIO6ph0TCW2nTEQQOAdgcZeX8SY3gm68b9HCrLxUk2HAAJbEmjo0fLIOqhj0jFtuS3NhUC/ BBp7fRFjSpaqkYIkQyEcBBAoRaCx1xdF1kEdk46p1LYzDgIIvCLQ2OuLGFOydI4UJBkK4SCA QEkC7jFNoqlj0jFNShQHIYBAIQJDry9K+MRe5Ad0xsSYCu02wyCAwCoCybopxrRKzfInRwpS fjVGRACB9AQen9h77KoCFhBZB3VMOqaAlDclAgj8IfDqib2gt0YwpmQ5GilIMhTCQQCBLQgM dUzXecd+9mmDmCLroI5Jx7RBipsCAQTeErhdvrsdONZFvR2ozAGMqQzHYqNEClJsEQZCAIH2 CIzdWwq4nBdZB3VMOqb2Nq+IEdgzgSRP5zGmZEkWKUgyFMJBAIEIAp7Ki6Cee07GlFsf0SGA QH0CkXXQpTyX8upnuBkQQKA5AowpmWSRgiRDIRwEEOiUQGQd1DHpmDrddpaNAAKvCDCmZPkR KUgyFMJBAIFOCUTWQR2TjqnTbWfZCCCgY2ooByI/KTSESagIILBjApF1UMekY9rx1rI0BBBY SoAxLSVX6bxIQSotybAIIIDALAKRdVDHpGOalawORgCBPggwpmQ6RwqSDEX6cGiVXqLfAGnV jlbXSCP10jHpmNraLQ/RRm6epsEFBE+rAOgrpozUq29j+vo8Hz6O55NityJ9Y0+N3DyxK29v dlq1pVmkXh0b0+l8vLzB94MxtbVbfIhoVq/IQtcstMDAI/Xq0pi+Pg/f108Px6OOKTDxS0wd uXlKxN/TGLRqS+1Ivfo0ptPp/HXNEZfy2top7gc2rVdkoWsaXFDwkXp1aUy/Or8wpqsofmMg B+RAzzkQ5IlnxjRwjylKDPMigAACCFweVe8awkjH1DUTi0cAAQSCCTAmHVNwCpoeAQQQ+EuA MTEmewIBBBBIRYAxMaZUCSkYBBBAoG9jeqn/1/nzcHsi6fntEH9O/b5X9e/ppePjqyTkWWEC M7S5zTx0P/FBt4/D58+PEfhVkUAh7SpG2PfQc/R5cezKvcWYRrLwdLwYzf8Oc//n58N/3iDx a0an4+Ux88P5U4Wrtr+na3MLYeQtH1etfIqoptPQwMW02zTqfiabo8/LY1fuLcY0mHPXQnZn Lq+e3rsK8OeT9s+nCPWu1maeoc0lhFdv+bhurINPELWEGhi3nHYbBt3RVHP0eX3s2r3FmIbS 7smIHkR4maoPHVRHab3JUmdq8zX6lo/rBwid7SaajV5Ofb2vxrXbNOp+Jpuzt14eu35vMabC xvT9Cd29inqbec7muY9i5LzD731EJlVPtP9HLqZd9Uj7nGCOPi+P/fnAsWZvMaaCxvRz2ejN gxJ9pny5Vc/ZPK+M6XucezO6bibalRNqYKRS2lUNsuPB5+jz6tgCe6sjY7p/guTh/V+PN4Tm CPT7YfBqSj51L9vWdbX5juntWz7mXK5dtsp9npVBu32SLbOqSvrMqpHz91ZHxjRH5jk3AW83 2H3ankN4+bHztPmdhzEtR17szFraFQuw84Hm6LPi2AmUGdMIpMmPTT61rROoO2QVgcnavLqU 9/1Y/92HiauO7g2u0mXKyUW0mzKRYxYRmKPP6LEF9hZjGpXv9rMvz99ye/8o5Lc4A1+R4XHx Rfti4knTtPkz2EDHdHuU/Ec/He9E+CsPK6PdyiCcvrLu/Zw+ruXavcWYpCgCCCCAQCoCjCmV HIJBAAEEEGBMcgABBBBAIBUBxpRKDsEggAACCDAmOYAAAgggkIoAY0olh2AQQAABBBiTHEAA AQQQSEWAMaWSQzAIIIAAAoxJDiCAAAIIpCLAmFLJIRgEEEAAAcYkBxBAAAEEUhFgTKnkEAwC CCCAAGOSAwgkJXB9Eebh82s4uutLab0pOKlywlpLgDGtJeh8BKoQePhG3YG3o1/fbM+bqsA3 aDABxhQsgOkRGCLw1C0NfdHh9XtvfIeUBNohAca0Q1EtKTeBn++qOZx/r9J9m87H3WW769dh 3/37n++9efz7+//PvW7RITCVAGOaSspxCBQk8Pjtn3/uJQ11R4NfDX81MJfzCspiqCQEGFMS IYTRG4H/TeU4cDnu8aupr2gGjenyHaKX+0yjD0j0htR6d0OAMe1GSgtpjsC3AQ10PEP3jhhT c/IKeDkBxrScnTMRWEHg+tTd5f7Q6Xp/6Xi5i3T3a/KlPB3TCgGcmpgAY0osjtD2SuDnMt7t Etz3wxD3T9eNGtPjgw7uMe01Q3pfF2PqPQOsf3MC3w8+/HnM+9o9Xf7u94eShgzn5+/+Xvr7 v+sa+RnczRdmQgQKEWBMhUAaBoGSBF6+9eE2kZ9jKoncWIkIMKZEYggFgX8EHt78MIDGmx/k y14JMKa9KmtdzRN4+648b31oXmMLGCbAmGQGAggggEAqAv8BqkKVJKf25pwAAAAASUVORK5C YII=</item> <item item-id="23">iVBORw0KGgoAAAANSUhEUgAAAL0AAAAnCAYAAABaKkkVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQ2SURBVHhe7VwLkqwgDPRcHshL7DuE p5nLeBiffNQAQRJERcxUbe3WLJ+m04SQONPN8hIGPsZA97H1ynKFgVlELyL4HAMi+s+ZXBYs ohcNRBiY5rHv5uHXHkEi+vZsWmBFRvBdJ6IvQKYMUTsD09hrsXf9MA8tePppnHu1HvujTi7x 9LWr8GZ80zjOJqJpIbz5zQM8rX7DIv5lU9/MqUz3GgYaEL0SeT8u23d92bDtNTYQoDcz0IDo A8aM5xdPf7OU3jNde6LX95XF84vo36PCm5G2JXpzQR/0fUVEf7OU3jNdO6I3gu/n0Qb3xUQ/ Tft14T2GfS/S6/l+r+ghN9DDr9bOEv1vgEULQ06/bqPlABnArnqvrGpF7vNdK84ncHnc6Bz9 7uGzRa93jlObRoygJnNSRU8Q0OqcIvq4ZV1ulHNei1LO7y2DuVbiQPXKFbdqqby4uQyY116u 1oOCzaAm3L3/NQLcqoeHmMvPrcn0HkrB3is/c5zv8nMVHtGrjJZ/xIHODR7eRI6F0Mvvwg8E HhQGfBJNzrTYxohgZpluwUx6wEpX9uDm9yp/rEm5jRmenroeLgR2+5Af44Uhh+xBkQ40bhDR xzpy378ztsew2UKEfo4EVuUOyCWLBCtvpwyYgQeFSjOs7kpeTwnBMccIHAez/wluAtGvCfww FxPzZsebgeI5o7GXFzLFaAkxu5kH/IRCRmOIBIYz6dAmE88Jw9YperDxdUiachTcjUBzCK7o bdyFCzXmubknAHchifYoZu/uodvgBGdvuM1Tuc4gGE+TScczH9rgIJy0NOWuB73wwbvS8nf0 lcS8i30LZ4GnxznDohfzxGTckbJFby8C0RFr9PQRzEH2iBhqMTy9EfJigOWpRHxDKWw2XZaL pxVPj93v0PAGcJblG5mix5L47rxcj04UWtbiTKco5oBkIhaW6Nf5w0zOis3xas69goinJdHD k3bL5Lg5dGXPc4kNlui9dA841iCIWGy8pQ7hKXF59uYA878/r05AFBlT9NFQxPfsRT398WZz 9gl3PSccUKqrG8KoUNOLHArVdlAteuCYFVmieHTioGA6MsVo8H9GDM0eO9UBO6KfxJPCW8P/ z4Y1vDUwRW+9TColU2jX8pYCW7vHHDl7kz/h1hM/op/Dw1/S1RmWENH5sIa3Srbo0x8jo58G PKjc1qXy4px5fcGYMrgJEZ/Aw8Gu2oYFw/RdjzuH3/6Is7Nj4/0zRH8NEBm1AgbQjEotTqwc PyL6cly2OVKJxzsqY0ZEX5lB6oKTqt3UhZaKRkRPZepz7doUvDKjiP5zYiYs2BaPzhWKCPM8 1ERE/xDx1U5rvxBp+yBctUDzgYno87lrr2eDl1bMSCL69qSbvSL0k2jgOyCzB66so4i+MoMI nOsZENFfz7HMUBkDIvrKDCJwrmdARH89xzJDZQz8BzVUyzMFSalMAAAAAElFTkSuQmCC</item> <item item-id="24" content-encoding="gzip">H4sIAAAAAAAA/+wXTU8TQfRtS9sttHRbsMVSFWvlS7GyFFRCTLFyMCpNiuFqoN3omsJCWRO4 NZ6MQS9GbyaaGC+evHExUWNMjIngWQ8Y4z8wHkxkfTNvWbb1iw8vBt7m7ez7nnkzO/PGBwAC 4ghiLf924LtGLylKMzCQEcWJfHb8ipLXOQdyiANolHbK7m8A5Rr58QukXHIYm7Jbnn+OjUf2 p7m2aNJeOfQWtcRa2REAKHgBHMIsQJ18awrFXvBx/sM6xueB/ORPrCf3/oAMqJCuR5FEgeuD Mu+HBBDi/fZmRkeGps/oyoTAY/sQ3XaGH7GBq4rKdE65pGqTLi5IMeuClideDeedsPLhnrk8 dUqbpeGfQ/QgI2cl5DxiO2Iz+iqx1g3Qw3jkGz55KMkOcDTyj5AVaVDXS+r4VV2h/vUjBsAO u/rjFXR4Na8Rymu4ifIa2U15bTLzGqW8NkEz5TVq5TUm332JksgeymcMWXv5ZzlWEWkfH7oP U5rRJsY1lkQSSCwByF7jsC4P4PLpxLYbB92H7QdEw2DaqJotKpmiqkzq3AbH6jHXnflG26XF 4PKDJ9GPUAUnwQkrhhfcNp5gWVN3HCa9YrCIBMYO/FfwHXHFhjuwvSAHGj46tMAQTGJbgrnq reCPEAaX9c+zveAa9Arx4Pvg7TL4R1+5onZd6WwsIQ6/EZz4/czcSDIYncVV+HtmQ7EZ4Akk 2MezXrvrwt911gubif8vYSvx6YAEYHPCzl92drI9f2cv2B7gwuLsDk760zCth9qKlVFBYI3I S4xGYjWaWACVr56Aae00TVSbOasIFxC/GL9coTzUIO49KoxBsUq4nAyE7LTxmz/36wZ8L9xr CIkS7kLY/mQhfY5U0lhlsfbC/Ovu/FLw0U24n1h0vVuthkSoypU9sEWwf4zXtEBZw8O2AjcD 0g0+J1sCPlstVIhKrI8ClcojSkkdK148rc5MFcfmhrWCQvpZPpr9ZOAnXty8YxygWjhu1sIJ qoXjcJBq4YRVC7ead4w2umO0tlNN3IaiDrpjtHXSHaOD7fCHKFoH7146C8JhYrTy6F2mkyPk pAtZSXLSdZScJJmTbrJJWk5km5OeNduUadtLtilm20eqKcv2mE143CZk9A8AAAD//wMAElCF VtwNAAA=</item> <item item-id="25">iVBORw0KGgoAAAANSUhEUgAAAEoAAAEACAYAAAAUZODPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAj2SURBVHhe7Z0Lkuo6DERZFwtiPayG zcxiMnG+tmMrDZGDFHqqXr2ai8aQk/YnbSHfOv5ABG5QFIM6ggJFoALq7+8PfDu/YW+Dej1u 3eM1X/Bf97zfuvtzBvXqHrd7t/zql8vmk78F6u95724rpb6xHFT4p2d3vz/7V671s4AaICwX OAJIoQS1PLpFTBOk262PC/9FAIPqVpVdA1ikqABi6lYFVWzVFAAUFBX++fWIoF8O1HSBvTLS cUgAUgPV6+5qY1U2RpW63CCRVW2JQCqKmgAmw1lBWOGGLF137sKFrmxBkxmoEcgtGYtmUKXZ TAZ1pXEqARXGoXBx8//XO0lFraDCAL4oKR9j3lXOhceoYbzIpvj49/KsF5ZN/bIiWx5cf9YT R01cJRdfR+3PLTVVpRPhxVfm+5jW9VR92sdVh72fnai3nvXsfOzzPwlBgcwJiqBAAmAYFfUu qOrDaf6w6ux3kMNu2KKoAOpqP5rXRFCgOgiKoLrhYV3rp5GiZgOwdyTEHRkpbnJbh8kjNQ0X x2KZWOJNjxWNcVDjBc7Pg/UHaTku8e2zzYqtp1/WjXFQ2bZWYgjGFyTF5Vtj8d8FwNgmq21Q m62uiqMgxU2vPZfNhxhM1F2nrldzM2yD2uzpVUBJcYMKo637GOrwWgyurjBToJItp3BrFRW1 bsvLPldtzDIFajuMKo1RyWx5SVDpjs3erDfv/eVxiUpilW66bHg/l8uDecN02gWOlbGZAaV1 VDxopyDSdVR9BjTe9bTWwsfbISiQIUERFEgADKOivg3qinYwyHQ3rJHNsvu+pwSw64GYCYqg QAJgmANFtbWC57TtcfJx+whzshUs5LQbV5SSzbLJTJ77m2QTp33SNihF465oBYs2sSdQp1jB FZs4G+RNKep0KxhVbA/NFKjzreB+jAJtYuOgGlvB/Z2p2sSWu1557VdZRylZwfOXmMZ1VNkv D5/LuKLAZfMJYQQFQiYoggIJgGFUFEGBBMCwZoqiZ16/A/TMUXXOcZoyBd+7eZjmNVFR4O0i qO+CauyZT6mLzp/1WnvmaQ2GtPiOJ4dzKE8SPdFrp09fxrhDL+TT9Gm0ffM2S2vPPCuoM6Yp lvf2TC0PTvfMwzAUDeb356v6TQZToM73zPN3rO/zGQfV2jNPc86l6h7GQYU73tgzD+Pg/BU0 4WtuDkCBy93GYQQFAiYoggIJgGFUFEGBBMCwZoqiZ07PHNQgQRGURKDZGHUYu7EGHIA65plv S4qMX7vd1jdIbef8PhkHpeOZJxddySWfgfosEKHimceYpEocjz6fs6S08e9tKwr1tMG4emX+ YP967noanvkiqLKa1jLijkA18cxnUKWxKVGiI1BtPPOx1VIV69qMWKrGb3uMyg6s+LTkyPhV s706Ua4VpemZXx6UjSW68a5nA5L9dZQdTsYXnARliAD4UThGfRsUPXNawaAGCYqg6Jkf1oB1 42587p/O6TtQphvJJa9mHHtwOLPTGvfcg3I570JWXZ4wtiSTuf3ytUKeedEmXoGMZmHvLLzi MwG3fdX2ghP0wuXiy4CiAhfXXU/NMwfGOU+gmnjmec3yYTwqjEWeQDXxzFFV+galkGf+G4pS 8szjXPJaHTvfilJYUis1YXt5oHSRGs0QFEiRoAgKJACGUVHfBkXPnFYwqEGCIih65oc14MIz l64S8Jn2fHfET+/bcLw80MhBv0xtlj01HazbglrNrhWFXiRQtwU5pNBv10OdSzGu0PU81GYR O9py2Gm/vaR17OWy+zJ+kchxbZbGY9Smebe1WSRQCn76sF2/plU7r82yp6qDx16yNovCcjxq wu+sp8thtzWC2kU0BhAUQYEEwDAq6tug6JnTCgY1SFAERc/8sAZcrKNQX3yiUcxzAtrwnR+F +uITpGK+ONDG7+SZj3UNyvnicq76b+WZx2NQ3oXe8dbdHhuH+uISKLQNT2PUx3nmP68ouH5U RKp4kiOw/+dJUdvlDuqLS6DANnyDCgDQeuY/vY5SWFIrNUE/CgRJUAQFEgDDqCiCAgmAYc0U Rc+cVjCoQYIiKHrmhzXwM5659Bw4U3RdsBTwu2O1SN73ji/+I/XMJc9cfm3gPNjFv1DPXHI4 d1+b6wh77nqo370Loz5G/VY9809B/V49c8kKrr/2g/XMPwOVLq88j1HDlWh45pdfRyksqZWa aGazKH0+M80QFHgrCIqgQAJgGBX1bVD0zGkFgxokKIKSCHAwB/XhABSQI75nsyT1V7JTGa9R m0XDM88OIEwqvV6mNgtaz1zwxYNLmp2AGpJqh39CU6v7UNtd740LWXrfTi7maNtMtQ7eaN82 KG3PPDvYcPa6kiMIPNRmaZJnvkhtHI82x1ZGg7nj2iz4GCV2vQlG7bDmddJ0W5sFzBGXlgci pEvVZjnmme+epc7aLOCSGwyzPeuBF3FGGEGBlAmKoEACYBgV9W1Q9MxpBYMaJCiComd+WAPW jbvhAhU889Va6J73zDOfPKpx8lmLl+ZsjS8PNDzz9ZJLueSLLTzck942zs8Hnf7cOCjcj9qt sVLMJa/7T74U9YanLXvmlVzyqf3nUtnaa9dT8syrueS5qbe5MauuTHW9Jp65lEv+hmJNgdrO 4vgYVet6ci55334yeGebpdEHMg5KwTNP6G9zyZNZz0vXK68Lj3nmaZulpPuofbeFthRW1FpN GO96Wpd5vB2CAhkSFEGBBMAwKurboOiZ0woGNUhQBCUR4GAO6sMBKA3PfHzGK/niW3chqgLr zT1IklGl/MJK/RXJF09eE9RlXFG4HwXXM9/YLnX7Nw61DeoNB7LqmYu+eGyxjF2zJljboDQ8 c8kXT77uEVDPmxDbPmgKVHvPPACo273Dq/PXPzJWpkBt7yM+RlW7XgAD+uKOQel45lVffNO1 w/u5XB7MXQU553PS1N65MJkvnq6jvG6AgqvmM8KMj1FnIMDeg6AwTsa/2AhexBlhVBRImaC+ DepqnjnIEwq7QVEM6ggKFAFBERRIAAyjoggKJACGUVEEBRIAw6goggIJgGFUFEGBBMAwKoqg QAJg2D+RHbEP38No3wAAAABJRU5ErkJggg==</item> <item item-id="26" content-encoding="gzip">H4sIAAAAAAAA/+wXTU8TQfRty5YttPQDbLGAYq18iIisxQ9CTLFyMFGaFMPVQLvRNYUtZU3k 1njygF5MPKMxXogHb15M0BijMRE860FN9BcYDya2vpk3LFtsFMSLgde8nXnfM2+mM288ACAh jiHW8b4DvzVmQdNagIGKqExlUpNXtIzJOZBGHEKjhFN1fQco1qiLz5CS1RA2RZc6/xSbWtWb 4NqKoN1q8A1qKXWqwweQdQM4pDmAevVWHsVu8HD+/XrG54G85E9pIPdenwqokGhAkZ8CNwRU Pg4/QJCP250cHxuZOWtqUxKP7UF02RlexEauqmgzae2SbkzLXBBn1lkjQ7wazjtp5cM1ezl/ 2rhG0z+HWIuMtJWQ84gLiC3o6wtrXQCL2HaRb/hUS0l2gKOJd4JWpGHTLOiTV02NxjeI6AM7 7BqMVtCh1byGKa+hZspreDfltVnkNUJ5bYYWymvEymureuc5SsJtlM9WZO3h3WJrRaS9fOoe TGnSmJo0WBJJ4GcJQPYahw15CLfPPWz7Zdo07xHLZaaNqqmclszp2rTJbXCuith34ou2K8uB D3cfRT7COjgFTiiV3eCy8STLmobjEHSpzCISlHfgv4IfiCUb7sD2gjQY+DOhHUZgGtsCzK0/ Cn4LIZCt/zw7C67DgBQNvAvcLoJ3/IUcsevmB9piyuhryYn9JXGQJDE6i6vx7+ymYjPAG0iy z2ejdjekP+tsFP4m/r+ErcSnCxKArQm7f9ndyc78nbNge4CMxVkPLvqTEO2HuoqdUUFgjchL jCZiNQnMgs53j09YO4WJbjNnFeFjxK/lqjuUhxrGs0eHCcitE7582Bi002W5+k7+tgnfS+hT 8f/qm4P/c7iSxiqLtRfmX/VnVgIPbsJCbFl+u1oNrdVUVQJbBPuP8ZoWKGt42VZgNbCvU/U5 bx34arVTIepnY5SoVB7TCvpE7uIZfTafm5gbNbIa6af4bPaRgZd4UfHG2E+1cFTUwjGqhaNw gGrhmFULd4g3Rie9MTq6qCbuRFE3vTE6D9Ibo5ud8D0UrZsPL5EC6RAxOnj0XuHkMDnpRVYf Oek9Qk76mJN+sumznKg2J0fXbOPCdoBs48z2GKnGLdvjNuEJm5DRPwEAAP//AwC2Z+lK3A0A AA==</item> <item item-id="27">iVBORw0KGgoAAAANSUhEUgAAAEYAAAEACAYAAAAOWABBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAgmSURBVHhe7V0NkrQqDJxzzYHmPJ5m LrOHccUfBCQkKDgEe6pevfpcRGk6AZoYXiN+UQRewCWOAIAhmFEMmL+/v67IdwqY7+c1fr4b Dn/j8H6N72ED5jt+Xu/R/lMpXNnA/A3v8bWjMjU7BMZcGsb3e5j+ovdngTEs8Bts2heCYNjw GS1ZVlBer+le858DmKlvZ5E+gHbGfD9T446NdslxBMo0OMIYc9nUp5g1jikZNji+w5hDBKgj CwhgJl5p9jWej3HNKW5GrtOlnK9/3XNHEYuan7mZYvh/7uaKFuo7X8uShQX+e1EMoBhDXa/Y moJVB6PSCsgQmtHsNHxTsy+RBobrdB2MmUfaaSQKRpgFg1xmdORjlvYbtsR8SWz4XiGLgdnP qLTaxmE0cg1XzoJ+5jEWl3dyYhafywRer6eZ72ZC/KQsNmKdY1XBQaR4VdlrpeJv0GiFAIbo GAADYPJsFozhGEMu5KgFXqPX83hBl7aMMcBo/5VsA4CRmBIYsyMAxvycMcnFqXm7Re+ZBwFK K2bq0OdjZqHdNNoV292u8tdf0YUqW8c4P6PUr7opLQrdtAH3jamCWzOCbZmAGbI6lAFjezBl BgeZgtB9ujMlqwwSpnRQ+wDMpo0GW7oAZrW0tI8RmeNUSJXzlTXK34Eg5dNH+JhDI584jyk1 uWDq0WlKN4ADYKj1jaaZ7w1EsY8AY+5mTA/yZimGVl9ElnpRST0wpbtNSdIrLZcBY9QxprZ8 qXKtxEqPF+VLtv4GV9cy6fG8fCmrv0FgRNJCCflSpSndIV92CQwYQ+0dFZAvu2RMEEB9Sr7s BpjS8qVaYH68XsCSQN2SAIz5MQJgTF4HwMfczRhovjvi0Hwp9m3XS9pnnmcoV7pkG8AYMCaP mWUZU1vzXRei1CfLbZoSq8le1HynDt8+fVYDjEyTPa/5zkYwC12f8XPIIOAMsc1GO1QLWTVs M8l60h+qtmlKFTVfY0JLFpIegTmr+Xr39QjM/BGFowdTZhdct7kmgi/qYtmMdJpSCc23G1Mq rfmqBSZvclm8dLumVLypeRUCmLuFqrz+aa80GAPG5LGyGmOg+ULzZalYVqhiH1e3QDVTqvva 9WsHMOpGpVqa75q0MP21f6tRm9U0Xz/H5yxDELkfmjOlqpqvVOCazKs5YKzJ19B8uwfmdJqC iCkRWeyfxRgrsi+5Zd7Dd90xOA5NOoE5qfkemx9mute+r3Ra8/UTYKSyw+phTCnN104FEmma mh6V6s/6k09olzEA5scIqFsr/RgvmBIYk0fBaoyB5gvNl6UiNF/KX23XS9on2x2VCpRsAxhz C2OuaL6erhseSrOEmC2DA32iYJuMuaT5BikkZ5B2ALzjFxOn8DQHzGXN1zQ2iGrewaD1l9AK mgOmqOY7V+YwaNV8B3vWmzZTshLkxdS04clfq++xhDqI49oVPJHavwjfXqiq6L4FHJ2mxGm+ ITMsESawvA02+lQwpcAkUtOSoCzoeKNSF6Yk1Hyp6O99oHJS2pKZ6ls2pUpTfWm17ZqStAWV ygEYKHh51AJjwJhGGAPNF5ovS0UoeLcoeGw/1C2AUUndqHRF83VjYIL10HEtFdd82mTMFc03 9kmxI3V6q+uENTYHzGXNN2ysB9SWvoD3T80BU1rz9ePsXMlh2UJRkw1EBIwkztfuLTmCd7CV suR3iAvi3TPG2yWIWBDlc3QCw2m+AQAph9sZMAnNN2Vmh7+ZejQN17F9JaHmu9w6fW5jM374 PiT1N5do7ZoSP6JWLQFg1C0JqvKBrxyMAWN4lsD5CjCqZkrQfKH5svyD5gvNlyWJVwCMuYUx VzTfXdSZY3p9Meqxcb57t8Vy9j43znfDJZqz9/FxvkTO3qfH+ZI5ex8d55vK2fvkON90zt4n x/l6c4ljlufHxvn6c6xY+mvE+ebN24PS1WSHS2/VwM0ABtJmHg3BGDCmEcZA84Xmy1IRCt4t Ch7bD3ULYFRSNypd0HyTsbxPzudLh5Y9Op9vIpa3e6Eq2cBELG/3wKQCEJOxvMjn6401B9Vu DVx8bj7fFZ60M9YezhrRcrdMH973AslY3ofn803G8iKf77UlA5YE6pYE1zr88t1gDBiTRyIw 5m7GQPOF5svaKDRfaL4sSbwCYMwtjDmp+fJ58La313h0/JXcDmGvETl7YzHA7q3NzWPK5nYg cmlGY4B9RJsDxr5eypSE2m38/CQiBjhgmk5gJLkd3ATHTqPJGOAugJEwJuZbUjHAXQAjyO1g fJWX5HhqeDoGuAcfw57hJkmgo3G4Np0XOt+M3A5capSFG1qByZt1Fy/d7qhUvKl5FQKYu4Wq vP5przQYA8bksbIaY6D5QvNlqQgF7xYFj+2HugWq+Zi6r12/9naBOan5LssgczzZdk4bcUYT U3+bwFzSfAWxvGz9DR4Kc1nzZUQsWf0NAnNZ85WoezFZowsFL6n5CmN5VfoYrkc5VjjOl4zl 7RIYgea7WwaRM6ZPYBL5fINtk/jeUkQ6VetjcjRfSSyvWsbUn9wmn9DmBO/HoJjHAxgoeHk0 BGPAmEYYA80Xmi9LRWi+0HxZkngFwJifM4bVg9c35AIcuzrvWqDXzrCkygnqUDXBk+q1qXLS OlQBI9KDXTt/lClxsieAITbSAAyAOc4OMFwTMyY2BviJ85i82fjp0jqH69PNld8IYKDgydmC XYIEVjClu01Ju+abZ3jp0laoKllpD3UBGE7B66GXS7YBjAFj8vgExoAxYEweAmBMHl7wMWAM GJOHABiThxd8DIHXP3dL8K1G6IgMAAAAAElFTkSuQmCC</item> <item item-id="28" content-encoding="gzip">H4sIAAAAAAAA/+yXz08TURDHZwstW6DQAhYsoFgrP0RElvJT1EJBRYEaMFwNP1atKZQfNREP hnjygF5MPGtivBgP3ryYoDFGYyJ41oMc/A+MMSZSv+/NsmyRKKgXA0M+3X3z3sy8N/t4O5tN RAoYAJny3obf9MSUrheTEA2oYyOR4Uv6SEJqqB+0wSiUpjm+Ec2maw+fo2XXvLjMOrS5Z7hk aK6QHK0abaeW9xaj1EzNlks06iSyKVeJsrRbE+h2UrbU388SehnIxf7UHHbvytUIA0I56HJz 4ByPJufhJsqT83aGBwe6JrsT+pgiY2cDh1XhAvlyqKpP9usXovFxu+wICuvR+Ajr0qWuxcyH Y/riREf8Ci+/B2RA0W8mpBeUIUAxfJ0XVwdRNa6V7JuWMjjJNrIVyJs8M1J7IjEVHb6c0Hl+ rSCXrLKj1Z/S9q7ktZDz6i3ivBbu5LwWGXn1cV6LqJjz6jPzWqLdeYGewlLOZwlUu+TtbElK pN1y6dlIaTg+NhwXSeQOt0gA1KsaMeU2bB8/VlFn503zASSTYjSGRmJ6OBbVxxPSBqOcxr4z fmG7uOD5eO+xb4nWyFFKo+WkkxwWnWJa83RsRns5KSKyJLflv5LvYNnCtmwt6ac4/hJURl00 jusUzaw9Cn4pXrKb//PiLLhODYrf895ze5Zcgy/tPuvY+a+lAbXvjZIm7o2DJIzoIq4uf6c3 FVsI3kCKdT0btbuh/H7MRuVP4v9L+Zv4/IIkEs9EvH/Fu1Oc+dtnwdYQO4qzajz0p17eD5kp OyOlgRpRlhgFrCowGKWo3D25hnWaYRK1mIuK8An4nFx3h8pQ7Th7ojREsTWdrx7l51nb12zr 7+Qvm/A9D5+q+2ffQtSST4WpbVRZ4ubs3Ou6kUXPg5t0N7Bgf7dSDam0JlfWwGZDTFrWtMRZ w8s2hXqclEHQABpBE2gGLaAVHAZt4Ag4Co6BEGgHHSAMOkEXOA5OgJOgG5wCp0EP6AV9IALO +IynVcaFqFvMUeFSeUCfig7FznVGpydiQzN98VGdFxKRq9nDBi7W+Y1vjL1cC/uNWjjAtbCf 9nEtHDBr4XLjG6OCvzHKK7kmrkBXFX9jVOznb4wqccJXc7QqOb1QhJQDrCiX0WsMJwfZSQ1U teyk5hA7qRVO6tim1nSiWZzUr9oGDdsGtg0K20YeGjRtmyydzZZO0f4BAAD//wMA1gf+OtwN AAA=</item> <item item-id="29">iVBORw0KGgoAAAANSUhEUgAAAEYAAAEACAYAAAAOWABBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAjeSURBVHhe7Z2NkeMgDIVTVwpKPakm zWwxOeNfwAgkwD6JvJ25m9kEWPP8EPAZw+OLn6QCD+iSVgDCEM7oJszf399Q5qsS5vN6fF+f TYe/7/v5+D7fmzCf7+vx/O6/GpVLLMzf+/l9HKpM1Y6FcR+9v8/ne/rG7s8uzFzhxyP8Fwjg Kunc8Jr+D92y5/PSO1cdLrInUNox7o4nmsPZLa7CCcfMGr6+D8OuSQhDVJQSgPzcdqw5CTO7 InmnXUX9oEsF3/DzU2uMWpVrcqcmvDXpUuYLW2gozNyEUpXf4kuqt5E67MLadCzaE2apYNjj +H/pRx2z9Ep+jxPLL3XGEDFmdUvcXU+/+11uuldyw5a1q/djwni9Uq6h8l0w5jgmow3lmiDL SCNffkBfmh3dk/Jdxf+b96cUz5Xuv8T/8xchDKE7hIEwsiYJx5QcQ07kEoM+zWllvqBT745x lbX+07MOEIbTlOCYQwE45hbHzKArhy5ouneG8aly8tMRnTHGYYa5BysLs4kQUorc/GsRNJXP v+HqhFm47YQ9PwzHzDPv1/cVTESdEwoP6ZL5wnagTpj98opNaRMgbhILNvXHR+Hsnco3iDCu KSxEMBLm9BwrdBCZLwqcNh0TwKsS03HP69aYI8hnUpjkI+CIKfsG2ISR5DMpTOj6yDEncO6+ H6W7XvrTcBxDBuNzUwqdQfVQFscxCuYTepvSfxYHwlDzm47oBJPIWyaRozYlzciSe2297g2a EpqSzEtwDBzzPx1T5DF1aJOHPb8zz+n1068pXYg2wyX6dNXVCXMt2mRgz1UrdcJcizZL2PNw kFlhqtBmAXuqfkrAcowAUbrycnGF+s6kYySI8qeEqUabbOyptbu+EG3ysKdmYXqNrirL0Rtj KivUKxuEAdqUeQmOgWOUOIbLVTWnk0mZmalvX/Vsn70uTlpOzzr04zHSWlyQHsIg+Mpspdcx FzHfZXnJtkaPXhWqU5jLmG/4KiG9k4DCSeSlzPf04mm8I8kAaHNZrelWS0mWsxp2DAttTomq mO9cuAfEM1uv6IwxKVDldyq1zDeG4XMsSwdgk8JUM98T2qTf6zYpTDXzHdIxvZaz7kOB9WUO YlcwvY6RDVS7p4YwmCvJTAXHwDFwjEyBux2jmeVyr62LwlMhQJuU+wDD08rAMXCMLPr0dUwD 891eOV6CbPTqXzBX+mXm66OGSOzcPnzqRr7tzJfmuKcGkHGlOmG4aJNkvivde+97+9L7PJhy DFeYPPP1dgNJbUm5P1uiRbPpmBzzTT4ioQQYDG3mme9U2YD+5/frHGoBdJb5ugck/iEQvoOG hOEC5hs8O4oej2Cdr2xwekqtN/g2Vqw1O4S5G1S13rH/nR+OgWNkHrzMMVyuqjmdTEo6dV8e 0+uqKsu5zDGV16MmG4RB8JWZ0aZjKnkwNStPnaRhT5jGNcCBbzKn8JgSpp0H+7LkOY0pYbjY k14DfAhTOqlnSGHKW9OWT+EZTxjOGmDGCV/DCcNZA8w54Ws4YUo8+Ig/+XHNGMKIeXD5RGSb wsgGsVWpIQzmSjLjwDFwDBwjU+Bux2hmudxr66LwVAiYL+W+7fOeEb3XXZOW07MOcAwcI/Nf X8dcxXV/eW8HmusuL6Nv8PvH9nbIcF3BwkW9wbfYlMpHjp247i8IU8d1E00pftdgNZxNx7Rw XS/4Pt8f8oRAk8L04rrL6s6BNr2o57qJ/WNSz2fd/Ebl9vuu5g1HlS1OILiu/76Syf1jZIPL 7qn1OqZ7VWUFQpi7QZXs/uhLDcfAMTJXXuYYLlfVnE4mJZ26L4/pdVWV5VzmmMrrUZMNwiD4 ysxo0zFFiLWJkDi62TTzzd3cpnW+hplvXpN1d49PdEh4KtMMs17TO9i5t/YtvpCeU6jYlAge PATzbRCG5sEjMN9aYUo82DzzrRSGw4OPoi0y30ph8jx4BOYrEUayzhfMVzbSjVPbHPm21ZmV G8JgEskyyp4IjoFjlDhGM8vlXptMSjBfsV6A4VS82j7vGdHFt6dThp51gGNucUwBRp1n0f7K qMwZSqPv50ttBbltchys5T1+mQ62OwQ0tTsrb/+GDV2mvBsxlpzzxtvP12sq69GG+1I6Adc1 5ZjdA8U77a+x8xzE2Wh02P18Ey1ojzkCx+QWMertrouPSEJ1jmAsiDFTEWPt53tqLq4pbb3N 8lj2+V7OIAviCKeZrXrbcUzkoPy+vPQ4Bvv5Nk4N9DqmsWKt2SEMCJ7MQ3AMHKPEMVyuqjmd TEowX7FeIHi3EDzxfembAb2SuV6pifmutU2VYXqdL2MtL818V1GSZSRWVBEvjKprSu3Md2Es 82l/8XrgJMQa6r3rDPP1Y8apKRl2TDPzzQrjvsw8c/LyqmtKLGFyzDcnzOwgD6LPcWiopnRW JhmM46Y0JNr0tcgyXy9hchuE0RwjYr6ZcUzw7NriOZF9R/ji0vQGX3FV+maAMObmSn0NIC4N joFjZKa5zDGaWS732mRSgvmK9QLzBfOVmQaOucUxLcw3s5Y3vz74qNllvZLMbFHqFuabmmx6 uyMWWfF6KeqE6cF8A5kDoXLrg8Obo04YHsFjMt+psHAtLz+fTWFiRPlNOCG1lpeTT2tT4jmG iTbnZPmD7MZazpqI7LmgWvOdzaaUY7454M1lxZPwdoQRMN/cWl6s820aSGl2TGPFWrPrbUqt NWvMD2GANmUWgmPudgyXq2pOJ/MYmK9YLxC8Wwie+L70zYDge3fwbb5/DcyXx3UTe/16F63T MS3M1xGYaTkrcQiOh3ue8wyaSqdOmHbmy+C6qb1+I4urE4ZH8HLstsR1y2e/uWuwKUyO3Ra4 bvnst+XW2BSmFm2W9vpVH3zdBVbv7XBWbQvGkr1+bTpGxHz9fR980Sx21ynHdGK+hzRWhWke IbYVoLcptdWrOTeEMTdXar7nbQXAMXCMzEGXOUYzy+Vcm0zGfOodbfYsdISyIAwVr0a4u1fU AY6BY2S+gmPgGDhGpgAcI9MLMQaOgWNkCsAxMr0QYwi9/gFD+IxYeCPtMwAAAABJRU5ErkJg gg==</item> <item item-id="30" content-encoding="gzip">H4sIAAAAAAAA/+xXTWwTVxCe3diOHRIcBwdC4ob8lpAf2m5IKxDU6xqEkEoSkgqpl4omWRWj JA6JkaBwMJUQN4qEqqpcSgTHtmqlSkUVFUFVe+EAF8QBIQIXrlRq1fbQLN+8eWtvzE8J4tKS sWffznsz882bffveTiURGeBhcIW6N3EN5KYdp4GYLHB4YnRg5IAzmlM9NATeCiO7zPryClE+ YH3wG5qgVTWlxkNaLrcoCq0QexDNUMRShmEGY6BIeu/wjoO7cs6EoUwr2dzfUQVeoVTDzsEh 56NMdjKoBjax9Vh2VPoCqm9zYQKhmf1T72QPS7zvgsvRMVSYwW7wPAD2I7ZjZUTNCOhrU2Sm ++VEMYybZFaq9NQUkFK53HRm5FDOkfi2gKPkp6otLYvklV5aopKWldWSFraKSVqiNZKWGKdl lXUK+vkYxa2Kn3Gzqla1dny1ZcJmrBZhGZjZGiVeUOIR+KoTOc7yxwJtejGsVbeVSHY6OzGS 5fTKQDWnBt3FHg5rKx7DPQSUQTrOov0c7LqsDdWBcSc9nnEmc8oGIyG9hPQVttevxeZnv6u/ SyX0NpXRghuhkK/PKFhLOKaWF1xGFHKX6T9F/4AXNAf0s1yml4eGKItfjppoB02inaYjpVvB U2k1BQvvPO8H89RntMRuxc7kqWrvr8F6v271pca2cP9VA7s4DiTpSwOdcR11nVkSNlMNdiH/ fJ7ZUOObNEDjQB/EzB3gv65+z0512MJ5D1wKPp+ciSVg/Bs91/w1cez83Dgd/P7zic17Pk5V wklLEZKPjRUke8Py/vD/IgNPeF8nPm86ZT1ULFoZfurbcydZ13Ph5C/RtXZdz3Zz9oc1NrrP 3Zh6wxaNB0m9GHt7e13CUuGVNYZXtOgyIm5dfW/wnxWDkIMA1/AmLSYGmPujQwHs+/STt+wn mhtPMs9/lv5TmW/+/Snmpt98zudi/vzpN5V88/y3l5U5KYOgNlShuzI1V/PjydVDz+fDeAE+ zBIfos05Sgp7aTM8OP+gKBiFQTXqWUlr2sWPTAmxAOHKCvG7M6GzvbUp+ZcyyttXZy+nvtl5 PLnuxPdXvkr8mDwav5S62Hjip+IE2E7KCHxC4zO4+DOMWqotXbphW9r4nG5tViL16JkCOlQO jHPTn+rfxf0ZnEmbSnJXXkaDF6mDtuHk+kJ9a+fpfeqhFB2G/swjugFqxIm6W+/RedqJcyaD l6L0pGPdYyW6w3SIRuC71OascTsvd8YgX/9GnPztPwzrGXqPPoSVd65Oox2nXlUbykgfPUL1 UseEqUHqmPqE1DENr0gdk9B1TKPULQmvjlkncsOiOqapWEo261KyRWqmZl6qrYLVTG2C1dou WG2vCla7xlovvts9rA6R2/xYG3x+Oz2/XeK3s1v8dvWI327td6P46fb8viZyl88vvD0EAAD/ /wMAprqGOGwPAAA=</item> <item item-id="31">iVBORw0KGgoAAAANSUhEUgAAAZwAAAG5CAYAAAC6IIK8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADDoSURBVHhe7d0LtE9l/sdxHBz328Fx SS65NkguySWk5NKILoSkhFzqiOZEUSlRdGOKWJk0US1llaLSRUxLurEmaTVlkpoympgGYxmj lvn+fXf9/A9+55z922fv57f3s997LauZ7P1cXs/T+Zx9e3YxYUMAAQQQQMCAQDEDdVAFAggg gAACQuAwCRBAAAEEjAgQOEaYqQQBBBBAgMBhDiCAAAIIGBEgcIwwUwkCCCCAAIHDHEAAAQQQ MCJA4BhhphIEEEAAAQKHOYAAAgggYESAwDHCTCUIIIAAAgQOcwABBBBAwIgAgWOEmUoQQAAB BAgc5gACCCCAgBEBAscIM5UggAACCBA4zAEEEEAAASMCBI4RZipBAAEEECBwmAMIIIAAAkYE CBwjzFSCAAIIIEDgMAcQQAABBIwIEDhGmKkEAQQQQIDAYQ4ggAACCBgRIHCMMFMJAggggACB wxxAAAEEEDAiQOAYYaYSBBBAAAEChzmAAAIIIGBEgMAxwkwlCCCAAAIEDnMAAQQQQMCIAIFj hJlKEEAAAQQIHOYAAggggIARAQLHCDOVIIAAAggQODGaA8WKFRP9k+q2d+9eT8elWg/7I4CA 3QKp//Sx28Pa3uUNmlRDZ9++fQSOtTODjiFgToDAMWcdmppSDZxDhw4ROKEZPRqCQHQFCJzo jp3nlucNnBkzZsiyZctEz2Ly244cOULgeNbmQAQQSAgQODGbCyef3TRp0kTKlCnjBErp0qWl bt260r17d5k8ebKsWbPG0Tl69CiBE7N5QncRCEKAwAlCNaRlJsImv0tqL774ouTk5EjXrl2l du3aUqpUKSdoypYt6/xTz3TYEEAAAa8CBI5XuYgdl3hCLdUn1fbs2SNLly6VEiVKiN7LYUMA AQS8ChA4XuVidpwGVUH3eWLGQXcRQMCDAIHjAS2Oh2jg6Ps4bAgggIBXAQLHq1zMjtPA2b17 d8x6TXcRQMBPAQLHT02Ly9LA+fbbby3uIV1DAIGgBQicoIUtKb948eLy1VdfWdIbuoEAAukQ IHDSoR7BOjVwtm/fHsGW02QEEAiLAIETlpEIeTs0cD777LOQt5LmIYBAmAUInDCPTojapu/h bN26NUQtoikIIBA1AQInaiOWpvZq4GzZsiVNtVMtAgjYIEDg2DCKBvqQkZEh77//voGaqAIB BGwVIHBsHVmf+6WBs3HjRp9LpTgEEIiTAIETp9EuQl9Lliwp69evL0IJHIoAAnEXIHDiPgNc 9l9Xjn7zzTdd7s1uCCCAwKkCBA6zwpWABs7atWtd7ctOCCCAQDIBAod54UpAP862evVqV/uy EwIIIEDgMAc8C2RmZop+oI0NAQQQ8CrAGY5XuZgdp5+hfv7552PWa7qLAAJ+ChA4fmpaXJZ+ ZvrZZ5+1uId0DQEEghYgcIIWtqT8cuXKybJlyyzpDd1AAIF0CBA46VCPYJ3ly5eXpUuXRrDl NBkBBMIiQOCEZSRC3o4KFSrIkiVLQt5KmocAAmEWIHDCPDohalvFihVl0aJFIWoRTUEAgagJ EDhRG7E0tbdSpUry6KOPpql2qkUAARsECBwbRtFAHypXrizz5s0zUBNVIICArQIEjq0j63O/ qlSpIg8++KDPpVIcAgjESYDAidNoF6Gv1apVkzlz5hShBA5FAIG4CxA4cZ8BLvuflZUls2fP drk3uyGAAAKnChA4zApXAtWrV5e7777b1b7shAACCCQTIHCYF64EatasKXfeeaerfdkJAQQQ IHCYA54FsrOzZdq0aZ6P50AEEECAMxzmgCuB2rVry9SpU13ty04IIIAAZzjMAc8CderUkdzc XM/HcyACCCDAGQ5zwJXAaaedJpMmTXK1LzshgAACnOEwBzwL1KtXT3Jycjwfz4EIIIAAZzjM AVcC9evXlwkTJrjal50QQAABznCYA54FGjZsKGPHjvV8PAcigAACnOEwB1wJNGrUSEaPHu1q X3ZCAAEEOMNhDngWaNy4sYwcOdLz8RyIAAIIcIbDHHAl0LRpUxkxYoSrfdkJAQQQ4AyHOeBZ oHnz5nLVVVd5Pp4DEUAAAc5wmAOuBM4880wZMmSIq33ZCQEEEOAMx/I5UKxYMdE/BW1u9kl2 fMuWLWXQoEGWC9I9BBAIUoAznCB101B2QYFTWBgV1NzWrVvLZZddloYeUSUCCNgiQODYMpK/ 9qOwwPEaOm3atJGBAwdapkV3EEDApACBY1LbQF1uAsXNPic3tV27dtK/f38DPaAKBBCwVYDA sWxk3YRJ3n2WL18uw4YNk4ULF8rXX3+dr0aHDh2kX79+lmnRHQQQMClA4JjUNlBXqoGzaNEi 0XdsKlSo4DxwkJGRITVq1JBzzjlHrr/+enn66aflwIED0rFjR+ndu7eBHlAFAgjYKkDgWDSy iSfQ8oZO4n8n+7tkXX/77bfltttuk169eoku2FmmTBkniDp16uT8OzYEEEDAqwCB41UuRsf9 /PPPMnToUOnZs2eMek1XEUDAbwECx29RS8vr1q2b9OjRw9Le0S0EEDAhQOCYULagDg0bDR02 BBBAwKsAgeNVLmbHXXDBBdKlS5eY9ZruIoCAnwIEjp+aFpelDwzogwNsCCCAgFcBAserXMyO 69Onj/OoNBsCCCDgVYDA8SoXs+Muvvhiad++fcx6TXcRQMBPAQLHT02Ly9Jlbdq2bWtxD+ka AggELUDgBC1sSfm6cKcu4MmGAAIIeBUgcLzKxew4/TSBfqKADQEEEPAqQOB4lYvZcYMHDxb9 CBsbAggg4FWAwPEqF7Pj9PPS+plpNgQQQMCrAIHjVS5mx1111VXSvHnzmPWa7iKAgJ8CBI6f mhaXNWLECOczBmwIIICAVwECx6tczI4bOXKkNG7cOGa9prsIIOCnAIHjp6bFZY0ePVoaNWpk cQ/pGgIIBC1A4AQtbEn5Y8eOlYYNG1rSG7qBAALpECBw0qEewTonTJjgfAGUDQEEEPAqQOB4 lYvZcTk5OVKvXr2Y9ZruIoCAnwIEjp+aFpc1efJkqVu3rsU9pGsIIBC0AIETtLAl5efm5kqd OnUs6Q3dQACBdAgQOOlQj2Cdt956q9SqVSuCLafJCCAQFgECJywjEfJ2TJ8+XbKzs0PeSpqH AAJhFiBwwjw6IWrbnXfeKTVr1gxRi2gKAghETYDAidqIpam9M2fOlOrVq6epdqpFAAEbBAgc G0bRQB9mz54tWVlZBmqiCgQQsFWAwLF1ZH3u19y5c6Vq1ao+l0pxCCAQJwECJ06jXYS+Pvjg g1KlSpUilMChCCAQdwECJ+4zwGX/58+fL5UrV3a5N7shgAACpwoQOMwKVwILFiyQSpUqudqX nRBAAIFkAgQO88KVwKJFi6RixYqu9mUnBBBAgMBhDngWWLJkiZQvX97z8RyIAAIIcIbDHHAl 8OSTTxI4rqTYCQEE8hMgcJgbrgSWL18uZcuWdbUvOyGAAAJcUmMOeBZ49tlnCRzPehyIAAIq wBkO88CVwMqVK6VMmTKu9mUnBBBAgDMc5oBngVWrVklmZqbn4zkQAQQQ4AyHOeBKYPXq1VK6 dGlX+7ITAgggwBkOc8CzwNq1a6VUqVKej+dABBBAgDMc5oArgbfeeovAcSXFTgggkJ8AgcPc cCWwYcMGKVmypKt92QkBBBDgkhpzwLPAxo0bJSMjw/PxHIgAAghwhhOzOVCsWDHRP6luH3zw AYGTKhr7I4DACQKp/+QBMPICXgJny5YtUqJEicj3nQ4ggED6BAic9NmnrWYvgfPJJ58QOGkb MSpGwA4BAseOcUypF14C57PPPpPixYunVA87I4AAAnkFCJwYzoeTA6d9+/YycOBAmTNnjnz8 8cdJRbZv307gxHCu0GUE/BQgcPzUjEhZeQPn0KFDMnToUGnVqpVUqVLFCRX9U7VqVWndurVc ddVVoh9f27lzJ4ETkfGlmQiEVYDACevIBNSuxFNqBV1W0wcE7r33XrnkkkukSZMmzndwvv32 W09PtwXUDYpFAIEIChA4ERy0dDT5+++/5/ME6YCnTgQsEiBwLBrMILuyd+9eznCCBA6g7Jdf fllmzpwZQMkUiYA3AQLHm1vsjjpw4ACBE6FRf+KJJ6RChQry2muvRajVNNV2AQLH9hH2qX/6 cIGXx6l9qp5iUhCYO3euNGjQQD766KMUjmJXBIIXIHCCN7aihiNHjhA4ERjJW265RfQxd32q kA2BsAkQOGEbkRC3R89wjh49GuIWxrNp+u7UjBkzpE+fPs6ff//73/GEoNehFyBwQj9E4Wmg Bo6e6bCFS+C///2v88IuH8gL17jQmlMFCBxmhWsBDZyDBw+63p8dgxfYtWuXdO7cWW677Tap X79+8BVSAwJFECBwioAXt0M1cPbt2xe3boe2v1u3bpWmTZvKPffcI6tWrWJsQjtSNCwhQOAw F1wLaODs2bPH9f7sGJzA22+/LVlZWc6yQ2wIREWAwInKSIWgnRo4u3fvDkFL4t2E5557znli 8Pnnn483BL2PnACBE7khS1+D9Yfc3/72t/Q1gJpl4cKFUr16dVm/fj0aCEROgMCJ3JClr8G6 ivSOHTvS14CY16zL1DRr1ky2bdsWcwm6H1UBAieqI5eGdmvgfPHFF2momSonTpwoXbp0kb// /e9gIBBZAQInskNnvuEaOJ9++qn5imNe47Bhw2TAgAG8AxXzeWBD9wkcG0bRUB9KlCiR7xdB DTUhVtXogqm9e/eW6667Llb9prP2ChA49o6t7z3TwGFBSN9Zkxb41VdfSbt27WTKlClmKqQW BAwIEDgGkG2pIiMjQ9577z1buhPafmio66oB999/f2jbSMMQ8CJA4HhRi+kxGjgbN26Mae/N dFu/X6PfsdHv2bAhYJsAgWPbiAbYn5IlS/L+R4C+y5Ytk8zMTNEvdbIhYKMAgWPjqAbUJ12N +M033wyo9HgXO2/ePKlbt65s2rQp3hD03moBAsfq4fW3c6VLl5ZXX33V30IpTaZPny6tW7fm HSfmgvUCBI71Q+xfBzVwVq9e7V+BlCRjx46Vnj17yj//+U80ELBegMCxfoj966DeX3jhhRf8 KzDGJf3vf/+TK664QgYPHhxjBboeNwECJ24jXoT+lilThhWKi+CXOFQ/8dCjRw8ZP368D6VR BALRESBwojNWaW9p2bJl5Zlnnkl7O6LcgM8//1xatmwpd9xxR5S7QdsR8CRA4Hhii+dB5cqV E310l82bgL7DVLt2bZk/f763AjgKgYgLEDgRH0CTzS9fvrwsXbrUZJXW1KWfgNbHyp9++mlr +kRHEEhVgMBJVSzG++sb8I8//niMBbx1/Q9/+INUqlRJXn/9dW8FcBQClggQOJYMpIluVKxY UR577DETVVlTx5w5c6Rhw4ayefNma/pERxDwKkDgeJWL4XH6W/ojjzwSw55763Jubq506NBB vv76a28FcBQClgkQOJYNaJDdqVy5sugSLGyFC4wcOVL69u0rBw8eLHxn9kAgJgIETkwG2o9u Vq1aVR544AE/irK2jMOHD0v//v1l+PDh1vaRjiHgVYDA8SoXw+OqVasmek+CLbnArl27pFOn TjJp0iSIEEAgiQCBw7RwLZCVlSWzZs1yvX+cdty6das0bdoUnzgNOn1NWYDASZksvgdUr15d 7rrrrvgC5NPzdevWiZ79LVq0CBsEEChAgMBhergWqFmzJkuynKT13HPPSfHixWXlypWuHdkR gbgKEDhxHXkP/c7OzpZp06Z5ONLOQxYuXCh61rdhwwY7O0ivEPBZgMDxGdTm4nQdsClTptjc Rdd9u/vuu6V58+aybds218ewIwJxFyBw4j4DUui/fgL5d7/7XQpH2LnrxIkTpWvXrrJ79247 O0ivEAhIgMAJCNbGYk877bTYP/I7bNgwGTBggPz00082DjF9QiBQAQInUF67Cq9Xr57k5OTY 1SkXvdF7NPfdd5+cf/75MmrUKBdHsAsCCCQTIHAsmxfFihUT/VPQ5mafZMfXr18/dl+p/Pjj jx1P/aMfTmNDAAHvAgSOd7vQHZk3aPILncLCqKBO6arHY8eODV2/g2zQhx9+KBq06nbNNdcE WRVlI2C9AIFj0RC7DRyvoXPGGWfE6pLSq6++KomPzs2YMUP27dtn0WyhKwiYFyBwzJsHVqOb wElU7iV0mjRpItdee21g7Q9Twfop7czMTFm9enWYmkVbEIi0AIET6eE7sfFeA0dvhDdo0EAu uugiuf322+Wdd95JqtKsWTO5+uqrLRJL3pWHH35Y9BHwTZs2Wd9XOoiASQECx6R2wHV5DRwN GA2d9u3bO2/OZ2RkOPcs9Auf+nLjZZdd5nyWoEWLFqKPBdu8TZ8+Xc466yzZvn27zd2kbwik RYDASQt7cJUmewItEUSJv3NzOe3LL790vu555ZVXOk9n6cfXzjzzTBkyZEhwjU9zyfpARM+e PeXHH39Mc0uoHgE7BQgcO8c1kF61atVKBg0aFEjZ6Sz06NGjcvnll8vgwYPT2QzqRsB6AQLH +iH2r4OtW7d2Lq/ZtO3Zs0d69OghEyZMsKlb9AWBUAoQOKEclnA26uyzz3aWdbFl+8tf/uJc Lrzjjjts6RL9QCDUAgROqIcnXI1r166d9O/fP1yN8tiajRs3Sq1ateT3v/+9xxI4DAEEUhUg cFIVi/H+HTp0kH79+kVeYNWqVVKqVCl55plnIt8XOoBAlAQInCiNVprb2rFjR+ndu3eaW1G0 6pcsWSKVKlWS119/vWgFcTQCCKQsQOCkTBbfAzp16iS9evWKLMCcOXOkUaNGsmXLlsj2gYYj EGUBAifKo2e47frRMX1PJYpbbm6u6CXBb775JorNp80IWCFA4FgxjGY60a1bN+cR4qhtuv5b 37595eDBg1FrOu1FwCoBAseq4Qy2M/oBsvPOOy/YSnws/fDhw85TdXFY/81HNopCIDABAicw WvsKvuCCC6RLly6R6Nh3330nes9p0qRJkWgvjUQgDgIEThxG2ac+6mrS5557rk+lBVfM1q1b RT+lMGvWrOAqoWQEEEhZgMBJmSy+B/Tp00fOOeecUAOsW7dOqlWrJosXLw51O2kcAnEUIHDi OOoe+3zxxRc7nzAI67ZixQopXry4rFy5MqxNpF0IxFqAwIn18KfW+UsuuUTatm2b2kEB762f fdb13XRh0aysLNmwYUPANVI8Agh4FSBwvMrF8LiBAwdKmzZtQtXzefPmyfLly50Pxo0fPz5U baMxCCBwogCBw4xwLaDfjNEziTBtOTk5oi+k6pkOZzdhGhnagsCpAgQOs8K1gH6gTJfzD8um n7vWs66ffvpJvv7667A0i3YggEA+AgQOU8O1wNChQ6VFixau9w9qx/3794s+oj1q1KigqqBc BBAIQIDACQDV1iKHDx8uzZs3T2v3duzY4Ty4MHXq1LS2g8oRQCB1AQIndbPYHnHNNddI06ZN 09b/Dz/8UOrXry8PPPBA2tpAxQgg4F2AwPFuF7sjr7vuOmncuLHxfuuTaGPGjJHy5cvL0qVL jddPhQgg4I8AgeOPYyxKGT16tPM9GZObhs22bdukTJkyctNNN5msmroQQMBnAQLHZ1Cbixs3 bpw0aNDAaBc1cPQdG30K7cknnzRaN5UhgIC/AgSOv55Wl3bDDTc491BMbxo0hI1pdepDwH8B Asd/U2tLnDhxotSrV8/a/tExBBAIVoDACdbXqtInT54sdevWtapPdAYBBMwJEDjmrCNf0y23 3CJ16tSJfD/oAAIIpEeAwEmPeyRrvfXWW6VWrVqRbDuNRgCB9AsQOOkfg8i0YPr06ZKdnR2Z 9tJQBBAIlwCBE67xCHVrZsyYITVq1Ah1G2kcAgiEV4DACe/YhK5lM2fOlOrVq4euXTQIAQSi IUDgRGOcQtHKe++9V6pVqxaKttAIBBCIngCBE70xS1uL586dK1WrVk1b/VSMAALRFiBwoj1+ Rlv/0EMPSZUqVYzWSWUIIGCPAIFjz1gG3pP58+dL5cqVA6+HChBAwE4BAsfOcQ2kVwsWLJBK lSoFUjaFIoCA/QIEjv1j7FsPFy9eLBUqVPCtPApCAIF4CRA48RrvIvV2yZIlzkfQCtv0cwL6 hw0BBBDIK8BPBeaDa4E//vGPUq5cuQL3zxs0hI5rWnZEIBYCBE4shtmfTi5fvlzKli1L4PjD SSkIxE6AwIndkHvv8IoVK5xPPRe0cYbj3ZcjEbBdgMCxfYRP6l9R7q+sXLmSwInZfKG7CPgp QOD4qRnysop69rFq1SrJzMzkDCfk40zzEAirAIET1pEJoF1FDZw1a9ZI6dKlC21ZUc6iCi2c HRBAILICBE5khy71hhc1cNauXSulSpVKvWKOQAABBI4JEDgxmgb5Bc6hQ4ecM5e6detKt27d ZPLkybJ69epTZNatWyclS5aMkRhdRQABPwUIHD81Q15WQWc4en9m4sSJ0rVrV6ldu7ZzJqP7 62PQjRo1kr59+8qf/vSn2ASOm8uCbvYJ+ZSgeQgYFSBwjHKnv7JUfkju3btXli5dKiNHjpR2 7drJu+++KxUrVkx/JwJugZtLj7zUGvAgULyVAgSOlcMaTKc++OADycjICKbwEJXqNnAInRAN Gk2JhACBE4lhCkcjt2zZIiVKlCi0Me+//740b95cDh8+XOi+YdzBTeAk2k3ohHEEaVNYBQic sI6Mj+1K5TJaQdV+8sknrgJHv5nTq1cvH3tgtigCx6w3tcVHgMCxfKxT+eFZGMVnn30mxYsX L3C3Jk2aiP6J8paKGWc4UR5p2m5agMAxLZ7G+or6w/Gvf/2rEzhbt25N2osLL7zQmk9QJzsr TPgl/q6onmmcClSNQFoECJy0sKen0pN/QP7www9y9OhR14357W9/K/Xr15dq1ao5l9aqVq0q Z511lgwfPlyuuOIK+e6770QfLGBDAAEEkgkQOBbOi4J+O8/b3RtvvNF510ZXgNYgueiii2T6 9OmyYcOGU1SmTp3qnN28+eabzt999NFHMnv2bOnfv780btxYTj/9dOfdHX0xNDs7W84991wZ P3686ArTUX14wMKpQZcQSKsAgZNWfjOV570UdHKN+/fvF/3OzejRo6VDhw5So0YN59FnPUY/ J92sWTPp2bOn8+G1WbNmFdrgN954Q6ZMmeIcU69ePWexTy1L/6n/X/+9/r3ux5YeAb8eIklP 66k1ygIETpRHz0Xb895vSOWew44dO+TRRx+Vf/zjH84Z0JVXXumituS76BmOnunoGY+e+dSs WdM5E9L26Cer9SEDPVPSM6bNmzd7rocD3QukMhfcl8qeCBQsQOAwQwoU0GVu2rdvH4iS3vNZ vHixcw9I7wXpPSG9N6SX7vTR6latWsnQoUNlwYIFsnPnzkDaENdCCZy4jnx6+03gpNc/1LVr 0GjgmN70Kbi5c+fKwIEDnUt6emlPf0DqpT695KeX/saMGeNcCjxw4EDgzfv000+lZcuWVt2L InACnzZUkESAwGFaJBUYMmSIcynt+++/D43Q+vXrZdq0ac5LpfqQg7ZPf3AmVrru3r273Hzz zfLKK6/42mZ9Kk9X0bZpI3BsGs3o9IXAic5YGWup3kvRH0jPP/+8sTq9VqSPdb/wwguiT9x1 6dJFatWqdcpK1/369ZO77rpL3nvvvZSrOfPMM6Vhw4YpHxf2AwicsI+Qne0jcOwcV8+9euut t5x7KPoYdJQ3fdjhiSeekGuuuUbatm17/N0h7VulSpVEg2TQoEEyb948+eKLL5J2VYNKV8dO 5V2lKJjx4moURsnONhI4do6rp179/PPPzv0SfcHT1k2X53nooYfk8ssvlxYtWjiBoj+A9WGF rKws5zMM1113nfMgg36eQS/jsSGAgD8CBI4/jlaU0qBBA/nNb35jRV9S7cTGjRtlxowZ0qdP H+cSmn79VENIX2bVByf0w3T6gbqXXnop1aLZHwEEfhUgcJgKjsB5553n/IbPdqKAfmp70qRJ zkMDderUOX5/SB9Y0IDu3bu33H777fLOO+9AZ1DAzcurbvYx2GSqOiZA4DANZNSoUc4PUr3c xFa4wL/+9S956qmnHDd9dLx69erHV2fQS3T6LaDLLrtMHnjgAdFHqtmCESjowQceigjGvKil EjhFFYz48Y888ohzD2PJkiUR70n6m//ll1+KeuqqDPrejr68qg8p6KU5fbS6TZs2MmLECHn8 8cdl9+7d6W9wxFtQWOAQOuEbYAInfGNirEX6BU99mXLChAnG6oxjRbqC9j333OM8jHHGGWc4 69LpD8PEQqedOnWSG264QVauXClHjhwJnEiXLTr77LMj/yKrm0Bxs0/g4FRwXIDAifFk0KVk dDFNtvQIrF27VnJzc+X888+X0047zXmBNbHQqa6+rd8XuvXWW2XdunW+NlDXstOQi/rmJkzc 7BN1hyi1n8CJ0mj52FZdMkY/K8AWLoGDBw/Ks88+K2PHjpWOHTs6C50mVu9OLHQ6YMAAuffe e+XPf/5zyo1v3bq1s2q3DZubMHGzjw0WUekDgROVkfKxnfrdG335kS06At9884089thjMmzY MNHQqFKlinN/SP/o/9Z/p3+n++i+yTZdm04v52moRX1L9vJqIlx4sTW8o0vghHdsAmmZPuKr N7HffffdQMqnULMCepajZzt61qOfedCzoMRCp3p2pGdJerakT9Rp0Lz66qtmG0htCOQRIHBi NB2WLVvm/DB68MEHY9TreHZV7/vo/R+9D6T3g3SNucRCp3q/SO8b6f0jvY/EhoApAQLHlHSa 6/nqq6+cm9L6WC5bPAX0CTh9Ek6fiOvcubMTQokP4emlNn2C7uKLL5aZM2eKPlnHlh4Bm19Y JXDSMKfcTCg3+6TSdFueTEqlz+zrTkDfCdL3sPSXEX1XSN8ZyvshPF3uSN8t0neM9F0jtuAE 8j7kYOMDDwROcHOnwJILe2nNz2bZ9GSSny6UVbCArpKgqyXoqgm6ekJioVN9ak5XV9BVFvTe kK66oKsvsPkrQOD46xnr0goLHL8m26WXXmrNk0mxnjAh6ryuG6frx+k6crqeXNmyZZ37Q7o8 kq43p+vO6cMpug6diU0/EqhfgTXx0qyJ/iTq8OtngMk2F1YXZziFCQX0924mk5t9Cmqe/lDQ x2b9/gJmQCQUG3EBXUn7pptuclbW1hW2NYB0Dmsg6QrcuhL3nXfeKboyt5+b1qVnWzZtRf1v P6wWBI6BkUl2P8bNhDp5H12CRj8mdu211zofF9uzZ0++rX/55ZedsNEl99kQSJeAflPoySef dL4xpN8a0hXJ9f6Qzm29RKffJNJvE+k3irwsHqtBo4Fj05b3fSKb+qV9IXDSNKJeAkffQO/b t680atTohMsYie+15OTkyIsvviiHDh1y/l6vvbMhEEYB/cqqfm118ODBztdX9UXkvAud6i9W +rVW/cVKv96abNMHGfQzEfn9fRj7XVib8r606uZnRGHlhe3vCZw0jIifb0mvWbNGJk+eLN27 d3c+GqaPPut/uPq0ERsCURN477335K677hL9vPfJv1jpY9xdunSRG2+8UfSXK/30tz7mzRYd AQInOmPlqqX6Znl2drarfdkJgagI6AoJN9988/FfrPQxf/3FTc9w6tevL7169ZJp06bxSfCQ DyiBE/IBSqV5w4cPl8zMzHzX0kqlLPZFIOwCBw4ckOXLl8uYMWPknHPOkRo1ahxf6LRChQqi C9Tq+nFz586VrVu3hr07sWgfgWPJMN9///3Ob3xPP/20JT2iGwh4E9i5c6csWLBAhg4dKq1a tTq+0Kk+rKCf5DjrrLNEfzlbvHixfPvtt94q4ShPAgSOJ7ZwHaTvReh/THovhw0BBJILbN68 WWbPni39+/c/YaFTXd5HL9Gde+65Mm7cOFmxYkXkP04X1jlA4IR1ZFJolz7ho+84sCGAQOoC b7zxhkydOtX5GKF+K0gvS+vVAv2n/n/991OmTBHdz8S2f/9+5wN5tr3IqnYEjokZFGAd+iSP LjvChgAC/gkcPnzYOdMZP368c+ajD+IkFjrVT0Doxwv1TGnWrFny0Ucf+VfxsZJ0NW9bnzIl cHydKmYL0yXm9Zo0GwIImBH47rvvnHs/V199tXMvSP/7y7vQqd4zGjJkiDz66KOi95JS3TTc 9PKerRuBE9GR1WvN+huXl88MR7TLNBuB0Ap88sknztNw+lScPh2nT8klPoSnT8/pWm/6NJ0+ VadP1yXbNMT0PTovQRVamJMaRuBEZaTytFN/w9LJvHDhwgi2niYjEB+B9evXy/Tp0533hPR9 IX1vKPEhPH1RW1/Y1veLbrnlFuffayDZvBE4ERtdXTJez2z0tyU2BBCInoCukPDCCy84qyXo ygm6NJV+7iGx0Knel9WVFnTFhU2bNkWvgwW0mMCJ2HDqx7F0+Xc2BBCwS+CHH35w1o7TxXl1 LTn9b11/ubRpI3AiNJq6yKEu886GAAIIRFGAwInIqOkpti7nrqfjbAgggEAUBQicCIxabm6u 8+il3oBkQwABBKIqQOCEfOT05TO9mXjfffeFvKU0DwEEEChYgMAJ8QzZtWuXs7yGLkLIhgAC CERdgMAJ8QjqB6f0hTE2BBBAwAYBAieko6iPRdapUyekraNZCCCAQOoCBE7qZqcckfhktA9F OUUMGjRIypYtK3v37vWrSMpBAAEE0i5A4Pg0BBo6fmwzZ850HhLQN5HZEEAAAZsE/PkpaZOI x774EThr166V4sWLy2233eaxFRyGAAIIhFeAwPFpbJIFzurVq+Xdd991VYN+f0O/szFgwABX +7MTAgggEDUBAsfDiCW7Z5MscPTbFolvZehXOVu0aCFXXHGFPPzww/L555+fUPPpp5/ufH+d DQEEELBVgMDxaWQLuqSm4TJv3jznYQBdD03DRy+daRhlZWU531fXb2awIYAAAjYLEDg+jG7i jCfV+zi69PjIkSOlVKlSsn37dh9aQhEIIIBAeAUInDSOzfz5850n0pYuXZrGVlA1AgggYEaA wDHjfEotH3zwgWRkZMiNN96YphZQLQIIIGBWgMAx6328tipVqsiFF16YptqpFgEEEDAvQOCY N3ceEtA/bAgggECcBAgcw6OtZzWVK1c2XCvVIYAAAukXIHAMjkFOTo5z30bv37AhgAACcRMg cAyNuD6Jpk+k6fs4bAgggEAcBQgcA6Ou79iULl1arr32WgO1UQUCCCAQTgECx8C46CoCXbp0 MVATVSCAAALhFSBwAh4bXR9N10ljQwABBOIuQOAEOAN05WddAfo///lPgLVQNAIIIBANAQIn oHHSb9roAp36jRs2BBBAAAERAieAWfDiiy86T6Tp1zvZEEAAAQR+ESBwfJ4Je/fulbJlyzqf ImBDAAEEEPh/AQLH59lQt25dadu2rc+lUhwCCCAQfQECx8cx7NChg9SqVcvHEikKAQQQsEeA wPFpLIcOHSqZmZmya9cun0qkGAQQQMAuASsDJ/EFzoKGys0+bof6vvvucx4SWLFihdtD2A8B BBCInYB1gZP3M8/5ffI51U9BFzQr1q9fLyVKlJDc3NzYTR46jAACCKQiENvA8St0KlasKP36 9UvFnH0RQACBWArEMnASI13U0GnYsKG0aNEilhOHTiOAAAKpClgROHnvx7i5pJZf4NSuXVv0 seZu3brJ5MmTZc2aNfl6du/eXapVq5aqN/sjgAACsRWwInDyjl5RAuell14S/Uha165dRcOn VKlSzsMA+iJno0aNpG/fvjJjxgyZPXu2lCxZUrZt2xbbiUPHEUAAgVQFrAscBUj2BFoiiBJ/ 5/Zy2p49e0Q/njZy5Ejnhc6FCxc65S9evDhVa/ZHAAEEYi1gZeAENaIff/yxc2Yzbty4oKqg XAQQQMBaAQInhaGtWrWq9OjRI4Uj2BUBBBBAICFA4LicC82bN3fu47AhgAACCHgTIHBcuPXp 00cqVarkYk92QQABBBDIT4DAKWRu3Hzzzc5KAu+88w6zCAEEEECgCAIETgF4zzzzjPNE2ty5 c4tAzKEIIIAAAipA4OQzD7755htn9efhw4czUxBAAAEEfBAgcPJBzM7Olo4dO/pATBEIIIAA Apzh5DMH2rRp4yxxw4YAAggg4J8AZzgnWV5++eXOUjb79u3zT5mSEEAAAQS4h5N3Dug6acWL FxddU40NAQQQQMBfAc5wfvV85ZVXnLC5/fbb/RWmNAQQQAABR4DAOYZw8OBBKVeunFx66aVM CwQQQACBgAQInGOw9erVk9atWwdETLEIIIAAApzhHBPo1KmT1KxZk9mAAAIIIBCwQKzPcEaM GCGlS5eWHTt2BMxM8QgggAACsQ2chx56yFm25qmnnmIWIIAAAggYEIhl4GzatMlZkPOmm24y QEwVCCCAAAKRuoeT7LPRXoewcuXKctFFF3k9nOMQQAABBDwIROIMR8MmseX93x76K40bN5Zm zZp5OZRjEEAAAQSKIBCrwOnZs6dUqVKlCFwcigACCCDgVSDSgTNu3DhZsGCB7Ny5s9D+T5gw QTIyMmTz5s2F7ssOCCCAAAL+C0Q2cHRxzaZNm0qFChWcp800TGrUqCEdOnSQMWPGyPLly2X/ /v2O2JIlS5x9HnnkEf8FKREBBBBAwJVAZAPn5N6tX79epk+fLr169ZL69etLmTJlnJApVaqU cxlt1KhRrkDYCQEEEEAgGIFIBI523ctTakePHpWsrCzp2rVrMHqUigACCCDgWiAygeO6R3l2 bNmypXO2w4YAAgggkH4BawNHv2mj93eOHDmSfmVagAACCCBg9+cJfvzxR4YYAQQQQCAkAtae 4YTEl2YggAACCPwqQOAwFRBAAAEEjAgQOEaYqQQBBBBAgMBhDiCAAAIIGBEgcIwwUwkCCCCA AIHDHEAAAQQQMCJA4BhhphIEEEAAAQKHOYAAAgggYESAwDHCTCUIIIAAAgQOcwABBBBAwIgA gWOEmUoQQAABBAgc5gACCCCAgBEBAscIM5UggAACCBA4zAEEEEAAASMCBI4RZipBAAEEECBw mAMIIIAAAkYECBwjzFSCAAIIIEDgMAcQQAABBIwIEDhGmKkEAQQQQIDAYQ4ggAACCBgRIHCM MFMJAggggACBwxxAAAEEEDAiQOAYYaYSBBBAAAEChzmAAAIIIGBEgMAxwkwlCCCAAAIEDnMA AQQQQMCIAIFjhJlKEEAAAQQIHOYAAggggIARAQLHCDOVIIAAAggQOMwBBBBAAAEjAgSOEWYq QQABBBAgcJgDCCCAAAJGBAgcI8xUggACCCBA4DAHEEAAAQSMCBA4RpipBAEEEECAwGEOIIAA AggYESBwjDBTCQIIIIAAgcMcQAABBBAwIkDgGGGmEgQQQAABAoc5gAACCCBgRIDAMcJMJQgg gAACBA5zAAEEEEDAiACBY4SZShBAAAEECBzmAAIIIICAEQECxwgzlSCAAAIIEDjMAQQQQAAB IwIEjhFmKkEAAQQQIHCYAwgggAACRgQIHCPMVIIAAgggQOAwBxBAAAEEjAgQOEaYqQQBBBBA gMBhDiCAAAIIGBEgcIwwUwkCCCCAAIHDHEAAAQQQMCJA4BhhphIEEEAAAQKHOYAAAgggYESA wDHCTCUIIIAAAgQOcwABBBBAwIgAgWOEmUoQQAABBAgc5gACCCCAgBEBAscIM5UggAACCBA4 zAEEEEAAASMCBI4RZipBAAEEECBwmAMIIIAAAkYECBwjzFSCAAIIIEDgMAcQQAABBIwIEDhG mKkEAQQQQIDAYQ4ggAACCBgRIHCMMFMJAggggACBwxxAAAEEEDAiQOAYYaYSBBBAAAEChzmA AAIIIGBEgMAxwkwlCCCAAAIEDnMAAQQQQMCIAIFjhJlKEEAAAQQIHOYAAggggIARAQLHCDOV IIAAAggQOMwBBBBAAAEjAgSOEWYqQQABBBAgcJgDCCCAAAJGBAgcI8xUggACCCBA4DAHEEAA AQSMCBA4RpipBAEEEECAwGEOIIAAAggYESBwjDBTCQIIIIBA0sB57fpicv1rYcV5Ta4v1lnm fxnW9tEuBBBAAIFkAqcEzpfzO0ux8KbNL334cr507jxfyBwmNQIIIBAdgZMCR88erpe8JzdO AB3/4f6lzO9czFUg6VnSycHlNsyc/YodOz7vn5NCUMvvzGlOdGYaLUUAgdgLnBA4yQNBQ+jX S2ypnFm8dv2xwMgbXr+EVconT1pnsktoWj5nObGfwAAggEB0BPIEzi+BkPSsQX+4H0uK1O7t 5AmqxGWwk86eCmcqoE3HzsO4l1O4IHsggAACYRHIEzgnBcQJLXR/KS3vYXkvq7m9nJb3+BMv 551M5vGMKSzytAMBBBCImcBJgZPf01+/hNGJl8hcSDmXw/SymodwcI4t6BJcQWc/LtrGLggg gAACRgVcneHomYZeakv8030Lfw2a+YngcXukmzMqDyHmtnr2QwABBBDwXaDwezjHz1K07tTv mxx/4iyFpwV+OebEp+VO7XnqbfFdjwIRQAABBFwLFPqU2smPN5/6uPOvl9vye2KswEtjyY79 9ezm5Meij/3/Ex5o4Ck114PMjggggEAYBJK8h+PtLf4vj102S7o4wQlnSMm7nO+xBQjxHk4Y pg9tQAABBNwL+LDSQME37wu+7+Pxxn8q7wO5t2BPBBBAAIEABZKspebTzfhfL6X5/3Im924C nA8UjQACCAQmwGrRgdFSMAIIIIBAXoH/AyC0Pgy0nJH5AAAAAElFTkSuQmCC</item> <item item-id="32" content-encoding="gzip">H4sIAAAAAAAA/4xTzXLSUBQ+N4EkpPwUEJGGGtqiAgpCRp2xK3Q6jjNWncEH6KSQtjgimKZO dZXxAdy5duMjOO7VnQtfCc8PpdWVN3NyfvJ959xz7k0aABTKCxSbbR3fVvBmEByOp6+TQOsO Smo0HUoswbH7BJsMn++/DIYRR2DAfA3fxvHR7OH0VMK7KCYGBkvgU5QGyswA+IHVf5nnPq2O JZvSQNPZKCyLP4iicLx/EgWKkdsoObi4Etubf/lJTpCIwiBwOOChZGZsGl7lO0CcNL3PqPuG JdpMibZs0akVT8Mib3E+hkr2oAN38cGhpL1PTwA+2JBhwNc0A7oI6ME9hODKcoo4lfNon/0s hlbZjLO8hbxn/0THKrDu54te4TfqwiXOOCriEBTOseR9xC3HRbjM8S8livM0y0yIC1eEUKYP 7wAqQijDmhAqSwI4wshXheHQl/cA68Jw4Kow1s8Z4EoXZk0G4m6Irm3KYDYIqroAW+x/W/pQ F2LtmrRfx9B1ab/OiW+I47LTELDRlOyNlujmTanSwmNUOk0Xj/CWVGotK7WF3OxIpTaGbkvy NifvSleNs656fFFzI2/vMPRnR3sH03DiRyZjS3TfObzjR76MYG1xn7QavvTFX9OiFtkmz/ZP x8ePOI/8I1W6/WqBlTXHB1T1/6Nnyc0o9IeBt6PLGS6ArloF5ag5WUo52NLcVZpydKS6SldO Yk6RBGJgjkYSMXEfPxmEIZbJGDQswhA4RXmIbiOG6SuIYXoaMUzPcC00soxBI0cYAst2c89O JkE4HvqvZCAWb/sxygjG+FBx+nHtxTT/WemLzh8AAAD//wMAOaK8O6QEAAA=</item> <item item-id="33">iVBORw0KGgoAAAANSUhEUgAAAZoAAAFaCAYAAAAn7pvXAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABxKSURBVHhe7d0BdqLaEoVhx+WAHI+j cTIZDFe0zTWKIghVQH39Vq/XNwEO9e9zamcDwV3jDwIIIIAAAjMS2M14bIdGAAEEEECgYTQm AQIIIIDArAQYzax4HRwBBBBAgNGYAwgggAACsxJgNLPidXAEEEAAAUZjDiCAAAIIzEqA0cyK 18ERQAABBBiNOYAAAgggMCsBRjMrXgdHAAEEEGA05gACCCCAwKwEGM2seB0cAQQQQKCm0fwc m/1u1+z+/T2cTAQEEEAAgbkIFDSaU3M4G8yvuZwOZ8PZN8efuRA7LgIIIFCbQD2jaY1lf2z+ 95Wf5ri/M57a80H1CCCAwOQE6hnNE8KHhDM5YgdEAAEEahMobzQ/x/1Dwml+793c7uH4///v Z2GBhTmwnTkQZX+ljeZiMrtD8/gsQLuQ/BlOALfhzG57YDeOHW7juLV7RbIr21GvJtP9EECk AOOnyfL2xG28JtiNY4fbOG6MZjy3j/d8lWT8dPkxws4NLfrx/LAbxw63cdwYzXhun+15+R2a 948zm7yfoXzcCrdx3KIX/fizXN6e5tx4TSLZlbt0djp038i7/6XNSAHGT5Pl7YnbeE2wG8cO t3Hcon+4KWc0n8hi8n5CyTYIILBmApF9jtF0zJRIAdY8UZ07Agisl0Bkn2M0jGa9K8WZI4DA aAKMZjS6aXaMFGCaM3YUBBBAYBiByD4n0Ug0w2anrRFAYBMEGE2yjJECJJdqeAQQKEogss9J NBJN0WWmbARqE2A0yfpHCpBcquERQKAogcg+J9FINEWXmbIRqE2A0STrHylAcqmGRwCBogQi +5xEI9EUXWbKRqA2AUaTrH+kAMmlGh4BBIoSiOxzEo1EU3SZKRuB2gQYTbL+kQIkl2p4BBAo SiCyz0k0Ek3RZaZsBGoTYDTJ+kcKkFyq4RFAoCiByD4n0Ug0RZeZshGoTYDRJOsfKUByqYZH AIGiBCL7nEQj0RRdZspGoDYBRpOsf6QAyaUaHgEEihKI7HMSjURTdJkpG4HaBBhNsv6RAiSX angEEChKILLPSTQSTdFlpmwEahNgNMn6RwqQXKrhEUCgKIHIPifRSDRFl5myEahNgNEk6x8p QHKphkcAgaIEIvucRCPRFF1mykagNgFGk6x/pADJpRoeAQSKEojscxKNRFN0mSkbgdoEGE2y /pECJJdqeAQQKEogss9JNBJN0WWmbARqE2A0yfpHCpBcquERQKAogcg+J9FINEWXmbIRqE2A 0STrHylAcqmGRwCBogQi+5xEI9EUXWbKRqA2AUaTrH+kAMmlGh4BBIoSiOxzEo1EU3SZKRuB 2gQYTbL+kQIkl2p4BBAoSiCyz0k0Ek3RZaZsBGoTYDTJ+kcKkFyq4RFAoCiByD4n0Ug0RZeZ shGoTYDRJOsfKUByqYZHAIGiBCL7nEQj0RRdZspGoDYBRpOsf6QAyaUaHgEEihKI7HMSjURT dJkpG4HaBBhNsv6RAiSXangEEChGYNdc80Vkn5NoJJpiy0y5CGyPQGse9//7pEJG8wmlGbeJ FGDGMhwaAQQ2QuDRSMYYyyOKyD63vUTzc2z2u0NzejfBLtucpbr93R+bn7vtIwXYyDpQBgII 3PeQh4QxxBi6TGUOuJF9bmNGc2oOF/PoMZrTodkdXltRpABzTCDHRACB+Qj0pYvbPZD5zmCa I0f2uc0Yzc9xf0ko+8OhN9GcDuftjvcZ5q9wkQJMM2UcBQEEbgQ+MYK+bSrQjOxz2zGa0+l6 +av30tlPc9zvmzc+E/o0RoUJrUYE7gn0NflPvo/o9wQYzTcMe42mvby2b/b72z2aZ9P5vXdz fx/n/G9/EEDgSqDPDHBaDoFX/YzRfKNRn9Fcvn9vLq3x/L2nEynAN6XaF4FXBL4xgr5913IP wux4TyCyz23vx/Q+o3lif00495fSIgWwGLZH4JNG3bfNOyp9+zKC7c2pOSqK7HOM5vwgNKOZ YxrPe8y+Zvtto/7m+PNW7ugITEOA0XzDsS/RtI82318qa7ff2O/R9DXJT76f2ai/Pb9vpo99 EahCgNF8o3SH0Tw+znx7FPp6k+z5d24+aXR922Q26m/w2RcBBGoQYDTJOkcKkFyq4RFAoCiB yD63vXs0E0yaSAEmOF2HQAABBAYTiOxzjKZDnkgBBs8OOyCAAAITEIjsc4yG0UwwZR0CAQTW RoDRJCsWKUByqYZHAIGiBCL7nEQj0RRdZspGoDYBRpOsf6QAyaUaHgEEihKI7HMSjURTdJkp G4HaBBhNsv6RAiSXangEEChKILLPSTQSTdFlpmwEahNgNMn6RwqQXKrhEUCgKIHIPifRSDRF l5myEahNgNEk6x8pQHKphkcAgaIEIvucRCPRFF1mykagNgFGk6x/pADJpRoeAQSKEojscxKN RFN0mSkbgdoEGE2y/pECJJdqeAQQKEogss9JNBJN0WWmbARqE2A0yfpHCpBcquERQKAogcg+ J9FINEWXmbIRqE2A0STrHylAcqmGRwCBogQi+5xEI9EUXWbKRqA2AUaTrH+kAMmlGh4BBIoS iOxzEo1EU3SZKRuB2gQYTbL+kQIkl2p4BBAoSiCyz0k0Ek3RZaZsBGoTYDTJ+kcKkFyq4RFA oCiByD4n0Ug0RZeZshGoTYDRJOsfKUByqYZHAIGiBCL7nEQj0RRdZspGoDYBRpOsf6QAyaUa HgEEihKI7HMSjURTdJkpG4HaBBhNsv6RAiSXangEEChKILLPSTQSTdFlpmwEahNgNMn6RwqQ XKrhEUCgKIHIPifRSDRFl5myEahNgNEk6x8pQHKphkcAgaIEIvucRCPRFF1mykagNgFGk6x/ pADJpRoeAQSKEojscxKNRFN0mSkbge0T2HV0+NvXGE2y/pECJJdqeAQQWAmB1iBeGcc7Q3lV XmSfk2gkmpUsM6eJwDoJjDGILuOYunpGMzXRgceLFGDgqdkcAQQCCQxNEBEGMVX5kX1OopFo ppq3joNAOIEpjOBd4ggvKHDAVRrNz3Hf7I8/3Zh+js3+cApE+N1QkQJ8d6b2RmB9BKa6lLSm 9LBElSL73ESJ5tQcdofm10paY7n/7zPl02HXrMVrIgVY4gR0Tgh0EZjKINBdBoHIPjeJ0Tyl mQ6jOTtNs9sfmxeZZxnk/51FpACLKtzJrJrAVEbw6jirhuPknwhE9rleo2lNZLfbN79XxS4m sru7TPbTHPd33z/nmsP5+20Rf/a7fP1+u+UqHynAcik4s7EE5m74jGCsMva7JxDZ53qNpj2x 9rLX7t91r/bff+7FdKWXrq+ds8xxv7DLZ53n2T6r/hEWs3bhBDT8hQvk9FIJRPa5DzvqP5M4 dFz+ai+JPdyPaV408CeTSsV8S15395ZcOvtakbmfAhpy/K+LcQAENkxggUZziTWXn/Sfbuh3 3XtZuNFcLweek9nZOB8fWmjnVdZPwlsYd8PrUmkIbIrAAo3m3/2V0/PTZJ3pZelGczpdH0pw 6WxTC0cxCCDwOYGFGc31stntvswlDdw/PfbyHs3jjf913aO5Pszw9+/nEtoSAQQQWAaBrl52 +1rUGfbeo7k8CPDnseR/9zZ+r6F1Gcj1a38vtS3wqTOJJmqeGQcBBBZGYGGJpp/O27cC3HZf 4u/RMJp+cW2BAAKbJLA6ozk/KfD3zQAdsizyzQCMZpMLSFEIINBPYIVG095X73nX2RLfCsBo +mejLRBAYJMEVmk0q1SC0axSNieNAALfE2A03zP86giRAnx1onZGAAEERhKI7HO9T52NrGHV u0UKsGpQTh4BBFZLILLPMZqOaRIpwGpnqRNHAIFVE4jsc4yG0ax6sTh5BBAYR2AZRnN78Vb0 /49jNulekQJMeuIOhgACCHxIILLPSTQSzYfT0mYIILAlAowmWc1IAZJLNTwCCBQlENnnJBqJ pugyUzYCtQkwmmT9IwVILtXwCCBQlEBkn5NoJJqiy0zZCNQmwGiS9Y8UILlUwyOAQFECkX1O opFoii4zZSNQmwCjSdY/UoDkUg2PAAJFCUT2uckSTe/HBPx+IufyVY0UYPk0nCECCGyRQGSf m8hoHj74rOP1+4v84LMXsydSgC1OYDUhgMDyCUT2uUmM5inNdH3OyxI/ypnRLH81OEMEEJiF wKKMpk0iu4fLXq2x/P+1n+a43zfHnxuLNt2c97n8ffz6/X/Pwm6Sg0YKMMkJOwgCCCAwkEBk n+tPNE/ppDWWXfPrPV3ppfOTKx/2GwglcvNIASLrMhYCCCBwIxDZ5/qNpukxlvaS2O7QnO71 e/ERyW062v8ffRareKQAi4XgxBBAYNMEIvvcB0bTNPeXyp7ux3Tde2E0m56gikMAgfUTWJzR NOe8criklsf7MWfYH186Ox9Foln/7FQBAghsgsACjeZqEofjsdnvj2e7ufvz0mgeb/y7R7OJ 2akIBBDYBIFFGs3ZaS5Pkj3/3mWXgVy/9nf7NhV56mwTM1QRCCCwegLLNJoX911a2m/fCnCT w+/RrH5iKgABBLZDYJFG8/d3Zx5hP7wZoEMLbwbYzgRVCQIIrJ/AsozmkmTay2APjzA/cO59 19njvZ0F6xQpwIIxODUEENgwgcg+99HjzRtm3VlapADV2KoXAQSWQSCyzzGaDs0jBVjGlHMW CCBQjUBkn2M0jKba+lIvAgicCTCa5GkQKUByqYZHAIGiBCL7nEQj0RRdZspGoDaBRRjN+UGz c7R6FmLury9B+kgBllCvc0AAgXoEIvucRCPR1FthKkYAAfdosudApNNn12p8BBCoSSCyz0k0 Ek3NVaZqBIoTYDTJEyBSgORSDY8AAkUJRPY5iUaiKbrMlI1AbQKMJln/SAGSSzU8AggUJRDZ 5yQaiaboMlM2ArUJMJpk/SMFSC7V8AggUJRAZJ+bLNH0fkzA80dzLlbeSAEWC8GJIYDApglE 9rmJjObhg886Po3TB59tes4qDgEEVkZgdUbzlGa6PvbZRzmvbBo6XQQQ2DKBZRlNaxCXT9j8 +/f/K2E/zXG/b44/N0nadHPb9vHr9/+9XAkjBVguBWeGAAJbJhDZ5wZfOmsvge3u77d0pZeu rzWtIe2aNdyqiRRgyxNZbQggsFwCkX1ukNFcTGZ/PFvG3Z9L4jk0p/uvdRpN07T77/+PPotV IFKAxUJwYgggsGkCkX3uY6Np78M8mUwrQ9e9F0az6QmqOAQQWD+B5RlNV2q5cf740tncieZ6 ae56L+khYT3Oics5391zekhpkQKsf7qqAAEE1kggss/1J5qLyby5if/SaB73mfcezf29o6f7 SI+zoK3pzc2iSAHWOEGdMwIIrJ9AZJ/rMZr7lHD/1Nm9iXQZyP/7/d/P26fR5nrq7OHYLy7d 3aZG372iSAHWP11VgAACayQQ2ef6E80HBN++FeD/7t59j+eD4/du8mQs70zt8XHs56NHCtBb mw0QQACBGQhE9rlJjOZ89+WcVt7fF5n1zQCDjOZqQvvf+znPKavr94YiRZlhTjkkAggUJfCq n0X2tImMpml633X2+Fj0lKIPMZrLto+/SPrXJCMFmBKDYyGAAAKfEojsc5MZzafFzbLdEKN5 OoHny2yRAszCw0ERQACBHgKRfW4bRnO5dHeXUnoeBvjLn9FYkQggUI8Aoxmh+cePNz/+TlBr Sn6PZgRxuyCAwJoJMJpR6t2/zPPvPZfHx5kvbzn4/YXN54cYIgUYVaqdEEAAgS8JRPa5jVw6 +5L4w+6RAkx75o6GAAIIfEYgss+9NJrzr2d+/b935XYd/TM8828VKcD81RgBAQQQeCYQ2eck mo4ZGCmABYAAAghkEIjsc4yG0WTMcWMigEAyAUZTSIDkUg2PAAJFCTCaZOEjBUgu1fAIIFCU QGSfc+nMpbOiy0zZCNQmwGiS9Y8UILlUwyOAQFECkX1OopFoii4zZSNQmwCjSdY/UoDkUg2P AAJFCUT2OYlGoim6zJSNQG0CjCZZ/0gBkks1PAIIFCUQ2eckGomm6DJTNgK1CTCaZP0jBUgu 1fAIIFCUQGSfk2gkmqLLTNkI1CbAaJL1jxQguVTDI4BAUQKRfU6ikWiKLjNlI1CbAKNJ1j9S gORSDY8AAkUJRPY5iUaiKbrMlI1AbQKMJln/SAGSSzU8AggUJRDZ5yQaiaboMlM2ArUJMJpk /SMFSC7V8AggUJRAZJ+TaCSaostM2QjUJsBokvWPFCC5VMMjgEBRApF9TqKRaIouM2UjUJsA o0nWP1KA5FINjwACRQlE9jmJRqIpusyUjUBtAowmWf9IAZJLNTwCCBQlENnnJBqJpugyUzYC tQkwmmT9IwVILtXwCCBQlEBkn5NoJJqiy0zZCNQmwGiS9Y8UILlUwyOAQFECkX1OopFoii4z ZSNQmwCjSdY/UoDkUg2PAAJFCUT2OYlGoim6zJSNQG0CjCZZ/0gBkks1PAIIFCUQ2eckGomm 6DJTNgK1CTCaZP0jBUgu1fAIIFCUQGSfk2gkmqLLTNkI1CbAaJL1jxQguVTDI4BAUQKRfU6i kWiKLjNlI1CbAKNJ1j9SgORSDY8AAkUJRPY5iUaiKbrMlI1AbQKMJln/SAGSSzU8AggUJRDZ 5yQaiaboMlM2ArUJMJpk/SMFSC7V8AggUJRAZJ+TaCSaostM2QjUJsBokvWPFCC5VMMjgEBR ApF9rmii+WmO+13Tgt7tDs3pYaJFClB0jisbAQSSCUT2uZJGczqcDeZwtZf7f990jxQgea4Z HgEEihKI7HMFjebUHHb75vjzb3b9HJv9Q6qJFKDoHFc2AggkE4jsc/WM5slYHoznLH6kAMlz zfAIIFCUQGSfYzTnOzR/Es4/o7nev/n7t+h8VDYCCKyYQFcvu30tqixG88JoogQwDgIIIJBB QKKZk7pLZ3PSdWwEEFgJAUYzq1AeBpgVr4MjgMAqCDCamWXyePPMgB0eAQQWT4DRzC5Rm2r8 wubsmA2AAAKLJcBokqWJFCC5VMMjgEBRApF9rt5TZ59MqnPaOT/b7O8YBp/wtQ0CCKQTYDTJ EkQKkFzq9MOPMacp95m+IkdEYJMEIvucRNMxhSIF2OQMzixqStMaeqzMuo2NwEACkX2O0TCa gdPT5i8JDDWmKbcnCwIDCTCagcCm3jxSgKnP3fGKEpjStLqOVRTrlsuO7HMSjUSz5bWktqkI fGtkU52H40xGgNFMhnLcgSIFGHeG9kJgZQS+Nap3+68MxVJON7LPSTQSzVLmvfNAYByBOU2s PfZG/zCaZGEjBUgu1fAIINBH4Fsj6zt+0vcj+9x27foL8SIF+OI07YoAAmsg8I1RzVhfZJ9j NC6dzTiVHRoBBL4i8I1J9Vz2YzRfKfP9zpECfH+2joAAAgi8IPDGqCL7nEQj0VijCCBQkACj SRY9UoDkUg2PAAJFCUT2OYlGoim6zJSNQG0CjCZZ/0gBkks1PAIIFCUQ2eckGomm6DJTNgK1 CTCaZP0jBUgu1fAIIFCUQGSfk2gkmqLLTNkI1CbAaJL1jxQguVTDI4BAUQKRfU6ikWiKLjNl I1CbAKNJ1j9SgORSDY8AAkUJRPY5iUaiKbrMlI1AbQKMJln/SAGSSzU8AggUJRDZ5yQaiabo MlM2ArUJMJpk/SMFSC7V8AggUJRAZJ+TaCSaostM2QjUJsBokvWPFCC5VMMjgEBRApF9TqKR aIouM2UjUJsAo0nWP1KA5FINjwACRQlE9jmJRqIpusyUjUBtAowmWf9IAZJLNTwCCBQlENnn JBqJpugyUzYCtQkwmmT9IwVILtXwCCBQlEBkn5NoJJqiy0zZCNQmwGiS9Y8UILlUwyOAQFEC kX1OopFoii4zZSNQmwCjSdY/UoDkUg2PAAJFCUT2OYlGoim6zJSNQG0CjCZZ/0gBkks1PAII FCUQ2eckGomm6DJTNgK1CTCaZP0jBUgu1fAIIFCUQGSfk2gkmqLLTNkI1CbAaJL1jxQguVTD I4BAUQKRfU6ikWgmW2aRE3eyk17IgbAbJwRu47i1e0WyYzSMZvxMfdgzcuJOdtILORB244TA bRw3RjOa209z3O8uLr3bHZrTu+P8HJv9Zbt/f/fH5udue5N3nAi4jeMWvejHn+Xy9jTnxmsS yW4zieZ0OJvG4Wov9//ulOF0+N226/uRAoyfJsvbE7fxmmA3jh1u47hF/3CzEaM5NYfdvjne YsklsbxONa0R7X83fhbK5B03eXEbxy160Y8/y+Xtac6N1ySS3TaM5slYHoznjxbtJbY7U+rQ KVKA8dNkeXviNl4T7Maxw20ct+gfbgoazdWE9r/3c55N5/fezf19HP/+/54WFliYA5uYA+Nt atie9Yzmkn7uzaU1np6HB4YxtTUCCCCAwB2BBRvN/VNkd0+ItT9J/bvp/1vHoEtnj/q/u8xm riCAAAIIfEtgwUYzpLRhDwP8PTKjGULatggggMBQAhsxmr+PNL99vLl9tPn+Ulmbhh5+j2Yo RNsjgAACCLwmsBmjOVvN+V5L9y9sPj7O/HPc393Ic3/GAkEAAQTmJLAho5ka04A3DUw99GKP N4TJm2173syw2PInPbEhLP8N3PP7YZOe3mIONhEnc+6s6ACWD7web4sPnR6M5gWxQW8aGEp9 pdsPYfJ22543M6wUz6DTHsLyeuBbYq+VwCfjZM79eWPK+7enXOfar7lcbje8/93DvsnPaDoJ ffNwQR/ytX5/CJP32/a9mWGthD4/7yEszz+H/rvUuz8c3r7x4vPx17LldJzMuQEsW2P5c9/6 moS+STWMpmvNffW49FoW8cDzHMLk7bb9b2YYeGbr23wIy/aCx+l0felrtUtnk3Ey557nzpCn bR8SzogVx2gYzWfTZsiif7tt/5sZPjuhFW81hOV9mYzm7zsNX02BF3zfvQ1kxbPps1MfO+cu P9+cH5768slcRsNopp+o7ya1NzN0JJMPf7pkNOOMxpwbPeeul22/vy/IaBhNrNE8jfZhk/3s LNex1difLhnNOKMx50YZzdVkvnsI4Iae0XS2pgE3ztbR2iY4yyFMvth2gjNd/iGG8LmrpprR XJ60+/zjP35J9XIq+MPNQJZTJRlG09ONhj9Wufz29u0ZDmHycltvZrjIMITl5w30W4WXt/8k nMy5YXPu6VLj9/NConnJ8PWbBr7HvtYjfP72hXdvavBmhovVfPwmi8pGMxUnc+7zOXcx946P gfB481r7tvNGAAEEChCQaAqIrEQEEEAgkwCjyaRvbAQQQKAAAUZTQGQlIoAAApkEGE0mfWMj gAACBQgwmgIiKxEBBBDIJMBoMukbGwEEEChAgNEUEFmJCCCAQCYBRpNJ39gIIIBAAQKMpoDI SkQAAQQyCTCaTPrGRgABBAoQYDQFRFYiAgggkEmA0WTSNzYCCCBQgACjKSCyEldAoPczVFZQ g1NE4AUBRmNqILAEAoxmCSo4h5kIMJqZwDosAp8TuP9smmk+OvfzsW2JwPwEGM38jI2AQD8B iaafkS1WS4DRrFY6J74pAoxmU3Iq5i8BRmNGILAEAoxmCSo4h5kIMJqZwDosAoMIMJpBuGy8 LgKMZl16OdutErgYjQcBtipv9boYTfUZoP6FEPhpjvtds9vtmsNpIafkNBCYiACjmQikwyCA AAIIdBNgNGYGAggggMCsBBjNrHgdHAEEEECA0ZgDCCCAAAKzEvgPJvLd6EI0dTUAAAAASUVO RK5CYII=</item> <item item-id="34">iVBORw0KGgoAAAANSUhEUgAAAC4AAAAVCAYAAAA5BNxZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAEdSURBVFhH7ZXBEYMgEEWpix5sgyos grMN2AEtePXqUIE3O9gIBFmVxEWMGWdgJpOQYXf/f/wYBg9d7KG6oQi/++YK8b8S15IDY+z9 4iD13XLo80JUlJgFC1C+drsn91QgZvM8w/U0TVBVFYLoYaL3RQ9VqJbAsUGyIfrBtm2haRpb YBLg1+pzaKdB8uBILOjRQGvOnEE380WPEhFSPorRAa5ZXddxsdhEbG4YGHLuvpv36vfEh2Gw skxkCMS3FtwN7LKaEJWzxL2Srut2wsdxdBH6mHErMPJkSRBOT3X8pIkMJm72PkarP6AtoWgM D4XnP1Xwj9FQ96vve2vERiiZyqHw5I6nCorwU9gyitKJZwy7srQIv5Impddjib8AgVkuqhrj fBkAAAAASUVORK5CYII=</item> <item item-id="35">iVBORw0KGgoAAAANSUhEUgAAAEgAAAAVCAYAAADl/ahuAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGvSURBVFhH7ZaNjcMgDIWZi4GYh2my TIahMT8JmIdxU12vVal0ak8hNv78eMaE9REJmMVHJrAATRSyAH0voD14a4Ix6c/6fVLKFlxe G99xW7t+98HWz+m39QFGjWttoJQfqqAM5ywyFT+GxNfz/w9Wm+uhQeSlMQDQ7u3ZMZMJ/ouJ Vx0881OBo47TM+NCoxkWY3MmcFGh2oiBdQ4oiCdBSVW0Zt1WBEEwYsEMQg4VG9vBS/tIUEgV R+HVkYWwKQfFgUdsBoSdYU03FCiwyFHBSFXl7aGCCiDQtALj3EGCGK0Oe1Brii0ASpBfjg25 TEyCQLIuJtt9C4ShIsSc2aCrmCX3OE2tMCrpUFgZBDOTvgrLUIDBac/0LRU9ecRSjnaKuS01 fAyoes7VNAOUEqYAeHIwRQ0o3FVQUijzG8mksdteMaB9XDW0w4mpvpkS9aaGkpbA3dILeOnJ Md/tle8RqEkCPlIQ73gvT82E0qzRgJQvirTXRt1RJdLFkl0kR1cG5rH6i2KeYn85vTTY3r1G B+hH4VAzVIBGJvYLalIBeresPynfAjTpxgK0AL12YB9YkakPE197PQAAAABJRU5ErkJg gg==</item> <item item-id="36">iVBORw0KGgoAAAANSUhEUgAAAEAAAAAVCAYAAAD2KuiaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFZSURBVFhH7ZZREoQgCIY5lwfyPJ6m y3gYVs2VNEhqGnOmmtmHWkT4+EEBX/7Ay/PHD8CngOkJeHQG0C69QFc7gPVnnBcW1P4mbwFK 6hhAtitGC1oWwt5fBcA7UwgCGBQh9opxw/8lFmPR9hTgHZo23sUiGId/HUj+CEBcABaL0tp3 dVISfbWDZOidy7EoWqBJNjsIUCgfyZ8MoI03Afn32AbUubwuWPcBpOpuqk0AOBWLM6AeIlXP JYltaYYN+1MJF0tDieDlb4r1K61hAKg4FLgwBxogF8p6YkkfQCAtKIBTqvoUWA254yRJTlHB UQoIA6NSaKLLQWEUJc8AbrKmb1HCI08IhQJym1BRjgbxgQLaislFjhtIEO45BahHeAAx1lqd gy9CMQBFF5zo9WdMdTfBXT8dKeCZRK7uqgOQLibz3BKvJsutUwO4c9OZfH0AZqrGE7G8XgE/ El+e5BVm9WoAAAAASUVORK5CYII=</item> <item item-id="37">iVBORw0KGgoAAAANSUhEUgAAAIQAAABdCAYAAABkdc5AAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAYVSURBVHhe7Z3tkaMwDIZpYPvYGtLF NkEf1wHV5Nd2kmI4bMeADfhLL1lbVmZubu6GKLL0WJYNEsMsH7HAzgIDS2s8x3kYxvnJcnCU Qb3m6THMj+l1KYQZEGbAwygohLB5TY/LCcMICAXDYw7AT5laDL/7nMeTKMoGiOc4zPHAYCJI /Lrg/DJRaDB/QuE3TtE7okFkqV/LlPea5sdjWr61fXgAoXKGqJc3Y0UvvfSkvySpWVYKBVLW DoZ1cGm6qeVjDzUDIJRhwwmkWTOXGb1cN1IihJpRg7csKRi9WRaPDGoyA2VpHkrluUtH+0Ao Q0Sm/Gua3jsO4pJx5nztiIIdDVKWAoIgT00Ya8LmgdgPJj4zaUDoSONHg7OZGVdkmdA4WSZA EOTtJlXjQMSXC9c3AsQ5q5sdGwdiWf+y1m8aEJSwfHAEIcSfOpUo7zma3KhtIBLyB2SEMImb ly+QkkqQrDWpLJdnl14BImG93y5BbhWRssq3nXZsbIAYs44miUuGtl7m4U8QOKQsmm6dApEV Drq6WIDoyt3xwQoQcRt1dQUPIH5/5u+f364cd9dgf3++5u9/DLadeUnlXeZsXy6PCLGcCwgQ GBgFCIwd2UgRINi4EjMQAQJjRzZSBAg2rsQMRIDA2JGNFAGCjSsxAxEgMHZkI0WAYONKzEA6 AwJ9m3m71Vz+SD/tdvU5BuXj7AgI9IMoriPLgUDrRZPXDxDF9QoXc7DGGg/NaGldhhlnP0AQ Hz71saiyxkMpSRxnN0CQ6hWC+RrtcTy0XlR5AoRfkpedrAsQ2Sa7/Qspt7+JofR6DDQgqCH+ oBdxnN1ECGgtheMFIhDIGo81qZS6jIQHZGjbsdsihH2cP7N8P6bP1hYhrR2AlddPhDCbKmCT j9WElTUfoY2zMyBuz2aa/wEBonkXYgcgQGDt2by0IBD6kGNpwVN+Tv8h+6RsOz+kSus/EwDi nZ0uLf6Keid90jICBMza10DYLrCFrXJgGqYIEiBSrJR0zSUQqt+jaVMXb4Ob9EuXF+Xtk0/F CBA0F+y+fQ6EFxVMLuGefoUbhBonmxaAbkNMmOZ7QQIEzKynQBzvmBkH75PLayDco1wtKzEr VTJtZ9jD3yEZAsSdQOxmt53lJ7NdAzGqbvPGiZu/vN7Jpf0bc4YoQORYK3jtMUJcvVJA///W vVXPZrsc7J1+6JusAElrRi4RAubXYkEHILRTTsOzm1z6S8b678Pt13QgCKNIuLlVLL2rL7pA RLaY++TS9jO01lqByI4Qssuoibjio2s3QuwTSckhanJwri4kINalxUkc3aUlZ5eRq/x6fXJS ibz9jZRlR0J82GZp7Z6ar13ZmgTEtsvwk8YazyGQD8ggZbkw0O4d/SEQxbP5ji+mRAhivYKj NlKWOgtG1Xj8ZYS4w6/FMlOAID586uiGlKWBAL3HQ4B4uykBCGq9gntSTngnRfhYiPg4nr9k 5C/dxTlE8Wy+44sCxNuqeyDKbiF0AwS0/gG8ZGxzBLnLKNv+9wMEsv4BKcvNVnFLRvYBoVGk HyCg9Q93bDu1O3BAFN5C6AiIzeB1vnwVDIREiOsXm9+Rx9YvU3KI+n30UQ3LbiF0tmR81CMV /JicQ1TghLZVkAjRtv/g2gsQcJO2LVCAaNt/cO0FCLhJ2xYoQLTtP7j2AgTcpG0LFCDa9h9c ewECbtK2BQoQbfsPrj0PIOTNvjAw5M2+MFPyEMQjQiQ8U8nDXfePQoC438ZN/UJnQCDL72qV tecv/5E8NkA8ol1qkM9B1irrCENuaWA/QCDL72qV9eaBUhrIAwhVwhZrboaspahV1gpEeWmg 7fsxNJX5HJRVIdx7R4R3Ta2lfEi9jj7MzSE2OzYOxFZgcgU20vC1yiIDoZbCdy7WPBD6jTmh xLLWMI/U6zRypvcqt/mDEtM+ELrqKbBsIMvvapVFAsK1HwMgFmuo2XYZJWrdKiL18olIzyFU dDCtrM2HBxCaiVCIrPUwCalXwcHUoeyPERCmYDatUWrbOyuU9l7JH7cIYcYjUKThcg4DqyVj M4QNw+HziTTDcbsqbhs2OQQ31/3VeP4DZZs0163leBkAAAAASUVORK5CYII=</item> <item item-id="38">iVBORw0KGgoAAAANSUhEUgAAANQAAABgCAYAAABlhVx7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAlHSURBVHhe7V3rseMsDE0D28etIV2k ifTxdZBq8iudpBh/xo/Y5mFAEk+fnbkzu3sNSEc6IGQsbgP+AAEgIIbATaynmjp6P4fb7Tm8 M8r0fr2GL3m87/B65ZSWLKjR8Fp6j3a634b7y23pzgg1K3x75nXO7+s+sIccJ4EzQ8lRQK6n K+vtmrA7IpQi0304mTzkPGnf0/c1PIUG/b6e+eWnonJVvX94vYenJQrqhlDv542/ShCcS5QE gk4ap4pyjrjJqC69l8jkNkYn4w9vpY/oa7TX/X4M9fsglNozsWOuOBecn1bgS+7VRsfWDESR Kn2bmvTWw3w1OVBJFd+XCnv3BO6AUAHGVTPJMnvdDIc9zkj67xVgatabf7RZ3DJDTTQ7a3Pq 7WnDVrdc+xVq+ft7h1nNek+21eyiJljKxETq6xj6tU8oBcLp6jTPWPMjepbGTGKo0PFnDD1b aPu3PravjWf5SBa6nsqlE0pNHtvKe8BEyW+LCErpbSPPRAxC5EDsa5+caZ5Q3kzTWQrdCvyO gJ70+zTj+wjlIpDD6Mp5eXsAx4CnupiEOqilta1J70kWfTWyrTQBcTC5r92k3jih/OGeFaQV XGtosF/FjuGgzh09ft72VWuI6EiUTA56XAVWkex9BniD95EzXeIJZZL+HKtJvAR6k0lgwYve 1+aHjRPKv4nnEWpDfQp7tH2UdabeGcrWZv6/Meaf9ihmWEIl1DbWRubf3k+bCUy54gl1lgTK qfdEUusKlS/km+eKeR/XNqG8+6d1VnSA6wv5jFnsuAfzEWq/Yhkzeu6Q71QXWUJl1duGIysp oflKYF/r1qN/Qo0HkLakxJKB+83YkUkJPTYP2Zy74vkTQiV5A6DvoQ5yxREqKCmRTe/4VLc7 Oqb31Q2hgk4p7NPmRph1njbXQ6mDszvS5qdtts2SJeRLmzZ3yxVJqOr0jngZG7nXDE0QXYtQ XhCpD/iTIs6erSvU2N+Tc8iWqkdsu6vqfbK2Lec5mw/5glaoWH+JeJ58BMdGqGJHjyIUXh69 qt4upLBCxfuQo8V7/PSC8OGGhVBkJxXTJaajq+ptx6gPQn0ew9/jE+MFSZ79jt9C8T8YITpo Eo3COr2q3jZ0Po9/w99/HaTNS4d8M7j+92HnLsrYk4T5fqKnrqq3CWcfK1RDe45EHo1uK0EA hKrEEBCjDwRAqD7sCC0qQQCEqsQQEKMPBECoPuwILSpBAISqxBAQow8EQKg+7AgtKkEAhKrE EBCjDwRAqD7sCC0qQQCEEjLEtUoRb6BdVW+X24BQAoTyFogJGQMlmENQqv4ZEIprIsFjT02d Mr+q3h5/AaEOALVeipg7O4S3FyW/GDnxxW64Bc+eFDNIrDjSp8O5p7Zj5ac+X6Pe9DoQJgr0 vi65Qk1ViqxllRsuRWzjxpVKT5PKJzsmFEZf1yNUr6WIDd+4WOnpSurygVDOPdSx7Nj0WMWl iE0+ndze6KtD2GDpaXq1V0vAxyjrfD1CLRcFrCHfsfZdXBkte3XXMqWIdbfgVcptr/Q0CEXd Dzv2CpRP4LsqRazhwiPU7sVt5aWnf5Ii5BNkFCvLty+rHL9C+S9406/OWfROXYKZc9uIYZoG Sk+jFHMhQnVbiljH82qlp+mpbqTNzQ1D1IXR/ZYiNuK+7cbGS5SexotdmWWKFfJxRGC84EQJ 5h3wrZSe9vvKBbN8flBiniAfwUEJ5g3mYhNijKXDnj0l1HqiIMm1KmHyhT1V1CDESq8owfyz LXlSCvOOrE+dEGq5lv5uubs0q4gBgxUllLprCiWYA6zkeIQ4IdEHTNrSTag1G+a6MCupWJGd FyYUSjBH2mtbm4bXnXBlJ3W4DO2chNpuIXe8RxETblkJKTdXrDIUJ5QYGOiocQTshNJWpXkv pc8kMxGmIzz6ZcE7R7ddyCyOGQglDik6pCFgJZR5bEU/KDqvWmuyYnpez1xMIaMiXPiSHnOD +UFdEIpmfbQSR8BCqN3K8/tmSF+J1DM7omgZq5kY4/Xy75fl/lhxHVRWIOrFbgIJ0CUQmBAw CeU6Azb9/0gSdUmfcVmx49Nxx3k1F/ZYoeCVrSNgEGpyauuLp11ywjjZK0MoMphYocjQoaEs AkdCeVLkv+SE6AqFLJ+sSdFbSQSIR4/O91A/hSJDPjIQWKHI0KGhLAJEQgV+HwNCyVoLvVWP AJFQSi+8h6reuhAwOwIMQmWX1T0gQr6KjHFtUUCoa9sf2gsjAEKRAZX8OpQsRMaGLel7PMlD A4mmLwhFQluyfgFJgMyNWtJ3IwL9Oz66viAUxTUZpXopwxVv04i+6wext/GTkOfurGk0fgx9 QahotFWCczyGpZ+wz/WKgCIvt00j+m4fejJDPoa+IBTB2SSrlBKGz96kPX15hOLoC0IR3JMD OGG44k3a0xeE4jlN7vdQjJCAp2ih1s3pyyMUJ6THCkXxUcmyv5Txc7dpTl8moRj6glAk56Sn VUnDFW/Umr5MQq03tPzy7uFfRIBQZGelvfgjD1e8YUv6cgmlwKbpC0IVd1QI0BMCIFRP1oQu xREAoYqbAAL0hAAI1ZM1oUtxBECo4iaAAD0hAEL1ZE3oUhwBEKq4CSBATwiAUD1ZE7oURwCE Km4CCNATAiBUT9aELsUR6INQn8fw9/gUBxMCAIHP49/w998w3JqGIvfnG02DBeFTItDHCgVC pfQR9B2BAAgVARYeBQI+BEAoH0LO39OO95OHK96wBX1TyBj3KUg3hLrTi7ARXLW1D+4IKh6a tKBvChnja/yBUBRfY9RtowxXvE0L+grLSK3x1weh1E0grpvoU3hjc0VLmCC0oK+wjNQaf+/n fG1u22nz6XPl8Nvmme41XUxsL3S53EHMHaCy9i3om07GmD3U5oeNE2q7fTuHL6YzXg7p48do Qd90MkYQSoWdy16+eUJNN9PnSkwIhxfxLp65RQv6JpMxnFDr/klZp31C5Qz7GHXbMlNBZrgW 9E0mYyihjtuODgg1+o6apbKsUilStDK+n6aXFvRNJWMYodTqdFfZiOVPH4SaOHUbsnCKWLct jcPn6DXFS1NpuVPIGEAotTpqWeZuCDUXKOwz2ybtfuhPAgFVVdbMMHdEKAUSSCXhKujDh4Cd TJ0kJXTl1+U/3/spH/z4fS8I+H2rsxWqF8NBj1YR+B8sa2qebZMRggAAAABJRU5ErkJg gg==</item> <item item-id="39">iVBORw0KGgoAAAANSUhEUgAAAJAAAABgCAYAAADy1PuhAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAbYSURBVHhe7Z3bkesgDIbTwPaxNaSL NOE+TgepJk/pJMX4GLDXNubOTwChndnZmR1bFtJnIS7Ct5l/2AIZFrhl3Nvura9pvt2m+dWu hp1o9pmf99t8f36s+hIDSDX4NjE6SEI/z7v1hSQEkIDnPjteFqRNB5T1midDVCcD0Gu6zf7A oyKU/zoXH2uUuy2Rbvl1hfd4ykrKFtoICDJess9zvt+f87FDowGQyHm8VOzO8V5q9bzeRQqH oCAqKXtrUCZAixjRnR1fGgIACcO7E2bVhy8RY7luyolA4g3U32ABr/ZWxkce6Zlysv8UygdI RbHd3v0DJAzvCSmf53MdkWV2YSZYpOMBI76SsqEAqSi0mbx7gI6N8b/5eQDJSKZHG1Pk8Cty uaKk7P1hWgSSuqtcTvwGd+2Hl7ZzgPzd19lTDNCeRJtgCk2wd7t3DtBihKj8Iw+guWQ3U1K2 qQszDDzCRrJK2GtSsPUNUED+g4xAKtHV8h1oEl1IdlAOFJdgb6kDAxSVr5QcapeU7RvG+5cs dDORAWiKmnrO7MKkFUtO9pWUbZtITJvLGhSgqHBD/+J1FBY8+jpYhAGij4e7hRnwyDi8zgV1 nwPFdWGjU7O3/292/jAPFDMXRAOg92P+fbyZigoWeD9+5t9/BIbxHIEq0MNdWB2jU3oqjS5s SQQ5AtXBkgGqY3cyT2WAyLiyTkMYoDp2J/NUBoiMK+s0hAGqY3cyT2WAyLiyTkMYoDp2J/NU BoiMK+s0hAGqY3cyT2WAyLiyTkMGAwi50w8pK9T5iJ2Ux2flt2EggJB7jZGy4uCJ2avjloxp wzgAIUuGkbIC+IGVZJ+CD6aEehyAkPVWSFlBAIFKso/PArVhGICQJcNIWQH8HC7B5UCoNjBA CefkoIwfB4+4mgGKt1nIHSEbykAhW6oDlCXKiLdDDS5/L3U2OIBQbRgmAkHLkUuWNjtfGCBA oDaMA9BWSfr3VqdVYir/YobAIcH1fA0QIFAbBgLo4HjIuYb5k3B1AcLYYzCA4l3Gd3imI7ky lRHJsYAzAm0zoClF9zlKRd8bMgqLFso3hFjAAdCaZC6HdkNOHw3RJvUaBijVctn32QHavjMB OjwyW1OXAAaoqHndplcntV5O5xATXOog6fhTq+JakzOcXp/EAMWZHHi1OQJpUUflQpYzkE0T UqnHxqY2jAFKtVz2fUaArms9KkpckmnZzYmp+CNc6cfGxk3rH9rOAGWDkCrAAJCCxbg+czhK Vzl7OeL1pZ1YmnlsbFJDGKAksyFuugJk+0ib/L/hAGrvEf/hx8ZyBEK49LsyLgBJJxonfizJ tBOg0gk4J9HfxeX6tDNAniG7MZm2AhQ6ugq9zmEq7sKqcZS/FuYYhX1tBpsBIgRQ5rGxSZZg gJLMhrgJHoH+KggSj41NalQwQCW2YCD36GytL6FnkmW9N+UD5H3EFy4IAqjEJrDd0bjuuoSe 5XwwDkDgWq4itVrCz2A9dXTOPUTod8HsAI4DEHAjvPJzgVotIRis58n1+hyfbc4vImANA1C5 UhxsDlROzxVO13ddE9YwGaCEurDzC9oRQNonqs55W9oa5jAAlesasACV0/OM/b5stOZBiWuY 4wAEqoMyTOYv36uP+NKxL78opqfpwa6lprA1zHEAAtVBFQeomJ6GHMi6dBW+hjkQQHLsJKPF tlVF7bjM/QF3YVKdEnqqduo7Hq7zV3Frk4MBlAsL8fsTlqEYIOJMBDcvAR41H2bZVB/84BYu DFrKaEHRdnVIXcNkgNr1aReaMUBduKldJRmgdn3ThWYMUBdualdJBqhd33ShGQPUhZvaVZIB atc3XWjGAHXhpnaVZIDa9U0XmjFAXbipXSVpAPR+zL+Pd7tWJqzZ+/Ez//4zHDDVVZt5Laya u2hEIAaIAcqyAAOUZb6cmweLQMidfkhZugtLyjbhkr6rkgxAd29tMbJkGCnLAg/kmx4hsSWv PHscgJAlw0hZF34wn6IMQkcenrrsEb9P85RYWUIDoHnZCH44v9FoPGTJMFKWrmxJ2dqzEOXZ r0nVlV3OiQ4huJ1rRBi2HEO8KoksGUbKugYgw5cBPCfH5fshNQfa7d45QPvmbpsxkU5Hyuoa IAH2mqt1D5A8FsWVSCO7BqSsil3Y/ui0CLTlP0JO/wDJYjxHN4YsGUbKMibRWjtMwOb3WwcJ KQCd7U0AoMUehgMC9LdsP8I4rgLz7C9Kw3jRsniARPQ5VvbSAEgy5DroADlBh5TV2USiiMDa qJcMQOptyj+6DdpDkBImIvc1VSAE0BaSGSI8t2Z4iCTRtm7APT+ENzJFiVt3bbclsQhE0Ylt t+k/UbIUlVhoPzUAAAAASUVORK5CYII=</item> <item item-id="40">iVBORw0KGgoAAAANSUhEUgAAAIgAAABdCAYAAAB+SS7OAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAY1SURBVHhe7Z3hsdsgDMe9QPfoDNni LeE9uoGnyae3SYZxjYljjMEI+JPDknrXu/Y9ooD0s5AwgmHWP6qBCw0MLLXzHOdhGOcny8Eh B/Wap8cwP6ZXVCgzQOyAh1HRyMHoNT2iDxQjQAwcj/niYcjRmcC2z3kMeF02gDzHYU47Duth 0u2u+Hh7qWHxVMvfK/ecpgwpy/22QrmvaX48ptmdcHgAYmKOpNV3pSWbRi3rT2HmqSuFBCkr AMdnkHl9NNONCz0DQIyirwNSO8cuT/zSbqzxIOYJG7xpzMDpPXVpz7G0QMo68FHbx+NUc39A jKITLuE1Te+MpnKKCcGwGrogY0LKcgEByDUP1KbS2wPiDib95NYBsnoi31uEPEG6I4sDwck6 OhCAXOehuzkg6enlaCsFhMCumf8+0/bNAVnmy6z5vw6QGeC+PwZCygJPMUbcc7Sx1r0BIcQf SA9iA0sv3qgKUkGyTkFqvdxt6lZAaD733QqZmiJl4dLcTRIbQMaspdPKKWbVXuEiVBBEpCzA QpkjQiggWe5CdGMFRLT504NXQNI6Et2CByC/P/Pfn1/Rhmw1+N+fP/PffwzS3LwgtZU6+cnl 4UGWdQkFpA2cCkgbvbKRqoCwMWWbgSggbfTKRqoCwsaUbQaigLTRKxupCggbU7YZiALSRq9s pCogbEzZZiDCAGnxWr23rQP6uv/8qJBWUltszOmtxiYAR2FdzCZJjgcB1590WWNz4KO2LsYK kwMIeHNwlzU2LiCg8YoBpFX9ybb1sLSMs1W/UHIVEL+EMjsZqAtSUYb0u42SKwYQaC3LwRp1 gDTrl04xjpUoWQyylgUJSKt+geTK8SBbmUJl2hfIsSvPGmmRfq/5h3fKUt7xD/LSXJu0WaVB Dn35qLASkFb9wsgV5EGyo0/9gKh1EDV3kQbUgxSpTc6HLgHZlpNLF4G+pkZKFvO1zvD6ogtA 3lHvcqRk0dlb39STAtJM23FAtlOKC49WatbjkGAFpJm6o4CY80btMYjpY5rreleWnx/XqrRw qs4G8U+HAfG8ho1FvNNq1jb7msIhTlm9z/a7gpP/ckerHiRXY+T2QUDOL3rsU75DYP7vnBPq AuUt8a6yiFGu8Vo7WN6/r2QoIGSD5zYMAGJhCBpqOygucKJx9Ajs0vNDc0aigORoK6vtGZDY FRrrz2OH5HsexemCepAse3TX+ATI6uaD7jwWrEZ+/olRvnDzgnqQZmAdAUmktOdglZKBxL2L HRVFRmL8CsiXAMn5mreHoMSftCs6cr7ca6uAVCjv+qNl72Ku4DjtZEp5EMDYyIAgX/cjZW06 qNydBlClL6IIkM+Wfy/b2bzJ8fe9xCCYDTRWgUhZRzhM9kjxyg1YCIosAuRbnSN/D8WDIOti kLIMbqh7bFxZ68Nb/3DKAQS0idfG1YHLgyrWe6A1Nu6KN+DWTzGAoMoA1gmm0R0vtTU2K7hX lxoVvAJRQArccLeAeHtuD7FM4SsQMYBApwXwFLPHWrgsZn+vFYlDiFOiHEBAdSI2iQHeF3OI xHGAuNlW6MpW6isQOYBAU9MWae6ePhenuX4MEsq2Ml+BCALEWb+A1MX0uVDmb5mIw0ZbwBQG CHllRURDyisQBUQECqG1G/UgUkxPHmfJKxD1IGT1ymyogMi0O3nUCghZVTIbKiAy7U4etQJC VpXMhgqITLuTR62AkFUls6ECItPu5FErIGRVyWyogMi0O3nUPADRm7fJBs9tqDdv52pMWHse HoRS9iDMsKjhKiAoTTKVIwwQ5C6wXmWFSC3f68oGkEdyIydyH2mvsuJwlJZ0ygEEWS7ZqyyP D0RJJw9AzBkj2/FYsVgAWcvSq6wTINOiGfOnfIp5jrauZrh3jGUUcH2aIrIarldZcRuWArLr 9eaA7LczxpTUq1GR/YIDYqbSd2x3e0DWarerQLXXaQHZryghZR5kiz+M2PsDss6zF9MMslyy V1lQQI76ZADIop3A+a27znpNTZH9ik6w2bdiGe/h1vTyAGRl5OoIp14Xt5D9AiyUGQ/pZYVs ALEpXf3RS/fO6mp6byruzlM1I0C2vF8hycckDAeTINVXx+a2v3DbRL4lOvtEWlfMPEhn+mfQ nf8cUO4yoAKOqQAAAABJRU5ErkJggg==</item> <item item-id="41">iVBORw0KGgoAAAANSUhEUgAAAEUAAAAVCAYAAAAQAyPeAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFdSURBVFhH7ZiLDcMgDESZi4GYh2lY hmFcPiVgPolxUJtIVKqUSiGc351NVAH70xAQm0lLYEPppGJDOYNitQQhxPCrzHMbLWlfpbGf FKtBCgnaPhdEVmZAOTOldKZKDSskvx+KUS7dCsxCI/8E5evugiga5VISnmNBy3R9L+HTULyI ce/GYsNsWhTl0/KqdMTZ4lJTLOLoXQglOpWABYGEyedFDwf8xfqwB4IfTSmXjaGM9fKgKN/H sZgswAsqXAouYtfuhbpeXaSyPjULUAHKpF4WlMOdsnB/3bh2fYKxk5IGbMPKG5b3Dc9Puoh6 WVC68fQiGVC46QnFdtsLD9y6fY7fJ3oZULD7xyZTSbl5+lwcv+XANWpe7/RrPiZfDqtfzxRa xjh6WVCO2KJhimNLPX1opfHvQm1G1MuCkqd5PUh//J5CYIVPH5reaSgEHa+/ZUPZ/6fQQryT 0uH0AQ5E4plbhi1PAAAAAElFTkSuQmCC</item> <item item-id="42">iVBORw0KGgoAAAANSUhEUgAAAGkAAAAVCAYAAABFYsCAAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHKSURBVGhD7VmLrcMgDGQuBmKeTMMy GYYHziMBAtgQ0xCJSpWSluDj7vypKsx6Tc+AmB7hAmiWSB8wwRLpSyLtmzRCiOJb6XlP47HP gpEbTz6T9s1IIc22zyvMhUwbZc0lpTWZ3Mz7kPnxfF8krWz2K6NnMdYAPC+J9O82hlTVymYR 7LObTfrr9yrACDzNIjkQaO0HV1t3j+YqyZ6jF8Rx63gPs0Av5iiVBDzGsoLGTPjjFwnS3R2c JpIjsTiwIG4AUSJyDwLCx8oiHZnn18JeqPvqrsPxEGJm+OsTSXkh7oQIN3DoX2RS4Mh0Kg2E A5GyeN3zgZGw7Ifva1WEgqce8zDsnb8ukU73lg6GHTgwZHcm+Qadmhs+vyZT2N+LFuJy17cs fDDRUvBQY3KXu2w5aRCpt20B+dnyFA8QKb7z3pHKKBIJDzXmc5Fit/WJ9HC6Q8btcIDQqoCX 6mqKi6h4qDFJIlWAxaLEjfB87AeZROHOrSnjbexJ1IDVdcSYHCKdZYahJ7GcHTFVHm9cFjmm O/wsxJgcIl3TUqHRzpZJ53SX4iX8ZsGZb1xBiPlUpEZEazkDA+uvCgYSR2+xRBrNMMP+SyQG Ekdv8QdkrAHfZb06dwAAAABJRU5ErkJggg==</item> <item item-id="43">iVBORw0KGgoAAAANSUhEUgAAAI0AAAAVCAYAAAB7a22LAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJISURBVGhD7ZmLjcQgDERTFwVRT6qh mRTDAfnwSYwHQhQuy0kn7Z1YPLGfB7M76fEzMlCYgalw/Vg+MqAHNAOC4gwMaIpTNt5wQLPM Qk/TRP5K1W+ydu29aPy6nmunWWYtJqHnpV9QvDKlpYFdCAO9mPX7kr+v5/9Do6RxR6lVL6D/ gJ6XoNm6sYGVKWlcxu2z6Fnsr99zyF/QUwyNTQo5O7hu93PR4zNG4i7rLGFcJ2Amq9estEeb m+VaHG2AHo3EdPvEz1HVBpCebeermEQ9G0JjCxDMQeBxYYtKDuAMdQ6SqNgrBOHbaGhWZ9rX ur1uUs7rAWK6483m5D40vJ4NmMuYdD3roJH7gwUFsoGTpOe7vKp3Qg/xLpHe+gKQnIYrva7j g8Jw3b11Hc1V4FqknnzMtYFM4ynAaZroMb5HxczUswqao7uziU5IJRipdpp94Ez3df/3juf2 3yEK9drXJ5e6cWNE9KAxOYCRfkP0hPuwMX09q6Dh7f/5odTBcNn2cezU7Y6/bVIbQgPpQWOy BeSpgfTA0MQ5rYAm7sbzEYTcjJA1mcQw81I4ECtJ6EW7nq+PubjlP9c69KAx70KD6oGgOdeq +GuEGJJ4sFuTl7ldIQVovIbWWzjTNNEFxrwLTY3WzO0pNfQqaI5jIZ0ROgPG5i6y6SgxseW2 uD3xtQJj9gBNxgCqoPG3EW/91HdXN2+xfB2YFfHtKR10G39OA6kFYnYATa6exdBAeRmLPp2B Ac2ny/vMww1onsnrp3cd0Hy6vM883B9TWPXPjqITlQAAAABJRU5ErkJggg==</item> <item item-id="44">iVBORw0KGgoAAAANSUhEUgAAALEAAAAVCAYAAAAJpA89AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKxSURBVGhD7ZoNjoQgDIU9lwfyPJ7G y3gYFvCHn7XlAdXRpJNMMjsR37N8tIWdwehLI/DxCAwf96/2NQJGIVYIPh8BhfjzU6gPcEK8 zqMZhoF8T8t7g3V4f4tH9cOzIh2f60y8zmYcRjOv7wU3OFvMZBffONpFOM7m95bVD0+NfHy+ D/Ey2eoxmeUtC0/9FBiWn68fQbyvRoFUv0w2C/v7rGYej8+/qyDqp8Sw/HxVQ+wmiew9fRY6 +mqbHe9mKcu+W6+V6rJ+rUPXinjPEq0I4Mcgmv4+AvGD/OyTdKXpvwv7pO49B+KH0yT4koM4 C4IHCnhqBxm5oSyM9xoJfBuU8TAa4i1zH9eifrl1WfYDaJ4T1Q9x2c/+NJeaLpbRvkigXSv7 YTQZvtognkLGJTmTyiYkNVEWzU9VIrA9xJd+3fgIlJLfPUPQ6wrxw2tuC9qCswCZWMSPrQuU pgM7e1i2qkn4qdGM5qsJ4jP7MROPZrbmTHxsoHLI/fchg/j7H1DHft3nf1m840QG8YNqlhYU 0qYhfuL7FDWzLIl4iK+p9ePH0poxX00Qs+X67Gk6gAAC5OG8TIvpBi/PHuffLqiCEEN+UM0i UOUAQX5giPs3zdV+qI36BV8NEKdw0iWGW7mdpxOF/ize4C0T4RfNimVe7MEIf65++kE1eyFG /UAQd86V06j2g2gGvqr/7ZxCm25U/ld25iQDgUPgGtpvZU8s4GUrj0Af3gtxi1fmdALYn7co Xo8p9tZh2DG3TRCfZTx+cLRUyj0udKekjCUTlZZItIeHRMmLQM03QFwBU19MotGcJsNXE8Rh t5+W6vT3F/f2xGjg0tOJ3JPwOTFkCtB8AcTUb2nuzMolTYqvaoihedKLNAIPRkAhfjDYKnVP BBTie+Kqd30wAgrxg8FWqXsi8AfGbvfAaMK4NQAAAABJRU5ErkJggg==</item> <item item-id="45">iVBORw0KGgoAAAANSUhEUgAAAgkAAABgCAYAAACXBuFDAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABgwSURBVHhe7V3Zteu2DnUD6ePW4C5u E64j6cDV+Ot0copxRI2cxAkbHCRkrayX8yyBADYIbIKU9PjKP+IB8YB4QDwgHhAPiAc8HniI V8QDLB74vL6Px+v7YRHuF/p5v7+/xeP9ft/vmtoWK+rceC+7J5yej+/zXY50lucbxHGWfsNc XBm3YfzSv6JCEvrHaDANl2TweNUtuL/v55c85FQQqhUfEKp3tpuXhLaJY1BYdCtGxSsvbt2a Pqxi1yMJwvxPgrEGk1djPL+1Fnm7ob/v7ws06O/7VV//0vRxV7t3f32+L5ZuVaM4Lo2D4e7j wk1zhNSBxKiI14ULkQRh/ilRwcnkP68HfTWfYoR1DbSwAwtvnikqceYRrL7sXuffY+oiTf/S OjIZsia8nk/KNpOLUlocLzrSulcZduYF03Q1p2ylTH68GiYw4LbIlzqQHSrKa4EOz0VIgjD/ vMBgYPKKudMyZp4JRxthStbIsw+Tb8BFp9CwyG0q5nux207MKr5KiUK+LJXgaKTEWoFG4/go wNFLT1HMtzM9jjhlb1oQScJamGC47QQhj2in+/QOV/rrwiVIwpjMH830M+VBmXxCwVLjravM h1OETd3t3xeWu6xQH/Zq+8SO4D3B+c5LOM/10pPu+t8fzWc92z1jayVnRRpLyFaRLBTpjcfx jt9E0F6UTkKRnYmFilP2rgKdJCzdCBzRlTqgx0dmPdhu9eTT8UlC0gq2N+aPZvpl8mArMBVY wSXVsrJcLrH3wNz2oJrse4Gx9xZ9f9tjx+6J5Nq0ZJOYsPXLgnrZJEERoiOBGj6Zu72ezk0r u32EYC5UBQWgUBbkAGc0jlVb9r0+sUPcbii0MynqOGVDScLS5i7vxozeASrL2/EYoMm168Lg JGFQ5o9m+sXyMEw+OtFDh4i8xUQjFZEDSPPKLkYSzmbVSSFTBRnbBl0VCNrikgTDLOvenuye dbG7Br6YjGe3ZW+0RFZCgY8NH41jQwCNJBTbGTNibeMX+TBB9nGJ1UnQO4X7giBBIAC3ZeER JqRddoCK83bEr2S5Zl0YmyQkBFiXzB/N9Any8hKjLzgTJ+hZ69nblta7DWbbzOYD/m5I+J7Z irnomqv1o+MG3OP2FJZt68S0JZ8kuESmjd3IglcuKx6H4dSae7+QhOOgrY8wpJ4NyPW7B0Wp A6ZTCPVAz4FbfhqaJOQVuH4mdXki9Kc5kryECRZOrvGDfl79NqFRkqCtXdQ2hHUuwbuiNrqQ 7j1z617toc97/u4KpHQbZpF78q/Fbo5rt2SaTxJCB0Vd+YoX8dg9Ey7v6r/edsPC+1ILky+i 43Fs3kXLJ1Cf2eYg8Tid/Fq8era+crbsaLjlblnQcCPlWsuXSFm6aIhcrS4MTBJyGeh1g4MW FLl+dCI9ch5hW7WfFIzYdoOTpMwzDTGSsNxun4NYhdbebgjagiUJVe32+ZF0cNGKlURZeYuG gjj2dIWK99ORPrPjilP2Plbo4GLeoUYSbglbDUhyR8u1lialW2vhVVv5lp0T38s8HJgkDMz8 0UyfKI/E5JM6EfrBxfWZ3D27Zh5ctPfbUg7wne2PB0hCcfIPTWD7TIKhVx5JSDq4WM1u2kEp XxI/uiTpj1OSik1SHBvrNeJ7EpA+c1iC9dbTdB9G6o/28xkROCHkAcEk3NQTEllP0dAWi9AO EDFvnzd5MJ29rS6MSxJqT2okO0fKmhfKnrZ54upruZ1wwngaO+lth8bBJrurYO6l261ru41v FHAl15Mkgvdss8tLEpQulLZ1OM2e65VJErqz28SQdvCzTFaVON7hJRYbrcO1bVHRfHZCFCAv t/LFtI8klJERKm7hJ6v8fileBBBzrblYp+Xt00wD0nHDRUhCMnVGMn+krLnMk1YO1EmaRBKS /Zx7IWG75IwkvLBv8Mu1KO36u9p97p2x4zgN9W6vWhcBJcWXiltVkkDMtaiuWTgOaPXgWEMt i8ehSUJeceqN+ZetlgIpciEKBSsH6iTNwwGf5opfT+wjCamdEbwZ2RLvaveZo0aP4+wA6OUG AkGo1snstgOErgN7iS+uBzcmCb3MqP70GD+5fqbPPBd8OthDEooLbxNY72q339njx3GTICIP ur+DwHqyJ7WrILiRIWARcInthtYrWBZkGgglTdKfv98/f38aaG017vY34VFUKSy6lCGJ9x7v AaEIGs9un7U/f//5/vmv0A+dxHGh9kPfRsJtoM7faCAJSRgNMUZ9SSShm0mae8rZdihhj58R m7jou9rteuYacRxH/GpXCG59Ijo+SRDmD4ssYfIwV4qghh6QYtPQ+YShSbhJHSB4PnzrVhdu dHCRzZfDCyZN0m46CcPDIAYQPSBxTHRgo9sFt0aOjww7fidBihMssmSSwlwpghp6QOK4ofMJ QwtuBOcx3iokgdG5o4mWSToaYqKvzwMSx2PGheDWJ25CEvrEpYlWMkmbuF0GBXtA4hjs0Eri BLdKjs4cRkhCpsOufLlM0iujex/bJI7HxFpw6xM3IQl94tJEK5mkTdwug4I9IHEMdmglcYJb JUdnDiMkIdNhV75cJumV0b2PbRLHY2ItuPWJm5CEPnFpopVM0iZul0HBHpA4Bju0kjjBrZKj M4cRkpDpsCtfPvok/UyvZC74csMK6fSmxff0qbMB/7mr3WdQjR7HA4YgRGXBDeJGuBAhCXCX jitw5ElK0n2D7PP6Pks+ENUQ8rvaHXI5ySfy3pVm0Sy4NXN9cOAbkQSOT3H29tlphXW5ncNO UmBiH+rrj3e1O5JLh43jPmtENa3q4FaeH88d0WMd2LSl23sTkrA6av9m6fQxnOlzprRV4+H8 1E+hukGG1osmr84kjeUchc3zm7OghxZ2YOGNWUr9vU+76Unp8EuZrDpxXKabH3OkrNSoQhQ2 fSy6Dfy40fJjDLt+6oBFEIh17x4kYUr8T7vwTK3lx7NsD1s57aG+mf58fV/Px7c4OMB6fYny +CdpagLLuQ791Ubq1xRzdKdc26PdyCRcLos/jst1418opMQUYoHjIQigYpRigXNNCrkn5kd7 zG7rwM4RMHXvHiTBRwjmgHl9S46q/U4H5Jb7iGwcrNeXKI8/uWprxI1oKbJlEDi9k7D+90dh pa6zr1UQTL95yN4+gX33BLOQwjSvkxEWp+nu6GmuvmzSGrShR7uRSZggiz2OCbr5ihtyARMr sLDCZnAEbDGK2eD9PYUkEPOjSxI6rQOboiB7b0ES5olhJ2jfRM+OThpJQOtFlceeXPXg1Qma Cub9b5skKGJwkLnPS3VwtA6Qutdu5RjypkHtvyM4qzGKu0OG7GVba5G1xMqxxWWvRpWamm0x G3q0G5SUZhcSZLHHMUE3J/SQshLyF2yBo48FsoEbN2p+PHdvX3XgaCRg6p6QhPJn5sidBHTQ UuVxT9J9kgWLtksSjIJt3TvbHCMJZ7P7pJukijXtvMo6YMhO79gaqYgQmx7tpsafuTgtT3Dc cdyLnQmcIHAJrbChsLLlFJPzhE4CEjfTsTRfcumFknsLkkBZlYQnIi044HoRGT13cj18abbZ zcSQTxLcgh6Srxdws0uhM3AESfBO0lAr0Og2hG1QsnuzG5WU5r4LofvHHccU3ex8gpSVRxqI uUsbDGUDN27wfLv7gOhLYt4+xR0k9x4kwbdqIxxctIsdhf065yIoehHtZJ+knmieW+zGuYF8 kuB0ErRxXPlrW1+dg5jPOrjnUvwFOC8Fnxa6ZJJwjOezwdtJaG03KCnNZhBksccxQTcnioCy jjjZ5pT2v06SIhY23RCQDey4EfPjeQYg+pJLL5Dce5CE7d0BxNO3bpAQgwOuF+3UNfskPZ1l +n49liQsQ9rnAVZFet5ucHxl2hAjCU3sBiWlBTIPgUsk0OxxTNDNhbXcznzaqt9BzV1GK8El 24lYGRpN3SPKgusVfW6alh/ZSAK8DmyaYuy9CUk4CsWyagXtOVOfbtAKGE4vs02d0zZnT676 KlpfwRuHSPNIwrzijJ1JODukGiAJxcnKyCT6wcW1hb4Lzjy4aNvQpd2YpKQTnAPb9Heb8Mdx H3Z2QxJARY4ftzvVAYsoEOrejUgCbUrd4e46k3TxpN0aPYpyJkk4eRTwXH5kBTQnPKZHIJ2t jfAjkEEburW7nKS6c6xMVp04LtPNn0eQslIzFbCTAFrs1MEt1T9y3U4z1g7PY1iXJJxqHda2 yoqPOUlVsit734W3pa1IwqvsJVt14bqr3XEvjxnHcbuufoXg1ifC0knoE5cmWo06SYtfT+zb bhiIdN7V7tjkGDWOY3Zd/XfBrU+EHZIwH4ja327nnpLF7NUCnTFQUgdazSJq3En6mT7zXPDC Cw9JKC68LIjEhN7V7rBfxo3jGN7X/l1w6xPfcCcB8lZCZsOFJMAcPPIkPd4kR3FHYdGlDEm8 9652h9w2chwTw2Ho2wW3PuETktAnLk20GnuSUj/MRNjjb4LWNuhd7T53+thx3DSYmg4uuDV1 /+ngjUlC+mNNAQu+8edj+3R+b1rJJO0NEdGnxAMSxyVea3+P4NYeA58GxSQh+BGc+b3z23mG wpPnqf6S7YZUT0Wvk0kadZFcMIAHJI4HAMmjouDWJ254kmAdBpsPQiacdsx7pajmTCEJsMiS SQpzpQhq6AGJ44bOJwwtuBGcx3grjSS8jo7BKQ84easdzCYhCUBXBl6LOuMY+ISy4ADDQQTR PBAsNhLHNOcy3i24MTqXIJpEEh7P9aUzASIgnQQCOpVvFSZf2eEyHIsHJI5Z3MouVHBjd3HR ACSSoHcPnDMKK2N/qK/tFTzCnmyNrGCTXRW7UCZpzEPy+wgekDgeASVXR8GtT9wIJMEs/ucH GfV38dtOkKcbegoLmaQ9oSG6lHpA4rjUc23vE9za+v9s9DBJCOhskoLwx0KCT0JQ/SKdBKoH 9/tlksJcKYIaekDiuKHzCUMLbgTnMd7qkITHv+a3ns7+np9GmPYb5t+1Mwnq7/2swqS4+vul bTnY8si2JZME5JfWkLI2D1C/yhbq2KR5WSZpmp/kqr49IHHcNz6xFWuR9lIHityWcpNBEuYC r5GE0N8zSViv384dbH/PhxXVexLW37czCba8FAWj1yQFR+/ffz9IR8LToicuEZIQjRW54BYe qEMSelwo+ODl0JMnjPhxu0MdwGPjkAQ1xEYUuP8XYk4KSfB9g0K98Gl7OiNHEaSsadydUE2f O349A48YRnUUkhB1kVxwCw+MVWzMTqJaXJUvFGx4kUWRP3TYcUPmbqQsaB3Qasr8QkP6gwM7 SUjtIGwkgno9LORSSIKPEJS+vwEpaw6O9/czO0O2G2AxIYJu7YGhig24QBjAgwuZQ0GMLwbj ilFR8EodWNw2v+1Ye8ux/XeBc70kQe8mbDJTzyqkXl+gq/+WhOCYV+t216DwC5dIWaZBaJKw PDkyb/skdkzYkysMdHf1pex8sj5rC1e+QOA4rWM66T2I8/aK91R82eO424WCFVJgPQ3pjMWo YGLM5+Ji3/BB5m6kLGgdiJGCgk8mFD/dUAQkx00SHKtX9e0Gk3DMAZ3Qw2RPrlD8x2ql0k0f yV7EGZtye7njuNsCYQUZn56eFavbZpjf0LoRvIT0M2+9plznnUtSB1a3mAsJw5+Fn0y4BUmY WzDeTkLBx6eQsoxoR3YSFGHQbEvcWuGepPRCqUlgbqVCdUUIG8Re2Bkbgr3cccxXfKk5wFqT AjuobggHitG0gao/0bY8/RbfjuDG7R514EDq+B7Sie8z64L53CMiqdWSkcAg9Uc0d7VIBxct clEqi4skKPANUpR2qJF9kiJjgo2sIZUEyhrEXtgZG4K97HFM0C0cEViSAC2KAcWdYqT8Y7UE Ut6Vw46bryiW5m6kLGgdcFo63/d0IN63VZfbYb42SVgPBR6BS3nTY3kblDdBaETACfzrkQS+ 1RywsANFjWcvreBR7B2q2HAWCLZC5gvsBW//uZFe8g8ydyNl6f6kzRvn4KKvizP/f+lPPtxj u2HGAHnoCylrCxBicOgtvht0EihFBFi7q4kaz15aPFPsZScJ0EUHsEA40chVyKaB7ANyp1sK IfLgbo9wnklYRkPmbqQsVB1Q0BxnQcKP1OaRt4t3Eqrl8k4GusGZBLaWbycQ2moMZy+NJFBa 5fwkAV1scAXCjV6OQraMEi9GeR3bOrh1Or8bqZWzDSQkoRFIPMOa7D1376lIp5SzIUWCT26q 2kpFKl4oazh7iSSBYK8Um8IYQ962trRzOgOCGxIAjyziNrSQBGZ86ou/+nsSGFup9cFKGHE0 e4kkgdDSl2KTEE6clxQQhLk3w/wIJKfJo8jenz6SMwmjQNaXnuNNUr5Wal/ImO3o3JcLtbGF ShLmsjEfhsu1d7w4boMQ16hmIUp/V4LgxoUITe6NDi7SHHWHu2WS3gHl69socTwmxoJbn7gJ SegTlyZaySRt4nYZFOwBiWOwQyuJE9wqOTpzGCEJmQ678uUySa+M7n1skzgeE2vBrU/chCT0 iUsTrWSSNnG7DAr2gMQx2KGVxAlulRydOYyQhEyHXflymaRXRvc+tkkcj4m14NYnbkIS+sSl iVYySZu4XQYFe0DiGOzQSuIEt0qOzhxGSEKmw658uUzSK6N7H9skjsfEWnDrEzchCX3i0kQr maRN3C6Dgj0gcQx2aCVxglslR2cOIyQh02FXvlwm6ZXRvY9tEsdjYi249Ynb+CTh5+/3z9+f Pr07mFY/f//5/vmvUOna324oVFNuu74HpNiMiTEJN6kDbKBvdUG+3cDm4nEEyyQdByvR9NwD JLIrxaZZaJFwk0UKG27jdxIkOGDBQSIJggMMBxFE84DEMc1/re4W3Fp5PjyukIQ+cWmilUzS Jm6XQcEekDgGO7SSOMGtkqMzh7kRSSj7opzfn73K0rXN/wqfTNLM2SOXd+kBieMuYYkqVQe3 XnM3Ui+fq/PrwSblEiTh+fpEAnAFYL/u831N39N+vn+jgete0KsslyCoT+xGXaPdVmeSFrj8 9BbuiYXUFSFrBHs5dMxLcHXiGGknUpYdZ5yyeYpR0UyZtjulDpx57oiBnHpwL5KgAujx/Bqc 4PP6Pp7v6Yv1mf/0Kms1QyVIRQ4ez9f39axLEuKTNNPXwcuRZA2pF5esEezl0DE/wVFJQjyO kXYiZZ0QBMjiKCWu87EyljZT7iopYrOMFJLQa+5G6mXBRKkH1yEJ36krECv2PkIwA/Oa7s78 p1dZO0l4rzblrb7U7Z+XRaRyXJMySXPkxa5lnFixoZv8PoK9YB1LExw7SUDaiZTlcATg4igS 9KVYwUiC1AEvQr/v8nqwCdzqwriPQE69gPe0ag4V+zmAbSLhm5wJ2b9XWa7quSQh7sewexLI WoJ/ky9BkrXkQRteOIK9YB1LExyJ7I5cbOzwBOMRiv5SrHSZNNzi+avX3I3U6xyj3Hqw9xH2 +jowSVCdpnCbCglCr7LIJIHcCYhPUmSJReKA1ItL1gj28umYk+CocRi/H2knUpbbSMAtjtLj Ogcro48QXezFdJA6EKRxk3/ztp9naVpdGJokRPejkIy6V1lOfORN1tgEi03QJZ4Ie4opA2jX cCbXTFWqXD6CvXw6ZsQymezG4xhpJ1LW0CQBgJvUATxJ0HP62CQhtuXgO39AOrhobW/0IItE EuKrp6RKiJjoSQNNFyHJWuqYLa8bwV42HdNJAoSoxuIYaSdSlh2fnLJP50I6VkYfAbLAiOSx W9YBfdsgt5Ng+nNwkrAWjdOjscgTxL3KctYRye0llVjLHgf1jVlwGLSk+CInfMn4te8ZwV42 HVMLD4jsjrrocFsJ7uHs0gVNcrynYmVQBPJWwy5N2Sd1wINWPi52XRifJMw8IcSUjsdz1COC tKLYqyx74iUwR5XYY0+HJCeIGFnLERS7FknWYmP18PsI9nLpmJbgcGQ3FsdIO5Gy/AuFo2hS 3g+TOgfSsLK7CLR8bOomdcCHVSYunrpwCZIw7SZOjJTwGF/qPLjMdSpp4Ff+4UmKdB6SrCH1 4pI1gr0cOiYkODTZHXbRcUIU1LtTyIujlLhOwMpkCNhFyixb6kAKUufX+OvCRUiCBEh6cPAQ hGV8maTpOMiVdA9wxbLEMR2bkAQu3CQHleN2jsmFSMIWIIo541fJ5c7v5c5tpcftG0mwvSB+ bT04C40UG77Y4cZN6kAedvG6cDGSkOceuZrLA/HA4xpZ5F7dAzVjq+ZYgtvVPTCqfUISRkVO 9BYPiAfEA+IB8QCzB/4H8GOguhjPHiIAAAAASUVORK5CYII=</item> <item item-id="46">iVBORw0KGgoAAAANSUhEUgAAAXIAAABjCAYAAACG2YuDAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA8ISURBVHhe7Z3pkeQoEIXlwPoxNpQX 40TZsetBWVO/2pM2RgvoAsSRnOJ4E7Ex29MIwUfySBIEy4o/IAACIAACXRNYui69qfDf97os 7/VbsWLfz2f9jX7f7/r51CxtdEGLPDg7u9nrX8SoDJn2zZlpxGtZXx+7ygwk5Ftll3ddUfz9 vNbkV7LBx9VItYy99ntmZzd7/WvZ2yiceT1sTuogQs5F/LU6BqwyNvP7Wd+ZXvr7edcvfxkq tFxnZzd7/WlWkp5qOM7f9W2IOAwh5N/3ku4VR5hMVvFNNrh9RrKwWQn7r66Hz40rbCBti11E 4yuPzF7/VH7lnm/LzsLtxEiGacXrpYZz+xdyHhNPjm3EGBIXzpyxeNbIWuPQS6WHlbjB1BZz emlXtqLQDruQcudKO3v9c3H05dMa50xCzqrNwyyys9a5kBMaio9eu5e63IRS9WL1328xqc3D XXSP0zAqcrNyPuO0u4TwkKij5hHzAS56YDAX1F432UD3//9K3Ftm59MC6fcj1z/ebgMA2pLO 0EdF3fMJ+ZbX5Uj2LeTcAJze+OaZbkn0ld/74igP0Zzip+9+Mf2sv9v3jMfmo0NEJtEWnSPj jMFZN13I+cB3vVvhKuzZMIt6ih1Vh0aufyJ7I0KWJ22iPEkfzS7km9N4MO5ayL2r0a6tiEah k4zKs41ReDA+IXd6IHeR5YIXE9sWZdG9b5OXThUtUzonj7uQK2i0Z1tiR0Yycv19W3bF74+Z KdE5oAr5JH10szPNI5dnIqfDSbZIruSnI9uxkPvDKkaBOzgZQw+y166GXXTN1mNUW7buZ7a2 PDrFvUOY8/Q3bBUhd9YtXMjvA9Yz7Px0jxSu8vVef0fdNIfHOAhbBn6KRz5LH70LuUnUwzYM yGtNHQu5f3EwzUgu6xShAS1O7jNo0zPbv7HGEvHjfEIuBgejR070nuhqto9FOo9wIXMtUFdl F1j3bSzurP6750cRVhN7BZEjZHc9e/CR/ra8fKg+6uUs9RNDeDEmtPp9b+Lfr5B74+OH92sR M19o5dbB1Ri7T8hlD/3mfVo6Q2xoRUyx9IGhwGKnikTmkVfIq7KLEPJ7+Uarv/1LQprdb32P MnBsM9QJ+qgptKLYXtxC6BFeHlvIRUzq2mOuGmHgYqcec6Ys2Nni1A4hJxm/ZZC5vNwC2w/1 DqfULUzISIud1dgRlXzk+jvrtvM547nE6T9VyKfpo2IuZ/newv8Jvs1KhxBy0leVyoKCPvK7 tx/qU0VFZC3bD53PnOFWU2glYfuhyLf8B0H2ugUKeXPsaGI+cv1Jduv1KiWOZCHnpitvVR25 j5qEPM3pmkfIaX00IpV/sdWaqdEjZ/m9Uw7fiqjCY4/Mzq7v+sfEcp8xtcY5e2PqfmoQcj8j b4roz39NQs7+jTTD8JaqjwSzs+um/re1lrhY7lNW2SznDCIu5uH7XvKuY+TPC9+XHUEbcYCt QcijDe6pHpL83tnZ9VP/R7/6HNTOVKbX7p7QNbL+hfzn7/rn709yM6dm8MvOIk8/ODeyU6cW /uHnZ2c3e/1rmd/InH/+/rP++a/z7YfPe+TcFP372d0GmxDHq9UTir1ndnaz17+YYWkZj8u5 f498sphyLZPHe0AABPohACHvp61QUhAAARAwEoCQwzBAAARAoHMCEPLOGxDFBwEQAAEIOWwA BEAABDonACHvvAFRfBAAARCAkMMGQAAEQKBzAhDyzhsQxQcBEAABCDlsAARAAAQ6JwAhz9CA X/Z5fsRJK/ub2Redn/SP+zNUo8kswHZrFnAoY56jcIWQJ9rHATApG3ayXMxly0nv7OBhsN0a CRzKGOtIXCHkKTaS8XiA+U499IAH20PFsx1rDBuTbG4w+4KQn20bfr5y1o6RzbDK3xCUMvZR n22TLbX0+dKBA4Vl7303vPw6FQg5xU6MaXKfVph6MpuYhK+fFzvT+DzMOO36qGg0yQ+2yDa5 UhEZgEMENMIjrXGFkIt7/kKOsbUfjq/fN8kul/3Kdwhql81a7puMP3w/9a5OEUxdX4tWztvN LgQ7pyaR71h86Qu+7ntQnZxaZOtiMhGHePumGpU93bh9F0IeJuT6LeHKz/eLg5flugBWXEor ixV/Vr/Gw5m/35CT70A0ibbxXlB/WfwpNm9/Q6Df/q3PDNiuC5mfj1OLbK1AJuLgaze/0dxT UC9nHrrvQsjThFwxq7Ab4IV34BNym2FbxJWLXcruFVEm3TM2eekxHU5/Ru9Y8u+N9ZMEz/Ws mFi0x9au42xAlwZ8Jd1oHDztxkZrxuK4ruxygpzmFivkQ/VdTcjlGd7pLLk77WQxcnW6r+pw uJDfRdeV/94Qp7HfDZ03Ri9Cbhw0DlszhnNkr93NyczhWbb2MdkweA7LwdEG2qBlHIxNEKlC fqz/7APFWH3XENY9PkwhOmKTCfllSWKqL4ziiCmHC/nNI5cM9Z7/Hl7g7xOx9/xCLjwio0dO 9I6M5b8uhD29LdaL0oTc1Q4Wj/whtlc7TsAh4EZ3k337ZyNbCh9T34Sxu77r5SppjyGsSAm5 Tivkm7HIXmJeIb/nL5lnodDKttipiXapxc6U0Mqtp6oxdpo3p8fl90xLsbWpy9QcLG1gC48l eeT6wyP1XVeMnBY/n0vI9U6nTFvChFx4v74YuW1a5BAbPUufd6L+vub2Q3mRT/eiAxc7dU5N srUqubToOzgHZ/+RB1J5puuxYGpoZei+axNr+0B5G9ZYWJZrxxImGA2lDtx+qE/rLuEMFHLL Fjl7/j6PPMP2Q2mWcYRBUmLu3lZWFmX08I17+6GTU7NsLUQm4kCy7y2AwgY4bStsokc+bt81 sQr7BmQuj9yrTCEJEj4qMHrkLL93yuFbIWVvPS3YXqG58PWNbTw3rcPUtTFKbPcZS2zcvrwx 9Ts1CHmCJUV/Pm3qZIEzi4Rid/Eo2O5S/nmvn5ijNWvb2G0thuiRP2SNzdpXhIhv4/ZkoZW8 dvNlR9BG9DJDJ4s2rLwVaig3sN0aox8OT371GW64bXJVGV47pXxrZzcht2V0xFx9GYYDTXzi YU/2l51Fnn6aeKRRJaJr/XGwPbxy2FgJWx3JvtweOXEzegnI5DwfFnKxqHM7Z4Rcej4pYgdd RcZBQ17TZVqwPbxy2FgJAx7HviDkJewDeYIACIBARQIPC3nYFhsjl8c98oqthVeBAAiAgIFA tJA7txbFHJ4T2zwQ8lhyeA4EQGAQAvmFPPLwnOjzFyDkg5giqgECIBBLIE3I39exldbdLJbP 0WMLfHsOQp4NJTICARDok0CSkJ8n7TnEmnYAUsKJaBDyPi0PpQYBEMhGIEnIZS/8FjM/z58g nLeQUh0IeQo9PAsCIDAAgQQhVwXavvjpO6Ix7Vac0Ds7B2gzVAEEQAAEFALRn+irwr2ddGeL kxc9PAceOUwaBEBgcgI3IV/+VU+0tf0sdpkw5Ra/l2Lk/Gf5lhr+s3ycpZ5fMn8IeTJCZAAC INA3AUXIhQhLQu76WQj5nv64Lu34+TyvZf/9ca6Unl8WdBDyLBiRCQiAQL8EbkLOq3KIeem/ s2CDkGfBiExAAAT6JXAKOdUTP4Q+NX02ZI8IuXr7TdFbeKJBudctorPN9mAPDLNVFhmRCbR9 jjm5GpUTGoVc9sqP8lBj59T02epZXchr3osZS+kSyeaOHRZV6oFhLHs8l0YAQh7DL3rXSszL ijxTW8hNR/uWuqk+Ati5PsGOxn07dhJFZJ3vkcYZ5qtovzk9d0kEhDzGaiDkodRMol36GIKA Ml6H5TccWmmcYQDuMZPqN9brP8fUmuVBmx1CyGPwQsgDqQlPRb9IoskLONoV8n4YBhrHKMl9 wn1+tb1dRUYS6Ggh3466FjeUJV3gMkrjmOsBIQ9s335ECEIe2LRIfhJQF6JVodY8ZqoTEyXk qg1Tz22asSEh5KGt3k1YoF0hX7thGGoc46W/jpfej+Tgbae54LYvt+OOppYHCv7/0jWIDYUw W2tpCHloi5iMqaHFzqs6DQt5NwxDjWPU9JstmbfZEmPaMR45txMlnEJ816jN4KgXhDy40XvZ OtewkGP7YbDVVX1Aj5FbwycugddKHCPkNwcJQm6zAwh5VA/p4WOWloWcQ++BYZRxDPGQHha5 L2gG3rcbI+TwyMm2BCEno0JCEAABQWDftULarZKEDDFyKj4IOZUU0oEACFQU8WvWdsTmsWvF boAQcnROEAABMgH1i899fzd1Lzn5LXJC7COnYIOQUyghDQiAAAg0TABC3nDjoGggAAIgQCEA IadQQhoQAAEQaJgAhLzhxkHRQAAEQIBCAEJOoYQ0IAACINAwAQh5w42DooEACIAAhQCEnEIJ aUAABECgYQIQ8oYbB0UDARAAAQoBCDmFEtKAAAiAQMMEIOQNNw6KBgIgAAIUAv0L+c/f9c/f H0pdkQYEQAAEhiTw8/ef9c9/67p0Wzt2Etv789tt8VFwEAABEEgl0L9HDiFPtQE8DwIg0DkB CHnnDYjigwAIgACEPMoGWr7dpuWyybB7KWeUgeChk0DrN1WN0VRDCPmr/FUlUmu3fGdny2Uz iPjZboHXho3R9yaoxTVYV+2iE5DVqwghD21000W0t0tiQzPNlL7lsik6zm5HX16rskbdCsNM TTF7NucFFK/3+n4tK4S8rEX0L+Qr8+ZeH3aVb6U/JsERAvpmJXn4T8tlk9H0Us6Hm7Pn1/9+ Pnt/QGilRjt+35tj1O/2Q3Ebez0RFZ6GPnCYPOEarae9o+WyqQ55uwwfaLbBXwkhL9/AlwZ2 LOT8PthXtalby2LZctkg5OW7c5tvgJAXbxfuSO6xq66FnCn5WZHi0FoOC7RcNoRWiptmmy+A kJduF9mR7VvIa4ZXTPHwVhbqWi7bbbFTC4e1wrB0r5sufwh52SZXQ8udCzlDxYWgytJ4y1v8 Wi6bouRsXWOR2gvbD8t29idzh5CXpM+98Ze0/at/IRdaXmubU8sfs7RcNoOYL0zQ2X+yMZY0 fORdmwCEvBhxPgPXNl4MIeRs2ZN5etr+5GIUkTEIgAAIPEWAz2Lvu/UGEXIOFWL+lGnhvSAA AjUImEWcv3kgIT/EnE/Z6+0vr9F8eAcIgMDMBI6wqV3XBhPymRsbdQcBEJiVwP8rDdKIZ2Oz +AAAAABJRU5ErkJggg==</item> <item item-id="47">iVBORw0KGgoAAAANSUhEUgAAALQAAABaCAYAAAARg3zAAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfvSURBVHhe7Z3dlaMwDIXTwPQxNdBF mqCP7YBq8pROUgyLIRAwBv1YDrbn7jnzsCe2LF9/CGFA3Hr8gwIVKXCrZi6Ptr/d2v5RzYT+ 2kRefdfc+qZ7RU28AqAnIW4tUI4iIZPOr66JCkyFA+1gbvrIgzqTpYQbHwUefas82xYN9KO9 9fGBeYrwcXbeZ4nbcKYY/uJOm5a2qINEOhbd3q2J02D684LNq+ub5bd3m6brg0mGa3v028m0 ygXa5cxxFA6yfBZIb8pPeVx00UJtaYsJ8zJxym/aNwfz5mD2r2uEa+bSD2lwKBRoJ27cBeCU qw1RYrDTxkToMep4kcgtnCK69Ja2SJ6FflO+hX73fJCfUeWpR5lAO/H0IXWU+dV17x2RyJQj BO+4uIoDztIWBbR0LKo9eRBP1zuNu4Cf0w7GQe8Cj2SpiwRaOsnztY0Deoz0/sIwolXIJ0tb FM/Ssaj28++P+cw3Qrs+qAMpDSdPFgavAoGOTze2iw2gFz1ODkQW0P61A3lvYIL8PALL1rtA oAcRiFPV9kp7fdUd2q+OA7qnTsVUqFz/bmiL1EA6FtE+CPz7ovsYWJ72j5a/NVse0MJTEM0T T9RDO6F8mcwnD6xZ2qImLh2Lah+c80rbYLR2EZqGVZJiAmgyipBkeHcqqe2vM3v01hjlDf93 6VhU+0Bg2EB88LvxhWGRQLemtwYjI/S0ZzJBXdmNld2+MjnPrQ77Z2umg12yyzHtSPF3OgA0 P6Sh5UUKAOiLhMewaRQA0Gl0hdWLFKgb6Oe9/70/L5IWw16hwPP+0//+442MHJqnE1pdqEDd EXrYD7Xd5bhwpTA0SwEAzZIJjUpRAECXslLwk6UAgGbJhEalKACgS1kp+MlSAECzZEKjUhQA 0KWsFPxkKQCgWTKhUSkKAOhSVgp+shQA0EGZLB/x9AdIYdvisVYWL0Mj7ljceXLt8fwD0Dud qIfTecKGW6WwbVEvhDsn7ljceXLtcf3D89B7paiaEnxtk9s2qxfCmJNoLIaGInsM/+YmiNC+ WNIXQgVim74k607+VvVCGHMQjcXQUGSP4R+APhCJegVfoO0+mTGsy7E1bpuHns+RHkumIW1P ojkitKeWbDEkUk/5nVWhGQB9cJWCdwo9YRinSxnGq9bJbNtGudgILUutbH1HhPZXj6opoaZ5 THr3dey0dTk2fthCEQ20aJ62vgPofaZrWDtjd7Qksm0LRTTQcwkDVvldW98BdHD1uDcFNOE6 hW1bKDRAy+tyLPsSBkXkPx4DaA2T6JOtAgA626WBYxoFVEAvd3n8b2C8/y8pOq1xmt0HL8my paqloQro7QV24HMFuagDoHNZia/5AaC/JjUG+oYCAPobKmOMrymQFOjTLxmN9YDncqmKj+Zw JELKwVGpqjbXAO3dSRovMk+uJMlPJhwtCYCuClbOZNID3X4i8SGz2k+bUTME0JRC1f2eHOjl 6bITaBGhq+PqsgklB3odlXc59fI9Z/pjMCqFEKFVspXcKTHQW1CPLxJ5XzgSCw2gxZKV3iEe 6BMFtgCfP0Aj/7YzQ3oAzRCpribJgV52L9Y59O4ZYETourC6bjbJgW6XXY5t+rF9HiS3HDrF I57+Ils88pmpn6G3vpfrJcan2pTfP3cKJwX6uuP0PbIq5eDWlIiZnUU9ilz9nOfmBSl3VmY9 tXbQnyk3gN4FzsDDViavSU0DmdWjYNS+YDIQbKb10/VrhrNy433GmHuNdNSfOxcA7SuV7EXW Geiuf0xox72pkaOf7iBzny/eHWxurgPoqy/o7t5+n472g/5cnJFy7JRKV2rANofOz88J2vFL 1DugA980n+FdZDnrD6DncCj+ClZ+oIQXMzc/x1Rh/q4666JugnxOq+X9j3VhpepD97/xncLE p/LPMuSdcoj89KMtC+jV/FX9ATTvvCWqKcEzeSB9XA6dkZ9nr+SN0XJ8VNh/RPhz74HsL5AZ F4X7LDpR7QzbHHq+qPxshQXyVAEIx00VZ5LgReEnvRjHOts5YkV4RGjB8mZ6w+Lo4Hu/KLHk sIKZ0k3DQO/rcKwsBYGcDrjlpQ63G3I0OIA+UEZ1Y4VeYrTIVwGkHPmuDTxTKACgFaKhS74K AOh81waeKRQA0ArR0CVfBQB0vmsDzxQKAGiFaOiSrwIAOt+1gWcKBQC0QjR0yVcBAJ3v2sAz hQJ1A/2897/3p0IWdClVgef9p//9x/P+bzw+ytMCrTJVoO4IjWc5MsUunVsAOp22sHyBAgA6 KHrKx0ctbVvasqZP8Ry1gQvVA91wXzBbxExZ78LStqUtA5I2Jizqjuh8AtC+binrXVjatrSl Yyd8bnPF692D/E3bt0PZAnE8ifSlbqCHChjt2ZsRIfFSviRradvSViRE6+6vzqjuiNKnR8sv K1fett1YzEX2/ZaU5QEsbVvaUrJDdLsih5atd4FAyyrpuBVKCYqlbUtb1QDt0jBBjlMk0GMV H8Ekg28jh0oGaCiwTBMsbWnmQvb5foSW5M/O/TKBlqYdKetdWNq2tEXCqWnwbaBl6UbBQA+u s0u5jklHwroclrYtbWmApfp8F+hNKTHKtffvhUboyXtuOdepdcobFpa2LW0xKWA3+yLQu8KP PCeLBnqClL+lw5MEra5XwBWwke1kzT4XDvQceQH19RBaeaCHuewceqPffJrWHdVWSwE7MQrY rGEFETpGRPStTYH/Wt90IfhW3LsAAAAASUVORK5CYII=</item> <item item-id="48">iVBORw0KGgoAAAANSUhEUgAAACYAAAASCAYAAAA31qwVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAEgSURBVEhL7ZWBCcQgDEWdy4Gcx2lc psPkalL1J1pRuINytHBwSE1e/k9SRw993EO56AXbdWaoWAqOnMOfp3hg6ETB2bPd1PP3DVhO eAKFpG+lwKD2+LsoOpoCY6Vush/Rk/ORRLim2OiOPjsoelC/xoA4KZKvDokTALZjD7zLaoYT tTyiutQnUB76oC8wQ7f7XNQJ38COTI0JZkZhEQiSxQTQDrrBCri5y0dyfw7GsKMh0Oqidfif 1VH3WyxRcQUM+maoFUOWSTS2V2V0Im3bKOoSWFbxvvlpBlYqj6YdhlbatWOmvbOyTps0n1pb 1dIbxXKbF9vUVF8TifE4McZZApNqRr2ht8hggi/4ftuYdaEW86KVv1yYu7Hfj/jfKPYBF5do RhHg5HQAAAAASUVORK5CYII=</item> <item item-id="49">iVBORw0KGgoAAAANSUhEUgAAALUAAAAVCAYAAAAAT69HAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANTSURBVGhD7ZqBkYQgDEWty4Ksh2ps xmJYQFASCQaiizjezM3ezSIhP48kqIP+fj4FXqbA8BZ/ZqX0Uu3MopWaq69+84U96voKqBc1 6knK5DzpUdVvizeC3auu/UO9KD1dBOOiJn3RVP0z3rGuD4N61tMwFoF1KYgXBnKnutynJ+yI 5+tKq/QwqEvDaXrhcdLSzgMAOEp689T6e4S6B12ZUNseahgG/1uWMUtwpO3EAPi/Z6VHak0m s44JCOv9sMG82u8bobb+B20OOlhfQizNJ/o+q1EXuq7EOT8237zPG4zmoDQMUdbD/5dQmxub tYOhtkHZ1zRPKDh2LnxCFPphbbAOncYOa5ypI6UtFU9qO29Y6xrM/aDrgxstEGh3plFLXXnO R6MiHfxm3NuPM4jd92HnC0p+1s4RagAOutbt0jOoKZFcljv6YYPPugtSC3WcXTcoiyOpdU7H pG9R8E9i3ULXna2oumy8nXTJfhOGhBSNhuUKsIJESjrNjkvGDshqcSbykyegPgKYmz+eB1aB sHzr231Qo6ztdK1rd2DZReJbnYh2ZPUtr1Fag3t1FUEd/PHQJreAK1VulxCCE1nONzmuz+OU 5qOdCzJ1XJgSfqw2jV+uVz9m6hzU+3oT2YR0OPIpUdbJdsdndGpaGdTR0Tih0VnSSvEh0ZWd D8mBawIMrWomr+M+bZ/xzOmyRcZ2roXaHyVQv+lX16r9AOII+m1J+3EIEIw1L74EH5W6SjJ1 SEThk+6pU6Vx6wfrSqbTEgcD2CmD2s111lNTJT4jPqfKWNusceRBkU4avKQA2zMIYuFBEWvU QNdqqEEcV35ApsbllQ6aIMM4rmH53u0UQk3cemL5kYS64JaeCOoVSFbvniMcHDpxK5W/pZfV qKWuvB0d3bQzLOG7PIVzgMl4marWAuc6wUMCCurp6ocvyI+TXpnj9f1jOtQ1EoX3RPFwmpZl 6iuDUv04NwX1LY/JI2+7ANqfRGrfg2mhKwKKB7W9CfSnp43lwM/mtdGKt+sS4ldvEOaioYZ7 C9a+4qUc6EdXvHo21My4NRm2mHep5e9/VAaxicf/Mdqrrq+A2hw99SR6EUnQQ/6Hr0ZW+tT1 JVA3ivln9pEKfFA/MizfoiQK/ABN4e5Kj4L7cgAAAABJRU5ErkJggg==</item> <item item-id="50">iVBORw0KGgoAAAANSUhEUgAAALYAAAAVCAYAAADreBREAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANNSURBVGhD7ZqNkaYgDIaty4Koh2ps xmJYQJAQ/n/UL643c3N7swLJm4ckoIv4/nwKvFCBhapPG+di7zZ+F5xv3aP/00CqOpMEe+er YKNcbkysvH9r/Ae4KetMD+ydCzYJyJ0zMWmq93FOXGcA9ibYst4c6PY1p8I4MXhvI5u6zg+D 3YqD7I1XJka7ELeq3FjrSK/eaj+V5+nrfAvYqldblsX8hVUBZmzz88bFGn1WQiEz7BoBMT1/ CSQVwPlVqt+ekr3o90oPq1Wgi/LNai7/Rb/P2khEZ6XGxqRv6MClffOy1xWtiDykLQvIst7/ MdgqEO5ZbTQMiBqLT43Z+cugqDWGD6JwmUF7yhbbJ5R21vYDYncYNlADxzwtSzZS0PmUAfEl 78r0hk6CDbPBKWC97OeTWERvihBsDzI0Vu/EEtgpE7U/YRujAj71diTrr04xoHoNtFW5daK+ go1QsPEJnV1FB1XmrNy5Ow64wU1Vl3FOgI0OdVqo3pLtl0Sfy3awQwhz8xvKT5hCkFQQp4Jt M4YJiucvAi4KUGXu0GNT5wPlb6I1OXzNaxbX5Fqd+8H22xGraRzsSClKlmyT2WvKuS6HOuB2 k7SDHWRsAEI4v3Farad79zaw3XyRLFLhcMwej9tEFdHPFHQdAxvU6SAmaulIZbxQ58q9nH7s 1PHYfCo0lT12+7VcxgrQD84F+1gT95vGkrtakcDxhD2a3TxA2YCPtCIFG+vsmqvzSMa2MWfy bbRNXhVgpwNTtdNwALy2pg1s3Z+WeuxU25QBuyL5VrmqH8r6CzcZrFz104NcCw6PeJM0Hh6x Zg/oPAa28V91AyaYBbCPxny0B8Ul3YHUCHbiGio9PwAmCvY1131V9hy7YOylmHfAx21W/rov ayMRncO2zt1wpY+bDb1zT77pGzPw4iAFNnv2Bc3068Y+YdEogjqj+MbB/kmoTQfd+31HDOy7 X6kHtxWDGXsKxPFJul+pP6QzvsmJgu2/lXI3AlN70e6gbPKT046v8iKCdwev23bQC3q3QwMT XjaUiM62HUPXm/S+7tO3CXzC9yKdgbsMpN+bmLLOJMHWh66hj5cGesjf4+9Ci+jqTBTsC2P5 Tf0KBT6wXxHGzwmswB/sST2HvHvKdgAAAABJRU5ErkJggg==</item> <item item-id="51">iVBORw0KGgoAAAANSUhEUgAAAEQAAAAVCAYAAAD/wUjgAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFjSURBVFhH7ZfbDcMgDEWZi4GYh2lY hmFcngI7PBxaUT6IVKlpjW2Orx0i4F6IgLg8MIELhCjiAjkTiAElJGj7/wY+RCGHArFaghAi fXZWbD8QvNe0Z2WgKMQoB0KByaql9ytqdj5cDMa1HwhKymqQqWX7QOg2wqKsHsHb6DIQDyjF khpGo6UouuRW/zavhgUtBcg0wKoZEv/IznBlSQUrosOAS0BiHjl+kPZAZt8CCf4r6M2hahSZ I759SFLeppVnWduoWHdjNXD/vWrdAL+6n5ecb5FUX6c1eMpgKeEozJ5fUYhPErXJONa6QlJH kCL1Z0i3LUagSHFWgHg1bgASnzJP5SGFULk/FR6HXR5AU22uAHmpkGkOTQM8L5HK2A4b/cZe +8pw4wxp5MU7qW6D4TPELTl7yrxizTBmAWme6lzr8A5djCweJvxzyIr30RoWkF8HPdnfBXLm 6/85mrkKIbX4AHnWrQltO6HaAAAAAElFTkSuQmCC</item> <item item-id="52">iVBORw0KGgoAAAANSUhEUgAAALMAAAAVCAYAAAANUd8AAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPISURBVGhD7VoLkqUgDORcHsjzeBov 42FcPgIhBEzAZzEuUzVVu/N8kXQ6nQZV5/yZCHwEAfWRPGYaGoF9287jv0HiOLdtT7KdZP5I 8Y9tOde0th/JrJLGvp7LFtt3kvkLJT+2cwVF/UJK3ByObT196gSZtXwv6lQK/N60/L6qgVVh P1e1hIS5ILVdR2AHcHQwdq5Hq5FSq44Sf2BB29b9h78FGjkls/5g0eBD6bbwa7JiAH36Zryp 0eebyWt5w086MmP8HqVKRmZzz5Tcj95v+GBaHK7aAjLXC2EJnZHWqAxWCU3uQJxLqRhkp+Jz G8VeByeJ+Te6p4n/U5LZonPIDJX5+vfuRMTlgKeIuQZ8psdqIiyFRk0xeW4yjRfXYO7yi2S2 qlzpcOJzmmwOfMsliSKSitNgX+w6ieKZ+FV1duvuI3wLmdOpZ5saiUFckyc2qJPJC4sFxpKw Jk2CO2hcb3MjmVnFhiSpFO4CWOalQRNYkbtpLrIaNTJ1elVW9cueOSWkxxHl7DxdVF6KhOhv pKBwySvF+C7uZVP9lGQMZIfqXVz7uZ9OueD6qdtBZqIQoeB8ewE5Aq0G12LA79vvFNXXrYkD sNsjFH6rAdqUOQkJCkvmgwhorsmnSdpU5JIDQSR+uxYXiUVpQlZEiGwCIl88iTwGHTajpnTE OOQoW1g4n3ixf5zvLHONQzTOImvXcO6BPTNacwOZaxvw2Jhxqrq/6f9bry4hc8w9i0vYHdlk 9iJd2jtc9y7YXdPQ9Q0gWGC+QSsrs+8UWjXuybDqJ1kykDmTgN8goygzOX45NiODuNBkUpvB jeu8Q8eRaFkUqImd24zgU9NNENXZLicOQPKEwm6Z4wdCs5rTjDuFka9FrtPPKrPHOCpv4waw NPKlZMbetmglODgAdDlxgx/PN/f5BhD7XdIzpoFKXQLHXknRi972WjTN5auYiS/mbLquTcag pxklzwxFIxzbMY/m8HQh8SySmcIZ2wBnB/K4tVOhnrieoFiUqKM5jgxpj5U+NW1Xu0NbCfJV AoZaFL9byeGdc2YOiE9f0/HQ5AZrMc5VIYp5i+MiyFIvrvNf3QOx7ncz5KcO9RFU99nC8eVB kJx3P821F+I1P84ukrkBZxaRG+JmR8b5qYl/L6WbzN7XCSwuXV7viR5/7Nw+PV7g4UO32PXr kA0vfzKmIHeB5FPY6ukSN7J55ACf8GKrW33RiH+TeeU4CPSO7nEykawkbeIHlFly83nt7xCI L9z87h4jRc73CpPMI9VnrqULgUnmLvjml0dC4B9dxivegWYRywAAAABJRU5ErkJggg==</item> <item item-id="53">iVBORw0KGgoAAAANSUhEUgAAALsAAAAaCAYAAADv0C0hAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAO8SURBVHhe7VuLccMgDGUuD+R5PI2X 8TAUDDY/CSQHSH1R73ptUrDQ4+lJglRp+RIEfgQB9SN+ipuCgBayCwl+BoFpZD+O42dAjR39 tt+/bj/eiyFk31el1/0yc+htUXrZLrLvelWLvl9OCQG3BqWi77BAcAWpD7RFftvvd9qfx4fu ZD+2RauESDnZDXGOTS/LpqdovbVlSB6CzRHXEkOpVd8xGfG59KFN9m/7/Wr7k/iQkd1G2aV+ Rn13SxSYEPD22/nx+ExRoyCwZMsJ2KYUdwQQaNEjTsIXCp/7YGPTBPAdnN6nZN44v6E1lsQe Z/+0FWdE+3sTM/6+z+BDRHao3MDVD6IdrIgI4fY1IhD0NBd4HwXEqeqVYAX+Dvvg1nLuMaBC ff3OsLA4AQIS822o/aQBsXiWJWgX+00+cIWuHB/IXoDqFQ0iC0giTEWx9yfUak0A8zVUMoF9 lmFYWcuP9jsKNLt/Bfaj7WO919P3sX0fz4eb7Gmq9o5ApD6DAlL8bFPuwKpvRqNPjOrrrMG8 UmvtAWyyYz6cLHNNLpjC44acRgKK39eT4lIGLmHG2ncxFpdysWr22neHLwcXrtazyO6aOqyW xyKTqzxcFyrj2WVMTV2ufiYviyb4ffsBEWKWfYyIvezX+6serKiWMSZnwycWIIl6RXjplguy B8ru1Tip+305Yq2UzR+u7FbZ7HOun2GV4/wONjzJN6gHGW0fy2h33gn9TLJ13Iw+UdnLNI0p GVQ3hjRfNpRfrNnvGjdtdEPw5M0WstYkuKl1fl+/71ORIs9zMyevNnZ2aydyvexX1tXK0DXZ j+ZmR4/pkdG6cpTd13VA0QVuFKme/vA0Jusb4OyQEh46WcgzQP4aO5fn+e3FBbt/8PcFUE07 zj5wGeczbCxqXeyjfKiIbrO2SefWL5VYZcxZGJBvR2ecqzaxOJe8Zbe5dB/SUoZ2K9zy+zCl CnTRVZ7C5E3iYPtVMOmYYf5D719isRjR5d33XCeJRiyjuZ3Jjqt7Ws5NvEElMT4d1OcGFTBc vSmsN2hlr/BgzR/Yb8FIwgyzj7x/7Lu7ZX9QxkBzu5P9qv3xIyS6CrQAHvf3J81Sa85Dv335 Em5wMa8H2SeD/NQ+AZcHZA8VbGjqu382hoyNDBQEqAgI2alIybjXIyBkf/0WigNUBITsVKRk 3OsRELK/fgvFASoCKNn9OXrtAzX4pRLVuowTBP4PAru5m6D8I5CcxvyfPZOVsBFoHXemDxSy swGWCW9FQMj+1p2TdbMR+ANiKyQlUPSUVAAAAABJRU5ErkJggg==</item> <item item-id="54">iVBORw0KGgoAAAANSUhEUgAAALsAAAAaCAYAAADv0C0hAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPjSURBVHhe7VsBcsQgCMy78qC8516T z+QxVqMmiKCYU286oTOdtndJcGFZAa+L0S/1wEs8sLwEp8JUDxglu5LgNR6YRvbjOF7jVAj0 17jfbh/GYgjZ920x2x7NHOazLmb9RLLvZltWc/05JQX8GpYFfN8LJFeQYpAt8te4/6f9eXzo Tvbjs5olIRImuyXO8THr+jFTtN7ZsiS/k80T1xFjWTZz5STgc46hTvZf4/7X9ifxAZHdZVlU P6u+uyMKTQg6/O5+eD1SVJAEjmyYgHVKtV5BJBp4xEn4TOExBpebNoGv5AyYkvvG4abWmBN7 nP3TFtwR3e9Vn7XHfQYfANmpcoNXP4p2tCIyhNs3QCDqaT7xvkqIU9ULyUq8T2PwazljTKhQ X9zIF85PhIBAvg21nzQgzp95CdrFfpUPrUKXX3+TPXNqUDTo6FASxExPE5xTUe71CbVa1YF4 DYWdwD3LAs5r+dG4QaK5+GUJOto+13s9fZ2L+3g+XGRPt+oAJHEsWsz5HsxyFJQrscrBqPSJ oL5GDWbcWksPaCY7h+FkmW9yyS0cNuQyEkhwxyfBUoYuYcba9zkGSzmomr3i7v3b4pdWrZeT PShbAjOZunCZ2ao8rRAK1zeXMSV1if0MLosm4L5wUISYZZ8jYi/75f6qByuKZYzds9mJhZ1n oBFirwzPYfnJyQNlD2qc1P0gafPmj1d2p2zuOfHnvcpxuG8bgeQfqgcZbZ/b0a595+5nktC1 7ugTlT3fpjklu7f0tHlsVfDxNdrpe2L0eCcPbrYYDKVyjkoobxidL0BytJ8zXFORbJ8f63dv tzSR62Wf4EOxRxRqPYgdGj2mI6Nto5Sdn5Jw82kyUKJ6+stpDOob6N0hJR6FAe8A+O8+uIO4 cOcPIfBUTTvOPnEYF3ZYKHRd7Gd8QDvWWWW0ikQq2OVDJVzGFBzueSVX6xlzVVHu27OE9DRX jiEtZWSBqOE+bKlCHXTlUxjcJA62X3Sm3Gcc/uz1jPxtZU4U2NUKdhw/y8leJbr3huj0cdKJ mYjsxEUiDOg+0T1F3OUGLe8V0gWMtl/z5Vf2RXwoTcry1R377k/o+TIG3QSUnTxJiwctRGPC j5DkKlBz8Lj321QkpHlldPYQd6xbqx+vqK35oX2xk5/al62LH31WFigmuxioXqgeGOeBepNc sK1kHxcYfXJfD3iiy/oR0rKSvW9A9GljPPCVosclKdnHBEef2tED2cdRHj5byf7QcXrbNA9w p+bp4CPM0UsfqFGyT4uZGprggd2eTUj+Eaj7fypNwKYm1APBA7VxZ+ooJbsS5zUeULK/JtQK 9A8KhfU+TSQEaQAAAABJRU5ErkJggg==</item> <item item-id="55">iVBORw0KGgoAAAANSUhEUgAAALsAAAAaCAYAAADv0C0hAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPMSURBVHhe7VuBccMgDGQuD+R5PI2X 8TAUjLGFkEA4QC6F3vXaNBjx4vVIIlV6fk0PDOIBNQjOCXN6QE+yTxIM44FuZD+OYxinQqDf xj26fbgXTci+r0qvuzdz6G1Retk82Xe9qkXfL7uEgFuDUuD7WSC5ghCDbJHfxv2b9vvxoTrZ j23RKiASJrshzrHpZdl0F623tgzJn2BzxLXEUGrVd0wCPscY8mT/Nu6ftt+JD4jsNsq8+hn1 3S1RaELQ22+fh+ORooIgsGTDBMxTqnQEEWhgipPwkcJjDDY2TQDfwXlhCp5rh5taY0zsdvZP W/BEtL9nfVa+7z34AMhOpRu8+lG0oxWRIdy+AgJRs7nA+yggTlVPBCvxPo3BreXcY0KF6uJG vrB+IgQE8q2p/aAAsf6MU9Aq9rN8KBW6ePxD9sipl6JBR59jvPJjEnEqyv29Q66WdSBeQ+Ik sHMZhsW5fGvcINDs/kUB2to+V3u9/Tu37+35cJM9PKovINCxyMn0UQoLU5kzMnUiyK9RgemD LjVBMdkRsQJxoNKXM/t/VJ8YH59Mbh4Jbj8dTGV6+j0UdZjKwXdq4S/3S6nWy8mOZ44UhovM UuUphZAYX5zGpNTF1zP4ROuA+8ZBEaKXfS5Aa9lP11c1WJFMY8yZXdCxqBXhMSzXOXmh7Kbf E7Y9rRC7dOTU5KhA5ZXdKqpVaf/zWWU73I+Ni+QbVYO0ts+daPe5U+lk66jsJhl0vej7fGWU 7GrlqahQKVXw9jnauR1E6/EJHlxsMRiCE0Ka59etVe6uSJT/tPW7s5vqyNWyT/AhqBFf3s2A vUOtx7BltK68srtcNVwA158mN0qUT3/YjbmlkbhUgi1W0PCnMOATAL+ug/sSF+7+4QpaKtdv Z5/3G6xFqtjHfDjxAn4lsgw+xQkFO32plDEQdybkat2jryrK88xdQnibK8cQpjIy5cnhPkyq Ql10xV0YXCQ2tp90ptxnHP6cXyhxTS3JC+xiBNu3n+Vkj5SYBii6fex0YyYiOzFIhAE9J3om iTtdoMW1QriA1vZzvvzIvoAPZLcw1ZvYd3dDz6cx6Gmk7OFtGqckuUJDrgI5B7d7P4eBspx7 5iVuXyNlP17RyL7YyW/tZ/zC1ojChYnJLpxvDpseaO6BVzl7ibI3RzANTA9IPfDJyei6SdU/ 9Shd+hw3PVDmgUn2Mn/N0b/jAZy2CIpYEtzM2X9nz0deadgQoS62rj566oNGk+wjU+j/Yd/N 3YTkH4Fmzv7/9n4gRLl2Z+iKSfaBqDE61En20RkwEP4/u0UExw+QBKEAAAAASUVORK5C YII=</item> <item item-id="56">iVBORw0KGgoAAAANSUhEUgAAAGwAAAAqCAYAAABWZ768AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKASURBVHhe7VntlYQgDKQuC6IeqrEZ i+FE/ALBEMAAt7n39s+KkJ1hkklOaP4bCgExVLQcrGbCBrsETBgTNhgCg4XLCmPCBkNgsHBZ YT5hs9RCSD13SiQTxoR1ejWjYc1aCrGqynwmrRQrrGMGF60moSe17DEe5HFK7JO0UL3iGtYn VyaqRU1aTEof+toiXZSe2HT0SRoTVsDLsjj3vGAnxKsdpkQIh3db/1E+n6XQ8mx0QoV/dWsk /NmzxRkMrenIwYGcsC0NXWyZouE5tb2O+LUFIRzc0p00Ylufi4NHGNSTeM9nbIE2798t8x2s +03X2ty+y27jKPh+dTscboRBPQn0HIbpeas2W/ZUmPnapONXlVnQ6Elti8NFGFSAA883AkIW OGiNI8TECFunedJMHkhqGXzZzhWNcTgJgywu9Nz9QWbM408LrCKc8mUbn7DC9u+f65/gmvRp R0uBT8oGCL5a41CVMAvcqopgbYspBqs8BLofLE0h7EscilLiVmeSU2J/CouqMqDUt5RIicPD dMR7EkTP8p9r2J6qk3q3D3DwbD3Uk7g2XEqMwvbZXaCmWPPi2vp+XeJVdw+FUuJQ9g9MVErc vHqy8+u7D/OKIyEOxITFVeZAYFIJ2aSjgjNBE5aPAzlhh42Pu+10FVaAOmkLaCCLMx3Hkba8 YHEoIyzp5w62yFFLrOVo95uYMB97JqzdbUw7OTbwjg+m0/b9ZtWPKwwa5HJK/Oba5e4KDbyj c87cA8vf+2mFwXNBVlj5Fau4AxNWEUySrTglksBc8RBooM0psSLYtbZ6H3gHB9O1js7Y56dN RwZezV9hwppTgAuACcPh1Xw1E9acAlwAf+u3Kz3WwjU0AAAAAElFTkSuQmCC</item> <item item-id="57">iVBORw0KGgoAAAANSUhEUgAAAGwAAAAqCAYAAABWZ768AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKVSURBVHhe7VlbEoMgDORcHojzcBov 42FSwRcgIYLIY5rO9KfycjebLKkA/gyFgBjqtHxYYMIGCwImjAkbDIHBjssKY8IGQ2Cw47LC fMJmCUJImDslkgljwjoNTfRYM0ghVlXp7wRKscI6ZnABNQmY1LKf8SCPU2KfpIXqFdewPrnS p1rUBGJScOjLnHRRMLHp6JM0JuwFL8vixPmLlRKmdpgSKRzitv6jfD5LAfK86IQK/+rWqvC3 7S3Ow9Q1HTk4VCfMpKGLLV00PKe21xG/tiQIJ23oTlplW5+Lg0cYdSfxns+pBVrPty2zDZYd 6QA6+i67nUbB96Pb4WARRt1JqOc0TPeoMrbsrjD9s07HUZVtoNUntS0OF2FUAQ48NwTYijGW +Oga2HUqQgxG2NrNk7rzUKWW0cF2jmiMw0kYZXGp56skXIANeTbgmyKc8rVdfMIK23+/j7+D q9Pn1loKfJ8skMBXaxzKEaYjzwPHdUGYYuKE1U95cfZIwj7G4VVKNHUG7Qr4BPWnMFSVAaXG UmJNHG6mA7+TpNxZQqpJVVKnNWxP1c/ubuVx8Gw9dSdxbbiUIYXh7i3sEveeno5qO6V26xKv unsotCYO7/7A9FPi7hLxOv9cNX3fw7w6VxGHcoSRZG0vianMgUCvVa3TkWARsaE2YR/jUIyw 7U52t9WYjS+hwgJQP1qCasjapuNrHN4R9uh1BxvkpDfMKLV7JybMx54JaxeNz3bGGt54Y/rZ ut+M+nOFUY1cTonfhF3uqlTDG+1z5m74ft5fK4zsCzJh7yOs5ApMWEk0a6zFKbEGyiX3oBra bDpKol1orXjD++xcFP4jNPfwf206ckFrOY8Ja4l+xt5MWAZoLacwYS3Rz9j7B6oBAAW789bs AAAAAElFTkSuQmCC</item> <item item-id="58">iVBORw0KGgoAAAANSUhEUgAAAGwAAAAqCAYAAABWZ768AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKdSURBVHhe7VkJDoQgDORdPoj38Bo/ 42PYBVE5LfcRu8kmmxUBZ5h2WgnHz1IIkKV2i5vlSNhihwAJQ8IWQ2Cx7aLCkLDFEFhsu6gw m7CdckIo3yclEglDwiY9msFt7ZwS8leV+G6cMVTYxAwenG2Eb+xQe7zIw5A4J2m+fIU5bE6u xK4OtnGyMX7pS+70YHxD0zEnaUhYAS/HYZzzgpkSbp0wJEI4vNv6RvF8p4TTu9DxJf6/W+vC 37k2uTfT13Tk4NCdMBmGHrZE0rCcmsojdm5JEE7aUEVaZ1ufi4NFGFSTWNf31AQt7tctsw6W ftI5F6fvsdtpFLQfPQ4HjTCoJoGuwzC5p0raMldh4m8Rjl9VdoLWn9SxODyEQQnYc10SoCtG jrm6BnbxGSAmRNi/m0dF56FLLoMP2z1iMA43YZDFha7b9YurplMRRvo6Cx+/wtT/7ngXXBE+ n4Ni/Y6ZIIGv0TjUI8x+aKcADSkmVXkJ6DYYChLWGIeikCjzTKArsILCgqq8w/qj1reQ2BMH x3SEa5LImkUqS3W+zZ7Pa+hzzcOkOUyFarB2a4SDZeuhmsS04ZS+vYpwAfe7RNXTEyTr+WZa l/jk3UuhPXEoe4EJdELMSl569WjnN3cdZiWqjjjUI8xRhJ+ckMoMCEQ46dbpqOBMdMIa41CP MNlREnWZ9vbWW0OdYTXstuNVWAHqqCmghqxtOlriUEZY1OMuNsgIb6GSY9wzIWE29kjYuNMY t3Ko4R1uTMfN22bUxxUGNXIxJLY5drmzQg3vYJ8zd8Hy+z6tMLgviAorP2IVZ0DCKoLZZSoM iV1grrgI1NDGkFgR7FpTvTe8765F5Rehubv/tOnIBW3kfUjYSPQz1kbCMkAbeQsSNhL9jLV/ bAYN9x4h1oEAAAAASUVORK5CYII=</item> <item item-id="59">iVBORw0KGgoAAAANSUhEUgAAAHwAAAAqCAYAAABxyT9UAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKaSURBVHhe7ZrrlYQgDIWpy4Koh2ps xmJYEV8oGBM3bFgy58yfARXuZ0IujPH66UoB09VsdbJegXf2EihwBd6ZAp1NVyNcgXemQGfT 1QjHAh+tN8b6EXudkP4KHAtCgWMVa63/6K0xc1SH7+Cd0whvjSBivJN3g/GDm9ZrNvia0hEi NtQ1l741pTcEEDnUyQ3eDM5v8b1cPjk/aNGGVLKR7gr8D0FNUxJndUbSYEqHdHq2ZdB6BbUT sYzWeLsb3VzhNFfLVfjHZ5t9MMSiTZBO4oAvafSgHRbNS6W8rqPXtZX4csGXrdC/2DIG4FSd LsAhz4lsH7EFTrj/2fKcxT5HmvchCxx2CcZWt4dcnU7AIc/5tR2W/P7WLmXxPcLDzyFqHqM8 il7/pZCt0wEcKlAI7QvAnIXJWpsC2BLweTfbhp2vKms5/LLuPYTrtAOHLMjX9lSQsE153a2K EZks39H45iN8/f3e/w4npP+4NZr5vrkBgrd0naoCj8LPUZld20sRi418BB2Grr8BnFMn1pS+ rLOvU7q8CC9mhUym+JLSa+p0K9rKnhPypFD7KZz+8xq+LjV0HXl1utgyyHNi2uf12GIiPGxT Xz14nHws/lJbJrdKP+qO8pFqajdr6sT7BwhUSl+81uvKW7YPRxYHFXUSBrwc5YmEYUmottOG hEfpjgZO10kc8M2Gld3S+yxA0Z5yDXRgAd6TAJyqEy9wcKYNdkjglCyj3HkpcCwbBY5VrLX+ pYOQ8sGO5BlqhD/SwR6ESEYdx6bAnxhBByHFfX654BX4AxtoX7x8sKPA5SqgwJtkwzNoTek8 usq9K3QgpD5cLjvyyJ4PjLIHO+Rn8V+oRRu/xqKeoMBF4eAfjALn11jUExS4KBz8g/kBDbb+ 9KfZKWwAAAAASUVORK5CYII=</item> <item item-id="60">iVBORw0KGgoAAAANSUhEUgAAAHwAAAAqCAYAAABxyT9UAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAK0SURBVHhe7ZrblYQgDIapy4Ksx2ps xmJYAS+AhGxww4Zj5px5GUDh/8gNxlj9fEoB86nV6mKtAv/YJlDgCvxjCnxsuWrhCvxjCnxs uWrhVODrbI2Z7UodJ6S/AqeCUOBUxUbrv9rZmN2q3Xeyy6IWPhpBwnw3u0zGTst2jDnhq0sn iDhQ15L7Vpc+EEDiVLdlsmZa7Gnffvi22EmTNqKSg3RX4P8IatsSO+szkwFdOqZTvSzD4hXW 3ohlnY2dr0K3lDjt2XIX/uHd5ppMY9ImSCdxwL0bvWm7oJllykcczWNr4+bChx3Q35RlDMBb dcqAYzUnsX2lJjju+XHJE4sdW5q1zgvc5RKOrW8PuTpFwLGa8207Lvlz1/q0+Gnh7mdnNVUr D6L33xSydbqBYwlKQ7sHGFusL2nOU6s4TlfAQsD30+zZnXx1ieX4Zr16CNfpAo6VIG/bd5NM AXn4MbBgkUn4DoVv2cKP35/9n3Cc+w9Ho4Xvbx5A4C1dp37A3c7PxE2zcchi68D7u+w6/dfA mXVidek+zoKnUjlgeRYOeoWCp3jj0nvq9Eja4JoTq0mx9tgySlZLtWShMfwINe068uqUlWVY zUlp3+PxXLJwOHsuZ+nu+Nolf2lZJjdLv/MO+Eo1LTd76sT7B4jcpR9ZOpwn/d5qZdfhhCzv LDEL1QyHTv2Ao7CDSJCVJxK6Z3U7aSPCa+keGwazTt2AX245S3igMuwvdneL9i1jsAsL9JkR cG6deIGjKx2wQxKmoERT7roUOJWNAqcqNlp/6CIEvtiRvEK18Cod6kWIZNRhbgq8xgi7CAHP +eWCV+AVNti5OHyxo8DlKqDAh2TDM2l16Ty6yn0qdiGkdbhcds0zq18YFS92mt/FP1CTNn6N Rb1BgYvCwT8ZBc6vsag3KHBROPgn8wMuktO87B1a8gAAAABJRU5ErkJggg==</item> <item item-id="61">iVBORw0KGgoAAAANSUhEUgAAAHwAAAAqCAYAAABxyT9UAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAK5SURBVHhe7ZoLjoQgDIY5lwfiPJzG y3gYVhAfPDvFlC2xk2wyGVDh/+yTVVY+n1JAfWq3slkrwD/2EghwAf4xBT62XbFwAf4xBT62 XbFwLPBVW6W0XbHXMZkvwLEgBDhWsdnmr1YrtVu1+1usMWLhsxFErHezZlF2MVu45oQvLh0h 4kRTS+5bXPpEAJFL3cxi1WLsad/+8s3YRZI2pJKTTBfg/whq2yI7G7OSCV06pFO7LIPiFTTe iWXVyuqr0C0lTnu2PIT/8Wx1LaYzaWOkEzvg3o3etF3QTDLlEEfT2Nr5csGXBehvyjIC4L06 JcChmhM5vmITHHf/Z8nzFPtpadY6L3CXSzC2sTP46vQADtWcb8dhyfO31qfFuYW7n53VNK38 EH38S8Fbpxs4lKB0jHuAT4v19zi7VmnzogK2BnzvZmvX+RoSy+GX9ZrBXKcLOFSCvB1P69fc mg+LjML3UfiWLTz8ns/P4Tj3f79oyfdfboDgzV2nccBT0bIGRs1isZaPoEMw9TVwYp1IXbqP s5Wu1AwWXvUKV1i6vcUblz5Spyxpq9ecUE0KjQdJvGWHk6e4Z9l03XnyxTSGh1DTryOtTklZ BtWcmPE9HuvWUWIOrJylu/a1S/7isoxvln7nHfUj1bjcHKkT7T9AAA2HuKPma62fM2/edTgy ORio0zjgWd1chluz8khCFxaGddqQ8HqmP4ET6zQOuO+IBtdcjOGnUoe7q1dLv3uBHu17roEO LMB7JhZOqRMtcHCnE06I4NRKRr77EuBYNgIcq9hs82sHIfWDHc47FAtv0sEehHBGfaxNgLcY QQch1T4/X/ACvMEG6ovXD3YEOF8FBPiUbGgWLS6dRle+d4UOhKQO58uue2XtA6PiwU73s+gv lKSNXmNWTxDgrHDQL0aA02vM6gkCnBUO+sX8Adpw4a50GZ5aAAAAAElFTkSuQmCC</item> <item item-id="62" content-encoding="gzip">H4sIAAAAAAAA/4xTzXISQRDu2YXdZcNPABHJgksiKqBEMnpQTmilLKuMWoUPkNqwa4IlQjYb K8d9Am+evfgIqdxTXjz5DJ59CezpBoKenK2e/pnv657pnUkDgEB5i2KTreNsBceD4HA0+ZgE NR6hpPzJkGMJij1RsPHwzcH7YBhRBAbE13A2To6mzyZnHN5DMTEwWAJfofxC3I8MQA/T/c5e +WpcGrwpDTSdjMKy+NMoCkcHp1EgCNlDycHqSPS2/vKTlCARhUHgUECiZKZkGrJyCRAnTfkV dd+wWJsp1pbNOrUmNSwSYX80IR4DpOWXl8izIUML5+nFAkCWKHEqJ9W++ngwWCczzlLJvLS/ o2MVSPfzRVn4ibpwjTL5RdxU0gcfjmEbdgBK8jNuNS7CdVr/VlKVqItlIsaFG0wsrxLxiBUm lmGDiZUlERxm5qvMdFaZDwFqzHTgJjNrV0xw+XRmnRvjbrKubxH00yb1oQtwi/yLpQ8NJtZv c1saGLrDbWlQ4rvsuOQ0GWy0OHuzzbp1j6u08XcKvcvnvM+V2stKHSa3trlSB0MPOHmHknf5 VM3FqXbowuZ8uX8YetOj/XeTcOxFJmFL6t5TeNeLPG7BxvxeaXWc9PnrUVeuRrbybO9sdPKc 8vBbqapXIOZYHjP8QFT/P7pIbkahNwzkrs7/cg50xToIR8yUJYSDR5q5QhOOjlRX6MJJzFQk gRiYoZFETNzHJUNhFMskDBqWwihwSuVRdBsxRF9DDNHTiCF6hmqhkSUMGjmFUWDebu716TgI R0PvAzfEom2/QPFhhJ8qrh6wPe/mPyO96vwBAAD//wMAYi6GcawEAAA=</item> <item item-id="63">iVBORw0KGgoAAAANSUhEUgAAAVoAAAEiCAYAAAC4IBraAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABb1SURBVHhe7Z0JlrO8DkSzLhbEelhN NpPFuIEM7TCFwS4ZdPs/fd73EmJZt6yKYkhzC/xAAAIQgEBWAresozM4BCAAAQgEjJZFAAEI QCAzAYw2M2CGhwAEIIDRsgYgAAEIZCaA0WYGzPAQgAAEMFrWAAQgAIHMBDDazIAZHgIQgABG yxqAAAQgkJkARpsZMMNDAAIQwGhZAxCAAAQyE8BoMwNmeAhAAAIYLWsAAhCAQGYCGG1mwAwP AQhAAKNlDUAAAhDITACjzQyY4SEAAQhgtBNr4Ha7BX5hwBq4/hpQvQVgtDNGqxKgpDidsXj9 8Zq717y7da7M3W9lLTiKUoCSjM1r3uqiQ/MyCCjXO0ZLR/shoFx4ZZTa/yy85u41b/WbK0aL 0WK04o+RJb3JYLQaNTBajBajxWg1blNYFOWbDEaL0Ra2/JkOBDQEMFoN59koSgGMUyU8BNwS UNY5HS0drdtCI3HfBDBaY/2VAhinSngIuCWgrHM6Wjpat4VG4r4JYLTG+isFME6V8BBwS0BZ 53S0dLRuC43EfRPAaI31VwpgnCrhIeCWgLLO6WjpaN0WGon7JoDRGuuvFMA4VcJDwC0BZZ3T 0dLRui00EvdNAKM11l8pgHGqhIeAWwLKOqejpaN1W2gk7psARmusv1IA41QJDwG3BJR1TkdL R+u20EjcNwGM1lh/pQDGqRIeAm4JKOucjpaO1m2hkbhvAhitsf5KAYxTJTwE3BJQ1jkdLR2t 20IjcT8EbuH7vy5zjNZYf6UAxqkSHgKXIzA01e7/T/0o65yOlo72coVGQtcjMNWRHs0Soz1K 8ODrlQIcnCovh8DpCUx1oDmMdQhKWed0tHS0py9UErAlsPaj+nuWChNdQwSjXUMp4zFKATKm wdAQSELgV8eZJIjBIMo6p6OlozVY4oRUEjhrx5mbEUabm/CP8ZUCGKdK+JMT+NVtzp1xP3na SaavrHM6WjraJIuWQfYRmDPKpdHi1+yLyqs6Ahit8TpQCmCcKuEzEFjTZb6PyRCeIVcSUNY5 HS0d7cpleZ3Dthjhno7zOqSunQlGa6yvUgDjVE8dfskwT50Yk5cQUNY5HS0dbbZFvdcI13ac 2SbOwC4IYLTGMisFsEr1l5mtPRmz10yt8iYuBN4ElHVOR1toR5vbCCk3CHgngNEar4BfJrfm +aMdoTECwkPg8gQw2twSP5pQ3Vq7fP9WTXhEMZUC5E6V8SEAgWkCyjr3uXVwr8Otvs+uP6UA FAEEIGBDQFnnLo32Xt9C1cQ97LfQSgFslhhRIQABZZ07NNpHaKoqLPhsu6XQfT1vvBC9PZ67 FM/OMzefbnzW4ZNBDg4YbdYVfA/1rQpV9d6jnTDdt7Jb/jfrnG0Gz7XAbbJJHzU3nylzSZ/F 9Uf8nIuJz8u8/q3K3l9H258Ii821M946xDu2u97ptpjy3mNVq4I4EHBAYFed7+Tiz2hHoJ4d bryVoBRgk257DXrqdZsCczAErkdAWecYbdvLnsZoU671raadMjZjQaAAAhhtThG6S7virYJu K4HraH8T32LMv0fjCAiYE8BoM0vwaKr/LysM9me70EoBMqdqM/wvU7aZFVEh8EVAWedsHUws PqUALtc+RuxS9tKSVtY5RovRlrb+/y+cnDPk8mbMjE5IAKM1Fk0pgHGq5wyPAZ9Tt8Jmraxz Olo62sKW/4HpYMAH4Pl7KUZrrLlSAONUfYTHgH3ovDFLZZ3T0dLRblyeFzp86aTchdIklWkC GK3xylAKYJwq4ecI0AVffm0o65yOlo728gWVNEEMOClOy8EwWkv6bWylAMapEj4VAQw4FUnZ OMo6p6Olo5UtbJeBMOBiZcdojaVRCmCcKuGtCPAX1azIf+Iq65yOlo7WfMEzgRcBzFe6FDBa Ke5xMKUAxqkSvnQCmG82hZR1TkdLR5ttITNwJgKYbxKwGG0SjPsHUQqwf5a8EgIRAcx383JQ 1jkdLR3t5gXKC05CAPNdFAqjNV7HSgGMUyW8NwKY70dxZZ3T0dLRerMa8h0ScGq+GK1xKSgF ME6V8BCYJuDAfJV1TkdLR4vVQGAdgYuZL0a7TvZsRykFyJYEA0NAQWBovoqYiWIo65yOlo42 0bJlGAi0BE5kvBit8YpVCmCcKuEhkJdAwcarrHM6WjravIXG6BCICRRkvBit8dJUCmCcKuEh YEvA0HiVdb6jo72H+laF5jGlz9Jz2/V8NFWopgOF8GhCVd+3D7riFUoBVkyHQyDgh4DwygZl nRdstJ1p1+FjpZ2xxv+/XXr3+hZyeK1SAD8VRKYQ2EkgU9errPNijXbUzU4Ybeu04VY1YbK5 3qlp9zKlAAemyUsh4JNAIuNV1vk6o+0MrU2u/63r762DpefafrT+vK4JTbW2A320x8bbE9E4 X9sWabcq3qtWKYDPSiFrCCQksNN4lXW+wmifJvf+iN51mreP2S0915nl7X+P9WXIo4/6U53q 2sfaXna9ea8XVinA+llxJAQgsIrASuNV1vlvox19PI+6yKXnRmY5YYqfbjjai+1I9o8PHpsy 39c+7ewJs1WqjA9SCrBzirwMAhBYS2DGeJV1/tNo+w72ax/032iXnuuvCvgyy2+j7U5k9Z3x fXySa3LvFaNdu6w4DgIQWCLwMt6ijHZsegk72g7G2m0CjJbigQAEEhIoy2hfJ7TK2KMdXr/L Hm3CdcdQEHBFoDCjfXedz6sOqqb5vuqg7zRnnouvOqjaqxWmrjqY7FSnDPT5WDeH/xNqXHXg qjJIFgIJCZRntEmSm+k+Z7YEFr8V9p4P19EmUYZBIOCRAEbbqz74ZtjESuCbYR7Lg5whkIYA Rvvi+PNvHWT4VlgXWilAmiXDKBCAwFYCyjr/eXnX1slf4XilAFfgRQ4QOCMBZZ1jtBMrRCnA GRcoc4bAFQgo6xyjxWivUDPkAIHNBDDazcjSvkApQNqZMxoEILCWgLLO6WjpaNeuS46DwKUI YLTGcioFME6V8BBwS0BZ53S0dLRuC43EfRPAaI31VwpgnCrhIeCWgLLO5zvaqZukKR4rQHal AAWkyxQg4JKAss7ZOmDrwGWRkTQEMFrjNaAUwDhVwkPALQFlndPR0tG6LTQS900AozXWXymA caqEh4BbAso6p6Olo3VbaCTumwBGa6y/UgDjVAkPAbcElHVOR0tH67bQSNw3AYzWWH+lAMap Eh4Cbgko63xHR7t0Q8S0N0v8eYeF/7s0Jl0sSgGSTpzBIACB1QSUdV6w0Q7uGTZxE0fuGbZ6 TXEgBCAwIIDRtkBG3ezU3XK5Cy7FAwEI7CRQntF2htb+nYP+t65DfatC83hlt/Rcfyfb9+ua 0FS3sO7Tfndr8ihGPE4cu388Pm4nccN3ujQzZhQIQGArgcKM9mmWb4PsOs3bx9yWnuvM8haq tyO/DPljtH2H+jLhaPwe1lT3OvVYeMZYZ97rZVAKsH5WHAkBCKQkoKzz33u0o4/nURe59NzI GGNTHHSi/bHDLrlu+9XoZ9JoQ+j2aT9mnkgFpQCJpswwEIDARgLKOv9ptH0HWzVt7/j++TfJ pefGXWlktJ1BD9rQrxNbU3uvGO3GZcThEIDAEoGijLZtGWeNdvG5xY52mP5Uh5uzo32a/nPf eRCnnZpSAEoBAhCwIaCs858dbfvhPM8e7YftYC93cY92eOJr3x5t1z2/O+r43+8pKQWwWWJE hQAElHW+wmhbQaITV1XTfJ/pX3ouvlqgaq9WGJ24epr4eI91ykD/u9D/XYc9Vx387p6VArDc IQABGwLKOl9ntEk4DMzzZdBzVwwsfivss1083NZYMdHRlsbYrJUCrJgxh0AAAhkIKOvcxmh/ mOyT6eCbYROgd30zbKXRfq4bji5By6A1Q0IAApkJTNXy+7HMoT/Dmxjt81rc/2to3/8edrc/ /9bB19UQK5GtNNqVo3EYBCBwUgIX7WgLUQOjLUQIpgEBWwIYbVb+nAzLipfBIXASAhhtZqG4 vCszYIaHwAkIYLTZRYr+2A1fWMhOmwAQKJEARmusilIA41QJDwG3BJR1Lrzq4Dx6KgU4DxVm CoFrEVDWOUY7sXaUAlxr6ZINBM5DQFnnGC1Ge57KYKYQSEigCKNtv0/QfqlgnFXuxxNy3D2U UoDdk+SFEIDAIQLKOqejpaM9tFh5MQTOSgCjNVZOKYBxqoSHgFsCyjqno6WjdVtoJO6bAEZr rL9SAONUCQ8BtwSUdU5HS0frttBI3DcBjNZYf6UAxqkSHgJuCSjrnI6WjtZtoZG4bwIYrbH+ SgGMUyU8BNwSUNb5jo526YaIe26WOK/zzzsszN1w7ODSUQpwcKq8HAIQ2ElAWecFG+3gnmGj OyO0dxVrbxuew2uVAuxcI7wMAhA4SEBZ58Ua7aibnTDa1mnDbc99w34IpBTg4Frh5RCAwE4C yjpfZ7Sdob1vpljXob5VoXm8slt6rr+T7esmjHUTmmptB9rdmjyKEY8Tx+4fj4/bSXzwMqUA aWbMKBCAwFYCyjpfYbRPs3x/RH/ewfZtbkvPdWZ5C9XbkV+G/PmoHxv08C4HU93r1GPhGSP1 9oFSgK2Lg+MhAIE0BJR1/ttoRx/Poy5y6bmRMUamOHiuN+/YLXsTrtt+NfqZNNrnPu3HzNPw 77t3fiAAgWsTUNb5T0fpTfBrH/TfaJeeC0tGO9RveOzU3itGe+1VT3YQEBMoymjHJ5wSdLQD oKOOdvXWAR2teG0SDgKXIVCW0b5ORCXfo+3k6g21O1k2OKE1a7TDE1/s0V5m1ZMIBMQECjPa 2BC7/dDm+0z/xywnnouvFqjaqxVmT1wNrx6YMtDnYx2c/+1crjoQr03CQeAyBMoz2iRol7vP 4ZcPFr8V9p4P19EmUYZBIOCRwPWNdulqhY/ig2+GTawEvhnmsTzIGQJpCFzfaPvdiO563NeX GWa+dPDzbx1k+FZYJ6FSgDRLhlEgAIGtBJR1/vPyrq2Tv8LxSgGuwIscIHBGAso6x2gnVohS gDMuUOYMgSsQUNY5RovRXqFmyAECmwlgtJuRpX2BUoC0M2c0CEBgLQFlndPR0tGuXZccB4FL EcBojeVUCmCcKuEh4JaAss7paOlo3RYaifsmgNEa668UwDhVwkPALQFlnc92tO1XCQ7/t6Tg 1OilKK4UoJScmQcEvBFQ1jlbB2wdeKsv8oVATwCjNV4ISgGMUyU8BNwSUNY5HS0drdtCI3Hf BDBaY/2VAhinSngIuCWgrHM6Wjpat4VG4r4JYLTG+isFME6V8BBwS0BZ53S0dLRuC43EfRPA aI31VwpgnCrhIeCWgLLO6WjpaN0WGon7JoDRGuuvFMA4VcJDwC0BZZ3T0dLRui00EvdNAKM1 1l8pgHGqhIeAWwLKOqejpaN1W2gk7psARmusv1IA41QJDwG3BJR1TkdLR+u20EjcNwGM1lh/ pQDGqRIeAm4JKOucjpaO1m2hkbhvAhitsf5KAYxTJTwE3BJQ1jkdLR2t20Ijcd8EMFpj/ZUC GKdKeAi4JaCsczpaOlq3hUbivglgtMb6KwUwTpXwEHBLQFnndLR0tG4LjcR9E8BojfVXCmCc KuEh4JaAss7paOlo3RYaifsmgNEa668UwDhVwkPALQFlndPR0tG6LTQS900AozXWXymAcaqE h4BbAso699nRPppQ3W6hA93/Vk14RMtNKYDbVU7iEDAmoKxzn0Z7r8Otvs/KrBTAeK0RHgJu CSjr3KXR3utbqJq4h/1ea0oB3K5yEoeAMQFlnTs02kdoqios+Gy/ncAPBCBwbQLKOnfoKPdQ 36pQVe892rHpfvZu431czPfaVUd2lyUwV88YbU7J+xNhsbl2xluHeMdWKUDOVBkbAhCYJ6Cs 84t0tN12QHQVQdyJLpz0ekrw7HDjrQSlABQCBCBgQ0BZ5xcx2iNCYbRH6PFaCJyVAEabU7nu 0q54q6DbSuA62pzEGRsCRRLAaDPL8miq/y8rDPZnu9BKATKnyvAQgMAMAWWds3UwIYJSAKoA AhCwIaCsc4wWo7VZ5USFgDEBjNaRAMapEh4CbglgtMbSKwUwTpXwEHBLQFnnbB2wdeC20Ejc NwGM1lh/pQDGqRIeAm4JKOucjpaO1m2hkbhvAhitsf5KAYxTJTwE3BJQ1jkdLR2t20Ijcd8E MFpj/ZUCGKdKeAi4JaCsczpaOlq3hUbivglgtMb6KwUwTpXwEHBLQFnndLR0tG4LjcR9E8Bo jfVXCmCcKuEh4JaAss7paOlo3RYaifsmgNEa668UwDhVwkPALQFlndPR0tG6LTQS900AozXW XymAcaqEh4BbAso6p6Olo3VbaCTumwBGa6y/UgDjVAkPAbcElHVOR0tH67bQSNw3AYzWWH+l AMapEh4Cbgko65yOlo7WbaGRuG8CGK2x/koBjFMlPATcElDWOR0tHa3bQiNx3wQwWmP9lQIY p0p4CLgloKxzOlo6WreFRuK+CWC0xvorBTBOlfAQcEtAWed0tHS0bguNxH0TwGiN9VcKYJwq 4SHgloCyzulo6WjdFhqJ+yaA0RrrrxTAONWv8F7z7iB4zd1r3mrN6WjpaD8EKLqS3vY0c0Fz EWdNmHNF8br4vOat7m5KqgY016hBR0tHS0fL1oHGbQqLonyTwWgxWowWoy3MAjXTwWg1nGej KAUwTpWTYS8CaF7SStTMRak5He1MR9uJwC8MWAPXXgMaS2+valEFIg4EIAABrwQwWq/KkzcE ICAjgNHKUBMIAhDwSgCj9ao8eUMAAjICGK0MNYEgAAGvBDDaWeUfoaneZ1zrcL/ECtmS08Kx jyZU8VUZVRMep+OzhcUruT7vs62FRHl603yQb33QADDaGYO4163JvujG/z6dn0QT3pLT4rH3 +sPmrDy2sHjmeA91/+ZyLqNNlqcrzZ9af8y1y/1WheZAN4HRTjpFBzoCe8pOZpjYlpyWj+2K tzqy6szdeQuLEB5N1V9TXdX1yTradHm60rwz1q9Pac9PBUe6Wox2quhHxjpYsOZGsWMCW3Ja PLZbdMfe3XfMPu1LtrBoIz/u9+fWyNnecJPl6U/z7wU36HB3rEaMFqMdE1gs0OebTvXZvz6h 6W40oA+gixvtfJ6ONe/fX9tPNAfPQ2C0GO02o+3NJjbXrgjPtW857kxXfmLxarSONX9uGx1f 3xgtRrvNaEdHrzSpHR+3sr2EjnYZ7c83FB+aP002zSc2jJaTYRMEtpxEOWHR9VcQ7DjZ+dOA sr017Bw4V57X1zxVJ/sWDqOdWcLbL4vZWQvCl23JafbY/lKX6KNUZz4H96+ECD6htrA47R5t O/EkeXrTfLRVcnyFYrSzDN/XTZ7v2sn5ZTGf0/jynflj35c7Pf+E4PH9q+PLeM8IW1i8xj9d R9vNO02enjTv35wm/kwql3ftqTNeAwEIQEBEgI5WBJowEICAXwIYrV/tyRwCEBARwGhFoAkD AQj4JYDR+tWezCEAAREBjFYEmjAQgIBfAhitX+3JHAIQEBHAaEWgCQMBCPglgNH61Z7MIQAB EQGMVgSaMBCAgF8CGK1f7ckcAhAQEcBoRaAJAwEI+CWA0frVnswhAAERAYxWBJowhRM45V/m Kpwp0/sQwGhZDBDoCGC0rIOMBDDajHAZ+iwE4r/ZmubWJWfJnHlqCGC0Gs5EKZ0AHW3pCp16 fhjtqeVj8skIYLTJUDLQmABGy6qAAHu0rIHMBDDazIAZ/iQE6GhPItQ5p4nRnlM3Zp2aQIY7 n6aeIuOdlwBGe17tmHlSAo/QVM+7nx6522nSKTHYZQhgtJeRkkQgAIFSCWC0pSrDvCAAgcsQ wGgvIyWJQAACpRLAaEtVhnlBAAKXIfAHa+ODIXbMKwAAAAAASUVORK5CYII=</item> <item item-id="64" content-encoding="gzip">H4sIAAAAAAAA/4xTy27TUBCdayd+NW/a0MYhbhsgCYQSHFi0q4CqikULUviAyk1MG0RI6rqo S38Bv8CGb2CJhNgjvoOfCPNI0sKKa43ncc+ZuTO6NwMACuUNisO2jn8rPO+Hp6PJhzTQeopi DycDiaU4tkuw8eD1ybtwEHME+szX8G9cnE1fTK4kfIhiYqC/BB4RF+VXFuAAq//OXfu0vhly KA00nY3SsvjzOI5GJ5dxqBi5h5KHmyu1t/2Xn+YEqTgKQ5cDPkp2yqbhb3wHSNKm/xl1z7BE m7ZoyxFtr/gaFvmI8zFUugs7mKMLTwAyHP8q8Q7Gd+EZDyvLxMTO+XS6HrWVZzORDgu+8wMd q8i6Vyj5pZ+oi7c44bCEB9bPMR/WWPU/4WGTEqzx3pdVHIviOZaZlBRvC6m8IGGD60Iqw4aQ 1pckqAir4AqrsmB1AarCqsAdYVWvWVCTjkxPRlLbFO1tyWg2Cao6ANsykqUPdSF6d2UUdQzd k1HUOfF9cWrsNARsNCV7oyW6+UCqtPCwSu9Ijw+lUmtZqS3k5iOp1MbQjiRvc/LH0lVj0VWH r2p+6B+fRsH07PjtJBoHscnYNbrxHN4P4kBGUJnfKA2b41dCF2sLpco2eU5wNbo44DzySmjr UM2xsmb4gar+f3SR3IyjYBD6+zpvuXOgpwqgXDUjSykXW5p5SlOujlRP6cpNzSiSQgzM0Egj JunhlkEYYpmMQcMiDIFtykN0BzFMX0EM0zOIYXqWa6GRYwwaecIQWI6bf3U5DqPRIHgvA7H4 2C9RhjDCj4rT03Xm0/xnZW46fwAAAP//AwB5zvfdpgQAAA==</item> <item item-id="65">iVBORw0KGgoAAAANSUhEUgAAAT4AAAEaCAYAAACIBTsQAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABUCSURBVHhe7Z2LdepIEESJi4CIh2hI hmD0JDA8oQ/qQkwxn+s9Prtrl6Se29Pl1o85dHxBAAIQaIzAobHxMlwIQAACHcbHJIAABJoj gPE1l3IGDAEIYHzMAQhAoDkCGF9zKWfAEIAAxsccgAAEmiOA8TWXcgYMAQhgfMwBCECgOQIY X3MpZ8AQgADGxxyAAASaI4DxNZdyBgwBCJRlfNdzdzycugt5gwAEILCDQFHGdzkdugPGtyPd bAoBCAwEyjG+y6k7HI90fMxbCEBgN4FCjO/anY/9KS6nursTzg4gAIFCOr7rue/0zteuWzG+ w2E4BeYbBsyB0ueAy5QL6Pgu3el47nrbe2t8LmA5HGeY3K19tTbm1sZ7u+5mnNfZV9BwQ+P0 uI37puNryQicEyQXrq2NubXxYnwvldZ3eyunsE8zNP+lyMEIKIocspA2BnKcmG/a3X9573R8 N6AUxZfnVYa7I8dpk5L9qe7L8DE+jC9tPWSzd4wvbSrKMr4VFi1OkrTTgr1DwE/AWccYnz+/ HBECEFgggPGJ08IJTAwNOQQgECTgrGM6vmBSkEEAAmkJYHwiXycwMTTkEIBAkICzjun4gklB BgEIpCWA8Yl8ncDE0JBDAAJBAs46puMLJgUZBCCQlgDGJ/J1AhNDQw4BCAQJOOuYji+YFGQQ gEBaAhifyNcJTAwNOQQgECTgrGM6vmBSkEEAAmkJYHwiXycwMTTkEIBAkICzjun4gklBBgEI pCWA8Yl8ncDE0JBDAAJBAs46puMLJgUZBCCQlgDGJ/J1AhNDQw4BCAQJOOuYji+YFGQQgEBa AhifyNcJTAwNOQQgECTgrGM6vmBSkEEAAmkJYHwiXycwMTTkEIBAkICzjun4gklBBgEIpCWA 8Yl8ncDE0JBDAAJBAs46puMLJgUZBCCQlgDGJ/J1AhNDQw4BCAQJOOuYji+YFGQQgEBaAhif yNcJTAwNOQQgECTgrGM6vmBSkEEAAmkJYHwiXycwMTTkEIBAkICzjun4gklBBgEIpCWA8Yl8 ncDE0JBDAAJBAs46puMLJgUZBCCQlgDGJ/J1AhNDQw4BCAQJOOuYji+YFGQQgEBaAhifyNcJ TAwNOQQgECTgrGM6vmBSkEEAAmkJYHwiXycwMTTkEIBAkICzjun4gklBBgEIiAQOvb0I3xif zLcK/xZHjRwCOwkIpqQY2FMrhofxZQxMDA15rQRSm4Zj/5nlBuMTE+IEJoaG/FcEUhvHr8ZV 8XGddVzFOaITWMXz7nVoqY0j9f6bSVQ9A3XWcRXG99H1h9SFV/r+66knRlIIAYxPTJQTmBga cghAIEjAWcdVdHxOYMEcIoMABEQCzjrG+MTkIIcABNIQwPimXC+n/jLe4e/72J2v0+vwVfh3 mtnEXiFQCAGMb5yo67k7HkZmdzPBU3cZaZzACplDhAmB4gg467jAVunSncZG2KfXCay42UTA ECiEgLOOizO+6/nYHY7nbny26wRWyBwiTAgUR8BZx+UY3+2Ud7jOt3yN7/81wMe1wHKGVtwM JWAI7CCwVKuPn+3YrbRpee7ANT4pwYghUAoBOr63meIaXykTmTghoBDA+DA+Zb6ghUAVBDC+ cRqnp7bDtT5ublQx0RkEBMYEML7JfLjdyX0+wPz6DN8gdQJjqkIAAmkIOOu4vJsbC8ydwNKk nL1CAALOOsb4mG8QgEAWBDA+MQ1OYGJoyCEAgSABZx3T8QWTggwCEEhLAOMT+TqBiaEhhwAE ggScdUzHF0wKMghAIC0BjE/k6wQmhoYcAhAIEnDWMR1fMCnIIACBtAQwPpGvE5gYGnIIQCBI wFnHlo5vePPiOP28+AeM4RW00/jzlIOURjInMD06toAABCIEnHVsML7h01RGr5ndPlfv9bWz y+nQ7fE+J7BIAtFAAAI6AWcdJze+Wbe3YHzd8EEEkw8eULA5gSlxoYUABOIEnHUcNL6ha/v7 ZOPTuTsfox3atdeOPzF5tJ+XT1Kef8ZeHBcfUqCwQguBXAlkZnyDeR3+X6P7W+pxdmq61MlF f9avoBE303nanMBynTTEBYHSCTjreLvjm5nXgkk9172dfGTUwsfEd0tm2GdsuM63egNkI6NO YKVPLuKHQK4EnHW82/gGw7otAHSZ37RYvHaH8eU674gLAj8lUJTxPUlFT2sxvp9OLg4OgVwJ 5GV8f9ffnqehX7nGN10ikmt8uU5G4oKAi0BmxjcMe3Q39njqTkt3dRc7uSVDu/9sGOT/GyTc 1XVNLo4DgVwJZGh8Y1Qr3dnKKezbtzYeu+U5vlznInFBwEagKuO7d4vzBYLGNHlzwza3OBAE siVQmfF1/RMsG+/q7nhrY8iiE1i2s4bAIFA4AWcdbz/OUgBMJ7ACcBAiBIok4KxjjK/IKULQ EKiPAMYn5tQJTAwNOQQgECTgrGM6vmBSkEEAAmkJYHwiXycwMTTkEIBAkICzjun4gklBBgEI pCWA8Yl8ncDE0JBDAAJBAs46puMLJgUZBCCQlkAexte/S9s/Gez//oCtE9gH4bEJBCAQIOCs Yzq+QEKQQAAC6QlgfCJjJzAxNOQQgECQgLOO6fiCSUEGAQikJYDxiXydwMTQkEMAAkECzjqm 4wsmBRkEIJCWAMYn8nUCE0NDDgEIBAk465iOL5gUZBCAQFoCGJ/I1wlMDA05BCAQJOCsY0vH t/kJzP9XHQoiepU5gX0UIBtBAAKbBJx1bDC+yZobC4sSsebG5pxAAIHqCVRlfLNub2k1NlZZ q35SM0AIbBHI0PhG6+qezrd1cWNnp8NSlOPFw0f7OUx/Pl1kfAvT/987gcWjQgkBCCgEnHUc ONW9r6N7PF/vYxi6s/Fi4LcO7r5A+MvPB+1SdxdeeDyOzAksHhVKCEBAIeCs423jmxnVeEHx oYMbdWo37ej/byY5WVN3ZeHx4Trf01wVWr3WCUwMDTkEIBAk4KzjfcY3GNvknPflRsXStTuM LzgNkEGgLQLlGN8sL0sd4Bc6vnen03R8bVUHo62WQF7G121c43umYaJ7e41veiNjfPo8zev9 hsizsbydPr9u7wRW7axjYBD4MQFnHW+f6t5gjO7GHk/daXZX9/77+TW6JUO7/+z1RsikUxwn YHa6PN+nE9iP5waHh0C1BJx1HDS+MeuJ8fydhq493vL2rY3HbqXn+CYdIKe61RYCA2uLQDnG t2F697RN3txYyKXy5sZgpIfjuT8B///1eJRm+u+2pg2jhUAZBNbqtRjju5nQ6Bm+xWf5+lxs vqs7MbK19N2PN7lZQsdXxmwnSghsEMjc+H6Tv7vpLb/d4QT2m9FzVAjUT8BZxx9c4/MnYK3T e0TiBOYfPUeEQBsEnHWcv/FN3wZZmANOYG1MQUYJAT8BZx1nb3zDjY+t64hOYP7pwBEh0AYB Zx1nb3yRlDuBReJBAwEI6AScdYzx6flhCwhAIAEBjE+E6gQmhoYcAhAIEnDWMR1fMCnIIACB tASyML7+ueT+psJ8oKl//glaJ7BP4mMbCEBgm4Czjun4tvOBAgIQMBDA+ETITmBiaMghAIEg AWcd0/EFk4IMAhBISwDjE/k6gYmhIYcABIIEnHVMxxdMCjIIQCAtAYxP5OsEJoaGHAIQCBJw 1jEdXzApyCAAgbQEMD6RrxOYGBpyCEAgSMBZx5aOb/MTmNcW7MgQWDAkZBCAgEigMuObrLmx sKC4subGEksnMDGXyCEAgSABZx0n7/hm3d6C8XXSKmtzik5gwRwigwAERALOOg4a32hd3dP5 ti5u7Ox0WIpyvE7GaD8v62e8WVc3AM8JLBAOEghA4AMCzjoOGN99Hd3nYuFDd9Z/UsHT+P7+ //4pyZMV0Ja6u6Wf9YtFxs2Uju+DOcUmEMieQF7GNzOqkUlNfndbFGjcCt5MMWCGfUqG63xP cxVT5AQmhoYcAhAIEnDW8XbH9874pgOaapeu3S12fBhfcG4gg0C1BIo1vlnHFz7Vxfiqnc0M DAJBAnkZ39/1t9VrfMOgbgY3XOObLPi9anzThcG5xhecG8ggUC2BzIxv4Dy6G3s8dafVu7rT u7NLhnb/2csNktv+p2YYz68TWDwqlBCAgELAWcfb1/hmkb/vzqYPI799a+Oxb57jU+YHWghU SaAc45sZ1lLnNnlzYyFlvLlR5TxmUBCQCJRjfLfLe/0jLLfrewvX+P6Gvfmu7vHcX0n8/MsJ 7PMo2RICEHhHwFnHH5zq5pc8J7D8Rk9EEKiDgLOOMb465gyjgEDxBDA+MYVOYGJoyCEAgSAB Zx3T8QWTggwCEEhLAOMT+TqBiaEhhwAEggScdUzHF0wKMghAIC0BjE/k6wQmhoYcAhAIEnDW MR1fMCnIIACBtASyML7+ceTd/7zDtLT3T7E6gX0aI9tBAALvCTjrmI6P2QgBCGRBAOMT0+AE JoaGHAIQCBJw1jEdXzApyCAAgbQEMD6RrxOYGBpyCEAgSMBZx3R8waQggwAE0hLA+ES+TmBi aMghAIEgAWcd0/EFk4IMAhBISwDjE/k6gYmhIYcABIIEnHVMxxdMCjIIQGCdwNbrDu/YDdsO XxifOMOcwMTQkEOgeAJbpvYwrr0DddYxHd/ebLE9BAogsGVeOQwB41vLwtIC5eYWOYcJQgx+ AnuMY2vbyO+3ThW39uEnph8R41tk9ljU/NQvP/765QSmp5MtHAT2FP7Wtt86lXNwyPkY/UKM /XW8eYSPnznruIhT3ccSlsfTqTseML4Uk3ur+Pd2HKn3n4JJa/t8Z0xrhqX8fIsnxjchdL1c 7uvurp3q7v4Arff+v1W0kd9jHFvTnt+PCSiG8i3D+nUGML4PrvEN0Kbfv04kx6+XQGpjqpfc /bGVtW/XuIs41X3C4OaGa14kP05q40i9/+SAGjwAHd8HHV9u8yR14ZW+/9zyRTy/J4Dxyca3 frfoVwbx+2lEBBAoiwDGJxtfWWfsZU1HooWAhwDGh/F5ZhpHgUBGBDA+MRlOYGJoyCEAgSAB Zx1XcY7oBBbMITIIQEAk4KxjjE9MDnIIQCANAYxP5OoEJoaGHAIQCBJw1jEdXzApyCAAgbQE MD6RrxOYGBpyCEAgSMBZx3R8waQggwAE0hLA+ES+TmBiaMghAIEgAWcd0/EFk4IMAhBISwDj E/k6gYmhIYcABIIEnHVMxxdMCjIIQCAtAYxP5OsEJoaGHAIQCBJw1jEdXzApyCAAgbQEMD6R rxOYGBpyCEAgSMBZx3R8waQggwAE0hLA+ES+TmBiaMghAIEgAWcd0/EFk4IMAhBISwDjE/k6 gYmhIYcABIIEnHVMxxdMCjIIQCAtAYxP5OsEJoaGHAIQCBJw1jEdXzApyCAAgbQEMD6RrxOY GBpyCEAgSMBZx3R8waQggwAE0hLA+ES+TmBiaMghAIEgAWcd0/EFk4IMAhBISwDjE/k6gYmh IYcABIIEnHVMxxdMCjIIQCAtAYxP5OsEJoaGHAIQCBJw1jEdXzApyCAAgbQEMD6RrxOYGBpy CEAgSMBZx3R8waQggwAE0hLA+ES+TmBiaMghAIEgAWcd0/EFk4IMAhBISwDjE/k6gYmhIYcA BIIEnHVMxxdMCjIIQCAtAYxP5OsEJoaGHAIQCBJw1jEdXzApyCAAgbQEMD6RrxOYGBpyCEAg SMBZx3R8waQggwAE0hLA+ES+TmBiaMghAIEgAWcd0/EFk4IMAhBISwDjE/k6gYmhIYcABIIE nHVMxxdMCjIIQCAtAYxP5OsEJoaGHAIQCBJw1jEdXzApOcmcEySXcbc25tbGO8wz55gxvlwq W4jDOUGEsJJKWxtza+PF+BbL59qdj4fbX4TD4dRdJprWJklr43UXRVIHD+6cHAdBfSgrouO7 nHrDO93tbvzfjzG3NklaGy/G92F1F7aZc14XYHyX7nQ4dufrXxav5+446fqcwHKYS62NF+PL Ydalj8E5r/M3vpnRTYzQfFE0ffq3j+CcINvReBStjbm18br/uFVjfPfrf3zDgDlQ8hzw/Bnt 7yC7DvTxcQId38f7ZkMIQKBJAhhfk2ln0BBom0D+xtc/vLJ1c6PtFDJ6CEBAJVCA8b0+wrL0 OIs6aPQQgEDbBIowvt76+q5v/QHmtlPI6CEAAZVAIcYXGdb7tzsie8hHo4zljfZ2Y2h0l/N4 7h6PQ+Yz1rVIFAZ/+1h4xjPfcX5pfK3keDLOv/cZPk5vNca39XbHx4R+sKEylrfay+n5xssP hrHrkAqD+4EeZwXzVxp3BZJo46+Nr4kc33P7NLthzOOXGj7IUSXGV9MNEGUs77VDcR2fr7x8 MDt+tonCoOuu5+PtGc7j6TR7q+dnQ3h74O+Nr4kcD0b3crZy75b3dH11GF9Nz/opY3mrHSbH 6FW/PB1gOSqFQb+H6+VyP4Uv5VT3a+NrJ8evE2XSAX4wtzG+D6Al3UQpirfae1dxfH6qTUEm qDAYJ6NS43sOcYVLUzm+/X3rO/yd16sxvqQu9sHOlaJ/p739bmx2gxGWcf1r3rnN389eJNua 8TWY4/tljf3zGOP7wJuSbvIt45sFGTSPpIML7lxh0HTHN+VZd47vpvedM5c6jK+qtzuUC987 tEEP+o1MGdcowlI6vk/n6+b4CjI+kcG3Or3HbKnE+Op6u0N51GFVe7vlPzolGIpm53URpwkq DNavgTkj1o71lfG1kuPZKb3GekldjfHV9XbH+psq88cX1rWPxzzWPrJ///RJuQeFwV8cmx1R ynjVfX9nfC3k+PZHYuEj53icRZ1z6CEAgaYJVNTxNZ1HBg8BCAgEMD4BFlIIQKAOAhhfHXlk FBCAgEAA4xNgIYUABOoggPHVkUdGAQEICAQwPgEWUghAoA4CGF8deWQUEICAQADjE2AhhQAE 6iCA8dWRR0YBAQgIBDA+ARZSCECgDgIYXx15ZBQQgIBAAOMTYCGFAATqIIDx1ZHH+kdR1Cev 1J+O0keI8ZWewVbix/haybRlnBifBTMH2Udg/Nl13/no8X3xsHXpBDC+0jPYSvx0fK1k2jJO jM+CmYPsJoDx7UbIDv4TwPiYDWUQwPjKyFMhUWJ8hSSq+TAxvuanwDcBYHzfpMm+0hFIsNJW umDZc+4EML7cM0R8fwSu3fl4X21rz+pa4ITAQADjYx5AAALNEcD4mks5A4YABDA+5gAEINAc AYyvuZQzYAhA4B8JKD//LjXuHgAAAABJRU5ErkJggg==</item> <item item-id="66" content-encoding="gzip">H4sIAAAAAAAA/4xTy27TUBCdazu24+ZNG9o4xG1DSQKhpC4L6CqgCrHgIYUPqNzEtKkISV0X dekv4BfY8A2skBBij/gGfiTMI4/CimuN53HPmbkzvs4AgEJ5g+KwrePbDs974clw/D4FtB6i pAfjvsQMjj0m2Kj/+vgs7MccgR7zNXybF6eTp+MrCb9AsTDQWwBfokyw6q8swDfE/84tfVpf DTmUBprORmlR/EkcR8PjyzhUjDxAycP1ZRxs/+WnOIERR2HocsBHyU7YNP2N7wBJyvI/oe6a tmgrLdp2RKdXfA2LfMD5mCq1B7uwB/vwCCDD8S8Y15TqUF4mJOmcT6fqUjt5NhPprOA7P9Cx i6y7hZJf+om6eIMTDUp4XGMA51wBVv2PeMykBGu8+3mVyvAEy0xLijeFVl7SsLl1oZVhQ2jr CxpUhFdwhVdZ8vYBqsKrwC3hVZc8qElflicDqW2K9rZkMJvzAWzLQBY+1IXo3ZaB1DG0IwOp c+I74tTYaQjYbEr2Rkt0865UaeFnVHpHurwnlVqLSm0hN+9LpTaGdiV5m5M/kK4a8646fFHz A//oJAomp0dvx9EoiC3GrtF95/BhEAcygsrsPmnYHP8jdK22UFy2yXOCq+HFM84j/0iVbr+a YWVN8QFV/f/oPLkVR0E/9A913nJnQE8VQLlqSpZSLrY09ZSmXB2pntKVa0wpYiAGpmikEJN0 ccskDLEsxqBhE4bAacpDdAcxTF9BDNMziGF6lmuhkWMMGnnCEFiOm391OQqjYT94JwOx+djP UQYwxIeK04/rzKb5z8pcd/4AAAD//wMAjGfGbaQEAAA=</item> <item item-id="67">iVBORw0KGgoAAAANSUhEUgAAAU8AAAESCAYAAAB93VfbAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABhuSURBVHhe7Z0LlqsqEEUzLgeU8WQ0 mUwGY/uJaf8CQhVQ+65117uvW4HaRZ0cROOj5Q8EIAABCHgTeHifwQkQgAAEINAinkwCCEAA AgEEEM8AaJwCAQhAAPFkDkAAAhAIIIB4BkDjFAhAAAKIJ3MAAhCAQAABxDMAGqdAAAIQQDyZ AxCAAAQCCCCeAdA4BQIQgADiyRyAAAQgEEAA8QyAxikQgAAE6hDPz6ttHs/2fZbP4ZhH+5j+ Nq/2Q/4hAAEIBBKoQDzf7XMQxAvxfD/bx/NUXgMRchoEIGCRQNHi+Xk1g5Nsns9L5/l+dse9 8JoWJzkxQyAFgbLF8/0el96Xy/ZP+2qaFu1MMYVoEwI2CRQtnr+UXYpnv7Rv2qaZrnluhfR3 LXR+XZR//18jhgUsCpkDUlJuQzwHcZ0LZi+my2ukvXha+mMt3j631mK2Fq90jutQjEvnuZbF 0YnOl/HWJpq1eKULK4cPYnKcNguI55evtYlmLV7EM62Q5NK65Ly2IZ79bUrzZXrvVFf3eUpC z2GiWYsX8cxh1qUfg+S8rlY817cmTbc1jRtD23tCJaGnn0LXPViLF/G8nhM1HCE5r+sQzwhZ l4QeYbg0AQEI7BCQrGPE0+g1TyoPAjUSQDwVsioJXSE8uoSACQKSdYzzxHmaKCqCtEEA8VTI syR0hfDoEgImCEjWMc4T52miqAjSBgHEUyHPktAVwqNLCJggIFnHOE+cp4miIkgbBBBPhTxL QlcIjy4hYIKAZB3jPHGeJoqKIG0QQDwV8iwJXSE8uoSACQKSdYzzxHmaKCqCtEEA8VTIsyR0 hfDoEgImCEjWMc4T52miqAjSBgHEUyHPktAVwqNLCJggIFnHOE+cp4miIkgbBBBPhTxLQlcI jy4hYIKAZB3jPHGeJoqKIG0QQDwV8iwJXSE8uoSACQKSdYzzxHmaKCqCtEEA8VTIsyR0hfDo EgImCEjWMc4T52miqAjSBgHEUyHPktAVwqNLCJggIFnHOE+cp4miIkgbBBBPhTxLQlcIjy4h YIKAZB3jPHGeJoqKIG0QQDwV8iwJXSE8uoSACQKSdYzzxHmaKCqCtEEA8VTIsyR0hfDoEgIm CEjWMc4T52miqAjSBgHEUyHPktAVwqNLCJggIFnHOE+cp4miIkgbBBBPhTxLQlcIjy4hYIKA ZB3jPHGeJoqKIG0QQDwV8iwJXSE8uoSACQKSdYzzxHmaKCqCtEEA8VTIsyR0hfDoEgImCEjW Mc4T52miqAjSBgHEUyHPktAVwqNLCJggIFnHOE+cp4miIkgbBBBPhTxLQlcIjy4hYIKAZB3j PHGeJoqKIG0QQDwV8iwJXSE8uoSACQKSdYzzxHmaKCqCtEEA8VTIsyR0hfDoEgImCEjWMc4T 52miqAjSBgHEUyHPktAVwqNLCJggIFnHOE+cp4miIsi6CTzaUcoQT4U8S0JXCI8uIVAtgUk4 EU+lFCOeSuDpFgIRCUjWMct2lu0Rpy5NQUCXAOKpwF8SukJ4dAkBEwQk6xjnifM0UVQEaYMA 4qmQZ0noCuHRJQRMEJCsY5wnztNEURFkuQT63fT5jvpZJIinQp4loSuER5cQKJKAq2hOwUnW Mc4T51lkUTHo+gn4CmdPBPFUmBeS0BXCo0sIFEPAZ5m+DkqyjnGeOM9iioqB1k8gxG3OqSCe CnNEErpCeHQJgawJ3HGbiKdyahFP5QTQvVkCd91mQeL5bp+Ppn194uT682ra5qixz6ttnu84 HV20gniKYKYTCCwIxBTOAjaMYopn39az/cljL5bz/+9ovJ+PNqp+7vQhDZ36gYB1ArGW6YVt GMUTz43r3BO297N9NK82jtHtx96lbSXQiKf1UiZ+SQKx3Wbey/ZewAbR6f4+n6tl+yRI/e9e 7atxdYqf7tj58n/WzuKyQByx7oW6H3/TjX/tbhFPydKhLwikIyB5+c3hVqVR1Kal8yhCk+j1 AtgJ0nTN8iuym2X2nqN0/VnnOd0F+Tgpn/d7dK8s29PNXFqGgDKBvMRzs2yeOcGNEO0I3c+1 zq5t9oCHn69+diBs/XXPw00l32SdiOfPXU8uu/svfyAAgfwI7NXq9DOp0V6qw+A0F9cc3cWz F73Bpb63G0GDeK6vZSqLpxR0+oEABNIQqMt5Hi2VnZft4467hPNMk05ahYBNAik3hiai68Vh XuLZ3Ugke81zfQ9pnGuev+nLNU+blUzUYgRS3Ya0DmDvqlpm4jltsoy77c3rdbzb3nQ78Xu7 7buCtSeK48/6fv43neLstiOeYrVDR4YJSLjNM7z5iafzZDhwiQdu7/TpoqnPqPd5Th8Eq42q 7seS0J1xciAECiKQWjhd9m8l6/hyw8gvd37i2V3NXD5htNNZ9CeMDgKShO7HlKMhkDcBiWW6 i3D2lCTrWFk8+9suL55tj/Z00fkElISedykwOgi4E0jtNt1HMh4pWceRxdM31HyOl4SeT9SM BALhBHITTsQzPJe3zkQ8b+HjZGMEUgqn6xJ9D7lkHeM8vxmQhG6szgi3IgIS1zfv4JKsY8QT 8bwzVznXEIGUbjMWRsQzFkmPdiShewyLQyGQBYFUwnlnic6yPYupIbtLl0nIDAMC1RGQNEEs 21m2V1dABGSXAOKpkHtJ6Arh0SUEVAn0y/PYS/R8l+1TtNL/VUox4qkEnm4hEJGAZB2zbGfZ HnHq0lTJBGJuCkm4zHydZ8mzIGDskp9YAcPjFAgkIxD73k0t4ewBSdYxzhPnmawoaTh/AjHd Zg7RIp4KWZCErhAeXUJgQSC228wFr2Qd4zxxnrnMe8YhRCC229Rcpq+RIZ5Ck2jejSR0hfDo EgIDgZqFk2ueSpMc8VQCT7ciBGpdpuM8RabPeSeIZwZJYAhJCMR0mzkt0fdgSdZxwDXPuC9k u/wm+f83wSWZWFOjktCTBkLjEJiu4w+L9IASPyCYu3AWsGyPKZ6rdxjtvCiOdxihBRDwJxBT NP171ztD0gQFfCzFE8+N69x7y2bst2cefqoGoNCbI/QMgeQESnCaCwjdgPMTz17AvgN7PLt3 sz+a9vWZht2L6Tjox/M1vHfdbaXdv2nzoJ1N+/Pj0swZSehpIqBVCMQjUIxwzr97owtfso4d 7NYojpMg9m7x8RO38VXDzaSkX5H9iefgJL/COmtjSPGey9x9v/vB64zjzZOhJUnokYdOcxCw RWAlmPPgJev4Wjw3y+bZsn0jdnOhWy3vh2NnDnIQ2mf35vbZn13x7N7u/pwJdKJpIgk9UQg0 C4FgAtk7zRPBzFY8B6e5eHe6o3j24rhavy82f/auZSKewZOfE20RiHnfZrbC6SiY2YpnZ/vC xHMzl/ecKM7TVskTbQwCVe+kBwhmvuLZLayDr3n+olpdGz295rneHOKaZ4yCo43yCcRwm1m6 zJuCmbF4dkObbfw0r9fxbnvT7cRvdttH8f1tKq0EdbmyH4Wyv/74//N4t0adlQ/XPMsXl5oj qM5tRhTMvMXTeVauXOJXdI9uXTp9umjqk/s8nelzYH0EYrjNbKgkEsz6xPNCOMeAV08Y7WSZ J4yymfoMRJjAXbeZxRJdQDCrE8/xftD/ezynf69d6OWz7Yud/nSzl2V7Ora07E+geOGcRNM/ 9FtnSNbx9X2et0Ip52RJ6OVQYaTSBIpepgu7zL3cSNYx4vnNgCR06YKkvzII3HGbakv0DASz kmV7GZNU+xOrXEqMPEcCKsKptCy/4i9pgnCeOM+r+cjvMyOgIpY9g8xcprYJQjwRz8ykgeGc ERAXzgIEk2W7cs1I2n3lUOkeAtcEMl2WXw1cso5xnjjPq/nI7yMRyH4nvTCXybI90sS824zk J9bdsXJ+eQTu7KQnj7ZQl5mteB7xTP3z5BPloAPEU4t8/f2GCmfS65sVuMxsxbP+Kb2MEPG0 lvH08Wa5TK/IZSKe6eewUw+IpxMmDnIkEOo2HZv3O6xSl4l4+k2DZEcjnsnQmms4RDiTLNEr d5mIZyalhXhmkoiCh5HFMt2Qy0Q8MykWxDOTRBQ6jBC3GTVUgy4T8Yw6g8IbQzzD2Vk+M8Rt RluiG3eZiGcmlYd4ZpKIgoah5jZxmYezRLKOecLomwZJ6AXpA0PNhQAu0ykTknUcIJ5xX8h2 +U3yRy9AckLpfpAkdPdRcWTpBG4v0XGZXlNAso6VxXP1DqPhvUfLd7nzDiOvucPBtRBANIMy aUY8N65zRzxb3p4ZNIk4qVACiOatxOUnnr2ATS9ze3bvZn807eszxTi+l334/fM1vHfdbaXd v6b4oJ1N+/PjbrHN4kJzmghoNTYB3530W0t0RDNK+jITz1EcJ0Ec34o5idn4nvZmUtKvyP7E cy66q+V4u+cy937Wrt4FHwXxthFJ6IlCoNmIBER20tkEipixsSnJOr6+5rlZNs82jDZiNxO6 1e8G0Z1b0kFYl9c3dwW1A9Jf9/wJdHTc8tAThUCzEQj4us2gLnGZQdhcTspKPAfRW7w73VE8 15GuhXbvWuau80Q8XSYNx9wj4CuaQUt0RPNekhzOzko8txs2YeK5cZ7Oy3bE02HOcMgNAr5L dG/hRDRvZMfv1LzEs71xzbOPexDJfkNptelzKJ7rzSGuefpNH452JeDqNr3FchoAoumaimjH ZSaecwHsrz2+jnfbm24n/nC3fX1z/Z4ojj/rAfxfHo17U/5RliShR5spNBRMwNVtBgknohmc l7snStbx9YaRVzTnLnF9w/vp00VTv9zn6ZUBDj4n4Oo2vTmyc+6NLMUJdYjn2S79j9rqCaMd mjxhlGKK2WzTxW16O01cZlaTqQ7xHFb7/T2h3xvo19c8v8gvn21f7PSny5Mk9HRR0PIdAl7C iWjeQZ3sXMk6jrxsT8bkoOH/a6Sbe0bXZ/w2rr5ivhJlSejSlOgvIgFEMyLM+E1J1nHR4tkv 6acb7+f/3k1Jfxnh5LlRSejxpwwtJieAaCZHHKMDyTouWDxXu/AHN9hPCbl6SkkSeoxJQhv3 CDgt0dkEugdZ4WzJOi5XPDdieXZL0/pLSLZZlYSuMKdMdBltJx2XWex8kaxjI+I5CmvzvYd0 c8N+N1X+N7amDa7xv/wpg4DLTvplJIjmJaJcDjiqV8maLVcdfJzncOz66++WX0oiCT2XCVjD OFzc5uVnIKJZw1QYYpCsYxviuZka2yW+JPRqZqpiIC6ieTk8RPMSUWkHSNZxueI5PHM/c5MX G0bLSYB4llYU8/HeXqIjmiWn/3TsWYjn9Ml+579nUe6165tR51uV1t8d2gst93n64lY/3sVt ni7REU31HKYeQBbimTrIOO3PXgGy8+K4+RcoL592Wn0Js/C1kjix22rFxW0eCieiaWayIJ4K qZaErhBesV26uM3D4BDNYvMeOnDJOi74mmco3v3zJKHHHXm9rV25TZxmvbkPjUyyjhHPb5Yk oYdODM77J7ArnDhN81NEso4RT8Sz/IJDNMvPYaQIEM9IIH2akYTuMy6OHQngNJkJLgQk6xjn ifN0mZOqxxwKp+qo6DxHAoinQlYkoSuEl2WXQTvpLNGzzGUug5KsY5wnzlNl3h/tpLODrpKO ajpFPBVSKQldIbysury6BWkxWJxmVrnLfTCSdYzzxHmK1YPXMh3RFMtLTR0hngrZlISuEJ56 l85uE9FUz1XJA5CsY5wnzjNprZy5zc31zcsv3kw6VBqvgADiqZBESegK4al0idtUwW66U8k6 xnniPJMUm5NwskRPwt5yo4inQvYloSuEJ9bl0TJ9sSJHNMXyYa0jyTrGeeI8o9XXpdtENKOx pqF9AoinwsyQhK4Qnm6XiKYuf0O9S9YxzhPnGb20fkt0RDM6Wxo8J4B4KswQSegK4cl3yW1H 8szpkVcPa8wBxDMSddxmJJA0E0JAso5ZtrNsd56jezvpLNGd8XGgAAHEUwDyugtJ6Arh3e7y cCcdp3mbLQ3EIyBZxzhPnOfpzD18vBLRjFfxtBSNAOIZDaV7Q5LQ3Ueld+ThEh3R1EsKPV8S kKxjnCfOczEhT58QYgf9sng5QJcA4qnAXxK6QniXXa5Fk8cpL5FxQIYEJOsY52ncebKDnqEC MKRgAohnMLrwEyWhh48y7pnsoMflSWv6BCTrGOdp3Hn24XOvpn7RM4I4BBDPOBy9WpGE7jWw xAcvhDNxXzQPgdQEJOsY52ndeXLrUep6pn1BAoinIOypK0noCuFtu0Q0s0gDg4hLQLKOcZ4V O8/d248QzbjVSmtZEUA8FdIhCT11eKePVKbunPYhoEhAso5xnpU5z+n2I25yV6xgulYjgHgq oJeEniK8udvk1qMUhGmzBAKSdYzzrMB5bm5257pmCXXOGBMQQDwTQL1qUhL61Vhcf7+5tolo uqLjuEoJSNYxzrNA57leog/LdL7xqFI5ICwfAoinD61Ix0pCDx3y7i46bjMUJ+dVSECyjnGe hTjPzS46ollh6RPSXQKI512CAedLQg8Y3nDKb3nOEj0UIedVTkCyjnGehTjPf/WsfPYTHgRu EEA8b8ALPVUSuvcYWaJ7I+MEmwQk6xjnmbHzZBfdpgAQdTgBxDOcXfCZktD3Bnn6DqHgqDgR ArYISNYxzjMD57l4Qogluq1qJ9qoBBDPqDjdGpOEPh/R4hYkdtHdksVREDggIFnHOE8l5/lb pneCiWaiBRCIQwDxjMPRqxVZ6N/PLFTTK0ccDIErArJ1fDUaI7+Xgj4s07muaWRWEaY0Aak6 7uNi2S60bJ+W6ZhN6XKiP0sEEE+FbKeE/nObCnHRJQQsEUhZx2uOOM+EznO+KWRpAhMrBLQI IJ4K5GNDH4STjyaFTNKlZQKx6/iMJeUd23myGWS5doldmQDiqZCAKNCxmgqZo0sI/BOIUseO QHGeMZwnN7o7TjcOg0BaAohnWr67rftCZzNIIUl0CYELAr51fAcozjPAeXLr0Z0px7kQSEcA 8UzH9rBlF+g1uU2XeBXSkLRLazFbi7efPJIx4zwdnGdNojmpk+QkS6qIHo1bi9lavIinRzH4 HfppX01/72X/99m+VycfTbRal+gUlt/sKfFocpw2a2ac5/vZyeBzlMz5v4+c2O470tPmQrR1 CksUt0pn5DgtdiPi+W6fj6Z9fb4wP6+2WbnP+USr1W3OpxKFlbawcmidHKfNgg3x3IjlSky/ F5prd5uIp43pznXttKL54yvTjXIvLuI5PIvOXxgwB0qfA1JqY+Oj2EE8pYDTDwQgUAcBxLOO PBIFBCAgTMCGeHY3Jl1tGAlzpzsIQKBwAkbEc3l70t6tSoXnkeFDAALCBMyIZyefnfs8vkle mDvdQQAChRMwJJ4umTp/CsmlhXyO8Ynl5Nhhs222A9282ul22XxiPRqJD4NvGzv3AOcbZ6T4 rOR4Fef3mZng9CKeM3RXTyEFU1Y40SeW02Pfz9+TWQph3OrSh8HY0bQ62T6+e2sgiU6OFp+J HI+5/QlmH/P8wZmAHCGeP2g1bSr5xHJ+bF+gze/RrIAZpnaKD4O2/bya4T7f5vncPH2mFsJp x/HiM5HjXiwXq6bRtd9xn4jnNEFruhfUJ5bTY/sJNnusNU8V2R+VD4Ouhc/7PV6OKGXZHi0+ OzleTpSVEw2Y24gn4rlyWnNHM/67+X0bVUFC6ikuv9qpVDyP4zOY4+Ezsltp3Lx+j3ginsfi OQjJXDD7QivjeuDWQW6/z2DXbFgTT4M5Hi/R3J/HiCfieeI81/LiKEABS6Dop+A8HS9n2Mrx KJxxVlCIJxtGHk9fFSSeoU+VleI8k8VXb45jOc5JMhDP2Qev/60f0f1StAZ9Yjk8dridY7a8 6YXl5nWiaAE6NOTDoLhrnt2Ao8RnJcebyxMOE+jiEMRzAaimp5COY9nemnJ87HQLz9HrS+5P wZQt+DD4jqMY59mPN058FnI8fNDsfOUktyqlrD/ahgAEILBDAOfJtIAABCAQQADxDIDGKRCA AAQQT+YABCAAgQACiGcANE6BAAQggHgyByAAAQgEEEA8A6BxCgQgAAHEkzkAAQhAIIAA4hkA jVMgAAEIIJ7MAQhAAAIBBBDPAGicAgEIQADxZA5AAAIQCCCAeAZA4xQIQAACiCdzwA6Bor4x yU5aSo0U8Sw1c4zbnwDi6c+MMw4JIJ5MDiME5t99Gec1DEbAEeYBAcSTqWGHAM7TTq4FIkU8 BSDTRSYEEM9MElHHMBDPOvJIFC4EEE8XShzjSADxdATFYRUQQDwrSGI+ISCe+eSCkaQmkOAN iqmHTPv5EkA8880NI4tO4NO+mvEtinfemhh9WDRYJAHEs8i0MWgIQECbAOKpnQH6hwAEiiSA eBaZNgYNAQhoE0A8tTNA/xCAQJEE/gA8xq0TyMdvfQAAAABJRU5ErkJggg==</item> <item item-id="68" content-encoding="gzip">H4sIAAAAAAAA/+zdCZwU1aHv8QKCS/I0iSQ+jChBRQniKIsbOCibqDCEXZBFREE2QRbFLYJ6 jTdGb0zU+MbcvMgn75P3kpjk6jWLuYq47wFBYNgEZl9YBKe7R2+Seaf69NTUVFVXV+9Vp371 +dqeru6uU6e758+pU11VnbTjNa3Lcdd/SdO0o7P1267iv6901hKl/9H51vOr++qPjPjqt7UP xJz3O/2ik/6oPl//fx/xnz7nffFfJ627Pkt75uXjNOtU/g3tkW4AoBox/f5k7ZnTdetOTxSy sc5Vtss/LTtZLNy9Xeuyf7n7u3qamyw/lNRca8923dyXkN2a+/nLnN+/lCzXLYvPNNsvW9af +C/jhZ+dmsi3jadoO/oft3P0CXsnf23H1V+uGPYlF3uGau52l+bTUDd7SlPIpurUC3dft3y+ b1kuPNuXZye/H0oWX6eU36gsv8zFXHg+G57lh5L912nTxdpL/fSUM+dbzcSTDi06ec+U4xq/ e6yLI1dpAOBbIuLWn6dvNJnzTYZbRcMBAAguGXEu+bZxz95Ne/Z+9Mm+zW0+crJJf9p+aeOe fRZ/+8SZfPQDV+/vtnpv914AEN5p8+4u3Xu79r69a89bOz55c8ceL/n23o5d7t6tcPZWxU4X b5q8sd3qtW06c7mjHRsAhMyr23Yakj5t6471bbzkW1tHa+/GTz6REncN8Zkf7knNSxrLEH5n t9Xbuyz2AAibN3d9Ynhj1x7JfPf1nbrn33y7tbXVS75tq6oRtlcnbJWq2m0z+biy2mKLyebK KouPKqt1+6t0+t2qTfurhY3SvqqEjnM+3A8ghKqF9/dVtdtbrWu7+26b//Scb7sbGoRPGhoF Wd5V3yhZysLOug4qkttWV+9oa43u45o6wxabj6oBhNHm6npxuyl+KwvCRpO/VeleeOtdj/lW 2dhk2NckHWij3zWOfdjb2LSnjTFzd0OTIAu7TPN3NDRJxhyZe9vrGkV5W70+Xyae8YStdQ2C LGypbRREWRYM8pnmu+b55kctDznOscxMVimAItpUo/uoTifLf3zrPY/5VnXAqrLp4P4DByTx Ekt574GDovCJKf1E2bgV0be78YAgyjLuxO2OOFHeGY87I/fk7TaxjSzUJ8ry9uP6po/jc2TB clcWLHfdH5KZluxVAPxpS33T5rp2MuX+5Dnfag4cTMYceuaskwVTN69DvomCYHTzRNaJiNtl yj2RdTvjBXlr7um1J159UyLx4gUzY6a9YJRdHnJZMgCfEBtxMtwsZMr98e33PeZb/aFD9QcO tjlU28aedeLlsqx1nER/z7g1T0a/TmaduV9ndO3SzTeXvDKmbanyjXAD/E9GnK5OZ863X/31 Ja/5dvhwO5F1wuHDdYcP1xxKMHLDPKf64CFJTzbT7b6Dh4w+ntySFbeyR2dOvN2m/pu4FXY0 HpRdO1mXXDejYLkrC5ZHHR8yP8flIQC+ss1kq4lMvN+ufzUn+WaONYOMtUTn7eAhI9/2meaL WJPM3TmZb1p8o9VINuMJIuJkvllSzsySfpay/SF7vlleCMCH3PPtD6++mdd8M1jyzei/Gflm 9N/MvTi5rbrTJB5uB3e07Yzw8g64ZBTxBQSae74997rX3795zzejTL4ByCv3fPN+/EIG42/Z 5Jtk3j7NON8AqCq9fDs983zzsn0qpZVv2fffAKjKPd+sx2eRbwCCwz3frMdnJc+3pk8PmzWa 486kzkZmXZWNOevMzIkn7W46ZLazzQ4A4dOxq5OwraOPGw8I1uOzXPpvB5rqmhprGuql6vr6 6oY29fVVbfab7DPZG7fHZLdUp9tVq9tZ125HbZ2wvbbekTz6Pn4APoAQ2VJdZ7bZrKpW2FhV u6k6wXp8VvJ821tdtXPvJzt275K279yxbUeF8LFQUbGlYvsW/VYvbKqosNho2F7xYUcfmLy3 bfv7W7e9t7VCt033zlbd21u3W7z18fY3AYTVG1u2vf7xdrM3tla89vF24fWtFW9s3yFZj89K nm+bt25594P333j7LenVN9545fXX1r/2qu7VDWYvGTa8Ivx1wwbDi3F/eWXDn1y9sN7wivCf 69c/v/4VR//xMoDQ+UNHv39pfYK4+8qrz732hvTHt9596W+bvOTbk//nV4/+7H8//NTT0r8+ +dT3H//pg48/CQA+IUJJRNPD/+tp6Uc//4UILi/5BgABRb4BUJVLvpUMGAgAwUW+AVAV+QZA VQ75NuBY8g2AAvR8G6qtO418A6Aa8g2Aqsg3AKoi3wCoinwDoCryLRC01tairwMQOORbIJBv QAYyzrdWTUNKWX46ItYM9rsA3NF/8y1ziFkCjXwDvCDffIt8A7JEvvmWEWLmDVI2TgHvyDc/ M4+8WeYXfd0A/yPfgoh8A7xwyDfOj+RX7D8F0sL53wCoinwDoCryDYCqyLdAYMAN6eI7U0K+ BQTfVaSL70xJFvlW/GM7gyD7r6h9h2lwv7em1iCpHH5n2OFO/823kmVaaL+rSMn+PQn5t4V8 8y3yDely/J6E+QtDvvmWluSY0zB/XeGO74wF+eZnxreU7yo84jtjRr4FSMjHipGBkI/CkW+B E9rvKjIQ8n8TyTcAqrLnW0V/zo8EQAUy39aRbwCUQ74BUBX5BkBV5BsCx7I30PGH+o5HKoV8 Z2IIkW8InAzyjVgLJ/INgZNZvhV9tVF45BsCJ+P+Gx25sCHfEDgu+ZYs6zgYM5zINwSOe//N fIC5JfHovIUN+YbAIaPgEfmGoEh22m3iDsmQbwBURb4BUJU93zg/EgA1iHzbM1R75jTyDYBq yDcAqiLfAKhKgXyz/4zTcb7jMzP7wafHGu0/Q81tdem2N7PqktVoP9xJsQbm+xP08gbmsIEu 1eXpE8xfA70Ler5Z3rqU8+0z031706rRcck5qc7yBPvTMmugl1e5ty5PDfTS5Jw3MN+foPv3 J+cNTPZOFqaBufoE06JMvnksO76fmX2a2dSefXWWmfanZdZAL6/K05+/96UVsoH5/gQd/7HI XwM9tiUfDczVJ5iWsOWb5nQSiYLlm73qjKuzzCxWvhWsgfblK9bAgn2C7hHk/08wLSHMN48f Sq5qTFZpltVZZvon3/LUwLTe8Nw2ULFPMGW++fwTTEvQ863E9GVw/Ltz6aole2Fua7Q8lNsG mmfan5ZZA91b4bh8x7c35w20Lz/fDSzAJ2heZr4/wdwGaTY1ZvkJeqdGvnn/rmodu8eZvbEe azTuZlmj+6vs1Xl8YWbVFb5Gl+UXrIF5+gRTNiev1fmhxoz/Bj1SIN8AwBH5BkBVTvnG+UMA qEDmW8fzh5BvAFRAvgFQFfkGQFXK5Ftr3nYxh7A6Ghj06sLQQC/IN6rzQ400MOg1km8qvb1q V0cDg15dGBroBfmWmYef+KnC1dHAoFcXhgZ6Qb5RnR9qpIFBr5H+mw/f3ow/lAK/MCjrSQN9 Ul2AGphX5Fshq1N+PWmgT6oLUAPzinwrZHXKrycN9El1hX8h4295pfa3LijrSQN9Ul2AGphX 5Fshq1N+PWmgT6oLUAPzSqV8Y2JiKuJU9BBwzLfdQ7Vn8p9v9vOgWuY73vVtdj38xE8Vrq7w NdLAoNfo2/G3wuSbOehcAtBe9qKQnyMTE5PjVPQ0K3C+JTslu5cnZ5ZvRX8/AfhHIftvyXpl lk1XY6b3JZNvAOz8sH1q3ix1eZqLwueb8gf30cBAVxeGBnrhq3wzyhmPvxX9/QTgH8Xaf+r4 UEmm10Mk3wDYFb7/lg/kGwA78i0zyg9u0MBAVxeGBnpBvgFQFfkGQFXkGwBVBTTfin6EiPKD GzQw0NWFoYFeBDTfLOi/AbDTz49USr4BUBD5BkBV5FtmlB/coIGBri4MDfRCmXzTWjXkUNE/ UyB7yuQb26e5VfSAJauRPfINyit6wJK9xUK+ZUb5wQ0aWJjqlIlWxt/yh/4bkC6fB2ZOkG8A VEW+AVBVwfIt39c/lVd7lM83DwXkqWzcLUBdlttC1qvq+2mp1D/vQw7LBf7OMP4mOV5ExjHl vC+T/hsAu7zmW8rrn1rKAbp+FgD/S+TbacW5/in5BiB/Cplvkhr9N5/8ekqZGmlg0Gv09fhb kfKtxHbBU65/CiBXCpZvya5/6mX/aUrkGwC7wvff8oF8A2BHvmVG+cENGhjo6sLQQC/INwCq It8AqCqg+ZbsKK2irxgA/whovlkw/hb0Gmlg0Gtk/C1/6L8BsCPfAKiKfAOgKvItM8oPbtDA QFcXhgZ6IfJtd6m2jvP3AlAO+QZAVeQbAFWRb5lRfnCDBga6ujA00AvyDYCqyDcAqipMvtlP bhn06wNSpkzZUvahgvXfUp6SN1jXB1R+cIMGBrq6MDTQi7zmW1qXjAnW9WUA+F+Bx98cU8vx 0gzkG4As+STf7I+SbwCyVODxN/d8KwnO9QGVH9yggYGuLgwN9KKQ+ZYstcwPcX1AALnilG/H 8fs3AAog3wCoinzLjPKDGzQw0NWFoYFekG8AVEW+AVBVQPMt2VGoRV8xAP4R0HyzYPwt6DXS wKDXyPhb/tB/A2BHvgFQFfkGQFXkW2aUH9yggYGuLgwN9IJ8A6Aq8g2Aqsg3AKoi3zKj/OAG DQx0dWFooBci3/YM1dadRr4BUA35BkBVhck3rn9KmbLyZR8qWP8t5ZVluP6pf6qjgUGvLgwN 9CKv+Zbykn+WR7l+FoAcKvD4myW1yDcA+UO+AVBVgcffkm2imq8PWML4W7Gro4FBry4MDfSi kPnmmFpe9p+mRP8NgB2/fwOgKvINgKrIt8woP7hBAwNdXRga6AX5BkBV+vlDhnL+EAAKCmi+ JTsKtegrBsA/AppvFoy/Bb1GGhj0Gn07/ka+AVAS+QZAVeQbAFWRb5lRfnCDBga6ujA00Avy DYCqyDcAqiLfAKiKfMuM8oMbNDDQ1YWhgV6QbwBURb4BUFWB843rn1KmrGrZh4qVb44Pcf1T n1RHA4NeXRga6EU2+Wa+Kr3LtRUsc9yX5uWZdmyfArDLLN8yuASM8cJkSyPfAORWxv23zCIu Wb7ZHyXfAGQpy/E37ynncuE/e6wx/lbc6mhg0KsLQwO9yMn+hbRSLtnLzcnG9U8BZC/7fMss kXKLfANgl/3+06I3oYR8A+Akm/0LRV95A+NvQa+RBga9RpXG39x/9lZ49N8A2OVw/0Ihgy7Z UVpFfz8B+EdOfh9S9F4c+QbALsv9CyWZ/mIttxh/C3qNNDDoNao0/iaZ862kqHsc6L8BsCPf AKgqh8dnkW8AfIXz92ZG+cENGhjo6sLQQC8C+vsQC/pvAOyyH38rsQ3EFR75BsCOfAOgqrye n7xgGH8Leo00MOg1Kjz+VnT03wDYcX1AypQp56TsQ8W9PqB7ynlfLP03AHZ5/X1vyusDWq68 EKDryyg/uEEDA11dGBroRYGPz1Im3wD4X4F/H0K+ASiYXOVbyjhK9hsSy+mVgnJ9QAD+l8Pf v3mpLtkYnfv+05QYfwt6jTQw6DWqN/5mEarf9wLwP/INgKrINwCq4vjTzCg/uEEDA11dGBro BcefAlBVQPMt2VGoRV8xAP7B9ikAVWV//GnRm1DC+Fvwa6SBQa9RvfE3n4RbCf03AE5ycv6Q 4m6clpBvAJzk6vwhjL8B8BuuX58Z5Qc3aGCgqwtDA70g3wCoKq/n7y0Y8g2AXUB/32tBvgGw I98yo/zgBg0MdHVhaKAX5BsAVRUs3+zn6U02n+ufUqYcxLIPFSbfvFypgeufAsitvOab5aox xkz3J7s/zRHjb0GvkQYGvUZ/duQK3H8rcQoux4O8fJ5vAPzPJ/nm5WkuyDcAdoXcv1CSZGDN HmuMvwHIXrH2nyZ7iOuf+qE6Ghj06sLQQC/4/RsAVdnzrYJ8A6AE8g2Aqsi3zCg/uEEDA11d GBroBfkGQFUBzbdkR6EWfcUA+EdA882CfANgR75lRvnBDRoY6OrC0EAvyDcAqiLfAKiKfAOg KvItM8oPbtDAQFcXhgZ6Qb4BUBX5BkBVDucPGXAs+QZAAXq+lWrPkG9pUn5wgwYGurowNNAL 8g2AqgqWb1z/lDJltcs+VJh8S3ZhU/eU8758+m8A7Aqcb+7lAF0/S/nBDRoY6OrC0EAvyDcA qiLfAKiqkPsXSpwG1izzuf4pgFwp1v7TZPO5/qkfqqOBQa8uDA30gt+/AVAV+QZAVeQbAFWR b5lRfnCDBga6ujA00At7vgXi/EjJjtIq+ooB8I+A5psF+QbAjnwDoCryLTPKD27QwEBXF4YG ekG+AVAV+QZAVeQbAFWRb5lRfnCDBga6ujA00AvyDYCqyDcAqiLfAKiKfMuM8oMbNDDQ1YWh gV4ULN+4PiBlymqXfagw+eblwn9cHxBAbhX3+jKW53B9GQA5JPJtT7HzzdgmDVC+KT+4QQMD XV0YGuiFT/LNy9Nc0H8DYFeYfCtxvfCfPdYYfwOQvULmW7LUMj8UlOsDAvC/guVbXjH+FvQa aWDQawzz+Fu+0X8DYEe+AVAV+QZAVeRbZpQf3KCBga4uDA30IqD5luwo1KKvGAD/CGi+WZBv AOzINwCqIt8yo/zgBg0MdHVhaKAXDvnG+S0BKMHh/EjkGwAlkG8AVEW+ZUb5wQ0aGOjqwtBA L8g3AKoi3wCoSqF801AARf+sAe8UyjfG3wpRY9EDNleZHNpPUI3qPCpwvml5u/5pq6b5gePH Tbm45aIHrCVs/fCehPb6p4XJN8tdx5Tzvlj/jL8VPWB9q+gfjU/4pPsaEj7JtxKuf6q6ogds aLM3zPlJvmVG+cGNUDVQyVAt2Fvq56Aj34CiUCZI/cyebxX5yTfLCJt5fokp3Cx3PSLfgGTC nJyJfDst7/kmOeabfc9CWuFWQr4BxeD/uCtwvuXrfWb8LeA10sCg1+jPH4qQbwBURb4BUBX5 BkBV5FtmlB/coIGBri4MDfQioPmW7CDUoq8YAP8IaL5ZkG8A7Mg3AKoi3zKj/OAGDQx0dWFo oBfkGwBVkW8AVEW+AVCVU74dS76lpPzgBg0MdHVhaKAXIt/2lGrrTiffAKiGfAOgKvINgKrI t8woP7hBAwNdXRga6EWB8818nl6jkPL8vcmONjVPfrj+I2XKYS77ULHyzfGhjK9/CgB2/sw3 92cCgBd+yDfzxWLdnwkA3vkk3+yPkm8AslSwfHO58J891hh/A5A9n/TfzNd3JtwA5IQav38D ADvyDYCqnPIteOdHAgA7/fxIQ7V1AT//GwDYkW8AVEW+AVAV+QZAVeQbAFWRbwBURb4h0DjU BS7INwQa+QYX5BsCjXyDC/INUrKgSHlKBMfnmM/p5x5BLs9MtlhLwb4+9tcSg+FEvkHynm+O MZJBnjhGn5eMSnYqe/INFuQbJI/5liyRMss395kuy0yZq+QbSpzzjfOHhFGB881LdfZlOl5/ zfHl5BtKZL6Vas9wfqTQyzLfSlyjKbPqMhj6I99gRr5Bchnk97KdaC+771/IeIDO8nKXsTjH MkKFfINkTyfzfPveSe+5l7I69+c4Vu34HC/zESrkG6ScbNAl2zz0UmNem4NwIt8gufSRMlhI Tn4fkqvmILTIN0gpR8w8LiTdpeWkXpc1QZiRb8gtnwSLT1YDxUW+AVAV+QZAVeQbAFWRbwBU Rb4BUJVLvlU0HACA4CLfAKiKfAOgKvINgKrINwCqIt8AqKrA+Vb+/55tbW0teqsVwDsJpES+ BRTvJJAS+RZQvJNASuRbQPFOAikFIt8021T0963oMnsngVBJN9/KPU/OL0/zr1Km2YYNG8Tt 2rU6425IUu78wUuF7N9JIITSyrf56UyOEVee/K9yrS2vxJzW+LRWnzSTtXK+S7vKB2oe5fDN TJZFGa+YWNqZE39CvgGZ8Z5vIrLe2brdo2QRV55+/y1Zvrn338oHJrJRTM+/+Xa5pg0cOLC1 +oNDH5Sb5TDfXLIo2Yq5T+4LdH8nxdtW9K8WUHTp5psmkqJcS5TjdxxzT4abuLUspNzpr1L2 3JLdGmNuxvapl43TAuebx3Cr8JxvxgJF2XElHd9JSYSbVOE0dMkwJsLDnm87+h/nnm/zWxOZ 9qUe7wrZ51tKa825pgfd2pQvsceInsXl5ZaIy0m+eQ83xxV74YUXBpomGW4zfvNnGW7p5psp 2WTKJY1T8g3KS+TbaV7zzfv2abr55jj+lnJOMtYYKdccIy77fDOyKLMVE2+RzDRjEnfN4ZZB vpnLMt7WdpzIN4REWvmW7v6FXPXfMtAhRso1o2CJOO/5JnpZ5taJuxXph5tlxcRChg8fLt8Q S8R1yOY0t0/NjIij/4YQCkv/zZRyMuK855uRbJZ+l5j21delFW6WFZM5VtEx3OwRl12+aTLi NmzYYO68kW8IA+/5VmGKOMsfu+UP37wL1bKE8uL231rbN1S955t7Y7NZscLkWzzKHHpx5BuU l1a+VZi2Ul3+5M2T5eXl6e8/TXbrznk3pTno4puoKfNNdt6MFDJ2ARiNlRuq3tnzzTIZFeUw 3+K/iLZ24cg3KC/dfJPkn7x9zK01VZemvCj9N0uytbaKZPOYb5Ykt+Rbyva6r1jB8s1xIt+g vGzyzXHKON/yPv5mC7e08m2gbco+34z9C/ZwEw/lKt/4/RtCKyz9N1OypfX7kLzmm3y5JeLE Xcs/H+QbkJmQ9N/syZZuvplTznt7U65Yq+33veaeW2b55p5p5BvCIyf9t9aOfTmXF5YXsP9m 73HZJ+/7Fyz5VhHfkMxy/4LHKYN8M15rCTTzYsk3KC9X/TdjTgb5tjY/+09zdf6Q/P0+JH/5 Rv8NqMh1vom+jXt15QE8q4/L73vT7bxVeO5YpuxkBvGdBAos43xznFJWV16o8becczw+KwPe O5bunUyXdxKAZM+3nYOO99v5yVVCvgEFQ74FFO8kkBL5FlC8k0BK5FtA8U4CKZFvAcU7CaTk km/p/kyLiYmJyVdTgftvAFAw5BsAVZFvAFRFvgFQVVr5lo8DtP1z0Lcf1gFADtF/A6CqdPtv jnOM+Rn3f8wvcVlasnJayzfPNC8/2TokWyvLnKJ/lAAsnPLt2MzyLePwcXyte9qkW0WyNfde Y7LnkGyAb4l82zlE+3WvHOdbWuydQI91ea+RfANCKLf5ltkQfbJ8syzND/lmWbG01gFAgaWb bykzx3im93VI2X9zfEJatSRbc8vy3WPNfbUB+E0O+28VGe1fcM+xdDPHSy3mmfblW3qPFR1z z/FV6TYZQGFkmW/u873IuNeXcS1BWTKALOVw+zQzLv23HLKveQ6XXPQPEYCjtPItGf7GAfhQ TvINAHyIfAOgKvINgKrINwCqIt8AqIp8A6Aqa759S9s3JG6MtnGE1GnTyLhRnZMamXiOeLJ8 vlFAvrV9TMifTsizfH12Isp2l2ivDtB+8k1rvn1Qqj/BSLaKazRpd1knad94rapMqxyfsH9S e1kSjwJBt+9K5NMYrWqM80O7R2i7r4grTdg5tO3uFQlyjrjdMVhXcUn89kK9IG5FlDVeoufb D039t6Yx8U92slY7Tdc0TTswUzs0Rzt6vXZkXhepeUG7L4RFnSz+MU/7/KZOujka8ufvyLOi f8SKmxl/k2dqLdO1yHXaZ9O06LVabJpOFJqnaM0T2m5loc2nE7TDY/Vb+ehnY3WHR1s55tuh adrRGYnbI3O6CNEbElH2+aJjpL8vSfjvxV3s/rmos/CFTD/kjfh3BMiV/57ftfln89O9jPLf D9aIV4nXZrmQo+XzYzd0laEXm9X16JPpL+RAzac/mX9kXFeZdY1XWvOt0pRvkTmdRKx9Pq+z IJNNpNk/lh2rW5Hwz+XHGFpXdElYmiBTLksPdP+ykJNFAXAR+fn8Izs3vT61z58uP+HlkV// r1EnvTjqGy+OPOmlUd1evrLb+lFf2zDqhFdHffn1kcdtGHbMhsu7vH55p/VDtBfH9TxYsVG8 NvuFiGAUCSl6dM3l8zdtO9Rn5B9POPdXX7/g2ZP6//YbA3590gW/7jbg2W4Dfve1/r8/4YLn vlzy/HHnvXBM3+e69Hmu0zkvaGf9vudlz278uFFEnOzR2ftvRr6JcJP5JvsJlmT75yqbJBGX rfgk8i1nC1RL0f8ioBLRido7u8/e73bbO+XUyut67Z/Ze9+ss/fPPKty9pmVs3tVzj695vpT a2afXDurW82ME2unHV87+UuV4zptGaX9ZVxP8Xeak4XIfBML6XP1h90u+eDUoR/0Grmx9+iN Z4/eeNaVG88cvanXlR+dPmrzqaO2njx8a7crtp1YuvX4S7d96cKtnS74SOv7Ws/LfisW4iXf ZOdNhJvY3vximZ5vMsQc8i15uGX5hhv5VvSPHlCe+Fs7OP7EwzN6fHpjn08XnH9k8cAjSwYd XdL/6C39jy4rOXpr389u7f3Zsp7Nt5zSvKhb8/wTPptz7KfXda4s014crBn5luVC5LCnKJx4 cUWPEbv6jN1z/sRPBk7ZO+jaff2n7Os/dV/J1P19p1T2nlTdc3z1KWNrul1Vc8KImmOHVne+ ZJ92/kfamb8RrzWG42S+yf2nm3uatk+v1yNO5NvatWu1VFMi32SgLemkM71pcgPTYJnv/kwj 39xfnvIhxyckW4Gif83gH0UfEyskPRmmfqN5bu/mxf2bl18aWVUaXVUauW1I5PZLI6svjt4x IHZHv9jq3rHbe8ZWnNKy9OuxBV9pntO1dlLn9aWdZNcr+4XI3Q2i8I3L9vQes6//5P2Xzqgq nV1den31kNnVl86uuXh2zYBZtf1m1PW+tr7n5IZTxjd8/ZqGr4ys71pa3Xngtk5n/0HmmzH+ 9lb/RL5tO1Pfv1A3Rt9nKvNNdOFEvonna/GccbyVAWh01Yz9p/+I70K1DADKADHmy7Jkf6bH l1sWJe/al2l5rWWm5YWAVPQduIWkJ8P07s0LSpqXD46sHt7qNLXc07flrrNaVp/WsvKbLUtO bL7x+LqpXV+5vLO565VyIR0W2HEhcl+qKHS/4pOSCfsHz6waPrf6hVebxZwR82qHzastvan2 krl1A+bU953ZcNb0RjF/3V+iJ17VcPwVNV0v2t75nP8Qc+TO0/pher69069DvonQa5qg55uM OD2+4quR7FZ/Qjzi9H0Q8Z0Rie/GHC2RGG37gtuDqGPZ5aGcl708GQgnPZpmnd689KLI7cMj d1/tGEex753XclfvltWnt6z8n7Fbvi42MOumf2XDsGOMv3T7QmL3XhO996romlHRtcOia4bE 1lxoLER/tONCPpum/+RDFE4ftfeiaZUi3K6+ucaofdSC2mE31w25qe7CufXnzW405osu3Akj a78yZPsx5z4n803kmMg3sUFq3j4V+VYtOnVT9N+8yYgz+m/JNlTXxidREMkm+nuSCEYjMeSu Csscy6PJHsp52cuTg+Q6DcgVPV7EduXK0sjdV0XXjnPOt3vOa7nz7Njqb8dWnhJbdnLzwm71 s772ykj9LyvZQqL3jYuuHRNdMzq6Znh0zWWxNRcZC9EX2HEhR6ZoR+L5JjZOS2dXXXVzzbgl teNvqTVWYPiCusvm1V00t96YIzZRTx5b32109dcur/jyeXq+iWST4ba7RPtz3/Z8212q51vN lMTPemW+Gf20DRs2iKiz3LbFm2Ykm9FMmRhHZ2iSeY7lUeOuOYJcXpJx2cuTAYPoToSH+BNo nn9u5I6R0TXjovdPjD4wKXr/hNh9ZdE1ovc1InpvafSeC2N3nRdbfXZsVa/Y8lNjS7s3L+pe d/3JG0Z/tTXe9bIvRM+35AvR863jQo7Ef7srCud+d//IG6vHLa6duKxu0rK6CUvbI650Xp0s HGn+R6/J9aeOr+9eVtf9muqTh2//av/nZb7tvyJxfJaRb+98Wz+uQc+3Ce2HLZj7b/ZwE7dG /03+Elh+Kw5Na08MUTbuisl8Vz4qb1s7TuaZOSx7eTIQTno0LR4Q+d6Y6AOTY/8yNfbAFD3l 1pZFv3dV9J7h0bsui94xKHr7ebGVZ8eW94ou6xG9pUfzoh61N/R45aqTzH/a5oXE8y3pQvRH Oy6kaYI+PiYKAyZXjllYM/nWuqnL66bcWi9SrmxJe8TJ6ewpdb0m1vUYV9ujrLbH2KoeV247 aaA+/lYZP8604kJ9zE3km/x9iDnfGtu6cN77bwdmdUmYqb/WSIym+EFeFubAMZ5j7r9Znpbx fMtzUr7QcW19S3xMQK7o0bT04uh9E2IPXhv7/nRxG71vYvTesujdo6N3DousHhJZNSi6ol90 2dnRW86ILj49uqjnZ4t61c7ttf7qk8VrHReiJ1jyheiPdlyICLeaeL5dPL1qwi11166on76y /trldROX1pYtqh1tGovrd23N2ZNqzhhfc3pZTc+yml7jKntdve3kC/8gHhLbofJA1E3f0Z49 O5FvL31L23yRfrxq5Xj9yNP66VrDzDT6b+Zwq5/enhjJ3kljSjbHMjPl/AyWaZmZbG2BMNCj acVl0Yemxx6eFfvBLJFO0fsmRe8dF7lrdOSOYZFVgyMrBkWW9YssOSe66Mzowm9HFpxxdGHv 2rm91485pUO+mRYSz7ekCxGPWhYiT2sgCpfNqpq+qn7W6vpZt9dPXyE2UWvHLa5p7TidM6H6 zO9Wf3ts1RllVb2/u7/3NVtPuVjPN3l8vUgzkW+i//a9Ezvk2+5r9AitmaLHVLr9NxGJ4lXm fBPEoiTL3YwZC/c4P+MFAuGhp82dV8YemdPy6NzYD+fEHpoRu39y9J5x0TtGR1YNiywf3Lx0 UGTxeZGFfSI3nxWZf0bk5t5HF3yn+sbvvDzmVPFax4WIuy4L0Z/ccSH66UTG6Au5cl7NnLvq 595TL25nrKqfvLTOiLXBM6uM8llllWeMqexdVvmd8fu+M/bjUy/9vZFvItzENqnov9nzrWqy vqoy31q99d8aZnWWySbIc4+YI87YHszVB+GSbzlcIBAeMppafrKg5fFFLT+aF/vB7NgD10bv HR+985rIbSMiy0v1X30sPj+y8NzIzX0i88+JLOh7dGG/6rl9Xx7bw5JvxkJaU02WhejnpGrL twX3NSx6oHHevQ2zV7fvLR1xQ3XprOqLprVH3DnjKvuOr+w3YV/fsi09Lv2dzDfZebPk2/sX a5uH6Pm2f5K+qnXXabLbJvtpG5wmo/8mnizJcDMaa55y+EHkcGn5WCAUMSFExJ9A9N6ylqeW tpTfqqfTI3Nj358RWzs5endZdPXoyIorIssGN98yqHnxBc0LRQesX2TheUcXltTc2O+lsafp fz5OC0mdbx0XYuRb2aLapQ813fpwk4g448llC2pG31R9xfXVg2dUDZpaacw/b2JlycS9/cq2 nDZYzzcRbsI7/fR8+9VZiXz7bXf9WIbNl+vnsdRPXzk5kW/yj7+tC+cwyYBzzDcAQdEa39fZ 8os7W9bd01K+vOXHN+tbqQ/GR+HuLousvjKycliziLillzQvGdS8ZEDz4v5HFl5QPbct35wW kjLfLAsx8m3isro7f3zgnscPLH+46bUPomKOPgp3S52IuCtvqh4Wj7hLpuu9uGf/+ln/KZUX TNrbb5xDvhn9N8d8k7sYzL/mTXYUKvkGBJoeTd+f9vlvfvD57x5t+eUaPeIeXxT7t5tiD8/W 9zXcPzm6dkLknjGRe66J3DEyctvlzSsGH10yqOqGvv91VfcO+ZbFQox8m7aq/gc/P/TousNr njy4PN6Lu+l7DbPvqJ++sm7ysroJt9SOWVBzzYKakTdWXz6nevBM0Z3b13fs5u4XPeuSb68O 0M9Mvn20tnOStvc6rVrk1WytYbbWeEMnQ9MNXWShYVZn/Tb+BN3MDvlGxBWA+DcIebV/UoiI ZIg9Nu/zF5764s9Pi4BqeeaulqdXtDx5S8tPFsR+NC/2b3Njj94Qe3hW9KHp0QcmRu8dG1k9 4ujSi6uu7/Pild8Ur83JQkTPSubbvDUNT/3606efPSJS7q4fH1jxw6ZbHmxccF/DvHvr597T cMPdDbNW109fVT9xWe3YRTUjbqy+ePr+Ptds/uZA/fwh71+sD7XZt09lvm0a1Vnkmzni9Byb m7htmtdJSEScnGkKN3O+Ff3LCWSp6JlT4Hxr+ffbP//DY58//0TL/32w5d9va3lqaUzk0mPz 9Vx65PrYD2dH/3V69MGp0fvHR+65WvS+ji4eUDXzzDdnXvDfB2pyshA938brC7n90QOP/fLw E7/69MGnD932aNPSh0S4Nc5f0yDC7fo762ffWT/9tvqpK+rGL629ekGN6MINmLLvzCs3XTDm T5831ohwE5uiIt9ePKM930RB5Nt7w7RNYztZ8k3kmJFsZnK+jLg6ia1U+m8KKXrmFFL94/P/ UbO75emVsUfmRP9lSvTesshdV+mHyYsNyZVDdcuHCM1LBuoWXdB8U5/Ds3ruu3nQ0V2bxWtz spDKeL7VPjZ/9/4vVv6wac7dDVOW15Utqr1qfs3wG6rF1ujQ63VDZlYJA6dWChdMquxTtq/n qN2DJm3aXHH4k4fmi3ATRJqZ803ctefb3iT5dvBmzWBkXfvmqm1bFYDP1Uzv2vjkfNGJSrlT wDKJV4nXZruQJ+ZXTu0q/k0REbd3YlcRcV80pb0QEW4fDO4q+28izf7cVx9/e+abiXzbfY32 4RhNhptjvhmZdnRhO0vWHZqjSQdmIr8agIAztvjMm35y20R2COUWa+LKpNdoUoXJ9tG6LSN0 my/XR9gkkXKyzybzrbqpSXTeRL7JWDOHm0y2I0s6S5GlXZIRj5qvHmhcUhAAUjpwo07uxGyY 1VmwD3ZZRg/aA9AUd6Ig4k5E3G+768lm5JvoHIqem2UjVGbaF8u6/HPVsf9YqcnrLMiyvASD nCkLiZnxKzW0X5QBCKDE+faRH/Idlukho0P6YpF+cQTZQYrM6aSfa/e6+BkpZyQufSXK5u1E eYHmximJ807IrRsRgCLi9HO+teWbsGmsHpvNNx8jMk3EVOtd3XT3f0v3g166R89pfezcdk/0 TzDPBICURJhI5rsPnpkgyjJzDGKm+a7MJYMMq7u6yYv9fTZNPxpLxpqRbzLiBBFxegfMCDdZ 3SPxKPvxYN2TpbqnLk9KPgH54/LmIyeK/hErz/6Gy2wxbpMRWWQhU/Gubn9fcszmy/VdDEam mfNN+nCMJoPO2J6VxKau2OaVvxtp/3Xc7MTBDnLnqVT006Mpr+hnRFSeccoI5IPly2z9hsfP dVkTv60bkzhIVr8A1gT9Mn+iUDVGP1+lUBW/qz80Rr/yggg3S5qJfOsSP8zq/wMAAP//AwCi WCFqEL4IAA==</item> <item item-id="69">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAErgSURBVHhe7Z0JvB1Fne9PQEjUDz41 mgfDJrKICEgARcGA7EsIsgVECJsSMbLI4oY6MuM4jgy8cWN8OG/ewGfex/dU1NFhnHEGWURQ ESds2SAhIbk392YhCGTDGef/qrpP3Vunb5/uqnO6T1ef8735VM453dXd1f/61f/b/+rq6obw hwWwABbAAligIgs09HHXrRuakBozfyuTTn00So0TF8XplMXj6fQV0jjrWWl8YEgaF46MfU66 ZK36vUb9VssuUJ/6u/406f3rpEHqQxtsUOdE6jsbnDcqDVJ/2WCC/9XtNsUvn6GWRWk4/pyp fHr0XaXou17WXD5zlTROUCzQSX/X66Ok1p+gmHDU46mc0fyZACEDnu0/vFEmX/sHmXqDyB/9 aZz2/KLIW24RmX6zSt8QOfyrcZpxa5yO+mZ+Mnn5HLdbP9jCpe7Jk98+QrNRP2iTc5joa9J0 pu1k/Ln9afx8u8+IBylJ80InzZDtr/jPCESN6Q+1wGgChDSAtpmzRjSAtrniBZl8/X9FO7BB tMeXRXTSMHrbV1qTBpNJyXX8nmgvbIJN0AAa6LUGtO82yRzb/DbgMAGH8ff2p16XXG4CFfvT sEN/Tr76D1FqvP8laRwxHhW1QKhx9MPSOH2l6mJ7SiZdti5KjQ8/N5Y0lLa9apNse/XvIzg1 rvuDbHutRMn81p/2OvNd59Xft79GrVfRldmOz9h+JGwQqgYmXfFfQuovG2it6To1Plx/2mnS vN/LNpe9LNtevlG2vewFmXTxJmlc9KK6xdL8PP/FaNnY8otVd55JF6yPv+v8s1U3nOnm08t1 Olt11R37hDRmLI0iookQUveBGh9Y3pr0/Z5L14xBScPIpAhKOSmClz4ZO6kT0ydHwgZoAA2g gUA08MH1sq1Ol6ggRN3b171iOkX399+/Ok6z1f0gkzRQTNLjA3TSYwVUmjRrqRo/oJMaR2CP KdAAOuw30tjxe60Qahx8f7yBhpCKhMaSAVITRDaMxqKkjyji2cmKnnSeKKJKktJQkc/46qAv UmIAij0Yhe+tg3OwB/aoWgMaLGnJgEbDJQUs43CxIGMPWDPA0bDRSd8HmvHIeNIA0rzR6Y23 j0dCYwtVl1w0Gs6AqA2ETHddssvOQCdarqMnM1LOjJAzJ22oyuf4FQa2wBZooK80sN15wzL3 1rUyvP4/uh78rPej92cikkL3/Q2173PUrRgNHnVLZrszl8vcr6yW4XW/777cX3pGtjtcQUjD Rw1KiFiz3z9LY587ExDa69vxylQINYdgK6iYSMiG0Nj9I7N+DDyKtNHQbSulhXR2eMf31nC3 TvawQ3O+j3dT1N0W5mqYz/HIwNEWc78+KkuH/yDXfWurXHzzFpn9Z5tl1h9vlpNu2CTHfGKT HPepTXLkdXE64po4HXLFxigdNG+j7PuhjbL7nOfl0A+vkMefflH0/kx0Usq+9ZgA1ZWmAfT7 Z9U9m7+8TtZ85mIZuWa2rJ43S4bnniRDlxwjQx88ToYuOjJKqy44IkorzzkkTmcdJCtm7StL j99dHj3rUHl+8eMyV4EoApCB0Jt/Kg3NnNd8zoqEVP9cBCEVNm1zfDISiiEURTUmumneI4oA pJa3rEtGPXZ/ooZQ3Rsl5acOB0kDjg53rOuG/GOg0B72E/9rq3zlhy/LN378snzx/26Vj6vf V31zq1z+tS3K2W+RS//HFrlIAerCv9wi5/3FZjnni5vl9D/dLCd/dpMc9fFNcvBHX5Q9L1gl B13wYBRRGTuXsu/m/Ry97/W3fEKe//uvyO++/Q3Z8K0vyrpbPi5rv3SVrP2Ty2XN5+fKms9e KqOfvkilC2X04+fJyLXnyOqrTpfhy0+WoYuPkhWzD5ZHT9hTfjLzIBle+/J4JLT/r6SRB6Ho JpLujou64ppRkAKLgY35NDevzA2slq63rO63Ol3dU1b3yGyQHPMgnStQ8Y6AbFBcpkDzzbte lm/98+/ly999WW64fatcqyKjK2/VINoql/1VDKJLbtkic25SIPrSZjnzC5vlVBUxHfvJTXLY VS/Kvhetkjee8NM4amjWh/5e+L41hGauiI6z5vOXye++80154c5vyYa//bKs/+oNKjK6VtZ+ 8UpZo0A0+seXRSBa85lLZPSTc2T0+vNk9dVnyvC8U1WkdKw8e95h8vgp+8p3D3ljXG7dHaeT htCbVEqNhHSopG8i6ZtMujC6oTVnPbjxxhul0WiMpeRve93Yd7rh3B04sMNWaKDvNKCd7/v/ fHMEn1u+/7J8/u+3yjW3bZV5X98qH1LguVBD58+3yNkq8jnjxs0yU0U/p6iku+l0FHT4tRvl 0CtelP0uWSU7nvRvsTNv6qSUfc/SMx3EEBq9/v0RfJ6/4xZ57tbPy7qbrpG1X5gnaz73IRn9 1IUycp2Kfq4+W1ZfeYaKfmaqdErcTaeioFUXHC4rzjlUHj91P7nznTvG5X6nYotOBkL6ntCE 7rg2ENLAaU6sEH3Gv9v/jQEKCPVdo2oZnonTpH7RQKYGtJc8UwHm03+3VT57RwygD39V3R/S XW9f3CJn/Ym6R/SZzXKCiniOVveFDr96o7zrKg2ejXKwStM/qu4NfeQF2f/SIdn11LsnQCi5 70zHnFiZum8LQiMqqln/1U/L+q9/NgLQ5kd+Hu1h5FoFnyvPUtCZJUMfOkHdFzpaVp1/uKw6 713R+pf+9U5ZOXu6LFf3hp44bX/5/uG7OkLoj+6OQyX1JGs0VFuHfFpgCiQaKvfdd1+U7O9m mf0ZAchETRkQSjNW2Q7OHLPs4+j99/JYvTgfjmE9GzFojtfMFcbn+LxpjrbQfkAPRND3gD7W jIAuvXmrnK+jnxu3RAA68ZOb5b3XagBtkkOvVNBR4DngIxtl/49sUp+b5ED1+Mv+Hxweh1Dz 2Gn79oFQ6r4tCOmBCOvUPaB1N30sioDsvxhAJyoAvTcC0EoV9dh/K888QJafeaA8MSsDQhO6 4zSEdKj03ubYb90VpxubmrhwPPKJoyA92ZwGT9qnXm8ioeghJ3viw+bIOFPYV+34BTGpF07b Pm6aUy2yDHnHwqkPsFMfNIgN8PlqP3DCpzdF9350F9xlf7VVLvzyFjn3C1vkdAWnUz6t7vuo brcZalTcO1UE9PaPbpK3KfDs++FN8pa5m2S/yzcpGKnuOBUJ7XLqzyZEQsl9+0Aodd8WhIYv OyG69xN1wan7P6OfvLBl90OXHCtDc2bIqve/sxVAp71FVp6+n6w4Y38Fof3k++/eJS73u9Rt Hs2Yt6qBb/qe0ITuuCSENG1bIBTNczoWCbUDkR0JbTtHPXmrUjR7dhNGSQDZztgAqSwHnQeG vPU+5SpyXz7HJS9wQwPhaMBASA/PvvSWuBvu/C/pe0Bb5LTPqijoU5vl6OtVFKQgdKiC0AEK QvsqCO2lIPRmBaG91edbL39R3vrBIdl5ZjqE7H3r47nsW+dL3Xc0+3V8T0hDaPSGi2VUj4LT n9efLyNXnd0CHH3vx/5bOWsvWTnzzbJy1t6y4vS3ypOnvlV+8O6dxyH0DgUiJwjpseI6atHg UADpNBIah5ACkZ4/SO2v1TmrId96bqGUlCS6ydNuuV6f9mfvO2t9EcdLO5YGa7tzZHn7+sc2 2KYfNKD9ynvU4AI94k2PfJujoiA9EEHfCzpNRUInqueFjlaDEA5XIDpUdcntr7rk3nLFJtlz 3mZ500c2y5tVJLS3ioT2vnS17DTzntiZN/1l2r71Mpd963yp+9aRkEr6b9Wc90Qj3qKRb5+Y E90LWn21uhf00dNSfe3QGW+RofftKatOfZOsmvVmefZ9e8uCU/aWHx62UyuETDSkH1htGZig wyMdLul3QURRUHPiOTWdjD0wwdwT8omE4mgoBlELhDLeKWTn098jZ97MP6ELr7nc3kbnMX9m u07Xpx3PZ18D8+6kNhcU/eBMOAeg2IkGtJ84TEU4ZyjonKsGImgA6c8z9YAEDSF1T+ho1SV3 hBqYcKgC0f7XbpZ9rlbwuXKz7PbRzbK7gtEe816SPRSEpp08EULJfevjuexb50vdd/PdQRGE 1BDrETXybfTac2VUj4S75lz1HNCZ8UOrHz6xBUTD5+4vw2ftI8Onv1mGZ+2m0u6y8rQ9ZOHJ e8gP3zEthpCasLRx+BJpmGhId8dN/ct4XfRfEkLasTdnQ+04ErpYTcqnUkPNuBol9cKzVgjF L0Cz/8wLwZL5Ygi15k3m6eVv32P13YvOeHkdL/BDA7ka0H7iYDXQYObnNsnZ6tmfc/5MzZqg 7gfpUW2z1JDskz63WY5R3XLvuWGzHKq65g74hILQdVtkj2u2yC4KRrsoGO2iZk7Y5ZLV8vqT 7o0ddtPuafuOIOSwb50vdd/Nl9jp9SvPPliGPzJTRj52tgLQOTL6sdlqSLaC0BWzWny2+TEy ex8ZOXMPWX3aLrJ61i4qItpFFp6wi/zDIa+Py32E6mE7Qj36oyG058J46p4WCO2uJ5lTpNKR kL4XZCCkpuPuOBK6ZLOajXVzPN23ngJcpRbnbeCkPpPL0/LZy+xIJwKUwz7yjuGz3ifvGISt 82VZ88IEm4xfpIVqC/3+F1JHNtB+4m1zN0bP/Zz2efUQqgLEWQpGZ2hQ/MkWOUktO1alGSoq eoeC0QE3bJF9PqkgdP0W2VmBaMerVFIQmnbRiPy3E+9rQiiuj7R962Uu+9b5Uvc9WwUNZ/wu 2vez73tb9NzPatX9puEzorriVl91RguARi6bMfb7DxtfkNGz95DR03eWkVk7ytApO8qiY6bJ j6f/t7jcR6vbO+9Vo641iA5UrNEQeuPX4nXRfxpCemUEIRV66yhIvw9iDEJx1ryHVFtGx+n3 UTRBZGBkO2/zPgr9mVyeli8vTy/X+x7LPtd+/W4uNPgcv+jCFoNtC+0n9r70JZlx3UY56TMK RCr6yfo74LMKQp/eKm9SINpJRUTTrt4iU9Vw7dfOGZVXHXdv7LCtC/q0fZ+muvpmquOcqOB2 jErvUemdn98i9r71flL3rSGkkv5bMXNvWXXhDNX1dpKKfk5TD6We3lL0kcuPkZHL1H2jS1tH x605fScZPXWaDJ04VRYf9Vr50QGvGoeQBpGOiFIhpMOjCEIKQDokawJIO8zkw6pxSeLRcsnP GELxzArbXh6/GEmnSR+KU+Pil8dORH83yXbqdp4oymnmy8vTy/W+x7LPle/j9Y4tsEU/a0D7 id3mvBQNv9YTlp6sQJQJoc9tkb1v2Cq7fXKr/PfrtsrrrtwiO6hI6tXnjcj2RzcjIcsfpu37 lD9WEZaKrI5X8DlawegI9fkODSFr37oMqfvWEe/sjVERlx+/m6xUw6+HLj1GgejklmKvvvx4 Gfnw0TLyoSMUhN4hay88oGX9mlNeJ6uP20EWHfFq+dHbto9JceLzMV8MiKJXOdiRkIHQTP3y ohhCGkA6grHvCWUByI6Utr1KZJt5/xUl/ZY+nRqXqbf3qaRhlPZnBgDY6/UyA7Cs7TrZpw0S cwyzLPnbzmvKlDwHu/x2eezy8338ggRb1MMWjYv/U10IkjqxgfYRO573khyoXuh5+DUKRGoA Qtbffp/dKnspCO2qIPRGBaHXXLFVXvnBjeo1CyOyzVH3xs68WRe++04eN3XfF6iLovO2Rlmf ee+O8uwZB0ZT8GgQbbz/rmj56suOVeloWf2hGTJy6btk9OKDZc0F+8na8/aK1m/+lztkzUmv keH3vlIWvXM7+Ye3bDMOIQ0iDaF3KRjp6XsmdsepMGmmApC+8dWEkI5i8rrgkvPG6Vd466RB pJN5NbCBkvm0H1Y13+08acv0+nbbJUHhsk+fPFl588qaPHd+xxcopPBtYC4e+Ywvon2S9klv OOcl1SUXT8HzbgWiGWoU3IzrVYSiHlJ9t4qODlNgOlgNStj/UyoKUt1wu39CdcVdu0Ved9VW efXlW2S7izfKNmetlkkzmqPjmmUoZd8acApE+m/Ze94Qdck9e/Z0NSvCu2VIdc0NXaTShUfI 8IXvVukwWT3nYBk5f38ZPXdvWXP27qK74nQUNHrcq2Voxnay8JBt5If7TIohdKqKskw0pCGk p4lrgdAfzY/76poQMlFQ/J7x38u2H/0P2f7q38vkq/8QAUanydf+QSZfrz4TaQxC6j3m+l3m UWoCyXyW4XxsCJWxf/YZvsOkjqijkDSgfdJrTn9Odjn/edn3g7+Tt1/+Oznkoy+oueFekOlq YtLpV74oB16tZkT4mHoW6GMvye5XvyQ7qal7pqrBCLobbvLFL8k2H/idenZH+ebD41m0zfmV sW87ylp82Gvk6WN3kWWn7ivPnPl2WT77EFlx7qHqFQ3T1eSk0+XZcw5Uc8TtJ0Nn7S1Dp+8u w6fuJMMnTZXhY3eQoSMny4p3bSOPvb0h390zvnUTQciASENoQndcCoQMiCIIqbT9Ff8ZQShK GkBtIKSh5AKiJJi6/W1DqNt9sf3EC4c8m4TU+CkLMApBA8PP/afse+Fymfq+5bLz7OWyxwdW yt4XPCv7zFkhe6nPPS9cKXuotJtKO180LNMuHJapc1bLa84flleqCQNecbaKgE5TADr+Cdn9 tH9pgVAZ+46iPBUN6X3/9uR95ZF3TZVHjtxZ5h+3h8w/cW+V9pH5J+wlj564pzx2wh7yuLpv tOD4nWWBGgW38L1TZcGM18jCd79SFrzjFfLYQZPk5/s15Hvv2T2G0BkbJ0KoZYh2AkJ6CLEd DZmIaPt5L6fDSAHJgCcPQGWKo123WJnHZN84PDSABtI0MPdvN8mjT70g+57zgOxw1E/kdcf9 TF5//L/JG47/qbz+uJ/K1OPvlqkn/Exee/w9ssPx98mrjr9fphz3QDQIYduj7pNJRz2geqju UQD6qcxf/Jzo/ZnjFL7vv1GQaEJo7m0bZcPCR+WfjttXvv22HeTOg14n35v+evnOwW+Q7xz0 ernz4KnyfZV+MF2NfjtoB/nxga+Suw6YIj/ab3v50b7byl1vmSQ/2KshdyoArX1yvsz9morm 3CCkX2jUvCfUfLhUw0g/cBolPdxa3WCLoiINI5NUhKSjJJ10t127ZIxnIis+4wizX5JPXzl5 /e4tYK962mu7uf8hc5Vz7/ZPRyZ6P3p/RguF7vu2F2W7S7bEI5HVPaHt5qi3vt46/vxmp+Uf Xq/KrQC03Wlq6HfynpDujpsYCTUhpOcP0rNoN2e9Hntw9eJ4wMK2lykgmRRByU7xSLi0ZEbG maHa/Tw0czDPjRFUnYygCn8bhpH3XXvWo+CagxD0aLjo2SM9PPvczepTwUgn/V0N144iGPNp vuvfJqmHWxunqlFv+tPks+//6MEIyWTuCaVCSD8rpGZRbcx4RBrHzpdJxz0q2xwfp+iNq800 adZSMSl6C6sGl5741CT9PiL7t/nenCAvyk/CBmggfA2coJ8fJPWVDbSP1zNmZ9XrsWpWA/1q H530bDomHfnU+DKzXn+a5fpTzxGnk56P1MwXp7/rKXs0Y5wgpAAUQagJIhtGBkppnzrfWLK3 T+yrJZ+9Dd/H7VczW2i9kPrPBpEPIPWdDSprq2bangmj43aaL5MPfUqmzdsgU2Yvk/VrFpOw ARpAA2gADRSqgcZJ6v7QESpa2uM76p7QzfHIueg/IFSooYE4FzFoAA2ggYkaAEJc1QBbNIAG 0EBlGgBCiK8y8XFVSGSABtAAEAJCQAgNoAE0UJkGgBDiq0x8XAVzFYwG0EDpENIzaiM0hIYG 0AAaQANpGugaQsnXNhjoJD+LEmASamUdJ6+87c47b7tu1wN1GnK3GmJ7NBSSBgqBUNYJFe00 20Go10Yt+rxcy1/VcV3LRz4cHBpAAz4aKA1CaRGKHT34FNLO6xIJpR3H3q7dd58yZcEg6/i2 XUw+fVz7uylHu/2k5fUpO3lxEmgADYSigUIglOyaMk417dN2sJ0aoR3g7OMlj1MGhLLOO+34 LmVoB7equh07rSO2w8mhATTgooFCIJR2oLR7Q2lO26WQyTx5EPKBYqfdW3mwyIJgEpZZcEpG Q52WtxM7sw1OBA2ggbI10FMIFXUyeRByhWJa5ORaxrIh5NLt6FpW8uFI0AAaCFUDlUGo2yt6 Vyeddf+nmzIAIRp1qI2acqHNOmkgE0KvdJhFO88ZJyFQ1E31dhAy0U27G/125ZQBoXbHzytv 2r2ydt2XRdmwTkKlrDhWNNCfGoggpN9NtOvtE2fRdoEQwuhPYVCv1CsaQAO90EDXEEperZd9 ld7r4xVVCUUNyiiqPOwHB4MG0EAIGugaQiGcBGWgMaEBNIAG6qkBIMQEpszthwbQABqoTANA CPFVJj6uXOt55Uq9UW9FagAIASEghAbQABqoTAPOEBL+sAAWwAJYAAsUbAFnCBUZfrns687/ d1t0qi55yRNO9wD1Fk5d0C6oizpoAAgRhhcKeiCE46uD46OM4egUCAEhIIQGCtUADj4cB1+H ugBCOKBCHRCREA6oDo6PMoajUyA0YBBqHHKbFJHaNWIgFE7jxtFSF3XQQCaEpkxfItPmbZAp s5c5XS3PnTtXspKPQVycWaNxY2q5fJf7lKvsvHfdddcEG+plRR23CADpfQAhHFxRmmQ/g62l wiGUNnpPg0n/HXLIIc7O1AVC/SReGz5JGxqwFwEjDRBdD90kIDTYTqOf2h3nUr2Wewoh7Vy1 Q3Wp+CwImUin20+Xcug8nUYPrvvX+Qyos4bgu9ou67j6XLr96xZC7SahzVvuY0/yVu9cqAPq wEUDpUDI7pIz4LGXuRQspEiok+ghy1Enz99EQTYcTKRinpUyduw2GgoFQva5psEnCcpu3v3k ojfy4DDRQDUaKAVCRVzNu0DI995Pu/x54ktz3Lc9skEeGZIo6e/J5AOhtCjIhpBtz26joXYQ 0nBLdtHpZWl/RELVNNY8nbKeeqmjBkqBULvBCUV1x/Xa0FnRQzsYdQqhdvdqDAzKgJDe5zHH HDOBN3pZGiC7hVCy/vK64cp+R1Wv9cTxgAUaGNdAKRAahEgoeY4GRiYiqguEdLSTBiDdSMxg kmREBIRwojhRNFCUBkqB0CBEQo2U+/s2iDqFkIFbr7rj9HHa/dkgarmHU/AQbR3p5P1xTwin V5TTYz9haakQCCUHIuRFQklIpYkitNFx7c4pCSNzj8gHQvbABNvxJwGh7Vb0wISQIHTfffeJ KCDpzxtvvDFK5g8IheU4cOTUR1Ea6BpC2jEuWvCrKLkOM7bzt7vH4TIwoSgj5O0neU8oCR7z u6G+dNIdV+UQbQMhA7802CZBVUZ3XHRcHRG1iYqAEE4vr52yvp4a6QpCNoAMWFw/9ba33XZb 2+eGXCBU5ei4yGdaXXIRgNT5dAohl4dVR0ZXyFWHv93pOat2DTIJ1GAg1ARQWhQU86nR1Xnj oOrpoKi3/q+3riGUN1VP1vpuIdQrgWZFQhpEBkD2cG2f7jj7PLKm7dEA+ufvnt8ViJLnYg9M SIuG0rrrio6EsiIguuP63wn1qh1znDC11DWEXCOfZL66R0ItXXAqAko+L9QphPIaSrcgShtu rusiDTZ6mYFeUQMTNHDsc7QBZO4D2Z9AKEzHkadT1lNvrhooBEKN2xqiOtairjUNm1/v8ooo ZXXXFQEhl5PUDi35HIpe5rKtydPuOaG0CKjT7jif8mgQfe3MPTuKiHweVtUAsKE3BoQuRscZ 6ERRV7MLjtFxOCwf/ZO3v/SSCaHJ0xdnzqJtIKMhpJP5fZtyLjqVBSH3OeNUuVQ5oqRhlACS q5iTjvuXD/446oLTkUIRMya4lsPO1ymIOpm2xz5WdH+mCwjZ8DFREQ+r9pdT6UTPbDO4GhiD 0G63S2PqzfEYpei/neaLK4Q66ZIz94r0faE0AboMTMgSrrm6jiKhRDJDf11vdocIIX3unYCo EwiZiMgl+nKtt2S3HE5ocJ0QdT/Ydd8VhLR4uh2Y0E6ALs4sa3Sc6TrKgpDO49IAtOPuJLns u9s8GkQ+I+Y6OQ8T+bhAz6Xeuj1nth9sp0X991f9dw0hLYhoaHIHKUtM3Toz08Wjh/wmu+PG ljHs1wnCyW7ALOh1W284mP5yMNQn9ZmngUIglHeQTtYX5cza3W/opExsk9+giqo3bJ1va2yE jfpBA30PoX6opDqdAxDCMdZJr5S1er0CIdWdiBCLswEQKs6W6BJbDoIGgBAQKhTCQAjHOQiO k3MsTudACAgBITRQqAZw0MU56EGwZbAQGgTjc440VjSABgZdA0CIq2CugtEAGkADlWkACCG+ ysQ36FeAnD9REBpYLEAICAEhNIAG0EBlGgBCiK8y8XEVSCSABtAAEAJCQAgNoAE0UJkGnCF0 yMEHCgkboAE0gAbQQJEaAELAlYsLNIAG0EBlGgBCiK8y8RV5NcW+uDpHA/XUABACQkAIDaAB NFCZBoAQ4qtMfFy51vPKlXqj3orUABACQkCojQb0m+6LbGy92Fcdy9wLu3CMcMEJhIBQ7Ryt cSja4SZTUc7GduadHqfT7bo5ByAUrrPtpl77eVsgBIRqDSG7cRqnX0SDTULIZ59Z5SgbEmXv 38cO5AWILhoAQkCobyCkBV+UE+4WQi6Nr4w8RZ1/GWVjn0ApTQNACAj1DYSSEYhxyGmRid1V lmwYSUfu49h98trQzCpjMtoz27XbJms9IAAEoWkACAGhWkMoDyZpUMiDTNp613tPnUAob5u0 +1PJ+2Kuv0NzQJQHKAIhIFRrCGU5MRcA2c477btvF58PUPL2nQbYvHPKW4/Tx+mHpgEgBISA kHUvqVsnXgSE2nUrtoNW3v2rvDKF5pQoz2CBMhNCU6YvlmnzNsiU2ctq66gQdP8KOs+5+gDF vn+Ud48oT1NZ5crrCkwDjQ9kfM457zxY379tJ6S6jSB05FJp7HqHNKberAYXxZdh0thpvgAh RBiSWH3h0A4GWSAowomnDRjw6erzvQeUNnAhb1nI9UrZBsvvACG642ob5XYSCSVv4OdFGcmR ZlmASYNk3oCGLFDa0VkyUku7X+TSXYeDHywHX4f6BkJAqLYQqkMDK7qMeeAt+njsD2iVrQEg BISAUI00AISAQtlQ6PX+gVCNHFCvxcHxwnN4QCi8OqGddFcnQAgIEQmhATSABirTABBCfJWJ jyvI7q4gsR/26wcNACEgBITQABpAA5VpAAghvsrE1w9XcZwD0Qga6E4DQAgIASE0gAbQQGUa AEKIrzLxcQXZ3RUk9sN+/aABIASEgBAaQANooDINZEJoMhOYVlYx/XCFwzlwpY4G0ECeBuJZ tJdJY7eUCUyBEALKExDr0QgaQAPdaCBYCOVNh29PJNluMsduDMO2NCw0gAbQQPkaCA5CLkBp NxW/zwzHiKt8cWFjbIwG0ECeBoKDkClwXiTULh9zayH6PNGzHo2ggXA0UFsI+bxPBcGFIzjq grpAA2jA1kAtIWRHQS6vS0b0iB4NoAE0EKYG+gpC3BMKU2Q0fuoFDaCBdhqoBYSSr2BOwiZr MIN4/v31N25qeTaI39jDbjzoAT2EpId+gHuwEKrCuDavqjh+u2MmHV8IZQuxTNouIZYrxDJh K7/IJMQ6DLFMnfgmIGRN1xEqhDqpWLbxczLYC3uhgWo0AISAEFMTMW8YGkADlWkACAGhysTH lWc1V57YHbuHpAEgVAMIhdj3G2KZuM/h51xDrMMQy4Su/HTlC7hMCE0ZsFm0uSdUrth8xUl+ 6gMN9L8GYggtlcaut0tj6s2RG25E/+00X4BQ/wuARk4dowE0UKUGgFANuuOqFAjHxkGhATRQ pgaAUA0gFGI/eYhlou/ez1mGWIchlgld+enKF1hAqAYQ8q1U8pfbaLAv9kUDxWkACAEhhmjz jAgaQAOVaWBgIZQ3pRxXOsVd6WBLbIkG0EA7DQwshNIMEuoQ7RD7yUMsE333fo4uxDoMsUzo yk9XvhccQIjuuMrCcF+xkr9cZ4B9sW8VGgBCQAgIcT8ADaCByjQAhIBQZeKr4qqLY3K1jwbC 0gAQqgGEQuwnD7FM9N37OZcQ6zDEMqErP135Qj5YCNlvU7VPKu0tqllvVvUxSKgDE3zOgbzl Nhjsi32r0kBDTaiWTFWVpcjjBgehPKAYONmv+E5b1omRgBAOphPdsM1g6SYNBr1Y1q86y4HQ Epk2b4NMmb2s5/cN0iKh5DIbRKaC2kVQLhUIhAbLmbhogjxhaKIXTt71GGiiWE2MQWi31Fm0 gVAIgguxnzzEMtF37+ccknXo6oSryFd1OwxJ7/o1ByZVbZcijg+EajAwoYiKZh9+DtrFXlU4 4zKP6XLO5DlwDAA2DHr5vd/qoLYQyhqg0Gkl1bU7rkzHxL4n3gw2NulUZ2zndkHQS8fucyzq z63+XO1UCwjZ93l8R8flzRGXXF9Hp2tXdrLbgN83tdzPHDR7+DjX0PKmda8OWv3lna+row85 X7AQqsJooUZCIfVHm3oJsUwu94RCc7RllyerHYVYhyGWyUVXVfirUG3lawsglLgnVLZTYP92 LNv7774NhPzFdr1gT+yZ1AAQYmBCz4ff44hwRGgADRgNACEgBISYvBINoIHKNACEagChEPt+ QywTffd+V9ch1mGIZUJXfrryjXKBUA0g5Fup5C+30WBf7IsGitMAEAJClYXhNOTiGjK2xJZ1 1QAQAkJAiPsBaAANVKaBTAhNPri6ueOqoDrPCblfTdJ3j63KaKPoqv668tVFDKFl0kibwBQI uQvC1/Dkx7ZoAA2gATUXHxAabwihRkIIFWeFBtBAv2pgYCGUN6dcv1Y454UzQwNoICQNDCyE 0ioh1EgoxH7yEMvE8xx+zjXEOgyxTOjKT1e+gANCjI6rbFSMr1jJX64zwL7YtwoNACEgBIQY nosG0EBlGgBCQKgy8VVx1cUxudpHA2FpAAjVAEIh9pOHWCb67v2cS4h1GGKZ0JWfrnwhHxyE 0t6cmjypZB6XbVwME+rABJeyk6fchoJ9sS8aKEcDQUJIV7YBS/ootkZLF5J5/XfWNi4CAkLl iMzF9uTB9mhgMDUQFIQMTIwYk7/Tlrtu4yJwIDSYjcBFG+RBG2igHA3UFkLtuuDagctFQKFC KMR+8hDLRN+9n5MIsQ5DLBO68tOVi6+189QSQnZERCRUrkB8BUV+6gMNoAEfDWRCaMr0xTJt 3gaZMntZT4bx2kBxub+TzOOyTZZxQo2EfCqUvDgANIAG6qSBnPcJ9RZC9oCEJJCS0U8asNK6 4vLmiEuu190B+s8cL9k9wO+bWi5IsAf2sB0eeuitHuoEm3ZlDQ5CVRo11EgoxH7yEMtE371f BBBiHYZYJnTlpytfHw6EavCwqm+lkr/cRoN9sS8aKE4DQAgI9eR+H422uEaLLbFlP2kACAEh IMTklWgADVSmASBUAwiF2E8eYpnou/eLEEKswxDLhK78dOUbpQGhGkDIt1LJX26jwb7YFw0U pwEgBIQqC8NpyMU1ZGyJLeuqASAEhIAQ9wPQABqoTANAqAYQCrGfPMQy0XfvFw2EWIchlgld +enKNyIDQjWAkG+lkr/cRoN9sS8aKE4DQAgIVRaG05CLa8jYElvWVQMDC6G8OeXqWqGUG2eE BtBAnTSQCaHJBy/p6SzaVRuOuePcGy9999iqjPaKruqvK19dACG64+iOY2QUGkADlWkACAGh ysTne8VEfverZGyFreqiASAEhIAQV8FoAA1UpoHgIGTejpr2gjpN9rT1edu4XhFwT8j96pG+ e2zl2q588qGr+uvKp7513iAhZMMmeUIGTvarvNOW+RoiPub4Xyfbs417A8JW2AoNoIHgIJSM flx+5+XxEToQolH46IW86AUNdK+BoCKhPKCkrc/bxkckQKh7QfnYm7zYGw2gASBUg4EJIfaT h1gm7dBCLFeIZcJWfs4/xDoMsUydXFQECyH7no85MTvqyRqg0IkhuCfk1yg7tTHbYWc0gAZs DQQFIXtAQhI4NoiSgMoaHZc3PU9yvb660H/meMmrDX7f1DKUE3tgD9uhoIfe6qEfgB4chKo0 KveEuEKrUn8cG/0NogaAEPeEOnpILdT+6BDLFWKZuCfkB7wQ6zDEMnUCUSBUAwh1UrFs4+dk sBf2QgPVaGBgX+WQJji646oRIY0fu6OBwdVABKEjl0pjtzukMfXmyA03ov92mi9Tpi/mVQ7M KdVRdx1OZXCdCnVP3ftoAAjVoDsuxL7fEMvEfQ4/5xdiHYZYJnTlpysfAOm8QKgGEPKtVPKX 22iwL/ZFA8VpAAgBIbrb6HJFA2igMg0AISBUmfi4mizuahJbYsu6agAI1QBCIfaTh1gm+u79 HHGIdRhimdCVn658YQiEagAh30olf7mNBvtiXzRQnAYGFkJ5c8ohsuJEhi2xJRpAA+00MLAQ 4mFVGgWOEQ2ggeo1AIRq0B0XYj95iGWi797PoYRYhyGWCV356coX7ECoBhDyrVTyl9tosC/2 RQPFaQAIASGGaPOMCBpAA5VpIAdCS5g7DnFWJk6uNou72sSW2DJUDQQHoay3pBojJvO4bONS AaHOoh1iP3mIZaLv3s/RhliHIZYJXfnpysXX2nmChJAuYPIV3nah7Vd/m7x527gYJlQIuZSd POU2FOyLfdFAORoICkLt4JKsfDuf6zYuAgJC5YjMxfbkwfZoYDA1UFsIteuCS0LJR9hAaDAb gY9GyItG0ECxGqgcQna3m29Uk9Zl148QCrGfPMQy0Xfv5xxCrMMQy4Su/HTlC+nKIdTuXk/W PaHkAIV2v32NQSRUrth864P81Aca6H8NBAUhe3BBu/s+ad1wWaPj8uaIS67XV2L6z4g/eWXG 75tahmxjD+xhgwI99FYP/QDp4CBUpVGJhPr/qqtKfXFs9IUGJmoACNVgxoQQ+8lDLBN9935O PsQ6DLFM6MpPV76gBUI1gJBvpZK/3EaDfbEvGihOA6VBKDmwoJtRa72qcLrjihNWr+qM41Bn aKDeGigFQgY4WQ+VhigcIFRvMYeoKcqEptBAtgaAUA2640LsJw+xTPTd+zn8EOswxDKhKz9d +UK3JxByeebHt+Bl5CcSKldsZdQZ+6TO0EC9NVAKhJLP+9ThflBc5vE/hF1vYVN/1B8aqIcG SoFQXaCTFCkQqodocS7UExroHw2UAiETCdVNKKFCKMR+8hDLRN+9n2MKsQ5DLBO68tOVr98v BUL2NDpFvXDO98Q6yR8qhDo5F7Ypt+FgX+yLBorRQCkQqkPl5M0pV4dzoIzFNALsiB3RQHUa GFgIpYmOSKg6IeIEsD0aGEwNlAIhuuOKFVOI/eQhlom+ez/dhViHIZYJXfnpyvdiohQIpUcZ jZZXAPgWtBf5iYTKFVsv6pBjUIdooF4aAEI1mDGBRlWvRkV9UV9owF0DQAgIBR+h0qDdGzS2 wlZ100ApEEq7J+RrmHYPvPq+WdXnuKF2x4XYTx5imei793PAIdZhiGVCV3668vG5Om9pEDIF 8Z03Lu+5InuG7uRs3b7HShorVAj5Vir5y2002Bf7ooHiNNATCOkK853KJy1/clkadHyPY4sJ CBUnLBoptkQDaMBFA6VCqJv3CQEhBOwiYPKgEzRQbw2UAiET+bhAqF0XGhAaF1aI/eQhlom+ ez9nFGIdhlgmdOWnK9+LgtIg5FuQifdnJj5XlIRa2ivE6Y4rVzDd1ivbUz9oAA3YGqgFhFzh kx495c0S17peX4npP2Ok5JUZv29qGdKNPbCH7VDQQ2/10A9ADxZCVRiXgQlcoVWhO46J7gZZ A6VAiLnjim1UIfaTh1gm+u79dBdiHYZYJnTlpytfoJYGIVOQ5LM8vgXsZX4ioXLF1su65FjU JRqohwaAENP2MG2PpQEcVz0cF/XUP/VUCoRsgeTNgBCSmIiE+kfYIemKsqArNNBeA6VDqE7G DxVCIfaTh1gm+u79nH2IdRhimdCVn658fX5pEEp7hse3cL3OHyqEem0Hjlduo8O+2BcNjGug FAilDUbo5iHSXlUYEMI59EprHAetoYFYA0CIgQkMTGBgAhpAA5VpoCcQ6vYVC726Ygg1Egqx nzzEMtF37xddhFiHIZYJXfnpytdflwIhXYjkA6u+Basif6gQqsIWHLPchod9sS8aKLE7rg5D tPNmlEMgOAk0gAbQQPkaKDQSKuK13lVWOpFQ+YKrsn45NvWLBsLTQKEQMt1wda3oUCEUYj95 iGWi797PwYRYhyGWCV356crX/xcOIft+kG9hqs4fKoSqtgvHL7cRYl/sO8gaKAVCxqB1mrIn huf43yCLgnPHKaIBNNArDZQKoW6ioqyHW5NwKwp2QIiG16uGx3HQGhooeXRcp88GuQAlCSh7 hoZuZmYIFUIh9pOHWCb67v0ce4h1GGKZ0JWfrnzhWngk1Cl8kgXPi4TsLj97236EkG+lkr/c RoN9sS8aKE4DhUKoKADljbLLehAWCBUnDhoatkQDaKBsDRQKobQBCXnda+3A5QKTtG1dtmtn 1FC748oWAfvH0aABNFCVBkqBUBEn4wKTtNdFuGxXNwiF2E8eYpnou/dzpCHWYYhlQld+uvL1 /7WAkA2WtMgqK9rKm54nuV43Av1nDJlsFPy+qWW2XeyBPWyngx56qwdfhx9i/mAhVIWx6I4r 94qnijrlmNQpGghbA0CI9wlV9h4RnEPYzoH6oX56oQEgVAMIhdhPHmKZ6Lv3c5oh1mGIZUJX frryBRcQqgGEfCuV/OU2GuyLfdFAcRoAQkCI7jhe7YwG0EBlGgBCQKgy8XE1WdzVJLbElnXV ABCqAYRC7CcPsUz03fs54hDrMMQyoSs/XfnCEAjVAEK+lUr+chsN9sW+aKA4DQAhIER3HPcD 0AAaqEwDQAgIVSY+riaLu5rEltiyrhoAQjWAUIj95CGWib57P0ccYh2GWCZ05acrXxgOLITy 5pTzNST5yxUq9sW+aKA/NTCwEEoTNHPH9afIcV7UKxoIVwNAqAbdcTSgcBsQdUPdoIHuNACE agChEPvJQywTffd+ziDEOgyxTOjKT1e+UI4htEwau94hjak3Rx1Sjei/nebLlOlLZNq8DTJl 9rKBGEFFd1y5YvMVJ/mpDzTQ/xoAQjWIhGiI/d8QqWPqeFA1EByEst6SqivJ982qPhVLJIQj 8NELedELGuheA0FCyMAmfQRbI+oaNDCy89rLOhFHqBAKsZ88xDLRd+/nEEKswxDLhK78dOXr e4ODkDkBDZTkySSXpUEnbTtXo4QKIdfyk6/cxoJ9sS8aKF4DQIh7QgMx6ATnUbzzwKbYtAgN VA4hn2iGSAjRFyF69oGO0EA4GqgcQnldbvZ6G0JZAxQ6FVio3XEh9pOHWCb67v0cS4h1GGKZ 0JWfrnz9b1AQssGSBI59rygZPWWNqMubIy65XjcC/WeOl2wU/L6ppfsOe2AP2+mgh97qwdfh h5g/KAhVbaBQI6Gq7cLxy70SxL7Yd5A1AIQYmMDABF5ohgbQQGUaAEI1gFCI/eQhlom+e7+I IsQ6DLFM6MpPV75RHRCqAYR8K5X85TYa7It90UBxGoggNGOpNHZjAtOWMQqIrDiRYUtsiQbQ QDsNACEiocr6gnFMOCY0gAaAUA0gFGI/eYhlou/ez6GFWIchlgld+enK98ICCNUAQr6VSv5y Gw32xb5ooDgNACEgRHccw3PRABqoTANACAhVJj6uJou7msSW2LKuGgBCNYBQiP3kIZaJvns/ RxxiHYZYJnTlpytfGA4shPLmlPM1JPnLFSr2xb5ooD81MLAQShM0c8f1p8hxXtQrGghXA0Co Bt1xNKBwGxB1Q92gge40AIRqAKEQ+8lDLBN9937OIMQ6DLFM6MpPV75QBkI1gJBvpZK/3EaD fbEvGihOA0AICDFEm2dE0AAaqEwDmRCaPH2JTJu3QabMXtazAma9JdVcfSTzuGzjcuXCwITi rm5c7E0e7I0G0ECQENLCtF/vnRRqcp35nXztt6/AQ4VQiP3kIZaJvns/hxZiHYZYJnTlpytf vxschOxop93J2BBqByRfQ8TgG//rZHu2KVes2Bf7ooH+00BtIdSuCy4rgsoTMBDqP4Hn1Tnr qXM0UK0GKodQWheaK0i62TZNeECoWjHiDLA/Ghg8DVQOobz7PVmiTEKIe0K9EzB99+62xlbY qgy4hqor33MNCkJ2F1u7+z5p3XBZo+Py5ohLrtcVq/+MIZMVze+bWkZKYg/sYTsd9NBbPfg6 /BDzBwWhqg1Ed5z7FWvVdcXxqSs00B8aAEI8rNqzZ8BwGv3hNKhH6rFIDQChGkAoxL7fEMvE 8xx+zjHEOgyxTOjKT1e+gAJCNYCQb6WSv9xGg32xLxooTgNACAjRHce8YWgADVSmASAEhCoT H1eTxV1NYktsWVcNAKEaQCjEfvIQy0TfvZ8jDrEOQywTuvLTlS8MgVANIORbqeQvt9FgX+yL BorTQAyhZdLY9XZpTL05elKmEf2303yp4lUOVVYuzwkVJ6wq65FjU49ooD4aAEJEQtwT4qY0 GkADlWkACNUAQiH2k4dYJvru/a5+Q6zDEMuErvx05RuFDiyE8uaU8zUk+csVKvbFvmigPzUw sBBKEzT3hPpT5Dgv6hUNhKsBIFSD7jgaULgNiLqhbtBAdxoAQjWAUIj95CGWib57P2cQYh2G WCZ05acrXygDoRpAyLdSyV9uo8G+2BcNFKeB4CDU7sV2ptJ9X2rnIxbuCRUnLB+7kxe7o4HB 1UBwELLFaL9d1YaQ/m6/ytvk69fXe9NAB7eBUvfUfb9roFYQSkIpDTpp4HKtxFAjoRD7yUMs E333fg47xDoMsUzoyk9Xrv7W5AsSQu0imkGFkG+lkr/cRoN9sS8aKE4DlUMoqwstDTrJ7rq8 PD5iCTUS8jkH8hbXOLAltkQD5WugcghlVXIWYLIGKHQqHCBUvuA6rRu2o27QQH9qYAxCuwUy i3ba6DgbRr6j4/Km50mu133S+s8IPtlHXcVv+5hVHN9u/Ob4yc+Q7JVW3irLF2L9mfscoeip yvpx0UuIeg/1/pnvxUJwEPI9gSLzEwn155VWkRphX2gEDRSrASDEw6qVTeFOYy62MWNP7FlH DQAhIASEeJcMGihQAw31XtBe/asjdJJlBkI1gFCIfb8hlsnc5witYWIr9wglz1a9cu7dHKdX +suzVa/K0e1xgFANINRtJbO9uxPsN1t140xD3Lbf6ofzOVCAEBDqq66YEB1nlWXCyQ3uBUhd 6h4IJSBUpcPg2N1boC4Nj3ICBzQQawAI1SASCrHvN8QycU/Iz7GHWIchlgld+enKF65AqAYQ 8q1U8pfbaLAv9kUDxWkACAGhvronhHMozjlgS2zZCw0AISAEhAp8RqQXjZZjAId+0sDAQihv TrmQKjnEfvIQy0TfvZ9zDrEOQywTuvLTla/vjCB05FJphDKBqe8JFJmfuePKFVuRdcW+qCs0 0B8aAEJ0x9EdR3ccGkADlWkACAGhysTHlWx/XMlSj9RjNxoAQjWAUIj95CGWib57P2cYYh2G WCZ05acrXyABoRpAyLdSyV9uo8G+2BcNFKeB4CCU9mbVZIUn366a9rbVTkTCwITihNWJ/dkG +6OBwdNAcBCyRWi/1jtruclnYNSpkIHQ4DWATrXCdmgFDRSjgdpDKAmqduByEUyoEAqxnzzE MtF37+cUQqzDEMuErvx05eJr7TxBQigvosnqsutHCPlWKvnLbTTYF/uigeI0UDmEsoCTB5S0 bfO2yRJPqJEQgi9O8NgSW6KBsDRQOYSyodDIfIYlCaG8CCpPfHlT+bAeC2ABLBCSBfJ8Wh3W BwehtK42O7pJGwmXNTouJMF0WhbdTx7aX4hl0jYKsVwhlglb+bWoEOsw1PtnvuALDkK+J1B0 fj9pkhsLYAEsUJ0FivZ/VewPCCXmjNJyKqIiitqPLkuI+wqxTNjKr68/xDoMsUyDoKsifF6n +4ghtEzNon2HNKbeHPm7RvTfTvNl8vQlMm3eBpkye1khjrnTQvZyu6IaQVH7GYQGgK3c4YGt sJXxh0VqoZc+NnksIEQk1NEFRpENoN/31e/nV+SFErZyh2x/3RMiEhpzxEU1gqL2U2QDL3Jf /X5+2MrdGWKr+tuKSCigd3kU5VyL2k+RDbzIffX7+WGr+jvWftdokecHhPoQQkVWaohiC7FM RYKj3+sPW1UD2UHQle85ck+opHtCvhWRlT/Evt8Qy6RtGGK5QiwTtvKDUIh1GGKZOvF7QKgG EAox6gixTFzd+znWEOswxDKhKz9d+YIICAGhykfH+Yo2K3+ITizEMuFY/RxriHUYYpk6actA CAgBoZLvSYbqLEIsV4hlAth+wPYFERAq2QH5Vgj5yxU89sW+aCAsDQAhINRRJERDDqshUx/U R101AISAEBBCA2gADVSmASCE+CoTX12v3Cg3UQcaKE4DmRCaMoATmCKu4sSFLbElGkADeRoY g9Cut0+cRRsIIaA8AbEejaABNNCNBoBQszsu6+2s8RBN/YaLOCUNnlyXty+fCsvbV96bZu0y 5+3LtVyu+8l7I26eXV3L47ufEMuV1FVevfrYJk+v2c9djes9+dZjU2ZXPeSVOW8/PjbJ21de Wcz6vP20W++73LU8ZZQr7xx9y+abHwhZELKdWVrDbbc+zYFk7cunkpIN3adctmBNeXyO3S6v S5mSwG63Td6+XMvrsp92TizNNmkXG65lsfPllSvLWXVS1y5lzCuTK9Tt/bgcNy9PXrnSjle1 rtrZIG95ni3y1ndiq3Y+IG9feWXpdj0QakY5aY4j6cRdfrcDUicVlbevvPVJ0RXhWF2OmQe/ ohuoT5nyGmK7Oi6j/orSnE/ZirAVuprY/daubfna26UuffaZlzdvvUt5us0DhAqCkM8VrWul 5Qmkk/WmnK5laHc17uKs82CTV37XMvruJ81hpO2jClvZdrWP73uO7Wznu5+QbdXuXHzPsQhb +UCoH3Xl2lbT8gGhAiCUdBxZV7g+lZXXmHzXu4Ajr3x5x0w795CcRVoklBUhZq0rw1btoO9j 96xy+e7HBUK91JVdnlB05QqgXvkFl/rIu0DM03aR64FQAkJpVylJ4WeJzjWvSyXm7StrfS8c a94VXZrQ213d5+3L1bG67CfLkeVFfi71luYE8sqV58jytOBaLt/9+ECrKGC3s1VWWarSVV69 uUZZrvWXvIhytZXLxU2eRn3K6JMXCGWMjktrsGkNIVl55nc3jbJdt0w7EeY51l6WKcsJu9jP R8BZdkqLeuxltk1c6rqocqXpwuX4RdVhu/24lCvNmRXlvNLKZcrkW1e9sJVLmVzqtWhduZQr GZUVVYednAsQYsYEZkxAA2gADVSmASCE+CoTXydXTWzDg5FooL80AISAEBBCA2gADVSmASCE +CoTH1e0/XVFS31Sn51oIBNCk6cvlmnzNsiU2ctwVMAKDaABNIAGCtdABKEZS6Wx2x0TJzAF QlzZdHJlwzboBg2gAVcNACGubAq/snEVH/nSHVVyiG1yuHERQ/+xPZAIRQNACAgBoYA1AHCA RSiwKKscQChgB1RWpbPf+jg21wdI7YcN2z30WeUDiWiuPprrdV0BISBEJBSwBlwglDVbRhp4 iK4AQq9Bk3U8IBSwAwpJKJSlGsflAqHkFCztpmQpaiobtFCNFvrV7kAICBEJBayBoiDUrw6M 86o/EIFQwA6IBlb/BtZtHRYFIbrg0FK3WixreyAEhIiEAtZAERDSzqPdzMplORb2C/RcNQCE AnZArpVIPho8GkADddUAEAJCREJoAA2ggco0AIQQX2Xiq+uVG+Um6kADxWkACAEhIIQG0AAa qEwDmRCaMn0Js2gjzsrEydVmcVeb2BJbhqqBcQjdPnEWbSCEcF2FyxBgtOKqlTrn44Hf4nUO hIh0uop0aJTFN8o6O+l+L7u52OKiqzjdAyEg5Ayh5CSZWdPF9Lsz4vyKc0Kh2hK996aOgRAQ coJQcpLM5JUgV4a9abChOux+Kxd6752egRAQ8oaQeQKfSKh3DbXfnHzo55N1kcUFV7G6B0JA CAihAScNhA6OIsvXDkIAqFgA6TorHEIN4V8IFiiyQZp9Zc0/NqiNszFhVraklfjdCxv1Qu/M v1c8gEqBUBliYJ/lVH43dh1U6HRjM7YNT8eudYLey6u7wiMh10olX3mV2gvb0ijrXX+90Eg/ HQO9l6d3IMT9AO4HoAE0gAYq0wAQQnyVia+frpQ5l/KulLFtf9sWCAEhIIQG0AAaqEwDQAjx dSU+Rgz191UqUQj1W7YGMiE0+WBm0S67Avpp/9y8xWH1k545l97oOYLQkUulsesdE2fRBkK9 qYS6iD1rLq20WRTqcl6UE52jgeo0AITojnPqjsuaS8uGE425usaM7bF9HTUAhICQN4TaRT10 x+EE6+gEKXO1ugVCQAgIoQEnDeCsq3XW/Wr/wiHUUBNFkaq3QRmCTRsJx+g4HFMZWmOfg6Or wiGEeAZDPHS9DUY9056p57I1AIToiumoKwYI4ZzKdk7sfzA0BoSAUEcQwkEMhoOgnqnnsjUA hIAQEEIDaAANVKYBIIT4KhNf2VdY7J+reDQQvgaAEBACQmgADaCByjQAhBBfZeLjKjX8q1Tq iDoqWwNACAgBITSABtBAZRrIhNCU6cyiXfZVAPvnShMNoIFB1gDvE+IKqLIroEFueJw74EED sQaAEBACQmgADaCByjTgDKH1axYLCRugATSABtBAkRoAQsCViws0gAbQQGUa8IbQt//PrfK/ /+YW+dY3bxpL37z1L+Svv/7ncuvXv0jCBmgADaABNDCmAc0GzYhv/U/FjGb6u7/9K9Es0RGV N4SeWPC4/OaRX8tDv/zFWPrFL+6Xnz9wr9z/83uidN/9aelutTxO994Xp/vu+9dE+qn6rdK9 /6LST9zSPXfJfc10r/rU6Z57/lF9/jg7/ewf5F4SNkADaAANdKmBH6rtW9M9d/9ATLr3Zz+Q ++/9ofzi5z8aS79+6J/k0X+/uzMIrRpaLs8sf0qeXrpkLC15apEsXrKwmZ6UxYuflEWLn1Cf cYq/P9omzVfLm2mR+lz025T0iFo2nhYtfFgWLviNLF7wcJzU7ygt+FWUFi34ZXp68iFZ9OSD JGyABtAAGihIAwuf+IWy5QMT0uIFevnPo7R4wQOyZNEvxtJvfvlPov86ioTWrR+VtetGZHTN 8HgaHVLfraR/j66y0rPqu51WqN92Wq5+67QskZaq3yqNNNPqp2VUp5GnWtLI6iWi0+jqRdlp eIGMjqUn1XcSNkADaAANdKKBkaEnZGJ6XC0bT6tXPS5xmi+rhx4dSw8/9JPOIfT879bJhPT8 Wnn++dGMNKLWpaQNw/J8lFalpg3PrZQ4rUhNz61fLmlpw7qlMjE9pZaZtER9J2EDNIAG0EA3 Gli/9inR6bm1S1LSQrWsNa1f+6TK/6Q8rLrjOo6EkrDZsGFUdIqXK9CMgcUAZuLnhueGFFTs ZGDTCp31658VnZKgWb/uGUlNa5eqE9QpNkzSQOuUoUwqcogh+2LIKhpAA2hAa2BhIi1Qv8fT utEnRadfP3QXEEIwOA00gAbQQNEacIPQLx/8x95AqNFoiEl2hNQuEtJ57e63TiIhvQ8ioaKF xf5wVmgADbhowBVCPy4fQhoGNnjs30VDKAKP7qIrsTsuOkbOA20uefL2wXoXoZMHnaCBMDXQ BYR2vV0aU2+O4NSI/ttpvtizaJsTdr0nlIRQmZEQEKJBhtkgqRfqZdA04AihB340MRLqNYTs rjozCs7ujrPX2wMT7OVmcIJZpiMhuzuuZR/NQQl6mR6cMLZNm+gmub7dbzv6sfMko6J2+Wik g9ZIOV80388acIPQg/f/sHwI6cin3T2hGDbjo+MMfFo/V0Qj43TSyzWIzKcNH/3djoQMhGwY 6eGD7eCT1oWWBEb0QFVGd5xZl7adaXAueWic/dw4OTf0PQgacIPQ/fd8r3MI6eHYz6kHVk3a oL5vWL96LD23flita03r169qAiRebsPJfH9u3co4T/MzmceGzbq1y1Q0s2zsHlAMmKejZL5H n2vUkOxmMr9jGCxUwwTjFC1vfrc/k8vTfttlTO4ra/t2x0wrB8vG6wpbYAs0EL4G1owsiIZh R2mkmUafUL9VGnk8Snf/67c7h1AaZNKgo8EznuJoxo5sou/rVLRjJRPRxCBRkGk+D2SgE0c3 S8eAYwYimChHj4qzI6FuIJQFlXaAsZe7QIwGFX6Doo6oIzTgroFxADWhY+CTgFDqtD2u94Ra 4TIOGh3BGMiYLrS036ZbTQNmnQKQTjZ8TMSTFumMRzzxQ6dxdBODp13EY6IeEwGNR0IxqWNY NKnd/LSXme9py8x2eXlMxJQ8Xtqxk2Xhd2vdYA/sgQbqooHxyMdEQGtHHhOdUqftcYXQurUr FQCs1ASJHdHYcBlzwGuXR9GNHdWMrVujohuVYpjEkU5LV1eiW82sWzOyWHRaO7JorFtNrxsd WRglex+a0DrpZfpz7eonoqR/m+/2p9k2uczezt5/2v7sfdjHSe47uS6vbGnlZVlcnyRsgAYC 0sDwo7JWpyZ8ou8qpU7b4wqhNQoSOq1d80yUxn6PPi1rmylan/gd5VMTj05MMUiykoFK28/m pKQjakLS1qQm2BtOSUOPqUn2SNgADaABNNCtBkajCUsfk1E1QanZl/4ep/mtadW/y6hKqdP2 uEJoeNVCidLQIistUN9VWpVMzbzNbYZWPinp6Qm1fDytWvm4pKWhlY+pfI/JqmebSX/Xy559 tJnmq8/5smrFeNK/TRpb/uxv1T5I2AANoAE00I0GhpQf1WnVit+0pKHlvxGdWpf/Wv2OU+q0 Pa4QWvHMv4tOy5fNl2eeGU9mmV5u0tj6Zb+VZzzS8qUPi1d6+teyXKelv0pPT/9SrW9Ny9Rv EjZAA2gADXSngWeeflDstOzpXyjfGiezfGzZUw/IMpV++WDKtD2uEHp6ycPinBb/Wp7OSE8t fkjc0oMqn5XUy5GeSksLfy5P6WTWmd+JzyXq95KF95GwARpAA2igCw08tfB+5XPHU65fXaD8 7oJ7xlLLS+1cIRRHOY+qaOgxlR63kv6dnnT+Z620Qu0jNTWjLBNtTfgc2+4Rtb1DWvobWZGS vKIs36iM/H5RLPbCXmigTzVg9UyZ3qqnH456oJ5Z8pAsW/Jg65tVXSHEU8+D8NQz54jO0QAa 6I0GGie9II0ZanR0Owi9/sxhmTZvg0yZvUwmv2+tU4p2SsIGaAANoAE0kKcBDaAD7mkPoR1O fEpee/ZyedXJS+QVRy92So0jl4lz0gWoKh2pju2SZqjzcU5Fn4/HsV3OJcpTYf2Ucewy9ulc 3x71U7jOSzi2s4a0zl2PX3SbqMmxK7Wla93ofK7147NP17zq2Ic9Ko3975bGbn+feJXDtB+o her9DlG6w/pulhX1qfftkoo6nrUfHf4VncZsllNe1+M62aZpvzL26Xw+qgy7OiTX/Y3pzkUb HnlcyuiTx+d8XPfrU+fOeUtoPwN77BJs6awN12N7tAnneixjn/p8FHx0GXb+mwSE3nBbtICE DdAAGkADaKBXGhh7qV00xSl/WAALYAEsgAV6bIH/D8AKwqcctK35AAAAAElFTkSuQmCC</item> <item item-id="70" content-encoding="gzip">H4sIAAAAAAAA/+ydC5zU1N33AxQv7attpfXFyqWoKEWI3BQFF+SOwFLuglxFQe7IRVGkgvpY n1p9aqvWd+3Tt/Lp8+nztrXto4+92EcRvF+wIJdlgYVddmd2Zi+A4M7Mamv3PZkzm80mJ5nM JJOTnPzy+TKcySQn/5xkvvvPySRpJ50vSR3OW/glSZLOLlBeO5J/X2kvZUr/q/1d10R6K5+M +uq3pd1kzIftftFO+VQZr/zfi/xTxnxI/rWTOiujpOdfO0/SDyXfkB7vBAAAokGG318sPd9N YXu3TMEJ2y1xWn9XZzio3Hq9tjuf3bpVu1rhcKNkx3LpTmOzrsFZ5H7emQv7TXEYm4Nt6nRn c7zFf5ku/OzSjN/2XCId7n/ekXEXVMz42uGbv1w24ksWHBsmWVNeVEiGWXGsKAtOFp29cuvY CtluDit3OrszCrtRHOxOWfcohzszz8oLueION4rz3WnvYOnVPorltH6LTrvo1IqLj808r+67 51pwZrwEAAC+hShuR1/loEnrNyq3stoGAAAILlRxFn7bc6xi77GKj49X7mvhYxZ7lclOUPYc q9Txt+Ns6Ke7LfmwXM8H5RUAAEB4r4X3jyp8cLTi3aPH3jl8/O3Dx+z47YPDR615v4zNO2VH LHhbw1uH9LxRqqAtt+XwTgBAyNhVekTFdLKDh3e0YMdvLYlWxZ7jxymZtyrpkR8dy44dG1MJ v1eu592jOo4BAMLG20ePq7x19BhF+/bNIwovvf1uc3OzHb+VVkcJhyIZDlKqWynVcKAqomO/ hn1V1To+rooonKhWUN5W7z0RIeyhVFZnaDvmoxMAgBASIXxYWd1KRUSh5e37Lfy3bb+V19YS jtfWEWj5aLyOoisTjsTaUGZOaSzO5GBU4UA0prLfwMcRAEAY2ReJk9e96VdaIOzR8LdqhZff ed+m36rq6lUq6ykNLShv1WsfKurqj7WgjiyvrSfQwlHN+MO19RR1DPXeoVgdKZfGlfHUeOoE B2O1BFrYX1NHIGVaUKFTat9qx2s/1X3EHKMbabZQAABH9kYVPo4p0PIf3/nApt+qG/RU1Z88 0dBAIbPoyhUNJ0nhuMZ+pKy+EvWV1zUQSJnqjrweTkPKR9K6U71HX0vJMTIhninT1wPx+gPp MbSge0sLurfWH1Gnmc0FAPAn++P1+2KtUMv9ybbfog0nzdBKT+s6WtCkeW38RgoENc0jriOK O6rxHnHdkXSBvmozvVbjxeszxksXtKgjjQW1bPGRRc0AAJ9ADuKo3HRQy/3x3Q9t+i1+6lS8 4WQLp2paMLqOzE7LUtuB5Hvqq3ZQ8zrqOm1ep6Z2ufrNwlfqUJrNb5AbAP6HKk4hpqD126/+ +qpdv50+3QpxHeH06djp09FTGVRvaMdETp6iKGbTvFaePKXmePRIlrzSjE5rvHJN/kZeCYfr TtLUji6LxqYWdG9pQfcp8yPtNBYfAQB8RamGgxqo8X67Y5crftNqTYVqLZO8nTyl+q1SM55o jaJN56jfpPRBq2o2dQKiOOo3neW06OynKxs/MvpNNyMAwIdY++0Pu94uqN9UdH5T8zfVb2r+ ps3i6LHqEQ1puZ083HIywk4LWDgK+gIg0Fj77cU37f7+zb7f1DL8BgAoKNZ+s3/9Qh79b078 RtEen+btNwCAqOTmt275+83O8SklJ785z98AAKJi7Tf99VnwGwAgOFj7TX99lrnf6j85raVO qzsNMQPUddUGtK7TojUepbz+lJYjLRwGAISPtqlOhtK2HKhrIOivz7LI3xrqY/V10do4JRKP R2pbiMerWzihoVJDRZpjGsopMYWjNQpHYq0crokRDtXEmdCr79MX4AMAQsT+SEzLPi3VNYQ9 1TV7Ixn012eZ+60iUn2k4vjh8qOUQ0cOlx4uIxwglJXtLzu0X3lVCnvLynTsUTlU9lFbdmv4 oPTQhwdLPzhYplCq8N5BhXcPHtLxzoFDbwMAwspb+0vfPHBIy1sHy944cIjw5sGytw4dpuiv zzL3276D+9/f/eFb775D2fXWW6+/+caON3Yp7Nqp5VWVna8T/rpzp8oraf7y+s4/WfLyDpXX Cf+9Y8dLO15n8l+vAQBCxx/a8vtXd2Qgb1/f9eIbb1H++M77r/5trx2/PfMfv3riZ//3sWef o/zrM89+/6mfPvLUMwAA4BOIlIiaHvs/z1F+9PNfEHHZ8RsAAAQU+A0AICoWfpMHDAQAgOAC vwEARAV+AwCICsNvA86F3wAAAqD4bZi0vSv8BgAQDfgNACAq8BsAQFTgNwCAqMBvAABRgd+C iNTczD0GAPwP/BZE4DcA7JC335olCWTF4dYhHlPJ+hYAoAP5m2/RWksnMZ3Q4DcAmMBvvgV+ A8Ah8JtvMfObWRkAoAN+8zPMDjcZ+RsA9oDfAoG1weA3AJgw/Ib7I/kPpsFw/hQAa3D/NwCA qMBvAABRgd8AAKICvwURdLgBh4RkF4LfgkhIdk5QOEKyC+XtN/7XdgYB5zth1gtOg7ujatYG mFK4XSgM59+Rv/kWyd71WQLvnMAhWXch4Xce+M23wG/AIXZ2IbH3H/jNt5jtnBauA0ALdiH4 zc8wO09k5G/ANiHfheC3QMDcA4XvHAYuYrYLmX0kBvBbILDYAwXeOYGLhPNPJPwGABAVo9/K +uP+SAAAEaB+2w6/AQCEA34DAIgK/AYCh52fOjN/qy98dzrQAb+BwJGH36C1cAK/gcCRn9+4 hw28B34DgSPv/A2JXNiA30DgsJOn2bw7ARAb+A0EDjvnEWRDtxuStxACv4HAAUcBm8BvICiE 7d6zwDnwGwBAVOA3AICowG8AAFEx+g33RwIAiAHx27Fh0vNd4TcAgGjAbwAAUYHfAACiEmi/ GX+gbjbeeIWOxQRZp88jgKwzWk9vMdJixpzqtzO7/RawroHZwvbjySMAdUrjp2Zrx9xG1ks3 LpG5dOYS89glzAIw1m+xjja3uNlPDW0GYGcF8/sOWhNcv5m1vMUWUfdn+y2cx4KY4+18BXTz mq2vnTW1WF+z2iyCsROtnQqtF5HTxLkGYL0hrBeddTvmsfr228FOkFnFlccWz2l6OwGYtaeT 72BWBPCbzbL61mzXZb7NY0FZy3Z2ZuuPsk6ca/y66bVYxJDr1yHrSpltLzvx2Pcbs0LrmrNu O5s2yKOq/D7KaYxZC1vHn0cAxva089ZOU5sREr9pN40//WZn77LZAnnEz4zQomVyCsCiqW3q zhhPrgEwq7KpC1f8lnXrM0fa3yXsCNZJC7trePgtK86V4rBtcy3r4rHedbNWlfXTrPFbv80q NPsBmLVArpvVod+stzVz7STN30Tr6R36zSzCnNonp/bPtYXd8lvW5cJvxnVnNqNk8mfXOIH1 25wWZD3ebPNZbDWJ9SfPTgB24td9lKvf7Adgf33NVtlhCzD3AWP7MCc2fupk6bp9zGxx1ruE nQCs1yJrC5tFmOtXwGbkeX8HrQm63ywcYtx2ZhvX+m1OC7KuULv5LBZhnN64q1gHoJslazzM RTCndxhATiFZfDtyDUBmfTUstrhZhHkvXVeDnX0s6y6R055pto7WzWXdgDkFYLZG1vuDzaY2 I9B+AwAAC+A3AICosPyG+4cAAESA+q3t/UPgNwCACMBvAABREcNvzTmeVXGdx57+KQJAAKFd uh8CYAK/IQAEIEAAIV99M+A3BIAABAgg5KtvBvyGABCAAAGEfPXNgN9cgXvnAwIIeQAhX30z 4DcEgAAECCDkq28G/ObKpkEACIBvAEGPv0DAb65sGgSAAOA3hwEUAvjNlU2DABBAyP2G/rfC EfR9AwEggJDHXyCE8RsGDBj4Dtw9wMtvFners3MXO97bDQMGDNkH7jZj+q18mPR8If1mcQdU 6/up2qyf91ZVhsee/ikCQAChXToNgLvNPPZb1jtgy4ZbIltMmdVv3BsTAOArvMzfZBNrMe+3 D78BABwCvwEARMUDv8l5PcUsWH7j3vmAAEIeQMhX3wzP/ObkKWbW+MFvAAAf4o3fCgr8BgBg Ar8BAEQFfnMF7p0PCCDkAYR89c2A3wAAogK/AQBEBX4DAIgK/OYK3DsfEEDIAwj56psBvwEA REW5P1JR8PzGvIMB96gAAL4ioH7TAr8BAJjAb67AvfMBAYQ8gJCvvhnwGwBAVOA3AICowG8A AFGB31yBe+cDAgh5ACFffTPgNwCAqMBvAABRgd8AAKICv7kC984HBBDyAEK++mbAbwAAUYHf AACikvFbV/gNACAa8JsrcO98QAAhDyDkq2+GN35jPufUbLzx+afMuyEZB2M7o4wyyt6X/YMH flNlxVScdrzZlNb4IX8DAPgQL/2WtWz2qTWK2iSJQP5xb08AgH8QxG904Gc57sk5Agh5ACFf fTNE8lvmLXI5AEAaz84vyKxeNeN4syktYPa/Ucs1w3IAhBhe50/NxptNaYHF+QVYDoAwE4bf v3lgOe6dDwgg5AGEfPXNCIPfMpNJmdyQe8AAAG8Ij99kTSIHywEQBkLlt8z0sBwA4SCEfsvM 5arluHc+IICQBxDy1TeD+K28SNoe1vsjIZcDQGBC7rdMDbAcACICv7XWA8sBIBYB9ZvF/ZGc 1pyX5bh3PiCAkAcQ8tU3I6B+01KI+yMhlwNAAOA3q5olKV0/LAdAIIHfslSeTuRkWA6AAAK/ 2VpENstx73xAACEPIOSrbwb8lsOCkMsBECjgt5wXB8sBEBDgtzwX2tZyuF0wAD4EfnO0aN9Y jnvvBwJA/xvfAJjAby4E4BvLAQC0sPx2HvyWTxiwHAA+A35zORhYDgDfAL+5gq7zwXvLce/9 QADof+MbABP4rYCBSVJLhMjlAOCAN36zeA6gnecDMu8WYnb/EO3fEe5lNZGTDZbjHhvKKBeo 7B888Jv22c3M5zvbmdIC3+ZvrRGaWw4AUDi89JtsEJrFp8Hym50/XgW1HPe/nggA/W98A2DC 3W9y27TNekomfvCbfZDLAeAZ8BsXmJaD6ABwF8/OL8jm/W9GrQnW/2YaOSwHQCHhdf7UbLzZ lBb4wW9OOh9csRz33g8EgP43vgEwwe/ffAJyOQBcB37zFariZFgOAMfAb35Dm8jJsBwADoDf XMH1zodcLce99wMBoP+NbwBMiN+ODZO2d4Xf/AhyOQCcAL/5H1gOgPyA34KCheUgOgCYwG+u 4FnnA9NysvK7Qc6W4979EvIAQr76ZgTUbxb3RwoDvrUcAL4ioH7TEkK/ZVZcaqMyWA4AHfBb oNElcjIsB4AG+M0V+HY++MFy3LtfQh5AyFffDPhNGMwsh9OsILTAb4JhtJyMg1YQVuA3IYHl AJDhN5fg3vnADMCoOLlglvNnC4QngJCvvhnwm9gwEzkZuRwIB8r9Q4bh/iGCY9NyEB0QDPgt PGS1nIx0DogF/OYK3Dsf7AdQIMsFqAWEDCDkq28G/BZOkMuBMAC/hRn7loPoQBCB3wBTcXJb y8lI50AA8cZvzOecmpWNzz9l3g3JONCJtf0AnpVJgcty1bL2NY96dImcdhqt5ch41XK6erRN wbEdQrsP+Kr9/YMHflNlZfbgZu0E1lMyQf7mFmaHqzJyORBMvPSbsazFYkpr4Dd3ydVyEB3w LRz9pr415m/GKS2A3wqBfcvJSOeAX+HrN7ntoWhw/ca986FAAdi3nLZrTqQWCEoAIV99Mzw7 vyCb9Koxzzug/81XmClORi4H/A2v86e6T21OyQR+8wCLRE42txxEB/iC37+BHJo6R8vJSOcA V+A3V+De+eBlAEzLtf6UztxyBRVdqDaB35buhwCYOPGb7gceOR1Uuogf/BZC8sjlZKRzwFvy 8xtHmxmB33g2PiwHfEze+Zt/FAe/ccdCcXI2y0F0oHA47H/zg+X84DfunQ/cA7BO5GRzy8ku pXPcWwD9b3wDYOLK+QW+lvOD3wCFu+UA0OLcb3xPLsjwm/9wbjmIDriC8/OnXMK2uD8S8AlO LCcjnQNu4OT8AvfgKX7wG/fOB98G4Irl7IjOty0QhqX7IQAmTn4fwv3IlOIHvwFrrBUnZ7Oc jHQO5IUr50/x+16QlayJnGzbchAdsInD/jc5rzt+uAv8FiBcsZyMdA7Ywy2/yfx65PzgN+6d D8EKwF3LGZ8H4f8WEGzpfgiACfwGeOGW5WSkc8AEF69fgN9AHmRVnJyj5SA6oIL7IwHu2Enk ZNuWk5HOgRZcvD4rzPkb984HAQJwaDljAB6nc+h/4xsAE+f9b7KhI85j/OA34Bau53Iy0rkQ A78BH1I4y0F0oQL37wW+xY7i5BwtJ0N0YQLnF1yBe+eDqAHYTOTk3C0nu33civ43vgEwgd+A //HAckjnhITX80+1fXdZn3/KvBuScaATa/+OoCxSmXrIzvRay9mv3yg6/6x7sMr+wYPf95qp TDY/Q4Hn1wMzCprLUZDOCYMH12cx0zbdW+MZ2GD5jfsfr7AFYPEAVv2UzixnX3Tof+MbABMP fh8SBr8B77GfyMkOLCejgy7IuOU3Cx1Z+83sCBd+A3bwzHIyjlsDiGfnF2QTDTIzOvS/gZzI w3JI58KAi7/vtTOl2Ud2pjTDD37j3vmAAEgA9hVHcSWdk1gnasPZ/nwDYOJi/obrFwB3ckrk MrM4s5yMjM7HwG9APLhYTobo/Af8BkSFl+VkiM434Pp6V+De+YAALB7AmmtV+VmOGYBnovNt +/MF158C4ckjkZPdy+UoyOi4AL+BkOAHy8kQnbfg+BSECp9YToboPMH59fXcV8EPfuPe+YAA cn0Aax6LsLZc3i3giuiC1f6e4cr1Wd5jcX8kAOyQXyInFyaXoyCjcx1X7o/E8eBU9kf+BgKK Dy0nQ3Tu4db9kdD/BoKLPy0nQ3SO8eD+b4XGD37j3vmAAFx5AGueM6YtV9AWyCo6Adq/EMBv AKjkncjJhc/lKKrokNTZwYP7kxca+A24i/8tR4HosoLf9wLAJCiWkyE6c+A3V+De+YAACvcA 1rwD8NJyukeAee867jsAE/gNAGucJHKy57mcCpI6GX4DwB4BtZwc7lMS8BsA9nGiOJmr5Shh Ex385grcOx8QgGcBmCVy9gMohOVyXX3XkzruOwAT+A2APHB4uCr7IJdTEfgAFn4DIG9EshxF MNF59vxT43MAmR8xr9Zn3i3E7P4h2jwZZZQ9KKuKy7seneX8sF7apC7Xef2DB36zeMy98cmn ZlNa4If8jfvGRQB8A3CeyMnOcjlvrn718wWwTLz0m2y4hsvMb8YpLfCD3wCQfWA5D9C6Tgf3 2IwY/VYGvwHggDBYLijw9ZvctsMNfgPC4FxxMiznGA/8JpvfA9MotDzulukHv3HvfEAAPgzA lUROtmc5H66+H/DMb2bKsnP+1Bo/+A0AM7y0HNDhjd8KCvwG/I8ripNhuRyB3wDwBrcSORmW sw385grcOx8QQFACKJDlgrL6HgO/AeA9bilORi5nCfwGABdcTORkWM4E+A0AjsByBQV+cwXu nQ8IINABOLecdulcLMe9/ZnAbwD4BBcTORm5XJqA+s3i/kgABBd3D1fl0FuOcf+QAef6329a 4DcgGLCcWyh+K5Keh9+cwb3zAQGIF0BOirOz9IJajnv7M4HfAPAtridycshyOfgNAJ9TOMsJ Lzr4DYBA4LriMtUKbTn4zRW4dz4ggDAEYJHIOVy6c8txb38m8BsAwaIQh6uZmoXL5eA3AIJI gRQni2U5+A2AgFK4RE4WxXLwmytw73xAAKENgFquQEu3bznu7c8EfgNAAAqXyMlBzuXgNwDE oKCHq3IwLQe/ASASsJwW+M0VuHc+IICQB6BbekEVJ2suf/DPAyCYGP1WuPsjMZ/mrHvaKfP5 p8y7IRkHYzujjHJoy7pErnDL8vOlXrz8pn2rCs04xg5+yN8A8CeFPlz1OX7wm6xJ58wmtgB+ A8Ca0CoOfnMF7p0PCCDkAWRdeqETOe7tzwR+AyA8hC2R88ZvzLMGctuzDGZjsm8y+A0A24Sq R45j/ibbPn+aZXvBbwDkSEgs56XfCoQf/Ma98wEBhDyA/JbuouK4tz8T+A2AMCN2Ige/AQBE tRz8BgCgiKc4+M0VuHc+IICQB+DW0vNO5Li3PxP4DQCgQ5hEDn4DABgRo0cO90cCAJgRdMsR vx0LoN8s7o/EBe6dDwgg5AEUdOl2FMe9/ZkE1G9tGt8HfgNAbAKayMFvAACbBE5x8BsAwD40 kQuK6OA3V+De+YAAQh6A90vXiY57+zOB3wAATvBzRge/AQBEBX4DAIgK/OYK3DsfEEDIAwj5 6psBvwEARAV+AwCICvwGABAV+M0VuHc+IICQBxDy1TeD4TfcHwkAIASM+yPBbwAAIfDSb8zn nNp5/inzbkjGgU6szZNRRhll78v+gZffmGO0T7EP1vPruW9cBBDyAEK++mbw9ZtsSOqsJ2bi B78BAHwId7/JbdO2rBMbgd8AAEzgNwCAqHjjN+ZZA7lFYkatof8NASCAAC3dDwEw4X5+wc75 U2v84DcAgA/B798AAKICvwEARAV+cwXunQ8IIOQBhHz1zYDfAACiYvRbGfwGABCCjN+6wm8A ANGA31yBe+cDAgh5ACFffTPgNwCAqATUbxb3RwIAAEpA/aYFfgMAMIHfXIF75wMCCHkAIV99 M+A3AICowG8AAFGB3wAAogK/uQL3zgcEEPIAQr76ZsBvAABRgd8AAKICvwEARIXlt3Pht1zh 3vmAAEIeQMhX3wzit2NF0vZu8BsAQDTgNwCAqMBvAABRgd9cgXvnAwIIeQAhX30zvPSb2ePp sz7/lHk3JN3AbGeUUUbZ+7J/4OU35nhtIadHPAMAgBGOflNTNdVmZkkdAADkAd/8Tac1+A0A 4CLcj0+1h6LwGwDARbzxG/OsgfYj7VvjSAAAyAPu+Zts4/wpAADkgQC/fwMAACbwGwBAVFh+ C9j9kQAAgIlyf6Rh0vYg3/8NAACYwG8AAFGB3wAAogK/AQBEBX4DAIgK/AYAEBX4DQQaXOoC LIDfQKCB34AF8BsINPAbsAB+AxQ7dz/QjjS7sZVugqx3S7CY0qxaXcEYj3FeaDCcwG+AYt9v TI3k4ROm+uw4SqdWO/cPhN/CCfwGKDb9lvUmzNa1ZZ3GpqOyehV+AzLbb7h/SBjx2G82bwao +4j5KCLm7PAbkKnfiqTncX+k0OPQb7KlmvJbXB5df/Ab0AK/AYpFJ7+d40Rj2fr8Qt4ddLrZ LfrimGUQKuA3QDHaSTveeHbSvveyLs56GuaimdPYGQ9CBfwGKK4c0JkdHtpZYkFXB4QT+A1Q LHKkPCpx5fchbq0OCC3wG6Bk7TGzWUmutbmyXItIQJiB34C7+EQsPgkD8AV+AwCICvwGABAV +A0AICrwGwBAVOA3AICoWPitrLYBAACCC/wGABAV+A0AICrwGwBAVOA3AICowG8AAFHx2G8l /++F5uZm7mstAGhJALICvwUUtCQAWYHfAgpaEoCswG8BBS0JQFYC4TfJMHBvN+7k15IAhIpc /VZie2DPnuO3ktps586d5HXbNgX1bUgsd82QNQTnLQlACMnJb0tzGZiKKzH/Vm4z+IqMaU4P 25RB0rCNjrdYr5KBkk1cbEwzF+UdGKnt8mk/gd8AyA/7fiPKeu/gIZuYKa4k9/zNzG/W+VvJ wIwbyfDS2++WSNLAgQObI7tP7S7R4qLfLFxkFpj1YF2hdUuSZuO+awHAnVz9JhFTlEiZcvoN 03tUbuRVV0kJ61tJMzezV7XPTT0+tXNw6rHfbMqtzLbf1ApJmRkksyUpRG6UMlbXJboxQXgw +u1w//Os/ba0OeO0L3V5n+Dcb1nZpvWaIrptWWcxakRxcUmJTnGu+M2+3JiBvfzyywM1A5Xb 3N/8mcotV79pzEYtZ6pT+A0IT8ZvXe36zf7xaa5+Y/a/ZR1jhl4jJRJTcc79proov8BIE1Gn qQN5q5VbHn7TlqnetrUd4DcQEnLyW67nF9zK3/KgjUZKJLWgU5x9v5EsS7t25G1Z7nLTBUYq GTlyJG0QneLauDnH41MtquKQv4EQEpb8TWM5qjj7flPNpsu7yFAZj+UkN11g1GNlbeVmVJwz v0lUcTt37tQmb/AbCAP2/VamUZzuy6774mtPoepqKOGbvzW3Hqja95v1yjoJzBu/pVXGyOLg NyA8OfmtTHOUavGV1w662UtyP39q9moN+zSlVnTpQ9SsfqPJm2oh9RSAurL0QNU+Rr/pBnVB Lvot/YtofQoHvwHhydVvFPqVN/a5NWdLaUq45G86szU3E7PZ9JvO5Dq/ZV1f68A88xtzgN+A 8DjxG3PI228F738zyC0nvw00DM79pp5fMMqNfOSW3/D7NxBawpK/acyW0+9DCuo3OrtOceSt 7s8H/AZAfoQkfzOaLVe/aS1nf32zBtZs+H2vNnPLz2/WToPfQHhwJX9rbpvLWcxY4mH+Zsy4 jIP98ws6v5WlDyQdnl+wOeThN3VendC01cJvQHjcyt/UMXn4bVthzp+6df+Qwv0+pHB+Q/4G QJnbfiO5jfXiSgJ4Vx+L3/fmmryV2U4ssyaZQWxJADwmb78xh6yLK/Gq/811mNdn5YH9xNI6 ybRoSQAAxei3I4PO99v9yUUCfgPAM+C3gIKWBCAr8FtAQUsCkBX4LaCgJQHICvwWUNCSAGTF wm+5/kwLAwYMGHw1eJy/AQCAZ8BvAABRgd8AAKICvwEARCUnvxXiAm3/XPTthxgAAC6C/A0A ICq55m/MMer4vPMf7SwWtZmVc6pfO1Jbv1kMZlHpxnDflAAAHSy/nZuf3/KWD3Nea9vkugiz yO0v0WwamA0A30L8dmSo9OseLvstJ4xJoM1l2V8i/AZACHHXb/l10Zv5TVebH/ymCyynGAAA HpOr37I6R53SfgxZ8zfmBDktxSxyXf3WWrMOGwDgN1zM38ryOr9g7bFcnWNnKdqRxvp12WNZ W+8x58p1lQEA3uDQb9bj7ZB31pf3UoJSMwDAIS4en+aHRf7mIsbIXayZ+0YEADDJyW9m4DsO APAhrvgNAAB8CPwGABAV+A0AICrwGwBAVOA3AICowG8AAFHR++1bUuXQNBOlPaMo7faOTjOm vSmjM9OQien0agEUmpbNBApHO1BgCrXtiMrKZWnXAOkn39T7bXeRMoFqtrIJEqW8uB2lcopU XSxVTclwYnprmUI+BSDoVI4FhWSiVD2R/VH5KKn8pjRFGY4Ma3l7UwY6hrweHqJQdn369Vql QF6JyuquV/z2Q03+Vj8xvWVnSDWzFepnSw3zpFOLpLMLpTNLOlAal7XyOWFFOx1fLJE+u6Od wiIJFI5/gALDfRMLzrx0I8+TmuZIiVulT2dLyVuk1GwFUmicKTVObXmlhRY+mSqdnqS80k8/ naRwepwept9OzZbOzs28nlnUgZC8LaOyz1acQ/nHqgx/X9nByD9XtCd8Tu0HCgb5OwKAW/x9 acfGny3N9THK/zgZJXOReR1WcrZkaeq2jlR6qfkdzz6TeyUN0U9+svTM5I7UdXVj9X6r0vgt sagd0dpnS9oTqNmIzb5Ye67C+gz/XHeOSvP6DhnWZKCWc8jDnb9McKUqAIAFiZ8vPXNk75uz ev1p+AWvjf76/4y56JUx33hl9EWvjun02thOO8Z8beeYC3aN+fKbo8/bOeKcncM7vDm83Y6h 0iuTu58s20PmdV4JESMxJMnoGkuW7i091Wv0Hy+4+ldf7/fCRf1/+40Bv76o3687DXih04Df fa3/7y/o9+KX5ZfO6/vyOb1f7NDrxXZXvSxd8fvuN76w50AdURzN6Iz5m+o3IjfqN5on6Mz2 z40GTBTnlPRA/OZahWLB/RsBRIIkURULelV8t1PFzEurbu1xYl7PyvlXnph3RdWCy6sW9Kha 0C268NLogotr5neKzr2wZvb5NTO+VDW53f4x0l8mdyffU1cqoX4jlfS6+aNO1+++dNjuHqP3 9By358pxe64Yu+fycXt7jP2425h9l445ePHIg51uKr2w6OD5N5R+6dqD7fp9LPV+o/uNvyWV 2PEbTd6I3Mjx5udrFb9RiTH8Zi43hw2u+o37pgdAeMh37eSUC0/P7fLJ7b0+WXbNmZUDz6wa dHZV/7Or+59dK5+9q/end/X8dG33xtWXNK7o1Lj0gk8XnfvJre2riqVXhkiq3xxWQrs9SeHC wWVdRh3tNenYNdOOD5xZMeiWyv4zK/vPqpRnneg9s6rn9Ej3KZFLJkU7jY9eMCp67rBI++sr pWs+li7/DZlX7Y6jfqPnT/d11xyfLlQUR/y2bds2KduQ8RsV2qp2CppGoweYKrrx1lOqfrOe PetHzAnMAuC+mwH/wL1PzEsUM8z6RuPino0r+zeuuyGxsSi5sShx99DEPTckNg1O3jsgdW+f 1KaeqXu6p9Zf0rTm66llX2lc1LFmevsdRe1o6uW8Enq6gRS+ceOxnhMr+884ccPc6qIFkaKF kaELIjcsiA5eEB0wv6bP3FjPW+LdZ9ReMqX26xNqvzI63rEo0n5gabsr/0D9pva/vdM/47fS y5XzC7GJyjlT6jeSwhG/kemltGeYr1SAaqqmnj/9In0KVdcBSAWijqdlinFKm7PrqqJvjXXq 5tWN1M0IAIX7CVwvUcwwp3PjMrlx3ZDEppHNrKFpS++mzVc0beratOGbTasubLz9/Nisjq8P b69NvbJW0qbCtpXQc6mk0Pmm4/LUE0PmVY9cHHl5VyMZM2pJzYglNUV31Fy/ODZgUbz3vNor 5tSR8dv/krxwfO35N0U7Xneo/VX/RcbQk6fxEYrf3uvTxm9EevVTFb9RxSn6Sodh9qpMkFac cg4ifTIis28skjLGaDkX3CqitmWLj1wv25kYgHCiqGl+t8Y11yXuGZm4/2amjlLf69u0uWfT pm5NG/53avXXyQFmbM5Xdo44R/2mGytJPTAh+cD45NYxyW0jkluHprZeq1aifNq2kk9nKz/5 IIVuYyqum11F5HbznVF16WOW1Yy4Mzb0jti1i+N9F9Sp40kKd8Homq8MPXTO1S9SvxGPEb+R A1Lt8SnxW4QkdTOV37xRxan5m9mB6rb0QArEbCTfoxAxqsagpyp0Y3Sfmn3ketnOxEHiVgkA t1D0Qo4rNxQl7h+f3DaZ7bctfZvuuzK16dupDZek1l7cuLxTfP7XXh+tfLPMKkk+ODm5bWJy 67jk1pHJrTemtl6nVqJU2LaSMzOlM2m/kYPTogXV4++MTl5VM2V1jRrAyGWxG5fErlscV8eQ Q9SLJ8U7jYt8bXjZl/sqfiNmo3Irl6U/9271W3mR4rfozMzPeqnf1Dxt586dRHW61xa9SarZ 1NWkxjg7V6Jox+g+Vd9qFWQxS95lOxMDoELSifBAvgKNS69O3Ds6uXVy8qFpyYenJx+amnqw OLmVZF+jkg8UJbdcm9rcN7XpytTGHql1l6bWdG5c0Tm28OKd477anE69jJUofjOvRPFb20rO pH+7SwpXf/fE6Nsjk1fWTFsbm742NnVNq+KKlsRo4UzjFz1mxC+dEu9cHOs8IXLxyENf7f8S 9duJmzLXZ6l+e+/bynUNit+mtl62oM3fjHIjr2r+Rn8JTPeKU7NbjUHK6lsyaN/ST+lrc9tB O9LFsp2JAQgnippWDkh8b2Ly4Rmpf5mVenimYrltxcnvjU9uGZncfGPy3kHJe/qmNlyZWtcj ubZLcnWXxhVdam7r8vr4i7RfbW0lab+ZVqJ82raS+qlK/xgpDJhRNXF5dMZdsVnrYjPvihPL Fa9qVRwdrpwZ6zEt1mVyTZfimi6TqruMLb1ooNL/VpW+zrTsWqXPjfiN/j5E67e6lhTOfv7W ML9DhnnKvKox6tMXeenQCkedRpu/6SbLe7xumqwzMqP1LWQzAeAWiprWDE4+ODX1yC2p788h r8kHpyUfKE7ePy5534jEpqGJjYOS6/sk116ZXH1ZcmW35Irun67oUbO4x46bLybzMitRDGZe ifJp20qI3KJpvw2eUz11deyW9fE5G+K3rItNW1NTvKJmnKYvrs8t0SunRy+bEu1WHO1eHO0x uarHzaUXX/sH8hE5DqUXou79jvTClRm/vfotad91yvWqVVOUK0/jc6TaeTnkb1q5xee0GsOs JdXBbIxuZNbxedSpG2kWLQBhQFHT+huTj85JPTY/9YP5xE7JB6cnH5ic2Dwuce+IxMYhifWD Emv7JFZdlVxxeXL5txPLLju7vGfN4p47Jl7Sxm+aStJ+M62EfKqrhN7WgBRunF89Z2N8/qb4 /Hvic9aTQ9SaySujzW2Hq6ZGLv9u5NuTqi8rru753RM9Jxy8ZLDiN3p9PbEZ8RvJ3753YRu/ lU9QFBqdqWgq1/yNKJHMpfUbgVRF0b3NG7Vym+PzrhCA8KDY5r6xqccXNT2xOPXDRalH56Ye mpHcMjl577jExhGJdUMa1wxKrOybWN4rcecViaWXJe7seXbZdyK3f+e1iZeSeZmVkLcWlSgT t61EuZ3IRKWSsUuiizbHF2+Jk9e5G+Mz1sRUrQ2ZV62WryiuumxiVc/iqu9MqfzOpAOX3vB7 1W9EbuSYlORvRr9Vz1BCpX5rtpe/1c5vT81GoPce0SpOPR50a0NY+M3FCgEID1RNTT9Z1vTU iqYfLUn9YEHq4VuSD0xJ3jchcfeoxLoi5VcfK69JLL86cWevxNKrEst6n13eJ7K492uTuuj8 plbSnG3QVaLck6rFb8serF3xcN2SB2oXbGo9WzrqtkjR/Mh1s1sVd9Xkqt5TqvpMrexdvL/L Db+jfqPJm85vHw6W9g1V/HZiuhJq7FaJpm00T9vJGtT8jUxMoXJTV1Y7uLghXKytEBUCQZga IshXIPlAcdOza5pK7lLs9Pji1PfnprbNSN5fnNw0LrH+psTaIY2rBzWu7Ne4nCRgfRLL+55d Lkdv7/PqpK7K14dVSXa/ta1E9Vvxipo1j9bf9Vg9UZw6cfGy6Lg7IjctjAyZWz1oVpU6vu+0 KnlaRZ/i/V2HKH4jciO810fx26+uyPjtt52Vaxn2DVfuY6ncvnJGxm/0y9+SwjEGKjim3wAA QaE5fa6z6Rf3NW3f0lSyrunHdypHqY+ke+HuL05sGpvYMKKRKG7N9Y2rBjWuGtC4sv+Z5f0i i1v8xqokq990lah+m7Y2dt+PG7Y81bDusfo3difJGKUXbnWMKG7sHZERacVdP0fJ4l7466f9 Z1b1m17RZzLDb2r+xvQbPcWg/TWv2VWo8BsAgUZR0/dnf/abH3z2uyeafrlVUdxTK1L/dkfq sQXKuYaHZiS3TU1smZjYMiFx7+jE3cMb1w85u2pQ9W29/2d85zZ+c1CJ6rfZG+M/+PmpJ7af 3vrMyXXpLO6O79UuuDc+Z0NsxtrY1NU1E5dFJyyLjr49MnxRZMg8ks5V9p60r/N1L1j4bdcA 5c7kh8ZJR6ZLFbdKEeKrBVLtAqnutnYq9bd1oIXa+e2V1/QECvPa+A2K8wDyNwgUlBPTQwQx Q+rJJZ+9/Oznf36OCKrp+c1Nz61vemZ100+WpX60JPVvi1NP3JZ6bH7y0TnJh6clH5iU2DTq 7JrB1Qt7vTL2m2ReVyohmRX125Kttc/++pPnXjhDLLf5xw3rf1i/+pG6ZQ/WLnkgvnhL7W33 187fFJ+zMT5tbc2kFdFRt0cGzznRa8K+bw5U7h/y4WClq814fEr9tndMe+I3reIUjy3OvNYv aUfIKI6O1MhN6zfuOycADuHuHI/91vTv93z2hyc/e+nppv98pOnf7256dk2KeOnJpYqXHl+Y +uGC5L/OST4yK/nQlMSWm0n2dXblgOp5l789r9/fG6KuVKL4bYpSyT1PNDz5y9NP/+qTR547 dfcT9WseJXKrW7q1lsht4X3xBffF59wdn7U+NmVNzc3LoiSFGzCz8vKxe/tN/NNndVEiN3Io Svz2ymWtfiMF4rcPRkh7J7XT+Y14TDWbFjqeKi5GwVEq8jeB4O4cL4k/tfSLaHnTcxtSjy9K /svM5APFic3jlcvkyYHkhmEK64YSGlcNVFjRr/GOXqfnd6+8c9DZo/vIvK5UUpX2W82TS8tP fL7hh/WL7q+duS5WvKJm/NLoyNsi5Gh02EKFofOqCQNnVRH6Ta/qVVzZfUz5oOl795WdPv7o UiI3ArGZ1m/krdFvFSZ+O3mnpKK6rvVw1XCsCgDwOdE5HeueWUqSqKwnBXQDmYvM67SSp5dW zepI/qYQxVVM60gU93l9zpUQue0e0pHmb8Rmf+6t9L89/82M38onSB9NlKjcmH5TnXZ2eSs6 151aJFEa5oHCUgtAwFGP+LSHfvTYhCaE9Ig182TSCRKlTMOhcQr7RynsG670sFGI5WjORv0W qa8nyRvxG9WaVm7UbGdWtack1nQwg3yqfXqg+khBAADISsPtCvQkZu389gRjZ5eu96BVgBrd kQLRHVHcbzsrZlP9RpJDkrnpDkKp0z5f2+GfG8/9YoNEn7NAy/QRDHQkLWRGpp/U0PpQBgAC SOZ++6Aw0Bam9qDqoHy+Qnk4Ak2QEovaKffavTV9R8q5mUdfkbL2OJE+oLluZua+E/TohgiQ KE6551uL3wh7JynabLzzHOI0oqnmzZ0UHvqWwg96KDxxVfOTV7fydP8M2pEAAJAVIhOK9u0j l2cgZeocFTJS+5Z6SYXKanMn+rC/T2crV2NRral+o4ojEMUpCZgqN7q4x9Mq+/EQhWeKFJ4d bgqdABQOi8YHrsB9EwuPscGpW9RXM4iLdFArbu70j1Xn7BuunGJQnab1G+WjiRIVnXo8SyGH uuSYl/5upPXXcQsyFzvQk6cU7rdHEx7ud0QUHvWWEaAQ6HZm/R6evtdlNP0am5i5SFZ5ANZU 5TF/pFA9UblfJaE6/Vb5aKLy5AUiN53NiN86pC+z+v8AAAD//wMApU54lxC+CAA=</item> <item item-id="71">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAE13SURBVHhe7Z0J2B1Fme9PQEjUB0aJ 5pIBgsgqApKAshn2sIUgW0CEhEUSMGyyuCGOzDiMIwMzbowX584deOY+3quijA7jjDMIYZfF SViykpDt+/J9WQhbNhid91Z1nzpfnf6qu6r7VHVXdf+/PJVzTi/V1W/96/31W1Xd3SL8wQKw ACwAC8ACFVmgxY+7bl3fsNSa/DsacfrcKLVOXhCn0xYOpTOXU+ucFdT6TB+1pg90Pkdcupb9 XsN+s2UXsU/+nX+K9Ol11EKqoQ02sHNCqp0NLhikFlK9bDDM//J2q/DLZ7FlUeqPPycznx59 Zyn6zpe1l09eRa2TGAt44t/5+iix9ScxJhzzgpIznD/DICTAs/0VG2nkDX+g0TcT/fGfxWnP 24j2vZNo/B0sfZ/oyO/EaeJdcTrmB/oktsXnkN3qYAuTusc2+vbhm43qoE2cw3Bfo9IZt5Pw 5/Kn8PNpnxEPFInzgifOkO2v/n0Eotb4J7tgNAxCHEDbTFtDHEDbXP0Gjbzpv6MMZBDt8S0i njiMPvrt7sTBJFJyHX4PtxdsAptAA9BA2RrgvlskcWzxW4BDBBzC38uffF1yuQhU5E/BDv45 8ro/RKn16beoddRQVNQFodZxz1DrzJWsi20xjZixLkqtK17tJA6lba/dRNte904Ep9aNf6Bt b6Aoid/8U14nvvNt+fftr2frWXQl9sNnbD8k2MBXDYy4+r8JqV424FrjdSp8OP+U04hZ79A2 M96mba/cSNvOeINGXLKJWhe/yYZY2p8Xvhkt6yy/hHXniXTR+vg7334q64YT3Xx8OU/nsq66 E16k1sQlUUQ0HEJsHKj1mWXdiY/3XLamAyUOI5EiKGlSBC9+MnJiJ8ZPDgk2gAagAWjAEw18 dj1ty9OlLAhhY/u8V4ynaHz/06vjNJWNB4nEgSISnx/AE58rwNKIKUvY/AGe2DwCeU4BB9Bh z1Jr5592Q6g14ZF4Bw4hFgl1kgBSG0QyjDpR0ucY8eQkRU98myiiSpJSUBGf8dVBLVJiAoo8 GQXfuyfnwB6wR9Ua4GBRJQEaDhcFWIbgIkFGnrAmgMNhwxMfB5r43FDiAOK84emD9wxFQp2F rEsumg0nQJQCIdFdl+yyE9CJlvPoScyUEzPkxEkLquJz6AoDtoAtoIFaaWC7C/pp5l1rqX/9 f/U8+Znnw/MTEYnVvL/P8j6PDcVw8LAhme3OXkYzv72a+te903u5v/kKbXckgxCHD5uUELFm /3+l1j73JSC014/ilUoItadgM6iISEiGUGf8SKzvgIeRNpq6LSVVSCeHd/jeHe6GZA85NMf3 oW6K0G0hrobxORQZGNpi5vcGaUn/H+jGH26lS+7YQlP/fDNN+ZPNdMrNm+j4L26iE7+8iY6+ MU5HXR+nQ67eGKWDZ22k/S7fSLtPe40OvWI5vfDym8TzE9GJk7z5nADWlcYB9M4KNmbzVzfS mq9eQgPXT6XVs6ZQ/8xTqO/S46nvsydS38VHR2nVRUdFaeV5h8TpnINp+ZT9aMmk3WnuOYfS awtfoJkMRBGABIQ+/Gtqcebs+DUpEmL9cxGEWNi0zaRkJBRDKIpqRHTTHiOKAMSWd61LRj1y fyKHUOiNEuVHHTZJA4YOt9N1g+07oOAe9ov/ayt9+/636fu/fJtu+79b6Qvs97U/2EpXfncL c/Zb6LK/3kIXM0BN/6stdMFfbqbzbttMZ/7ZZjr1lk10zBc20YSr3qQ9L1pFB1/0RBRRCTs7 ybs9nsPzXn/nF+m1f/w2vf6j79OGH95G6+78Aq395rW09k+vpDVfn0lrbrmMBr9yMUvTafAL F9DADefR6mvPpP4rT6W+S46h5VMn0NyT9qRfTT6Y+te+PRQJHfBbaukgFA0i8e64qCuuHQUx sAjYiE8xeCUGsLq63rK630K6ukdZzSOzJjnmJp0roJI7ApJBMYOB5gcPvE0//Nd36Fs/eZtu vmcr3cAio2vu4iDaSjP+JgbRpXduoWm3MxB9czOd/Y3NdDqLmE740iY67No3ab+LV9EHT/p1 HDW064N/t543h9Dk5dFx1nx9Br3+4x/QG/f9kDb8/bdo/XduZpHRDbT2tmtoDQPR4J/MiEC0 5quX0uCXptHgTRfQ6uvOpv5Zp7NI6QRaccFh9MJp+9FPDvlgXG7eHccTh9CHWFJGQjxU4oNI fJCJF4Y3tPZTD2699VZqtVqdlPwtr+t8RzecuQMH7GAraKB2GuDO99N/sTmCz50/e5u+/o9b 6fq7t9Ks722lyxl4pnPo/MUWOpdFPmfdupkms+jnNJZ4Nx2Pgo68YSMdevWbtP+lq2jnU/4j duZtnTjJewp/0kEMocGbPh3B57V776RX7/o6rbv9elr7jVm05muX0+CXp9PAjSz6ue5cWn3N WSz6mczSaXE3HYuCVl10JC0/71B64fT96b5P7ByX+xOMLTwJCPExoWHdcSkQ4sBpP1gh+ox/ p/91AAUI1a5RdU3PhNNE/UIDmRrgXvJsBpiv/MNWuuXeGEBXfIeND/Gut9u20Dl/ysaIvrqZ TmIRz3FsXOjI6zbS4ddy8GykCSyNv4qNDX3uDTrgsj7a7fQHh0EomXemY06sVOYtQWiARTXr v/MVWv+9WyIAbX7u0SiHgRsYfK45h0FnCvVdfhIbFzqOVl14JK264PBo/Vv/fh+tnDqelrGx oRfPOIB+duRuhhD64wfjUIndyRpN1eYhHxcYAwmHyuzZs6MkfxfL5M8IQCJqyoCQyliuHZw4 puvj8PzLPFYZ54NjSPdGNM3ximeF4XPouWmGtuB+gE9E4GNAn29HQJfdsZUu5NHPrVsiAJ38 pc107A0cQJvo0GsYdBh4DvzcRjrgc5vY5yY6iN3+csBn+4cg1D62Ku88EFLmLUGIT0RYx8aA 1t3++SgCkv9iAJ3MAHRsBKCVLOqR/1aefSAtO/sgenFKBoSGdcdxCPFQ6dj23G/eFccbG3tw 4VDkE0dB/GFzHDyqT75eRELRTU7ygw/bM+NEYd+z8zdIpDKctnxclVO1WQbdseDUG+zUmwax Bp8v9wMnfWVTNPbDu+Bm/M1Wmv6tLXT+N7bQmQxOp32FjfuwbreJbFbcJ1gE9LGrNtFHGXj2 u2IT7TtzE+1/5SYGI9YdxyKhXU//zbBIKJl3Hggp85Yg1D/jpGjsJ+qCY+M/g1+a3pV936Un UN+0ibTq05/oBtAZ+9LKM/en5WcdwCC0P/3siF3jch/Ohnk4Yz7CJr7xMaFh3XFJCHHadkEo es5pJxJKA5EcCW07jd15y1L09Ow2jJIAkp2xAJIrB60Dg259nnLZzCvPcbEt4AYN+KMBASE+ PfuyO+NuuAu/yceAttAZt7Ao6Mub6bibWBTEIHQog9CBDEL7MQjtxSD0YQahvdnnR658kz7y 2T7aZbIaQnLe/HgmefPtlHlHT7+Ox4Q4hAZvvoQG+Sw4/nnThTRw7bldwOFjP/Lfyil70crJ H6aVU/am5Wd+hF46/SP08yN2GYLQxxmIjCDE54rzqIWDgwGkaCQ0BCEGIv78IJZft3NmU775 s4UUKUl0sU3acr5e9SfnnbXexvFUx+JgTTtHLE+vf9gGtqmDBrhf+SSbXMBnvPGZb9NYFMQn IvCxoDNYJHQyu1/oODYJ4UgGokNZl9wBrEtu36s30Z6zNtOHPreZPswiob1ZJLT3Zatp7OSH Ymfe9peqvPkyk7z5dsq8eSTEEv9bNe2T0Yy3aObbF6dFY0Grr2NjQVedofS1fWftS32f2pNW nf4hWjXlw7TiU3vTvNP2pvsPG9sNIREN8RtWuyYm8PCIh0v8XRBRFNR+8Bx7nIw8MUGMCeWJ hOJoKAZRF4Qy3ikkb8e/R868vf2wLrz2cnkfvo34E/sVXa86Xp68GvPupJQLijo4E5wDoFhE A9xPHMYinLMYdM5nExE4gPjn2XxCAocQGxM6jnXJHcUmJhzKQHTADZtpn+sYfK7ZTOOu2ky7 MxjtMest2oNBaMypwyGUzJsfzyRvvp0y7/a7gyIIsSnWA2zm2+AN59Mgnwl3/fnsPqCz45tW rzi5C0T95x9A/efsQ/1nfpj6p4xjaXdaecYeNP/UPej+j4+JIcQeWNo6chG1RDTEu+NG/1W8 LvovCSHu2NtPQy0cCV3CHsrHUos9cTVK7IVn3RCKX4Am/4kXgiW3iyHUvW1ymzJ/5z1W7V50 hpfX4QV+0IBWA9xPTGATDSZ/bROdy+79Oe/P2VMT2HgQn9U2hU3JPuVrm+l41i33yZs306Gs a+7ALzII3biF9rh+C+3KYLQrg9Gu7MkJu166mnY65eHYYbftrso7gpBB3nw7Zd7tl9jx9SvP nUD9n5tMA58/lwHoPBr8/FQ2JZtB6OopXT5b/BiYug8NnL0HrT5jV1o9ZVcWEe1K80/alf7p kJ3ich/FetiOYrf+cAjtOT9+dE8XhHbnD5ljpOKREB8LEhBij+MuHAldupk9jXVz/Lhv/ghw lrqct4AT+0wuV20nL5MjnQhQBnnojpFnfZ5tOxCWzhfL2hcmsMnQRZqvtuDvf0EqZAPuJz46 c2N0388ZX2c3oTJAnMNgdBYHxZ9uoVPYshNYmsiioo8zGB148xba50sMQjdtoV0YiHa+liUG oTEXD9AfnTy7DaG4PlR582UmefPtlHlPZUHDWa9Hea/41Eej+35Ws+43Dp8B1hW3+tqzugA0 MGNi5/cfNr5Bg+fuQYNn7kIDU3amvtN2pgXHj6Ffjv+juNzHseGdY9msaw6igxhrOIQ++N14 XfQfhxBfGUGIhd48CuLvg+hAKN5Ud5Nq1+w4/j6KNogEjGTnLd5HwT+Ty1Xb6bYpc33eY8nn Wtfv4kIDn0MXXbBFs23B/cTel71FE2/cSKd8lYGIRT9ZfwfewiD0la30IQaisSwiGnPdFhrN pmu/b9ogvefEh2OHLV3Qq/I+g3X1TWbHOZnB7XiWPsnSJ76+heS8eT7KvDmEWOJ/yyfvTaum T2Rdb6ew6OcMdlPqmV1FH7jyeBqYwcaNLuueHbfmzLE0ePoY6jt5NC085n30iwPfMwQhDiIe ESkhxMOjCEIMQDwkawOIO8zkzapxSeLZcsnPGELxkxW2vTJ+MRJPIy6PU+uStzsnwr+LJDt1 eZsoymlvp9umzPV5jyWfK74P1TtsAVvUWQPcT4yb9lY0/Zo/sPRUBqJMCH1tC+1981Ya96Wt 9D9u3Ervv2YL7cAiqfdeMEDbH9eOhCR/qMr7tD9hERaLrCYx+BzHYHQU+/w4h5CUNy+DMm8e 8U7dGBVx2aRxtJJNv+677HgGolO7ir36ykk0cMVxNHD5UQxCH6e10w/sWr/mtPfT6hN3oAVH vZd+8dHtY1Kc/FrMFwGi6FUOciQkIDSZv7wohhAHEI9g5DGhLADJkdK21xJtM+u/o8Tf0sdT awZ7ex9LHEaqPzEBQF7PlwmAZe1XJE8ZJOIYYlnyt7ytKFPyHOTyy+WRy4/vQxcksEUYtmhd 8nt2IYhUxAbcR+x8wVt0EHuh55HXMxCxCQhZf/vfspX2YhDajUHogwxCO169ld792Y3sNQsD tM0xD8fOvF0XefNOHleZ90XsouiCrdGmrxy7M60466DoETwcRBsfeSBavnrGCSwdR6svn0gD lx1Og5dMoDUX7U9rL9grWr/53+6lNafsSP3HvpsWfGI7+qd9txmCEAcRh9DhDEb88T3Du+NY mDSZAYgPfLUhxKMYXRdc8rlx/BXePHEQ8SReDSygJD7lm1XFd3kb1TK+Pm2/JChM8syzTda2 urImzx2/4wsUJP9tIC4e8RlfROdJ3Cd94Ly3WJdc/AieIxiIJrJZcBNvYhEKu0n1CBYdHcbA NIFNSjjgyywKYt1wu3+RdcXdsIXef+1Weu+VW2i7SzbSNuesphET27Pj2mVwkjcHHAMR/1v6 yQ9EXXIrzh3PnopwBPWxrrm+i1mafhT1Tz+CpcNo9bQJNHDhATR4/t605tzdiXfF8Sho8MT3 Ut/E7Wj+IdvQ/fuMiCF0OouyRDTEIcQfE9cFoT+eE/fVtSEkoqD4PePv0LZX/Rdtf907NPK6 P0SA4WnkDX+gkTexz0TqQIi9x5y/yzxKbSCJTxfOR4aQi/yRp/8OE3WEOvJJA9wn7Xjmq7Tr ha/Rfp99nT525et0yFVvsGfDvUHj2YNJx1/zJh10HXsiwufZvUCff4t2v+4tGsse3TOaTUbg 3XAjL3mLtvnM6+zeHeabj4yfoi3Oz0XecpS18LAd6eUTdqWlp+9Hr5z9MVo29RBafv6h7BUN 49nDScfTivMOYs+I25/6ztmb+s7cnfpPH0v9p4ym/hN2oL6jR9Lyw7eh5z/Wop/sGQ/dRBAS IOIQGtYdp4CQAFEEIZa2v/r3EYSixAGUAiEOJRMQJcHU628ZQr3mhf2HXzjobOJT40dZACMf NND/6u9pv+nLaPSnltEuU5fRHp9ZSXtftIL2mbac9mKfe05fSXuwNI6lXS7upzHT+2n0tNW0 44X99G72wIB3ncsioDMYgCa9SLuf8W9dEHKRdxTlsWiI5/27U/ej5w4fTc8dvQvNOXEPmnPy 3iztQ3NO2ovmnrwnPX/SHvQCGzeaN2kXmsdmwc0/djTNm7gjzT/i3TTv4++i5w8eQY/u36Kf fnL3GEJnbRwOoa4p2gkI8SnEcjQkIqLtZ72thhEDkgCPDkAuxZHWLebymMgbDg8agAZUGpj5 95to7uI3aL/zHqMdjvkVvf/E39BOk/6DPjDp17TTib+m0ZMepNEn/YbeN+kh2mHSbHrPpEdo 1ImPRZMQtj1mNo045jHWQ/UQA9Cvac7CV4nnJ45jPe+/Y5BoQ2jm3Rtpw/y59C8n7kc/+ugO dN/B76efjt+JfjzhA/Tjg3ei+yaMpp+x9PPxbPbbwTvQLw96Dz1w4Cj6xf7b0y/225Ye2HcE /XyvFt3HALT2pTk087ssmjODEH+hUXtMqH1zKYcRv+E0Sny6NRtgi6IiDiORWITEoySeeLdd WhLGE5EVPuMIsy4pT185ts03tgB7hWmv7Wb+F81kzr3XPx6Z8Hx4fkILVvO++03a7tIt8Uxk Nia03TT21te7hu7fLFr+/vWs3AxA253Bpn4nx4R4d9zwSKgNIf78IP4U7fZTrzs3rl4ST1jY dgYDkkgRlOQUz4RTJTEzTkzVrvPUzGaeG2ZQFZlB5f8+mEZeu/bMZ8G1JyHw2XDRvUd8evb5 m9kngxFP/Dubrh1FMOJTfOe/RWI3t7ZOZ7Pe+KfYTh7/4ZMRkkmMCSkhxO8VYk9RbU18jlon zKERJ86lbSbFKXrjajuNmLKERIrewsrBxR98KhJ/H5H8W3xvPyAv2h4JNoAG/NfASfz+QaRa 2YD7eP7E7Kx6PYE91YC/2ocn/jQdkY5ePLRMrOefYjn/5M+I44k/j1Q8L45/54/s4YwxghAD UAShNohkGAkoqT75dp0k75/Iq2s7eR98H7JfYLbgekGqnw0iH4BUOxtU1lbFY3uGzY4bO4dG HrqYxszaQKOmLqX1axYiwQbQADQADUADVjXQOoWNDx3FoqU9fszGhO6IZ85F/wFCVg0NiOMi BhqABqCB4RoAhHBVA9hCA9AANFCZBgAhiK8y8eGqEJEBNAANAEKAECAEDUAD0EBlGgCEIL7K xIerYFwFQwPQgHMI8SdqQ2gQGjQADUAD0IBKAz1DKPnaBgGd5KctASah5uo4uvKmnbduv17X A+poyL1qCPtDQz5pwAqEsk7IttNMg1DZRrV9Xqblr+q4puXDdnBw0AA0kEcDziCkilDk6CFP IeVtTSIh1XHk/dK+5ylTFgyyji/bRWzHjyt/F+VIy0e1bZ6yY1s4CWgAGvBFA1YglOyaEk5V 9Sk72KJGSAOcfLzkcVxAKOu8Vcc3KUMa3KrqdixaR9gPTg4agAZMNGAFQqoDqcaGVE7bpJDJ bXQQygPFot1bOlhkQTAJyyw4JaOhouUtYmfsAycCDUADrjVQKoRsnYwOQqZQVEVOpmV0DSGT bkfTsmI7OBJoABrwVQOVQajXK3pTJ501/tNLGQAhNGpfGzXKBW2GpIFMCL3b4CnaOmechICt QfU0CInoJm2gX64cFxBKO76uvKqxsrTuS1s2DEmoKCscKzRQTw1EEOLvJtrtnuFP0TaBEIRR T2GgXlGv0AA0UIYGeoZQ8mrd9VV62cezVQm2JmXYKg/ygYOBBqABHzTQM4R8OAmUAY0JGoAG oIEwNQAI4QGmeLYfNAANQAOVaQAQgvgqEx+uXMO8ckW9od5sagAQAoQAIWgAGoAGKtOAMYQI f7AALAALwAKwgGULGEPIZvhlktd9/+/u6FRNtsU2/nQPoN78qQu0C9RFCBoAhBCGWwU9IATH F4LjQxn90SkgBAgBQtCAVQ3Awfvj4EOoC0AIDsiqA0IkBAcUguNDGf3RKSDUMAi1DrmbbKS0 RgwI+dO44WhRFyFoIBNCo8YvojGzNtCoqUuNrpZnzpxJWSmPQUycWat1q7JceZfnKZfrbR94 4IFhNuTLbB3XBoB4HoAQHJwtTSKfZmvJOoRUs/c4mPjfIYccYuxMTSBUJ/HK8EnaUIDdBow4 QHg99JIAoWY7jTq1O5xL9VouFULcuXKHalLxWRASkU6vnybl4NsUjR5M8+fbCVBnTcE3tV3W cfm59PrXK4TSHkKrW57Hnti2eueCOkAdmGjACYTkLjkBHnmZScF8ioSKRA9Zjjp5/iIKkuEg IhVxr5SwY6/RkC8Qks9VBZ8kKHt595OJ3rANHCY0UI0GnEDIxtW8CYTyjv2kba8Tn8px3/3c Bnquj6LEvydTHgipoiAZQrI9e42G0iDE4ZbsouPLVH+IhKpprDqdYj3qJUQNOIFQ2uQEW91x ZRs6K3pIg1FRCKWN1QgYuIAQz/P4448fxhu+TAXIXiGUrD9dN5zrd1SVrSccD7CABoY04ARC TYiEkucoYCQiolAgxKMdFYB4IxGTSZIRESAEJwonCg3Y0oATCDUhEmopxvdlEBWFkIBbWd1x /DhpfzKIusZwLE/R5pGO7g9jQnB6tpwe8vFLS1YglJyIoIuEkpBSicK32XFp55SEkRgjygMh eWKC7PiTgOB2sz0xwScIzZ49m4gBiX/eeuutURJ/gJBfjgOOHPVhSwM9Q4g7xgXzfhsl02nG 8vZpYxwmExNsGUGXT3JMKAke8bvFvhTpjqtyiraAkICfCrZJULnojouOyyOilKgIEILT07VT rA9TIz1BSAaQAIvpJ9/37rvvTr1vyARCVc6Oi3ym1CUXAYidT1EImdysOjC4nK498mNG91ml NcgkUL2BUBtAqigo5lOrp/OGgwrTQaHe6l9vPUNI96ierPW9QqgsgWZFQhxEAkDydO083XHy eWQ9tocD6F9/cmFPIEqeizwxQRUNqbrrbEdCWREQuuPq74TKasc4jp9a6hlCppFPcrvQI6Gu LjgWASXvFyoKIV1D6RVEqunmvC5UsOHLBPRsTUzgwJHPUQaQGAeSPwEhPx2HTqdYj3oz1YAV CLXubhHrWIu61jhsnt71XVHK6q6zASGTk+QOLXkfCl9msq/YJu0+IVUEVLQ7Lk95OIi+e/ae hSKiPDercgDI0OsAoYfZcQI6UdTV7oLD7Dg4rDz6x7b10ksmhEaOX5j5FG0BGQ4hnsTvu5lz 4ckVhMyfGcfKxcoRJQ6jBJBMxZx03E898cuoC45HCjaemGBaDnm7oiAq8tge+VjR+EwPEJLh I6Ii3KxaL6dSRM/Yp7ka6EBo3D3UGn1HPEcp+m/sHDKFUJEuOTFWxMeFVAI0mZiQJVxxdR1F Qokkpv6aDnb7CCF+7kVAVARCIiIyib5M6y3ZLQcn1FwnhLpvdt33BCEunl4nJqQJ0MSZZc2O E11HWRDi25g0AO64iySTvHvdhoMoz4y5IuchIh8T6JnUW6/njP2b7bRQ//Wq/54hxAURTU0u kLLE1KszE108fMpvsjuuswzTfo0gnOwGzIJer/UGB1MvB4P6RH3qNGAFQrqDFFlvy5mljTcU KRP20TcoW/UGW+ttDRvBRnXQQO0hVIdKCukcACE4xpD0irJWr1dAiHUnQoj2bAAI2bMldAlb NkEDgBAgZBXCgBAcZxMcJ87Rns4BIUAIEIIGrGoADtqeg26CLb2FUBOMj3NEY4UGoIGmawAQ wlUwroKhAWgAGqhMA4AQxFeZ+Jp+BYjzRxQEDSwkQAgQAoSgAWgAGqhMA4AQxFeZ+HAViEgA GoAGACFACBCCBqABaKAyDRhD6JAJBxESbAANQAPQADRgUwOAEOCKiwtoABqABirTACAE8VUm PptXU8gLV+fQQJgaAIQAIUAIGoAGoIHKNAAIQXyViQ9XrmFeuaLeUG82NQAIAUKAUIoG+Jvu bTa2MvIKscxl2AXH8BecgBAgFJyjFQ6FO9xksuVsZGde9DhF9+vlHAAhf51tL/Va530BIUAo aAjJjVM4fRsNNgmhPHlmlcM1JFznn8cO2BZANNEAIAQI1QZCXPC2nHCvEDJpfC62sXX+LsqG PAEllQYAIUCoNhBKRiDCIasiE7mrLNkwko48j2PPs60MzawyJqM9sV/aPlnrAQKAwDcNAEKA UNAQ0sFEBQUdZFTrTceeikBIt49qfCo5Lmb62zcHhPIAioAQIBQ0hLKcmAmAZOet+p63iy8P UHR5qwCrOyfdejh9OH3fNAAIAUKAkDSW1KsTtwGhtG7FNGjpxq90ZfLNKaE8zQJlJoRGjV9I Y2ZtoFFTlwbrqCDo+gpa51zzAEUeP9KNEek0lVUuXVegCjR5IJPnnHXngfX1bTs+1W0EoaOX UGu3e6k1+g42uSi+DKPW2DkECEGEPok1LxzSYJAFAhtOXDVhIE9XX94xINXEBd0yn+sVZWuW 3wGE0B0XbJRbJBJKDuDroozkTLMswKggqZvQkAVKOTpLRmqq8SKT7jo4+GY5+BDqGxAChIKF UAgNzHYZdeC1fTzkB2i51gAgBAgBQgFpABACFFxDoez8AaGAHFDZ4sDx/HN4gJB/dYJ20lud AEKAECIhaAAagAYq0wAgBPFVJj5cQfZ2BQn7wX510AAgBAgBQtAANAANVKYBQAjiq0x8dbiK wzkgGoEGetMAIAQIAULQADQADVSmAUAI4qtMfLiC7O0KEvaD/eqgAUAIEAKEoAFoABqoTAOZ EBqJB5hWVjF1uMLBOeBKHRqABnQaiJ+ivZRa4xQPMAWEICCdgLAeGoEGoIFeNOAlhHR3haue gpznwZK9GAz7osFBA9AANGBPA15BKO3JwHKFq2CjetowRGJPJLAlbAkNQAOuNOAVhMRJ6l4K lvX4fV0U5cqQyBeNFBqABqCB/BoICkKqt1+avKkSwsgvDNgMNoMGoIEyNBAMhJIvB1MBiRsM kRAaThkNB8eAzqABOxoIBkLJcSFV1x0mJ9gRBRoX7AgNQANlaSAICOm63LImNLDQKNefbPi/ /f7tXfcJ4TfsAX0MOWe0B7/aQ1nQsH0cLyFk+yRN8pNJZbJ91dskHUDV5ck6Psrq5qoadrVv V9jUvk11vgkQaj+uIzQI6SoW68tvTLA5bA4N5NcAIAQI4dFEeG4YNAANVKYBQAgQqkx8uGrM f9UIm8FmddMAIBQohNB37cYZwa7Ntivq3039Z4EzE0KjGvQUbYwJlS++ul3R4XygIWggvwZi CC2h1m73UGv0HZErbkX/jZ1DgFB+g0KEsBk0AA1AA+YaAIQC7Y6DyM1FDlvBVtCAvxoAhAKF EPqu3TQq2LXZdkX9u6l//ZgQuuO6nqqAq6byhQibw+bQQDM1gEgo0EgIDbaZDRb1jnqvmwYA IUAI9wnhRkVoABqoTAOAUKAQQt+1myti2LXZdkX9u6l/jAkZXOXgPqHyxVe3bgWcDzQEDeTX QGMjoaz3O0BI+YUEm8Fm0AA0UEQDjYVQ0liIhNCAijQg7APdQAO9aQAQwpiQ8wFJ9LP31kjT nBzsat+usKl9m+ogDQgFCiFdxWJ9+Y0JNofNoYH8GgCEACHnkRAaZv6GCZvBZk3RgAZCi2jM rA00aurS2jsqjAmh0Tel0eM8oXWfNNCB0DjlU7QBIZ8qSy4L+q7dOBLYtdl2Rf27qX+j+4QA oaFYyFfwoFzlNxDYHDaHBtxqAJEQxoRq39UKJ+LWicC+sG8vGvASQvy9eqqTit+3Fyd5fdry PIbBmBAaUh69YFvoBRqwowGvIKSDiYCPCkJcECpAmQolNAih79pOA0jqA3Zttl1R/27qP7gx obRISJyIvD4NSKbwGcoTY0J5bYbty2+wsDlsXjcNeBUJqSCT1i2Xtq0OYGkVGFokVDch4nzg XKGBZmogOAjpIh9AqJlChgNDvUMDYWogKAipAJPsmmsKhNB37abBwa7Ntivq3039Bz8mJE9Y yDs7LuuVDWnrhMGSgsTv27tmJcIesIfsXKCHavUQaiToZSRUhTExJlT+FVAV9Yxjop6hAb80 AAjhZlXcrGrw5l04Lr8cF+qjPvWRCaGRE/DsOF/Fjr5rN40Qdm22XVH/bupfPya0lFqqZ8cB QuVXiK/QQ7mgBWgAGnChgTgSAoS65ii4MDTyRAOGBqABaGC4BgAhjAlhTAhjQtAANFCZBgCh QCGEvms3V9Wwa7Ptivp3U/8YEzK4ysEU7fLFh64J2BwagAYQCQUaCaHxovFCA9BAHTQACAFC lfUF16EB4RwAgrI10GKvVBOp7GO7OB4gFCiE0HftxvnBrs22q6/1rwKPr2XNCypAKFAI5a1o bO/GucKusKsrDdQt4kmzEyAECKE7zmDiiitHg3wBMZUGOICaog1ACBBqjNib0qhxnuGCrU5j PaY6bCyEsl7xYGq8KrcLqT8YZXXjFGFX+3at0qZ5o58qy2rT9zUWQkkj4j4h+w3aplCRF+qn rhpoYvQj12UmhEaNX0hjZm2gUVOX1r7LBhCCk6urk8N5+antpsNH6FLzPiFACA3YzwaMekG9 hKyBvF1vIZ+rruyAUKATE0LqD0ZZ3QADdrVvV9c2tRn9uC6rDh621gNCgULIlgCQj31HBpvC pk2fdp2nDQBCgFDtx/vyNAhsC4DY1oDN6Md22XzIDxAChAAh3KwKDTjQAOBjdkEDCAUKoZD6 g1FWs8aY96oUdrVvV1s2LWPiga2y5tWd7e29hBB7RqzyyowvF0k2RNryPMbCFG37DTqP/bEt 7F8HDSD6ya9jryCkg4mAUxJEacvziBoQyi+ePPbFtrBvnTUA+BTXt1cQEiJVRULJZTJ4klFR EbEDQsVFVMTe2Af2rosGyuh6q4utlLMGT3mDWhOXUGvcPdQafUfkinmfF7XGzqGqnpgACOkd VEj9wSirvj6LOBnY1b5d89i06ugnT1mL6KusfRAJBToxoSyB4Dj2HR1sGr5NEf3Yq8MgISSP CclRk2rSgmmDR3ecPVGZ2hzbweahaaDq6Cc0e5mUNwgIJSceqMaH0gCU9cqGtHXCcMlwF79v 75q1CHvAHrKTqbMeVPCp6nyH5gjX48V3mRAaOWERnqLt4CY2k6sD3TYh9QejrG4iHtjVvl1V Nq26602GDv+edpGs8xm+rgeEMCaEu+U9vdDw1Wk0pVxVd70J+NTd3oAQIAQIAULQgKQBwMd+ hJkFUkAIEIIDAoSggbYGqux6a0rkkwQSIBQohDAe4OZqDXZtpl1F9FNF/ReFTxVlddE1CAgF CiEXYkCebhww7OqvXavseisKn7rpCRAChNAVg+64Rmqgqq43wKf7ogQQAoQa6YDqdjWJ8zGP tqqKfgAfdR0BQoFCKKT+YJTV3EHmgQnsms+uJvBxYVNX8HFR1jz6s7UtIBQohGwJAPnkc2Sw V5j2qqLrzRV86qZBQAgQQnccxoRqqwGT6MemU6/bI3Vs2iYtL0AIEKqtAyqjAeEYfkZGVcEH esivB0AoUAiF1B+MsuZvmCbODHZNGehm4YiJ/VTb5LVplV1uecta1Cau9wOEAoWQa2Egfzfg gF3d2bXM6KdK+NRNQ16+yqEMI2e94qGM4+MY7pwRbNss2wI+Ydd3BKGj+eu97/Xn9d5VOBG8 1C5sIVehGRyzes2UNesNkY+7ugaEAu2OC6k/GGV104CbbFdX0U/Spj7DJ6T6z7pgA4QChRCu wt04dtjVb7u6gk+y3n2GT900CggBQoVnEtWtMeB8/AUQ4ONv3fTabgAhQAgQws2qXmugjHEf RD7VQQ4QChRCIfUHo6xuGnjd7VpG9JOET91t2mvU4mJ/QChQCLkQA/J0AwvYNZ9dq4AP6ihf Hdm0FyAECHndFWNT7MirOkdjanvXXW/odvNPA15BiGjo8X9polVtY7KfrhHgPiH/xKmrM6yv T525jn4AH3+14h2EuGMRUEk6Gb5cXiZ+y5/JbUwdVWgQQt+1m0YFu5ZrV9/gg/p3U/9B3CeU BhgViGRIme6ng1FoENKdD9aX35hg83w2d9n1hsgnX11UqV1vIiETmKi2MdnPxMCAUDiiNalP bONvfbqMfgAff+s9rU1qILSIxszaQKOmLnU+eG0CE0AoPIEBBqgzoQHAJ58WWmz4QfevDu3L SwjlGROSwZS2n0lFhRYJoe86X4M20QDfBna1b9eQ4FNl/SeBo9NslWXVlS3Pem8gJE9IyIqK 8s6Oy3plQ9o6YcBkJeP37V0RMewBe8jORqUHedzHpl5U3W4281ddkNjOPwmdXvPP4/h92tYr CFVpmNAioSpthWPbjxbqZlNX0U/oYz4yeOpW50XPBxDCzarOx/uKihP7hQc7wKe7zvJ2sTVR 84BQoBAKqT8YZXUDE5/sqoNP0bKWHfkULWdn8kViKoFLqPRaVpdly5M3IBQohPJUMrZ1AwHY Nbari/t9yoZPL3WJLrbe2hcgBAihOw6vciikAV30U8SxhwAfdLH1Bp2kLgAhQKiQAyriYLCP 3cZblT2bCB9EO+60CwgFCqGQ+oNRVjcNuAq7Fu16Syurb5GPKGcI0U4V9e/iwgcQChRCLsSA PN3Aog52tR39+AafaGxL+leHOgvlHJxBKPn0gqJPty7LkLhPCA64LK2FdJy6wwfgqb7dO4FQ 8hULvNEBQtVXdkjOD2WtVi91hU8I3WxN0z4gFGh3XEj9wSirG6C4smvRcR+V8xTdbq7KauKw 80Q7VZbT5FzkbUIqa9a5lQKhXh4smrdiim6P7jg3jrJofWC/8uvDZvRT9ZhPHvBAa+VrTba5 EwiJ7jcbr90uSyCAULVCLKuecZzh9VwX+AA8YbZhJxDyffwnhmT6HxxVmGJGveWrtzrAB+DJ V+c+thEnEAphIkKyMkKLhELqD0ZZ3TiKXuxqa9zHtNutl7Im26pL8Ngsp2uHH1JZKxkTkrvi MCbkxgm5Fjnyr1+92Yp+TOFjS0MuwWOrjMinWHtxFgmFViGhRUKh2RflLdZAbdktRPgAPNVq xpb2dPkAQoFO0dZVLNY3owHr6jk0+AA8zdOtEwipuuJ8n6wQWiQUUn8wyurGsejsamPcx1a3 W1ZZfQKPzqY66Je5PqSylj4mpDogIOTGEZUpehwrjDq0Ef3Ygk+aZnwCD3Rdra6dREKAULWV ikbVTPv7Dh+Ap5m61PkjQAhjQnifUOAvtfMZPgAPwFMJhIpOzzZ5woJqurfJfjpDYEzIXWMJ qe86tLL2Ou7jottNBZ5Q7BpKObk/C6msXowJ6SDA18tP304bQ1ItN9lPd/zQIKQ7H6x3B1Uf bNtL9CPAwz9tnQsinnrrzZZOVPk46Y6TQWF6o2oSLmmw0b2nqOgECEAIjchlQ7OVtw342CoL z0fAx2aeyKtZbbEUCMlRTprATCEk9le9s8jkOOnHH8IQGkGzGkEI9e0TfBD1oH3YbDNOIZSM iLIKDgjlE3ZI/cEoa766TbaTtHEfnV1tjvf0Ch5dWW06tV7yCqWcGBMymE2k6zZLCsWkC08F NZP9TESJ7rjeHKWJjbFNPhsXjX5cwAd1l6/uYC9zezmJhIpWQNosNx1osmbHZb6zIWWlKH/y qgi/b+8ayIY93NhDwCevfZPwybu/2D4t6imaH9pT7JBd26+o3616P68gVKUxEAmZX7lUWU91 PnaVkU+v3W11rhecm1vfAAgFerMq+q7dNIwq7OoDfFw72irsWuScQiknxoQ0Y0J4gKkbB1mk UWEfv+uiyM2mvY75IOrxWxNNa7NOIiHdBAIfjYzuODTMMnVZJPrpBT4AD/Rdpr7zHAsQCrQ7 Lk8lY1t/HFBV8IEG/NEA6qK7LpxASDayjee6lVFpoUVC6Lt241Rc2dUFfNLK6mPU48qutn1D KOXEmJDBfUK2xeE6v9Ag5NoeyN8O5FzAJ61u8AgdO3UG7ZdrR2eRUN6bVauueECoXOFVXd9l HD/vpIMiYz4+Rj1l2BbHqE97dQIh1XPdij5YtCyxAUL1EXVZmkmNSBhN8gCoF/hUfa44PtpN rxoAhAKdmIC+azeNvxe75u16ywufZNTTS1l7dRx59w+lrKGUE2NCBvcJcSPZeM9PXrEX3R6R kBunXrQ+QtqvLPiEZBOUFe3JVANOIiEBoORNq6aFqmI7QAiNJq/uXMIHYz3QY149hrq9VQip npQQimEAITT6PFp1NeaDGW7QYR4d1mFbqxCSu+BCM05oEELftRtnpbNrnujHdMynaNSjK6tP bTCUsoZSTowJGYwJhTQbLvlGB58aL8riBjZ57eoSPnnLgu390ATqwU49WI+E5IoJ5WkJcQSH 13ujUQ1vVLbhUzTqQd3YcXiwo392dAoheYKC75UPCPknzio14wo+VZ4Tjg2N+6gBZxBKPjHB x5PvjtrCioTQd+3GoYQEH2jAvgZgU/s21fl+6xAKDT7CQIiEyhefTpxlrzed8aabcIAuN2ip bO2GfDyrEAoVQBgTarbTMI1+TOETskNA2ZvdFqqof6sQGooqRHPt/qziBE2PiUioeY0P8Gle nZv6A2xXnjacQCjECgwNQui7Lt5IsuAj2zUr8vGhyw0aKK6BNB8Fm9q3qY4HgFCgDzDVVSzW F59ubQIf2Ld8ZwWb19PmXkHI9L6i5I2wpvtliTi0SAgN0rxB9trt5kPUg/o2r2/YKixbeQeh eJJAfC2qEpNqnY2ndQNCYQnX1NGYzHhLi3zwHLd6asJUO9iunPr3BkKq6MYEQqb76QQVGoTQ d53dQEyiHxV8uF1DgQ80YN9Jwqb2barzvUFByOSNrUWfWRcahHQV29T1ReHD7RUKfJpatzjv 8gFRhs2DgVDaayKaGgmVIY6QjlEUPhjvqadjC0m7TS+rlxDS3fQqgyf5HZFQs5xKr/BpugPA +TervfhY395ASJ6QoItu8syOS76mweS3qKhk/7BPv3lZfCoPt1laecRym+VVwSeZf3LMJzne oyqPvMxmebPsE4Leei1/KHoNuf59BIxJmbyCkEmBXW2DMaFwrgh1M95UEw4w3hNO/bpq48jX Tw0AQrhZVTkV3scGq+t6S8IH4z1+Oh0ftYUyVacVQAgQ8h5CReEDx1KdY4HtYXtTDQBCgUKo CfczVAGfJtjV1DnY3C4Uu4ZSTtUYnc36KjMvQChQCJUpkrKPVQV8yj5HHA+RAjQQawAQAoS8 6Y7LAx+M98CJw4nXQwOAECBUOYSKwAcOqB4OCPWIegSEAoVQXfqus6Zby7PdyppiXRe7+ubc Q7FrKOWs35jQUmrtdi+1Rt8R3S3D2z61xs6hUeMX0ZhZG2jU1KWVXy27blS4T6jcK7Ks6KcK +LjWF/IvV1+wdzj2jiMhQKjrQQoQsDsBAz7ubAvdwrYhagAQCrQ7LjSxpcFHRD3x59C/0M4P 5QUAoIFiGgCEAoVQKH3XOvhEUzTb/3xoxKHYNbQxgVDsGko5Q6v/rLYNCAUKIR8cdqawWGij mnSA8Z5iV4u+1zfKh3otqgFACBCyPukE8IFDKuqQsF/ztNNYCGW90gENoVhDUHW9IfIpZkto EHZrigYaC6FkBYc2Rdunvus6wccnu+qcEMpqH1SwqX2b6nQMCKE7rnB3XBZ8MNOt/Masa+xY jzrxUQOAECCUG0Im8PFR7CgTnDA04J8GACFAyBhCgI9/DRhOFXUSugYAoUAhVGbfda/wKbOs vTZIlNWNUw/FrqGUE/cJtR13rw3ep/1Dm5hQhu16hU8ZZcQx3EADdoVdy9JAFAlNXEKtcXiA aYdDZRnf5+Mk7/UZerxOPOXA57KjbHCg0EA4GgCEAu2Oc9XIktEP4BNOY3alCeQLDbjUgFcQ it8iESfVSaet1+1nYsDQuuNs9127hI/tsprUZ9FtUFY3DjcUu4ZSztqNCfnSHSfgkwYieb3s ZHT7mTik0CBkck4m27iEj8nxsY0bpw+7wq6haMCbSCgZ/aRFQ9yw8ro8+2VVStMgBPjASYXi pFDOemsVEGrYmFAWfNDY693YUb+oXx81EByEdJFPVgRVp0gob991lfDJW9YqGwrK6sZRh2LX UMqJMSEH9wklu9hUMNEty5rUoHNsde2OqxI+OptjvRuHD7vCriFpwJtISIz1qEAiz37TrU8a P+uVDWnrRB7Jq6KQfpvAJ6TzUV35ofy3d80ihT2abY+QwCOX1SsIVWnEOkVC8o2m8n0+VdoX x8bVOTQADag0AAgFOjFB1XctRz8+wQf97G6cD+xq366wqX2b6i4+AKFAIdQVzjLiiOjHJ/jo xIf15Td42Bw2900DgFDAEPI18vFN5CgPHC804K8GMiE0cvwiGjNrA42aurT2D6wMaUwI8PG3 QcHZoW6ggXwaAIQCioRChQ/62fM1SlMnBrvatytsat+mOj0DQgFAKFT46MSH9eU3eNgcNvdN A4CQxxBSwcc3AaE8cGrQADTQiwYAIQ8hBPigUffSqLEv9BOSBgAhjyCUBz7ou3bjaGDXZtsV 9e+m/rOgCAh5AKE88AnpCgdlLb9Bw+aweWgaAIQqhlDyJtPQBITywulBA9BALxoAhCqCkIh+ xBMOeqlE7AsnAA1AA6FqoLEQynq6tsvKtAUf9F27cTqwa7Ptivp3U/8YEzJ4/5HrJybYgo9L QCLv8hsgbA6bN10DjY2EkhXvCkKAD5xM050Mzh9tAJFQBZEQ4IOGB+cLDUADeg0gErI8MaEs +KDvWi/uIg4Adm22XVH/buofkVAJkVBZ8CniWLFP+Q0LNofNoQEzDcSR0FJq7XYPtUbfEY2M 8FnD1Bo7h/AqB70RAR+9jdAYYSNoABpI0wAg1EN3XASgNrXRyNDIoAFoABrIrwFAqACE5Oin KtGh7zq/2E3qCnZttl1R/27qXz8m5El33FBc0VK+yTVtvW4/E+djMkXbB/iYnAu2Kb8hweaw OTRQTANeRUIcJrwiBVSG38ujXq/bz0QcWRACfIqJy8Tu2Aa2hQaarQFvICRAIgRp+lu3nanA VRAago86MjPNG9s1u5Gh/lH/0EC6BgAhxZhQCPBB37Ubxwa7NtuuqH839R/EmJAuoklbr9vP 9AokmpbOZ7tFM94Q+ZjaDduV32hhc9i8ThrwMhJSjQnJsJHXpy3PW0kmExPy5ont4SygAWgA GsjWgDcQkickZEU9aYBKn8yQ9dIG9TohmmRojt+3d81ahD1gD9nBQg/V6iFU2HkFoSqNGFok hL5rN1fYsGuz7Yr6d1P/QYwJVQmgOAob+qu6LDh++Q0BNofNoYFqNIBIqMATEyDWasQKu8Pu 0ED9NAAIAULKp1OgsdevsaNOUac+aqADoXF4inanP87HikqWCX3XbhwK7Npsu6L+3dS/0ZgQ IIQxoRDgizKW7yRgc9jcpQYQCaE7Dt1xBi89dNkIkTecfJM1AAgBQoAQIAQNQAOVaQAQChRC 6Lt2c/UMuzbbrqh/N/WPMSGDqxzcJ1S++JrcBYFzh96ggVgDiIQCjYQgYDgxaAAaqIMGACFA qLK+4Do0IJwDQAAN9KYBQChQCKHvujfhpzkO2LXZdkX9u6l/jAlhTAjRjoEGcEVbvgOCzWHz xkZCWS94QMNAw4AGoAFooBwNNBZCSYFhdlw5gkPDhp2hAWhA1gAghDEh51116Gd343RgV/t2 hU3t21R30RFB6Ogl1MKz4/DsOJ1YsL78Bgqbw+Z11wAgFGgkVHdh4vzgfKGBZmgAEAKEnHfH wZk0w5mgnlHPRTQACAUKIfRdu2nwsGuz7Yr6d1P/2vuEMCZ0UNeM7SI0xz7lixc2h82hgfA1 gEgo0EgIjS/8xoc6RB1CA+0HmPoSCRG1WEQSJ1XlpK3X7WdS0bhPCA7BRCfYBjqBBuxqwKtI SMAnDUTyelkIuv1MRBMahNB3bbchCI3Ars22K+rfTf0HMSaUjH7SoiF+MvK6PPtlGSI0CJmA FduU36Bgc9gcGsinAW8ioTwwAYTyVTIaBewFDUADvmqgcghljfOkjQupuuLEsqwICpEQGqKv DRHlgjabqoHKIaSCh25MKA1CWZMadBWc9VRtH9fxvutQ/lBWNzUFu9q3a2g21fm1ENZ7AyEx 1qMCiRwt6dYnjW5fpsgRFoAFYAE/LBACZHRl9ApCusK6Xu+HrFAKWAAWgAXMLODaJ5aRfwyh pewp2vdSa/Qd0YnzG3WoNXYOjRy/iMbM2kCjpi5txPPF+HnbNrqLPOOoEWW1XVewqxtdhWRX F+0qpPN30aZ0eQJC0mufXQjQRZ6hidqFDVzkCbsCQiHpKqR7mrJABAgBQp3oL6QGiLK6AUbT 7dr089dFLS7WA0KAECAEDUAD0jMkXThaF3BzkaeLc9flCQg5dkC6Cii6PiQBoqxu7oGBXe3b FTa1b1OdjwOEAoVQSP3BKKubhg272rcrbGrfpoCQBBmdMXAV5EaAsCvsGooGQimnq0k0Oh/p Yj0ioUAjITQWOHZowL4GYFP7NtWBCxAChKzfG6V6aoVOiL6shxNy44RCsWso5UQklKOLyxfn YlKOkASIvms3zhJ2bbZdUf9u6h/3CdUUmiZgxTblNyrYHDaHBsw1gO44AMp5dxwapHmDhK1g q6ZpABAChAAhaAAagAYq00AmhEY17AGmTbsCwfniqhsagAaq1kAHQrvdM/wp2oAQBFq1QHF8 aBAaqLcGGg+htNeLC+FnvX48+YI91bamy+Ipl/wtGnFSNbwi69NeCGh6XlkvFMx6lbqurLJ9 s2xt8kLD4VPCh+yX3L+IXXVlle2gq2+VZrLKr1pn8gbhZN2YvK04q86yzsuWTZM6KNIGVe3I RENF2p3OXrp61bXBInbVlUk+T51Wi9o/70UDINR2+LpGmsd5JCtabhjie3JZ1vKkE8xbVlkU qn2TTjRLRCZO3fRc0myqcwhZwDbZN805ZNnVNN8sMKsatSks8mhAV8dZzl6uOxV8k3WbphVx XnltqtKinJeuTKrym8BA1R5VNk+2peTx8oBFd14qLZnYNc0GKq2Z+Ka0Y+rKYgqjRkMorVKK CN3EmWQ5h17KYuI48jQWnWNJs4+J3bIAoGrgeZeZwqKXsmY5NR2ETOo5LQ/dvmm2yuMYsxyY bNu0PE21aGJ/3flmnVdRDWfVn2m9pNnAZH8VhE1spQOtqv0n9WLqw/LWsQ5GgFDXExO6u8Gy GkGyAZhWYNbVSJbDNWmQpvvnOa8s4Jg0qjSnlsw37/mpyiVfmekamI2GnXZRkQZClb1UTsem XdOcT5qtTBxM8vyK1p3uWDqdFoGuzlm7gFCWrbPgYNOu4jh5LkjS9K2rNx10kusBoYIQMnGi pmAyqdS8gizagPM4Z5vOMu/5qewvNzCdw89znlkgToNs3uMny26yv6nDTIIu61imx1XB05ZN VY6yiD50+5i0uyJ1L+erq9c0e2cBoGiZ5P1MfVOaDU1sawojQKjzMqvhEwJUjTftSiqtoScr Pi1P3bF6Wa8TjM7xmMImLToxcZZZ52eyf9pVsW65zq66/U0hlMeGJtuqnFRWZGACCJPjylfU pnnmrb+s6MDkmGk6VDlFk/o3tYtOK7p2mGf/tPrPsnUahNKgnzyG/NvEboCQ4c1naRVgAo+0 q4kiQJIbd5boVcLQlTWt8aWJLFn+NDHpnEtWWbOAZXp8EwDI9VvUrrqyinxVWkorY9bVrG27 qsCRPL7OTlmOylRfKluktSGVpntpb1kOMave0uxiYq/kMdP8Qh6HXqSsab4lL3xM7G8KHnm7 RkdCRQyGfep9zwLqF/ULDZSrAUDIMGKCMMsVJuwNe0MDzdAAIAQIVfbMKDiZZjgZ1DPqOUsD gBAgBAhBA9AANFCZBjIhNHL8QhozawONmrq0sgLiKgpXUdAANAAN1FcDEYQmLqHWuHuHP8AU EKpvxaNRo26hAWjABw0AQgjDEeVCA9AANFCZBgAhiK8y8flwFeZjGZL3oOjuSfHxHFAmRFmm GgCEACFAyGMNZN24atrIsR2A4LMGACGPHZDPwkHZynFsqrvUZdsnn9aQ5+541GE5dQg7Z9sZ EAKEEAl5rAETCGU95ij56CQBKThGAMgXDQBCHjsgX0SCclTnsEwgpIqMxLK08SXUaXV1Ctt3 2x4QAoQQCXmsAVsQguMDdHzVACDksQPyVTQoV3kOzRaEMMGhvDpD+8hna0AIEEIk5LEGbEAo OVkBQMrnJAEVt/YChDx2QBC/W/HDvrAvNFC9BgAhQAiREDQADUADlWkAEIL4KhMfrkKrvwpF HaAOqtZAJoRGjV+Ep2gDUoAUNAANQAPONDAEoXuGP0UbEMJVUtpVksngtsk2VV+F4fjQeFEN ZOlbvj+raP5N2Q8QwhVOoSscNEA476Y4ySIXYvLjlJpuJ935A0KAkDGEVE9zlh8Lo5tOrBMj 1gNsvmsAbcC+RgEhQMgIQirAJJ9ZBgjZb6C+O+UmlQ9twI2+ASFAyAqExA2RslPCmJCbRtsk x+/TueoglGwD0L+Z/gEhQAgQggaMNOATEKooSx4IAUBmAOL1aB1CLcI/HyzgopFm9YfjlQFD ja5Fac+uxvIybVNVG1C1ExdlqUue1iFUF8PgPMyvZIStcPWX32bQWb1shjaQvz4BIXTFWOuK QQPM3wABoXrZDG0gf30CQoCQNQjBoeZvgLAZbNZ0DQBCgBAgBA1AA9BAZRoAhCC+ysTX9CtA nD+iIGjAwew4GLUZDcv0sT3oI2+GHtDuUc9FNZAZCY2cgKdoFzVs3fczhYvpdnW3F84PThoa UGsggtDRS6i1273Dn6INCKHhJJ+AkHw6cNaz41RPUUBDhKagAWhA1gAghDEhozEh3d3iyZtV VTevwvnA+UAD0EBSA4AQIGQFQmlRD7rj4HQAHmggSwOAECAECEEDRhoATAATFxqwDqEWezgU UvU2cCEW02fH4dlZcFYu9Ic866kr6xCCUOopFJN6Rddbc+veRB/YBvpQaQAQQleMta4YQAhO BqCBBvJqABAChKxBKK/4sD0cFjQADQBCgBAgBA1AA9BAZRoAhCC+ysSHq2BcBUMD0AAgBAgB QtAANAANVKYBQAjiq0x8uArGVTA0AA0AQoAQIAQNQAPQQGUayITQqPF4ijau1HClBg1AA9CA Ow3gpXa4AqrsCggN213Dhm1h21A0AAgBQoAQNAANQAOVacAYQuvXLCQk2AAagAagAWjApgYA IcAVFxfQADQADVSmgdwQ+tH/uYv+99/dST/8we2d9IO7/pL+9nt/QXd97zYk2AAagAagAWig owHOBs6IH/5Pxox2+oe//xviLOERVW4IvTjvBXr2uafpyace76THH3+EHn3sYXrk0YeiNPsR VXqQLY/Tw7PjNHv2vyfSr9lvlh7+N5Z+ZZYeeoBmt9PD7JOnhx76Z/b5y+z0m3+ih5FgA2gA GoAGetTA/Wz/7vTQgz8nkR7+zc/pkYfvp8cf/UUnPf3kv9Dc/3ywGIRW9S2jV5YtppeXLOqk RYsX0MJF89vpJVq48CVasPBF9hmn+PvclDSHLW+nBexzwe8U6Tm2bCgtmP8MzZ/3LC2c90yc 2O8ozfttlBbMe0qdXnqSFrz0BBJsAA1AA9CAJQ3Mf/FxZsvHhqWF8/jyR6O0cN5jtGjB4530 7FP/QvyvUCS0bv0grV03QINr+ofSYB/7LiX+e3CVlFaw73Jazn7LaRn7zdPSRFrCfrM00E6r X6ZBngYWd6WB1YuIp8HVC7JT/zwa7KSX2Hck2AAagAaggSIaGOh7kYanF9iyobR61QsUpzm0 um9uJz3z5K+KQ+i119fRsPTaWnrttcGMNMDWKdKGfnotSquUacOrKylOy5Xp1fXLSJU2rFtC w9NitkykRew7EmwADUAD0EAvGli/djHx9OraRYo0ny3rTuvXvsS2f4meYd1xhSOhJGw2bBgk nuLlDDQdsAjADP/c8Gofg4qcBGy6obN+/QriKQma9eteIWVau4SdIE+xYZIGWscMJZLNKYbI C1NWoQFoABrgGpifSPPY76G0bvAl4unpJx8AhCAYOA1oABqABmxrwAxCTz3xz+VAqNVqkUhy hJQWCfFt5e63IpEQzwORkG1hIT84K2gAGjDRgCmEfukeQhwGMnjk37YhFIGHd9E57I6LjqG5 oc1kG10eWG8idGwDnUADfmqgBwjtdg+1Rt8RwakV/Td2DslP0RYnbDomlISQy0gIEEKD9LNB ol5QL03TgCGEHvvF8EiobAjJXXViFpzcHSevlycmyMvF5ASxjEdCcndcVx7tSQl8GZ+c0Nkn JbpJrk/7LUc/8jbJqChtOzTSpjVSnC80X2cNmEHoiUfudw8hHvmkjQnFsBmaHSfg0/25PJoZ xxNfzkEkPmX48O9yJCQgJMOITx9Mg4+qCy0JjOiGqozuOLFOtZ9ocCbboHHWuXHi3KDvJmjA DEKPPPTT4hDi07FfZTesirSBfd+wfnUnvbq+n63rTuvXr2oDJF4uw0l8f3Xdynib9mdyGxk2 69YuZdHM0s4YUAyYl6Mkvkefa9iU7HYSv2MYzGfTBOMULW9/lz+Ty1W/5TIm88raP+2YqnJg 2VBdwRawBTTgvwbWDMyLpmFHaaCdBl9kv1kaeCFKD/77j4pDSAUZFXQ4eIZSHM3IkU30fR2L dqQkIpoYJAwy7fuBBHTi6GZJBzhiIoKIcvisODkS6gVCWVBJA4y83ARiaFD+NyjUEeoIGjDX wBCA2tAR8ElASPnYHtMxoW64DIGGRzACMqILTfVbdKtxwKxjAOJJho+IeFSRzlDEE990Gkc3 MXjSIh4R9YgIaCgSikkdw6JN7fanvEx8Vy0T++m2ERFT8niqYyfLgt/ddQN7wB7QQCgaGIp8 RAS0duB54kn52B5TCK1bu5IBQEptkMgRjQyXjgNeuyyKbuSoprNuDYtuWIphEkc6XV1diW41 sW7NwELiae3Agk63Gl83ODA/SnIenNA88WX8c+3qF6PEf4vv8qfYN7lM3k/OX5WfnId8nGTe yXW6sqnKi2VxfSLBBtCARxron0treWrDJ/rOkvKxPaYQWsMgwdPaNa9EqfN78GVa207R+sTv aDv24NHhKQZJVhJQSf1sP5R0gD2QtDuxB+z1K1Lf8+whe0iwATQADUADvWpgMHpg6fM0yB5Q KvLi3+M0pzut+k8aZEn52B5TCPWvmk9R6lsgpXnsO0urkqm9bXufvpUvkTq9yJYPpVUrXyBV 6lv5PNvueVq1op34d75sxdx2msM+59Cq5UOJ/xaps3zF71geSLABNAANQAO9aKCP+VGeVi1/ tiv1LXuWeOpe/jT7HSflY3tMIbT8lf8knpYtnUOvvDKUxDK+XKTO+qW/o1dypGVLnqFc6eWn aRlPS36rTi8/xdZ3p6XsNxJsAA1AA9BAbxp45eUnSE5LX36c+dY4ieWdZYsfo6UsPfWE4rE9 phB6edEzZJwWPk0vZ6TFC58ks/QE205K7OVIi1Vp/qO0mCexTvxOfC5ivxfNn40EG0AD0AA0 0IMGFs9/hPncoaT1q/OY3533UCd1vdTOFEJxlDOXRUPPs/SClPhvdeLbr5DScpaHMrWjLBFt Dfvs7Pcc298gLXmWlitSrigrb1SG7fNFsbAX7AUN1FQDUs+U6K16+ZmoB+qVRU/S0kVPdL9Z 1RRCuOu5CXc94xyhc2gAGihHA61T3qDWRDY7Og1CO53dT2NmbaBRU5fSyE+tNUpRpkiwATQA DUAD0IBOAxxABz6UDqEdTl5M7zt3Gb3n1EX0ruMWGqXW0UvJOPECVJWOZsc2SRPZ+Rgn2+eT 49gm5xJtU2H9uDi2izyN6ztH/VjXuYNjG2uI69z0+LbbRCDHrtSWpnXDtzOtnzx5mm7Ljn3Y XGod8CC1xv1j4lUOY37OFrL3O0TpXum7WGbrk+dtkmwdT8qHh3+2U8dmmvKaHtfINm37ucjT +HxYGXYzSKb5dXRnoo0c25iUMc82ec7HNN88dW68rYP209hjO7ClsTZMj52jTRjXo4s8+fkw +PAy7PJ3CQh94O5oARJsAA1AA9AANFCWBjovtYsecYo/WAAWgAVgAVigZAv8f4xmcpGlcoGY AAAAAElFTkSuQmCC</item> <item item-id="72" content-encoding="gzip">H4sIAAAAAAAA/+zdCZwU1aHv8QKDS/I0iSQ+jShBRQliK4sbOijKosAQVgUFRBREZBFccIug XuON0RsTNb4xNy/6yfvkvSQmuXrNYq4i7ntAEBh2mH1hEZzuGb1J5p3q01NTU1VdXb1Uddep X32+tqeru+rUqe75c+pUd3U37QhNO+Twa76kadrBWfptD/HfV7prqdL/6H7zmTX99Ucu/eq3 tQ/FnA+6/aKb/qg+X/9/P/GfPucD8V837Vh9lvbMK4dr1qniG9ojPQFANWL6/THaMyfqnj0x VcjHs67yXf8J+clj5e7tejb/xd336glu8nxRMnOtPd9tc19Dflteym9mf/9S8ty2PF7TfN9s eb/iv0wWfnZ8Kt/WHKdtHnj4ltFH7pzytc2Xf7ly+JdcbB+mudtW5qdhbraXZZBP1ZlX7r5t fu63PFee7+L58fdFyePtlPEdleebuZgr97Pheb4o+b+d1p6rvTxATzlzvtVOOnrfgmO2Tz28 6buHuThwmQYAJUtE3Koz9IMmc77JcKts3AMA4SUjziXf1mzfuXb7zo937FrX4WMna/Wn7ZbW bN9l8bcdzuSjH7r6YJvV+9t2AoDwbof3ture37rzna3b3968463N273k2/ubt7p7r9LZ25Vb XLxl8uYmq9c36szlrjavBhAxr23cYkj7tA2bV3Xwkm8dHa2da3bskFJ3DcmZH23PzEsayxB+ d5vVO1sttgOImre27jC8uXW7ZL77xhbdC2+9097e7iXfNlbXCptqUjZI1Z02mnxSVWOx3mRd VbXFx1U1ut3VOv1u9drdNcIaaVd1Stc5H+0GEEE1wge7qjvtrNF13H2vw396zrdtjY3CjsYm QZa3NjRJlrKwpb6LyvQ21jc42lCr+6S23rDe5uMaAFG0rqZB3K5N3sqCsMbkb9W6F99+z2O+ VTU1G3Y1S3s66HeN7z7sbGre3sGYua2xWZCFrab5mxubJWOOzL1N9U2ivLFBny8Tz3jChvpG QRbW1zUJoiwLBvlM813zfPOjlocc51hmpqsUQBGtrdV9XK+T5T++/b7HfKveY1XVvHf3nj2S WMRS3rlnryjsMKWfKBu3Ivq2Ne0RRFnGnbjdnCTKW5JxZ+SevN0ojpGFhlRZ3n7S0PxJco4s WO7KguWu+0My09ItBaA0rW9oXlffSabcnzznW+2evemYQ8+cdbJg6uZ1yTdREIxunsg6EXFb Tbknsm5LsiBvzT29zsRraE4lXrJgZsy0F4yyy0MuawZQIsRBnAw3C5lyf3znA4/51rBvX8Oe vR321XWwZ51YXJa1rpPo7xm35sno18msM/frjK5dtvnmklfGtDFTvhFuQOmTEaer15nz7Vd/ fdlrvu3f30lknbB/f/3+/bX7UozcMM+p2btP0pPNdLtr7z6jjyePZMWt7NGZE2+bqf8mboXN TXtl107WJbfNKFjuyoLlUceHzM9xeQhASdlossFEJt5vV71WkHwzx5pBxlqq87Z3n5Fvu0zz RaxJ5u6czDctedBqJJvxBBFxMt8sKWdmST9L2f6QPd8sCwIoQe759ofX3vI13wyWfDP6b0a+ Gf03cy9OHqtuMUmG297NHScjvOwBl4wivoBQc8+359/w+vk37/lmlMk3AL5yzzfv31/IYfwt n3yTzMenOecbAFVll28n5p5vXo5PpazyLf/+GwBVueeb9ftZ5BuA8HDPN+v3s9LnW/On+82a zHFnUm8js67axpx1ZubEk7Y17zPb0mEzgOjp2tVJ2djVJ017BOv3s1z6b3ua65ubahsbpJqG hprGDg0N1R12m+wy2Zm03WSbVK/bWqfbUt9pc129sKmuwZH89n3yC/gAImR9Tb3ZOrPqOmFN dd3amhTr97PS59vOmuotO3ds3rZV2rRl88bNlcInQmXl+spN6/VbvbC2stJijWFT5UddfWjy /sZNH2zY+P6GSt1G3bsbdO9s2GTx9ieb3gIQVW+u3/jGJ5vM3txQ+fonm4Q3NlS+uWmzZP1+ Vvp8W7dh/XsffvDmO29Lr7355qtvvL7q9dd0r602e9mw+lXhr6tXG15K+surq//k6sVVhleF /1y16oVVrzr6j1cARM4fuvr9y6tSxN1XX3v+9TelP7793st/W+sl3578P7969Gf/++Gnnpb+ 9cmnvv/4Tx98/EkAKBEilEQ0Pfy/npZ+9PNfiODykm8AEFLkGwBVueRbbNBgAAgv8g2Aqsg3 AKpyyLdBh5FvABSg59sw7dkTyDcAqiHfAKiKfAOgKvINgKrINwCqIt8UoLW3F30bgBJEvimA fAMc5Zxv7ZqGjPJ8dURwGbK9C4D+W8kyx5Qltex30y0IRBn5VrLINyBP5FvJ8phv6coAyLdS 5mXALUb/DUiDfAuFrBKMfAMkh3zj+kilx0u+cf4UsOD6bwBURb4BUBX5BkBV5JsCGHBDwanx piLfFKDGWxElRY03Vc75VvzvdoZB/u+xbL9wGt63pak1cOPfO8oyx/ENFi7030qWltP3s8L7 VoTfMr6F3OeEEflWssg3FFYO+RYL+TuKfCtZHvPNJesAM+/5psybinwrZe6jJeaCeZGibzZK lsfxt5gqbyryLRQsbzDH91vYh4IRJC/vqJjTcWu4kG+h4PHd6P4QYPCeb6H+R5N8A6Aqe75V DuT6SABUIPPtWfINgHLINwCqIt8QOl4+2+z44a6wj5YjW+QbQieHfCPWool8Q+jklm9F32wE j3xD6OTcf6MjFzXkG0LHSz/N4+UIoDbyDaHj5TxCzDbsRuctgsg3hA4ZBY/IN4SFfRiN/hjc kW8AVEW+AVAV+QZAVfZ84/pIANQg8m37MO2ZE8g3AKoh3wCoinwDoCoF8s3+MfV08wvyaXbv 1bkvmH+NWbU35+pi6b8jYH+aMg1MtyUFbKB9H/raQJfqfPqj8K+B3oU93yz7KuN8y5xsd29W 1aVbc0FqtDzB/S1U8OrcW+FTjb6+gumq87hJudXo8hbyo4GOe9LXV9Bl/Tk3MCvK5JvHsn1/ 5vZS5lZ1AWu0zLT/Y+1rde5r9q/GgBvofU7ONTr+e+FfAz22xdca82xgViKVb8a/jMXKN3vt OddomVmUfAuygX6/gi4zHTdAmVcwsAYW6hXMStTyzeMrUpDq8qzL4+Kllm8+NdDvV9DjTPVe wXx2ZlFewayEPd9ipreH49+a1vVIP+NSBazO/TUtSI321hlz/GigY3WOLfWjxgBeQZe1ObY3 /xpjtreHr69gun3o3yvosv6cG+idGvmWLlXsfx3mN09uO9ZjdcZdx5kFqdF41H0DCtVA9+oC aKDfr6BLdXlWmu17xqdX0P0vwo9X0Ke/Qe8UyDcAcES+AVCVU75x/RAAKpD51vX6IeQbABWQ bwBUpUa+tft5CsbRw0/8VOHqaGDYq4tCA70g30JRIw0Me400sCjIt1DUSAPDXiMNLAryLRQ1 0sCw10gDi4J8y43ygxs0MNTVRaGBXpBvoaiRBoa9RhpYFBHPt4AXDMt20sASqS5EC5Jv/lH+ PRCWBcOynTSwdPaMr8i3IBcMy3bSwBKpLkQLMv7mn7C8B8KynTSwRKoL0YL03/zTzsTEVOyp 6DlQxHyzX7vPPtNxDvHFxBSKqehp5phv24Zpz/icb44XKLZcp9RxjhdFeSkffuKnClcXfI00 MOw1luz4m3/5Zg8ux3yLmbpzjpHoMd+KvjMBlJRS6L/FyDcAPggm32KefwvJ8VF35BsAR0Xs v8W6nmVINyejouSb8l/uo4Ghri4KDfSiiP03x5k5/GQY/TcAjgLLN/+QbwAckW8AVEW+5Ub5 wQ0aGOrqotBAL8g3AKoi3wCoinwDoCryLTfKD27QwFBXF4UGekG+AVCVfn2ksvDlm+MVDIq+ VQBKSkjzzYx8A+CIfMuN8oMbNDDU1UWhgV6QbwBURb4BUBX5BkBV5FtulB/coIGhri4KDfSC fAOgKvINgKrINwCqIt9yo/zgBg0MdXVRaKAX5BsAVZFvAFSVyrcTyDcAqiHfcqP84AYNDHV1 UWigF4Hlm+OP13v8/VPHqyHZJ/t+pkyZcvDl0hFMvll+nt4+04g7yxwvOD4F4MjXfHMMLvOj lnK6R92RbwAclUL/LRbCfFN+cIMGhrq6KDTQi8DyzX7IGep8A1D6gjy/kG6mOfrsczIi3wA4 Ktb5U/PMjOdP3ZFvABzx+bfcKD+4QQNDXV0UGugF+QZAVeQbAFWRbwBURb7lRvnBDRoY6uqi 0EAvRL5tK9Oe5fpIAJRDvgFQFfkGQFUhzTeX6yMFQ/nBDRoY6uqi0EAvQppvZvTfADgi3wCo inwDoCryLTfKD27QwFBXF4UGekG+AVAV+QZAVeQbAFWRb7lRfnCDBoa6uig00AvyDYCqnPLt cPINgALINwCqIt9yo/zgBg0MdXVRaKAX5BsAVQWZb44/6Ozl9wEdrxaS7voh5n9HKFOmHHy5 dBQr38x3jUCzz/GC/hsAR77mm9EZMzM/aimne9Qd428K1EgDw15jlPtv9viKhTzfAJS+wI5P 7Yec5BsAXxUx32JdzzKkm5MR+QbAURHPL8Q8nz91x/ibAjXSwLDXGOXxN1/RfwPgiHwDoCry DYCqyLfcKD+4QQNDXV0UGuiFyLftw7RnTyDfAKiGfAOgKvINgKrIt9woP7hBA0NdXRQa6EVI 883l+kgAIIU038zINwCOyDcAqiLfcqP84AYNDHV1UWigF+QbAFWRbwBURb4BUBX5lhvlBzdo YKiri0IDvSDfAKhKv37IMK4fAkBB5BsAVZFvuVF+cIMGhrq6KDTQC/INgKrINwCqIt8AqCqA fDN+0tTxB+u9/P6p49WQ7JN8snkcwL+y+TaAekUhsLos1Sm5P4MvB7w/LZUG3N7SEUz/zfH3 ms2/WW/EnWWOF/TfADjyNd/MMeX44/WWsn2OF+QbAEdBjr9ZIot8A+Ar8i03yn+4iAaGuroo NNCLIMff0h2i2g9jGX8DkL/A8s0xsjyeP3VHvgFFp7VrRd8GOz7/BiB/5JtPGH9ToEYaGPYa 1cs38wd3sz2oLCD6b0DRqZRvRUwzO/INKDqV8i1WShFHvgFFp1i+dTSq+CnH+JsCNdLAsNeo ZL51NK2YKUf/DSiu0gy3WCHyrbgnF2LkG1BsSuZbKZwztV8fCUDA1Mu3og+7GRh/U6BGGhjq GkW+qfT901L42JuB/htQXOr13zraVfygI9+A4lIy38xXBSHfgMhSPt9ixRuRY/xNgRppYKhr VGz8raNR0c03AFLJdt5iBf3+AvkGRJDC+VYKyDegiJTPtwieP2X0JtTV0cACkvmm6vhbzDYQ FzD6b0ARqdp/I98AKJxvfL4XiDhV861EMP6mQI00MLw1qjr+ViLovwHFUsqdt1jxfv/U/K2u jL9/6ng1JPskn2z+d4QyZcq+lo18ay/JoAvg873mJ9gjzjw/3TPd0X8DikXhfPP4/SzHTHMs p3vUHeNvCtRIA0Nao/L5Fsv0+RAl8w1ALDL55hJH5BugKoXzLZud4HyNOPv8HK4mR74BxaJw vnn/cG+653g8f+qO8TcFaqSBIa1R4XyztZTvLwARYv7wG/nmE/INKIoS77zFyDcAuVI736L8 /XpGb0JdHQ0sCHO+tWulGHF8/xRAbsi3AJBvQFGonW9RPj4FoHa+xYp3TsGM8TcFaqSBYaxR 7XwrYri5XB8JQAAsH35TL99iXQ9Ri9UE8g0InvL5Zv5SPONvQKREKt9iEft8L6M3oa6OBubP Mvim3u8vRDnfgIgr/ZMLsUCuT+438g0IXhTyrRSQb0DwyLdgMP6mQI00MHQ1Kj/+ViLovwHB o/8WDPINCFgoPhwSI98AZI98CwzjbwrUSAPDVaM93xh/8wn9NyBgliv30n/zD/kGBIx8M+0K h+/gm7+1mvH3AR2vFpLu+iHmfjJlypT9KMt8E2Vj8C3Kx6eOX20wf/HB/lWvEv99Z0ZvQl0d DcyT/cMhUc63mFPEOXbnXJ6fDsenQMBC8eG3mFO+Vfo2/maJLPINCKOwfDgkRr4ByBL5Ztsh 1viyzLdchITxt+JWRwPDXp2vNTrmW1jG33zKN8fI8nj+1B39NyBI9N+CRL4BQSLfgkS+AUEK y4d7Y+Rbrhi9CXV1NDArehfNxJhvzrcoj7/5iv4bUFjpAs2C/lsAyDcgTx4DzaLEB99i5BsQ SbkFmgX5FgDG3xSokQb6XWNBAs3CnG+Mv/mE/htg50egWdB/84nL9ZGAaAog0CzCmG+bBx1W +vnWdSeTb4gcS5oFE2gW4ci3Mu0Z8i1LURu9Uay6MDYw2zQLoIHhGH8j34DSU/TumbvS//Bb jHwDSkMpHG9mhXwLaj+TbwifcKWZHfkW1H5m/C30NSrfwOC7Z3430JJvjL/5tp/pv6HkhL17 lhH9t6D2M/mGIgvd6Fn+Sv/DITHyDcheBNPMjnwLaj8z/hb6Gku8gfmnWYk3MAeWfGP8zbf9 TP8NhUT3zAv6b0HtZ/INuSPNckO+BbWfyTd4Yo8y0iw3oTh5GiPfcsXwVOlX5x5lCjSwiDXa 8y0s42/B/H69+XecM/7+qePVkOyTfT9TjkjZpWNW9G1Tsky+2VlSy/yb9ZYfuC/9369HEXGM WXThPT4teL4ZXTJ7V81STvdopl1NvimLEbPSRL6Z2eMrFvJ8Y/Sm4NUFHGW8gvng+NTCfsgZ 6nxDzhxzjF5ZuITiwyGxouZbrOtZhnRzPOxq8q1EkWOqIt/sHPPNy/nTTLuafCumdP0xokxh 5FuAu5rxN99r9DvEit5Axarzu0Z7vkV8/M3PXU3/rTDoicGLsJw8jZFvEeOSYIQYPCLfgt3b 5FuKe3yRYCgI8i3YvR2J8beM2VXY+GJ4KtTV+VqjY74x/ubb3g5r/81LZNH1Qqmh/xbs3i5a vmUVUEQW1BDqfAvj9ZHyzBkCCvAuXPm2PYT5Zrs2kgYgOLZwK9nxtzDmm2PWFX1LgIgIRect Rr4ByB75FtyuJt+AYJFvwe3qaHz+LeC9SgNDXZ3fNTL+Fpjk6YVinUHNS9F3HZCbsLx7Fcm3 cB6fkpwIqbC8x8g3JRGV8FVY3hjkW26iM3oTTDwqNjxV9Or8rtH+yjL+5teupv9Wwug0Kiks rxH5hhJEJJa4sOxw8g1qIA+D3NVF3waPyLfcMHoT6upiWeZhGBvo4/XfnHZIaMbfuD4S0BXd QsveKPo2eORwfSTyDchVFI6RQ7TlgeWbvK6K+W7M8++f2q6G5DzJJ5v7yZQpl3I52yQshW0W 5YzbUzqCyTcjr+wRFzNFn32OF4y/KVAjDXSXQ4eQ8bdYaeRbzNSdc3w0w97m+BRICubQmONT C/INKCn5xCD5ZuE4qka+ASUu7GdGgjy/kG6mOfrsczK/BIy/hb9GGhj2GqM8/hZLE1kez5+6 o/8GwBGffwOgKvINgKrIt9woP7hBA0NdXRQa6AX5BkBV9nyrJN8AKCGVbyeQbwBUQ77lRvnB DRoY6uqi0EAvyDcAqgppvrlcHwkApJDmmxn5BsAR+ZYb5Qc3aGCoq4tCA70g3wCoinwDoCry DYCqyLfcKD+4QQNDXV0UGugF+QZAVeQbAFWRbwBU5ZRvh5FvGSk/uEEDQ11dFBrohci37WXa syeSbwBUQ74BUBX5BkBV5FtulB/coIGhri4KDfQisHyz/LCp+XecM/7+qePVkCyT436mTJly 8OXSEUy+WRLMXjDizjIHAHJWCvkWM3XnHBcBgByQbwBUVazxtxj5BsBnRey/xbqeZUg3BwBy U8T+m+NMx6cBQA4U+PwbADgi3wCoyinfQnZ9JABwpF8faZj2bJiv/wYAjsg3AKoi3wCoinwD oCryDYCqyDcAqiLfEGp81QUuyDeEGvkGF+QbQo18gwvyDVK6oHCc73i1eccnZLxagssz063W UrBvj31ZYjCayDdI3vMt49VKXdZmeY7HldvrSlfOuCwihXyD5DHf0iVSbvnmPtNlnRlzlXxD zDnfuH5IFAWcb16qc7xaoOUh8g0u9Hwr057h+kiRl2e+xVyjKbfqchj6I99gRr5Bchnk93Kc aC+7n1/IeYDOsrjLWJxjGZFCvkGyp5N5vv3spPfcy1id+3Mcq3Z8jpf5iBTyDVJBDujSHR56 qdHX5iCayDdILn2kHFZSkM+HFKo5iCzyDVLGETOPK8l2bQWp12VLEGXkGwqrRIKlRDYDxUW+ AVAV+QZAVeQbAFWRbwBURb4BUJVLvlU27gGA8CLfAKiKfAOgKvINgKrINwCqIt8AqCrgfKv4 f8+1t7cXvdUKYE8CGZFvIcWeBDIi30KKPQlkRL6FFHsSyCgU+abZpqLvt6LLbU8CkZJtvlV4 npwXz/KvUqbZ6tWrxe3KlTrjbkRS7syhi4X89yQQQVnl27xsJseIq0j/V7nSlldiTntyWqlP mslKOd+lXRWDNY8KuDPTZVHOGybWdvKkn5BvQG6855uIrHc3bPIoXcRVZN9/S5dv7v23isGp bBTTC2+9U6FpgwcPbq/5cN+HFWYFzDeXLEq3Ye6T+wrd96TYbUV/awFFl22+aSIpKrRUOXnH MfdkuIlby0oqnP4qZc8t3a0x5mYcn3o5OA043zyGW6XnfDNWKMqOG+m4JyURblKl09Alw5iI Dnu+bR54uHu+zWtPZdqXer0n5J9vGa0055oedCszLmKPET2LKyosEVeQfPMebo4b9uKLLw42 TTLcrv7Nn2W4ZZtvpmSTKZc2Tsk3KC+Vbyd4zTfvx6fZ5pvj+FvGOelYY6RCc4y4/PPNyKLc NkzsIplpxiTumsMth3wzl2W8rew6kW+IiKzyLdvzC4Xqv+WgS4xUaEbBEnHe8030ssytE3cr sw83y4aJlVxyySVyh1girks2Z3l8amZEHP03RFBU+m+mlJMR5z3fjGSz9LvEtKuhPqtws2yY zLHKruFmj7j88k2TEbd69Wpz5418QxR4z7dKU8RZ/tgtf/jmU6iWNVQUt//W3nmg6j3f3Bub z4YFk2/JKHPoxZFvUF5W+VZpOkp1+ZM3T5bFK7I/f5ru1p3zaUpz0CUPUTPmm+y8GSlknAIw GisPVL2z55tlMioqYL4lPxFt7cKRb1BetvkmyT95+5hbe6YuTUVR+m+WZGtvF8nmMd8sSW7J t4ztdd+wwPLNcSLfoLx88s1xyjnffB9/s4VbVvk22Dbln2/G+QV7uImHCpVvfP4NkRWV/psp 2bL6fIiv+SYXt0ScuGv554N8A3ITkf6bPdmyzTdzynlvb8YNa7d9vtfcc8st39wzjXxDdBSk /9betS/nsmBFgP03e4/LPnk/v2DJt8rkgWSe5xc8Tjnkm7GsJdDMqyXfoLxC9d+MOTnk20p/ zp8W6voh/n0+xL98o/8GVBY630Tfxr26ihBe1cfl873Zdt4qPXcsM3Yyw7gngYDlnG+OU8bq KoIafys4x+9n5cB7x9K9k+myJwFI9nzbMuSIUrs+uUrINyAw5FtIsSeBjMi3kGJPAhmRbyHF ngQyIt9Cij0JZOSSb9l+TIuJiYmppKaA+28AEBjyDYCqyDcAqiLfAKgqq3zz4wvapfOl71LY BgAFRP8NgKqy7b85zjHm59z/MS/isrZ05azWb55pXn+6bUi3VZY5RX8pAVg45dthueVbzuHj uKx72mRbRbot915juueQbEDJEvm25QLt130KnG9ZsXcCPdblvUbyDYigwuZbbkP06fLNsrZS yDfLhmW1DQAClm2+Zcwc45netyFj/83xCVnVkm7LLet3jzX3zQZQagrYf6vM6fyCe45lmzle ajHPtK/f0nus7Jp7jktl22QAwcgz39zne5Fzry/nWsKyZgB5KuDxaW5c+m8FZN/yAq656C8i AEdZ5Vs6/I0DKEEFyTcAKEHkGwBVkW8AVEW+AVAV+QZAVeQbAFVZ8+1b2q4LksZqay6Vuq0d kTSye1ojUs8RT5bPNwrwW8fLBP90g8/8eu1ElG2Laa8N0n7yTWu+fVimP8FItsoxmrStvJu0 a4JWXa5VTUjZPbmzLIlHgbDbNQp+GqtVj3V+aNul2raLk8pStgzruHtxipwjbjcP1VWel7w9 Wy+IWxFlTefp+fZDU/+teWzylZ2i1U3TNU/T9szQ9s3WDl6jHZh7iNQyv9MXwoJuFv+Yq31+ fTfdbA3++Tt8VvSXWHEzkjt5htY2XYtfpX02TUtcqbVO04lCy1StZWLHrSx0+HSitn+cfisf /Wycbv9oK8d82zdNO3h16vbA7EOExLWpKPt8waHS3xem/PdNh9j9c0F34QuZfvCN+HcEKJT/ ntej5Wfzsv0Z5b/vrRVLiWXzXMnBinmt1/aQodc6s8fBJ7NfyZ7aT38y78D4HjLrmkZZ863K lG/x2d1ErH0+t7sgk02k2T+WHKZblvLPpYca2pcdkrI4RaZcnh449stCQVYFwEX85/MObFn7 xhX9/nTRka+M+Pp/jTz6pZHfeGnE0S+P7PnKqJ6rRn5t9cgjXxv55TdGHL56+KGrLzrkjYu6 rbpAe2l8772Va8Sy+a9EBKNISNGja6mYt3bjvn4j/njk6b/6+lnPHT3wt98Y9Oujz/p1z0HP 9Rz0u68N/P2RZz3/5dgLh5/x4qH9nz+k3/PdTntRO+X3vS98bs0nTSLiZI/O3n8z8k2Em8w3 2U+wJNs/b7VJE3H5Sk4i3wq2QrUU/S8CKhGdqJ2z+u38bs+dU4+vuqrP7hl9d808dfeMU6pm nVw1q0/VrBNrrzm+dtYxdTN71l59VN20I+qmfKlqfLf1I7W/jO8t/k4LshKZb2Il/S7/qOd5 Hx4/7MM+I9b0Hb3m1NFrThm15uTRa/uM+vjEkeuOH7nhmEs29Lx441FlG444f+OXzt7Q7ayP tf6v977wt2IlXvJNdt5EuInjzS+W6PkmQ8wh39KHW5473Mi3or/0gPLE39reCUftv7rXp9f1 +3T+mQduGnxg4ZCDCwceXDTw4JLYwZv7f3Zz38+W9G5ZdFzLgp4t8478bPZhn17Vvapce2mo ZuRbniuRw56icNS5lb0u3dpv3PYzJ+0YPHXnkCt3DZy6a+AVu2JX7O4/tarv5JreE2qOG1fb 87LaIy+tPWxYTffzdmlnfqyd/BuxrDEcJ/NNnj9d19t0fHqNHnEi31auXKllmlL5JgNtYTed aafJA0yDZb77M418c18840OOT0i3AUV/m6F0FH1MLEh6MlzxjZY5fVtuGtiy9Pz4rWWJW8vi t10Qv/38+PJzE3cMar1jQOvyvq23925ddlzb4q+3zv9Ky+wedZO7ryrrJrte+a9Enm4QhW9c uL3v2F0Dp+w+/+rqslk1ZdfUXDCr5vxZtefOqh00s27A1fV9r2zoPaXxuAmNXx/T+JURDT3K aroP3tjt1D/IfDPG394emMq3jSfr5xfqx+rnTGW+iS6cyDfxfC2ZM463MgCNrppx/vQfyVOo lgFAGSDGfFmW7M/0uLhlVfKufZ2WZS0zLQsCUtFP4AZJT4bpx7bMj7UsHRpffkm709R2T/+2 u05pW35C2y3fbFt4VMt1R9Rf0ePVi7qbu14ZV9JlhV1XIs+lisKxF++ITdw9dEb1JXNqXnyt Rcy5dG7d8Ll1ZdfXnTenftDshv4zGk+Z3iTmP/uXxFGXNR5xcW2PczZ1P+0/xBx58rRhuJ5v 7w7okm8i9Jon6vkmI06Pr+RmpLvVn5CMOP0cRPJkROq9MVtLJUbHueDOIOpadnmo4GUvTwai SY+mmSe2LD4nfvsl8bsvd4yj1u+d0XZX37blJ7bd8j9bF31dHGDWT//K6uGHGn/p9pW03jsm ce9liRUjEyuHJ1Zc0LribGMl+qNdV/LZNP0jH6Jw4sid50yrEuF2+Q21Ru0j59cNv6H+guvr z57TcMasJmO+6MIdOaLuKxdsOvT052W+iRwT+SYOSM3HpyLfakSnbqr+mTcZcUb/Ld2B6srk JAoi2UR/TxLBaCSGPFVhmWN5NN1DBS97eXKYXKUBhaLHiziuvKUsfvdliZXjnfPtnjPa7jy1 dfm3W285rnXJMS039myY+bVXR+h/WelWkrhvfGLl2MSK0YkVlyRWXNi64hxjJfoKu67kwFTt QDLfxMFp2azqy26oHb+wbsKiOmMDLplff+Hc+nPmNBhzxCHqMeMaeo6u+dpFlV8+Q883kWwy 3LbFtD/378y3bWV6vtVOTX2sV+ab0U9bvXq1iDrLbUe8aUayGc2UiXHwak0yz7E8atw1R5DL IjmXvTwZMIjuRHSIP4GWeafH7xiRWDE+cf+kxAOTE/dPbL2vPLFC9L4uTdxblrjn7Na7zmhd fmrrrX1alx7fuvjYlgXH1l9zzOrRX21Pdr3sK9HzLf1K9HzrupIDyc/uisLp39094rqa8TfV TVpSP3lJ/cTFnRFXNrdeFg60/KPPlIbjJzQcW15/7JiaYy7Z9NWBL8h8231x6vtZRr69+239 ew16vk3s/NqCuf9mDzdxa/Tf5CeB5bti37TOxBBl466YzHflo/K2vetknlnAspcnA9GkR9NN g+LfG5t4YErrv1zR+sBUPeVWlie+d1ninksSd12YuGNI4vYzWm85tXVpn8SSXolFvVoW9Kq7 tterlx1t/tM2rySZb2lXoj/adSXNE/XxMVEYNKVq7I21U26uv2Jp/dSbG0TKlS/sjDg5nTq1 vs+k+l7j63qV1/UaV91r1MajB+vjb1XJ75lWnq2PuYl8k58PMedbU0cXznv/bc/MQ1Jm6Msa idGc/JKXhTlwjOeY+2+Wp+U83/KcjAs6bm3JEi8TUCh6NC0+N3HfxNYHr2z9/nRxm7hvUuLe 8sTdoxN3Do8vvyB+65DEsgGJJacmFp2UuOnExILeny3oUzenz6rLjxHLOq5ET7D0K9Ef7boS EW61yXw7d3r1xEX1Vy5rmH5Lw5VL6yctritfUDfaNBY34MraUyfXnjSh9sTy2t7ltX3GV/W5 fOMxZ/9BPCSOQ+UXUdd+R3vu1FS+vfwtbd05+vdVqybo3zxtmK41zsii/2YOt4bpnYmRbk8a U7o5lpkZ5+ewTsvMdFsLRIEeTcsuTDw0vfXhma0/mCnSKXHf5MS94+N3jY7fMTx+69D4siHx JQPiC09LLDg5ceO34/NPOnhj37o5fVeNPa5LvplWksy3tCsRj1pWIi9rIAoXzqyefmvDzOUN M29vmL5MHKLWjb+ptr3rdNrEmpO/W/PtcdUnlVf3/e7uvmM2HHeunm/y+/UizUS+if7b947q km/bxugRWjtVj6ls+28iEsVS5nwTxKoky92cGSv3OD/nFQLRoafNnaNaH5nd9uic1h/Obn3o 6tb7pyTuGZ+4Y3T81uHxpUNbFg+J33RG/MZ+8RtOic87KX5D34Pzv1Nz3XdeGXu8WNZxJeKu y0r0J3ddiX45kbH6SkbNrZ19V8OcexrE7dW3NkxZXG/E2tAZ1Ub5lPKqk8ZW9S2v+s6EXd8Z 98nx5//eyDcRbuKYVPTf7PlWPUXfVJlv7d76b40zu8tkE+S1R8wRZxwPFuqFcMm3Aq4QiA4Z TW0/md/2+IK2H81t/cGs1geuTNw7IXHnmPhtl8aXlumf+rjpzPiNp8dv6Befd1p8fv+DNw6o mdP/lXG9LPlmrKQ902RZiX5Nqo58m39f44IHmube2zhreefZ0kuvrSmbWXPOtM6IO218Vf8J VQMm7upfvr7X+b+T+SY7b5Z8++Bcbd0Fer7tnqxvav1Vmuy2yX7aaqfJ6L+JJ0sy3IzGmqcC vhAFXJsfK4QiJkaI+BNI3Fve9tTitoqb9XR6ZE7r969uXTklcXd5Yvno+LKL40uGtiwa0nLT WS03ig7YgPiNZxy8MVZ73YCXx52g//k4rSRzvnVdiZFv5QvqFj/UfPPDzSLijCeXz68dfX3N xdfUDL26esgVVcb8MyZVxSbtHFC+/oSher6JcBPeHaDn269OSeXbb4/Vv8uw7iL9Opb65Sun pPJN/vF3dOEcJhlwjvkGICzak+c6235xZ9uz97RVLG378Q36UeqDyVG4u8vjy0fFbxneIiJu 8XktC4e0LBzUctPAAzeeVTOnI9+cVpIx3ywrMfJt0pL6O3+8557H9yx9uPn1DxNijj4Kt6he RNyo62uGJyPuvOl6L+65v342cGrVWZN3DhjvkG9G/80x3+QpBvOnedN9C5V8A0JNj6bvT/v8 Nz/4/HePtv1yhR5xjy9o/bfrWx+epZ9ruH9KYuXE+D1j4/eMid8xIn7bRS3Lhh5cOKT62v7/ ddmxXfItj5UY+Tbt1oYf/Hzfo8/uX/Hk3qXJXtz132ucdUfD9Fvqpyypn7iobuz82jHza0dc V3PR7JqhM0R3blf/ceuOPec5l3x7bZB+ZfJNo7Utk7WdV2k1Iq9maY2ztKZruxmarz1EFhpn dtdvk0/QzeiSb0RcAMS/QfDV7skRIpKh9bG5n7/41Bd/floEVNszd7U9vaztyUVtP5nf+qO5 rf82p/XRa1sfnpl4aHrigUmJe8fFl196cPG51df0e2nUN8WyBVmJ6FnJfJu7ovGpX3/69HMH RMrd9eM9y37YvOjBpvn3Nc69t2HOPY3X3t04c3nD9FsbJi2pG7eg9tLras6dvrvfmHXfHKxf P+SDc/WhNvvxqcy3tSO7i3wzR5yeY3NSt81zuwmpiJMzTeFmzreivzmBPBU9cwLOt7Z/v/3z Pzz2+QtPtP3fB9v+/ba2pxa3ilx6bJ6eS49c0/rDWYl/nZ548IrE/RPi91wuel8HbxpUPePk t2ac9d97aguyEj3fJugruf3RPY/9cv8Tv/r0waf33fZo8+KHRLg1zVvRKMLtmjsbZt3ZMP22 hiuW1U9YXHf5/FrRhRs0ddfJo9aeNfZPnzfVinATh6Ii3146qTPfREHk2/vDtbXjulnyTeSY kWxmcr6MuHqJo1T6bwopeuYEqeHxef+o3db29C2tj8xO/MvUxL3l8bsu078mLw4kbxmmW3qB 0LJwsG7BWS3X99s/s/euG4Yc3LpOLFuQlVQl863usXnbdn9xyw+bZ9/dOHVpffmCusvm1V5y bY04Gh12je6CGdXC4CuqhLMmV/Ur39V75LYhk9euq9y/46F5ItwEkWbmfBN37fm2M02+7b1B MxhZ13m4ajtWBVDiaqf3aHpynuhEZTwpYJnEUmLZfFfyxLyqK3qIf1NExO2c1ENE3BfNWa9E hNuHQ3vI/ptIsz/318ffnvlmKt+2jdE+GqvJcHPMNyPTDt7YyZJ1+2Zr0p4Z8FcjEHLGEZ/5 0E8em8gOoTxiTf0y6RhNqjTZNFq3/lLduov0ETZJpJzss8l8q2luFp03kW8y1szhJpPtwMLu UnzxIemIR82/Hmj8pCAAZLTnOp08idk4s7tgH+yyjB50BqAp7kRBxJ2IuN8eqyebkW+icyh6 bpaDUJlpXyw55J+3HvaPWzT5OwuyLH+CQc6UhdTM5C81dP4oAxBCqevtwx9yD8v0kNEhfbFA /3EE2UGKz+6mX2v3quQVKa9O/fSVKJuPE+UPNDdNTV13Qh7diAAUEadf860j34S14/TYbLnh UJFpIqba7+qpu/9buh/00T16Wvtjp3d6YmCKeSYAZCTCRDLfffDkFFGWmWMQM813ZS4ZZFjd 1VP+2N9n0/RvY8lYM/JNRpwgIk7vgBnhJqt7JBllPx6qe7JM99RFacknwD8uOx8FUfSXWHn2 HS6zxbhNR2SRhUzFu3r+feGh6y7STzEYmWbON+mjsZoMOuN4VhKHuuKYV35upPPTcbNSX3aQ J0+lol8eTXlFvyKi8oxLRsAPljez9R2evNZlbfK2fmzqS7L6D2BN1H/mTxSqx+rXqxSqk3f1 h8bqv7wgws2SZiLfDkl+zer/AwAA//8DANLA9b8QvggA</item> <item item-id="73">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEvISURBVHhe7Z0JvB1Fne9PQEjUDz41 mgfDJrKICEgARcGA7EsIsgVECJsSMbLI4oY6MuM4jgy8cWN8OG/ewGfex/dU1NFhnHEGWURQ ESds2SAhIbk392YhCGTDGef/qrpP3dunby9V53Sfru7zDZ/i3NNdp7v6X7/6f/tfVV3dEv5h ASyABbAAFqjIAi193nXrhiak1szfyqRTHw1S68RFYTpl8Xg6fYW0znpWWh8YktaFI2Ofky5Z q76vUd/VtgvUp/5bf5r0/nXSIjXQBhvUNZEaZ4PzRqVFapYNJvhf3W4T/PIZaluQhsPPmcqn B3+rFPytt7W3z1wlrRMUC3TSf+v9QVL7T1BMOOrxRM5o/kyAkAHP9h/eKJOv/YNMvUHkj/40 THt+UeQtt4hMv1mlb4gc/tUwzbg1TEd9Mz+ZvHyO260JtrCpe/Lktw/fbNQEbXINE31Nks60 nYw/j34aP5/2GfAgIWle6KQZsv0V/xmAqDX9oQ4YTYCQBtA2c9aIBtA2V7wgk6//r+AAURDt 8WURnTSM3vaVzqTBZFJ8H98n2gubYBM0gAb6rQHtu00y5zbfDThMwGH8ffRT74tvN4FK9NOw Q39OvvoPQWq9/yVpHTEeFXVAqHX0w9I6faXqYntKJl22LkitDz83ljSUtr1qk2x79e8DOLWu +4Nse60EyXzXn9F95m+dV/+9/TVqv4quzO/4DO1Hwga+amDSFf8lpGbZQGtN16nx4fozmibN +71sc9nLsu3lG2Xby16QSRdvktZFL6ohlvbn+S8G28a2X6y680y6YH34t84/W3XDmW4+vV2n s1VX3bFPSGvG0iAimgghNQ7U+sDyzqTHey5dMwYlDSOTAijlpABe+mKiSV2YvjgSNkADaAAN eKKBD66XbXW6RAUhamxf94rpFIzvv391mGar8SCTNFBM0vMDdNJzBVSaNGupmj+gk5pHEJ1T oAF02G+kteP3OiHUOvj+8AcaQioSGksGSG0QRWE0FiV9RBEvmiLRk84TRFRxUhoq8hneHTQi xSagRCej8Hfn5BzsgT2q1oAGS1IyoNFwSQDLOFwikIlOWDPA0bDRSY8DzXhkPGkAad7o9Mbb xyOhsY2qSy6YDWdAlAIh010X77Iz0Am26+jJzJQzM+TMRRuq8jl+h4EtsAUaaJQGtjtvWObe ulaG1/9Hz5Of9XH08UxEUuixv6GOfY4aitHgUUMy2525XOZ+ZbUMr/t97+X+0jOy3eEKQho+ alJCwJr9/lla+9wZg9Be3w53JkKoPQVbQcVEQlEIjY0fmf1j4FGkDaZuR1JSSBcN7/i7M9yt kz2ioTl/j3dT1N0W5m6Yz/HIwNIWc78+KkuH/yDXfWurXHzzFpn9Z5tl1h9vlpNu2CTHfGKT HPepTXLkdWE64powHXLFxiAdNG+j7PuhjbL7nOfl0A+vkMefflH08Ux0Usqx9ZwA1ZWmAfT7 Z9WYzV9eJ2s+c7GMXDNbVs+bJcNzT5KhS46RoQ8eJ0MXHRmkVRccEaSV5xwSprMOkhWz9pWl x+8uj551qDy/+HGZq0AUAMhA6M0/lZZmzms+F4mEVP9cACEVNm1zfDwSCiEURDUmummPEQUA Uts79sWjnmh/ooZQ3Rsl5acOB0kDlg53rOuG/GOg0B72E/9rq3zlhy/LN378snzx/26Vj6vv V31zq1z+tS3K2W+RS//HFrlIAerCv9wi5/3FZjnni5vl9D/dLCd/dpMc9fFNcvBHX5Q9L1gl B13wYBBRGTuXcuz2eI4+9vpbPiHP//1X5Hff/oZs+NYXZd0tH5e1X7pK1v7J5bLm83NlzWcv ldFPX6TShTL68fNk5NpzZPVVp8vw5SfL0MVHyYrZB8ujJ+wpP5l5kAyvfXk8Etr/V9LKg1Aw iKS744KuuHYUpMBiYGM+zeCVGcDq6HrL6n6r0909ZbWPzAbJMQ/StQIV5wgoCorLFGi+edfL 8q1//r18+bsvyw23b5VrVWR05a0aRFvlsr8KQXTJLVtkzk0KRF/aLGd+YbOcqiKmYz+5SQ67 6kXZ96JV8sYTfhpGDe360H8XfmwNoZkrgvOs+fxl8rvvfFNeuPNbsuFvvyzrv3qDioyulbVf vFLWKBCN/vFlAYjWfOYSGf3kHBm9/jxZffWZMjzvVBUpHSvPnneYPH7KvvLdQ94Yllt3x+mk IfQmlRIjIR0q6UEkPcikC6MbWnvVgxtvvFFardZYin+P7hv7m244ewcO7LAVGmicBrTzff+f bw7gc8v3X5bP//1Wuea2rTLv61vlQwo8F2ro/PkWOVtFPmfcuFlmqujnFJV0N52Ogg6/dqMc esWLst8lq2THk/4tdOZtnZRy7Fl6pYMQQqPXvz+Az/N33CLP3fp5WXfTNbL2C/Nkzec+JKOf ulBGrlPRz9Vny+orz1DRz0yVTgm76VQUtOqCw2XFOYfK46fuJ3e+c8ew3O9UbNHJQEiPCU3o jkuBkAZOe2GF4DP8nv5vDFBAqHGNqmN6Jk6T+kUDmRrQXvJMBZhP/91W+ewdIYA+/FU1PqS7 3r64Rc76EzVG9JnNcoKKeI5W40KHX71R3nWVBs9GOVil6R9VY0MfeUH2v3RIdj317gkQih87 0zHHdiYeOwKhERXVrP/qp2X91z8bAGjzIz8PjjByrYLPlWcp6MySoQ+doMaFjpZV5x8uq857 V7D/pX+9U1bOni7L1djQE6ftL98/fFdLCP3R3WGopJ5kDaZq65BPC0yBREPlvvvuC1L0b7Mt +hkAyERNGRBKMlbZDs6cs+zz6OP381z9uB7OEXk2YtAcr1krjM/xddMsbaH9gJ6IoMeAPtaO gC69eaucr6OfG7cEADrxk5vlvddqAG2SQ69U0FHgOeAjG2X/j2xSn5vkQPX4y/4fHB6HUPvc Scd2gVDisSMQ0hMR1qkxoHU3fSyIgKL/QgCdqAD03gBAK1XUE/238swDZPmZB8oTszIgNKE7 TkNIh0rvbc/91l1xurGphQvHI58wCtKLzWnwJH3q/SYSCh5yii582J4ZZwr7qh2/ICb1w2lH z5vkVIssQ965cOoD7NQHDWIDfL3aD5zw6U3B2I/ugrvsr7bKhV/eIud+YYucruB0yqfVuI/q dpuhZsW9U0VAb//oJnmbAs++H94kb5m7Sfa7fJOCkeqOU5HQLqf+bEIkFD+2C4QSjx2B0PBl JwRjP0EXnBr/Gf3khR2HH7rkWBmaM0NWvf+dnQA67S2y8vT9ZMUZ+ysI7Sfff/cuYbnfpYZ5 NGPeqia+6TGhCd1xcQhp2nZAKFjndCwSSgNRNBLado568lalYPXsNoziAIo6YwOkshx0Hhjy 9ruUq8hjuZyXvMANDfijAQMhPT370lvCbrjzv6THgLbIaZ9VUdCnNsvR16soSEHoUAWhAxSE 9lUQ2ktB6M0KQnurz7de/qK89YNDsvPMZAhFj63PZ3NsnS/x2MHq1+GYkIbQ6A0Xy6ieBac/ rz9fRq46uwM4euwn+m/lrL1k5cw3y8pZe8uK098qT576VvnBu3ceh9A7FIisIKTniuuoRYND AaTbSGgcQgpEev0gdbxO56ymfOu1hRJSnOgmT9p2vT/pX/TYWfuLOF/SuTRY066R7en1j22w TRM0oP3Ke9TkAj3jTc98m6OiID0RQY8FnaYioRPV80JHq0kIhysQHaq65PZXXXJvuWKT7Dlv s7zpI5vlzSoS2ltFQntfulp2mnlP6Mzb/jLp2HqbzbF1vsRj60hIJf1v1Zz3BDPegplvn5gT jAWtvlqNBX30tERfO3TGW2TofXvKqlPfJKtmvVmefd/esuCUveWHh+3UCSETDekHVjsmJujw SIdL+l0QQRTUXnhOLScTnZhgxoRcIqEwGgpB1AGhjHcKRfPpvwNn3s4/oQuvvT36G53H/DO/ 63Z/0vlcjjUw705KuaFogjPhGoBiNxrQfuIwFeGcoaBzrpqIoAGkP8/UExI0hNSY0NGqS+4I NTHhUAWi/a/dLPtcreBz5WbZ7aObZXcFoz3mvSR7KAhNO3kihOLH1uezObbOl3js9ruDAgip KdYjaubb6LXnyqieCXfNueo5oDPDh1Y/fGIHiIbP3V+Gz9pHhk9/swzP2k2l3WXlaXvIwpP3 kB++Y1oIIbVgaevwJdIy0ZDujpv6l+G+4H9xCGnH3l4NtetI6GK1KJ9KLbXiapDUC886IRS+ AC36z7wQLJ4vhFBn3niefn53PVfjXnTGy+t4gR8ayNWA9hMHq4kGMz+3Sc5Wz/6c82dq1QQ1 HqRntc1SU7JP+txmOUZ1y73nhs1yqOqaO+ATCkLXbZE9rtkiuygY7aJgtItaOWGXS1bL60+6 N3TYbbsnHTuAkMWxdb7EY7dfYqf3rzz7YBn+yEwZ+djZCkDnyOjHZqsp2QpCV8zq8Nnmy8js fWTkzD1k9Wm7yOpZu6iIaBdZeMIu8g+HvD4s9xGqh+0I9eiPhtCeC8OlezogtLteZE6RSkdC eizIQEgtx911JHTJZrUa6+ZwuW+9BLhKHc7bwEl9xrcn5Ytui0Y6AaAsjpF3Dpf9LnnHIBy5 Xra1b0ywyfhNmq+20O9/IXVlA+0n3jZ3Y/Dcz2mfVw+hKkCcpWB0hgbFn2yRk9S2Y1WaoaKi dygYHXDDFtnnkwpC12+RnRWIdrxKJQWhaReNyH878b42hML6SDq23mZzbJ0v8dizVdBwxu+C Yz/7vrcFz/2sVt1vGj4jqitu9VVndABo5LIZY9//sPEFGT17Dxk9fWcZmbWjDJ2yoyw6Zpr8 ePp/C8t9tBreea+ada1BdKBijYbQG78W7gv+pyGkdwYQUqG3joL0+yDGIBRmzXtItWN2nH4f RRtEBkZR523eR6E/49uT8uXl6ed+13NFr7Wpf5sbDT7Hb7qwxWDbQvuJvS99SWZct1FO+owC kYp+sv4d8FkFoU9vlTcpEO2kIqJpV2+RqWq69mvnjMqrjrs3dNiRG/qkY5+muvpmqvOcqOB2 jErvUemdn98i0WPr4yQeW0NIJf1vxcy9ZdWFM1TX20kq+jlNPZR6ekfRRy4/RkYuU+NGl3bO jltz+k4yeuo0GTpxqiw+6rXyowNeNQ4hDSIdESVCSIdHAYQUgHRI1gaQdpjxh1XDkoSz5eKf IYTClRW2vTx8MZJOkz4UptbFL49diP7bpKhTj+YJopx2vrw8/dzveq7otfL3eL1jC2zRZA1o P7HbnJeC6dd6wdKTFYgyIfS5LbL3DVtlt09ulf9+3VZ53ZVbZAcVSb36vBHZ/uh2JBTxh0nH PuWPVYSlIqvjFXyOVjA6Qn2+Q0MocmxdhsRj64h39sagiMuP301WqunXQ5ceo0B0ckexV19+ vIx8+GgZ+dARCkLvkLUXHtCxf80pr5PVx+0gi454tfzobduHpDjx+ZAvBkTBqxyikZCB0Ez9 8qIQQhpAOoKJjgllASgaKW17lcg28/4rSPotfTq1LlNv71NJwyjpn5kAEN2vtxmAZf2um2NG QWLOYbbFv0fzmjLFryFa/mh5ouXn7/EbEmxRD1u0Lv5PdSNI6sYG2kfseN5LcqB6oefh1ygQ qQkIWf/2++xW2UtBaFcFoTcqCL3miq3yyg9uVK9ZGJFtjro3dObtunA9dvy8ice+QN0Unbc1 yPrMe3eUZ884MFiCR4No4/13BdtXX3asSkfL6g/NkJFL3yWjFx8say7YT9aet1ewf/O/3CFr TnqNDL/3lbLondvJP7xlm3EIaRBpCL1LwUgv3zOxO06FSTMVgPTAVxtCOorJ64KLrxunX+Gt kwaRTubVwAZK5jP6sKr5O5onaZven/a7OChsjumSJytvXlnj18738AaF5L8NzM0jn+FNtEvS PukN57ykuuTCJXjerUA0Q82Cm3G9ilDUQ6rvVtHRYQpMB6tJCft/SkVBqhtu90+orrhrt8jr rtoqr758i2x38UbZ5qzVMmlGe3ZcuwylHFsDToFI/1v2njcEXXLPnj1drYrwbhlSXXNDF6l0 4REyfOG7VTpMVs85WEbO319Gz91b1py9u+iuOB0FjR73ahmasZ0sPGQb+eE+k0IInaqiLBMN aQjpZeI6IPRH88O+ujaETBQUvmf897LtR/9Dtr/69zL56j8EgNFp8rV/kMnXq89YGoOQeo+5 fpd5kNpAMp9lOJ8ohMo4Psf032FSR9SRTxrQPuk1pz8nu5z/vOz7wd/J2y//nRzy0RfU2nAv yHS1MOn0K1+UA69WKyJ8TD0L9LGXZPerX5Kd1NI9U9VkBN0NN/nil2SbD/xOPbujfPPh4Sra 5vrKOHY0ylp82Gvk6WN3kWWn7ivPnPl2WT77EFlx7qHqFQ3T1eKk0+XZcw5Ua8TtJ0Nn7S1D p+8uw6fuJMMnTZXhY3eQoSMny4p3bSOPvb0l390zHLoJIGRApCE0oTsuAUIGRAGEVNr+iv8M IBQkDaAUCGko2YAoDqZev0ch1Oux+P3EG4c8m/jU+CkLMPJBA8PP/afse+Fymfq+5bLz7OWy xwdWyt4XPCv7zFkhe6nPPS9cKXuotJtKO180LNMuHJapc1bLa84flleqBQNecbaKgE5TADr+ Cdn9tH/pgFAZxw6iPBUN6WP/9uR95ZF3TZVHjtxZ5h+3h8w/cW+V9pH5J+wlj564pzx2wh7y uBo3WnD8zrJAzYJb+N6psmDGa2Thu18pC97xCnnsoEny8/1a8r337B5C6IyNEyHUMUU7BiE9 hTgaDZmIaPt5LyfDSAHJgCcPQGWKI61brMxzcmwcHhpAA0kamPu3m+TRp16Qfc95QHY46ify uuN+Jq8//t/kDcf/VF5/3E9l6vF3y9QTfiavPf4e2eH4++RVx98vU457IJiEsO1R98mkox5Q PVT3KAD9VOYvfk708cx5Cj/23yhItCE097aNsmHho/JPx+0r337bDnLnQa+T701/vXzn4DfI dw56vdx58FT5vko/mK5mvx20g/z4wFfJXQdMkR/tt738aN9t5a63TJIf7NWSOxWA1j45X+Z+ TUVzdhDSLzRqjwm1Hy7VMNIPnAZJT7dWA2xBVKRhZJKKkHSUpJPutktLxngmsuIzjDCbklz6 ysnrNraAveppr+3m/ofMVc691386MtHH0cczWij02Le9KNtdsiWciazGhLabo976euv485vd ln94vSq3AtB2p6mp3/ExId0dNzESakNIrx+kV9Fur3o99uDqxeGEhW0vU0AyKYBSNIUz4ZKS mRlnpmo3eWrmYF4bM6i6mUHl/2+YRt649qxnwbUnIejZcMGzR3p69rmb1aeCkU76bzVdO4hg zKf5W383ST3c2jpVzXrTnyZfdPxHT0aIJzMmlAgh/ayQWkW1NeMRaR07XyYd96hsc3yYgjeu ttOkWUvFpOAtrBpceuFTk/T7iKLfzd/tBfKC/CRsgAb818AJ+vlBUqNsoH28XjE7q16PVasa 6Ff76KRX0zHpyKfGt5n9+tNs1596jTid9HqkZr04/bdeskczxgpCCkABhNogisLIQCnpU+cb S9Hfx47VkS/6G/4et1/NbKH1QmqeDQIfQGqcDSprq2bZngmz43aaL5MPfUqmzdsgU2Yvk/Vr FpOwARpAA2gADRSqgdZJanzoCBUt7fEdNSZ0czhzLvgfECrU0ECcmxg0gAbQwEQNACHuaoAt GkADaKAyDQAhxFeZ+LgrJDJAA2gACAEhIIQG0AAaqEwDQAjxVSY+7oK5C0YDaKB0COkVtREa QkMDaAANoIEkDfQMofhrGwx04p9FCTAOtbLOk1fetOvO+12v+4E6DblXDfF7NOSTBgqBUNYF Fe000yDUb6MWfV225a/qvLblIx8ODg2gARcNlAahpAglGj24FDKa1yYSSjpP9Hdpf7uUKQsG WeeP2sXk0+eN/m3KkXacpLwuZScvTgINoAFfNFAIhOJdU8apJn1GHWy3RkgDXPR88fOUAaGs 6046v00Z0uBWVbdjt3XE73ByaAAN2GigEAglnShpbCjJadsUMp4nD0IuUOy2eysPFlkQjMMy C07xaKjb8nZjZ36DE0EDaKBsDfQVQkVdTB6EbKGYFDnZlrFsCNl0O9qWlXw4EjSABnzVQGUQ 6vWO3tZJZ43/9FIGIESj9rVRUy60WScNZELolRaraOc54zgEihpUT4OQiW7SBvqjlVMGhNLO n1fepLGytO7LomxYJ6FSVhwrGmimBgII6XcT7Xr7xFW0bSCEMJopDOqVekUDaKAfGugZQvG7 9bLv0vt9vqIqoahJGUWVh+PgYNAAGvBBAz1DyIeLoAw0JjSABtBAPTUAhFjAlLX90AAaQAOV aQAIIb7KxMedaz3vXKk36q1IDQAhIASE0AAaQAOVacAaQsI/LIAFsAAWwAIFW8AaQkWGXzbH uvP/3RZcqk1e8vjTPUC9+VMXtAvqog4aAEKE4YWCHgjh+Org+CijPzoFQkAICKGBQjWAg/fH wdehLoAQDqhQB0QkhAOqg+OjjP7oFAgNGIRah9wmRaS0RgyE/GncOFrqog4ayITQlOlLZNq8 DTJl9jKru+W5c+dKVnIxiI0za7VuTCyX63aXcpWd96677ppgQ72tqPMWASB9DCCEgytKkxxn sLVUOISSZu9pMOl/hxxyiLUztYFQk8QbhU/chgbsRcBIA0TXQy8JCA2202hSu+NaqtdyXyGk nat2qDYVnwUhE+n0+mlTDp2n2+jB9vg6nwF11hR8W9tlnVdfS6//eoVQ2iK0edtd7Ene6p0L dUAd2GigFAhFu+QMeKLbbArmUyTUTfSQ5ajj12+ioCgcTKRinpUyduw1GvIFQtFrTYJPHJS9 vPvJRm/kwWGigWo0UAqEiribt4GQ69hPWv488SU57tse2SCPDEmQ9N/x5AKhpCgoCqGoPXuN htIgpOEW76LT25L+EQlV01jzdMp+6qWOGigFQmmTE4rqjuu3obOihzQYdQuhtLEaA4MyIKSP ecwxx0zgjd6WBMheIRSvv7xuuLLfUdVvPXE+YIEGxjVQCoQGIRKKX6OBkYmI6gIhHe0kAUg3 EjOZJB4RASGcKE4UDRSlgVIgNAiRUCthfD8Kom4hZODWr+44fZ60f1EQdYzhFDxFW0c6ef8Y E8LpFeX0OI5fWioEQvGJCHmRUBxSSaLwbXZc2jXFYWTGiFwgFJ2YEHX8cUBouxU9McEnCN13 330iCkj688YbbwyS+QeE/HIcOHLqoygN9Awh7RgXLfhVkGynGUfzp41x2ExMKMoIeceJjwnF wWO+t9Qf3XTHVTlF20DIwC8JtnFQldEdF5xXR0QpUREQwunltVP211MjPUEoCiADFttP/dvb brst9bkhGwhVOTsu8JmRLrkAQOp6uoWQzcOqI6Mr5KrD3271nFVag4wD1RsItQGUFAWFfGr1 dN04qHo6KOqt+fXWM4TylurJ2t8rhPol0KxISIPIACg6XdulOy56HVnL9mgA/fN3z+8JRPFr iU5MSIqGkrrrio6EsiIguuOa74T61Y45j59a6hlCtpFPPF/dI6GOLjgVAcWfF+oWQnkNpVcQ JU0313WRBBu9zUCvqIkJGjjRa4wCyIwDRT+BkJ+OI0+n7KfebDVQCIRat7VEdawFXWsaNr/e 5RVByuquKwJCNhepHVr8ORS9zea3Jk/ac0JJEVC33XEu5dEg+tqZe3YVEbk8rKoBEIXeGBB6 mB1noBNEXe0uOGbH4bBc9E/eZuklE0KTpy/OXEXbQEZDSCfz/TblXHQqC0L2a8apcqlyBEnD KAYkWzHHHfcvH/xx0AWnI4UiVkywLUc0X7cg6mbZnui5gvGZHiAUhY+JinhYtVlOpRs985vB 1cAYhHa7XVpTbw7nKAX/22m+2EKomy45M1akx4WSBGgzMSFLuObuOoiEYslM/bUd7PYRQvra uwFRNxAyEZFN9GVbb/FuOZzQ4Doh6n6w674nCGnx9DoxIU2ANs4sa3ac6TrKgpDOY9MAtOPu Jtkcu9c8GkQuM+a6uQ4T+dhAz6beer1mfj/YTov6b1b99wwhLYhganIXKUtMvToz08Wjp/zG u+PGtjHt1wrC8W7ALOj1Wm84mGY5GOqT+szTQCEQyjtJN/uLcmZp4w3dlInf5DeoouoNW+fb GhthoyZooPEQakIl1ekagBCOsU56pazV6xUIqe5EhFicDYBQcbZEl9hyEDQAhIBQoRAGQjjO QXCcXGNxOgdCQAgIoYFCNYCDLs5BD4ItvYXQIBifa6SxogE0MOgaAELcBXMXjAbQABqoTANA CPFVJr5BvwPk+omC0MBiAUJACAihATSABirTABBCfJWJj7tAIgE0gAaAEBACQmgADaCByjRg DaFDDj5QSNgADaABNIAGitQAEAKu3FygATSABirTABBCfJWJr8i7KY7F3TkaqKcGgBAQAkJo AA2ggco0AIQQX2Xi4861nneu1Bv1VqQGgBAQAkIpGtBvui+ysfXjWHUscz/swjn8BScQAkK1 c7TGoWiHG09FOZuoM+/2PN3+rpdrAEL+Otte6rXJvwVCQKjWEIo2TuP0i2iwcQi5HDOrHGVD ouzju9iBvADRRgNACAg1BkJa8EU54V4hZNP4yshT1PWXUTaOCZSSNACEgFBjIBSPQIxDTopM ol1l8YYRd+Qujt0lbxSaWWWMR3vmd2m/ydoPCACBbxoAQkCo1hDKg0kSFPIgk7TfduypGwjl /SZpfCo+Lmb73TcHRHmAIhACQrWGUJYTswFQ1Hkn/e3axecClLxjJwE275ry9uP0cfq+aQAI ASEgFBlL6tWJFwGhtG7FNGjljV/llck3p0R5BguUmRCaMn2xTJu3QabMXlZbR4WgmyvoPOfq ApTo+FHeGFGeprLKldcVmAQaF8i4XHPedbC/uW3Hp7oNIHTkUmnteoe0pt6sJheFt2HS2mm+ ACFE6JNYXeGQBoMsEBThxJMmDLh09bmOASVNXMjb5nO9UrbB8jtAiO642ka53URC8QH8vCgj PtMsCzBJkMyb0JAFymh0Fo/UksaLbLrrcPCD5eDrUN9ACAjVFkJ1aGBFlzEPvEWfj+MBrbI1 AISAEBCqkQaAEFAoGwr9Pj4QqpED6rc4OJ9/Dg8I+VcntJPe6gQIASEiITSABtBAZRoAQoiv MvFxB9nbHST2w35N0AAQAkJACA2gATRQmQaAEOKrTHxNuIvjGohG0EBvGgBCQAgIoQE0gAYq 0wAQQnyViY87yN7uILEf9muCBoAQEAJCaAANoIHKNJAJocksYFpZxTThDodr4E4dDaCBPA2E q2gvk9ZuCQuYAiEElCcg9qMRNIAGetGAdxBKW5gxvpBk9KKzftOLcfgtjQsNoAE0UK4GvIJQ 3rtWklYVNnCKQgrRlCsa7It90QAaKEoDXkEoL9qJRz9RAJl9rK1F4yiqcXActIQGyteAVxBy edlY2pswgVD5oqFhYmM0gAaK0gAQYmomMwDRABpAA5VpoJYQir7dMutVyEWRmuNw14cG0AAa KEcDXkEobUwoPiEhqdsu7bXL4vgvKrS//sZNHXcHfMce6GPcEdEe/GoPdYWkdxCqypBRVlVV hrTzxhu7D+XzsUzaLj6Wy8cyYSu3u3of69DHMnXjm4BQuy/YZwh1U7H8xs3JYC/shQaq0QAQ AkKVDUjS6Ktp9Ngdu/ukASAEhIAQM6PQABqoTANAqAYQ8rHv18cyMc7hdofvYx36WCZ05aYr 1ygrE0JTBmgVbcaEyhWaqzDJT32ggcHQQAihpdLa9XZpTb05cMWt4H87zRcgNBgioLFTz2gA DVSlASBUg+64qsTBeXFMaAANlK0BIFQDCPnYT+5jmei7d3OYPtahj2VCV266coUWEKoBhFwr lfzlNhrsi33RQHEaAEJAqLKpmTTk4hoytsSWddUAEAJCQIhnRNAAGqhMA0CoBhDysZ/cxzLR d+8WDfhYhz6WCV256co1IgNCNYCQa6WSv9xGg32xLxooTgMDC6GsNzwgsOIEhi2xJRpAA1ka GFgIxY3Cigk0FJwlGkAD/dcAEKpBd5yP/eQ+lom+ezcH4mMd+lgmdOWmK1eQA6EaQMi1Uslf bqPBvtgXDRSnASAEhCqbmklDLq4hY0tsWVcN5EBoiUybt0GmzF7WeEfFmBCNuK6NmHKj3Tpr YAxCuyWuog2EfKhcH/vJfSwTffduztjHOvSxTOjKTVeuPhMI0R3X+CjXtVGQv1yng32xb1QD QAgIASGWbEEDaKAyDXgHofCdeq1Eg5h98f1p213uuBgT4u7MRS/kRS9ooBgNeAmhtMo18ImD Km27i0h8hpCP/eQ+lom+ezen4GMd+lgmdOWmKxe/q/N6BaGsiCYp+tEXkLbd1RA+Q8j1Wshf bqPBvti3SA20VOdPViryXD4eyzsIGSPlwSUa/UQNm9aVl2d8IIRjydMI+9FIngbygJK0P+uY On/eOeu+HwgxMaHxIq97I6X8/YdfNzApAxhlHNM3PdUSQtExoWjkkzWpIc/wPkdCPvaT+1gm +u7dnLWPdVhGmboBStxflFGuPJ8UjJdkREJVlcmm3C55vIKQGePJGv9JAk32WFLWSxuS9xkD xiuZ7zd1RE3YA3tEnU3ZeugGJlEnXnb5yji+S/ldHL9Peb2DUFXG8TkSqsomnNctssBe+fbq FiSD0C2VpJ9BuG4gxJgQY0I8qOisgW5hAqjzQR210cBDaPLBrB3nQ6Pxse/XxzIxJuTu4HyD CbrqrMPBGRNaJq2kBUyBkFuj9gFYlGFw6qxbgJjfoRX/tTI4kRAQ6pihQOP0v3HWvY56Bcgg OKe613FR5W96XYdjQkAICDEuYjUuUgQ8mu5UinK+HCe8GWy6XoBQDSYm+NhP7mOZ4mNCRQEj epxuHGMdbNXNdZXxG2w1sRciDUK+2spVF0CoBhByrdQ65C8DEPFj1sEOlJGu3zwNEAnxem+r bpo8Ifm6vx8wSDqHr/agXEDBNw0AoQGCUFUOucrz+tbgKA8QQAP207SbYCu642rQHedj36+P ZeI5ITeA+ViHPpapal0xJjRAkZCZIteEuwuuwc0hYy/s5asG6I4DQo0eE/K14VEuoIAGmKIt rJiAI8ARoAE0UK0GiIQaGgklvcRBvbpDSNgADaABrzSQ8k4hX8fPXG9amJgQmZjQUgjy+T/X yiV/tXew2B/796oBDUN9jCZHQ5kQmjJ9sUxraCQUF0cd3idUBiB7bST8HkeLBsrTwOBAaGny KtpAqDxx+dJwewGbL9dAOZqv00GtYyBEJOTFzDgf+351mVwB1g9H4qut+nHtrufAVvbwrspW WRCqqkyuOsvLn/NmVbrj8gzIfvuG7AIt7GpvV2zVXFsRCREJeREJDaKTsQXWINqGa24udOJ1 C4SAEBDy/D1DNrDCaQ+O025aXQMhIOQFhHzs+/WxTNoBJZWralDVyVZVO3FslfA+If38YsKz Qr7aylVDXo4J6Uflki4k+ghddH/adhdj1GGKtsv1kNft7r9qUFFfbvU1SPYKHpxNeWC1CXbw DkIGKGkQ0tvjeQy0sn6bV1lACCeQp5EsUOX9lv3oq1sNAKE+P6yaBpJ4dBQFTzwq6qaygRBO ohvdmN/kRVK9HJvfDrY2gVAfIZQGFhP9JMEmDU6uDddnCPnY9+tjmdLGhFy1UHT+vGeqij6f 7fF8rEMfy1S1rtImJ/hqK1v9jd3AnfSCtGZ4sGJC0pKJWREOkdBg3x26Ct3n/HTzoeUsfTZ9 hpx3Y0JJUU98W7TLLhoJMSZEY/YZNt2ULQ1Q3RyL39SzfQChPnbHmUaSNf6TBJqs2XFJr2zI 22bKEQ93+X5Tx6xF7FGdPWyiJ+qnuvpJ6sLrtj4GujuOl9r5cefkY9+vj2Wquu8+LdLot61s o6d+l8smEvOxTFXrCghVEAnZiLXoPD5PTCj6WjmeHzcX/a4Hm+ip32XifPlaHOjuOCKhfIHQ iLBREzRgGz014VrreA1NnqadOTEBCOFg69hgKXNxugVOxdmyF10CodnLvFhDrZdKzPutz91x PvaT+1imqvvufRkTytN62sQb29/pfElwcvn9INmqCLskQcjXNuh6vURC7VWifYaQa6WS34+7 10GrB6Km8nRHJEQk1PhIcNAcJtdbnsOM2xY49W5rIASEgJDn7xUCKr07un7bsKwuvX5fRz/O 1+QZcnTH1aA7zse+Xx/LxJiQG4h8rENfo6aqbZUEoarLVBR8gVANIFRUZXMcNyeNvfyx16BH TURCdMfRHUd3HBrwTAO+Rk1l3LwAISCEA/LMAZXR0DmmP5FPL3XRxKgJCAGhSiHkY9+vj2Vi TMgNIj7WYVll6hVMZZXLBbbxGXI+lMml/Gl5GRNiTKhSwBYhYo7hBh/sFdqrbt15TZ2m7eX7 hPrRSLJe59CP83MOHCca8FMDvUZNZdVroyF0pH6z6h3Smnpz4Jr1tUprp/kyZfpimcYq2kQK jAehgQHXgA9gAkINF6HPy/b42PfrY5kYE3KLLHysQx/LlKarfoOp0WNCREIHdvTOlRVOc1w3 J4m9sFfdNFAmmIiEiITokmm4Burm8ChvPSBdFJiAUMMdkM/dcTibejgb6ol6stVAN2Bq6rNC wew4uuP87o7zsZ/cxzIxJuQGAR/r0Mcy9UtXeWCKQ8hXW9mC2OQDQjwnRDdjw6N8V6dAfjeY l2kvDaYxZ626a4LnmxSNyjxnv48NhIBQowTd7wbE+fxx2E2siyiEwgds1eMzQKg80YWPKIUp SVBp+/N+ZyNOxoTKq1cb+5MH+6OBiRoAQn1+WNXAJwtCWqhxUEV/l/bbPIH7DCEf+359LFO/ +u7ztBTfj63sAYutOm2VBSFfbeXaPrzsjksCSXxbGrCaCCHXSiW/vdPDVtjKZw0QCfU5EjJi AEI4Bp8dA2VDn/3SABCavqTva8fldcXFQZUWIbmKxOfuONdrIT9OEg00RwPxGXIDNjGhvxDK 6kqL7ouOCaVtd22EPkPIx75fH8vEmJCb4/WxDn0sU9W6SoOQr7Zy9b05Y0L9g1B0hlvW+E/S 7Lms2XFZr2xI22eMGK9kvt/UMWsRe2CPqMNBD+XowUBI2zc6RRsINewBP58jIdc7C/K7RQTY C3v5rIGmP7DqTSRUtQiAEI6oag1yfjSYpAEgxEvtKl9RwMew28cyVd13nwYRbGUPF2xl/8Cq r7ZyvZkiEmLZnsoh6ypa8ts7dWxVf1s1fZo2EAJCQKhh45uAp/7gidYhEKI7DieNk0YDaKBS DTT5WSEioRpEQj72/fpYJsaE3CIAH+vQxzL5oKskCPlqK9dIHAjVAEKulUp+N2eMvbCX7xog Epq9zDkUTVvp2tfKZoo2jshXbVIutAmEHCGUtMJ1t6tb96sBAiEaer+0xnnQmqsGgBAQco4E XUWWld/Hvl8fy+RD331SPWIre+hgq2RbMSbUI4Sy3pZapLPu5VhEQvaOohc781vsjAbcNdDk adqlTUzIWpDURxECIfeG4WM9UibqsYkaAEJdRkI+iyFrdW2fy03ZcLJoYPA0AIQcIaQbie8T EeIN2edIyMd+ch/LxJiQm3P2sQ59LJMvumrq5IRSuuPiXXGMCbk5B+50sRcaQANxDQChhi/b 4XMkhEPCIaEBNACEgFCl07RxQjghNDDYGgBCDhCiO67YxuJjP7mPZfKl7z4OC2xl3x6wVbqt gJADhJLu2HyfqEB3nL2j4I4cW6GB/msg6Q2rTaiHUiYmAKH+C7QJYuQa0A0asI+EmmIrIMQq 2ox19RjlN8UZcB1+3wQkPSvUhDorBUJJY0I2xor+Li2aSprunfc7u3OPd8jZ5O9nHh/7yX0s E2NCbk7Uxzr0sUw+6aqJXXKlQKhbBx1dfTtpDCltf97vbMrDmJCbA7OxKXmwKRooVgNAyLLb IgoQ2wdV49Cx/Z6Xz7YRAKFiG4ut3cmH3dGAvQaAUJcQ0iLLmx2XB5O0/Xm/sxU4ELJvCLY2 JR82RQPFagAIOUIoHhFlCTIPJoMMIR/7yX0sk09991GtYyt7R4ytsm0FhCwhZCKfbiGUNvnA NOzo/m66/pInPfg7MYG7SXsnhq2wVZM1AIQcINSNENJmucUnHiRFRWljT1mvbEjbZ8oevyvj +00d07mxB/bIivjQR/H6AEIlQ6gbcBX1G8aEuIMuSkscBy2VpYH4s0Jlnaefx/VqinY/Lzx+ Lp8h5GM/uY9lYkzIzfn7WIc+lsk3XRkQ+WorVz9eCoRYwNTNGbhWGvmxLxoYXA00LRoqDULR SQRmooLPDcfnSMhnu1G2wXWG1H01dQ+ELMaFkmbF5T0nVLWggVA1Darqeuf81HvdNACELCAU rdQi1nXrh0h8hpCPfb8+lsm3vvu0WZb90LPNOXysQx/L5JuuGBNyhJBNY/Ahj88Q8sE+lIGI AQ34oQEiIUsIxZ/boTvODwHjSKgHNFBvDQAhCwhFHy6NT1DwtQEQCdW7YfqqK8qFrorWABAC Qn1/CZyP/eQ+lsm3vnvGhNwBhK7sbKZB5KutXKFb6hTtIt7z43pB3eYnErITf7f25XfYFw0U p4EmRUOlQEiLLemBVZ9FCISKayA+1zNlo56boAEglNIlVzfwdE4lZxXtJjROrgHIDIIGgFDG uJDvs+DSBOpzJORj36+PZWJMyA1APtahj2XyUVeMCeVMTrB9pXeVdyxZr3ioslyc282RYi/s NYgaIBKymCEXHxfyXSg+R0K+247yAQI00F8NACFLCEVB5LtIgVB/G5HveqB86MFnDQAhCwjV oUuuLhMTfOwn97FMPvbd+1omX8uFruzh3xQQFT5Fu27wMSAiErIXv893iJSNehwUDQChhGio rgAKuw2Zoj0ojZfrBFRN0AAQypmmXbdnhoAQjqkJjolrGBwdAyGLcaE6NQifIeRjP7mPZWKc w80B+1iHPpbJV10BISDU94VM6wR1yuoGBOyFvVw1AIRKgFDeW1jT9uf9zqZyfY6EbMpPHpwY GhgsDQChkiBkni1KalBpq3IXsVo3EBqsBozDpr7RgB8aKHyKdhEVm7T+XHxb0ovzsgCWVy6f IeRjP7mPZfK17x5b2Ts7bFV/W+X52vh+INSO6HyGkGulkt++IWMrbIUGqtVA5RCKP1uUtgr3 IEdCNJJqGwn2x/5ooDwNVA6haOVmvQYiui8KrrTtrqIhEipPZK51QX7qAg0Mjga8gVD84dYk OHUzOy7rlQ1p+8y54/3TVX03563q/En20GXxqTxmPChaJl/K52P9JY2f+WAvH+svSVs+2q+u 4PYGQlUbkEhocO68qtYa50draGBcA0CIiQk8dFvC4wY4GUCDBuw0AISAEBACQmgADVSmASBU Awj5+OyEj2XiOSG7O8+0MU8f7tzRlX0d+morVx0BoRpAyLVSyW/fkLEVtkID1WoACAGhysJw Gn+1jR/7Y38fNACEgBAQYjwADaCByjQAhGoAIR/7fn0sE2NCbnf2Ptahj2VCV266co2uQggt k9aud0hr6s3B0zKt4H87zZcp05fItHkbZMrsZZVR0vWCus3Pc0LlCq3beuF31AsaaLYGgFAN IiEaYbMbIfVL/Q6yBoAQEGp8lDvIDZxrB3C+awAI1QBCPvaT+1gm+u7dHK6PdehjmdCVm65c oQeEagAh10olf7mNBvtiXzRQnAaAEBCiO47puWgADVSmgYGFUNYrHrjLKe4uB1tiSzSABrI0 MLAQihvF5ynaPvaT+1gm+u7dnJ2PdehjmdCVm65cbzqAEN1xlYXhrmIlf7nOAPti3yo0AISA EBBiPAANoIHKNACEgFBl4qvirotzcrePBvzSABCqAYR87Cf3sUz03bs5Fx/r0McyoSs3XblC HgjVAEKulUr+chsN9sW+aKA4DQQQmrFUWruxgOnYBDkEVpzAsCW2RANoIHeKNhA6sOOxIRoN jQYNoAE00B8NeBkJ6bdJJAkgfMtEmKL707a7iIjnhNwER9+9vb2wFbZy8UW2eX3VlW35TT7v IJQEGVNYA594nrTtLsbwGUIu10Fee4eHrbAVGqheA7WBUFL0owWUtt1VXECoejG61hn5qTM0 UH8NeAWhaEQTFxcQqr/YcBjUIRpAA3ENVA6h6HhO/O/4uE/S90GIhHzs+/WxTFofPpbLxzJh KzcY+FiHPpapm5uMyiGUNgEhKxKKjglFIZQ1npRnHLrj3Bplnj3Zjz3RABqw0UAtIBSfeOAy Oy7rlQ1p+4zh4ncafL+pY1Yi9sAeUSeDHqrVg43D9zGPlxCqwlBEQty1VaE7zonuBl0DQKgG y/b42PfrY5kY53Bz6D7WoY9lQlduunKFKhCqAYRcK5X85TYa7It90UBxGgBCQIhXOfAuGTSA BirTQCaEJk9fItPmbZAps5dVVsB+3XEwJlTcnU2/6ozzUGdooP4aAEI1iIR87Cf3sUz03bs5 JB/r0McyoSs3XbneGAChGkDItVLJX26jwb7YFw0UpwEgBIQa39WKwyjOYWBLbFm0BoAQEAJC DEqjATRQmQaAUA0g5GM/uY9lou/e7S7dxzr0sUzoyk1XrpESEKoBhFwrlfzlNhrsi33RQHEa AEJAqLIwnIZcXEPGltiyrhoAQkAICDEegAbQQGUaGFgIZa2u7dsdhY/95D6Wib57t2jAxzr0 sUzoyk1Xrv5zYCEUNxQrJpQrNFdhkp/6QAODoQEgRHdcZWE4TmYwnAz1TD1naQAIASEgxHgA GkADlWkACNUAQj72k/tYJvru3e64faxDH8uErtx05Rr5AqEaQMi1UslfbqPBvtgXDRSngRBC y6S16+3SmnpzMDzfCv6303zhVQ7FGRrRYks0gAbQwEQNACEiocr6gmmQOGU0gAaAUA0g5GM/ uY9lou/ezaH5WIc+lglduenK9cbCOwiFvYGtxLtzsy++P227izF4TqhcobnUBXmpCzQwOBrw EkJpAjTwiYMqbbuLkIHQ4IjeRRfkRRdooFwNeAWhrIgmKfrR4kjb7iocIFSu0Fzrg/zUBxoY DA14ByEjvDy4RKOfqFjTuvLyBO0zhHzsJ/exTPTduzktH+vQxzKhKzdd5fna+P7KIRTtWosC BAiVW/GuQiE/9YEG0EAZGqgcQmlRTBaEssDVxEiojIrnmDgUNIAGfNCAVxAyYzxZ4z9Js+ey x5KyXtqQvM9UTLxrgO83dcxaxB7YI+rE0EO1evABKN2UwTsIdXMRRfyGMSG3u0L67u3tha2w VRE+Kn4MX3Xleq1AqAYPq7pWKvntnR62wlZooFoNACEgxLI9LOOPBtBAZRoAQkCoMvFxB1rt HSj2x/4+aGAMQruxivbYsJAPFZM14OtD+Xztj/axXD6WiWdf3ADkYx36WKZufBMQIhIiEqIr Bg2ggco0AISAUGXi6+auid+43cFjL+zluwaAEBACQtwFowE0UJkGgFANIORj36+PZWKcw+2u 38c69LFM6MpNV66RFxCqAYRcK5X85TYa7It90UBxGgBCQKiyMJyGXFxDxpbYsq4aAEJACAgx HoAG0EBlGgBCNYCQj/3kPpaJvnu3aMDHOvSxTOjKTVeuERkQqgGEXCuV/OU2GuyLfdFAcRoY WAhlveABgRUnMGyJLdEAGsjSwMBCKG4Un1/lQCOmEaMBNNBUDQChGnTH+dhP7mOZ6Lt3c9Q+ 1qGPZUJXbrpyhWUAoSOXSosFTMdjIVcjkr9ckWJf7IsGmqsBIFSDSIgG2NwGSN1St4OuASAE hCp7PmDQGx/XD4DQwIEChGoAIR/7yX0sE333bk7dxzr0sUzoyk1XrmAFQjWAkGulkr/cRoN9 sS8aKE4DQAgI0R3Hki1oAA1UpgHvICTSUtPUwjTxWZ7kfVm/sb1j4Tmh4u5sbG1OPmyOBtCA VxCKgyftexxSJl8avGyE7jOEfOwn97FM9N27OTQf69DHMqErN13Z+NtoHq8gpAuWFtVkASl6 QUkRlI1RfIaQTfnJU25Dwb7YFw2UowGvIJQVCQGhcgRAw8KuaAANVKmByiEU7UIDQjSGKhsD 50Z/aKD/GqgcQlldaVEoxf+OjgOZYxQ1JpS1wnYV+3Q/uW//fCyTtpGP5fKxTNjKrUX5WIe+ jp+5gtwrCKWNCcUnHiRFTOkz6tzERm4sgAWwQF0s4OrwfczvHYSqNFJdhEc5sQAWwALaAlX6 y6LOHUJomVpF+w5pTb05qFj9MI60dpovk6cvkWnzNsiU2csacbF5RiuyUn08lo9lCqPf4hpT Uccq6ji+Xl+R5cJWbuMoRdmrqOPk+cWy9wOhyJPSRVaqj8fysUxFOsMij4Wt7B0rtrK3VZEa bdaYEJFQEOk1vTE1/fqKrENsZe9YsZW9rXzVaNnRTtbxiYSIhLrqam2642n69fnqDLG7PdCK tBUQ8mTxQF8r1cdy+VimIh1rkY0SW9XfsfpYhz6WqZt2QyRUUiTUTWWk/cbHvl8fy6Tt52O5 fCwTtrIHI7Zys5Wr7wNCNYCQj3c8PpaJSMjNWfhYhz6WCV256QoI9dC1RwOwFxu2wlauzsYm P7qqv65s6jmah0iISKjyiQmuos3K76MT87FM3N3bO3ts5WYr1/YMhGoAIR/HFHwsE333bs7C xzr0sUzoyk1XQKiH7jhX45G/XHFiX+yLBpqvASIhoNVVdxzOofnOgTqmjvuhASAEhIAQGkAD aKAyDWRCaMqALWDaD+pzDu4u0QAaQAPjGhiD0K63T1xFGwjRWGgsaAANoIEyNQCE2mG4eSle /IV5xvhp++Pb847jUpl5x0raH90Wf9Ff3vFsy2Z7nKS34eZtsy1DPF9RZcqrb9fydVOucEqw fqNKmJK+u5Yjmr+IMpVRtrxy5em96LqzsbutXyi6bN3YqmxddatJIBSBULSSkpxc0v6kt7xm HcelouIOyLZMcYcTbQAu50/La1OuJADG7ZJ3HJey5h0rzYGZMqXZ1qUMSXm7KVdSmfKO41LO vGPlObi4nuJtwKUsSVqNayfrfEnXknd9LuXLO1Z0f9q1pLVHl3K4tv28ciXZtKh6dL0uINS+ 68wSShpo4s4iK59rxeQdK29/liNzLYuLbWwbok35bcvpcqykhma7zbY8adDPauS2GkuDpm3Z erVV0rUV4by6KVfSb1yOk2czl2Ol2cDlGHnl8VlXtmVPygeECoBQ2p1jL40zT7yu+43zSrvL tBVR3nmbBKEqbBV1NFXoyuauPc35l6n3Ouoq7Uawibqy9R9AKGUaZp5jzdsfdfA2jdimwvLO 6bq/X+Wqm7PIc5x5+7PqMq+ObOokyWH5UKak6+5HuaLn8CUSso2CbOq7CN+QFjHFz++iT5ty dZuHSCgWCeU1+rS7mPj2Iu92XMuU5wzy9ts61rxrNOeJO45+2yqt8dvYwSZPmr2Srtsmb5az yLN5niPotUxZ9ijbVllO09jF5fqKsFU3AEqKkPLKkqXhpDLk1UXRbdCl/PG8QChjdpyt88zL 120FpTWs6J1OkpjS7lJ7dWCu582zS9L1FWmrpMYeBWPa+csuV57TyHKoec7Fxn5Z1511t55W 7n7oKlpmX3RlU6a8strUl217ztN22brq9lqAEE9KV/akdLei5Xc8t4IGmqMBIASEgBAaQANo oDINACHEV5n4uJttzt0sdUlddqsBIASEgBAaQANooDINZEJo8vTFMm3eBpkye1llBeyWrvyO OzM0gAbQgP8aCCA0Y6m0drtj4gKmQMj/CqSRUUdoAA3UWQNAiDCcKBcNoAE0UJkGgBDiq0x8 db57K7Ps8edP0p5HKbMMHJvoql8aAEJACAh5rIEiHk7tlzPhPICrGw0AIY8dUDcVym+a5Qiy lqqJrggRXbXA1yfj0WaztFlUfQIhIEQk5LEGbCAUXxomvvRO3jGKciYcB8h0owEg5LED6qZC +U2zHEEeQGz2J40xoZNm6aTO9QmEgBCRkMcasIFMPPLJi4Tq7LAoe/PgCYQ8dkA0uOY1ONc6 LQpCTHBAS67a61d+IASEiIQ81kAREDITGIp8RUW/HBTnaT48gZDHDogG2PwGSB1Tx4OuASAE hIiE0AAaQAOVaQAIIb7KxDfod4BcP1EQGjhQMiE0ZfoSVtEGUkAKDaABNFCaBsYhdPvEVbSB EHdqaXdqSbOtbGZg2eTh7hDd1VUD3bSLQZ8wAoS4w+nqDse1sQ16Q6urU6XcbjcEru3CzFyM fg6azYEQELKGUNJqzlnbkhoWkZCbUxs0h1TH67VtF9Gp8rSN8XYAhICQFYSSnlfJ2xZdVNM4 FyAEhOoIGttu6SzNx9f4y3sGrEl2yroWIASESoMQd3sAp+mONO9GLKu7LWvh2abbLXp9QAgI ASE0YKWBQXKMttdaBIQGvXegcAi1hP98sIBtI3LJZ9v3nZRv0LvjWpK0ljXbqrCLi+Zt8tq2 i+iYUFrN25yvaXkKh1DTDMT19NalNOh3eeinN/002X60jVAbQIiumFK7YmhoOOEmg6SXa6Nt AKFSnW8v4uS3OG40gAYGRQNEQkRCwBgNoAE0UJkGgBDiq0x8g3Knx3US1aCBdA0AISDUFYRc lyfJmjFHA8VJo4HB1UAmhCYfzCraNI7kxuEKoagdGZAdXIdDe6Lu4xoIIHTkUmntesfEVbSB EIKJwyO+EKnr2nHmWQmcEdpCA2hgbIo2EEIMeQ7B9snwrPWxktbVyjsv+9EmGmi2BoiEGBOy GhPqBkJpUQ/dcc12KkCD+nXRABACQkAIDVhpwMWxkBcQ2WqgcAi11GJQpOptYCsAl3y2a2TZ 5nM5N3lxamigmRooHEIIpZlC6bZe6XpDD91qh98NhnaAEF0xpXbFAKHBcCQAg3ruVgNACAiV CqFuhcnvcGpoYDA0AISAEBBCA2gADVSmASCE+CoTH3e6g3GnSz1Tz1kaAEJACAihATSABirT ABBCfJWJjztk7pDRABoAQkAICKEBNIAGKtNAJoSmTGcVbe7UuFNDA2gADZSnAd4nxB1QZXdA NOzyGja2xbZ10QAQAkJACA2gATRQmQasIbR+zWIhYQM0gAbQABooUgNACLhyc4EG0AAaqEwD zhD69v+5Vf7339wi3/rmTWPpm7f+hfz11/9cbv36F0nYAA2gATSABsY0oNmgGfGt/6mY0U5/ 97d/JZolOqJyhtATCx6X3zzya3nol78YS7/4xf3y8wfulft/fk+Q7rs/Kd2ttofp3vvCdN99 /xpLP1XfVbr3X1T6iV265y65r53uVZ863XPPP6rPH2enn/2D3EvCBmgADaCBHjXwQ/X7znTP 3T8Qk+792Q/k/nt/KL/4+Y/G0q8f+id59N/v7g5Cq4aWyzPLn5Knly4ZS0ueWiSLlyxspydl 8eInZdHiJ9RnmMK/H01J89X2dlqkPhf9NiE9oraNp0ULH5aFC34jixc8HCb1PUgLfhWkRQt+ mZyefEgWPfkgCRugATSABgrSwMInfqFs+cCEtHiB3v7zIC1e8IAsWfSLsfSbX/6T6H9dRULr 1o/K2nUjMrpmeDyNDqm/I0l/H10VSc+qv6NphfoeTcvVd52WxdJS9V2lkXZa/bSM6jTyVEca Wb1EdBpdvSg7DS+Q0bH0pPqbhA3QABpAA91oYGToCZmYHlfbxtPqVY9LmObL6qFHx9LDD/2k ewg9/7t1MiE9v1aef340I42ofQlpw7A8H6RViWnDcyslTCsS03Prl0tS2rBuqUxMT6ltJi1R f5OwARpAA2igFw2sX/uU6PTc2iUJaaHa1pnWr31S5X9SHlbdcV1HQnHYbNgwKjqF2xVoxsBi ADPxc8NzQwoq0WRg0wmd9eufFZ3ioFm/7hlJTGuXqgvUKTRM3EDrlKFMKnKKIcdiyioaQANo QGtgYSwtUN/H07rRJ0WnXz90FxBCMDgNNIAG0EDRGrCD0C8f/Mf+QKjVaolJ0QgpLRLSeaPd b91EQvoYREJFC4vj4azQABqw0YAthH5cPoQ0DKLgiX4vGkIBeHQXXYndccE5ch5os8mTdwz2 2widPOgEDfipgR4gtOvt0pp6cwCnVvC/neZLdBVtc8G2Y0JxCJUZCQEhGqSfDZJ6oV4GTQOW EHrgRxMjoX5DKNpVZ2bBRbvjovujExOi283kBLNNR0LR7riOY7QnJehtenLC2G9Sopv4/rTv 0egnmiceFaXlo5EOWiPletF8kzVgB6EH7/9h+RDSkU/amFAIm/HZcQY+nZ8rgplxOuntGkTm Mwof/Xc0EjIQisJITx9Mg09SF1ocGMEDVRndcWZf0u9Mg7PJQ+NscuPk2tD3IGjADkL33/O9 7iGkp2M/px5YNWmD+nvD+tVj6bn1w2pfZ1q/flUbIOH2KJzM38+tWxnmaX/G80Rhs27tMhXN LBsbAwoB83SQzN/B5xo1JbudzPcQBgvVNMEwBdvbf0c/49uTvkfLGD9W1u/TzplUDraN1xW2 wBZowH8NrBlZEEzDDtJIO40+ob6rNPJ4kO7+1293D6EkyCRBR4NnPIXRTDSyCf5ep6KdSDIR TQgSBZn280AGOmF0s3QMOGYigoly9Ky4aCTUC4SyoJIGmOh2G4jRoPxvUNQRdYQG7DUwDqA2 dAx8YhBKXLbHdkyoEy7joNERjIGM6UJL+m661TRg1ikA6RSFj4l4kiKd8YgnfOg0jG5C8KRF PCbqMRHQeCQUkjqERZva7c/oNvN30jbzu7w8JmKKny/p3PGy8L2zbrAH9kADddHAeORjIqC1 I4+JTonL9thCaN3alQoAkdQGSTSiicJlzAGvXR5EN9GoZmzfGhXdqBTCJIx0Orq6Yt1qZt+a kcWi09qRRWPdanrf6MjCIEWPoQmtk96mP9eufiJI+rv5O/ppfhvfFv1d9PhJx4seI3qe+LHj +/LKllRetoX1ScIGaMAjDQw/Kmt1asMn+FulxGV7bCG0RkFCp7VrngnS2PfRp2VtOwX7Y9+D fGrh0YkpBElWMlBJ/WwvSjqiFiTtTGqBveGENPSYWmSPhA3QABpAA71qYDRYsPQxGVULlJpj 6b/DNL8zrfp3GVUpcdkeWwgNr1ooQRpaFEkL1N8qrYqndt72b4ZWPinJ6Qm1fTytWvm4JKWh lY+pfI/JqmfbSf+ttz37aDvNV5/zZdWK8aS/mzS2/dnfqmOQsAEaQANooBcNDCk/qtOqFb/p SEPLfyM6dW7/tfoepsRle2whtOKZfxedli+bL888M57MNr3dpLH9y34rzzik5UsfFqf09K9l uU5Lf5Wcnv6l2t+ZlqnvJGyABtAAGuhNA888/aBE07Knf6F8a5jM9rFtTz0gy1T65YMJy/bY QujpJQ+LdVr8a3k6Iz21+CGxSw+qfJGkXo70VFJa+HN5Siezz3yPfS5R35csvI+EDdAAGkAD PWjgqYX3K587nnL96gLldxfcM5Y6XmpnC6EwynlURUOPqfR4JOnvyUnnfzaSVqhjJKZ2lGWi rQmfY797RP3eIi39jaxISE5RlmtURn63KBZ7YS800FANRHqmTG/V0w8HPVDPLHlIli15sPPN qrYQ4qnnQXjqmWtE52gADfRHA62TXpDWDDU7Og1Crz9zWKbN2yBTZi+Tye9ba5WCg5KwARpA A2gADeRpQAPogHvSIbTDiU/Ja89eLq86eYm84ujFVql15DKxTroAVaUj1blt0gx1Pdap6Otx OLfNtQR5KqyfMs5dxjGt69uhfgrXeQnnttaQ1rnt+YtuEzU5d6W2tK0bnc+2flyOaZtXnfuw R6W1/93S2u3vY69ymPYDtVG93yFId0T+NtuK+tTHtklFnS9yHB3+FZ3GbJZTXtvzWtmmbb8y jml9PaoMu1ok2+ON6c5GGw55bMroksflemyP61Ln1nlLaD8De+4SbGmtDdtzO7QJ63os45j6 ehR8dBl2/psYhN5wW7CBhA3QABpAA2igXxoYe6ldsMQp/7AAFsACWAAL9NkC/x9p2nkH/Jtc XgAAAABJRU5ErkJggg==</item> <item item-id="74" content-encoding="gzip">H4sIAAAAAAAA/+y9Xawmx3nnd+aMF0hgSzMMbNhebIBFbM4ZOoDhvYpFQZZjkiI5c874Ilhg YWmTy8jr2BIFA5ZlJNgLKzdLzgzPx4yvNlh4SGmxSjbmcAbrRFKMZGWRM+MbJbbJsS58kQSI SXlJ3Swxc96uVPfzdp2n66urP+t5T/9/aFE1dertft56qvr/1lNV3We2/sOtrbO/vP0fbG1t /Vz137+j//ej21vr1I9t/8SnfuJT5V+eOff3tx7onF/d/tXqr2V++f8Xqzz635mtnyqzts7/ yPktGwUAAACcdqB3AAAAlgD0DgAAwBKA3gEAAFgC0DsAAABLAHoHAABgCUDvAAAALAHoHQAA gCUAvQMAALAEoHcAAACWAPQOAADAEoDeAQAAWALQOwAAAEsAegcAAGAJQO8AAAAsAegdAACA JQC9AwAAsASgdwAAAJYA9A4AAMASgN4BAABYAtA7AAAASwB6BwAAYAlA7wAAACwB6N0po6jI bQUAAIgDenf6gOQBAIAL9A4AAMASgN4BAABYAtC70wfimQAA4AK9OzWcOXOGEtA7AABwgd6d Gra3t00akgcAABbQu1MDje9I5iB2AABg4dW7lSr0Qem9+3v62L1/qTzu7epj78Hl8qjyl5S+ Uh7R/N/+o5e+r97t6gKjTSahlUunTXxytVrRn2gEF8qn/xYMnXP27FnVHO6JHfqtqiOeA8IU Skl0KwByaNW7O+pOddyujiWn71ZHLF+LXQ+9M5ASkZydqaDMVQV5KpJv9I500HjW5Pc2bB6g d8OA3gHQQnVX5D0FvaYzo0gJH9ypsH6l5HPd5OeUL3kAADAdnfSuAAzVDEUWA9TEfNwIU1EJ lrmWdhMv481345nm5JsyxAMAgOkwUa9Q7IjfJAfe1U8BzVrSdbEyPxBG0buzZ88aJdUiZWkZ Eck3Z6OhnzGJS2FvIwEAYKNp1TvAsfSuPEYKAJMSkTu4lvGgZUp+Uc/rmTPzMeMIhgIAwGYS 24+QcCfn9/8UxdzE8in5o/xa4JJnrUsp2DxdKN+KZ6pKAS2xkyN5+H01Nik/vDA7DxZNRO+K FfQuln9cFKPonRUxVmzJyvrk9XjN3Y/A83k8k5/TnbyToHrQu7GB3gHQQql3nk5QkNx1Gtec 7jQ/5oG2zqXnG9zQJZ/mEwlrgutkwQ4wgLmqUMKPKADiRPSOj184cjRozrSrd3wBpHIyh8Pj k3w+LpRvDDBLN015S+/k3Zqgd/1p8eZkVei9rrSwOQAcPE9sRAZ289AmAjNVR39qzTdxTjOp Z51/Y25HkLvOjFxloabixhDij7PbmCYHTjWx+Ts00RlxR4s8wXUtlG/tQ3dHnZvi0BM7oXed qYfH3X1t/RwqmkTyCT5NbP1yG/6tABiFlPHd0ptu4K5r1cbwwZ1JhG4v1l+tfP6ozMgP7M1w ItvVCFpZ19lIz/kpmg0slF80GyQ9BsEE2EcxBoBxaR3fod0m6l0ks8OlmkqnmvFJq0xknx2/ U6mNEzuFkV0GCuf3m9uQlO8XCOVHtnl6MwGYH0fvTm401EQv7nxNHxcuvqaPnQuvmzTP/7kL X9OHm39xpzw2v/wtfdT5lC7zn9y5RWV2Ltyi8p94+nfee3+oR87UWA9FMZnxfNWMc/KXwA61 bCT408hbhO2jf/+Pfuonr54/p49r587r4+UnzumjTn9MH5SmMld1ok4vp/w6X3/k/LmQl1PW FVOLMm3J+vnUmm8efUCZbvmu7QSA0YnoHfHw3fJ452F5hNLff6c84mVOU/lQ+v0flMdAzGY6 V9dUtRkhlG/tQy+cB44JoZPelceHH5THBx+Wxw8/KI91+m/Lg9K8zNLKUz7lBOs8YS8q28vJ m1konzcw0jXJrQ4AhfWZAuDRS+t50areVM6fGxbKNzcZ+hPuPKATBXtEuWo+ljyUzx9XbtK8 4RUbF0gHpxroXXb4rYDfJVztI0L53n0K0DuQjqtrrfmKNVfzy81qmRA7IAToXXb43cDVNSrA 3RTKt/bfQe9AV1q1zM03n3VbGm+okDwgAeidHLhCuc+F9r73nOdD78AQTFhSNefj4vnU/Kz5 Oz7rx/MByAv0Tg7mnmA9/9kSr1C+ea6mO40CQCtWm7Hikyn5qm7D/DEIWJ8J5AC9kwmfAbHu Fa1bDDB/B4YT0qlE/YLeAYFA7yTA7wbWKC89n+eECgOQSIre8QAm/ZVy+F2F1m3OYzMAcaB3 QnBvICkBIp7PT4XxHegKD4Mrtu0lkq987Zbv11Nsn8Lc3wcAB+idWEJS1UnCoHdLwPubJ/Gv JscaqXnHcapLfNJ9ERUAeYHeAXD68OpdRKQic8GtnwVgU4DeAbDppIzg0svH0+nChzAmkAb0 DoBTg/UUL0PhbA93y4c2kpt3B3vP7OItA+EDEoDeycdaMJCSP5dpID/c3dbDnFWzkbiaxcu7 emctnUqcjIPeAbFA7wDYaLiUuC+h8/7VWz40vivYVlB3hBi3J54JwMxA7wDYaLzjNetPfHNK qLz3uaxF88nPAGw00DuxtC6ZA0DV82sEf+evauqdhv4aKm9tEjf5/IGZmL8DGw30DoCNxh2v WZnu1jlvjjeeWdQvKzfvK1cQL7CxQO8A2Gha9c7Qb71KaF4PgI0DegfARhPXOx7YdNXK+75F 5axXobsE3mcHNh3oHQAbTUTvrPk77/pMekUdTdJRxNK6J3j330HvwCYCvQNgo0mMZ7qDMuuf Zh2Lmx9a8AnAZgG9A2CjSRnfqYQgZKgApA2cGqB3AGw0PdareEd/ytHH0FUA2FCgdwBsNOl6 5+4mMNpn/huSQgBOAQvXu057uiMdf8S94V3DSvF71Fg3q07n6VFRicWGmJG+Yzp0trhf3CWR IdeMqCBmIYrZH2fWnPALFez5KqHz9Lh0im3Dz9PvKvH+Ehq98sQQw7p+dtwbyJACVg2M0vGt phjy17hdw8vC9S5EVy+PKCudzmaV5x8cxaRW3ex6Txt+cxu3cLr+pnzTRAkY7poe9Zl4lxtY ZqxPpZ98SH3GP9vjzL37S6v+plx0iJFdO3JigeH9fdz2A71Lp/VnySg3c/e/6eVTzp9uSXq6 63lmYxQDuvol/Tz9zuBNc6x893LzKFfrzWrm/jKRGapjf4lUS7/mOpH9I3qn92e9dTXEMOjd QFqbSifvdG1sofIpHSrltD1Maj3PFEx9cxj3JjDcDOtUXNdG/AGWYk8/EXSb6/x+Gd5bvZ9K Mckt7/priO9C9ZmYyT8+dROK29P1/tYK9M5w9uxZ5dSweWYgzyRCz6IP5YewCoQeURhaihAp rxny68i7xZhXiNVJrYdyhM7TlZBfQs+2st7dxsubCkkxprdfzLXMPu6U86Tj+qWop/DMP02m mdGzqov+5P2mEdz27xLJ97aExNfqeW1QCX5x860/UV2F8tMNS+8v3i4TOk8Knfxi/Ryi/3qf vTOkv7jnjPfcSP17y/frQUvWO+NKc69wHwVviR2/jZjyit1zTL7q3l9U7Q5jD8fbC9zy1HM7 vbDMYrVamRPym0mo7YX0LnSeVrr6xYI/E9K1ud8TIFP8Er+JtZ6nlXh9hu4hbmbRfJ+dq8gR jGtMO+dvUuAXtZxlLLGqy/jXPU8KXfuL9cVNAXN13ncS+2/X/kL7+nkzpgv17i+qu1/cM1B5 6z7mtT9ug/L1XF4sIvGq6ZeiepCdOU+iGXEWq3feNhlvEm55b+ctmq8Ma2203rtW6E6VXt40 3fjVvVdxKyRiTEjvEs8TOq3q4hdO6H7VKpReS6xzdvWLZUP8PK32dK1P8zuB22kZljiasE5i 7mOhBsb1LnLF1vNELFFpfgnlW9rE1dm1OW5Pp/5CusbH3ebqvfuL6lKf/JuaKIT55WP+2rW/ 8PN774SJ34V/d2MS9G4IVkOiynSfExj6r9VhI+lOxnD1tO5UirXSSHmrJC+WTlH/SvR+Effm adnDbYicJ3Rp/s+4X0JW8WrhVWESiV24q1/ouVtWS+CFrfOk2GDZ06k+C+fVdab2vFa11oN1 acuMUPNzM/nYwaqxuCVWga79xcrxtpOi+ZTRVmNUr/5iasDS3K7+tdJxv7ifDZW3vnvX/lKE 37URSoT80u+OGmHheuf62lurreWtm1i/GxrXrBS/WOX5ezy55T1+ofEzuxEJ9xKUcCc6O51H dfdLyHjzKf7sR3ParhWS6BdThhyx7bxctat/45Yk+sUKQZg/dbqbWaLAfZGuU1TGiptZ4pV4 HvORIfXp6l2/5qE6+oX/fjM2mMyu/aWHX6wvy31hSU+nCuEX4gGZ0PoHS+/MFUPfInSeTixT 7wxcp6z7Q2t55eu/ieexzkkJb/fvUZ7fzXr4170RpfRf5QsEde2/7sdV9/o0fW1VwbuVilas a4NreeIo1VyL+6LredzTdtU7fr/itxTr1mTlhM5m/ssdndJQeY7ZCB+6s7XSrz75TdX6bFHL jXLut4n9t0d/4RP9akB/GegX0zboRsFjFL37i2o2OXfk6H6Q+4L/DuGzkK3nSWGxeuf61PKv VaWhNuAd60XOEzEmffDeWp7meYnWq7vwVpHSf63uZhpkp/OYz6oufnEx6zlN59WG6UxTIemd patfuP2W1nQ9j5dO9cnv8HyeSFcLNQ+zjKRThYTaeStU+a7e9aiQfvVpbqHWUsCCvcM99Lsx Tg+/0IWspZs9+ot7zlCFcE3h+dZIkzeYrv3F4B3fReqT13/oTptynlYWq3ccV7/i9ektX/h+ r3byiyudvcvTPb83Xe/wlt71O0/IDPdUcfj4jsp7ayO916T7hZ/QvXRX/4Ys6VefXNqGhIas +2rX6B+/aw05jxpcnykV0qmFJPqFN0vz22z4L6Le9UklLeV1u0wnlfGONPkPMNWsW345awqg 9TydgN4p1szSl71Rwipv/tn1Z3PozL3LW/2ISGwnBQsjJP5sdm0wv6XTz+PS1S+E6TuWEA/p Jp38Epq86Hoeix716d4ArXtp79/J2/XOrK7rXa1xhHZWb71Tw+qT7+v0NrDE1tLDL169G95f VJpfXEHnA17ul979xboTppe38of418uS9a5wQt/xQUSkvHVr7TS448V4bGFI+SE3NH5fStkI 4M7f8QpJP49lQO/6dOOZit1X08/T1S8cM6trhYO6nse1J70++dV5eaqWHr+WeRnXL/EzmMud aa6L6HoeNYZfrI9YQhy6VtyeTn4xaTdG17u/8BNG6tPNLNiOXe6Xrv3FukSia6wv7mrxkC7j Ar2LVHhieesjXSOZvKRWjq00M+KX26qw5iPS7Snvivok22d5Zry8CuzNd/NTDKD/HhdlhXSt T9I7I3ZG787UzzxJtKS3X+iipvIHNg9+/h5+OVPvHTZKZ/RO14n5Ye9d3Bv6git14peIJe4X P8MW8Ji/tp4nctoUv/APFmwLs+svM2mlWKtOPG0nv5i0FXkY0l9Usl+8+TSvav5J9dCpv5gy Vc8tVm1TkLyGCzaF6v0N0KO/eFmy3hm4kHVqYO7HO53HPRu12PjHvTcW6yOhdDoplqxLOrdK 91OdKsRAete7Pt3FmaGS8fOojn7hxawNEW6BrqT7JeSC3lfn99XjwnMJ73VTrt7JnlH84to2 xCmJlqxL+n5aWJk9G3zUL5GPu8QvFPkr/Zdqw/qI2yDTzz/8hkYsWe8GtvApzPC2k/TzjGgV t2TOWuI9ztiQnepOMlQmxrIEfjHAL6fPL5OyZL1TTnCy62fHssGkXz046N1ix7Xn1YPD7H1n VZnR9VPj9jJzJ9GuGXKGsSyBX/jZ4BfO6fDLpCxW74rmeoYh638GNhiv3mX/abR/eDRW/+36 XfjvVW3GbNcNmVFb0vlOMgUj+kX1Cnwp+MUH/CLTLxaL1TvVDAUMX+/au7XwKZ6t7e3EWYC4 AUOaLn1268z2iMrbo/8WzhqAGS4d+nindRERA+T4pWCzLekfgV9C54Ff+MeH+GVSlqx3iilL P70b3Ztb22cejzdg7Hceq/8aBs4OpBtz0n8LbcbfmfRaiZj+O4REv4Tqee2XrR9ZDf5yPW6q ivnlcd/76uh+qSyZyS/xj4/SXwb65ZT1lylYrN4VDDXefsaBXD86fFwlsv8uMvMRPEYx8wyF 7r/7BzfnvaaN+b0623xEvJ5f3b+x6r4Gb1x0E70+IG42CvT1tSXXDkXME6G/EPP3l04sVu9U M2wIvTPQpa8f3HzcvK/O1n/NFbUB13P3X8LcV2fwS3x8p29oufTuxC8C9I6Y0y8h0F9cJPjF C/SO0gP1rui7yFNZ83dntx8Pnr8b+CwCEzcb2H97P0XEfP3HfeMz/GxDLFFsHNE7btbVL4nx zCF3kh573ht+GTxPtIl+iZ9neH9Rw/1yKvrLpGyW3oVagjc/3mwKZ31m0R1zBkrwZ7/3OIk5 g3mRTdfz0K5Vbka/8xTsPUf9jCma36XTGXhh/vipHmcY4pfC55p+JxHll4K5ppMx8EvEGPiF m3HMTjLwnj8uWfSOV4JbISZnxLrynsr4SPXSO8UGYpQY0k7oJGfYS1t6n+cMe6fG8P5L8HQi 1sNFW0/CnWJ9l06M5RfrnNa9KB1pfima96LW88AvKeeBX7hVNH9n/imHUzy+SzkbbydD7Bnl JCr8TM5O53Gfhdv1PEWv5wlb9H5fFb/iwHWzA/1iueZ0+EU5cbPEk8AvEXvgFw7237lwb8Zb SKQBFCxoHDp55LQD24nF8HYyihlCTjKKGQNf5EeM8nB1IRUipKHCL1Oc5NT4pdoJKGIFoMU8 emfJWUikUs7j/WcoP9Gq7V6Yx8u3ZnY6J53hTP366X4nGcuSISexPptilXvFHgaM7pdR6nOs 84zul0imddGTf5/R//iRGa6bckL4Jb38WNdtPaFuIIvVu6IOs3vzt5uvnDAa5AYZQmPt1jG4 ebHFNntJvWarZoi4bDNt6nce/iIMbl5vMwZiXiTkmteDTp8946PfdbfH8IvXtoHn6c2Ifula M7ZLtrb10Rv4pdWknn4R0F/ov7p17B8e9o7rTsds8cwzTVFT9SuWrL+65RXTuzPOu/948Nz9 iFXMzeGWFB0xJ7Fetdb1PNy26/v7x/0+P9gAi+v7J0/yHAsVPaHrmlVZIQc9rrL++Bh+oc9W luz3PsNAAzjD/WJ9tvVU8EsK8Av/rNlvXixP74rA+OsMW5uxnfb2eVNsu/n+d29+0bzBWmcj /x4fl/JCerfqiGkkw9Fm0Am1NY8HnKRgi7UGGnNcqMerEc5mETkV/xPZoA0oX4HX/RJjGWzO 87g6+iHfL/Eag19az7OCX9ipiuomdsxWA8oho96t6lccFmzFSKR+uKkmXdQrgd38VquMj86w l+rmRdQbrLJbIsEGApZIs4GAJdJsIORYYpFR7/iwS0HvKvYP879Fi6pOyPu8hrzfZCC8CUlY Xw2/EPBLCPillRH1js+Z8vyQ3nG22V6tyPlVc8Iuno5bC70Lgf5LSOu/8AsBv4SAX1rJO39H G/lVU8tC5znDNmPys4XyW60SqHdy4gASLJFgAwFLpNlAwBJpNhByLLHIqHckMbSal5cMwXWN Bz9D+a1WCdS7x9UhAQmWrAo1/F1vozBnbcTvFRLqRELbIGAJR0LbIJagd2Zxjpuv2nYcqASR 4lN1XJ5C+a1nE6h35n1AGSFHXDvIb0ne93nxBvm4cs08142/H8G8/y4jed8HlMsvIdBfCMQz iUik0R2OxVWPrHVtDuXHrYLeeVn33/0bj7PfV7O+zwt6Z65cHSdA7zjoLwT0jgjp3fHxMd/R r2oNCp2H/sSjl/wjbn6rVQL1TkJUhNB9R0L/zW4Dsex4pkfvpLRSOZYIaKsSbCCWEM/cLGTq nZx2IsESCTYQsESaDQQskWYDIccSC+idKL3DfgQO1ldz4BcCfgkBv7QCvYPeWaD/EtL6L/xC wC8h4JdWoHei9E5OHECCJRJsIGCJNBsIWCLNBkKOJRbQO+idFwmWSLCBgCXSbCBgiTQbCDmW WEDvROmdpHjmQXZLEJ/hCIubZasNqX5Bf5HlFy/QO1F6J2f/nZj76kz91/1FKnSfl4B9zdh/ x0F/IaT5xQv0TpTeydlPJCEiMacN8WvJ8YsESyTYQMixBP2FI8cvFtA7UXoHGtgbnXOYIOyF lRLqRALi/CIBAW1DuF+gd9A7uQjov+JAnYAQaBttQO+y6x3/RfTy4cFHueyoCc0TjRUtSTkP 2fBIqasHItZFfFS5Zp7rxp+fqSvk0Tx2hG1Ypl9CoL9wGwgJfvECvYPeWUjov0Te/svRTnlF xvOi8+odsUy/hEB/cZHgFy/Qu+x6JxQJsREJNkgjU5007rrwi4uEOpFgg2ygd9A7P3XfyTkB LaD/ipt/z+QXcXoHv4RtyIi4/tIEeidK764d5Y9WERL2Ez2uwkRTXyUlXlRGimTMRwjZfzeD X1KQ4xf0F44cv1hA77LrHf9FJEHv5OyfnWdfc7D/Mr9I6L/Yb04UIv2C/iKtv3iB3mXXuwYC IhIE9s8S67sr/CLMhin90uekmeukYMcsbEp/sYDeQe+8SLinSdC7NfCLMBvWQO8IMXrXsEce 0Lvsetfcj3Aodj/C/DbknSc61i2kTlf7iYSue5/fhrx+cfZ5yfMLv9vPcueX4Bdp/cUL9A56 ZyHhvkrk7b/8F2y1nyjbjBUBv7gI9cvsekegv7QCvcuudwCATWDuIF1KjFRQbHkTgN5B7+II 31AzNWK/vljD5iHH10/SuxEN20S9E94soXei9O7a4VH2/QjEtf0bj3O3XG2ANmP667Tfx6on Nc1gSTvkl7x3OTnxzLmeoBVqIWX+qjpCceY2T40V+iw/O5dfNqm/WEDvsutdY/+dAL1bz0fI 0LvrBzenv46//9r7vHL3X+6X7HonaP9dbr07Vis5ejeLXzajv3hZst4ZyZMwvpMWlwCE8PjM YuGrAWUQ08Tun/KzYodMhPeXhesdcaYirz2S2zAA0pDXX0bTu4hkyNc74SxT72hARzKnayCv 3vHmLeFtLxLWva/3E800fxezgZDwphUJcWYJ+7ym9kv4eVkx4XL7C/2W7nJF/wUi6mad/3T7 ZRSWqXeEkPEd9C5EXr3jPKqmVvPaIEHvCFHrVUb3yxC96xfN6613FnnnVTkS+ouXhesdrVfZ rshtDgBgA3BFzQzlvHqXKIIP1bv6uK3u6ONuddxZH7eroz09/Kudehard2a9Svb1mcIRPgE9 NWK/vljD5kHy14/YFvmTFruX/uiLl+7vXn6wt3dvVx+7dNy/VB6B9N79PX1Qeppv0w3JflHQ O2F6J2E/AiHh/SaryozcVpTImY+QEGeGXwg+tnr+u5duq7v1mOtuddyutEnr0ZVSmB5cbmrW Xnkw/dJipyXPd51YIJX0RZuhVU9UnFlIf7FYrN4pFs/E/juOnPd5aQP2l7XPK4aceVX4hWzQ IlUOrx5c1sfl+1f0UYoa0ziufU4c0s6neKZvfNSid5o31ZukdwvbF9mZxeqdnP3mDcS8R0PC mmcJ7wOS9j6vpfllSk6cSlpTa1CpPvUMWqlHWrzMGO3K/SrYWOkaP1feOimNfHB5zituSn+x gN5B77xIuKdJ0Ls18IswG1y6zhxVT6k50buX/uiLpaiVYcYyurieQavijXwsxnWQny273s08 f7cp/cUCepdd7/A+oJANeJ8XB35xLfHEzZw7bWhNo1nvwebOgrfp1iUoufxC8UzSO/SXVqB3 0DsLCfdVAu/z4sAvnLje8T5F82u0jpGn3bkz+nCnnQVmJ0Jev0jQO2n9xQv0LrveAQC64B+F WfFGs+5xyDkbJZKflzI/88/fbSjQO+hdHLF9fB7Efn2xhk2PX5vW8cl7u1eq/Whm7BY70Ukd JuldknFz+YVfSI7eCW+W0DtReidhPwIh4rlVeP+dg5D3AWWNZ55EHem5VU/9Pxcv/t87oZLx c6XXJL3njp+TfzZHfzmxZN545ib1FwvoXXa9k7n/Toje4f13Bu6X7HqXc58XW1dp9O5Vdd3M u5083asqGYLOMFzv8vUXWXonrb94gd5l1ztC5hpvIDw+s0wqp5zcdXfv7d1Rd3kBtzd171/u Xb1Q4fFdXhDPTAR6B70DYAOB3p0w//67DQV6l13v+C8ivA+I24D333EkxJnl7L8j3SG/7N7b tdalhJXI1qwR7MD+u9oSk5bQX7xA76B3FhL0jsD77zgS9I6A3jXOKKC/SNA7joT+4gV6l13v AABDcPWuRdGkPu2qN3Lm74QDvYPexRE+AT01Yr++WMPmofEElfJhKVL0DvvvcpsQA3onSu8k 7EcghLwPCO9Zs5AQZ87rl3pfQEkdz7TXq9QlE9aThJaldCRvf6F4JvpLK9C77Honc/+dEL1b +HvWOBLmiYi8fpGmdxL6iwS9k9ZfvEDvsutdAzEzCxLWWkt4H1Ah7H1eS/OLFyto5pu/m5vs 7wPC++9SgN5B77xkv6fNbMOmvM9raX5JAXqH998lAr3Lrnf8xyreB8RtwPu8OPCLS2g/AjGP BmH/HSGtv3iB3kHvLCTcVwm8z4sDv7hA7wgJeietv3iB3mXXOwBAOq6KheOZUsNqYyNnP4Jw oHfQuzjCN9RMjdivL9awqeFvJSB8+++IDHqH/Xe5TYgBvROldxL2IxAinluF9985CHkfUPb3 31EqHs+cE7wPiCOnv1hA77Lrncz9d0L0Du+/M+D9dzWy9A7vv1vnCusvXqB32fWOkLbGGxDC 4zPLJHn/Hebv5kZ4f4HeQe8A2Gigd3j/XSLQu+x6h/cBhWzA++84EuLMMvbfiYxnLn7/nbT+ 4gV6B72zkKB3BN5/x5GgdwT0rmGNgP4iQe84EvqLF+hddr0DAAxBwvrMvMiZvxMO9A56F0f4 BPTUiP36Yg2bh7T9dxnA/rvcJsSA3onSOwn7EQgh7wPC+7wsJMSZc7//7mRll4R4JoH3AXHk 9BcL6F12vZO5/06I3uH9dwYJ80RE7vffydI7Cf1Fgt5J6y9eZtA7qgetKZF8XleUNgJk/uQt T8uTvPnmhNsVJGocnaO/fvlffWxv7x8ertZ9+bCZPqrTR+v8Qu0f3PSkeRknzXuEbgxmPlcn TNuI5JfpaqLek++Uf/nwsHw++eDyVtrYVvWsg2bNHJ3U2MHNVeFL8zKh8iz/1f0bdX7X8wfL m3OaYvSNrh8emT3U1w9umn3ujXRVhj6bUp6bkV7eYw+lK+/owrSGp6geR9/8ponts2d71g24 a5vfPzqoXs9atf/DfUrr8+jGs6qVq0f7pHaoa4DK/P7/8dzHdreuPXFeH9fPP6GPUPqV/+i8 Pur0x/XBy1zTiV7lr54/d+3ceae8k36iPIbY43726rmy2Mf2tr76nWfpDtOjvwxtz4G0QEbX Ozd+G9K7rQqeMOJlladMPRajzDMV5k+h/FY76bP6v1rs9GFc334UytwzG+mEg3hUHY10ZbAn v1GmPFrKVHxUHZOUJ1+MWz+hMin5Xc9fp+n1JcYjj6vD7IMwayAb6eqgT8XLF04tpZf32FMd 5B3+2Unq3ylvKuok3aHNF6RxTvrk6Nc+qf9SWuvdD9T/pD78oDw++LA8QukfflAe6/TflseE 5Z30h+zod/7AZ3+gvvH7//aZIe1hUHum9snarVhG1Luixs1XPr3TOdbojJd3/1kKU22tVd6b HzdM//P4+JhCmvLjmfxOOI89+kea225DrpnCBs3oz63yts8UKD7T++OjICGeKWP/3doS0rtY PHOW7eZkCffLPO2Efn7Q5d5Ub+Tfj1DVdlH/bl/sfoSI3kX+6kY4eXkuT6F83uoKhsnRSqcl j+TSK5TjEuoCPD+0/8607X6n7ZRv6V3X84zFFHrXGwnzEV69m1l/h+hdoqmJ7c3cV43eNfp4 ddB4spgYihFd3T94VEx+Lc5xdRCkd9qA7HpHkN4V8tZqitK7oilP1hlIy+hPPG4ZyrdsMCi2 WMWsV5lB70KGxQvkxXKElT+5qROcP8XsKt7j/9ahc86Qv/7rLGMW9+rxnHkpyphcZcND9a4+ /uW//HWlvjdYQAaxVtgJ4LoW4k31phb9sVwTOknXfIGMqHdnGDy/6DW+U041mjk+Xr6og5lu ftxaaicS1mcCQlKvmV1U0iirSIDe5eakCt5V73zpjZd+4Rf0HeB7eW0yjF5dobkMfiE9vB1R 7/rhXlpeyxl5fOf9giFF42tUUsxwdY1/1s1PsbaoR45C9O7aUf7nidH9ZMp5otRbtqh4ppD5 CD6vmut+kt0v5ovTOvxr586rDz706cJ8Pw4m7C8JX4L2m5dx5sODiaxox4lnzrnqIJGM8Ux+ 6ZRxGS9v0pZW8vwUw4xtZ8+ebS0/CvFfQRL0jqJ5y9E7yyPmnzyfz9+llJ8uv3VedQay652B 5q3y6p3llwku4P8SBYtyG727fjR0XrV/+2STANRfoHc8hw+pzBxc/FTmJNZwLJQft0rIfvMg yZ21a7sa1g7HvYeEziY0oggcxvdUevvk4zvf3+cP/k59Qf8F7mq9w/uAEpjt+Squ3hX18pLE tSKh8l3PYz4FvesF9A5woHdzXjCod1dkPD9TOLPpnXuhyEoVL6HyXc9jPiVK7/heTp6Tg0Kp QkIsQoINRC5L3OtKqBMJNhBtejcHbs+dHuqh5UH/Ns8Tm90vJ/or497Vwjx65w359piACE1+ 9VgaJErvivoRFvScJSJXm6H5OyHPzxTy/FtyTZbrGi9Qk4ZfOBL0jp45M69fTvTOzN9len5m UO+y9JdWMj4vOnEVpfURKxHPj59Kjt4Z6NmDKutqBCK+XmUeLZ63/8ZCUXL6L/RuTeUumrda 612x/q2WpX4afpksqul+u/WN4sMPXjn38Uv3d59/68VJLhy1wVtGSH+xmG29ypACrSX7DRUF 6p2cOED8OXiz6d3Mv5llWBJDgiUSbJCmd43rzqh3az784Or5c1rvbk//nohEvcvfQnxs1vuA NlDv3KZv50iLe/Pn+jatnXv2X0Jt5ECa8tptIO9ON3feyhfPPD1tlX/fmsIc61vfDz94+Ylz 87wXqflN/fUstudm17tcgTs5ekfxf4LP3+WC+lcdn8mjd9QqJMTNTPs8mC8+E6vnHPHME3to btfnl6Xr3XR+6aR3l96afFdCXO9Yz11oPFMmMuOZZv4uI6LWRQh532tliQjlhV84Etar5PVL Y/7u3t7z3822C09af/ECvROld3LiABIskWADAUuk2UBI0Dsi22rqWu/K+bt7e7fV3RxW2Mhp IRbQO+idFwmWSLCBgCXSbCCgd9C7TkDvROkd4pkcxDM58IuLBL1DPLNhSYWE/uIFege9s8B9 lZDWf+EXF3oPTt71KtC7hiUVEvqLF+idKL2TEweQYIkEGwhYIs0GQoLeEYhncuS0EAvoHfTO iwRLJNhAwBJpNhBt77+bD+gdR04LsYDeidI7xDM5iGdy4BcXCXqHeGbDkgoJ/cUL9A56Z4H7 KiGt/8IvNSexSnrP6T/6qZ9SH32UzRroHbekQkJ/8QK9E6V3cuIAEiyRYAMBSyTZ0NA7Pb4r xS6f3hGIZ3Jyt5Ag0DvonRcJlkiwgYAlkmxw9E4A0DtO7hYSBHonSu8Qz+QgnsmBX2psvcv7 8izEMxuWVEjoL16gd9A7C9xXCWn9F35xWY/vGno3904E6F3DkgoJ/cUL9E6U3smJA0iwRIIN BCyRZgNB61Xy6h2BeCZHTguxgN5B77xIsESCDQQskWSDvT4zHM+c8y1F0LsTcreQINA7UXqH eCYH8UwO/FJj611KyQmtQTyTW1Ihob94WazeqVryoHcWuK8S0vov/OIiYX3m9H5x3rnMMtZv i/7hB//s/MdffHv3hbci6j8t0vqLl8XqXVEhTe/kxAEkWCLBBgKWSLOBkKB3xJR14tc78yZx o3eX719BPDPOMvWOmkpRA71zkWCJBBsIWCLNBiKkd2sLZ1y6ImL+7v7ubV0lApDTQiyWqXeq Ob7brshtUQnimRzEMznwi4sEvcs+f1caUOnd5Qd7z7/1Yg4r1paYtIT+4mWxeqdEju+gdxzo HQd+can333FdO9377wLf7ocfvPxEqXcvvI31KjGWqXdnarYqKJ3bqBI5cQAJlkiwgYAl0mwg JOgdMVedtOgd4plxlql3ig3uVCV/QsZ3ctqJBEsk2EDAEmk2EKR3EuyRYMPuvd070LsoC9c7 2oInR+8Qz+QgnsmBX1wk6F32+TtV38203l16C/HMGEvWO+w394L7KiGt/8IvLt71KieOO7Xr VZwvVmVcur+L+bs40DtReicnDiDBEgk2ELBEmg2EeT+C/5FihSrmMnTeOvHrHebvWoHeQe+8 SLBEgg0ELBFkA1Mx0rsf//Hv/emfKtUcX5zO/XfRbwS9awV6J0rvEM/kIJ7JgV/WsHu+0Tt9 rP9YsX7K1umLZ0a/EeKZrUDvoHcWuK8S0vov/OJCendx52sP31UXLr6mD5149x3lD29Ow0x+ iWs3zd/d28PzM+NA70TpnZw4gARLJNhAwBJpNtDdlevdX76r3nmodFofpsxswjd5nSToHZ6f 2Qr0DnrnRYIlEmwgYIk0GwjSu50nv/bwnYa68bHePGTWuwroXSvQO1F6h3gmB/FMDvzCodp4 U71h9I5Tj/Vee+ri6/NYkjmeWYF4ZivQO+idBe6rhLT+C7+Yq1c1UArAHXVn997uzoVbeigX KqkHelr73n+/PPhTlYLUypIYCx3PL0OX12C9SivQO1F6JycOIMESCTYQsESODV31Toudlryn n/6K1jvCK3knmb1kZ4w6Gap32I/QCvQOeudFgiUSbCBgiTQbiPX83YXXvXpHkJBpsdOSt/PU 61r+GvN6zstUQ7h7+rjySqgT6F0r0DtReod4JgfxTA784pKidwTFM2msx9dw8neFW5FMawwY 0rui+o8EvyCe2Qr0DnpngfsqIa3/wi8u6XrnQms4aS8DqaFiTk/fyNDmlxOBnHrUA71rBXon Su/kxAEkWCLBBgKWSLOBGKJ3eqxHsc2nLn7dzO713q8XrpP59A7xzFagd9A7LxIskWADAUuk 2UC06J0Tn+QxSf4mHZrdozgn6aAZ8SUyqE6KdVTUOUO3FSzQu1agd6L0DvFMDuKZHPjFJVHv DNryY12N1ROneeiS1E2fhJ5LtvPU6zTiSxnujeCXkfQO8cxWoHfQOwvcVwlp/Rd+cdF6t/fg Ms3BDVvOX7BjrYCf/OTvaeE7eSanWpWiVBQnu/jYbj7yS7EaYMPgp1tD71qB3onSOzlxAAmW SLCBgCXSbCAm0jvF1nPqQ48fq/WcRcG+d2j1Jo0crb8mTQsO1jvEM1uB3kHvvEiwRIINBCwR ZYORD9/7zZlsdFQQ63tZsvXkzi2znpN0kH8qvU6mqz3oXSvQO1F6h3gmB/FMDvxiMEo0hd5Z MldvzSvMek4teRTn5J/SFRL3S1EFQlUx4c50xDNbgd5B7yxwXyWk9V/4xYX0jnZ8BwsNjhOG njNG6zkv7rxWHfa4j8/uUQL777IDvROld3LiABIskWADAUuk2cDHd1PrHT8Pv6vTek5zPHXx 63rQ9+TOLdfUefQO8cxWoHfQOy8SLJFgAwFL5NjAr+6LZ3Y8T0gNw8/VdEZtxbFa8ZWZNO67 cPGWPvi4j2Txb94vD/e7DAd61wr0TpTeIZ7JQTyTA7+Yq3O923tQvvGtx3NRuuqdJXMmocVO S97B/qEZ/ZGu0Tv4zHyfPkgHf/Hpr0ykd4hntgK966N34d9+/jLJfz0lepdSPwkE76tdz9/L ng79d0Z76L468vk7lu+sdyO1h5Pz1a75gfrGV7/zrLv+f048/SX6Hd97r3yWy1MXv17p4Gt6 DEj7+/gY0MwDer8XV8lyeFktstFHUO8maw8NS6B3gpGpd3LiAIMsGU/v/DbMoi9JlsxvzxTn 76533drG2Hpn0GL3Y7vlHSyj3hGNOol+R/4sF9I1WvFS73coD+88oPdaPI764r3Lb6g3PR+Y Re9S8rMDvRMVz5TTTlbV4yTWjHqP6mCDnNqQYwn3Sy4bstZGLW1lo/zmtz717HNbqrkTPAtd 64RHRENiTfvc6T0OP3fha/ow73TQx5M7f0jzg/r48R//nj727l95E/N3UaB3ovROUDxz/4YE vcP8ncHjl0xI8AutydR698yzmfWua/zf0riCYZXkY8Dvv1MebsyT0n/6p0rr3e69vRe/i/m7 GNA76J0FtdtrB4ePT7JsvZvp91uhDg+gd2uwXsVlrXdFHdbL8UvguNpokDSvWuFTN79ep/Qy OhW9xxZ61wr0TpTeyYkDPK6ONfn0LssdzEWOXyRYIiGeSf/91rd/SetdvWYja9R90NX9H47X M68Ho3d31N3eRoyIhFbqBXoHvfMiwRIJNhCwhNP4LZSVb37r01U8U+mOnNeS3nXCh0U9Vt0Y vXty59al+7vYfxcHeidK7+TEMxE3kxafkeMXfWO/LsMvpHd5F2d64v+zX93o3fNvvZjDihNL CAn9xUtGvSscVHOQzkvyj1hniOS7/+SJVc38ehfqocP0bsyl7eb5tymbm9z5935p65xG76Y4 v0XoFyl9VkL/laB3rDaOpg8g+s9PNtCs2f/y7U/98rO99yOM2V+8fom1SbOPYFh7pvTDh2pn 5w/N/rsR+0UnzDlXZYUcjHvyUciod24IguuX9yO984N31Gp8pythBr0bcteNfJzlN/rjwPIS 5mjmtMG9Fq8QOfEZSX6ZRO86tU+td//5c1veW7f0/jJG5ZkvrvXu4sX88UxTJyt6j7w8sscz tyvMP40H9ZjLKtk137rEmRqe3iJ0Ynubxlb0S/760SEF5HWCRjr0m3ZdplD7BzdZ+SM3TWsL 948OaC5d569/AVY/7K4eHF6rRy46rQ+TvlZfzuRrXj48fLkeX/D8ZvqGPhrlqz7VtTylqVZf Obz5cl3G2Kzq32+mZvRXo29H+bRmfp3m+dG07iC66szv5MPDwwHn95c35zfOMv+8pr9dXTM6 YeJ1btpTfv/G9YObpozJ1yff717ezQ/Zs2peIrl9diuvK7DyDl3rpIYb7Tx0Ld7+D/cpXXnn wHihe/s80Aflf+mNl7Y+sWX1o2gfGb+/WG042s4PEvtCSlrfna4drs9J8cy9e7t31Z0e/WXE 9snvEnLWmxlm0LuCwfPPnj1rRModXrk5FHhUTWmjMZo3P90wLXb6MK5f1bPPdKzco9rz68ln R90X1mvHTvKrPzxS6lFtBqXJYEpTSV7mo+rg5ePpdfnKhq7l+bVMWpvHy6/WP+ECXz+hflpq j11lhPMnlOfrDShNHnHzPeWL8uBlXPvTy7v5ofSc9dPWzkMHb/92X3DbeUr7/PeqMO1T693F z+9QL045zxT9ZUg7H3JQS6C4Lq3PNHo3tP0PaJ+8lvizX4Qwz/jODVTqBCka5aSEE4tqYQml TYLO7M1POSHFM60x5tywX0H619EjX36/p/oMKd+wJBMzrYsI1TNLP6oqZHJLEtAVkn1t5OPq Jz2lu7a9FOLnXHftyjsXXn9t63OfVYpH0kpVHXL+fuWHrFfxnT91aESfJb174d6V5757ua8V vQj3l2tHIvqLRd71KiZt5MYbh1/PGtTjONUcyoXyQ3N2JpFlfabHKtotW3Ht8OhRXY7aD+/d ofPw/pIyxZlSfkF616iOE1+E9M6KVIQWAEyRr/KtA+Rwv6RrR/wnaHr7XP9yXp3oHa8xelvB kPP3K59L78z47smdW/30blD7dPqLiVNB7yys9SokVZFOQabyAd06GhnI55/15kjYj5DS3QTS 8obNUS5RK/4kZ2ZMMUIZRvBrF9O/M9R7WbJHSJuk981R+snXblnjuyx0aquhEWg/z9IXX8/f 3b8yw37zkJ3y+pGHGfSOLxHh+aQ1qhmodCOf/Dzmr1wcQ/mtvyctvfP+gJki7VoSsVMatbWz TEXPchH6hby+YFoYfNo0+y3hlnHvKlO325Abup9nHLheuOO7bAjQu37PV+naPkP9JdIy5ZBx fEdLIyndOrij8gXbQaDY+M6bH7+6q3fjfKthnMQzcyNhX/NKzHMaH1WuyW1FCfzCu7Y7f0fM P9aYxy/W9zI3OtK7y/evPJ/v+ZkcOf3FIqPekcSYcV+rSPH1LVwfQ/lxZOqdhFkzqj3cVzkS 1qvAL4Q0vZvTL6Ex1Pr5Kvf25Ohd9v7iJaPeWeHNVpHi5VPScQTqncDhv5rRqlxfP2k1oDxO vV9CpOhdRqayhMVL3fUz5nnRM7z/bkP7C5F3faY7sotUVzHqfgSBegcs5uk7GzHPLoq89zTh ejcVaXqXcb3KRpBd78zDT0xmpLxVWNV6581vvbpAvWuJZ86zSITWve/feJz7FqINMM95mBWn niXEZ+AXgnftHQF6l8MvJw2U692L93/1M2/tzmaEz5w1EvqLl+zPE7Po2m5D5TdU71rWq8yi d2tLlnxfFdx/F+2XCml6R+TSO8LsN4fexcmrd6Elrykfscp3XfksU+9CbHQMYaNBzUtjofHM APTF33tPfeITv7t7b/dO7vffCe8vcvQupbB3pi+U33o2IXqXYrDwVjQKPX78zMASaj6ONL9A 7wzmvvf++6XkQe9akRbPnA05ese5dngzezyTWuyi42a++Ix2TQZLHGT6Zf67HF3x+Qd7z759 aZX17TP5+ovdTEXN3wnpLxbQO1F6d/XgRna9o+cnyLyvzoR/PuJGBksYkterzL/fzejdM2+9 mFfv8vWXwgS36N+i9C57f/ECvZOjdzJjMovd50XItEot2C/cnr0Hl++o2ypgZJbY2gTVxeUk 9pN37/5e9nimtNZiAb2To3fAQnjfWSxy9t8J1LsJSNU7CfN3woHeidK7lw8PP2ovNS3ruJmw 987k5aPKNXltgF8463jmn11+5u3n81oytV9S3uhHXL73qy98N0c800FCf/ECvROld68cHWXX OwL3VY6c/gu/NObvBOgdIUHvLr19BXoXB3onSu8ERWBm3NseQk5twJIGWdsGfx+NiWcyMhk3 2WXDHi/YUTLP88RSENFKfUDvsusdn3oQ1E5mv224+7zk1MaSLfHsvxOmd83Ju6XoXf2exPUq TQW9SwB6l13vOHj/HUfU+4CEvM8LfuG8+GDvM2+Xb8DJvrRpOr+kj+9evH/lM29dnsaKbsjp LxbQO1F6h/ffceTcVyU8DxB+Ibi0ab177q0XVVa9m9ovcb3To7yi/rsovcveX7xA7+ToXfbf qF5O/T6vDX2f16n3Swgez7zy4PLd8H6ELIxuSXpscJ79dxvaXwjonRy9Axbz9B2xcw1iyXtP E653o5PePufZf7fR/QV6J0rv8P47jrDniYmIZy7aLw70PLG8NsjxS7Z4psj+4gV6J0rv8P47 DvTOZdF+qeBDOQl6R0jwywv39qB3caB3ovQuxEbHEDYa1Lw0vM8TMyzNX/z7StiPILz+oXfZ 9Q7vvyOkvWeNWELNx5HmF1fvhO5gnRi+R1XO/jvh9Q+9y653HLz/jiMqninkfV4y/ZLrLkfv v1NZhTh7fzEvvH7uma1vf/PTOSyQ218soHei9A7vv+OI0rvs7/OSsy5CwvvvCDN/l1HvsvcX mXqXvb94gd7J0TsJwSKXxe7zImRapRbsl/T3AWVh9v131Zbzimee3frmtz417tW7IscRXqB3 cvQOWAjvO4tlU95/dzrYLL0TDvROlN7h/XccvA+IA7+4SNiPkM8v6zBiaUB1PP/M1p9889Nz W+FDQn/xAr0TpXd4/x1Hzn1VTv+FX4Tuv4PeMeT0FwvonSi9E7SaF++/Y8CSBsLeB8T/mq1+ 8tVJ/vUqDiJaqQ/oXXa9E7p7CO+/YyzZks16/x30Lo8RTeT0FwtX70zjMdVIokDwP1nlN4jt CpK5MxVCxnfLeP9d6NZg5/eLm6X1NX6t9ltVuZ/oqEN8Zuz+fmKhhHimnPc0vfBnv/rs25eV ABXO+J4mczfe+txnd15/LZMVDTb0/Xdc19x/8vzxLZseI+Va786ePZvbnJJlvP9uI/Xu6uHB 2DakU6j6HdbQu+b83ZVn3rpEudlebJ77vYQy9e4UPD9zQ3XNi4lnamiIl9siodW72H1ehLTI qmGxfmnsR6je+Bb6HZ6F+S2ZWe9O2fvvhBs8FiuGEL0DFnKaokC9y0j2/XfGAPPGNzlNZX5E 6Z1wvOO7bR/WbJf+r6ifVZ0w85IUz9SVIGT+bsnvv3P7URnP7DJr1oGONRlcXz1jDE1OPDP7 ++/Mbcc8P1PVObnW82R/npjKGM/0P09sw+KZRtqEaMHomEU4G7NeZca7K/SOI0HvCOgd/5kt Qe8I6B1n4/TOWpB5poZyNndkZyFN70JsdAzBIvRdPPlzqolzrZY677bgJVw+fh4BuyAFovvs O++qCztfW++/K9TJsTzy6x1D+J2K613RhGJ9Juhnhf54yXzmD4WMzzuGTalA4a2oE6HvwvdV FfOvMIfeBeDtU0JnJxu03u1c/LrRu7LpCKirLEDv0mldn0k1SSv2zfhOyWj5QyjE7DfnLPT9 d83vZfqv2Y9g/bIqorSXaHJcHfH23IjPsNHETL2b1Y+EHSvZ3wekefiuurjzmoln6o5s/j6z 7Al5/50SFs8U/v47t7+bGGYk5un94EYgU+8W+v4753tZetfxbIXRu5Ti/F5tNWlzEqN3hdnn xfVu6i5QXYssgd5RPZDefeb+rta7pq/n1jsh779TwvRO/vvvTL2dYegC9F+Cr89UGyt2SqTe yazMSa0K3icrzfr+O+o/3fn6kzu3Llx8befC6xd3vqYT+tAJfbt752F56EQk3QF3DoiiZMmz 1dPd8ytdtQ2YrbVIa5ZG756q45mugzJG1eavrvx61zQmrwFxEuOZjWDRqUCg3i2Q2H2p1juv lnHti6Q7mOLTu04DhdB3sXpNSojVMc2jdxnJfh+geKZMvZsfUXonnIje8d5HCVIH/teZrJwA mXq30PffBeKZpGtDzunq4M9d+Jo+rHw9hNQJff/Uae848S/eVb/xW3/L8y2jI33B1bLOesfy RexHyP0+IM2fKvUT//Af/je3f/vz//qL1Jcz2qOy+kWg3m3Q+4BMdzOPiTb5prfOaeFEyNS7 hb7/zrdepVivSbD1LrX5Ved0x4Z6zKiPSCzU6CDFUSn9s9VhYqr6T73niVrtjxeA3pG0ab37 L//5P/8/1V+R3mW/KUHvOBuhd1zO+A/RXLZNiky9ExSHmXEtqJtm4zt//01slpFBk2tDqJiT WVZNrX1aE/XY8LWdC7fi8VVXc//ir8ojPv9YjyWFkXXlP7njrrp75d4Vk5P/NpWvTgTqnaD7 WBNvPNNqPAXbpGZJQ/5m1hc5esfrUFA7EaN3vH6sdDqR8mY/glXSuuLJn6rZtBSdovRfVv+s 46WlPlJM9WefuqWPpj6Wx5M7f1hpaFl+56nXdb7K2tE89Z9V76jPcr1TEm5E0DuGoPtYk9b5 O8WUTtXtyjxdOX8z64scveNcO8q/2pyQ8H6TQfN3o9L1/XfD4fqrRfCpi6+T9v0nF1/7mSoR GEuWetp1/Ejl33+/PJSvUxutp/8+KsrwnfUrQnX8BXLywWodrHWJkpU6OfjvE7XSxx11Z/fe rnnPmv9GNKMGZewvqv76W1/4+U/88ZfzWXHC/P0lkVa9M9JmHhBtSd6GIlPvrh4eZNc78i/0 jtP1/XfjwrXp87/13v/1sGUsGR8/1jFYew3P009/hfSOCKmequbvrvmejmgc1wlSNN8fnBWz FVrs9Ce03u3d32vsiwydYWIk9Bf6779Qfy1H7zL2lwgRvTOrMfkLEWiyuNNb82QiUO963Ctm YH6rROkdWSIhPlP/1lzvTbDEhY+P0k5na8H7P1CfePp3ak1cjxl3LrzO1+24WknplLhuyhxl Sj3TFye9s76+BCa2JCjhRRnjvXOF1UkW5PQXL4n7ERQb31k7zeW0tE4I1DtAiNI7Ilf/tRTN 6J0/MJi2Pqc+nUfv9NFPs1L2QsbTZEOi3un/Wnq3GPx6Rx7Xerd3b3d+m1w2Ue9crG5lMiex bGJk6p2Ep0WRQyU8H0mO3klYX13U+7weFQHBCyzscU7Ebpm9In7r/QijRgvjmvizF1/72Tr9 Mzu3dHrrCz//n/3xlyW8dyZHf2mEeo3r5fwGkNBfvMTHd27Ohqqbi0y9a3n/3YxA7zhy+m/i Pq8hehf6KWtUldarjKt38fHjXzwsD57+H9RfC9E7IqPeGaB3rXTSu9OETL0DSqTe5SVDdMjV sirHip2OecH6kWmtJycD7qjbew8u8/zM70/MTeHMaQKXruO71pxNQY7ebW4dTsTC9c5tD/Po XSN6w5SiYHvurJAp16ZQiDUVZ99BBFWOZU70rgitkViA3nGvQe9aOQUrLfshR+84EubvCMQz ObPGzQJjK6IRzwxFJhPSoZ3+KRqR9+1mxfr5KuVaxLVfAt9rTibsLx6P2FmFsPk7OXFmi07r Mw2KPV2z2MzhiUy9kzB/V2C9ioPZ1zwH4Viigt4xvdsz+82z6t3k/WUz9W6+/tKFlHgmf7hK wTabQ+9GQeza3VwI1DsRNG5yJIFjxuvC7fBkHeD631N0+dB3cfKpeYh7nthkJN0f1np3d+/+ ldayS6ZV7/hzVAoWrsfzVcaCP684lw2igN75ya1309JF75TzvOiprcsI9G5EUsZ3fIP56RA7 JUnvOHLGeo+rIwty9M5YIscvEt7cPXLbiM5Xes0o6rWIbm3UOXMvVcnYX5TvN0AuM6T1F4uU 54mpZgDTSAPimWNZYtKvHhysWLPJCJ8nmtkYUXpHiVX1gMSMlhiohRBZ/KIZ+f13w/Ru//Cw HN0wT2XRu4z9RUnSO0rI6S8WKfFM8/zMrQqTht6Nju68KxnxmeU8Lzrlt2jVf2d7/m3sXj2n X3zrWMoHmlUqM+JqhG7aRE9Uq/Wu2D86UNRl3HjvjEzul4K+eblpo5FFqRn1Tl5/6QD2m2fX O17Pup0c5652kpu8cTOBejdjbfjv1fP7xat3So1uwyC9o017zmnm07uZ/LJperdx8UwVlrxc w7qIPemFzV9J8iJ6N9s+35mvmMKUlrB7Ufi2pKvlLx6qJ596PX6CeRihNkayWUILyWHDyfoc 6i9vqjfN/J2EX4kS/DLPfoSUdU0SasNLfP6OEvyGPIPMmUuMeK2QIBJy9C4Sz+yk9UPyKbF/ eBT57sNcE9O7gvEzO7d+4wvvu5+fTe+Keo3WCPGZkWzOFWfmP3FzzM7Yekfve13VXcbVu9n6 C5H3fa9Kzfc8sbjeFfV6lY2LZxpm1rtES1LyvVDvWI/viuNCrc5sb+nDnGzmwQM3/vpROeud d1aULj1d/w32Fz5DVI27f3bna//kN38wjRWpGEccHBxkn63WVzd+mdkSI/0q92oES+/ovpp9 8mVCv4RuSM382fTOhXq000I2Ve8MRWBHXj/SPxsZ8fFKTjw53++mb6362D57Rh/mo3MHyxh5 VzVzphvbpugduU/r3Z+/M40RG4uESJEEG0L7EXIxoSVpeqfyPV8lvCtEHCnrM8+ePUvhPvP7 1jxVbAg9tNL6SEgH42du6F1VcuvvbW39x1t31O3quFsdd6qD0pRPOdOmH1WP4iHbTFpViSpd NnFfvp3+qDqoR/Qrv6p+CqzL8POs582jB/2McNPrg54N7C9fBqxW5QBcp/+rv//P1feU+vCD 8vjgw/IIpX/4t+XRUuaD8oiXGZKe4vxT2ywtzb9v9Lv/QH3jq995NqVtT91fqN0+LsqjpV/0 7C+xfPqFTOnb6s7lB3vT36/4ESvv3nuz06p3ZmLL+0ixIZjzeNUq/bkurfaY/RTrnRR01JQ5 f2/rpT/64u79S+Vxb686dqujSq/zq5zJ0vqHmT6uHR6Z56zqhJMuO1gz/4Y+3PTLh4fl+6eq /ti1/Cv7B7r8q/s3Vuaz9XnMswopokUxHCd9QJ/1pNdlilcP973l9w8PDw9u6vMfl4G7A613 v7D1havnz+nj2rnz+gimn/iYPuJlXn7inD54/lWd8KWpzCvnPt5aJv38LfYHyvNzkj0p55ko ffXj50ydXDv/xBTX4t83VJ9kw49e3tJ6pxukeU5jo50fHujD14/G7y/UVq8f3Hxst/NIulN/ Cebr/nL98OixWtvw/Fsvar2b/H7Fj2aZvQeX6T5WJppvaxJC4v47yjHaRDIx8NK0UEQFAqRe vfOWj5+HF3MNIGhT4cCvMxCajzC7ibPP38XXq0x3af7b5uZP3/j1rc/zAt3jJO3BoOY57fL1 fESp0crjl+Rgk0P8u3j+Wp0y17oIPkczz/xdowb4EqfKBhrL0D1/aktSmMsv/nZFezTm8UsK Gzp/x+8/tIRgu8IohRpwZzYxUhUdnfHzG1Xinw3l82inG/nUiePjY9qCpyvh7Nmz/b7FWJj5 d9Nrui7OGTffvd9GHG3VcO+0ajroxk8dab0rGMfV0QGKA0XzG+dsljdWmX1PPc4fIv5dPH9d 0WjiRHd4BU4HXcLSu9X0123UgPN2PKN3K6e/d2rnw/MJ8ov7kWKMfsHSJ7PbzW9dqPH3RXaj aPSXzZu/s/C6O94GEi9dVCOs1hNyU72ftfLjVy+E7Ten93k195PmpPPoY8iZC3ZUFfJ4tdL3 uhs/ffPzW7+eNoTyF+LXCqWDVrF8PkvS7/zuiLIu496pYmNDCXeSKWzgWpZSnn4fms+ObU5n 5vFLvL1JaBuEHEssur7vdcSmRZemFp5ixhL0bv/owIwj8toTj88sUO+uHx2OrnfVrrFuejdi 3KxrGzMDCj2WGfV5Yt0gM2i/uar2ieSyhNszTzyzVe+y+8XYIyTObNF1fDfifZgvgDHxzMj5 3fLxdPzqQvXuMM/uKteeKftvS+ylqIPnN3/65q9rvYud5uQjidftaielVkn7vLqe3/PR1i9y sH+YWDL1yt3PM8V9la/r033hbr0CsE6f5N8tE7evqWs7/+9Oml+mhQLMbf1lhLbRykx6V9B3 tiNRp0zvLKwG1qO9ed+5kFJeNef7QvlxZOqdnDjAlJaMrHfJQbBBepdQG3Pc07JuD10zRdvY vbdr1vXpjnCFlvlViSt2/qUrDy5rsSO9E9BfUubOZtK7OWojoHcZLOlOb70bjln3otJ0iuua u9bFzQ9S+at8iEdx7NO72W8olbV8/2ww4hega+tKKZ+xxRq9a4lnhj/eG1UdroCa2phiHKHP +VC9q4/QPqa76u7dk32g7p7Q1P1QofJ8DXk4faU8qvTlB3v62LvPDl4+lB9O796/ZCoj6ux1 1zVF6s7Sbdb7dPWXrr/KlmBJkFa9Iy2gnWv0GiBKFIPDm95xWeSEBZuq48OxUH4QwXpH8cyV +zzAOfVuxvmIwPUH6d0U0P4mNVncTItduQM0tDfz7T191Ps0r9h7QsP7oeL7p3R7o/w0rTzR 2dvqzgtvXwrrbFf95XuT2/Vu/bSCitX6hYA59W76+H+chsrknL+r4rrMks2LZ0Z6d/rKkAgk c/QqvZSz0UVdm0P5AUjwqsc00vMzBcQzud7VmXbf77cKq2v54/Xjkaedv4v8UV++jmeW++88 d7PACd5R775Tj5LceR83Hbo/+8rcNvG0tVhUx1qDAum4ftEYh/K12GnJS6k2M3+Xi6JqHiPe V4/LF+p1+ErrW0T1X1pHZP3d22vS6Vp+ar1Lt2cevQv9ujgd83dmHGclhgsEvX+Bj/J6lKex gDc/fCa5ehdfpzeP3vW7ShfG0TvLxfqfWuy++MZLwXkfJx2Kv611rXpehJlXal1HEdHKaHyy zH9XvdOqd7T/bqzRrttB3IhuiONqG2DPKLFzflfvWi2hQqreJ9L8LnPr3ZBPjXvmeaKIKaPp zY1nhsj+QJKBFMLWqyzo+bcuzVuUuadtfe6zO6+/5s77NNYz3LuiD8r/0hsvtY+SerFQvwi2 gYAl0mwg5FhikfL8TDN/t81IH5fJRKbeLWM/gnvJmN75xkd8nHUyVqJVH6MZJSw+k8EvATLP E8EvAeCXVlr1rnCiRordkTYX6F3cnrzrVbjepZSfyAyTltB/s/vFgPsqB34hpPnFS1zvzJ3H pEkgjFKojR3iydQ7OXGAvPsRuN4F5nAabW/qH2DwizQbCFgizQZCjiUWcb0jOfBMFivl/mku k8cBehdnrrnv6io8nlmsnwys7PGdZ6EGa3WF73m9Y9spAAmWSLCBgCXSbCDkWGLRaXzn/dOG IlPvlhbPHKh3jPE36UmLzyBuRsAvIeCXVvqtz9xopSOgd3F75u2/DbWy4pm8zJy/G6X1X9xX CfglBPzSSsr6zLNnz5r/0spMSs9o5vjI1Ds5cYB5Lemjd3P+JFiqX+TaQMASaTYQciyxSBnf JT2UctOA3sXJYAnbRU6St/Vrv/bUa+3rM2dg0X4RaQMBS6TZQMixxKJ1fGc9yfnUqJ5MvVtq PJMu3NA7/d+tz342o95Ji88gbkbALyHgl1ZS4plc8qB3U1iioHdNA9bju89+9uKtW74Sip5O O6mF0vpvdr8YcF/lwC+ENL94yfg+oLzI1Ds5cYBclvClv8Hx3Sx6x4FfpNlAwBJpNhByLLGA 3kHvvMy6/67Jyfgu7fkqM7A0v8i3gYAl0mwg5FhiAb0TpXdLi2e6/aJg5NU7afEZxM0I+CUE /NIK9A5657UnV/+lq9M7+J59Zuvb3/pU0ts8x99uLq7/4r5KwC8h4JdWWternFZk6p2cOEBe S0jvnns2p95x4BdpNhCwRJoNhBxLLFKeJ8a3RPH0fFZOwGbp3fztJ2OLNS2N9C6TFQ3k9F8J lkiwgYAl0mwg5Fhikfj8TCqpOVOhmpK3idonU+9C8cw520/2+IwQvZMWn8nuFwPiZhz4hZDm Fy8p8UzzjlejcdYm9E1Ent7d3bt/BfN3CnoXILtfDLivcuAXQppfvLSuVzFCQAnz2rtNlzyZ eicnDoB4Jgd+kWYDAUuk2UDIscQi8fmZZytMjglpTmjZxMjTu6WsV2k9cyl11SIV6J2LBEsk 2EDAEmk2EHIssYjrHVc089To0/F4MZl6t4R45qbonbT4DOJmBPwSAn5pJX3/XWit5oYiTe/u qttXHlxu0buJV91ze3L03/rryYhnSuu/uK8S8EsI+KWViN5pLVD1t7CUTm3yyI6QqXctY59Z 9I7IEZGQpXccOfEZCZZIsIGAJdJsIORYYrHk56sYycusd6vyNl/P3633VlchvZxtZvqrn4i3 ey36DfDcM1vf/uanp7UiDTn9V4IlEmwgYIk0Gwg5llgsXO8Is6kwjyVM71493M+ud3PFZzx6 V166OiTonbT4DOJmBPwSAn5pZZl6RwM6kjm+iT4jWu+uPLjy9iuvqI8+Uqd6vQqnVroT7ave 87PWu+ef2fqTb356eiv8SOu/uK8S8EsI+KWVZeodIWV8V6/P1Hr3X/zkT2q9k7AWaJ7Rpat3 PK317n/7X39peivakROfkWCJBBsIWCLNBkKOJRYL1ztar0JPj8lrzEP17pfeeOkf/APtju+p RjxzxkUqjIwt1iyIunz/ym11N5MVDeT0XwmWSLCBgCXSbCDkWGKxWL0z61Wyr88ktN7p41/9 q98gvVP+sc8c5I3P8HnVS/f2Xnjrcg4r1paYtIT4DOJmBPwSAn5pBXqXXe/o3TfE3p9duqPe yBvPzL//Tqn3/ka9/56C3nFwXyXglxDwSyuL1TvF4pl59e4xbXSs2H3wYna9IzLuv9PfXYvd 05/4PcQzXSRYIsEGApZIs4GQY4nFYvVO2n5zYu/B5Tvqdi5LOHlb7DsP1YWLr+3e27sDvWsi wRIJNhCwRJoNhBxLLKB30DuL7PN3qtK7J3duab178buXclhxYgkhIT6DuBkBv4SAX1qB3kHv LKB33BJCQv8le64dHD7Oawfuq02gd4Q0v3iB3kHvvCCeyZETn3lcHXmRUxuwRJoNhBxLLKB3 0Dsv0DuOnP4rwRIJNhCwRJoNhBxLLKB30DsLxDO5JYSE+AziZgT8EgJ+aQV6B72zgN5xSwgJ /Rf3VYL75bFS14/glzVy/CKhv3iB3kHvvCCeyZETn5FgiQQbCAmzmYSEOpFgAyHHEgvoHfTO S5YWa6rCjO+gdxZ57/DkINSGS946keYXOZZYQO+gd17yxmckxDM5q7JCDnJbUZJxP4J5jnfe uBlHV8W1QxF+ydhfBPpFTn+xgN5B77zw/jvzw8305YTonfnicvpvXr+snzqb+74Kv3Dgl3Sg d9A7LzwiMVv/NQ8OFTJ/Z+yRE5/J4hfrctlrA37hwC/pQO+gd16Wtl4l9H2zP7jbQsKdRIIN /K0iEuxZmg2b0l8soHfQOy+5+m+u8Z37fWX23Iz3VVMhx4WstRlL0xqLLH7ZlP5iAb2D3lnI 2X+3d//KDPN3KXcq7PPiZJ8nMsAvnHn8sin9xQv0DnpnIUfv5lmvsin9d2n31RTgFw70rhXo HfTOi4z5u9076s48V2yZjzh59XpmFh67M8AveW3YlP5iAb2D3nnJrnfV+C6/3q0R03+Xdl9t AX7JZMOm9BcL6B30zqLI/Z41s//u0r295/Ptv+MrAD9S6uXczwPM7hdjw+PKjLw2EPALtyGv X6T1Fy/QO+idhYT+S3p3+f6VjHrHf8Hq/vvKUeYZKwl+IfLeVznwCyevX6T1Fy/QO+idQGj+ bu/e7t254pkAgFMP9A56FyfLtho5eid2V5FYw+ZB7NcXa9g8CP/60DvonZdr+zcez9tyeTyE 9O6Fe3vPzRHPbJ9cf6TU1YMb01vSDvkl7+oIOfHMyi8iLJm/v7hoA7QZ019nk/qLBfQOemex no/IrXdP7tzKq3fcLxL6L/dLdr27LuO9ohL0Lld/cdEGXD+4Of11NqO/eIHeQe8EgngmiMNX AwI5CO8v0DvonUDWzxMToHdAJhL2u4GNA3oHvbPIvr7a7L+bK54ZNMOkETfjNsjZfyfILxL2 3800fxezgZDgFy/QO+idhYT+S3r34v0rGfWO86h8j7aMfV4S5okkrVeR4hcJ+++y6h1Hgl+8 QO+gdwKZ//mZAIBTD/QOehcn4/47CXondv5drGHzIPbrizVsHoR/fegd9M5L3vebkN7lfX4m R858hIS42apqHrmtKJHjFyHvA4Jf4kDvoHcWEt7nJeF50dLm3+XME+V9/51MvwjRO/glTna9 267gOVRvJtNUIyW0NlmZoXzrEiRqHJ2jv375X31sb+8fHq7WbeawmT6q00fr/ELtH9z0pHkZ J817hG4MZj6Xpy8/2Hv+rRfJ/muHN68e3KCP6zJl+6k2eurCpi2t8yt4/suHh+XzyQeXf+Xo yDznXNujD1OrBwcHzZo5Oqmxg5urwpfmZTzp4tXDfUqrDz+4ev7c3v29O+pOr/MHy7+6f2NV 79emYvR1rh8eXQ+nqbybXpc5uGn2+fI0NyO9vJu2PktrEopqA1rzmya2z57tWTfgrm1+/+hA u3Xd/g/3Ka3P8+rBwareUzCkfVIfma79p5SvvtFBl3Y+uD0H0nSH6XH+Hu3T10e0cwueL5CM ekdaQ2mdMMplckya8vVYjDLPVJg/hfLjV6fL0fhOi50+jOvbj0KZe2YjnXAQj6rDTWu9u13P WFE+fWpdpupfoc/y9EfVMbz8Op+V5xU7dv2U/eW4Kkx6R/N3I5zfV542LBuPPK4Os97+cTOf Srppsw7crJmk9LrFsiO9PK9bjz3ss6PVf7S8qaiTdEef+tInR7/2STUzdftPKb+uFqdddTgG 3E/GOn/X9un2F/Ivb6sCyah3RY1qjuYsqeJDNmOtpYbefO+FeObx8TGFNBHP5JA9+kea225D rukE7zXW6clXZfLDD1459/EX7l35zFu7PS4Rwm0GiVB8pvfHR4EurYczj1qLTmwD9t+58Djz /I2EWmbe57wZSxT2I/jQQkMJLnlWJk/ziCWXp1A+vzsVDJOjr6Ulj+TSK5TjEukF5k9G79zC oY+Pnm/pXdfztNJJ75777uV+VxkXCfdVr97NfGsdoneJpnZqbxG/zNxfss+rCtE7gvQu44/D EHn1zh3ikd5ZP6R5AfoTj1uG8vm1LL0r6sUqZr3KDHoXNGwdYCjZvX8p+/iOExrR6F8JxxMM dk4u98GH186dn2I/QnyMto4i0n98nw2dc4b8XE+MTP/pNT8UP8xtRYPsEYDpzuPJryK66/zC 22lkkTeeqXxaZhUwkKl8rKdYMNPNb716Uc/fZY5nsrtrZHwnivAYbSiW3r2p3pzmOn7q7yWx 6+a6t0tuitO1w97MVl0i/MI6SuH8SBRhYZOMenemhlZLxn94K5/e0UdC+a0G8KEl5u8sMsdn qvUqcz1PLKZuZk2FkPmI6wc3zfuA5rqf2PUjLW6W+1dKed3s8Uw13/uA2qn8IsISi7x6Z9Ip PZebatIFW6xi5bee0OidtuTs2bNpVg8lHh2SoHci5iOq+bt59M6KXlrzMkbvzDyRG5GeNF9Z 86q13s041pOld7x+JOgdtZ/N1btx2yeB99+5WDHMFIUyEmkNx0L5EYpTtN+8a1Snpfw8tw3P VaqpzPV6lQ9fPn9+997em3iemFgmaycp7XmIX0buL4AhvL/knb9zV4lEqsuUtz4Vym+9OvQu YFA2vTvJ+vDDf3bunAS9A0Gy6t2c54fenRryrs80k3cp60ysFSmt+XFOk96NS0o8c8o7QHUb rebv5nr/nf/Gzf3yUfVIjektCVGoeqeGiPesCdh/58aZc3Gs72R2PHPqn4z8/CdtYy6/tPcX CX7xkv15Yp0ITX71WDINvQuRV+/Ws2kC9I7zUfVotektCSFF7wgJ77+Ts45Igt5RKq/ecST4 xcuG6l3qXGr0VNC7PAS6C3+60c2fvvn5rc/vlfvvZt2PIBWJ+yPyghgj6EH2/XduOvEjKfnx U0HvUhh/Ajqqd7Sr+g/+7h8I0TsZ8+/exT0SDMtGrt33rSzcL8K/vrTxXby6NlDv3DuVncON v/zg8u38elftJ9q/UT0ztrJ25OFF7HRUG3/wd/X47r9e5vPE4iMXCfHMFd6z5iDkfUCi/CJw DC5N72YDehdivZ9o8XqXa/49dJeQM3+3wnvWGGSPEL3L6Bfl+AV6JwfEM+PM31bpbTG13q3j mW/OVRtxlZEzgSbhHiLBBvglrw2b0l8soHfQOy+59I4gvbtSvu91pvk7EXsSE1jafbUF+CWT DZvSXyygd9A7i6njZuue4vQIXg9Pf/LLP/pjL/7m//ylX//Gb01jRTt8RUTu/XclEuKZcvbf EfALtyGvX6T1Fy/QO+idRS69o0vT1bXe/f5X//c/Vw//yf/4hWmsaIf/gs29/65Ewn2VkLD/ joBfOHn9Iq2/eIHeQe+EwOth63OfffK1W0b+AABgONA76F2c2RRHpt5lNyCEWMPmQezXF2vY PAj/+tA76J2Xej/CHKzf5sbWq5DePSrU1f2D6a+f9HwkIe83Ib/kXR0hJ54pYT8CMWd/CaEN 0GZMf51N6i8W0DvoncV6PmJ2vePdSOvdhddf0/fVjHrn7PPK3H+5X7LrnZz332XXu/n7S4i5 3ve6Gf3FC/QOeicEvnOH9A7xTBBC7PPEFo7w/gK9g94JwdU7Jb77gFxI2O8GNg7oHfTOQsL6 6q3Pfu7CrdnimX4QNwvZIGf/nSC/SNh/N9P8XcwGQoJfvEDvoHcWufpvY32mAL3jSHiflwS9 I0StV5HiFwn777LqHUeCX7xA76B3OWFT38fFSYRq6x9/bkfG/B0A4NQAvYPexZlWcZp6d2zW Z1Z6N/nVE8huQAixhs2D2K8v1rB5EP71oXfQOy9Tv9/EXW/QiGf+48/NuB+hHTnzERLiZtLe s5bbihIh7wOCX+JA76B3FvO8z6tF76r95livwpEzT4T333Hw/jtCml+8LFbvVC152fWOI0Hv iGnWe7PwZfT9CFuf/bVyP4KA2Ii0+IyEdfgSbCC/SLCEkGCJBBuk9ReLxeodrYUQq3fZm808 ehf6mjS+k6B30pBwT5NgAwFLpNkgnGXqHd1mixqB8UyTmeG9qxPEzVbsIKUz38v6pu+9p95/ X2194ec/8cdfnmfde8ubmiskrMCXEDczo6qM80TS4mYS4sxz7ovclP7iZZl6p5rju+2KvJZQ Wuvdm+oN/tdTr3fmivSEKC12Tz/9lX+h/voX/83v5O2/nLxPjCQk6B0hal1E9n1eEvSOQH9p ZbF6p8SM7xT7afT733n2ffWN7MHMLPzlu+qdh6XYacnTg1wt/UpAXBcAcGpYpt6dqdmqoHQu Y0xwVVV696O7W0rSfX5SS/h3v3DxNX1osSO9271/SUIlSLDBi1jD5kHs1xdr2DwI//rL1DvF Bneqkj8h8cxvfutTzzzr0bv5o5qjPbcq8LIs+oLv/6A8Hr6rLu58jeeT3s01C5D4Pi8RETw8 T4wDv3CEvf9OhF8sFq53tAUvu96Z/37r27/07HOZ9W7k5zRG9x1osXv6k1/WYqclj/8CkaB3 QtdFSLiv4v13DEF+kfX+O+idIETtNy+qpRqrenzHR3wbsMbYWX/C8z3Fq69G6zBptq76dME/ QHo3sd2dKArxflgmwgNoS0Vof4HeZde7tTG13v3KM6dE74pVNJJZi50+6t4hWu9aYzgAgBqh /QV6l13v+A/Ub37r0975u/mbz/XDoz7rqwtroMb+Un+jdx6erMP0fbiE9G6u5yMlzUdkX/dO XD+4mT9uJma1uSC/9Osvo5I3nsmR4xcL6F12veN869u/THqnDWv8YXa967mfKKx3hgsXb+mj Htm5Hy4xejfLPq9Nmn8XMU+E9SoOIvbfYb1KG9A7CXpnxj5f/c6zP1bvR6gjhPTgLZnhgVRI 3dx1mCHM/jsAABgL6J0EvTP8QH1DSx6lJegdn0kcAs3WmXWYoWuZ/wrUO1HrIsbyS+K1EjOz IMcSBb8w5FjCgd4J0TtqHrfVnUv3d5WA1pK+Tia+MlMLnD5+8emv/M375umLeuja+HbulzXx zBnW6qRcRc6qIQmWSLCBeFwdEpBQJ+gvrUDvsusdv9u/8Pal7HpHv1HTn9MY0jv6CjsXXn/q 4te12Bm9O1YrfbTGM2ebv0t5/m1lyUHeHyFd/TLidbkBKvfzM7kXypnEQ/hlVr9sSn/xAr3L rnccrXeXH+ypyfSu2VbZMGydLKj3qI7PJeahyLXlRfHOw/IRYfwq6b/67qo7V+7vybmvVitF RexrFvK8aCHvFYVfOPBLK9C77HrH28ltdYf0biJS9M5X0mOqF15Ai52WvHpjXfCc3s8avTuW 8QtRTnxGgiUSbCBgiTQbCDmWWEDvFqV36aRrE8ddhxkpHDnns89tffNbn3qs1CPoXRMJlkiw gYAl0mwg5FhiAb3LrnecqeOZKaTEZyJ6F1qH2ekbGb27un+Q/qlxkRafQdyMgF9CwC+tQO8W pXcpv7vovauh/mvik8ZCPqb75Cd/z9pFzif10n/1kd5h/o6D+yoBv4SAX1qB3mXXu3zzd7Ey wVVYamWeBFuwJ2HSmI6eAt0oz3YkpcdIn3l2rXeYv7OQYIkEGwhYIs0GQo4lFtC7xeids2Wd Zzh/TGmxNKYze+u8m23j5+F/rT9bmlLp3aehdy4SLJFgAwFLpNlAyLHEAnqXXe84U8YzU/Uu GJ9hJlEZGtPxvXVK2cKXrnf1I0PLdyX8yjOl3mmxu475uxrEzQj4JQT80gr0bjF6F6NwtMzq v2YajiKW9d66Ea5shNZdnwm94+C+SsAvIeCXVqB32fVO2n4Ed22JETsNzdat99aNIMoteod4 poUESyTYQMASaTYQciyxgN5B7wyN6CJL0wpMGtPx99Y19M4Jl3aFvx8WehdCgiUSbCBgiTQb CDmWWEDvsusdJ+/+O95KeXyGxnRP7tzSkmfeW2dbOI3eIZ5pQNyMgF9CwC+tQO+gd95r/Xf/ 9E/+5v3Iu8j559e78gb2d/7kMeidC+6rBPwSAn5pBXqXXe/kxDMJskeL3S8+/ZWdp16/cPE1 LXbvveeXxTJzSr1DPNNCgiUSbCBgiTQbCDmWWEDvTr3eue+bC0Gxyj9/qH7m4h/+4ie//Dc/ qC2sTuEleRwa3eznnAp6F0KCJRJsIGCJNBsIOZZYQO+y6x1ninhmot7R2stPfvL3tNj9xV+p //affuv/q3eR8/fZ9aWn3iGeaUDcjIBfQsAvrUDv+uhd+827bf1G4K9rvSuC4ynrDCka1Hjs SVF9ho3X3LWX4/XfbktYOuhdSv0PLr+2p47WxvrvFPY4ZTr4ZeL66Xxf7WpP/GTC7qsj9Jch /mIE/SKtv+QDepdd7zzxzAFt/uTv7tO96jex8vbJ99OZtZdqnIjECHrnj2fO0n95uqU2ZtE7 Iskv0+tdt7Yxqt4NsmQyBlkynt75bZDWX/IBvcsez+TrNDroXeLJm5Jn3mWgjyd3/lAfn/jE 73rXXs7VYk++Kt/njvm7EBIskWAD8bg6JCChTiTYQMixxAJ6l13v+D2/QzyTPtlxTs28y0Af tNeA1l7yU807H9Gid5i/M2CeiOB+0WJ3/Qh+WSPHLxL6ixfonQC9O6GxXqURxWqsOXEfd9mg WnlSzsq9Wx40mru489pTF1/37qTjkU+Tnr//8i/ymee2vg29a4L7KhH3y/wjC/iFkNZfvEDv sutdcD9CWO+8H+fn0UO2T3zid5+88Lo+tNLpg1SPz9CZp2Kaf3Lhy3XfIIzeIZ5pIcESCTYQ riW5bJNQJxJsIORYYgG9E6l3qZPEfD6O4pM7F25pdXNn5Voin84FJ2+x7ld016us1LGMbiOn /0qwRIINBCyRZgMhxxIL6F12vePU8cyiaG8va70z83EXLt7Sx7vveMZxfChXMJonOymvZojP pOnd9VcRn1mDuBkBv4SAX1rJq3eeNfN1vvefVnl+J/fmu//kiVXN/HrnMa+6/19669Luvd1y sPaX6i+rIZvWL33Q/ridMjj5tSd3bumD0nzHnJbI8nA4Dhwh6K/Uf91o53TQdemX4cf2tn7/ 3z5zXJS3EdeDvdO9WZU3tAPltMz50Tc0fl+d0x5Tk3PdV/1RjqJ5XyW/RMp3PX+/8mu9axYZ q92mtOeqB639Mlu/CAG9i+BWe8gRvfNDLYTGd7oSZtC7eOuiPeBvqje13tXjtdcqjSvjk/Ru Aq2DpH2UpnEce7Klvz+uAkcI/adKetZlJu0XHK53X/3Osz9Q36gsmeHK7ciJz3BLconvpLXB vlSjPXu/bNOS9vJdz59efm1JVwkdFWmtNPuPQ5cZ9I6+tR5DWZne/FD5HvmG7YozNTy9RejE 9rb+QbKqf5lcPzp8XK92pl/U9Jt2XUb/jjq4ycofuWnd7A8PjvaPDuhZJjq//gVYNoSrB4fX 6l9iOqH/SRXyK9994TP3d6+dO3/9/BNXz5/Th07rg9JXP36O0q+c+3iZ+HiZMGVePl8e6/QT H9NHnT6nD36exjl1wuR//Al98Hz+Wfc8/AidP+m67PzXnzh/7fy5S/d3X3j7EtVY9Rv+kKUP Xt2/sSrqNM9vK69dY/K5U/RxTXvkYP2L9Nr+jesHN9fpKt+c1jSGeHlKT1H+6sENfVDaMim5 ffZpzzxd9otG/mEg3Wz/h/uUrrxzYLygG//V+ps20yff9OXDQ32QmvAyrxwdvXzYoXzX86eU pzamnfXY0w6t9EHf9mzSha7GUBlmQ7fz92ifdAkSeF3genk3O0mn/K7Owmx65x1AkUhxG8xP Arc8BR5VU9pojObNTzGM0GKnD+6jx+xYuQeFDsNDJ/NLb1U/a5l5v/zDI6Ue1WZQmgx+7t7l 5x/sqQ8+VP/uA/Vhdei0PpLS1UHpH/5teazTH5RHynn+3Q/Lg9Jf/e/tz7rn4UcHOwNpOn+V c/nB3m11Z1WHiXrUf9fyfOfy46I81um6DZjbeEr5dYudoLy+5T7ylZ+6fizbrHta+ODt3+4L dLh9wU1/VB3Up6x8LXnp5bueP6U8BSWM1vQ5OtS/vw5b/DK4/YfaG1VBXeYkvar0tC4jiNni ma5+cXmKjM4MRbWwxCpPguXNTzkhxTNpANhafjqMtZffvrx3f289+HXmAkyi+mssVNvXjpMr 5p1/371/6Y66XfUaEbMAKzHzEXRfzctq4vm79PtkP790vQ+nlMd6FY7xi7SQ5vzjOyuSSemI GSez5PU4TjX1MZQfmrMziSzrM+MN4I66s3tvd12Sfsw5eE8yTrtiejf/bzPtC5M2ejfD/J01 QelNV5YEF03Nk09IeIJWv7bRMn/dXIWy8uW75V1LEqbhOpw/vbyEsUxvv4zVbrklx6PckcZm tvGdO4IzekeKE7qTG8hUPqBbRyMD+fyz3hwJ+xGK4kTWVLX/7tL9XVMVqSoWmiUfMHs+Xf8N 7p2vZjYpqUX/ThXPnELvevw2oNqQ8GN1c++rI8J/h2SvDUKCJfPYkHIVCbXhZbbxnbmQuY27 OsX/6t5bSBMLZ2wYym/9PWnpnfcHzBRpi2M9srGen9n11jqq3tGlp4vPhJ8VU1h6Z/YjTEpo MGX9XjXr3lPKT5e29iPwMlO3W5OmOHPXz6qRCPklF1P3l3QzzH6Erh/slKb5yngZxDPdSKO+ dFHD1TB0HipvdhAoNr7z5rdaJWF8p2praXCj9Y7GdwntxBWzuLzFRfHkr/S+Bt5/e/5aYxfs egYJ83fe/psRIfdVlXueCH4JAb+0IiGe6f2rC0kSL1+wmUE3P44cvVvbU+kdxTMTP0Fywr6s m+P5a+A8/K+FqteAEfPoHTfb6F32ewgBS6TZQMASaTYQciyxyKJ3rsal6F2ofNfzGBtE6R3R eF50dwJCXyQ8ncym0xq5Udo29C4FCZZIsIGAJdJsIORYYpExnpl3P4JMvTPzd6Nij+zildM1 PjNF20Y80wVxMwJ+CQG/tJLr+SqEedpJ4nnMk1J4Zii/9WwC9e43//VvffGNl3bv7erjyoPL +ti7v6cPnt7TiQeX76g71XG7Ouz0Q/WuPsxpzYRgYqRXjdF/1zrYaxYPeueC+yoBv4SAX1qR 8PzMIYRu4Buqd9XDod8lzbqrbt+t9YunSddIE7UuaO3TCa2DOl0eVf5Lf/RFo3dWVcRqJrDn qB9d9Q7xzBQkWCLBBgKWSLOBkGOJRUa96zTo4J+yEvH8yHkE6l2jndhLSE6Keb8jz9RipyWv FMFKE0tZrMeG1niwORI8uQw9g2gM4qtG/fZD70JIsESCDQQskWYDIccSi1x6VzCs/NaPWCVD +a0GCNE7bjA9dI4yG89XoafmFYVKqy5SsTfVm27M02gfjQ2/9MZLlt6t4zPVM2ZH+X6JesdB PNMFcTMCfgkBv7Sy6fHM3sjRO2ORPtbvVhjzlP5/mIzvq3d/+49eKoOiVSxU6+Cb6g2tNS9+ 90WjlSefaP4+cdV2rN910DsX3FcJ+CUE/NIK9E6U3o0cB0jTu++XM4YnY0A+D0jpxoeiIegh 9iOemYIESyTYQMASaTYQciyxgN5l1zveNrq3k/AkX/opnKjyiSXVKWncR2NAnTgZ99UXZB9n M4Dud4kaCL1LQYIlEmwgYIk0Gwg5llhA70TpXfd45iC9C82BKhOfqU5p7Xcw2ucbMq5MFr2v vHGtZAMRz3RB3IyAX0LAL61A77LrHVeBw+RG4vsFFZCTQHbzDOUzWCinWD+XuL3/rvdBUOSz esIzHfUZ+693gd654L5KwC8h4JdWoHei9C6d0fVOdX9mphE4OtbLPu95nv+Zvs+dQDwzhARL JNhAwBJpNhByLLGA3uXXu/icV/RD8fL1X7sJ6koVx/VYz7VQJYiXGfGVCnhv926phm/oI/4p 6F0KEiyRYAMBS6TZQMixxAJ6J0rvOszfDda7kGzR+/ia8ZmTfXnxM1AODfdo958Wuyta9f7s kj7av1QN4pkuiJsR8EsI+KUV6J0AvTth5P13vZiu/1LA89L9S7fLx6OVUuhelxLQOxfcVwn4 JQT80gr0TpTeyYkDTGEJjfveUG9oydu7t7tHM32+B+bQc89Od230Q4IlEmwgYIk0Gwg5llhA 76B3Xqa05CS+Su962Ht7Tx80pjN73qF3XiRYIsEGApZIs4GQY4kF9E6U3p3KeKYzzbfWO51P e/ruqrv60Al61wM91wXxTAvEzQj4JQT80gr0DnpnMX//dX8N0vuM0H85uK8S8EsI+KUV6J0o vZMTB5jHEuoj1pNYVP1+h1X5p+mNSGBpfpFvAwFLpNlAyLHEAnoHvfMygiUd99G7VzxVtTES EiyRYAMBS6TZQMixxAJ6J0rvTlU8s6PeHRf0ir9GVATzdwbEzQj4JQT80gr0LrveNZ/SfJC9 16jKJNN/hzwGM8KKHe7b2+miefWOU1lyMFFVpDODX+JXh1+8wC8WQvziAr3LrnccOXGAqS2J 6N1sNqQDS6TZQMASaTYQciyxgN5B71yKYuw3zzJSztxQQwEIsWRSv6QjwQZCiCXwi4UcSyyg dxL0zgz8TTwzeyhguvmI1r5g7h7S4jO5rSjJOE9k2iT84gK/cOT4xQJ6J0HvDBLWqxB559+P a8mT1n9P8e+QFGTOEyn4BX5JA3onSu/kxAHyWoJ4ZggJlkiwgYAl0mwg5FhiAb2D3nlJt2RV vii20/v1YmtU+r39dmo20S+n2wYClkizgZBjiQX0DnpnYWIj0DvDJvplOiTYQEiwBH5xkWOJ xTL1bruCZO5MhRC9u3Z49Ci3DQT2z3IeVa7JbUUJ/MKBXzjwSyvL1DuChng0vjt79mxuc0qu Hhxm1zs8L8LlUeWavDbALy7wCwd+aWWxemfimRoa4uW2SNxaJmI2q3J9/XjsRaZT1AL8Ekem VWoBftnQ/kIsVu9WDCF6Byzm6Tti5xrEIvyetljQX1pZpt7RE+fMehVdCULm71rimbOs5aBe c23/xuPcdzVtwPWDmxku7NSzhPgM/OLS4hf0l3kQ2V+8LFPviKJmY9arzLh2Ef2XI6f/Ltov DhL0jli0XwT3F4sl652qJU+O3oXY6BjCRoOa30TgtVwIr3nonaq3J+S1IY7wVjQKvB7kzBAt oebjyPRLnCV4TaZfhNf8YvVO5n7za4c3s8czqcUiPsOp9hOJiODJ9Euuu1yLX9Bf5kFwf7GA 3onSu6sHN7LrHT2rGf2XU81H3MhgCUPyuoiMehfzC/rLPIjsL16gd3L0Tk5QgnPq9xPFkWmV gl9EWqXgF5FWGaB3cvQOWAjvO4sFfpEJ/NIK9E6U3r18ePhRbhvWcbODw8e5LdEGXJfxfKSP KtfktQF+cYFfOPBLK9A7UXr3ytFRdr0j0H85cvov/MKBXzjwSyvQO1F6J2g1r4D38sipDVjS QEDbIETUBiGgTuTUhhxLLKB32fWOR90FtZPZ+6+7n0hObSzZEs8+LwH3dkKOX9BfOHIssYDe Zdc7Dt5/xxH1fhMh7/OCXzjwCwd+aQV6J0rv8P47jqj+m/15gPCLC/zCgV9agd7J0TuZy4lP /X6iDX2f16n3SxyZVqkF+GVD+wsBvZOjd8AC7/OSifB72mJBf2kFeidK7/D+O46w5yOJiJst 2i8OEt4HBL/I7C9eoHei9A7vv+Og/7os2i8OEvSOWLRfBPcXC+idKL0LsdExhI0GNb+JwGu5 EF7z0Lvseof33xF4n5dMZPolzhK8JtMvwmseepdd7zh4/x1HVHxGyPu8ZPoF77+T6ZeZENxf LKB3ovQO77/jiOq/2d/nJXldBN5/J9MvMyGyv3iB3snROzlBCc6p308UR6ZVCn4RaZWCX0Ra ZYDeydE7YCG87ywW+EUm8Esr0DtReof333HwfhMO/OICv3Dgl1agd6L0Du+/46D/usAvHPiF A7+0Ar0TpXeCVvMKeOeLnNqAJQ0EtA1CRG0QAupETm3IscQCepdd7/D+u/UF8T6vBPD+O44c v6C/cORYYrFZeheakPXmR2Zviwqud5rRrOwIbxuN54nxHjRjbwrOR1Q2jNGSk76MNmPSt2h1 mtwv11cfHkxkSSJrvxweZI+b8ffOzH9n41dstJBM/YV49eDgpB5GtkREf3GuFzMK77/jxJ8M YHJGXG5knYr+SZKXfXzH+2/jedHNXlMEbiudfgOk58f1bphr/F3F9ftET+FLNN40ErLk2pGI +Qghevdq7ZfR9a61fVp6d9JCsvaX+fVutv6SaBSvENI7getFT/H4LuVsxJx6FzdVThyA3+3n vOL8JNa5tM6b0R45rXTJlkhrkBtBRr2zRnnx8KP7EZ4TGSTGDaBi2xVpVg9lU/RuOWxKnXtj FFmQU2OwRBrCVXgevbPkrPfYIdTlB94Ktra3z5w9u6obrTkeV4ebvyqqw00HDn4e4qPqcNN8 P8Kj6mikqxiCJ99Jr885oDzFM0M2EMGv3LF++MGjptqkVw5vjnD+aHmCfBRKf1S5hvuxUaZQ 5llSPO22gUHlq1atK8S0kNHqv3t7vn541N2/RXXY+V3bp9V3zLr3XP2FvgX1l3nqf4r+kt4+ PWWc/kKRVV5eCDPoHamPeyEztjJrRUyAUaf5AhKuj+7CklC+gcKV5r8GbdI6oY/tbYrAr6pQ PKUfV9Mlr9aO04l1mUK9un/Dk+ZlWPpx1R3oPITupPr+adL6oG+hM6n/6n/qBmOi8et01bab +TfMc+p4ms45pDz132uHR2beuczU6VrvDg6smjk8qb39G9Sn7DQv40vvHx4eHhzpeyLlv3xw g/pv9/P7y+vzm3T1zyMzD3Wt+spuWt/Y9UH3Vco397eT8vs39OGmuRljldcV8kr9JF7nmya2 z7Hac2r5dfpwn/SO569U5/bJ+46E/kLfyOjdkPaZq790ap+eMtVnzTq369Wiu8XqHWGJGuWY TFetvHpHmdafQvn8bG68lGvrPGPw1qsIDwUAgCYaB/XDic9SZWG28V1I0ahOItNnvMZMMUqY P3nzebTTTVPCbEnwljH/iJynRzrlm7r/zJjf+qtgxJoZvba5x71f0P1nqAbi5afODzFdjcWv 3vU83s+6f+qaH7rEWOdPzPeaMYNHhp9nivYZqqvsZNQ7LTS8gCVhLtxUk9blQ/nDLV8yEmIR EmwAYFNAf2klo95ZPwygd6KQ0Hck2ADApoD+0kpGveOYgGREp3j8MyU93jcA41JN849a8DQR v2vhnrY80F9GI+/8nb46/2tcp0wZ62yhfCAV9N8Y0DvQBP1lNDLqHY3paFMALxmC6xoPfoby N530O1vXe6Dke6Zk2+ZkyfXQ77ujv8hBplUq9/jOLRY/j7GWr+cM5W866L9LZsn1AL1LR6Zt Mq1Suefv3OFYXPXIWtfmUH5OorGFIe1h03srPWcjqegs8Rl59SPLnhGYrC+kgP4yLuv62czY aUa9Oz4+pmeemEesFNWGuNB56E88esk/4uaP/kW6Ab0LILT/ikGaPSMAvRuA0P4CvQMAAACk Ar0DAACwBKB3AAAAlgD0DgAAwBKA3gEAAFgC0DsAAABLAHoHAABgCUDvAAAALAHoHQAAgCUA vQMAALAEoHcAAACWAPQOAADAEoDeAQAAWALQOwAAAEsAegcAAGAJQO8AAAAsAegdAACAJQC9 AwAAsASgdwAAAJYA9A4AAMASgN4BAABYAtA7AAAASwB6BwAAYAlA7wAAACwB6B0AAIAlAL0D AACwBKB3AAAAlgD0DgAAwBKA3gEAAFgC0DsAAABLAHoHAABgCUDvAAAALAGtd2e3Sv5/AQAA AP//AwCXmEcggAQQAA==</item> <item item-id="75">iVBORw0KGgoAAAANSUhEUgAAAlEAAAJRCAYAAABlfOLeAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAALesSURBVHhe7b1frCfJdR52Z8Z5ssVd BgosBwkQxOLO0gEM+ykiBVmOSYrc+eeHwIBhKsljJDuWRMGAZRkJ/CDlxbs7u3PvnfGTA0O7 SxlW4ojLXcSJpBiJJZI7qxcllnbXevBDEiAiqSz14sHM3OnU6e7z6/pVV3X9767T9+tlc27/ qurUqa9Onfq6qrrqpMMFBIAAEAACQAAIAAEgEI3ASXQKJAACQAAIAAEgAASAABDoQKJgBEAA CAABIAAEgAAQSEAAJCoBNCQBAkAACAABIAAEgABIFGwACAABIAAEgAAQAAIJCIBEJYCGJEAA CAABIAAEgAAQAImCDQABIAAEgAAQAAJAIAEBkKgE0JAECAABIAAEgAAQAAIgUbABIAAEgAAQ AAJAAAgkIAASlQAakgABIAAEgAAQAAJAACQKNgAEgAAQAAJAAAgAgQQEQKISQEMSIAAEgAAQ AAJAAAiARMEGgAAQAAJAAAgAASCQgABIVAJoSAIEgAAQAAJAAAgAAZAo2AAQAAJAAAgAASAA BBIQAIlKAA1JgAAQAAJAAAgAASAAEgUbAAJAAAgAASAABIBAAgIgUQmgIQkQAAJAAAgAASAA BECiYANAAAgAASAABIAAEEhAACQqATQkAQJAAAgAASAABIAASBRsAAgAASAABIAAEAACCQiA RCWAhiRAAAgAASAABIAAEACJgg0AASAABIAAEAACQCABAZCoBNCQBAgAASAABIAAEAACIFGw ASAABIAAEAACQAAIJCAAEpUAGpIAASAABIAAEAACQAAkCjYABIAAEAACQAAIAIEEBECiEkBD EiAABIAAEAACQAAIgETBBoAAEAACQAAIAAEgkIAASFQCaEgCBIAAEAACQAAIAAGQKNgAEAAC QAAIAAEgAAQSEACJSgANSYAAEAACQAAIAAEgABIFGwACQAAIAAEgAASAQAICTZCoZ8+e9apf uXLFWoSnT5/2YVevXu1vjkfpLi4uvMXmOHo6TqTLcIV7M2glAsE4QOm5CDM/bj4pU3iuvNz0 4ZrWiKmsUMGegGdwfdXQWpcpG//BlhPwrw3r1vKD7Wtr/HLzz02/bUXtxn8E29u2eJfOXQSJ okITeaKLCZdOgkJAOTkZisr/mml84SF5bB4n2IhLO51cebnpt0V+N05wWxgzcpdtPxkFX066 mT+ILVFu/eWmj9W3bPzd+I9geyuL39bSRJAo2wiVSaaWgKS4OnliQqYTsaXwrStp+/xTnVRq Oi5xbvrtkTvWYG/lAb6tIVBWn1L2mionNR38R1k7KC0tt15L65MnTwSJYtJDREcnVKFEypym M0e1fOF5EO8hdarRp6aDE9yD1axfhlx7W1/jtnMshWeqnNR08B+Xw67aKKUIEkUkhwiUuXaK nkOIlEmSzJEtX3gbVQUtWkUgeRQ7OWGrSGylV2hnGxpvq3Ig38uIQLIbSE54GVGuV2YRJMos vj4dF0uiKL5OmkKe68EPyXtAINmXJSfcA2olyxBKjkLjldQNsoDAMgLJbiA5IWqkJAIiSJRt xMm10NwGjrmYXH8210tRejO8JOCQVRMBaZ2kNH1r1h1kAwEgEIcA/EccXnViiyBR+jYGPPIE ElXHIGRLleZUpOkr2zqgPRDYFwLwHy3UpwgSZU6/mV/X2YA0p/n0NDYCthSuyzJHxfRn/ptI H938vJz+eNuGJflUztxwn9HZpkd9U6athrNePv1K4OqrF86D8ffFLxlu2p9pA646d+Fm/u5L v3V4jM2XxD3Frny+LEU/X3372kdKuM/mdJ1S5NdIv6RzCu6h/UaIndT0H7Xbp8/+fO2z9fAm SBSDZH55x5VLv+thrk05zd/1TpTDbHEo3lK4zQiWDC+m817DQHxOKsYhraEv8gAClxmBmPZ6 mXGqVXbgXwvZY7kmMV0n1/K5NEGi2GhdG2FyuL5buc7edbJlIwSucH1UgP52kTNdJu+crv/L JI+/IpyeT9QmoSfd6enrSsQw9Ep/T89PutOzu92ZFk5/H8KfXXT37y08K3lH8WfPT1S4Ln8o ydnZy935+SuHYtEz3YwThdEzY3x2+qqS8+oUn5/HhY1m+H0VTjdf5jPn1++uru5S6amsXfek O1eY0s0Xye+ftYWYp6enM9z1eqA6IOw7VQdcb+azGX/p+ezsXnd+eqZEkRKDHdw/fbl7cEb1 MNRjTv6+9JS/rj/lea5+G/Ic7aK3FR234+fzs9dUmtdU5Ee9fQy2RfEHjKbnQd79e3f7+2AH xrOpc+30hPWAN19z3FPaX+326/QH3vY/lO/e2evjjvpzfzHU23H7jm6/hj+R5j+m9jf4D1d7 X2r/vvZn8yct+Y+89mtv79yeuV+h58F/PB77k31MRzZBoqgKbKy05IiOa+SI3akvXPO8wX8S gbp2jY6yYWMx/6UGOzRa600d+NiJ9+Hms1MuyzPls+qP+o5wuo6fB4Klhz/uDX+6xucDKXGE HxKY4WN+hdMziRp0XdJ36kTddWPBOxp/o14P5eXfHx1IVJX6D7YfxoPtxff8aCThpn0Z6Z+p Z7oPjcx4ntlvnfTjqVIj1rpdu9rl+HswfvXa79DpOPTxtv8h3bQjtqu8ue137k/4JWyoel97 zM0/N/30EnDkjzev/7X9R2r7Gxu42d77vk1r/4dnkKhgElEqom0NRsiQa8i8vI+oheSjl1Mn g3zWXykccuWEl2Ufbwi5eF2e9Puu7xovSOvYhtR6gd7r2IesXML7H1nlamYkqjZsvgr0hYfq xySK11mFLIIPlZ0bL7yMMp2gjxDn4peaPhz31Bxy08XXd/tlWsZEhv7x9ZJrCWXSQ+8yOA5S ZNhqyRLLktU0ibKNQNngDRlxKlktS2+2FMZf5vG6qZJ515F17PSG9U/adJi5qVu/rIf+z335 Gn6N8Gk6z9DLmEbz5R2LsW/PO7d98rB2bI7p8VPKPienSu/zu+lKbJSS1h8eTy9spEhwtsMa pulaj5z47OQ43NTLsGsh/mNaqzoibtN72e0F16weUZL/WHb6xPjmMea29Lhfo+qzsSQwN0jU NIkqiYevwpbCfWlJTx6B0rc3ML8qLFmesrKOneCwKNtDoio4k9Qycf2EkqjUfFzpfE7Qlm7Q eXAmW1whNu3W67H6IGL6cGAL/WPy5LJKJFG0+H8LEhWD77Sej1MZdr0SGYnTeR67VRLVov+w Yh3sCLfze7k2Ykt/aUhUDfBMmTwKJW0kat6hrvfGW7Reghtx0Vy9wtwjqkJxPixo9ha9sQht 4u20j0bt2V+pbeLs1btRvOE/vDW3aQSQqILwSyVRcwjgBAuaxYIooTiDRK1jHo126v7CC7Vr cXgLxVms/7BbPkiU3yMEx9gLiZpvcRAMwaYRndN5m2q1lDntaUWfsEu7hn2ipF2wj7VqDPax DtLwH+vgvJwLSFTBWtgLiRo6SH0/nYIgVRDlXRNVIc8yIuEEy+C4LAX2sQbKeh6ySBTsA/aR gwBIVA56Rtq9kKiCkEDUAgJ5i7sB7d4RgH3svYbzygf7yMOvVGqQqFJIKjl7IFF7aZgtlaMl XXLMfS/lIAxaKktLusA+BgRaqpOWdIF9zBEAicqxip2ORA3n3unHpjhAamQh5rNnT5WCdM7g 3eNjRgrWbRVR6piEB6cNr4ly1u/jo7MRq2BTUCh3Qvuxj9YXFAfaB/xHnpXDf+ThVyg1SFQh IPntxdwnqqUdy0OL+sDcJ8qVsBEnyPvU7KeTDK2pyvEWSNRgI7Ku/dhH+yQqyD7gP/IakGAS FWQfeeislhokqiDUUqfz4oeLW3fiBSu1gCj3Pi8FhK8qAvVeA+792EcoOrCjUKT45VyPH++v Y3KrGXef9Q4SVdBmpJKoeAj22RjicbhsKVDvl63G65QXdlQH19al7rPeQaIK2t1eSNTs2Jfm p/MGBfczXVPQKHNELUznDecryrpgH2vVV+CZkM1M58F/VLGMnfkPF0YgUQWtZy8kanYAceMk an8LhwsaZY6onThB2EeOEaSklUWiYB8pdRyQZif+w1dSkCgfQhHheyFREUVG1AwE2lnbsM9h 9oyqaSJpO/bRBBxQwkCgHfu43P4DJKpg09wDiWqnYeZVTEvlaEkXO6phTrD9coTbTEtlaUmX cATnMfdSDipZS2VpSRf4jzkCIFE5XsPyZrCHLQ6Cp/MKYpcjip3M2enrSgwRAinXhTo7754U ZTU9A6drGikZ7GPtioB9rIM4/Mc6OC/nAhJVsBb2MBJFcAQvLC+IXQlRIFElUAyR8Xi0kZC4 7cSBfaxVF7CPdZCWS6KGPmYfF0hUwXqUSqLmw8Vh0zsFoSsjqrGvfbhQ7n2AhOLcj/ZJGvHj mmhTb6d9NGrP/sbaJs5evRvFG/7DW3ObRgCJKgi/VBI1hwBOsKBZLIgSijNI1Drm0Win7i+8 ULsWh7dQnMX6D7vlg0T5PUJwjL2QqPPzV1SZHwWXu5WIZ6c0RPykFXUC9HiipsUaPjvPWYJH 3dnZywHlaysK7GOt+oB9rIM0/Mc6OC/nAhJVsBb2QqKGDlIOiZoWDoNEFTTnBVGyOknYxzpW MeUC+1gHcZCodXAGiVoN572QqNUAu+QZtf/p8iWvoI2LD/vYuAIazx720UYFYSSqYD3sgUTt pWG2VI6WdMkx972UgzBoqSwt6QL7GBBoqU5a0gX2MUcAJCrHKoy0eyBRVKT7/bloj/3INLIQ 89mzp0rXC5yd56+xuBgLxzYMNiLj4k5oP2fntb6g+PHoQzz2Af+R14CePekenDa8pnIn/sNX SSBRPoQiwvdCoh70e3jIIVHD5/YgURGmGhZ1wQkONiLrAolaq74ed0H20QiJgv+oZBc78x8u lECiKtgPv/levXq1o7v1K364uPU34bYQd+/z0paefm1Q736M4mPsxz5Cyw47CkWK4u3HPvZZ 7yBRMdYcGJeMnu4rV66IIFGBxdKi7bMxxONw2VKg3i9bjdcpL+yoDq6tS91nvYNEFbY7JlCS SVTwsS/NDMcPlbif6ZrCRpkqbmE4fjhfUdYF+1irvgLPzoP/yKsQwWuiJPoPV2WBROWZ8SE1 kyf9AOKTkxORI1HBBxA34gT3t3C4kFHmitkJiYJ95BpCbHpZJAr2EVu/gfF34j98pQWJ8iEU Ec4Eiv+l6Ty6cQEBGwLxa9Fq4bjPYfZaaK0ltx37WKvEyCcGgXbs43L7D5CoGKv1xNW/ziMi JZFEtdMw8yqmpXK0pIsd1TAn2H45wm2mpbK0pEs4gvOYeykHlaylsrSkC/zHHAGQqByvYUnL RIrXRF27dq1wDvXFBU/n1VclKAd2Mmenr6v4RAikXBfq7Lx7UpTV9AycrmmkZLCPtSsC9rEO 4vAf6+C8nAtIVKFa4O0M+Is8HoWSsMWBCUHwwvJC2JUSAxJVCkmfnMeK/N31RWouHPaxVpXA PtZBWi6Jkug/XHUKElXQ2vey2SZvPlcQmqqipuHusGkpU5lnavSK7vRrzNe30N4Xnq7AyinT cF5ZyUN2ufaxld7S2uGEE+xjHZuRhbNU+/DVJUiUD6GIcJCoCLCqRE1zKiBRsZWRhnNsLuXj S9Nbmr5cY9C7vO3aJALndXBezgUkqmAtgEQVBDNJlBSnwnpK0desDOidZJ7RiYBzNGRZCaTh LU1f6STbblwgUVmN7jjxXkjUWb/YOWd6qyCoEaKkrHnhA5MJ40FnaddFdzrq3f6XQxO2cuyD 5n3pgn2s2TJgH2uhLdN/uNABiSpoN5JJlN4ZDh3kQKLQSYYYSPgb4YDnNBIlnUSFoNNKHAmd 5HF7k0+iWqn7ED1gHyEolYgzkagS0raWARJVsAYkk6hjGMJJQUH4skQdk5MsUQmJY/HCdF4C yFlJtrWPVNVj7So1n9Lp5OkN+yhtA0vy5NnHUmlAograDkhUQTCTRG3dOA1y5P0ab2t9k0DW RtJS02+VThre0vTleoXe61g4cF4H5+VcQKIK1oJUEmVO2enTeQXhqSqKyqAPx28zDeknUaSX /sm95Om8bTBOM6M27MOvO+zDj1GNGLCPGqi6ZA7TeZL8B0aiVrIPqSTKhEfawvLqO1J7R5SW DYwXks+dhow1L1a9Be20Xt0+qvkXGZspwj6qGYBHMOxjK+T1fDESVbAW9kKisMmfYRSZJMqN J4bjCza/AFHS8JamL6bzAoywYBTYR0Ewk0WBRCVDN08IElUQzCRRbTgVfjOnEahhFOr4+rD7 qKO7J1eW8KSir5qoDZzjiyxNb2n6gkTF22ROCthHDnql0oJElUJSydkLicJ0XimjsDu5n/nV rxxIlIQDiDFdU8oeYuVguiYWsZT4mO5NQS08jXT/4SspSJQPoYhwkKgIsApGXdMJ2hZD6rN9 FP52905/vzv+R3/ffP92d+u9W/194+GtPlzKZorSneCa9lHQrHv7AMkui6hNGuyjLsbS/YcP HZAoH0IR4XshUVgTFVHpNAI53pyKCBPdt7813Eya3lHEif7TSZTEneFhH3H2kR4b0zXp2KWk lIa3NH25TqTqbbcpkKiUtuZIAxJVEMwkUes2TiZFX+u+pojRDTXKRKNNt3vN+43Jx0t/E6O/ iWDxSBRIVFJFJyZa1z4SldSSSdNXeicpDW9p+kq3D5CofJ/mkbAXEoU1UWGmcvuhGmlSNxGo t8cJPJrEMy+TRGE6LwzfUrEwXVMKSbsc6dM1sA/YRw4CGInKQc9IK5VEmdNRySTqICj0DWmI 59tBwLcp20WnvoI7HNZKMoeL5brS+37nkaavd18fJ+LeVaTpTnfjtxVxUnfqBRKVilxaOnSS abiFpgKJCkWqdDysmSuNaIo8kKgU1Bxp9kKikte8VCJRvioiAkVEytTbRs58hEzPixeC0780 4kRTdTTS9DX1/3SHXmaeWBMVilzpeKHkvnS+qfKk6cvlhN6pNR6XDjjH4VUnNkhUQVylkijv UFAwRvZG7Rtp8ud/LHeSZ+YX51R4pEn/l6foiDi5rhgi1o+I6Quk1DNIVLBBFY4YZx+FM08Q J01fkKiESs5IAvvIAK9YUpCoYlAK3ifKYDlnZ2eJqKxHooZJwHE6cCQpsdOQ0wjTsPUA3Tqh YhBiSZMPPEzn+RAqG47pvLJ4mtIwnVcXX7d0TOdthbyeL0hUwVoQOxI1khGGIpaMzJwqjb5o P3pHogLqwFycTc+m8z4cQDxmyISI922iZxppoq/jiMi4RsCIoB3pb9l5vM87sWAgUQEVXjAK SFRBMC2iQKLq4gsStRW+YfmCRIXhFBRrLyQqeU3UiJLJLRK5hhVzG3maIo4jYWOGPNLEpIkI FBEpJlU6CToiaQYJdOIRWDBM5wU1nxUiSZv+kKYvVyH0XsGYVRbAeR2cl3MBiSpYC3JJ1ACC e61RQZB0UQYJcXKSMeDD7vfVcSm/fyBB+uaVNLqj7wjejzQZF5MZ//RcWecEElXJfqLFlq3X 6OyjE0jTFyQquoqzEsA+suArlBgkqhCQPQlRUzwXF+pLMXXT31euXOmuXr1aMIe6opjE5E7n BWuZQKK+8qt/6zAdxyNNX1NbENDo0kvfeOl4pElTxDaC5SZTdZ0TpvOCLaRIREznFYHRKQTT eXXxdUvHmqitkNfzbZ5EcefnmsbxjyoM5MZM71tjEyLXNtIhkUSZZT09fV0VbdhvqQ+7GO4D hofn4525GQ8fdh92H/UH8PL+S/qaJZ5uI6IxbWZ5qydOX/naz44H9w45mftA3b+n9H427RNV uoEFzt55swWJ8kJUNAJIVFE4Z8JAouriCxK1Fb5h+TZPorgjD5+KcRfcJE42EhRKBGy5SB+J mspkjMQELHJaIk5mGBGon/nVr4x7Lw0H8uqkiY9FMReGM/k61NFIpA56E4FqkERhOi/MGdWP VXeEsbz+0vRlBKB3eVuwSQTO6+C8nIsIElUTKN+oiS9c120vJOrD7gM14vPB4XP/t9UGk3RP pMZ8HhZr62uSiAjxdBuTJA4nAkWEaImwhuBubL+kxNVyKscL1p1k02GoIFE1W3CM7Fr2EaND TFxp+oJExdRuflzYRz6G+RKaIFHcydAaItfF64uW4rjSknxam0S3mZ6nqJbCQ2HeC4n6qX/6 N9XU2c8cSNHN9++o6bQ7h+m1+fOwbYBtSwH9azgON0eUCF99ujWEQJnklZ4PWxyEVlhwvDwS ZWaD6bxg4ItExHReERidQjCdVxdft3SsidoKeT3fpkmUi1zFEimSo6fR/+bOeyk8tKL2QqJu fOtL3e33b4YWOzuea61RKJnK7yTXfaMDico2mSgB+fYRlV3ByOgkC4LpJYH1XsJqlQL2UQvZ GLlNkChW2DZKRGHm77EkypfeFx4K6F5IFE3OlSZRi2umFMDDDuS5VyoZSk0Xpi+m88Jwqh+r bj2X11+avowA9C5vCzaJwHkdnJdzaZpEmeQqZNrPVlzeZsBMz8++8NCKEk+i6Ks79T8iUbce 3ggt9iGePqJ0tIhfxWCKZBIKVzxb5oev8TR5FK/UWXruV1Ujw8i1VyBR0aZUKYG0TkeaviBR lQzXIRb2sS7e9tyaIFEucsS/n5ycHG1TQM98hUz5cHrev4nT81SeLzy0oqSSqMN6pJFE0XQe kSh9nVIIBs5pOZODOIT5thBwkSg+pmU+HF/IycwUy5OL6bwQayoXB9N55bC0vtzMvvC46Ia9 5mRcsI+69SR9zZwPnaZIlEmOdBLVjziM+z3Z1jRxuK3AFF8nBJxeJ29L4SFEjfO37RN1NNpi nPlmEpXazzZ8LrqnajRn2l9JXxMVWnaroYWyIp+VesK3doKEnY6fqa4JAx903Kkz+Qbit+21 NDpob1cX3bCX2HDFpt8q/nnfsc/3EWupfR63f0VGFM65+tW2LlsnqdtH7fxz5W/tP1L073VW /mOw6bwrvz0+PWpXPnnUBplkZ/UvecUulroJEsWlca110kkPgc6kyO7g59iYI0+mPF/4rFO0 HH7LukjbbLN32iMJYIPm6Tx+jh2RmnpX6mEXbNVHsqLNPG+EKDo7JhEeEjUO8B3EH0gUdejK Ea55lXFaA85lZK1Z+m3sI72EcvQ9tgU5eh/XjTS9W9E3Vo/Y+OktaI2UTZAoboD6ESlLI0P6 iJULJD09ERvX13eU3he+1FmYb4ktk6jQTo+2IqCO/nAZO5YztjrGLtmheSYZe+FptiQdAhKR TeiXPp23NomyqWsjyctvk0SgJvLnS791+FTmJ+pPuqVcZTqb0DZoG1HSR+58cqZwu97h6bl+ juXUTl9vn7la9lbOPpbae4n2a5JV3X/UQmctuU2QKC6s65y53K/nePSK86m1xQHJp7x47RXv PbVWZebkozeim9+62e8JdWg8lhEjkzwOcScNfA4vR9dDWkMvKZ8oS1sTNa8rWWteWP+z07vi SFSJ6Zr0tpbaSZeyj9T87STMh4MU/zGVQ8YWB0v+Y5V+wlfxmeFNkCjbSJRZLiY+5iiUXgku EqaPNNm2UfCFx2Csj9JcvXqiNvgkiNkZ8L/8Rsz/muHj8+EYE0e4KXckFdManeN0E+d4rHSi m6/hmbG8+d4X1BYHX+y+93HXffz/qft7w03P/W+Rz9+jtFr6P/yjrqP7IE/9/bH+HCj/j5Ru dLM+/+0vjvqZ8hzyOV1seaLjj/lzOto+gqZM+7UBh3MKLXUcW/8ze6DpwkDb6dMaIzXP1DPd h2uy1+mQal1+aHqzkzPbxRjuzD8t/f3TVw2792CzOv5zP3F+9prFfyzrbbZ/lz+Y/JLdH5j+ YXp+pP5U98GhmOkfdefnr8z8S3h6nz6+/OPSD6Mi1Bbvjm0gps0sxE20H399Te1l0T6i889t v4NeUz8zyDOfKc50PuvxKH1MX9tK3KZIlG1NlD6U6FozxZ1/rXC9svSdzSk/fSd1fiaiR/eV KwOJ0jsc+vvsnBzjYGD097TgdXizOMRXjeDBqfasjO8o3HxW1np+etadnt8bFzqP8ceOmtfm nKnO5PyMHMYwckZ/02+M9Ze+8ZfU13k/1j3/3N3uk8+/1j33/Kv9Tc908/Nznxh+o+dPPPfK 8Lf6jf7W4z///Mtdf4/pv++TL3d0H+Spv5/Tnx35Pf8c5TfoQvcnP6H0U/ek3xhuynPIP5TD md9xec3yz5+P9ZuV75OE5d3+y0davK8TKPpbfyYnMx2oPDgdMzwmfW93BmHrbUn7jTqRoSMZ rvv37ir7I1sdril8cJaUVrfd8PQsb930RKIGIsXXvAwp7a9Y+5217ycK39fm/uOwQH4Y8dH9 C+litv97Z2px+kiwqc6OOzDC4NX+nur5+NnE7ezsZZXnywcSZaYnAtWHsx0ZuPvSm/Ji849N z526TqJ87Y3CdRxz26+eH9UV1dlSex/iU1ulfmSw4xz/wSQyrP272u+gA5MmkkX2az7PBxW0 JinwzyZIVAxuqWtvfMOGMeFLcfXpPCJSrtGxmDLnxvWVbepTlLkrpvV19R+tifrq9Rf7+80X X+jvN1643r2pnt+4/qmu++iDrvtQnX/3wYfD3/xMv33nO1337W8fRrb868d9b34+BMY1OuMb JcW2zeP7pNQKpzddftslB/L53/zF7le67/bOr4U1UfHlzp1mic+xTIq4NTZl8syRsh3OR9P1 1J6MYiz7FAPn6PTHX3za/IfPp6XpzzMAFoVzqrFa2u3sI69I44jV/PDTPLEbpRZDonydoq1R 2dbt6DjrMl2L50y5ZjwzD15YzlOELZAo07acZRq91Y1v3hgWlhMh+j0iS783kCQiTCNpIlL1 liJVRLKIVNHNzz//2c/2RIrzGTYAoDVTrnsgGe57KS2FDWn5TcxW7+68fbJLhB+TqJPb39d9 7l/8Qk+geIsDm10t2W9s/LL+ZdriwNeZlc03T5pti4PW9D+u1zbWvPheguYYGltgZHISX/4+ qwhNfxjJcawBLdkec9tvr4u2xUGsPF9/6sM0L7zUmrk8LUqlFkOiShW4phweheKF5TzVVzPP GrJ5nyjyJTHHsRx8jyJQRKR4JOsNGsVSd0/AeKSKRqvGyySz9LNJeo7KaTg5dm6bLwx1eGvz hevkC5/vfuTXf02Bq/Z5eX2aLqtRlyVk2jpJbKZYAlmfjDZIlE9L2IcPoVrhsI9ayMbIBYmK QcsTVyqJMp0gn50X+gZ3IEP8xkkEiW4iTHSP0308Hfh3PvOZIdy4gkcFnIptPLydQKKISMm7 NsY5GTBpekvTlysGeiebaFRC4BwFV6XIIFEFgd0biZqGipgdDb/4duju42jDLzNypNZLEZF6 6wWaAvxUv86K7gPpYhI2KsDpXdN0UxW26VTM8p984cfUSNRvDOuhVt5ss4y5t4mzv2zS9Jam r49EtV6e1vUzLVyavj778LfgFmOARBWsFakkyoRgduyLOX1m2aHbJAquUaWeWx1Gqmi91bhA XY1YEZF668VP91OBtpEqJmeutQmbT+c5bGmJRJ3ew3RewSZoFdXMdG90Qfc2XdNmpw/7iDbM qATSp3t9hQWJ8iEUES6VRJmzUAcS1S+KMr/L8QMSPC3nEmWsqTp8/Td+9eca6WqFRJl4TngM nchhTZQahQKJ8ttTbgx0krkILqeft/dh6xYpF+yjbk2BRNXFd1fSpZKo/ss5rSZ4TZS2S1q1 erISLmNN1S+pL//odq2lmpRr4003hkRhOq+aaVkEt2Ef4SWWpi+XTNrxOqy3NLyl6SsV5+UW i5GocI/mjVmcRM16Y6XC0sBQ6Epwx9dtXMBkEhWaPxXDeYjzoEU/7TfeB6I1jlDR9gr96JSx dqrW2VcRxbLayHw6b/w6z7cmKrb+zdyrpQ903tXydzRFb36BerN4rzyPS8hNf9iB3ut67BGy 80/MN1fv1Gyz00Xahy+/XPy9jsejb+n8vfoYgDjzL4yzrx4qh4NEFQRYKokyIUiezjNJTyC2 JqHqt0DhqUR9OpFJkyJQRKTM/ahqTefF+o4ZlzH2OAiezmvECR5I4EGfwH1e1tbfkV/ydM3a +s/aS+aaqFz9I9rvcdRA+wiUXztasn34FMvF3+t4PPZROn+vPnYSlew/fPg2Eg4SVbAiipOo grrFiJotLI9JnBA35Gs/KzFRpOrv/vAPd7/04p/uun/1u92v/73/Wo1O/b+zg5Oz12iFvmC5 BkhSSVQCljWSSF/TUK2TrAH2kcxMElVdvyED2MdKQJcm2SupLd0+fDCBRPkQigiXSqJMIz9M 50WUPSdqConq8zuMTP3Lnkj93A//UNd99w8mVWgUy7MwPoVgxb7gJU/n5YBaNa3U4XhpekvT l40OeldtfgfhwHkdnJdzAYkqWAsgUQXBjBA1rZn6AzXF90PdW59WZ/zRuinjDD+byD6tNk01 rKsqe5kL9/XpPCwsL4v1sjRpnY40fUGi1rTmWmtA65dBql3bkQGJKmgxUkmUCcHa03kxVbA0 cvTP/95/o4iTGokad0hf2m/qKM8NSRS2OIip/bS4mM5Lwy00lfTpGthHaE2nxZNuH75Sg0T5 EIoIB4mKAKtI1OM3mtnC8vFrPjoc2fyaz0rGYhdOhpaBphRJ9ngFLywPlV85nnQniE6yroHA Puri65aONXNbIa/nCxJVsBakkqit10SlV4E5LGw8O77m4/xmzn8DEoXpvPTaj08pbRpBmr5c I9A73jZTUgDnFNRKpwGJKogoSFRBMCNETWTo2Knw7/Rv/7exz1TKovIQtWYLzxe+zgOJCkG0 VBxpnY40fUGiSllqmBzYRxhOdWOBRBXEVyqJMiFoeU0U6WqSn6XpGp1Iderg436x+bjPVMGq PxIVQ6KwJqpWLUxyMZ1XF2NM59XF1y0d03lbIa/nCxJVsBZAovLAdM6mefYU8HWSxkDQgYR9 VR143KmDj/vF6OrWOwMevTruIELf/I7jXVwMX/z1+4eq/z/53F/qfvTXf039gLPz8iwmLLXP PsKkbBELneQaqMM+6qIsnWT70AGJ8iEUES6VRLWyJiqVRE1VFEpyxhSKQBGRom0RmEQdpv6s 9R4q3zGtOBKpk89/biBRtJ0CHf0i7grFobWCSdNbmr5c39B7HcsHzuvgvJwLSFTBWgCJKgVm rHPg+MvpaBSIbr4O5HFcK3UYmeJpP6M4c4IVpqdJUolE/QhIVCljiZATVl8RAitHlaYvSFRl gzDEwz7WxdueG0hUwVqQSqJMCLZfExXnHJ71oznqvK7T14fRHcelb3p5RGz4K75xZIqOkunX TllIFP3kWsgeakqHLQ4OOoem3Cae9OF4TNfUtRvYR1183dIx3bsV8nq+IFEFawEkqiCYEaJi O0nvV3nGyJQtvlfGgv4TiXrSnd57NaKk20RFJ7kN7vRCcH52b6vMg/OFfQRDVTgi7KMwoEni QKKSYLMnkkqiWlkTlV8VYSNYXgJkjEzpennTWgoxm877wufH6bwnaljrcX6xV5cQhvPqankz lKa3NH25AqC31xSLRADORWDMFAISlQmg2cHSl1h0U8d55cqV7urVqwVzqCOqPRJlLMxWxdY2 /D6cdTdfiO52KjHkx4zbn8OntkUwz8ALPbtqju+73e2Hd1SpsLC8jkW7pErrdKTpCxIFew5B QKpd28sGEhVS54FxpI5EmcVrbU3UjCyNP/DvsdN5tupkGfN/VexxX6kY0rZkMu90E4ka1nG1 fWG6Zqv6wXTNGsiX8B9r6DnPA/axDe7HuYJEFawFqSTK7CSJRN16eKNHJmYEpyCUUaJIR7p9 C8vdQh1vRkzWxo2m3nrhevfLL356tq/URfdUjSk9Dcbq7e6d7sbDW/1IVBskavnN0EaiThX5 k2AbbMN59hFljtGRdRzZlgchrdjHcpHmdqDW+p3dhX1EW4I9Qfv2sW//4atGkCgfQhHhUkkU F5Eb6zvd26JI1FRFqcPEyyTqIJ825lS3vq9U30n3E33zrwJdJEMnUUtfE0aYXmbUWNxi42eq Vyy5NL2l6csVpdb6dXRLu6Th3Yq+sXrExm/bjkCiCtaPdBLFUPxK993u87/5ixoyg9EfprNq HdRbqC6O3+YLCdXFBHy9p0c3pwiJRN18/3YFxdYTKWUUyoZIdfuIrIYlLKXiLFXv/qWIz9qM rMda0WEftZAtIxckqgyOvRTJJEpvqESgTm79iUOZeAG1FBJVsErtohxf74V2HHsgUdUxRgZA AAgAAQEIgEQVrCTJJEqH4S/+xq93tKs2XXzu2xFMjY5EnZ3eVWoWmEY4rFgnZuw3kDfU13t0 9xt02jbpNMS0tiYqvjofq7Vc7e9vZdbc/XvKPp4VsA+/SRSK8UThTDYt7ZJpH8X8x1rVpWy5 t+mNr8viP1wwg0QVNECpJMocQaFz3ZhEWUdX4ltNQZTdos7PXluNRB3hor7eoy/4fv6zn40m US1sphhfnY/VJpDbO+9Yo3pwquxDGIkabFraJdM+ivmPtapL2XJv0xtfl8V/gEStYGhSSRRB M5CCYe0Tnet28rm/ZFkbsK8FgQeTOHgBR/kuVISFEakDoRrXSvGI1ICo+nKQ8NXsbxqJWsEo K2QR7zQrKAGRQAAIiERgb/4DI1EFzVAqiZoWUmokSk3nzRdYXlIS5Wn1BxI1HlzMI1I6gdob idIPci7YhCBqJwiErg/cSXFRjAgE+OUyIknTUUGiClYPkw7etVzajuXs+P4CrYlSR5NMI1Qm SG2RKda7+poXB5madRjf/U73cz/82e6r11/st0Rgu+B400hUG2tefG+G8w5R1pqX1eyjoC8Z RD1R06bbT9f4igX78CFUKVzIdJ50+/DVHkiUD6GIcLOzlESidEPvp/PGheX2N8q2SBRX0VYk ivM/YKVIVEe3IlA9kRovqSRq3gRkkajV7CPCV4RFbYNkh+mqx4J9xGOWkAILyxNAK58EJKoQ pkSY+D45Oeno5udCWVQTw507//v53/wFtcXBH18YiaqmSjHBW04nmHjS2Xv9+Xvj13s8ErWl jilAS9N3qYx7KktKXdZIsydM91SWGnWdInOvmIJEpVjDQhp9NErKSBQVRzdwIlG/0n1HzLEN hauwvLgPf+/o6z19n6i9OpbyIEIiEAACQKA9BECiCtaJviaK/r569Wp/t36x3qwn7ab9te7r FrXbnMZjIrLePi+Mw/iv4+u+aUTqqcJSxR2/3vvX3T/q/vb/9EPqt1ama2LrVcZaHTbgyT7o sOf58Tzttk8ZZ+fN8ZO1xcH6/qOUxcF/lEIyRw5IVA56Wlp9CodJiZSRKHM0hEgUjZaYI1S8 BUIhyIqJWd8J+knUMaZj/PHrvT/70yfdz/2zz4ghUfPRslacd5gJSSNRE94ySNTcPmStiVrf f4TZrSvWhHcr7TD2AOJW9M6rB04NElUGxwPhIAOnr/PoXykkyoTATaIKglVFVOyISp4Ss6/a xh98U3Rf/vGT7o03P6VsJC9/pI5FYF37iNVuHl+avlwC6J1f9yESpOIcUjY5cUCiCtfV3khU YXgqi1vXqbhIlFlIk1T9tS+fdG++9YI4EuUjh5Urt4D4de0jX2FZ+uojaLKmTaWSP6n2kd8y WpIAElWwNphASRuJWprOKwhPNVHtTNfYnZqJL49E0Zqo03vtn0GH6ZpqpusRfKH2ibq3VebB +e7HPuStmYN9BJtptYggUQWhBYkqCGaCqLPTrZ1gGIn68f9sGImSQqLmVSFrzQvrv96HBwnG a00iY03Ufuxja/8Razewj1jEasQHiSqIKkhUQTAzRW069WTO8z1TX+fRPV4DibreP22qZyTG knT1FW1PZfGVda3wPWG6p7KsVf++fPaKKUiUr+YjwkGiIsDac1QbidI+rWcSRfayV8ey5+pF 2YAAEAACjABIVEFbAIkqCGaEqNY/UTaJ0o/TwvI3ZE/nnZ/djaihbaMy/tWPBSpeTKmfgmOf qOKmYBPYyLEv8WWVZR++8oFE+RCKCAeJigCrYNTWSZRZVGkkai8Lh6WQqAlvGSRqL/YhZc3c AW8hJEq6ffi6KpAoH0IR4SBREWBdoqiT01OFVlN99HXesLBc1pqoS1RlKGoSArI+uU8qIhIB AQMBkKiCJgESVRDMHYlykShpa6KwfmtHRlmhKM/6jyckHatTAQSIdCKwV/8BElXQ6EGiCoIZ IardNS/m2XpDoaaRqDb2iZptGmpgbxuOv3/a/v5WXIy5fUgZMZFxRqH06Zp2/YfHCarpvAen r0V4yjpR9+4/fKiBRPkQiggHiYoAq0LU9ta8jJ31hXIzdI/XYbPNZ4+b2GzT5wTnVfW4k0Si WP/JPuSQqGGdjrRL5j5i7fkPP4nqdd74uiz+wwUzSFRBAwSJKghmpqiWho5NXaaz82RtcdAS ppnmga0lcgG0pId9VAB1RyL3ZB96tYBEFTRSkKiCYO5I1F5I1I6qBEUBAkAACBRBACSqCIyD EJCogmBGiNp+iwP72ie9CPoi8p/74c92/9sv/kL3Ufcvu5/+7/96REm3impOfz3qzs9f2UqZ 6Hy3t49olccEMrY4mJcO9pFa43HppNiHbP/hqxOQKB9CEeEgURFgFYy6fSe5TKLMkSgiUS/9 iT/e/ez/+De7n/qVnyyIRB1R86+uHnVnZy/XyayC1O3tI65Qk73I6CTn0zSwj7gaj4stzz7M rzZl2YevdkCifAhFhINERYBVJWqjC4aNheX/4N/9B91PnPxEd/vhne7r3TtVkEgTGohf/ErS NHWKpwosX/F8UwVK03csJ+wjtcIj07VmH4H6iLUPe/WAREWa7VJ0kKiCYCaJCmzESbIzEo0k it8gmUTdeu9297aiUe1cy/gd3oDFOsFG7cNpALL0hX2s3ZJbs4+9+w+QqOoW3gqJcvVxzt/V Qbj6dfP9m6pzf7s6XqUyuFDbgFMJ+BPlQzlX6uxDs+FO5oEaifov1UjUnfe+1N38xhdKwVBN Tvv7AIU5bynHekwVedGdn92rVq+lBLdvH8slnaZ7X1cRJW0WKsU+TPx5C4zWSGBaixA/EhX6 2aQvni88BF6QqBCUysdhEgMSVR5bu8TW9gEKc8YSSdTZKXXs0q7W7CMMvwFrWSRKtn2Etduw 2tsulggSZRKcFMLjS+MLD6miVkhUiK56HLPsN9+naaaW1urElmjlM+m8Q1GDs+AF2vp0Xltr osLe2ONrY5sUS9VSor1vU6p2c93TsS+wj/J2tldMRZCoEtWpV6CtMn3hITqARIWgtMM4gSRq eMu96B78qQf9wnJaEyWJREmrOW+1SCtQ8/ruY2SheZihYFMIXEoSZRuFcbHkGPYMErWNbU9r Gu4qBZ4EKLGNs+e1Wx9/r+uee/7V7rZaE3WjgTVR8WRDxj5AXK54+wgwoVWiyNjiYIKC29Vj tZaL2qKM66J7qtZUXnTmdG98uyhbXjP/uT5t2Ec8TrLsw1erIkjUxcVFd+XKle7q1av9TX/z FUJyOI6ezkakXOE+EHVdSFe6KU/WOTT9VvGkT+fFd5LbkCh2NtJI1LyNydjnRSqJmvBuo5P0 +aVJ34lEnQk6oFoaiWrNPnwkau4/ZK6Zc7UDESSKCYmtEKEkigmSjSjp8nOIFEaizBrKJSuB 6X2t2NcLlAp36GH+/D0aiXru76uRqFtq5VlLWxyUAgJyiiKwmX0Htr+ihdWF5eafm75awSB4 RwiIIFE0+kQXkRQmTSHkSa8nnRyxvJjwkDoHiQKJ6vdaMC76qZ/KG7eSIBL1/PMviyNRsW0u pM0gTgACQkhUefvIJUG56QPqBlGCEShvH8FZV40ogkSZo0OxlXFyclxM/Zlk+cJjakAneqT3 tWvXYpJXjRu67kva13nx03lVYfYKp+m8Tzz3Snfn4UtNrInitVq64rqt+KZrbHZlTz/lUD98 nteD09fUmxitmeMvJb1VtUoEN0d6otYWKZ0bv2zTNcOaqPGrVPWX5d2imVKx/YvbAkPZcm/T mVed9mtv68Ovj7v7gqZ7ffCKIVFESPR1UTpZ8RZyJFFsLEzKWAaTKFe4T77Z+bAcXsMVk36L uGYjkkaiGDMpTpDXRLVCosIHOmQuHGb70EnUQKTa6Nqlk6i5z+KFwzJIFOMvxX8c8C5Eotbv cx53DwR9eODDRwSJMqfwbNN7XFCbY3SRJEqjj0SZJIrDfSDqefOUHv0rZWG5ORKhk6hWOprQ OgiLt80w/2E672M1nffcXbXFwS21IqrFNVEyOr+wuqZYbY08mXrvr41t077C7cEfs6U6aUkX P3LUqY43R6Zjr2zLHBp5iQkq00IkESSKv3bTR5+YSFEYkx3T2PQRIT2O+XWfScp8X/+xHro+ TJ7Mr/NyFqrnVm6Is+717j/wnaz8xsNbojfb9I1S0qaAw73eSISu0/c0EvXOipua+nCZ7GXo BG3TfLpN+fBrJbz1TSBdOPnwK+0fyslrm7SGlFMC9rV19Ml3ho8k6hAePtQdUjXNxRFDovTR HvrbJFFMkmxOXp++09NyXF+42fnYSBTnTyTq6dOhg6YRsBZIlK8xmNiFjET5ZK4ZznkN60eG faJy849rqZ6z2/jlbCRthzVRQs7Om2Mh6xNltoVhHcbjo+L47CTODsrEnnQqs8VBShl9aZbD /faRJz+/fev589+SpvMGnWWsmbP5D1oz57OBMq2pvhQRJEonLSYJcr1dm41EXzxuW6i+FG4S s6U8iUDxaJSU6TzTmKWtibKRKLPp2BpsuUacTqJuffPH6rfykVSWK+/QSbrawSoFishkiURF iFktamkSVVvxuV35SVRtnVLkzzbbXHGkOkbfqd3JIlGTnWCzzZj6LhLXHNEhcmJz4K6v+Hiz TlKGF6izYiTHFx5aCNaJpx+vXj1RI2bEU7mTjfz3mYpPN6c3n6PlcknobVx/Iz9+vv3+TTXJ 9LZWbA6fFhb36Q/DtMvyhrz0/B6pZ3VXSz/KP5RgyH/u7D31UQh/njDt1BQi1SUvLKc1UcN0 nkOP3PwX0k9TXMN0+HDRKN4TDafh2Qyf9OVw1t9IT1/C9V/Djdf4PNWDWe7U9JzBuJbr0PkZ +pv6+NpPRfz1Oj+ui+mMxb7t6+3fp+/ha7hhgn76Ou74eW5vZdqv3kku+Ze+7Vdt/77ymPmP mGt4m3WS5MNz7Sewvsv5j9z2Z/cfB/83+pfQ/lRKPBEjUQym62s3brz6/k+24Vpz2o7k6mTM Fa5Xpr5rOv+t/0symPRduTKQqLOzeweHRn+bz+daOP19CFeN8MHpwrNqZEfxXc/G6eQ0iqAf y2A+E4l66Ztf7ItN+NCXFMNUyOCYKX6/I/FIgkiWvkPxIXwEbhZ+9rIq48vV0p+fvzLIHy/S 3/wa5PT0tMeOy0R/689UB4Q9d2K2ZzO+65mcyL2z1w/yDzuWP7x9IFG5+Yekv39PnVKvdcpT mgEomg7VP6l3Pw92MIWbz4M8+hpO/wTbfDZ1NvMLT8/6cx3ay0Py7t+7e7DroQzH9Z7S/kq2 3zPVVp3tP7C9n57fO5Ao0o1sj0kVyT89+AOut7Ltd/IXXA+G/MrtP9b/kB0QJmZ7D23fNjuK 9R+29uvLn+qylP86bs+x7XfZfzCJMtu33q9K/lsUiWodaB7VwrEv69bUtKaBncq6+Ufn9tEH 3RvXP6U227yh9okayGrLl/TpGolrXgZ7GEhe69d+7EOI/zgYBOyjhbYBElWwFkCiCoKZIGp6 M0tIvGYSRaLefPEFMSRqDs0+1rysWeVpedGoL3Xs0i6p9iGPRME+tm8bIFEF6wAkqiCYmaLK LaLOVMSWfCRR05qoCnlUENk0ppHl3VNZIoteLfqeMN1TWapVeKTgvWIKEhVpCEvRQaIKgrln UUJJ1J6rBGUDAkAACKQgABKVgpojDUhUQTAjRIlb8zKuiWrl2JcIqMeosj5RPmxxQIvK9a8F 4wu+cooy+0StrLTKTqZ9SNonqq9TZcv8ocT6dZyToyz78JUUJMqHUEQ4SFQEWAWjSiJRva6H heVfauIAYl9V7GXhcN/hCCBRE94ySNRe7EMKiTrgLYRESbcPn38EifIhFBEOEhUB1mWOOpKo W+/RFgfvXmYkUPZdISD/zLxdVQcKswoCIFEFYQaJKgjmnkUd1kTJIlF7XRi6Z1Nbs2ytn1G4 JhbIa47AXv0HSFRBaweJKghmhKj217wYb+iNTef5zge1DccPm6/KuOb2IWXERMaxHtKna9r3 H452pqbz9M1st2qNe/cfPlxBonwIRYSDREWAVSFqu2te5iRq2CeqjTVRPic4r6rH4w72FSqx osjJPuSQqGGdjrRL5j5R7foPN4lqYWH5ZfEfrlYIElXQP4FEFQQzU1TTQ8eYzsus3fzkTdtH fvE2kbAnTPdUlk2MwZLpXjEFiSpoYSBRBcHcsyihJGrPVYKyAQEgAARSEACJSkHNNbqqPl+n c/Nwdl5BUANESdrioC/OYZ+omyLOzptOiefKeNTRIc9SLnH2cQBWxhYHczuAfazTNqTYhzl9 Lss+fHUJEuVDKCIcI1ERYBWMKqmTPN4nSsoBxE9VbZEjnEjU2dnLBWuwrihJ9kFIyN8n6lEH +6hn0/LsQ7b/8NUkSJQPoYhwkKgIsKpEFbJg+LBP1C21T9Q7VZBIExqIX/xK0jR1iqcKLF/x fFMFStN3LCfsI7XCI9O1Zh+B+oi1D3v1gERFmu1SdJCogmAmiQpsxEmyCyZq9uy8ZfymnZJp uKQgHquJEmIfBzxk6Qv7WM2Qx4xas4+9+w+QqOoWDhJVHWJrBtN0zesqXJ922kYfV66HTuaw T9QttSbqpQaUjHXGai3G+WsN6B2mghT7mJfmojs/uxdWyKZiwT7WqY5W7GPf/sNXlxiJ8iEU EQ4SFQFWwahSOkmTRN15eBskqqAd+Mjr2WnbJBskagVjsGQhxX+0ax8gUdtY7g5zBYnaulJj G/O6+uokaths85Y6Oa/9NVH72d+lbfsgazzC+pm5IHddew3NbdLZxLd9vI/L2L6+bduHHb/9 +A97i8BIVKinCIgHEhUAUtUo7TvBvvjjmigpJIqrTL4zFGIfhzYiS9/52Xmy9J9v5VHVWRUQ 3hq+gWuiCpS8JREgUQVrAySqIJhJoo4bcUudPunS/kiUG/Qj/ft1Z+2uPXOXol37sBNVOTjD PpIcVnSiY58G+4gGsEICkKiCoIJEFQQzQZS55qUlEnXUSTa3sNwPtum8T/v1RbIuKfYxEZJW Fg776xn24ceoRAy2jQFv2EcJTHNlgETlIqilB4kqCGaCKDELhwWSqOPquOhkkqi7qhhPEixr vSRMRqR1kscIPelOzwhrWZcE/7EP+5DpP1zWDBJVsJ2DRBUEM0lUu8PbR2/qGolqa2F5KOjt 4rxcAiJQbZMo0t+9UDu0fraOJwPnOUoy7Fq+fcjAObQVgUSFIhUQDyQqAKSqUYQ0zmYXlodW jhCcZ8WRprc0fRlwkKjQlpQXT6p9SNXbXlsgUXlWfJQaJKogmBGi+M2s9eF4fWH5G9c/1W9x 0MZmm8tgz9eWXaiz0eRsAinFPmwjIxI225zbBzbbjHBfGVFlrImS7j98FQQS5UMoIhwkKgKs glGldJIgUQUrPUKUFPvYD4kCyY4wz4yoIFEZ4BVLChJVDMphLcPFxUV/099Xrlzprl69WjCH OqLMN4Wb79/u3m5qE8jQcgsZJsZ0XmiFFo4nxD4OpZamLysOvQsbrkMccF4H5+VcQKIK1gJI VEEwk0QJcSogUUm1m59I2lodIfY8qxjonW+rIRKAcwhKteOARBVEGCSqIJgRoqRM12A6L6JS C0ad7OOuktr+13lT0TFdU9AMnKKk+I95AWAfa9iHLw+QKB9CEeEgURFgFYwqxQmCRBWs9AhR UuwDnWREpRaMCvsoCKZFFBaW18V3V9JBorauTiHD25jO28hQhNjHAR1p+rLi0HsdAwfO6+C8 nAtGogrXAhMpSQvLLy5oimM6C+2l9291X1MLy6kM87eIwoAVFdemU6EDGuimq8fz29/p/u5n PtvdeXize1ct4Zd3tYmzH0dpekvTFyTKb4MlY8A+SqKZKgskKhU5x7ClRBJlnr5+47dviyJR rQ/H6ySqN5s/+HZPpG6/d6O7+c0vFbTAOqKkD8e3bh/uWsOalzoWfSwV9lEXZen+w4cOSJQP oYhwHrmRtsUBF/HD7qOO7r/xT/5J9ztH5R7eeGZkIAKbmlGlOEG2D/4XJKqmVUyypdjHHA2Q qDUsBPZRF2WQqLr47k66PhJFe0RJ2CdKJ1Ff+drPdid//s8fSNTQANomUZMRtT+8zQ6F/sV0 3trNv337OEZEmr6sPfRex7KB8zo4L+eCkajCtaCPNtBmm3S3fnHH/o5aB3Xn/Tvdn/yT/2n3 6NGwfgdrolJqz046zZG8k899sfsL/8v/mpLBxmngvNepAOC8Ds5SyR/sY137sOcGElWoFnh3 ciZOJycnPYGSQKIYAiZRr7zyrZ5E0SWBRLU3HG8nUTQh2hOpfnSv64hE/eiv/fNCFlhPjPTh +PbsI7SuMJ0XilROPNhHDnr+tNL9h6+EIFE+hCLCzTUvYkjUherU1f+IRN1+eLu7d/a6ehy+ 1tOn8yKgWDVqK05wvmZselMcbIPw1EnUFxSJ+o1VsUrJTLoTbMU+4rEHiYrHLD4F7CMes5gU 0v2Hr6wgUT6EIsL1heW0uFzK2XmdQaKIQEkiUVMVbTu8vUSidDOaRqJkkKh5E9gW54gmaUSV prc0fRlu6J1uozEpgXMMWrXiBpEoIgTTqMTxWhl93YyEqZ9aQDI+kg8gflvtWnRTrYniheRe rJr7XK9Np3K8T9TUfk4+/4XuR369/ZEokChvS6gUoU179hcWevsxKhEDOJdAMVdGEImyZaJP XTGBkLcQORe+4/T8ZZ60LQ6Y/DKJOju7NxIpz5qoRkhU68Px0kmU9OH41u3D7YUwnVfWQ9ul wT7qoizdf/jQCSZRJhD86T79bi6evqwjUtJJFK+JCiZRPutaKXx7Jxj+RtjrStOn6pYyEiXd CW5vH6kNASQqFbmYdLCPGLTi40r3H74SB5MoFkTk6dq1a/2tX0ykLiuB2sN0HpOo4Ok8n3Wt Hh5OZsqqFp6vRBI1xyq8vGVxzpUmTW9p+nL9QO9cSw1LD5zDcKobK4pE6RtH8t88dUVqSvqc vwas0kei3qV9otTXeSBRNaxjkKlPg0sZiQKJqmcPy5LRSa6LvDS8pekrnWTbrTGIROmjS7wL N/2rr4G67ARqDyNRTKIwnVfPdUskUdKH4zFdU8+e2e8d53DRDT5ExgX7qFtP0v2HD51gEmUu GqfNJM0NJc04l21qT/pIVPiaqLbegCQ5QZAon0sqHy7JPkwyci6AjEjvJGEf5ducLlG6ffjQ iSZRDIjeGejTFL4M9xy+FxLln85ri0RNNtWqXpOGEkkUpvO28lrt27MdGei9jsUA53VwXs4l mES1oGzrOlweEtVqTchwKs+ePVUAXhy+ztM3Nw1CdvOtJWTgLJ/8Aeeg9lAskjS8penLFSVV b7uhBZGoYja6c0F7IVFYE1XHUKdR3JFEfe7z/WabrZMo6cPxmK6pY88sFfZRF1+3dGyBsRXy er4gUQVrASSqIJgRotrrJO1vWvpUHv395R8/6d5863pESbeJik5yG9xptBJroupj357/CC0z 7CMUqZrxQKIKorsXEuVfE1UQtKKiWhkmduuhEykpJEr+tJjUaYRW7Dm2kULvWMTS4gPnNNzK pgKJKognSFRBMJNEte1UzI8xvvxlNRL15qfdJT2sfWqtXK3pE2os0vSWpq9UsipVb9hHaMuv GS+IRPFwJ+0NhSNeFvo8NUUj+QDi8C0OappkvGxJw/FHI1GKRL3xxovNkyhM58XbZJkUmK4p g+OyFEn+47gksI817MOXRxSJsm2oOXewviz3G76XkSgsLC9so+OIkr49COXgHYkqrEaqOJCo VORy06GTzEUwJD1IVAhK6XGk+w9fyYNIlC5EP3jYJ/yyhe+FRGFNVGHLtZAospW/9tc803mF 1SgnDtMI5bBckgSc18GZc5GGtzR9peK8bIVBJEqfzqODh/kQYj4Chkao+Pd1jb6t3ECitq6P tpyKbTsnns7rR6KMr/Om+MflaG+0ty2cw61Omt7S9JXeSUrDW5q+0u3D7mmCSFSIk2rP0Ydo XTbOXkgUpvPK2EUpElVGm3Qp0ofjMV2TXvchKWEfISjViIPp3hqoxsoMIlHmV0X62zRnaMaJ VWQP8UGitqnF9jrJ8Q3RZFH0fPGsP7h7eSRqGce1NyxHJ7mNXWOfqHVwb89/hJYbJCoUqZrx gkkUfXWmEyUbaXLFqVmAlmTvhURhTVSuVZUnUTqR6bmY2ud8uwvTCOtgD5zXwZlzkYa3NH2l 4rxshcEkSh990gkUEyf9037K8jJO74FErevy5rm171Rsa6JcLydmmzNHfbdDu32c7dhI01ua vtI7SWl4S9NXun3YvUowiXIRIyZLtim+7Zz8NjnvhURhTVQ9+1laWB6S6xYvJ5jOC6mZGnEw XVMDVVMmpvPqoizdf/jQiSJR/DUeb7qpP+sbcW7h6H0FXSMcJGoNlOd5NOsELYuXbCTq7e6d jm7+b3p+V/1G9/Dfu+N/HP5h91FHd+1LuhNs1j68FQcS5YWoQATYRwEQF0RI9x8+dIJIlE8I h/MeUqHx9xZvLyQKa6IKWWYgibr5/u2O7tsPh3t6vqOe6R5+v/Penf7m8K987WdXIVFzNDCN UMhCPGKA8zo4cy7S8Jamr1Scl60wikTZpu70N+taJIrWW9HFO6bHjnQtpWfi45Ifkhf3lfTR Fan69NlFv/CX9K2FSUnnwmXkY19MEuX+GowbcW5jLpU+V04aqsFfy41f5/E6wvt/6kH3Eyc/ qSyFrGWw8aPL2KRTD6M6+7D7oPvK137mQLIGwjWRLP/zRNyYqNlI3I2Ht3riduu9WweSN4yc HY+U8bM5kuZ+HkbYXCNx5sgbj8h9oEoeNQKnvojs1+EHV1SiHYxfXc6qUf0++ElaKzqsFw25 u2dPVeSnQXHt8sz87PlfdCoPi/1NMv16U5mn4j9RT09m62L9fiQN93Ivfdv4j3T9t9LXdFMO /+Wszjb0TrU2M10wiQohEycnk7iQ+DGFYAJFeeiyQ/Nh3XQd9fx94Uu67o1EmWui/M4vt1Hk pX9GnY3qBM5OX+//XfsK7psTSZSrPESi6J4mAgdSE0tipvQmqTHlTeHDyNlA2ohcDTcRrdsd kS66/c9Duin+8fPtb6k81M0jb5zPz/zqV+JI1FhBZ/dOByIl4Br82jrTeS4SFQrT9HLNKZ50 Z+evud4JLGLz2n86CRlU2X46L7X869iHzw6cL4FjQkznaQjyyAqvf6JnIh/0L936SJUP+Jhw cwRKP8MvhERRHJ08maNDvnCvrqOTJj7ej0KN20GYI1HBna03w7IR+A1yfgAxbWtBBMW4gguS 6hw4v7D0rP9WJCqmNnjkk/598Kfudz958hPVR0hi9AuJSzZx2hPWbb7CpVEoIlJMqnwkjMPv 0LSohbRNJHCZ1Lny09PTSB7nN1/j5ht5G8byJhL8dnfjW1/SSLI9vZsEL+dn6sd1H9q8D/Fo pI/uw3XR24evc/XbWlj7d8sJS789ifIj0be18dZxPj+7F5Z4w1jULx6/u6gXXgF6h0IWPBIV KrBGPCI9+rSh7SDkpXxNEmae/+cL95ZpZyRqerNzOKFQL9uPCuWMDMWmj43vrdniEWqQqJCp obg4x9M3cxAmnENeYkqCOExjDgvqfSTFnA7kyUdz+jCXhLjSz9e4mWvejp+J5NF9WBP3/s3u Nt3jmjiXPF+4e83dlD8Rv2QSNfMHg31IIVE6KcnzVyUtfS7LRqJa1tdtT+376ZiaLEqibA61 hJPVSQ7Ji11ntDSSRWD5wkMB5Q7SNRIVKmfteNOaqHf76Znc4fG19d/aCU7Oze8cjknUAzUS 9ZN+uDTvqb9M+BMOMYI5r0NgrvPOzX+mVqrA1HShQBeP57enklnqa9706dqJpNnX3N3oid+d 7vr/c72/pfmPmPZboj0Vs+fsl9RC1jMCGE6a17XrQqV0ikkmUbWm7myamiQqdjrPlZ47JF94 aCXshURhn6jQGjdJit855JKo3ok7FjC7tM7lDjYSFTOdl5v/UqcTg4W+JiomXZw1jDYRWUf2 PNZd8+LbYsP94QCtw3u3u6v+YxIVYx8p+JZMw9NNocsBatpzXLnWtQ+nbh4ShTVRnlqt7Ywo e17PxKTHtTjcpaoZ31wA7wsPNey9kKjT83uHr3XWqN9QfJ0kYeywQp1g+Tdlz7SnMZJ0cUFf Lj0NXxNleG2/Ezf18T0zsj4SyOG8cNgV35efPZ17xGtYm+caMfDjMZQv3D7SLTK3vRy9nKoy S1jzwjp/vft6P/VI1+mpWsQv5GpvTVRo+2mEREVzBKyJ6iFbcha5jsSskyXSE5KXjyT5wkN9 wV5IVPiwbCgya8XzkYBQshCr7+UjUfQJu5uMhnYCxzgvkSg+LXBYoHosP5RElSfPsXYSGz/U nmPl2uOb6+ZipdJIFk0J8hXim2PzqBt/XbzdZQltP63oG1srUvW2lzN4Ok9fi6FPSfCu5XoD 9JGsWMhdC8GX5JgNWF9HZcojOUvhuixzTYoZ9vTp0/7rPLqJnF27di22uJvFn5yg0Ul5piZ8 znK9cMcIR8DUiq1effUeE262CUp7/gP3h32iZvsG0d5A6fsD8ZLeudxhf6J5+HF+tvS6Ueok 25ZHfP6+fZNC8bDH678c65nWsBWGaY8unNb6fbKNcUH2wV6n57V0sedzjGuPp7rNuPRdIS2E Z7J6NKq24NXW8w8e1zrahy1Wbf9w1L8OVjr72v2AJ5lyr6QMMjKvXxl6h3bEQSSKQeCtDFi4 vq0Bb3UQmnFMPMqf1y2ZX+bpFeQK86X3hZu6mg3qqIPROkTCJHYRfAwupeMyiRrWM5Chx6+/ Ka1TiDy2gWHqY9C7tevISY6dJG+2Odc1z8n4RmZ8C8Vd6ScnftHdO3NvcRCfv6+2QvFYHhFc YzrPV5Ll8DmJGnTe+jJwNaeXR3vWSZTET9hbsQ9f+5m2DOC98ba2j9j8hy0w9nJFkSidEJiL sQmQ2K0HQkHUSZztrUUPNwmNTgRc+rnS2/TjvZ/0f69cob2yTvqRJ777PbT+vZN+PxveN4b2 qKGb95XhZ9c+N759cEqH81c452d31fqRVw/Fp79tz9zYzfD7Kj7dfJnPZ2cvq31CXj58Npab /vTeK71+9++phqn26TrIGxWkZyrTtKhmcD6T05w/UyNneUTMbM+cnkZmiFTo8sz41Kk8OD3r deB9lv7hf/BfdD998ue6555/tb+ff+5uf/uev++Tr3Z0h8Z/7pMvd3TP45OMIe8hf/N50OcT z73iCLfHn+kfnH9Y+X36muWd9I+Vv3785z7x6hHen3zebw8+e4kON+vLU3+M78nNP959/jd/ sW9rfXsbL7N9n5692tHtCl/bf3B7fHCqNgh9NkxTU/s12/PSs+lPYvyHz7/0Gwkr/3F+RhuY DuspSf5L3/xiP/K3df8Rss+a7Vir0P6/9XhRJIqIAU1P6dNhrlGqkgX3DfeG5LVEvnSiZSNh fvnTm5o+4kAk6uTfPzlsnmc/JMN97IVvH5xa4V33WBWZbh6Jmp4HLIbn6Y3JHj7hZoY/UkHq PggolF4RKCJRB/1N+Ydnri/Pvwd5YzzzeRxOn6a3DHmz9OSfaZh+mFYiEtX9Ttd9/L3h/t7H w+17/sM/6jq6Q+N/rOLSHRw/Uh+fvqvnv3V5S+O3tjwTv0A8f6X7bk+idP+h+wu3PyjU/g8Z +OSZ/ofbtyJQI4ma75UX6DMOU2yjL+r90bL/CA7v1yFOaxF55M99gHncZqup/UnqPmv+flVG jCAS5SqKbwSoFASpJEpP55Lhm7cPy/uYRPGakCvXrnZ08+Ubpi2FV74cbqz5ktaVEDrtU1or T76HT4CP1zp89foPdt0H/7K0MpDnRGAr+0itEln6us7eTC39+uk2wtvXMTjCJ7zXRyosRxee G+EcpnR0rGgSZZKKMJIRrVfxBD49feHLCo2fYI/rofgA4pOrakpP3a2TKLPsw7lXwwGiebgU r0arQNZxuzUNcSSKN2MlEvXdv/nX1wGpQC66LdAn7FLsg4pOuur20aJdz1/oZKx5Yb31D1Mk 7RPFTWMz+0ggUYS5FBJls+tLtyaKnP6BCBhfOrXgjEJGnAr0IU4MdNncsdC/5tl5cx3aYOQz EjUu0F6qW1+9rxnOeYUuLPfpFmsrMx/ocIq6bdDfb1z/0913fvpvuLPzOddYRTPiHzvCSgtD K5d3O5IdBvyclLZJog7VxCOsh4XlvMUB7wPkOHtzJLVLqPjaaI3w1u3D7GfaIVHL/Rjby1Rn lfxHWDMrHit4JCrEaH1ximsfIdCnWw5h0AkmyQk/9qVNEiXl09lWSGkoiTKdYPfR73ZvffpT IkjUsZKV7LYyiZJn15VwjvCbtqguEjVttjmtA7IeYJ6Zf73kbeLtKq80EjWVQxbOPnsLIlE+ AuLL5LKEM4EKJ1FtIDOvX/cbZBsaH2sxvcG33ziPRhs+/Kj76vUXG4A0FrfY+HWL6ONe7dqH gaO2do7+XIv0+fDz1R5/cs+d+mEnMp61MLdEoJEon9AVw5uxj0P9D6tqDy/nBl7sr+mA7Tvv 3VkRKVdWsf4gNn4DRVxQIYpE8T5R9HVe/wn/+Em//qxPWbRd9PLaSSVRJhJ8dp408ixhOH4v JKqlNQ2hJKA9+3CTKOpGiUStcexLKH7uLlStnVSBOomio6Po6n1I4ySKy7W5fVwiEtWS/8hl AkEkikdWODNzjyh9/yiQqGG3csLBvyYqt/rKpDfJEm+2OV+jUSa/WlLOTu8q0fRl4XC1SALb JFH+GjnGss21Or5S6JvItm4fA95Pxr2BfCXLDHexqEB2xTatf51HL2I9fzoachpIY6DYzELF J5fgP3S7bWckyo/1HvyHq5RBJEoHQCdQeoXW2mjTXz3txNjLSNRa0wjla679rRkkkyh9YWir O8Mv21T70wjHnc1K9lyBRNnto20SNbyATS9h5f1TGYntTef5y3X8Qt5+O/SXaIoRRaKWjlUh kZedSMklUcf7XMUYEOLGISCVRMWVsrHYrumk1YZEwr5e2hw1Hx6OcFen3uJI8OYYWxWIIxU8 ukebN995eLvNIl0iraJIFOHC6594FIobijnFdxkb0B5I1CWy/U2KChK1AeyCSJTuN1f3oRkk inS1TS+tXoYNzCs/S5CofAy3kxBMosz1MbzIXD+UmNcCSVtLUwp+uSTqGIHh3Kvh2BcJFzvq +/eU3v2xDe1e+yBRj4/ORtscbc90FNuHueZltjjHlBP7fDjygxGxLxwPx+tx90A7gy483box Gd93FI269R6NjIz2MauXOLKwVik29x+uET4FgO0rxgnvdzo671Te1Zj/yAQwiERl5nFpku+F RA2HDcshUWxgIFFrNbXHRwdSr5WrM5/ANT0gUXVqSidRtx/SJ/ejfQghUZv7j0tIovQD7etY 5XpSg0iUa0g29vf1irVNTlJJFIbc17OXfYxErYdXSE5u+21j5GM2Mm9OLxr7KZnl0dNzGP9W 8l86HHs4IDv+pnqig3Bvvj+NjEzlcNSDb/owpPIvURzTjtrZbPMSVYKlqFkk6nJDNy+9VBKF elwPAZCo9bBu9ivTgOlHG3GqjhyRqHH+SCdrvnxZV5NETelAonwYxoYT5iBRsajViZ9Foi7r 2idXVeyFRElbE7X5cHxE29wHiXrUnZ29HFHqNqLOpvMC1AoapfWtndLy0eXZZOujQN0zmha7 O9usMkDttChqB/2O7o8+GG7n8++qcHUfwofnf939d93P/bP/WOXd2HRvIBqtLQdgs3Jxbrkk Sqb/cJlREIlaIg3m8DLHDXI+gcYtJdpeSJS0NVFsa605QZvdgkSt35rZPgZC8tg7XaVrGOTH IkhUXOnHzTZXmvaiI4jofvPFF/rb/fyDKvwHD+F0kDY9/9mfPhFJolr1HzYSpfsPkKi41lQr dhCJOno7GjWhr/L4d3MDTooS5HxqlWojuXshURvBdymy3QeJamOt0dLLnUmE+rap5qr6jmlh zQ/7LpvP8xqoi+x89ztdR3fwSM/ySJCf5PhIkD18Kl9c/bKvl9upe2t21Qg+zsy2OX0Nuap6 BTKLs68CGVYVEUSi9GNf+CgTJlEURhedo3fZrz2QqL2Q31bLIZlETZjKcoKMOZMonSjZRp2S bWeBRP3tz36me5NGeYyRnrdeuN69cf1TRyM/b6hRILpdI0H+6TbfdJwj/ABGXP1Onfr8k/tk LDfuTLbU20ei2H6JRA1fQ8q4pPoPH7pBzMcccSKh+kgUg4Mdy9XbriKV0s7OM43k9EzWFgfT dM3rqijT6ec+498iXDKJmvB63A020vhljPx8+6d+Qq3d+T/9a34+/L0+zldf+DP9/canf7C/ TVLDpMhJesb0P//Zz3bdd9RIlHa5Ounj358Ma6Ic15Et5VTF+FWeOyMVos8tGREvuqcq+EJb 6DytiVokIyFsIadcgWml+Q8mUf+6+0dq+vQzgaVsKZoQ/xEIWRSJIpm0Y7m5azmTKs5zSxYf WO4q0fYwEkXAnJ2T45a3T9Tmp7AHWNVeSNRgI21d5hQckZy3Xvx099anr4/rfP5D9Tet31me 7mJS1H3w+11//yu1cJru2Ok4Tk8EaiRRPvLE4f2/48Jy/TfdfvTy5vzdE6RxawPuoPnfPm8m WY4tEIhE0U3Tebfeu9X7juHjFM+yjkZIFFuxBP+hYzqsQZNJolr0H6nebJFE2Ro8/6aTKfpb v0Ci1MSBcj489ZlaOWulm9dX3HD+Wnp682nGKZv4HT8f8FadMnX0Jv6259ROUu8M3TLUSMIz uqf9gY460RF4XS+9Yz9Mk8WSDI7PIz8Ki19WpOcwshM4EvRLajqMp78oPZMmbyfuNah1Ijjr vxl7XsaBR97FH/siAG+dRH/5x0+6N9+6vo6RFs1FaP/iwGBGoo7ehLQ3iWJDx0Uroy1hexmJ anZ/HV91N+ME40jUUrFSXkhMsuSDTa9vXzu3vliRn1A3re+hKS8mQUQQ31C/+UZ+OHw20pM7 EuQveNsxmrHnZZjYJkwS5bOl5sAXgDdIVHNW0zlHonRnqZ+Jx0Uwh5XbK9r6Gu2FRJ2fv6LA e7Q+gJk5puwDlJmlp3cZ2YUW62i0R43EEOmwXSnk6bBuxbXPD5MS7z5AHxwvdDYWPn/1Oq0P +sEDaSISRIujS/ZBMeUPjducfXiNb9ziwBtv2wj8cVHX/Vb3D//hf979q+7/6H7mn/7EYWRz W+3Cc5dgH/sgUZdwnyjXML/+1R6Zqrg3j/D2FRRzLyRq2EhRDoniTrQ5J+hgFfp0notEBRmc GWnMzznyM06P2cKJBJEuNB1G4YubLX74u90f/tTfmK0RshU3hODYphl1fxIylekiorpPas4+ vJUsg0RNGP9W91f+yr/T/a23/6sDiZoIlrewm0Vo1n9YEAGJ2sxMnBkHLSzXR59M59ZekbbT aC8kajsE95Kzf86/Py5NjQz98vX/aPFrsbDND48XSiej6NoiOXuIaRkP6xRh5PlttjLrWxok Y7JhwhACuqF6R1n3uqqRVSLhdH4eHQHjfqn2t49WytWaHvsgUa2hmqePdU0UN15aGK3ftBcU PdO/fHO47Yu9PNXkpd4DiZLkuJcsZNty+EgDjdpOJIr3CeI1RfpIUdgxHMa+P6lNZ4lE0ZdZ 6kobbd6m01wiUdvax3EFtaRLiunoI6t7IVGt1olkEtUqpik2r6c5IlGuQppEKqTz2itgvrLv YZ+o+6eB+0Rlj1Dkmu+Qnr4so8XRzR374pvO68pM1/Rfw/f38HVd/GX/elCXdSzb2AdoRr4G eUmqxCvvTjHqNU3XBNp1SR1yZD170j04fc0iYRtS6iqKTqLoY4JbD3+su/Gtz8/ssRF3MStG s/7DArgoEuWs8Mfd0Mfs40qaziNSde3atcOGmwxFmgPfB5D8lr4HEvWg3+MlYJ+oZrzi0KlI IFHHZGQiUfy7jbjoYba/B9tbPs5kWca0xUFYazQOmHWQqDBZFWMZ9intTMhOEIni6TwiUbff /2JPoujS10Q14y5mJteo/9gxiRr6mH1czuk83enyAnKdIPBvNK3H+0SZjnofEMWXgjtC3ksr XsK6KeLJb1tvwuuiZcvNN303jJTNXjZa61Wc+gTWt5k+tny+9L7wA8DEKre3ilANzPYX3x5D c6oTbxqJ+kCtibp+WBPFm3gW/WyzThHESBU1EuUgq2LADlTUOxJle0PWp/e4AaVPJQRqKiga YyFls814aAM71XjBQlP48HCEx5KM2uiARNVGeLfyh5EodVTO9ReOSZQ+Srnb0q9XMJCo9bAO zclLokiQvnjc3J08NKPLEk8nnVJJ1HBkg6TpvMG6mpvOOxi9i2Sps9HObWteKreWbPLm2ecl W36d8ovb4sA5nVcHn1Sp5gu0Pp13vC7O97KRqkGZdO36j6l8okjUwpqoYWp9H9ciieLpKNu/ TBDMr/Mu64gUl1uf8tSnOiWZS/DakUY6Sx4NbdcJgkRtaf/TwnJ6OXiypSpxeQshUVQofQpS Golq33+ARMU1nHVjB+1Yvq5KcnNjAsX/MsGUWyJoXhMBaWtfJizaHlGoWWdrypZiH+aLMx1C TIcRm+RqTez2mlebI1GX2x8ETee5DFJKI1+rQREeOpGSSKL2UqctlaMlXXLawlQO+U6zpTpp SZcU+zD1v/3wdk+iJM9KtFonkklUq5im2LyeJphE2RqEr5HsFbQl0JlI0b+8FURuJa2dPng6 b23FHPlN0zWvqxjTV3Brqeeb1XSHl9knKvbA6NCP3Nz4Pe5Oz3LWNKxDwg5rmseFOeLWRClb Pj+7t5YZJ+dj+vk7tMXBNz83jkSpf3wNJDnnMgm39h8xpWiTRMWUgOIaW6TEJm8sftB0Hlec ThBMAmV7bqysVdXhdWO2tWJVM64gPHhheYW8c0SenYJEheBXgkSdnd8NycoRZ10SxUqARGVU WUTSv/zbX+pu9pttjokaJ1GTfWzjPyKgPRrd+/KPn3RvvnU9JnkjcR+rl4Mc/9FIMUY1gkei 2lK7TW306TweiZLwNeN8xHCdTq54LTbqrE185U+LCbWPfpRy/ZFKn5077aNRezbLwzt+8+/6 2XnHcdvE/6CjALz1AY2Tz32h+9Ff+w2feTUY3rgdRCIGEhUJ2FJ0qSRqXiahRi7ACYrqVJzG LtQ+GiVRTpiF2LOLRInzKwLwBokq2GEXEgUSVQhIErMXEnV+/ooqzaOCyKwjSt50Tak1Uevg O+Xi2SdqbXUC84N9BAIVGW22sFytiXppXBMVKWrT6K3ah87tBhI1HPN08rkvqpGof74pZmmZ y/QfrrKCRKVZgTXVXkjU2dnLokjUtDD0rtJb0D5AhQ4gLmjCgaJkOUHYR2C1FopG+0RJIlGt 2wdIVCHDrCQGJKogsHshUQUhgagFBC7j16swiHAEpNiHqSeviaKSSilDeK3UiBk2PU5k6kJ9 6shTeief/1z3I7/+azUUgswIBECiIsDyRd0DidqL02upHC3p4rPhpfC9lKO1zl06rnskUevW yeUgUetimuPp4tKCRMXhtRh7DySKCni/P9dIztl5vLC13WNfHGbT+rEeC2dfDTYi42LnvR/7 COt016qdpTVREjpOSf5D1MLynfgPXzsCifIhFBG+FxL1QNwBxEOnsp9OMsLoakZdcIKDjci6 9mMfbZEo0wqOz87jzaJathU5/mMvJEqi/3BZMEhUwbYtlUTFvy227cQLVmkRUSa+8XgXUaOA ENR7ARBnIqTbh2s6b27nsJ8U+5lwHPDj59vqjMJ3xzMKU+Sun2af9Q8SVdCSpJKoeAj22Rji cbhsKVDvl63GQ8q7tCbqOD3sJwRPd5xj/ECi8tAslRokqhSSSs5eSFTwsS+NbU63n+magkaZ I2phOm84X1HWBfuoU19La6Lq5FhHqjT7uP2eOl7nmz9WB4wSUnfmP1yQgESVMJZRxl5IVPAB xI2QqP0tHC5olDmiduIEYR85RhCfVuo+UdJI1J2HL4FExZtn8RQgUQUh3QuJKggJRC0g0M7a KEyztGio7djHMjrzY1/udG+r1Tp0SSnDtvWf1v5uqTVR7zSxJipN/20xL5c7SFQ5LHcxnbcX p9dSOVrSxW7uYU6w/XKEN+aWytKSLuEITjH3SKLWrZOw9mfWze2Ht0WRqHUxTbHktDQgUWm4 WVPtZSQqeDqvIHY5orhxnp2+rsSQQ5JyXXTnZ/ekKKvp+biTtCYK9lHXxOZrol5Sx758QcxI 1Pb2sUyieFaddiunm6/mp/OcZifLf/haD0iUD6GI8L2QqOCF5RHYrBEVJGoNlCmPx4r83V0r s2L5wD6KQbko6Pb7L3U3vjUseJY0+rCdfYSRKHOJomQSJdF/uIweJKqgX5FKonazn0sjC91N kzLxNfd9KWiCK4lKm35YSbmFbNrU22kfjdrz3L6fqp+mEWA+O29WLiJV2xuBW4PN8F62y/68 vBG7/t9nA4rytjhg6Ntsh6mmCRKVipwlnVQSNS+KUCPfzAmmGpFQnPsOU9K0qVDnLcSe52ui bquF5e/MGkXzxdlMwbSRKJCoVL9bNh1IVEE890Kizs9fUag8KojMOqLOTu+qjJ6sk1mRXJ6o abHXikhaV8ij7uzs5XWzLJAb7KMAiI6Xx+HngQzc/O0vdl/81ufqZFZR6lb2Max0in8pufOt G92tb3ypIiK1RMv0Hy40QKIK2sleSNTQQcohUdPCUJCogua8IEqWE4R9rGMVUknU1vaRSqL+ 8ns3QaLWMu2FfECiClbCXkhUQUggagEBSYtuUZHrIyDFPkw9eU0UIbZcBqnTwmVtwZxFDJ1V bGefqLJ4SJMGElWwxvZAoqQ4bl+1tVSOlnTx4bYUvpdy+Dv3HJTi00rHdY8kas06SSVR7ewT FWbza2IaplGZWCBRZXDspeyBRFE57vfnoj32IxP6yuSXlBWDF7ZKO7ahe/ake3Da8JqohWNf BhuRcbHz3o99tDWCY35tOh37otb6PKMv99q+Wvcfhy/z1Fd5OhH5y+rYl1tCz86T5D981gsS 5UMoInwvJOpBvweQHBLFazH200lGGF3NqAskarARWdd+7KMtEjVZwaAXkagb3/p8/7cEEtW6 /3A1Q8kkSqL/cHk7MSQqZyiQ0vLNQOjyfOGhXYVUEhWPbatOPLSm1o1n4huP97r6unNDvdeo Cen2Yer/5lsvdF/+8aFrkWvrNWo6XeZR//Wd73Tdt7/dyVsTtU//IZZEpTROkziZJu0L9zUB qSTKV655+D4bQzwOly0F6v2y1XhIeUGiQlDKj3PAWRGov/OZz4BE5UNaRIIYEuUqbQqZ0mX5 0vvCTVkXFxcd3ZTuypUr3dWrV4tU1JpCgo99aWRNFGOzn+maNWt7Ia+F6TxJZ+fBPura05xE XRc5EtWa/3A2v48+6N588YXuzntfErsmSqL/cLUiESRKJyRESoic8BVCcigOpTPT8nCzLzzU Be1lJCr4AOJGSBTbQGtO0Gs3gheWS3KCsA+vJWZFkE6iWrWP2Vd743Ev3UiiJK+JkuQ/fI1D FInSSU8sidKJl0nCmKSxzFiSpuuyh5Eon9EgvAwCIS8AZXLyScE0nQ+hLcLbsY/l0mM6r5B1 zF5Kj9vlAeeRRLVz7Mvl9h8iSJROamLIk40U0W+mPN9zaBPZw0iUFMftq5OWytGSLnbcwpxg ++XwWcUU3lJZWtIlHEE3lntYWL5JnSSQqHe6r6dUWeE0l89/6ACKIFG8rojIDhMeMvJQQ+f0 HF+XQWD4wkMtbg8kisoaPJ0XCkzleFyvZ6evq5ziz6CqrN6C+At1dt697bJPzvnxaCPJAlZN CPuoC3f8SFRYp1tX6zkJbMd/2PHRR6LeuP6p7vZ7N7ob3/jiWjAVzEeW//AVXASJOjk56ejm yyRB3kKqtExw6F+WxUSMnpfCffI5fC8kKnhheSgwK8VrxwmGFlguiRpsRNYF+6hTX9JJFKPS jn3MSdTRoIGaziMSdefhTbEkSqL/cLWeJkgUf8WmjzTpCvPXbvSbuX5JNy7XyBTJ1eOZJMwX Hjri5SJRenpzBG3tZ5shhJavjgteTyqXs5H18MqYyaDXK78rJ96xWX8ZiNHKtJ+1n9W3sEcw uvP3vOGP/mX19uoxg1x9YuoyJa55gC5P58XMFqTkWzxNYnv0HyBcZuRtPhJ1q3u3eycbhvz2 SrvSTzMA8/7E3+6yC7GhgCZIlK/8RKLMK2Y0yhx5MqcEfeFm3i7nIHEkykegfOG+umsx3Ox0 t9CxxzXRaefoa6/PMk4+R6+ctCEwDuVus5y6/hLbG5GIi2463uWNNz8lbouDnPa4FYm68/B2 ERKV0/aGtL525QvP12BLCSJIlOlY9L2XXE5HJzpEwlxf5/Um4AlfcmzmW2LLX+c5y9H3L9OQ iD6d1/c9431I7+i1fG8gvg4iN720tVxd90StiWrg7DzTxxn2MCd7x2sabC8VS6Mn1ObWDqc8 z07vqv9/sqW/jczbtI+0zsjX7lip1PZ3SEc+RP3PNRJFRIsIh+tKzT9Xf05f3j4cIzCjS400 hvEIHSWTp/PUPlE3v/GFWDGz+MXbr8N/TPWr/Mc5tcV9XM2QKL0iTQdrLvyO3cCS5K2xxQF3 Djz9yHtTNW8qBimakZHZhiWhXiDN6U94xaUHiUq0NF/9zkizzIWhA2GVRaKGjp2vuPaQaA3R +ZkvV66v8/wjNqbGueWNS986iTqM+GibbZYgUfl2Ykjw+RN1LitIVGHUmUDZGDFlde3atSMS 5CJRrt/1kSZzOwPK0xceU1y9LFevnqgv/4incmPmf8mR67cZPj4/U//SPUvvij+Qm8lZHceb bJsOF9YPGB6e9TeFIZzTm/EfqTC6+bLLc4eP6Q8K5aY39ZmehzKZ8hlfnssvhH9oPc06xUr5 x9rPwSZZwcFGJ7tgmz0On+zECFebiXZ0Hy4zvatdjAmC05v6hD572lY0foa83PSmPR3ay7Le Zvt3+QN3+/a1x+P2+6z7N0f+4Ctf+9nu+k+8qK1D9cmLDS/tPyJ8bHAbLymT2+Hor0YSdeu9 22pF1Lvu/iHa/lLbb2h7M+p5HLmM6V9bjNvMSFQIOLaRHZ142faTIrncCaSG67rpO5/zQnje CZ2f+WvCK1cGEnXWf8Y+NCr6++yc34if9H8Pn7kP4fT3Ib5qBA9OtWczfBa/685Pz7rT83vj sPkob/z0n22WRmz46wjChp55B1l+HsJHnbVwwuLs7OX+5ktP34cb8e+rZ7oP8Tn92Clkpx/l cT0/OHtF5Xes3/HXIBfdqcJEx52+zJm+zhnC799TWyaMJJaezfDQZ1q43de7tgXD2dlZ0fx9 +h/nr9naQSdlm2rUQx/5oL/16Ub3M9vJcXraQf7B6TRdOZdv1kFq+sGyYvXv26NhByntL7f9 km31bY3shOxM9xf6s2ov1L718CN9R39gtv97Z68f/AHJP+Tnat+R7fdUtT+6+SISdfKZ6QBi X/v2hdf2H4S93r6pvYa0dx3HkPih/sLUh15kTpU/PuQ3TufpJMrX/n36DW2hdvub+p3eVkIW M4YQg43jiCBRtoXlTI644/TN+5cMX5LFI1v0L5Gp2KnHGvbgK/s8T/8wuE/m0ZTs2F70fOqk 9+tdA99YmVPZW9PXro9vrUps+beL3xrediRM+9iir0lrvwO+P/Ib/3N38oX/5OiLaLOkddr/ lEuO/sn2WbGijmZpPvqoe+PFF7tbD2+okai3k9VdM+FxfdPZstOHCGvqUSMvESTKnO7TDWqJ RB01JMvmnKYcs2EfGe6IvvmbmQcvLOcpwhZIVKwDm950y5hcrm8JTT+NCAyjjz5HbZK6JXux 1XtMfHsdTPtE5cr3pQ+ryWWSoXfug43IuFjvdvYBWsZNx5lsOtT+a9WGL//JBw/TTT2J+vxf 7NWJaYMu/X35+8odmn7JPnztqy+nNj3Vf3zLZ92NOOQ8H2GpSNQvXb/ek6gb3/rSAedc+T4c c8KP8RtG/vZyiSBRUsAmQ2n567xQHEuTqNB8U+NJ6ySncsrYbHPeEQ7T0lIuufbRyNebnoo2 7eNHf/3XFIn6XBECtYaNTfZxV2XX7ocHB5x5Ok+RqJe+2f6O5dL9h88GQaJ8CEWE74VE+ff9 iABl1agypmt0EiXrmBrWXBrOUvU2F+Kv2piSM2MSRQJcSzGShVdNWA5v26xGruo2EiVlOu+4 7FL9h70GQaJyLVtLDxJVEMwkUebXJUrItP2VJrGRRhw6z5CERc1EjeAXXURpesvQd5rOGxrb X/iNX+9HovrpLZ7isrbD6AqslIC/1nX5i7Rs/c07rH5NfGmfqDdffEGdnVdmx/K00uWkCit3 Tg5rpgWJKoj2XkiU3Om8u6o2teF4pxdrpBGPX1sVNMEqoqQPx8udzpMx3Wsa3Y+M03n9C4wA EsXHHp3dO006honX+8xGn6j4i+c6xfmhw7oijUTd+MZLVdp8SaHS/YcPC5AoH0IR4SBREWAV jMqNdNqSYBTufxUsqEWKKBmdpHQn6LSPlCpbNY0s++DjlJhE9RyqhcMhPXWWS7JtJEr/bd5+ RoU+/Kjr6FakqL8/+P3h5mcznJ9/67e63/n+7+9HokCiVm2Q1sxAogrWwV5IlNg1UYfN5eSQ KKyJKtgAfaJM+/DF3zw8bqRiK3UP001KASJOPYn6wueHgSgBJGrCLQ9vfdrtMGq0UClvvXC9 ++r1F/upObq/+sKf6e/Dswqj8F+6/im1pYEKH5+JQNFNZ+e90319q2rPyDcP54yMqyQFiSoI a3ESZY6k+EZWfOFcVm88qUZeWO9Y/KNtyaNvbv656Z3lCcQ5N//c9Kb+Xrs3EuTmn5vee7Cr b4hlZDXB7T7agK0JPv+bv9id3PoTfZhzFKZMVoWlGHYdai/f+U7X0W2MHL1JBEndbygS1BOj 8Zn+pt/8l6GPscP3zfdeUhTqa24xufaXnN7nH3zhfmRaigESVbA29kKi5K6JGnd+LlWnyU4k VAHPdE1u/rnpx2IkT+fl5p+b3tA/es1Lbv656ccdyEOtaRYvO//wnHUb+ZXuux0RqZDRmPAc 6sV0TueFkqhvf7v7+c9+tvvlFz89jCx9+no/ctSTqg8+dE/PeUmmhUQpIjXsQdUd7RNlRSe3 /pPTH+ud7D/qVXlRySBRBeEsTqIK6hYjCiQqBq2cuLLWvEwlxT5RObUenlaGfZjT/2+rSaab 798uOBIV+PWco9PXyZzt74vuaX8sDpPsQ6fPI0sf/t5AhNQzkaS3FEmim6fXfv6zP6RGov5A q9Z1Rlr0zTbDbWr9mCBR62MuNse9kCixa6Jypz9Wt7x1nG35YkHv8pjaJErB+VhPIlE3Ht4q CFEeidIVsZEoIlBEpPQdxykNkyQaVeI1SUcLwZlkEYHagETdfv+mmGNfjo1Bil2HmTBGosJw CooFEhUEU8VI0hqnNH256qB3RSNefUSjVFl4xIFJFH+t55UfOm3mFeSIMMqfjYgcRprGr+TU M03JLa1ZOv4Sb9t2ABKVahBl04FEFcRzLyQK03kFjWJRlIzpGunD8bmfsK9lDfN8ZNiHqXcr JOpgtw6SxiNNvOCbno9GmsaCmVsYTKNZ25IoTOdt1zL1nEGiCtYDSFRBMCNEoZOMACshKkhU AmhFksghUfo0mWs6b8ZlskegBhJjW8A+bTegomj7LvGaJhptmq5Bjn6Aua/6hjyHBd5bLX8A ifLV0jrhIFEFcd4LidrKKeRXxbZvhvH6S9OXSwi94+s6JYUcnHWivTaJ0pG1ESreYsA10jT5 u1S8U9Ol2MSUBtN5efiVSg0SVQpJJQckqiCYSaK2cWZJqvaJpOkLEpVe1ykpZdoHf513IC3Z I07H2LG4mVjer2kceeLNLCmeuennfHRVa499AhppGm7zsqddqN/C5eecQKJS2lT5NCBRBTHd C4nCmqiCRrEoSsZ0Dabz1rIHMx8Z9mFqvQWJ6m1Ukai/+8M/3G8/0E/Xjfs0EYHqF7mP02/6 GiedKJ2djvvMGZtaZtd+JRKF6bzsmikiACSqCIyDEJCogmBGiMKaqAiwEqKCRCWAViSJXBJF WxzQSFBPZFyXk1zQOie15YA2IsQimCzpO4QTYSLiRBte0u+xI0XV/MehfPYRxVxuBRJVpJFl CwGJyoZwErAXEoVppoJG4RmJwtl5a2FN+UibHpOm71CXvCYqhkRNC8GHybf+NrYmOIwaKaJE hIm/rjssHOfpvGSTKox3ZRKF6bzkii6aECSqIJwgUQXBTBJV2Akm6RCTSJq+XDboHVPL6XFl 4hxMokKB0b6uo32ceMSJkseOOi1nuYz3fORo2/oBiQo1oLrxQKIK4rsXEoU1UQWNwjMSNXxW 3faF6byt6mfn03mBsPaH96r7sFBdG3HSbTOVUIVO57VGojCdF2hAlaOBRBUEGCSqIJgRokKd YITIlaLK6CRBolYyh1k2MuzDVDt5JEr7uo5JU0+c+DJ3HtdYzfF0oKmR69iY4XfeWf2wsHyr 6o7MFyQqErBK0UGiCgK7FxIlb+0IV+K2w+vxpiRNX6k4S9Vbpn3EkihzrRMtEucDf7sPPpyR KJNU+dvdMomauJgsvDGd56/5NWKARBVEGSSqIJhJomQ5QZDVpErOSAT7yABvIem4c7iKQYTk HfXfrfdudW/4vs7jBeRqzRONPOlrnSgz1z5Ns7Dcz9wOJatjH8XUM2oAJKqONcdKBYmKRWwh /l5IFNZEFTSKRVEypmswnbeWPZj5yLAPfhlgshBLovo9nWjx+Didp+/jFIS8ZVovKN0YqfZy gFokCtN5MbVcLy5IVEFsQaIKghkhqrYTjFAlMqqMThIkKrJai0WXYR9cXLaTr3Vf72ifqK9+ Sk3LfWDZJ+rD3+tJEx38+5b62m7rqxn/Ecm2br93o7v5zS9tDZ83f+n+w1dAkCgfQhHheyFR mGaKqPSsqHWmD7JUCkoMvYNgyo4kE2deE8UkypyW46/teEfxbJiKCdgY70gSdefhze5dtSuX vGtjnAsDBhJVEFCQqIJgJomS1jil6cuVAr2TzDM6kSycecThQKLoyzrasXwceTpsjjnisLTm KRqqIgk2xjuURI3xQKKKVHq2EJCobAgnAXshUVgTVdAoFkXJmK6RPhzfzHRNtFnJsA+zWCaJ MkeeUvdzioYvMEEz9hFJojCdF1jBlaOBRBUEGCSqIJgRoppxghE6D1FldJIgUdEVWyiBDPvg 41m40Eyifuf7v7+jm69pwbg6F0871qUQWMlimvMfgWQKC8uTq7xoQpCognDuhURhTVRBo/CM ROHsvLWwHkirLLyF6DseFGwjUd1v/ZbaqsCsY9e+TWvagi2vRvAOJFHY4mBrexnyB4kqWA8g UQXBTBLViBMM1l2avlww6B1cxVkRZeLMI1HeNU8G+cqCqkjitvB2cqkxACSqSKVnCwGJyoZw ErAXEoU1UQWNwjMShbPz6mPd3HRNcJGFTOcZ5WESZSvm0dRw4IhLMFyJEVu1Dx+JwnReYoUX TgYSVRBQfvO6uFDnMan7ypUr3dWrVwvmsI4okKh1cMaaqHVwbrWT9JdeOolqa2THhbcU+2A9 uZ+hXeFvfPOG34w2jiF9TaUPPpAoH0IR4dPCyWERgFQSJW/tCFeSDKc9mZQ0faXiLFVvmfYx jURJ01+WvkSiaHd4eZcsnH34gkT5EAoMJ8LE98nJSUc3PweKaCiaVCOXprc0faWSEal6y7SP A4ky5qMamb1b8LNt4O3D6eM/6rrnPvlyhzVRbXSZIFGF60EfjZI6EoXpvMJG4RQnY7pG+nC8 lOmauZnIsA9Tb2kkqjX7iCFRN76FY1/W8taufECiCtaAviaK/qb1UFgTVRBgh6jWnGB4iWV0 kiBR4TVaNqYM+3CSqIWXB+wTFW8p3L98/D01EvX8q/1I1Evf/GK8oJVTSPcfPrhAonwIBYab i/7oWepIFNZEBVZ6drQ2pg/iiwG94zFLSSET56Wv8wYUsE9UijVwH8Mkir7Oewdn56VAWTQN SFRBOM2RKJCoguAGiZLW6UjTlysBegeZY3YkmTj7SVQ2MJUEbIO3OX13eB7/mEZyBv1oTdQn nv/7Hc7Oq2QGkWJBoiIB80XnvaIkj0RhTZSvlkuFy5iukT4cj+neUvYaJkcaidraPnwkilF/ 9mw4LodJ1K1vvdTd/CbWRIVZZb1YIFEFscVmmwXBjBC1tROMUNWIChKVjl14SthHOFYpMU0S QCTq5vu3vaJ8C6i9AgpFkGIf+nTeJ557paMDiG98A2uiCplBshiQqGTo5gn3QqKwJqqgUSyK 2mb6IL900DsfwxAJMnB2kaj5COZxmVshUZNWbeNtrokiEvUu1kSFNKSqcUCiCsILElUQzCRR bTvBeZGk6cslgN5J5hmdSCbOPBJlHjzcHmkyK6RtvEGiohvQKglAogrCvBcShTVRBY3CMxKF s/PqYy1lusZGsiXYh6n3dABx6yNPg35S7APTefV9RUoOIFEpqDnSgEQVBDNClBQnKLWTxMLy CGMsGlXImjkiIlq5JxKl/1oUmKLCpPgPkKii1V5MGEhUMSiHNxo+fFjy13lYE1XQKDwjUQPW 0q62pz3caErTW4a+tjVRNx7ekmbUSt+28cZ0XpsmBRJVsF5AogqCmSSqbSdoG4kCiUqq6MRE sI9E4BaTuUjUo0ddR7ecq237AIlq05JAogrWy15IFNZEFTQKz0iUhDUvmM5byx7MfORO59EW Bz/wA39VBInCdF5d+5buP3zogET5EIoIB4mKAKtgVClO0DYSBRJV0BAcomAf9THWc+A1Uc8/ d7f73scUImOE5+z09VHXdfEKzQ1rokKRWjceSFRBvPdColp3eu4qa9tZ20gUpvMKNkCvKNiH F6ICEaSRqKnIbdsHpvMKGGcFESBRBUEFiSoIZpKotp0gSFRSpRZMBPsoCKZT1Dtqx/Jb793q ppGo46jt7hfVtn2ARK1hvfF5gETFY+ZMsRcShTVRBY1iUZSQNS/mrolqemawERkXpvPWrSdp JEqKfWA6b107Ds0NJCoUqYB4IFEBIFWIIsUJ2kaisCaqgkEYImEf9THWc5hP562bf2xuUuwD JCq2ZteJDxJVEOe9kCisiSpoFJ6RKKyJWgtryqft6RobyZZoH9JI1IR72/aB6bw1fUV4XiBR 4Vh5Y4JEeSGqHKFtJ7iXTlIeGWHkYR+VG2AvHiSqDsogUXVwzZUKEpWLoJZ+LyQKa6IKGoVn JArTefWxljJdYyPZEuzD1FsaiZJiH5jOq+8rUnIQRaLmm3alFLlemlZIlOvrF+fvz56OUx0D NqeN75di1qA6bEed3aUWO496m+Vs7WugyY5Z53o2WVKy3v5OT09Lis6SFVq/re4DZOpP1jyc Ome3j9DyZoEakZjbHyfxkajW9Ge9t7IPEz/Wh3E6/Dt+4PHxH3Xdc598uf8C8sY3b0TUVK2o xyO87n6Gz1K8GPuYWvqsK1cUicqBxkfAfOEheUslUfPpGVnTHpMTGvRunURNtiQL55A2sEWc 8E65Tbzd9mrXN7y869TGXkjUVtPUOSSKvoTc/gojUXv1e02QqBgCExNXNy5fOl94iKG2QqJC dF2O02Zn4y/XExWFbt/VSvla0WPAK7xzbktvX23Ldd7CcB4N6O3u3e7Gw9vTPlEHw2q9PIZ+ 4Q0i3ASDYi7j9PH31EjU8692tx7eUBTq7SCJdSPF1mts/Lra50pvgkT5CkHkJJfk6Oltsnzh Ph37TkjpeXFx0d/095UrV7qrV6+GJG0qjr4mKhf3NQt2dnpXHIkaphDauML7DJnD8VtN16TX rqzpXmbhUknUzD7CG0R6FVtTOkYgeTpPkahPPPdKT6Je+uYXC+edIi6WFMn0Hy5kmiFRS8Sm REfuksG/+8JDTEsyiRrKPzSG+Zqo2EYSgla5OLyGBJ1kOUyXJbXuBI3phbHzgX2sYx++NVHr aBGey7NxTWhr9jGtiRrWfHIfxfi61syFl7xOzDn3NPuP1v1HHC7NkChS++TErg4bD43spFy+ 9L7w0Dwlk6ihjGzsc6Nveb+aqdG2TfbmdiRNXy5B63q79Gtdb9NCpOk76C+NRLn9XqjnrxPP JFGci06iWvTLISSqRb1Ta7EpEmWSJH2UiMNSiBRPrRFItvS+8FBw5ZMoR0mTh7VzO4Hc9Mfl SS5GqAGM8Xz5+MIjs0P0S4LA+naT1v5CSdT65Qk0lI0V82VP06U3378TWBhEq41AEyTKNRLE v5vrivg5ZppPJ0+2dUq+8JCKAIkq/Sad5sRddeVzTiF1HBLHl48vPCQPxLl8CKxvN2ntDyQq zzZ99cxrzvJyQepSCDRNoriQ5jSfTnhCiJSZXn+m9L7wGLD1RfCk57Vr12KSV40buu7r7Pyu 0uNxVV1KCp/WRJHeIV/nlcw95qs2M98n3fnZa2WVSZAW/6HFY7Un16uHnOLTDx9h8LVW+gHr wT5C/EYClIWTtGEfsYX6Wvd19XXerenrPMdxOz6yEJtvany2Bd0+UmUlpfMAYa7bJZJ68/3b vS2fnef7j9rtr7tQBZyae9+3DP4jjaQnYVwx0Wokaslp+dYkMclhguJaO+XCSU9PcZiEmfJM PXRCFFoHehoa8RL5dZ4wEsU+KPzrvNDaDIuX3hnI7CTJCZ6fEWGVdZmdZPtESo596FjOR6Ic X5sRmW3IhLbyHxF7i/Ro6STqVEI7nDlI9h8gUcHmT6RFv82EPhKlkx6dBNkUsDlGF4mi9PpI lE2PGEfLBEr6FgfBFYuIQQjE2FCQwJUipZPDlRSMyKavg0YLJNU+GH4T1g+6D7uvfO1nu5M/ 9+e634moo5airlsny2TC1IU22KTdyrn/agm30D5Ziu4h2K42ErWkTCqJMqcETGPjZ30NFf1m Tgf6wm2kjwmTPtTKe0TpJCplIXxIxaXE8Q3b6jLXdSIppXGn8Y0gmnVXNvdwadqMVniijJg+ XEzR0/Ej9kx9NtJK+EEPYSTKh1+GKRRNSrD2tjIa9IfdR4pGfdT95D/+xz2J0ttb23+Trlvo +1TlS/eAoe/+upouXYNE+ewvN7yoEW4oTDSJspEbGxEwR7LMKTZfuNn5mEZ+eCMbN9t8+nRo EDQC1gKJijX2Yb56aU0U7VlC5+0tE5m1wrl8MWtefJjUbpND/nKma47xOF4TVRurXPlc17bp mq3twFa2SSe15qXfQDbvSimjL83yC9lgH9TR06jJnBQMZKVfK6NuH2moHc4vvaf3lN979nhz feblPSZZvOaMdC1hH3nWFZDaMZ3ns7EAyU1EWYVE+d78GUwX4aDfdSLj2grBRqDoNyY0HG5L r6+zWiI+S2WhMCJQPCIlZcdy05iH9S7LJKqlfT5sJMpHsNkutmiFky2vR6LMF4G8cg+dZFmZ eRqFEPbN1rxEFq00iYrMPjn6ZA/HJMopsJGRQdbbtI927Ht6aSWdDiSKFpYXINnJFR6acKzn ya5lrql0FXcVEsWZu5inj0QRwWGSo/9tGrmLXBGp0feZMqfzfOHBtjIOxfKbzdWrJ2phOUFs bmIZ+PxMxaOb05vP0XK5JESQdJI0PE/TS/bwCYcx/OAEA+MfBDxSf6l75fRT+VbC31dfseG+ +KY9LNgP79J8TIaHswcP7fSZeqb70ICN5/5LN7oZz7D0kx8w6yE1PStopGf92M7M8vjaT277 C0x/XBfcYY5tX2//Pn3H8PmB3MOO124/VKb96iSK/MkX/vdf6P6H7rsdnfVG9/c+Hm7v8x+p OOrm+H+o/qZ7q/Ski64PP3M5ZuXJ1d/Ey5D3KwrTz/2LX/D3K4H2V639HvzDcfsM7U+lxFuV RLlA8ZEoM9wkY/ysT9PpcZbS20a4bGlZd/7ijkeZ+Fn/nafxrlwZSNR0Fp06C+vs3uz5XP3G hkx/H+KrRvDgdOFZOcaj+K7n/nw2cqLDRaMI+tdV9Lf+yXpIeB9/7Jxs6XV5s/Czl1UZX66W 3syPno+/JhuOHTBx15+pDgh7JrG2ZzO+L70Zfv+eqpexk6QwX3pTn1j99fzIHqY8B7ug6VB9 y4UHp68pDKZPqM3nKf7QQcenPy5zenq7/gd5o52S/vfv3e0jD21cx4DLEN/+SrZfOnrE2f4D 2/vp+b0DaSLd7p29fngm+dOxTlzmefuPbb/cvghXbn9Eok5ufV/3/Cfv9vcnn3+tv73P//Yr 3fPq5vifUH/TPU9PMgfZR/IT0tOBvs8/N+hIeev5u56f/ySVxVKehPwX8RnlPf/cq315T25/ X/f53/xF5bPZr8/tONZ/1Wi/Zns2n6WQJJ+eTZAon5JSwsmBSDyAOH46r60aYf1bO/vKj9Lg /Fq/5iPI+1kT1Tb2Muxjvt9P4HReI+BL8x+tn51nVqt0/+EzU5AoH0IR4VJJlFlE/5qoCFBW jCqRRA06S7tkkShGV8qaqMka1Mi1CPswP9GXRaIm+zgesW+1VUojUXMcZfoPlz2ARBVsKXsh UQUh2UyUa/3dZgrtIOM9YbqnsrRiWiamtx/e7r/Ok3i1ZB+mLtNmm7KQbQnTksiBRBVEEySq IJgQBQSAgGgEeIsD0YVoUHmpJKpBKIuoBBJVBMZBiFQSZb4h+PeJKghaAVHTmoa7Str6Z+cl F0F9LcYLnZNlbJJQ1ifKbB891vrXhptgF5OpjE/Y5zsVyJrOk+Y/puk8GfYxt3hZ/sPXYkGi fAhFhINERYBVMKo0J3ggrUJIlPSFodJI1IS3jE4SJKqgM1sQxV+SSyNR0v2Hr3ZBonwIRYRL JVFTEfdxIGRElSEqEAAClRDwTec1stdmpdLXEzuRqHp5QHI4AiBR4Vh5Y4JEeSFCBMEI7HVh qOAqaUZ1m22ARNWpHqlrovbqP0CiCtq5VBJlGre0LQ6kTdccTE5N5+mbWRY0xShRvhEB23D8 /f58RRnX3D6kjLiudyxQTk3uZTqv1TVzJr6tTeft3X/42gZIlA+hiHCpJMosojQSxfq36gSd JtTImiifE5zr/7iTRKLm9iGHREk4G006iWrdf0gnUXvxHy4/DhIVQZJ8UfdConzllBC+16Hj LbHfE6Z7KsuWNjHkPZBSE1PfPlHx5H29krZkH6YumM5bzw5CcgKJCkEpMA5IVCBQiAYEgMCO ELCP7GFNVJ0qlkqi6qCxvVSQqIJ1IJVEzfaJosOBu0cFkakrStoWBxMaMj5hn5+N9qg7P3+l bqUWlA77KAhmkKjQfaLamFaVZh+trYnym4RZz7L8h698IFE+hCLCQaIiwCoYVZoTFLcP0LOn 45QNV9qj7qwn2jIu2Mfa9QQSVQNxuftEyfYfvroEifIhFBEulUTNitjyYoXF+mjjzTbcZFrT N1Af2Ed4FWfFDKyPrDzqJfZN59XLOVWyDLzb3ScqED+x/sNuVyBRqe3Nkg4kqiCYSaICG3GS 7BqJWtN3WZ/DCJpYJ9ga3j6bkqNvyj5RvtKvHy4D73bXRO3df4BEVW+TUknUXvaJOjt93Zh2 ql7lmRlcdOdn9zJl1E9u2ydqOF9RxiVtOm9CVYh90Jd5/Rd6fA3Tebffu9W9272zYCSRpMVF 3jNJ/WQfMvzHNBJ1oXAmndu+pPsPH7oYifIhFBEulUSZRZS6T5REEiXBCc6bwNBJSruGPZcE HVCtiIkE+yACJZlEsR1L8R/SSNRe/IfL34FEFewJ9kKiCkKymaiW9nnZDITCGe8J0z2VpXA1 J4sL3ScqeOAoOGKyys6ELdkH9okqX78lJYJEFUQTJKogmBAFBICAaARcC8uDuVFwRNEwRSvf 7pqo6KLsIgFIVMFqlEqiZvtE9VM1jwsiU1eU2DUvjRz7El87j9VaLpoak3GxfYg7FkhNPUo4 9oWtYOI8vi0OPAuQlUCWRf/WvqT5D3n7RJk1KMt/+OwPJMqHUEQ4SFQEWAWjSnOC01duT7q+ Y2/8kr4wVBqJkraPGEjUOg1Y7j5RJhWWuabSVcsgUQXtXyqJmiCI/FqmIHYQBQSAgGwEzNk3 99d5Lj+T5398H+/Nw/Py26q22t0naitEts0XJKog/iBRBcGEqOYQaGmxbXPgXHKF+lEShYE+ 5gASVccopK6J2qv/AIkqaOdSSdRe9okSt+ZFrYl6cPpaQQtME+Vbv2ubzrsvaIuD+XSelBGI J2rt2fb24bMq2uDgeMJmWPPy4v/96e617vWO8efpKH7mdPrvtr9zR8p5CwbXSFTr072m3q2t idq7//DZP0iUD6GIcKkkyiyi1H2iJJKoFtZE+ZzgvAk87iSRKNZ/sg85JErCwvLDInA1GjVc E4m6/n+96PSg8XaXVm8+EjW3jwinv0JU6SRqL/7DVdUgUQUbwV5IVEFINhO116HjzQClqZpD J7mlFmXy3lNZyiCSLsVHhm48vNXRfeu9293th3f6v2k0hf8LyVmvL19+pryUuk5JE1KOlDim LpjOS0GxXhqQqILYgkQVBBOigAAQEIGAj9RQpz+QJjoE5t3+74FUDXfs5cvPRqJaIkWx5TXj SyVRueVuNT1IVMGakUqiTAdzdvayQuVRQWTqimL95R3rIWUfIHMa5VF3fv5K3UotKB32URDM BVGTH3F8wj6yH9Pf3Hz/dkf37YfDbT5PJGwYu/qw+6i/zWnEJaLkCuM1WFQsKf6jtTVRfuuS 7T985QOJ8iEUEQ4SFQFWwajSOsnJocsgUc+ePVW1pR8w+6gbiLaMC/axTj2FkijbyIo+vWeS Jp4OJIJFI1c/86tfOSJRS6ULGYGSYh9M+KSRKOn+w9d6QKJ8CEWESyVRsyLGjpdHYFQ3atrC 07o6LUlvTd9AfWAfK5lMYH2spE1qNiFEZrmVHH/9R6NQRKTu0MjVOCU4TA0SybrdTxXSPUwe DlOJ5nQiPc8vGXi3u09UIH5i/YfdSkGiUj2DJR1IVEEwk0QFNuIk2TUStaav5zgOXlgu1gm2 hrfPpqTp6ytPWrhpbjydxyRpWqI+rbkiokEki24iVMN04Z2eZNHf9JtkEkVlaO/au/8AiVrF 5phI0b9Xrlzprl69ukq+OZmYb4rStjiYhuNfVzDo0045qKyR9kLtp3NvjYyy8piPJMg6tkHK dI2tU4d9ZJmuNTHbA41e6Wuw7jy8qUjXzQPJolEuJmFEyuYjWwN945EuV/hhDZfj69bQdxKe zvt69/Ve706drShhHzHp/sNngRiJ8iEUEc5GfnGhtpETRKLMIkojUaz/2ak8EjXoLO2SRaIm +7jbdzxyrgu12Bn2Uau+eASLSdCNb3yx/3bQRopo5EonVTQSxF8XHtZsESlT97Slw/D1Ia/h cpUjhkSRDNKbSZSEfcTm5ZbpP1z1BxJVsIXuhUQVhGQzUbnrMDZTvOGM94TpnsrSisnsDdOQ 8oTE4TVctx7e6G6/f/OwdsskYb5n/nqRSVor9R6qRwhWobJaigcSVbg29Ok8msqTMJ1XGAKI AwJAAAg0iYCrI+cXYFJ6qbNPIQI8nTef+DueDjRHxnzPTQJ8CZUCiSpc6dwYeTqP1kW1fpmO 4aw/F+1x62of9BO75kWdndfCsS/xFT0c6yHlYvsQdyyQmnqUOl2zrn14FuAHzpfxPlEpRMne Fga9/NmnfkAgY03UHBtZ/sPn50CifAgFhvMicvqX7pOTk/5fkKhAADOiSSNRBycthERJXxgq jURNeMsgUdvbR1kSZboifZQqzk2VI1F2Ygf7iKuPOrFBogriqo9CSRqJmiBIfSMqCCJEAQEg IBQB2f7DN2LkC+dKW4oXNsrFOMrGU6gRR6sNEhUNmTuBvrCcvtCTssUBSFRBI9ixqLAOYMcA oGiLCMx3ppYFmI8k+cJDSFQYIvskUXv1HyBRYVYdFIsXlUvb4sA0bmlbHEibrjkYk5rOe3D6 WpBt1Yzk6xxs0zX3+3VzMq65fUh5w5ex5mX76Ty7HXrtWiWjOBfdU/UvbSdxVz0tbYERZjdm vj49YlvRJK8N+/CVT7r/8NUPSJQPoYhwqSTKLKI0EsX6i1s43MiaKJ8TnDeBx50kEjW3j7DO MKLpV4oqY82LzT6Gj1O2vXx2fTjAuF/8LZNEtfDhgQ/nvfgPlzWDRBVs53shUQUh2UzUXoeO NwOU3todOy5vqVNq3nsqSyoGpdO1iml8J7+WrceS+dj4pWs4T16r9pFXqq4DicpFUEsPElUQ TIgCAkAACBRAIIVEFcg2QEQsKYqNH6AComQjABKVDeEkQCqJMt8Qzs5eVoV6VBCZuqKkbXEw oSFlusZ03o+68/NX6lZqQemwj4JgBonaiX3UXtwUhOVSJPiPbAgLCACJKgAiiwCJKghmhChp naS8fYCeqtrQD3Z+1A1EW8YF+6hbT/Npmp3YR6MkCv6jrj3HSgeJikVsIb5UEjUrUrvj357a kjbc3Zq+gfrAPgp6jSVRgfWxkjbB2axsH+WyE4L3tCJ++LywmSsQv3IV1kTJQaIKVgNIVEEw k0QFNuIk2TUStabvsj6HN2CxTrA1vH02JUvfreyjnDkKwVsoidrKPnytLDccJCoXQS29VBI1 WxN1fleVSuLZea8rvfVpp4KVW0VUG/u8DJi5cZt/lPe4Oz3b/hP20CqRNp03lasV+1hG2rYP kEz7gP8IbVPH8fbtP3yYgET5EIoIl0qizCKeCSNRrP/ZqTwn2MI+Lz4SNW8CskjUZB/0crC0 mWJEY18lqpSFwyYYUu0D/iPNrGNH8GTahwsbkKg0q7Gm2guJKgjJuqK0cX0Re5KUm4dYBWcR mC4h0bx9GJ2ROPtYxQzrZdK8fRhFF2cfTS3gKmZHIFHFoBw2aKMjX6Qd+1IQgm1FCXMq/aLQ ffqVbe3AlXvzeMsmUW1WeoRWzduHbBIVUROiooJEFawuqSTKHGE43d0+UbHDzbFGkSr/sTqv S87aogkV9Ql7U/tE+dZkDEx1wFrOWj/SFfYR2xbj4/vXzKW271BdUuXDPkIRrhkPJKoguiBR BcGMECXNCU6kVYYTtO0DNBDtVq59kSjYx7p2Bf9RF+/2/Ude+UGi8vA7Si2VRBWEAKJiEJA2 fRBTthbjAu8WawU6pSIAe05Frmg6kKiCcIJEFQTzMogS5gT3tLD8MpjX2mUUbx9rA5abH/xH LoJF0oNEFYFxELIfEkWfgUv6FJwrMXVtQUEjiBLVmr6h+ki1D2l6S9OXjV+q3qH2H9XIK0Zu Td9QfaTah70qQaIKmvheSNTZ+WuiSNS0pkHaPi8X3fnZvYIWmCvK7gTnIwxq/6LeRmRc/jUv rZZD6mabUu0D/iOvJezTf/gwAYnyIRQRvhsS1Xfscnb+5k7yVNxmm62RKLuxz0nUhTqAuCXy t9xIJZNsCTjvxT7gPyI6u4io0u3DV1SQKB9CEeF7IVHxO1hHgFQ1auhwclUlIoRL01fqtKlU vWEfEY2pQFRpeEvTV2o7XDYtkKgCTY9FgEQVBDNJlDSnIk1f6U5QGt7S9IV9JLmt5ESwj2To CiYEiSoI5l5I1DCFIG86T97ZeZjOK9j8nKIkT+e1tWYO071r2Gt4HvAf4VjViwkSVRBbkKiC YEaIQicZAVZCVOlrGmAfCZUekQT2EQFW0aggUUXhTBQGEpUInC3ZXkgU1kQVNIpFURiOXwvp IR9peEvTl2sTeq9j18B5HZyXc2mCRPGbzJUrV6zaPn36tKOwq1ev9jfHY9LiA5IOBKZLT8dp dBmucJ98U5b8A4iF7uPxTOlNt5RLmr4HXFuzj8DO5JmKR3djl3vPxNZwDgVOqN7S2qM0fQ/m E9heQ81t43giSBRhROSJLnPoOHSX3JOToaj8r4m7LzyknvYyEiV1n6j79+6KI1EPTtvfb6n9 faLCzs67f0/tAySMRJ2fwT5CfG9OHLZv+I8cFN1ppU/3+lBZhUQRiHzbFPKNRNlGqELJExMv nTwxIdNHkJbCfSDubSRKKok6O1UkStJO66pDf3Da/n5LIFGhHqB0PGy2WRrRpf4H/qMO2iBR dXA9kuojUUx6iOjohCqUSJnTdOaoli88FIK9jEQNRETQtNihgoTp3ej0kt/eW8M5cHpAHN6t 4ey3jCEG9A5FKiueOHvm0ga21yxw1ku8ykiUrzg+EkUkhwiUGW9pdEvP0yRJ5siWL9yn/95G ouQtwJXaOKU6E+gd6hPy4gHnPPxiU0vDW5q+Uv30sh2tQqKIpOi3qZKPRJnx9em4kNEonSRR /Njn0Ka4l5Eo7BMVWuO58fCJci6CIemxxUEISulxpE/XwD7S6z4kpXT78JVxFRLlU8JHomwj Tq6F5ra8zMXk+jPJ9oX79N/bSBRIVGiN58YDicpFMCQ9OskQlNLjSO8kYR/pdR+SUrp9+Moo gkTxFgVUGK4QkChf1eaEY5g4B73wtMA5HKsSMaXhLU1friPoXcJa/TKAsx+j+jFEkChz+s38 us4Gk8l+9TQ2ArYUrssyR8XMMCJ8tK8VTxuS7vRbzs155sjwpSWdeX+rZ8/o7ydZOuv5MR78 mz7t6dMrJJx175TezzS9S+dj0yUkDzPOAWulK+kcUsalOGvYx3EZyDZgH756C60X2Meyf9yr /7hs9jGV94nqH6f+pj7NqZtDEySKi2h+eadP8+lhrk05zd85vb4OyhbHF25WgW16kUfJ9DBe B8a/pf6ry56IzrBthJlvah46Gbx377XeyHNk2dKW1NUm/1TpzWf+ldbdVZ6QMun2o8shXUnn XF3Xso/JRi66wUamrUtK/B2CZU4+tezDpndMWWAfYXYUg2mKncA+nmkv0uX7F91/nJ6qPdvU pfc7dalOPelNkCgG0rURJofru5W7SIvpkPSKcpEvnaz5oOad0/V/9UXzVAa+9V3Webf13H/N ndtz5TGmXAbzuUQZSshYKidvfWFio5epJE4pssyPK/TnFHmuNLXsw8yvpP57sI9c3G32cfVE ndJA93hSQ4l/c/W06WCrP9jHcLqGfsqG7e/QOt2D/5js5KSjdbeuwQhfH9xaeBMkSidESyQo Bzwb49V/84WH5q0bRmgD8cW7du2a05EuhfnkusJJJsst3cGx3Jp6l5ZtkxdbDh1THfcSuq5p H7HljrXBmvK5DkpgHlqHoXnZ7OPalavdH7vqbvuh2MI+jgmNz++F1tma+O/Jf1y7Ri8GzVCP 0K7dGU9ESUyCE8pgfSRJH6VyDSvGDjceT9dMx9Vk15RFgGtkLTcvfX1YriwzvUTZNXUm51jr qmUfpG8tTGrJrakzya6FNezjuHXAPo7xkGkfFyBRtZx+Tbk+MuQLD9WN5PC6pZLO1UYISzlu s+wsN5Ss+rDR5bvWrflkLIWznrpsk8zmyNcddy4mtUh2bfuw2UguFlwn0u1Db+chL24htqwv YcixXRvGMcsXQvK22QG1RdjHhJ7uU211EoIzv/Sbsx2haX12Z+pVqn+Z53vRT+ft5Wp6JMo2 AmUDPtdxxVbmEuEySRR1wHrHmfK33nj0v3kX9xSZehqd9NHvugM0F7Kn5GWSSsZPxypFLqdh +bymziQqObIZD9OB6WXwydedk/6FIne+vvS+8Nr2YeZP+bHtwT6GBbh6W3TVh6seYR/LC8ul +w/Yx7RIfbB19UGNWli+1I/G9slbxm+aRJUExldhPmIUootJCihNCRJlytVJg6+DDQk3O0K9 gyzVSfJeXybxKyWfHRV3YDpZCcFgKY6JR47OZlqdsOboqcstbR82sluKwLNsyfahd5K2eoip V9jHnFBxW9bJu/kCFYOxGdf2ElbSf1x2+5j7y6ezl46Q/rXVOJeGRK1VAdxAOb8ac/hM+EoN t+pvej3xu0ZmQXt5mG8QaSjqBLWUzromLP+PqS8ju2fDwcnHpDhvU7pSOuvOe1DySfdvXSnf BEvbB8ubMH3SXSm4MDTfPpbr99g+KG75T6tt0zWxrWVmH6oNXiuIsz7iRX+XtOtjTFuzj+Wa qO0/dKx9L/NLmsJ/xLaodeKX9+Dr6N1sLmuQqNqFPzun/ZZsZKR2zmny2TE9OFV6VyBRaVrZ Ux05UaVrr7O460l3ena3ChlJgyKMRD04Vesw6OT7CiQqTe95quNO9kl3fgb7KIWtSw78R22E Tfmt+Y+88oNE5eF3lNocJqbAGiNRBVW2ipJGorgQZ/0GbrZOMm8kqhreqkPvO3Yh19TBD2sa 2rnC6vf+PaVz4yTqGFNZJEofqWSS3Y6N+DWB//BjlBOjXf+RUyq1PjQvOVLbENBHo0qRqJxh 4NhaGqZqhum80pcus5R8lnO1nxobSNTxFdbJxpQ1VfejIXnVoZeazkvVJ6bMU9wLNRVUx3Wk 2UfYSNQw3WuzjzQU9FTzKc80mcdTNuWm89a1j7LTeTac6bdSZVrDf1SxD/iPtEZWOFUdT1hY SUnizHnrUiTKxKCUAyG5szVRPYm6qLImqqTzY0xsTrAkPiWxP7aPiyprXmpgfCxzIlElcDZl lJBp63h1kl06Dx2fHNmwj7m3h31MmMA+2mMDIFEF64QMXP8SgUSXJlE5DtpVVFPmMFXT9toR W1nO+71H6ow0mIQt1Wz0UUrSddC53FXLPo7lytznZQ37yCWwsI9ybSFWEuyj3Oie+RKzB//h sieQqNiWFhBfd4QlvoCp0THa3tT5N51EBRTXG2Ut/fU1DV6lmoigyEiBtUW18Z0TyLJromrr z/JhH3WNfqpH2EddpFk6/Mc6OC/nAhJVuBaO3yQLC68kbq7ztMakRAdXQkZY0Y/1Xi/fMO2O h+IpTfm1WmGa5Maiqd6nxdek5GrlTw/78GNUIgbsowSKpgz4jxqo5ssEicrH0CmBO/G58Ydl aiMBpkySlCp/PsIwveHErIlykRWXXvXWOAydZCyR5Y0eXU4r9PewWtViKSKi65tK+vR05vq2 JZmh+c3jxeGspzfrxtRXxzC2Hv34x+ntbh9Tm9Pbnz9/fwxz2qPrbWR5msVXxzafYbNpv3b2 GDXtY4lIhNpveLnS7MPlPyhfW1iOXafYh6/8up82/15KG4q/bn+DPPdL+lKfl2Kz9fqaSRuQ KJ+FRYbbHFbMRny+9DYji5FvK47NCfLXVyENJVYn2u2abtK71HTnoMN8oXao/hzPXMOmOxXC zhYeYyJHDmUkUbn1x4eQmjsDk14URvJJb/NswVC9S9oH46nXfaz9hOrN8aZOK88+GEcmNYw3 /0vhhDdhzXay1MH62+LQ2djaiMuuXViaZ9np8WLk+3UeOskY/6HL5Lpi/8BYm3Wp23TuWZ8l 7EMvA9e9jZCU8h86GUmpP5ud8CkEelm4neb4D70OB0yGl0e2SV97NkknPbNeepvkfLhsofJ9 +fvCQaJ8CEWGm6ybG01oRxmSXjeqWPkhTpB1DSU4ZoP0pU/tzF1VoTcaneiYjc+VXu/obIcN 58o3OwndqZSoPyZRpKf5YQOF6fUTQipNnGLr19dk9DMObY7OZz8++S79Wa7ZyfnksdM2iTbb l06izM4+Fm8zvss+QuXqbU0nUmZZTP8UKt8kOfScW39sH7osHVf9d5ueMbrr+ufYh41E2Tr1 FP9k8x/8W4x9mH2LjqlOksz+Jdd/2PRPsRFdL1d/avrq0D7M5wOWwkGictDzpNUrWnfcoVnq BmBLr/+WIt+lhy3fUJ1Nx2f7OlHv9E2Hxw0lxhFS3CXH69Ndz8s1EpUj34cz5Z9Tf4yn6bRt b8Q+LELCc+zD1MlmHznybfrn2oet0zbrq/SLgd5JmoQnpI6WOi69M9JJdqkviUvXn+4vTBJi YhH64mTik9u+uY5IV9O/lbA/V51TncXYh83fMqbmCyT9zvaRguuSzuyrUmzO5ytL25+vvYFE +RDKCDdZcOhoFGe5lJ7fjnX1YuXbimZ2BrFMPiS93ulnwHuU1Cx7jN7mm9cSLuabTo7+ufah d7TslPQ1Rks4pzrFkPp1ERlbx27qmCrfVw859mGTbTry3GkaGxkwdU7pcHS5ZidZWr5ONtke Y9phSKerkyiO7yIGPptY8p0xepttzvaSWNr+dP8fQ6KWbNlFolztOeZF12WHNpsxfZOZj+kz zClzl19lm0z1fS57AomKaWmeuOZw6VLDsRmgK72NVNkaUc7bsEkOYslCTHp9PVSMs1qCX3+T 5IYZ2sh1J2ibziN5OfJNZx+CVajuJNs1nUdl4TVRhDPdMXJtpCenM9Dt23T8IZjkNNWc+mOn q+vMWNJvZD9s04S5703ZVw7OLwdrkyCQLF7zUlo+d056hxjrP/Q2QmlJVx1LPZxtmf817TTF xkvYB9eXjYzkyDftJbb+dDxs2LDeur2Ztp7rP2wkisvh8rmudmLWv6/fjJXva59mOEhULGIB 8X1G7mvkZnp2UvpakiUS5ZNva5Q6UdPTh5AcM/5Sei4b52c6lwB4Z1EYiyU9luS61kQx7rny Y51gbP3pnTaVxfWFXkhd2nCKqV9f/en1rxORHPsLydMkkDGEUtfZnI7UbcTsKExbD9FTJyTm yFNI/blsh4kJ66T7Dx17n4417UPXzWUPFEdvr7ZyxLaf3PbN+nB9mS+zufJ1AlnaPnR7Zl9s rqtkPEPsz2cfFG62IRteLjs025TZD7Kd65jFyE+xf5CoFNQsafSGazM6W2PXxcSkZ0MyjSPV yHU9zM4lluTY0i99oURlyZ2mIP1zO0nGwDUtkyNfd3z636Xqz5Rj2zaA7SsX6xT70G3b7HBs Q/F6/Fj7czXnnPoz27ONHJm/xeKsEwhXp2XWc4zr0jsX3X/oWOfId5GeEvVnjpCYZCsWaxtu OfbBNmwb0dHDTKxjyF4p+7BhZ9qDbsusY47/MMvpWxdpxjf7RlM/s98z7bj0VLtpPyBRMZ5o Ia6tQXBlmo3MNEzXs+48mCjYOmGX0w0tms2R2hqWSfpMvU0dKdx0TrYOKJf8kcylhb7mm5yL 1Oj662lC5S/hnWMfplzTqbg6GVu5UzqcXPsw32xt+uqdMNcP20+oHbvi5dafbse2zszsmGxt NcY2zPZsa9+2jsWWh9ne9Po3RwJTSVSufbjKYsPBxFq3EZs/CrGdUPsw9dTbl46r6YtC5S/Z r+l7l/oD07+5/Ierf9Hbnykr13/Y6svUY8k/6/bsso+lcoXYQ2wckKhYxBbim41Yd0q2aQBf o9HTmx2P2YhMImLrtH35mR0ZPS81GpfTspXb1pBLdpIurH1lNjsZG46mnqlrXkrZh1kms/Mz 656fUxygzSGH1K+eztTHp2+o/NCmW6L+TMJhw0W3JVvH4NPX1knrLyG+lw0bmTM7RFsHYyNp Pl1tnXqq//C1URsp0bG2jTTE+r8c/0EvCZSe13DRv7q9lLA/F7GIsQ/TFlhfkqHfNqLq6wtC 7cUkUT6bXpJr+jXdjrkMOfJDywQSFYpUYDy9o2TDZMKjG6erY9PjcMPU0+sNwQw3G0mgyrNo PASv6+/quG3OypWe38hs5DBVV0rHTozl2pwuY2jLRy+DjUT55MfonmsftrxMgu7qFEs5lFj7 WMLXVp4Q+TGYh9bfEj6+lwnTpvXOLUZXvbPk9sK2q0+N6Zi66p87SZPc2Mge6euSH6t/SP0t kUwbljouup5MWFhH86UoRHefffhIJs802Dp1+s0nP0RHPY7uQ/R1WKH24crPtubWHLmM1VWv N/7b1i+6+hdbfkv2QdjoG7WW8nlL5QaJSrGKyDTmPie6YZmOzjQ6eraNfLicqO5MQtW0ESHf aIveuFLTkwzXG2PMm6ReTptz1p2bTW8fifLJD8XZFc9nHz5HYJZZ70i4k9GxjsU2tX5ttqjr w840RX4q5i77IB10526+8NhGGmyO39cuQvQ28fCNIIaEL5EWX3qfzin158vT5hfZNzK5tMlI IVG+9h3iP0JfFJbqwYezy7eHYGkjmToZo3CXn2HbN+On6svpbPnpWPteanz1v5Q+1geCRIXW duPxzIrXn5fCYou1JDdEli+9z4B94TYdYrAJKYMZpyS+KfnraVLw4Q4oN29TTqouS3r47Cel DD770Dtfk0CVxC5Fd508pKbXZdjqLJd8uOyzhH3U8nNLbSrWBl325SIeJXAx9V+SmRJm2kRp nXNsOafuSpcDI1GlarKQHJ+xm86+ULYHMWajdzkBV76u9KF6phq4j+T4wn365ab3yS8ZXlPX XPvwlTPXfnx2yeE2jGzkSY+/1BZS7dZH1n142dKH6hIaL0aHtewjRqeQuL42sxRukg1bfj75 ITrWJPO+8oXqFxovtl/xydXlLdVHDZsHifLVToXwnIoMabC5KuudSYosW/pSTiREHz0vH9Yp eMbID9G3ZEfqK2+JvFLsI0avFPkxOJeov9DyhMZzkbuYculxY/NNzcdFGFLa1ZIOofJC4/ny Cq0PX362esixv9x6XcrbV5YQchiKayi+KXaZUo6UfDgNSFQOeo60PkNfCvelDXkbCZHhK7bP EH15LKXPcSI+vUuQhJgG7sMhxfGkyFzSuQYpibEPW337dPLJj7UDV3zOh9dD6V9Y0d/6Lt8m xr61KCFtNaQcMfaQgluM/BB9udw5fm7JPlz+I6XsvvLkYuNL7wv36RdrY6H5mRjnYuvL15Tv y8/nP0JwKxUHJKoUkpADBICASARMBx+6ONz18YXeAbDs0JcKkQBCaSBwiREAibrElY+iAwEg 0M2+EA0lUfqXVq43bZ1E6Vjb4vve1lFXQAAItIcASFR7dQKNgAAQWBGBkJEoM45vusEkTDlT WytCgayAABCIRAAkKhIwRAcCQGBfCISQKLPELhJlI0vmgbmmLNeB0RQPo1P7sjWUZn8IgETt r05RIiAABCIQCCFRtoW2ro0TeXNCfTNRXrBuO5DXdbYmSFREJSIqENgIAZCojYBHtkAACLSB QAiJ0gkNx1/a4VkvmRnPdrSQflQKp42ZMmwDSWgBBC4fAiBRl6/OUWIgAAQ0BEJJlAmaayTK PMvOjBf6jEoCAkCgfQRAotqvI2gIBIBARQRiSJQe1/V1nvm7izTx6BZP++nn8+kjXxWLDtFA AAhkIgASlQngZUjuW9zqC78MGKGMchHQF35TKXyHVPM0G8fzpTfXQenPJIvIk755YGx7wpd/ cm0PmstHACRKfh2iBEAACGQg4BqJMheTcxb8u2uzTfN3fQ0UpbWRqAz1kRQIAIENEQCJ2hB8 ZA0EgMD2CJgkyjVNtxRPL0XMdB6l49EoluFasO5CCiNR29sQNLi8CIBEXd66Tyq5Pu1gExAS npQxEgGBSggsjUTZtjYwv87zpfctJNdJVMh5fCYMIFGVDANigUAAAiBRASAhChAAApcHAdc0 HSPg2+LANZ3nSre0T1QI6iBRISghDhCogwBIVB1cIRUIAAFBCLiISOgi79D0ZjzXc2i+tlGp 1LSCqguqAoFmEACJaqYqoAgQAAKtIbBEekLIii+Oa/F6azhAHyAABOwIgETBMrwI+NZp+MKX MshJ61UcEYBAIAKpI0ksfik9h+lxzHVSvJaQ5bk28vQVh4+X8cVDOBAAAmUQAIkqg+MupOjO Xv/bdOjmgam+cB0ckqunB4nahemgEAsI2D624DbDbcFFovS24mqfvKZKb0u0jYIpE5UEBIBA eQRAospjKlLi0rSFjejo8X3hJonypRUJIJQGAhEI+EaalkaqzClAerZt6OmbSoxQF1GBABBw IAASBdNYRIAcsblZoJnAF46RKBgZEDhGIJZEheC3NF0Ykh5xgAAQiEcAJCoes12nsI0S6SNN tqk4X/i1a9cOmJlTG5jO27U5oXAKAX1aje2dj3ohgFLDOS3965tiR0UAASBQBwGQqDq4ipXK JEp39vpbMztr/o0PT2WHbgvX982hcKyJEmseUDwBAW5TPOVG7cE8L4/E+sK5zZnp9bZHf9vC E9RGEiAABAIQAIkKAGnvUcy1E+axE0tnfxE2vnCQqL1bEMrnQ0AfedLbDLe9kHA9D9cIrtkW sS7KVzMIBwJ5CIBE5eG3i9Smo13acdlcI2V2CLZwXR6+ztuFyaAQkQjoI0/cZsw1TPq0Xgip Mr/WM19+QKAiKwnRgUACAiBRCaDtLYnujJdIEU/F8bSD/hZN6Vzh5popTOftzYJQniUE+MXC RpL4NxfJ4nBzywL92ZyCN7/eQ+0AASBQDwEriXqm8qN7dn34UdfR/dEHw+17/uD3u47u0Pim vMue3ofvd7/TdXRXuJj46Jv3mZ0AZUuLxs2RJp2IUbhtTZXp+CsUYTWRaucr1V4uDvk524+h 0b951HV0f/y94f7ex8P98R8NNz//ofqb7kO4GR/ps/BjfLke/IZDdT3Vty++uY+T2WZ84WZb sa15wgcavlpAOBCog0AQieJG/NXrL3Z0v/niC/391gvXj57N8K++8Gc6ujm+Gf4mydLkXdb0 bygs6eby8zPj88b1Tw0YKqzeUJgznn/7s5/puu98u4pl8IJx+tdFkjgsNJwUNafzYrZHqFLQ AkJzSNSf/IG/2j33/Kv9/fxzd/v7uU++3N/8/H3qb7oP4Yf4lGZIi/Tp+DG+zz2vsFe3fxos jkTpo038UqK/WKSE66PBPNKlt0ffFgoFzB4igAAQUAgETeeZ0z1ArjACnqGLJafud/jxupr1 rT/zlJ0u1Rdu6zBMvS/VFEToUFV81SFFgwjY2igTJ31012xTZhxdjtmmbMV2yW4QIqgEBMQi EESibB0mjyqILXlLiieQqJrkievWRqZ0x26LZwvnfaLMMLMKLg2R0urb1lHit2eHvZPWwoJt sUa70mXrbcokOfqzjWTp4byGiqcC4Y9bcujQ5TIhEESiajqWywR262V1kRjzd3NjP1+4ucWB 7Q3ZJGytY5Wq31FbwohUKoxV0+nVUsL3meRIf/mwvXQshXPBzS9obYSsKkgQDgSAQI9AEIkC Vm0iUMLB20aDTFK0tEUBpY8J16cD9fVWrrf1NpEvpBVIVCEgy4pZs1p8bdg1JWc7W8+Ggk9+ WeQgDQhcPgQGEuXwGvzzs2dPVaSlr1HMhZZ4PsYrFA+Odxx/aZprDSdpI0l6U/GFmwSJdNYP TNW/ANTlrlG2mk1+1qzGHw7tamx6NXWAbD8CwXa2JrvS1F7S77KM4PprETGAwDYIBJGogRCA RE1VFEqKOEVofDuJ2sY0plz1s+9suvjCTWJk6xT2+Ik2SNTWlls4/41IFEaYCtcjxAGBggiE TeddKO9h3TjKpYmPNPhKcNnSL5PU+Uigj9T68D0ON0kNP+vn4x3o4Hj2HT3r5+sthesEyTY9 Ya7vYFnBIwRxxa0Yu2y9VFQUoi0IxHKk2PgAHQgAgf0hEEaior3FZSNBpmHElt/X+cbKSzdU Ji483eY6YDgm3Jzu4zx400DS1rb4Nr0UW6X01eNWeiHfEARi3Vxs/BAdEAcIAAFZCBgkCp1A G9VnrIkiktEzDf6jjpYmgdLJDuXIX+WZx74wSfKFkzzbPlMhe97UKTGkAgEgAASAABBIRyCK RNmmfeRNuaSDtV7KOYmig0V0ElUad30kiNY46QtWiSTp4eb6pZBwxo6JlDmtZ9v1fD28kRMQ AAJAAAgAgXgEehJlDnCEDnhwR4h/624O2NeRGsXRiUhNEmWODOmHo/KXdToJ8oXbpvPM8rjW RcWbNFIAASAABIAAEFgHgSwStY6KyEVHoDR5csnWF5XbNsvU10TFhDP50s/MIx1w1hfsHAgA ASAABKQhsLiw3DxY9Z1u+O/t8cZzWTzeVbjS7cLXDP+w+/2O7pKXSXJsC8tpXdPSwnIzfIlk ke77H4VyrTXEGsSStpsrK3QEPjcfpAcCQGA/CESRqNsPb3d033h4q79vvTfcN9+/3d8cjuc0 PO4obOl24WeGf+VX/1YREmVOrbF58zSdPmqkH/ni2uLAXJDums6j381z9Thv21YIcpsdSJSE ugOJklBL0BEItIVA2BYHbekMbYQhEHpEhbBiQV0gAASAABC45AiARF1yA1ij+ObXfPsaZVoD QeQBBIAAEAACLSIAEtVirexMJ306EARqZ5WL4gABIAAELjECIFGXuPK3KDpI1BaoI08gAASA ABCogQBIVA1UIRMIAAEgAASAABDYPQIgUbuvYhQQCAABIAAEgAAQqIEASFQNVCHTiQCm82Ac QAAIAAEgsBcEQKL2UpMCygECJaCSoCIQAAJAAAgEIwASFQwVIgIBIAAEgAAQAAJAYEIAJArW AASAABAAAkAACACBBARAohJAQxIgAASAABAAAkAACIBEwQaAABAAAkAACAABIJCAAEhUAmhI AgSAABAAAkAACAABkCjYABAAAkAACAABIAAEEhAAiUoADUmAABAAAkAACAABIAASBRsAAkAA CAABIAAEgEACAiBRCaAhCRAAAkAACAABIAAEQKJgA0AACAABIAAEgAAQSEAAJCoBNCQBAkAA CAABIAAEgABIFGwACAABIAAEgAAQAAIJCIBEJYCGJEAACAABIAAEgAAQAImCDQABIAAEgAAQ AAJAIAEBkKgE0JAECAABIAAEgAAQAAIgUbABIAAEgAAQAAJAAAgkIAASlQAakgABIAAEgAAQ AAJAACQKNgAEgAAQAAJAAAgAgQQEQKISQEMSIAAEgAAQAAJAAAiARMEGgAAQAAJAAAgAASCQ gABIVAJoSAIEgAAQAAJAAAgAAZAo2AAQAAJAAAgAASAABBIQAIlKAA1JgAAQAAJAAAgAASAA EgUbAAJAAAgAASAABIBAAgL/P9zQ6v2mrqAMAAAAAElFTkSuQmCC</item> <item item-id="76">iVBORw0KGgoAAAANSUhEUgAAAIQAAABdCAYAAABkdc5AAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAYVSURBVHhe7Z3tkaMwDIZpYPvYGtLF NkEf1wHV5Nd2kmI4bMeADfhLL1lbVmZubu6GKLL0WJYNEsMsH7HAzgIDS2s8x3kYxvnJcnCU Qb3m6THMj+l1KYQZEGbAwygohLB5TY/LCcMICAXDYw7AT5laDL/7nMeTKMoGiOc4zPHAYCJI /Lrg/DJRaDB/QuE3TtE7okFkqV/LlPea5sdjWr61fXgAoXKGqJc3Y0UvvfSkvySpWVYKBVLW DoZ1cGm6qeVjDzUDIJRhwwmkWTOXGb1cN1IihJpRg7csKRi9WRaPDGoyA2VpHkrluUtH+0Ao Q0Sm/Gua3jsO4pJx5nztiIIdDVKWAoIgT00Ya8LmgdgPJj4zaUDoSONHg7OZGVdkmdA4WSZA EOTtJlXjQMSXC9c3AsQ5q5sdGwdiWf+y1m8aEJSwfHAEIcSfOpUo7zma3KhtIBLyB2SEMImb ly+QkkqQrDWpLJdnl14BImG93y5BbhWRssq3nXZsbIAYs44miUuGtl7m4U8QOKQsmm6dApEV Drq6WIDoyt3xwQoQcRt1dQUPIH5/5u+f364cd9dgf3++5u9/DLadeUnlXeZsXy6PCLGcCwgQ GBgFCIwd2UgRINi4EjMQAQJjRzZSBAg2rsQMRIDA2JGNFAGCjSsxAxEgMHZkI0WAYONKzEA6 AwJ9m3m71Vz+SD/tdvU5BuXj7AgI9IMoriPLgUDrRZPXDxDF9QoXc7DGGg/NaGldhhlnP0AQ Hz71saiyxkMpSRxnN0CQ6hWC+RrtcTy0XlR5AoRfkpedrAsQ2Sa7/Qspt7+JofR6DDQgqCH+ oBdxnN1ECGgtheMFIhDIGo81qZS6jIQHZGjbsdsihH2cP7N8P6bP1hYhrR2AlddPhDCbKmCT j9WElTUfoY2zMyBuz2aa/wEBonkXYgcgQGDt2by0IBD6kGNpwVN+Tv8h+6RsOz+kSus/EwDi nZ0uLf6Keid90jICBMza10DYLrCFrXJgGqYIEiBSrJR0zSUQqt+jaVMXb4Ob9EuXF+Xtk0/F CBA0F+y+fQ6EFxVMLuGefoUbhBonmxaAbkNMmOZ7QQIEzKynQBzvmBkH75PLayDco1wtKzEr VTJtZ9jD3yEZAsSdQOxmt53lJ7NdAzGqbvPGiZu/vN7Jpf0bc4YoQORYK3jtMUJcvVJA///W vVXPZrsc7J1+6JusAElrRi4RAubXYkEHILRTTsOzm1z6S8b678Pt13QgCKNIuLlVLL2rL7pA RLaY++TS9jO01lqByI4Qssuoibjio2s3QuwTSckhanJwri4kINalxUkc3aUlZ5eRq/x6fXJS ibz9jZRlR0J82GZp7Z6ar13ZmgTEtsvwk8YazyGQD8ggZbkw0O4d/SEQxbP5ji+mRAhivYKj NlKWOgtG1Xj8ZYS4w6/FMlOAID586uiGlKWBAL3HQ4B4uykBCGq9gntSTngnRfhYiPg4nr9k 5C/dxTlE8Wy+44sCxNuqeyDKbiF0AwS0/gG8ZGxzBLnLKNv+9wMEsv4BKcvNVnFLRvYBoVGk HyCg9Q93bDu1O3BAFN5C6AiIzeB1vnwVDIREiOsXm9+Rx9YvU3KI+n30UQ3LbiF0tmR81CMV /JicQ1TghLZVkAjRtv/g2gsQcJO2LVCAaNt/cO0FCLhJ2xYoQLTtP7j2AgTcpG0LFCDa9h9c ewECbtK2BQoQbfsPrj0PIOTNvjAw5M2+MFPyEMQjQiQ8U8nDXfePQoC438ZN/UJnQCDL72qV tecv/5E8NkA8ol1qkM9B1irrCENuaWA/QCDL72qV9eaBUhrIAwhVwhZrboaspahV1gpEeWmg 7fsxNJX5HJRVIdx7R4R3Ta2lfEi9jj7MzSE2OzYOxFZgcgU20vC1yiIDoZbCdy7WPBD6jTmh xLLWMI/U6zRypvcqt/mDEtM+ELrqKbBsIMvvapVFAsK1HwMgFmuo2XYZJWrdKiL18olIzyFU dDCtrM2HBxCaiVCIrPUwCalXwcHUoeyPERCmYDatUWrbOyuU9l7JH7cIYcYjUKThcg4DqyVj M4QNw+HziTTDcbsqbhs2OQQ31/3VeP4DZZs0163leBkAAAAASUVORK5CYII=</item> <item item-id="77">iVBORw0KGgoAAAANSUhEUgAAAQkAAABgCAYAAAAO5IdCAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAArqSURBVHhe7Z3pkaQ4EIXLgfGjbcCL dgI/1gOsqV/tSRnDIk6hC2XqQGS9jujY2RkQykfqU+pA+RrxAwWgABQIKPCCOh4F3v34evXj u6JA72EYPxWf537UZxyGmlbnMxj6cbSc3nf3GrvB73mAhKXrItqrr9tQPkM3Vn6k36MmQIac huOKpe+BfmkKK/18nSIgcdJWAaIbA1BNexO+uz/D2Fd86OdzHa98hr6+Dlx1oR9XOeO+99g7 omdAQpPp3b9u6c1LNsizTWZoqZzCA8XKDe94DYE6eZqCTP3WiPY1RbXTb1pkRyhreu9ddx72 AhKb46k5iFviffUCy8x9zCHkySbH+NPhFIskU2M1nCVTd5W5GIn6mUNeBU4uKOhlKb/RoQRI zC4b4WiqMa1Uf1mN50xq89+X8d7SI7zMnjvUSPV73ur5FJiYoaNRRw0eKtqwe6qyQy+/Jnok sf55tv2L9Jt9zYjwVCfGgTarrLPvABIzI6aXEowiFpIvl5i9sT3RqRrd/kLNVRLX/1vPdg0L VCOJh4QdRbjqvnbqHgcsNvwKamJC4mz3Sds54HFFgA/Xz/U+5sYe//73cI1Zlj4RDEjMjLhY WQgthzpfngaVi6VUZ2N23OOdfXY+37es5ft79zyAO8LIMFoIamJD4sRQ416J+s02mVGDKyKI eBXssrSOE5CIGGo4hdbnMjzDjyWEP4f5ZtBgjv+WwMbnJEZPMjcYV4ShRz66J4XhEVO3CL+M uCSkCR0S5lDp6fqxG7ZDeX5ZxxAckIiYoEuDhDZvr4YhxryEqyeMcfI57FbjVudchW+FgBZh uAAWQYBpBLDZ6fivQaLj2m0MToeEOeH8dP3mIZQzkqg33FhGcss7ASQu5yPWca9vPHg13LBa 1bmhxobLs+O46kB6Pi2SKDbcCGqSDgmnVk/Sz/VOkyYuHRFoxCToNgwHJGIgoaKNfeJyHQ7s PSJx4tIcWwYm3o4ecnl+PCRoEcO83OnYL1Ft4vKkCQ0SoYnL5+pHX7b0R3j8sgCJTdXYTUP6 EqjVo4eXQM3w+7x1wd68slTNGLf3lEjCBNnhQvvSo14JZy9VdgnUrwkREt4l5KfrR9gAdTkG 5JUFSFAhcfkiuBdE7NHYlvqihxvzDf7dlEZVvfsk+hY+OLvSFfpdKcT9d0CiGUioXj/iOwnS mHqNRawdl87pb2sb7hLI1P2ehOvIS1WhX4p+vnsBiYYgoXr94eoDLwYktiGLf5+YP9qIangl PJNVJvRjyXZxEyCxCfT3O/78/pXQmFTmZzpLou7H6aHqRTQ6knXlL4Z++TX++/03/vyHJdCG wupWPqiKHOPn98nEEqFfooDW7Ygkmhpu5H69KA8KpCsASAAS6V6EEkQrAEgAEqIdHMalKwBI ABLpXoQSRCsASAASoh0cxqUrAEgAEulehBJEKwBIABKiHRzGpSsASAAS6V6EEkQrAEgAEqId HMalKwBINAQJpKdLc2jol6af725AohFIbC+izGsmlor0fkTBjMsfqF/IYECiBUhU/hwb6f3S GCBOvws5AInskIg/5OV4dMQ5CEy/fl56P7qhJT9nv18/3mlSbhV5ZQES2SFBdfJyX1vah+s6 zrxEej/vC7tfP/65lLZR/LIACSYk9jMirZR9SE/nbHVIj0jtPZaMcrem+VuqDEhwIIH0dESH R3pEomDL5Y3k3QAkckDi5AG0U55j820skYsjKcsT0vshPSKLEf7kQkYS4YjSU8oCJDiQCKbs o0NCWno602edDrpd5D3Gf8tw/r3pEVMadtQ7iMwrCkiwIHG8AqSnu+7G0iAR0tqdV8TfuI5I rOX0iLvFGG5cO1fVK5L2KuirBvRIwsxh+fj0dOaLSxluWE7wRekRkeavKgKuH0aBhOn0SE93 oS/SI147oOsK/rKlXRq/LAw3mMMNpKcjuj3SIxIF2x1zHLojK7s5f0UrFJupaHrZMztjf5UY J+0JnrsjN1ORk/LE7/xEej/HqtHXpEe8duomI4mYvfHXphGvoAw3iEVfXR61rZgMCX+y4FN9 fDsub9TjSi+b7xHb2qEfVdb9+iAktl2F/vRw7OdqE7iv8Sjf3DYc3xsm1+TWRhGRKYvh5Ejv p3kF9GM3kQAklsmmrps28XRlskqn7Y1n2+y+8VZIqF4f6f1S3ij0S1EvfK8fEht5Izdc0Kuo IKSPBc+TKvqyoHvMTH9i8I6bIaGSBfeFYExTKnKOhFZohauhXymRvZA4Gqbjy8EMtXFuR153 MlozuM5deXol1qgnZeLxdkhkEBVFQIECCrghYUQP7u8Glob5Ur++HtD5XYGywgce399XmJsA JAq4F4qUoIATEva21vNmGHNCzP+RkoKIb3lJn7DcpAzDI2YC1dy/MENs+w0VAEhI8GfYUEAB ByS0CEFvYKeIwZhPMCKG8L54ZYUvMqBGGBkVASQyiomiJClgQ8K3VDT//fqJqrW27mn03uGG GZkgkpDkVLBFlgIWJOYowBmWa728NZFIhQQ1YsCchCy3gzVPUuAMiYvlzn0CMzmS8O8G3I+F 00GF1Y0n+RTqKkwB5rbs8JzErpF3uBGal7AV/o59EsI8C+aIUYAJiYhv+ueVTnWQp2t1Y9HP vVfC0NZ7mnPmd4CJy8yCojgpCjAhsUUC3H0S54lK/8pkhbmIvSrDTV+BSnEl2CFVgQRICJME kYSwFwpzcikASCCSyOVLKEeoAoBE85DgnSYk1F8JZknTbbEnZtexXySeJoBE05Dgn0tIaE0C L5Wm29G4+ZDgawJItAyJnGneBKLAa5Ig3fZ9Q10/HSWQEEkkaAJItAyJnHkXvgkSgnQ7DtNJ HG4kaAJINAwJ+2vcqbLFDgGSQxGZuqVBIkUTQAKQkEOH1ZKUBtGuGIDE/e+mxX0SCSHi/YLe WAORuqVBIiVDOSKJhiMJ57b2y4/dbmycrTw6Z3q8VmxaT3Njr24kaAJItAyJLXv57hkZzvJs xulLVoS/3FeyVmllJ0YSCb4ESDQNCVU53gaYNIeUcLc03VIhwfclQKJ5SEhosLDhyQoAEoDE k/0Xda+gACABSFRwMzziyQoAEoDEk/0Xda+gACABSFRwMzziyQoAEoDEk/0Xda+gACABSFRw MzziyQoAEoDEk/0Xda+gACABSFRwMzziyQoAEoDEk/0Xda+gACCxifz3O/78/lWQHI+AAs9S 4O/33/jz3zi+nlXtArVt8VPxAmaiSChAVQCRBIYbVJ/B9V+mACABSHyZy8NcqgKARPOQkPbJ M9VFuddL0a2EHbTPzgEJDRId+9gfriNf3Sfx8JQrm3P8uxTdSthBz+EBSLQMiYRcCTma2mPL kKJbZju4OTwAib0lTEfDdcN0DlRDPyIPdK2grxTdMtvBzeHx7rtxmBoGlkDnY+L68V3Bh2Mf IfNo+Fjr+ddJ0a2cHZQ5iaNdABKTT25hFd89895Zzkny1rO10qToVs4OAiTUkGedqwMklKdr gjTh+JnDzSZsqlEJKboVsyMeEnrHCUjMztvYkCMhV0KNttjsM6ToVsyOWEic2wMgsXm8oncz S6EllsCabdoZKyZFt1J2xEFCRRGdmrFcfwAJzUXffUKK94yuvhRVYjNN9ko2WKAU3UrYEQEJ FcUYq32AxMnNlYjLsg9+oMD3KaAyxdkrfYCE5QkAxfc1Dlg8TpsAXIBQygASTv/YQr229k/A laFAfgWufR2QyK86SoQCohT4HxVytgKgRnMsAAAAAElFTkSuQmCC</item> <item item-id="78">iVBORw0KGgoAAAANSUhEUgAAALMAAABgCAYAAABWvkNyAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAgCSURBVHhe7Z3tsaM6DIbTwPZxakgX aYI+bgepJr/SSYrhYsyHMTaWyCsSnHdnzuzOWSNs6UHIspEvLf9QA5Vo4FLJOPDDeDTt5dK0 D7xkStylgVd7v17a6/2VvZowr1TjlXZpiPEu5owvet2vWSdDmBfKdyBf242H39hUFC/TwKNt Em9Nwhxo79Fc2rJD9p673G7LLIP3v3RvgO5n69UpM27YylK2tDcONmOn8Lq31+u9DYMOwjza x8XIRUJnUIpNs3aPwxhneBTQlrKlILt2B8Dc3cWFHKEjIMy9jRwE25M9H6t1nrRr17zjmZ1H ib2We5AiL6NBZ2prKVvVoWNg9g/NbDfC3LPcAVZwta/7fchsvBlmpMDtIQRkTixlfyXM3juP piPMw+tKHja8B3Pv4WMvnPKoKnh8Y0vZuu5Enrkfn58fuB+5rgV3DRwRYRaEGEuVEuYyYiHM KbCRk8M5RCTMLu5SxavvwdxahgKWsssEh3mhOZuRmFjLskbyGz4a/3AQZkG8jPTMfXwex8fQ CWAUe6Nky9kqZDPwk8MxbibMR8PchzXhCuMvpebKS9KqZ2ZoTJhHrXUwN6olvzfDjCkVOE+I fmPRBPnQRu/KIaNBz6yGeY/v+PFrhmwGNIsRqJSeebdn/nEwtcM3BnlMSboHhZ6ZnlmLp6r9 tHIa5JnRuWZ65tEkz1v7d3uqDMTG36WB5+1f+/cfPXO/lK2bAH6XIdmbeUmbYQZhPv3zwDCD E8DTQzyb0G82omemZz491PTM9Mynh5ieOTYhPfPpoaZnpmc+PcT0zPTM1UBMmAkzYa5OAwwz qjEpY2bCTJir0QBhrsaU9MyEmTBXowE1zMiyV0hZUosgvpCR3mtSrv9EzKQM2dwXemYVzMjv 9pCypHAhyopJ7xWBPH1ews+mtBrUt5esACLLXiFlCUYLKysmuNeiyYHjpGfWeGZkPQqkLAFg sLJignstmhw4TsKsgBlZ9gopS8fXsTHzkeMkzIRZ9ywoWxNmpcIgzSUxM/KVCZTlylyNmYLV 36vv+o/1zKZlyCLD0zMrPDO0pJZlea7Np/tgmA8cJ2HWwAwtqfWJ1Jwb7MEwQ3W2/Q4mzCqY ZxgwCwBcNIGEiIMQwqyGGal+ykJq4Cthfr3yBxYiBx8n91k3w0y7hwjehHlcNbIqdOdGuCw4 HZc6xdfwzWpVks04xCS8yV4NbMA8rKF3hztCTkBK9LB/WBZPSqJub+Kct72D3Z7ks6KRiV4P FJqHeTwzGnRozHpM8emay8lQCLnz3tjaxckni+W5DgTP4lZZmGeA7Kqcrw+PzNyreIQBYCcW wwwLvg6VmYY58sY+ds6cT5dKihePyMo9ILnfHxA7E+ZDwbO4WRLm9Xq693yriWAfiril1BB0 yRFZGXlDgn0dUsgT/bql3UClhNmCr0NlJmD2oCXX+oOjxTw03VFVj+jUJNERWTlPq/XYQF0R ZqAyPyNqDfM48Yv70/8+cQhhKsxYXJsCl575M+au+64rmHuPm0wsZ7zmJsxaT8uYuW7cbEe3 hLmQhktOBLMwb2cY1jlmP9Dp857wgWI2w5aCSqS/v5y9kc3YXjmUZyiYZ66ENuNh4GFWHJGV 886LMXMF0BiB7xL/zr4cOMxTmCA6IquUcpN777dNIs5mWGzbLOlhz+gs+rmnH/lr0Pty3ocZ O77PSRPBbLGh3qKWhUU/saax2JdDmEcbSWAG14CY3mLXpm26ij+w3Yngfq4xDtciEmsNRe5t 9uUQZg3MwI9Qfebm3naHI7l/9eWrYDCD+7lkM7VNN14F3qY5PVfauy9nvhdhVsC8XubviWyv qcWkoncKG2Bhtutn1+fEotoqZbu5N0e79iCfNxFmwqx77Nyms2Bbg3+xhFsaSntz7FZ/CbMC ZrsaEFjPbNfPYVFrC+bi3hy7fTmEWQOzWQ0IMMxm/UyHGanQY3b3Mbz0zKpX4a7GkmyGWQ0I MMxm/Zwnq/P+nTGzkdrvnoqPGTPv4lN1kQjmwJjQwtlomK36Ob3GFsXDm8btqIxhzu/Nwe7L YTZjzbkYZtUj8huN4wxHcUuDPEOh2ZfDmFkTM/8GmvpRhjAXQfbiLfblEGbCrIc3viKAWb43 pxRayb33bMJrv/B0eX9EJ5fAMOPkBvTenjAPiX+W5zo3z4SZYca5CQ56T5gJM2GuRgOEuRpT 0jMTZsJcjQYIczWmpGcmzIS5Gg0Q5mpMSc9MmAlzNRoYB/K8tX+3Z3XD+qUBPW//2r//uJzd f/rDFcBzo88wg2HGuQnmCmDCfvTMp4eanlntmZFlr5CyYhYtZe/lvrTtc69cfx1hDmC+Fquw IMteIWVlQJ7GAzjA6D3OHGrTp1ZFNe+8F2HWwIwse4WUtWI5UZimWON6J0GCy8zKkEX3JsyT QjrvFdeDiA2FLHuFlGXZTwGspSZmZciiGz8af0wJvzTpX4OZ4+EGpSHLXiFlrR1zrupQ4kya EonQ/7eMmWf7EeZgApGzHxJApCzC3BuvHec8hNlPhyeFJIFGhgZIWV8eZszds/PMY7zs7kWY e40XQg1k2SukrOQEMAqZPjgBtId5aTfCPGo8UfgvNkZcmmrfIfW/lpobnQWwDnUwlwltQJgD 77Y8a2Pl9halqfaBPMq0XNiwlL13VmgQZiQOcCLMC/s4pX965r8XmF+6Lj5Owo+dMK8YINDf /VikQSbMWauNr+rt/PN3G7223pVtQs9cm81/eDz/A+n8RsVzzdoqAAAAAElFTkSuQmCC</item> <item item-id="79">iVBORw0KGgoAAAANSUhEUgAAAKsAAABdCAYAAADaI5YdAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAePSURBVHhe7Z3vkeMsDMbdwPaxNaSL NOE+roNUk0/pJMX4DI5twGAkkDC7+7wzN/POHZGw+FnIEn+GCf/BAj/EAsMP6Wf7bj7HaRjG 6dle8x/V+J4et2G6Pd7J5wesB9MsRhtGYHrFW/N+3JJOArB6I2JAvU0nL/cV4/cHdT6nMTKr AVYHhec4THmHunjefLszxj7ee5g9+PznbOrLkyopK6/Nb6Go+/2YbrfH5AYFgHW1volRswTu g5Ntmhz3MMwwXqQUWElZhaBuhqh5jrhuExK4LzJgtXYyg37+MbXEUrMnnNuNNZ7VeIwhCDXM ixJ4ERI6krJICp1GTXT74QBgtazOAGVc5fvx+GQGKsOAGJh24AsyD5KyuLA20m2cxDo0gNWy uhskP2Z1sFoPHXrRmJfKd8T2W0oWQZ3/KdpKt+NIACshBIh9VJTGrJKAScrqFlZnfADrPLmP rHixzrNOktOnpCwurQ11P8clxgeshHhV0rPa+DiMT6s+sIJYt1QWF1bJ58joXsM0wNoaVjut uRWympSPpCw2rYLPca4bsK72mWEdWSWryjBgS5UtBQEUBfIvCWAthjVvXLSQtQBgBayyRClK A6yAVREvWdGAdbXn6z5931+y1oU0UQu87l/T9z+krmyplfeBJToOEEawADwrwgACJn00AayA tQ8SCb0ArICVgEkfTQArYO2DREIvACtgJWDSRxPAClj7IJHQC8AKWAmY9NEEsALWPkgk9AKw AlYCJn00AaxsWDX2yPe23JALp4ZNjn0ArCxYNRY593YGQSGoiucG7EO0bOjETgHK2gDhPfJd nkHAZlXw/IOMbnhWjmcV3hzX5RkEXFiFbXKmHrAyYNXb8lwXs+r1K09uS92AFbDmiTxpAVir zFf4Y0rMqjbl1XlW0TMIuOZTswmyAemhoMCqtke+Ela1fhHIbagbYQAjDFhOGZTa6++CUAmr Wr8IsDbUDVhZsJrGGgnwWli1+kWBtZ1uwMqGlTqAaCdtAcAKWKWZUpPXJazvd/paGUVLYHer mnFlBJ/CupYDS88gpXTRv2wivAPJHFbW6NYUSjaA8kBoo2aBE1g/p9rNV+wUnXNP6LJ9Gbw3 IXJhV+S2DoJofhPAyrdZ41+kYV1v1is8Ojz/HOEdR/5Xtgux8b511+7ke4NDLgg2urhJEtYd kPz1hCXPcPSqewrkAGb2YNyas00/vYdnLRnGpr+Jwxp40yV2DU5Wtm32s0W92dx65fXfYreP pF6A1N83iF0Ba1PwSpRFYT0uTlg81w5kAI8Ld1B+i3vQUN6WP0pcMktPmpsZYX9Rgv8/+1IE rCX8NP1NBNYFpOiArxdERG7hS14hGb3bKeUpuR5X0FaAVdCYOqKOsKauLLd/n0ojpadpeFad gfuLUg+w2mk0Ol0yvd4W08YAZ8oy1/5o51vhWbvn34c1k6Y6fmhRvsLjoMU97nLLnw1B3BcG 2YDuQWrRwfJy68dzUqpb8XiW7i2RZ22BQhsdNaX0MljPQD14QW48GxituwqW5BJBSVl+RoXi RLTxlC6lF8G6TdVB1mA1kP/vZ7X9XEqK7n2rDU+KWSUXX0vK8kE1YdTVsGqU0otgrQajRwEU WCXPDZCUNdtzcxC3cb6DthZWN305O5sn92p5nVI6YN2cEuECDMnNcZKyLKyPOWeyl6zLPWts 5ZvJu8cqkXGvI1tK33UAVgasx8qepWQuO/OXMUrK8pHJhVaZaS2SZz9kgU7L6XppScAKWD16 0y/Rx7Nmy+l6pXTAyoBVdH++cBjgTJZ2fUVpGJCFNXTMh3K6XikdsHJgldwjLynL941VsNoX MoxPUyX49cPOX3IXLHryMxXHdcn0sAWwcmAV3SOvkbqS+8DaK4hrZiC1RDSM1xGz6ie7KKkr 52t7XZVWt4Oh16KA369xjHjbbUSO075sKR3ZgCP8ZFj135vuNJyEAaavx3I6vZjDKaUjDGCF Ad1h1KZDLqzEcnrKuwaph+m2rpEmPAlgBax5TALPSiun5z6c6N53HyIc077YAmFAHtqLW8Cz wrNejCBdPWAFrHRaLm4JWAHrxQjS1QNWwEqn5eKWgBWwXowgXT1gBax0Wi5uCVgB68UI0tUD VsBKp+XiloAVsF6MIF09YF1t9bpP3/cX3XJo2dwCr/vX9P0Pt2Kj3NocPb5CeFaEAXxqLvoF YAWsF6HHVwtY2bBKru7vVRYfpOUXuWWBpXI/0udD+8x2r6FOzC/4tdnAl90SKrlvqldZpWO5 v3hZMxaqgGd1PGsWVskjf3qVVQCS7NFF6Q4A1s0288r13BYLyb3+vcoqglXq6KJz5c9x2UmL MMDGW+fnOUke+dOrrAJWnZ9oxqz7+ABW83nwCeBTA9YrYJL96hZW55sCsNqP2cxHVq9Tt2S/ qmjV86yuIwGsW+rlJBSQPPKnV1ldwuqHaIB1HaTIHV/7+PWabpLsVw2tOp7VeFX35BvA6oxR 8gI6J/Hd3/FBkgWGUmAVYI3cKQFYvfExRucfEFw6xPhdygLhce9LO8B6sBeAvfYlioMKWJOj sk6t9PP0rx3g36A9b3N41t8wzn/kGf4DmHR998bBFQEAAAAASUVORK5CYII=</item> <item item-id="80">iVBORw0KGgoAAAANSUhEUgAAAWoAAABgCAYAAAA0NDgxAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABDVSURBVHhe7Z3hkeMoEIWdwOaxMTiL SUJx3GbgaPxrMnEwPoEsCVAjGrqREH5TdXW7O1IDD/hoGgS3N36gABSAAlCgaQVuTecOmftu BZ7D+3Yb3s8DVXg+Hu/XgenRSb3ej8eRpdYrMPQr0XKs7/vtfX/EWx5AXaIr3qmswNRwb8Ox sHo97u+Dk4zrOA5Sex23cgUUmYd+RbItLxn9Yo4JQE1pe4InJ6vio95Oj/zynJg07u8d50Ke BGXh9XgPByb6eqX99tdjOF6HUnWhX6lywXvP90DMIgFqT6ZzPDmlGj7MzN7IL83Ec7id4tXW hKJfpnCwMx0zMjAdDL+17nbyFKngPvX78OA2zu7G/2QznAxbY73f734IDqBeJx7neHJSsp32 Pj3yi7JjZjKnxB5MJ6oTC7eDmlcmYlZCdMxJx1HjoMOK9K32co/6hU6bae+lsM63ZdqNOzAA 1J/Gy/PkJsFlLMkYWZMdS9OWSSzTXhQwyYwTDzA6u0nv493cNgDz8x7+fpoFTJ7RLfRg90Dp vvM06ecAPRzMgjw6Dcm0v63HVjcMFNfE9ag/f7Zl/yL9bFsLZjrGkSgZOIts+W0HoLaOC8eT WztZOajzR9Y48jRtOZBeCsfzIMKRvwTR9h3TmHeFnfIzPRJ6pduQlQHf0qnCNQfq75u0qRCF ARUf1Ftvmsr74imQEOA5EAWq72oSgtovt6dttP9cXD8Kyha4/PpfaqXQlrs4C1DbTr8v/uJ5 jM8NEo+6aGSNBgX1RvwZlEUehE4IJLljYG+Bl+xADtgTi8MkUIl3orF5Mv3Ywmvs3+m4MO1p F4A5fGVXky2ovXEseLdH/WyZQu+Z6r+Mqii25TgvAHXSkzPO3uOzl1cY+igcWcm2oGlr9orI hpn2IJKQTTZm5mAZm3aSU1IXiH7IIXSeqVlBvHMFelhoUZ62OwNwBdgHOCdvSTlZD+xpkg/q MGxzdf2K4UoF9Yqhv/aLrwd1HmRkoG6j8uleLMobY7DbZ0d60YzM32w0Ceo1dTttD+LUlEfI Ac1ka4xjkrHr2M6JPE+7NLS0lnMur/P/YDTYapIP6nAR+Or62XBooeOyaesCW89hipN/OajT npwvOkAdwXwyfLQLag7oJaGPTeI+LLlTd9t5qRhlKvTipZ/nUVcLfexqIgc1qdWV9KPqVLSY SMzEGAuTsyP55aBOe3KaoG5llK4RSplHftasO3yIA2qzVW1ZTDThKHfbW+ZiYhhrJBeT6cVa PqjzPGe7FY/YT33YYqKnSR6o6cX4q+unuVhfbgugnhfQsrZwyDxqu7Mh9MhOGKVJmArzlhdC CnLA/bDD3Z638WyDrW+BtxKGAvytzdsPDKYcBnHcIcejDgeTtczL4rSbiWj4pt5XmnFNMkEd 3d54df38/B/2wYvTPQDqM0A9d/zMLXDxcIN7HgZvO13c4y0f9ScpBedkcEFd5K5zXmKGwLKm 7iZd/hd+0X3UQwuHRKU0hH4phUp/D1B/QJ13voPQoya8tDNG6SSsCz6ZvTaozUDDOFcjG9Rx r9oPW0c8+tMHMD5eoB9fq5wnAeoiUOdI/F3PXh3Uxvt9pA5lKgD1HD6JR9jiXjcLfs00M+hX oyoAaoBatV2JQP378/7786uanxJj6375kre132GATztJoT3oJxSQeP3358/7779v3553oaml fhPQtSgCdTP1kLsLSFfD1Roz5lsr+WK70K9YusiL8KiNMI14ctqVe4a9eeQvSrsZUBflHi9B gWoKANQIfag2rj48alVJYAwKiBUAqAFqcSNyDQDUqnLCGBSwCgDUALVqVwCoVeWEMSgAUC9t ALFRte4AUKtJCUNQwEHU9CHZd5/1AVCrdQmAWk1KGIICALXXBgBqtS4BUKtJCUNQAKAGqOv0 AoC6jq6w+t0KYDERi4mqPQCgVpUTxqAAFhOxmKjfC64O6ud43dp4kcbJP+MXiQ97e+/lfqBf nSqDRw2PWrVlXRnUoryrqjgaGw9+kp2oqJ2htD3ol9ao9AmAOgvUmgeIz1XW2pGpVpDxSq31 br0cYIg665mLugen/Xql/fZLnZoH/UoZzHoPoGaDWnagPl0bKxCzLpjxjGnnS2avDVDzD+pf hkvOOdSsLrV9yL9GK7yaayevB8OvsHj2tZqDyvn6lTsuW03LbAHUXFCH9+uZ90qvz7INe7zr zxzMfx/ew+i9FoNaOV/TNWHBtU8Z5WwD1LnIqXdKna1n/74vO1vxZinRK6xaOYUupWfP+skc F1+5clsANRfUgqveqWa+ntkrDH0o50t68e6RoF4GO3sTjTu4hHf9jb97mgFoDucEA9EeKN13 rI3gFuldhpl8uM8H9zk6AI9ewXVXvCvRvWtyc/P1/l2Tca2t1/G+kzdpT9fCWYfE1M8V9RM6 Lv7kt9wJAqiZoLYNNWyMVCWmnI/N72Wg1s6X1N5hoA5vWfH+vr2U1b013F7m6tblzu3jq+c7 Q4cP6q03vcb/N3H/yKxF7/Zx9/b2MPwSenpmsuhotKv1Z2a5mRJSIR4D7Ivpp+kICWwB1AB1 MOjLBqTTQO2VIu/2bBKoxHVbk1dJgIa6uf2zILtdiA0BNmecjlXTnna2NzCF6WKQJPPvgH3v 3TmMF4K6E/2kjotbUxJbADUT1NKQQLxryTxq9XwJRv1JyqNuIfen6j4n8kEdAjXeqQJQWyBR nqLrwXrddRujtr+m24HJR86um1g7I8uzjBFjGSKhkCntPa2nOu9VPwlcw7qQ2AKouaCmvI6M RbZqoNbOl9DecaBeFbXTdC9OnQ9qf8Hvs9hLhrpWUE/pxmKvsd0cMY+a/vc2QL2nNX3DOmeg u4R+QsfFn+gRAyI5m9nSAqDmgnr2KhbXbfKY5N6O0KNWz1f5yvSxHvXGX3E8VTmoyVBB1u3j Oh51E6GPyLrK3Pa5oaNo+CUVevGDc1kzErF+QscliCtuF6OZzh5AzQb1Oj2dvDcNSMenvHlR yLK9mSkvv6Sch3nUITS9hd08UFuARBbD1n/fWUysHKMu3rrpu3PWsZht+XDNXEwMF9G71k/m uPh9rNwWQJ0F6jx8fuPTh4F6FHcNeUwD5wq0TFBHt5cFsdkhsiAXmb7Suz6cPfQugUnPyqRf aXveZmFxf3teXGu7MBHZnteLfpqOUJktgBqgVh1PjgS1XsaZH2xkhT5M7vhfSEb3UQ8tHBKV Uhr6pRSS/r45UHPOQJAWehtye7wHu7qNH6kC1wQ18xPobFDTC21U+yM/GOntE3LoV9y9NqCe 9oquB/KEf9aJl035Lf6Gv7i4kRcv1CG0i65t76qgNt7vIzVYF4Amtu1u1T3uddc8P0O73qGf vqKuxX2PWuXLO7oA2/gdsT0pGvtSFgWgVhP0uqA23u9jxHUrP4yBo5WsfvIB/epVyEmglp6B oCwIQK0m6JVBbWPK5JkVavIwDTFjvkxrxz0G/WppfQqo6dXwyIcAyX2GCvuZAWq19nVtUKvJ AENQQFWBYlCzDoupuL9UWQUsJioJClArCQkzUMBRoB6oK5+BQNViuNfTWwjdWwWFR63WKQBq NSlhCAosCshAbT8ACD82mD9EqHsGgmodAtRqcu6C+nMecnTMRD2o1QMM9aWACNTLiVuxg0Uq fsMPj7rNhgiPus16Qa6urYAI1P4XsMR1UohRX7t1FOQeoC4QDa9AgYQCAlD7ZxCQi4vVzkBw S4VdHy21coC6pdpAXnpRoPgTcuqrwu0BZLE75qRnICjLj9iomqAAtZqUMAQF4ouJt/9unjyx v9sdFiOZ7e8dz9l7fvx383f3a6/597GTxbzEm/sysezkK7q9adqaU5Cebc0fQGN9CKAGXaCA vgKeR20g6oJ27+8W1J/n5xugY8/PoPZ/n4KKHBpsuVgedflZstt8aNryIe0f98lW4POgXHOA OldzPA8F0gpsQG1emWFd+//p7B30BAfU1Lknya8mI/nXtDUmsRykdR/GT6CJRV22jAA1Wyo8 CAUOVGABNdeTnkEuff7AMqaT4oC6kbvTqMKsh+GkZikpKQDqlEL4PRQ4QwES1K5XPWeKG7vm Pn9GYaNpMkBtvVbystP8Gzg0bfll0gb1fP3UGOZiHlbUZ+ijxnpCUz2gUmZ6003av4zMZZoU 7/qoVLPnmAWoP7q7HrXfKFmLv58wTPGZ5Yx6OL6B1FhPOL4Ux6fYm24rYIvbt+AiaoDaDnKM G14aDn2snVA64od3DQ7rjp3Y16cBAbrzqJXXE44H5kkpdqSb2hqQQBOAmgtqClSixUQHgiYP pba8fqgI6s3WSF78ujtQaw7QJzHzlGQ70k1tDUigCUDNBbVg2rLtKLWmhYqg3jSq7wR1vfWE U/B5WKJ96ibrXxJNAGo2qMsXAujeUbaosN/TZA3JuzUbHrWVWtK5DqNigwn1qZusf0k0Aaiz QN1gj6iWpeC6tG+NUQumq9Wq5gqGu9RNBmoyvJnZr/zvxq/QEDTzyFlM1EzvErb8q9G+dteH 5trEJepdKZNd6iYEtUATeNTwqHd6JvZRL/telz1ZCqc1KrGwbTO11mHOLLUQ1IJ1LoAaoFZt +d3t+pgi1e/H+Gn+fJvR/fFS1axfY73pJgV1eVsCqAFqVU70CWpViWAMCmQrAFAD1NmNZu8F gFpVThiDAtOcbjzCwkTfsJiI6axKlwCoVWSEESjgKQBQw6NW7RIAtaqcMAYF4FEvbQDb89S6 A0CtJiUMQQEHUQh98A5lQqNhKQBQs2TCQ1AgSwGEPhD6yGowqYcB6pRC+D0UyFcAoAao81vN zhsAtaqcMAYFEKNGjFq/FwDU+prCIhSAR23awO/P++/PL1qDggK/P3/ef/8VGsKibqFweK13 BQBqhD5U27jIo8aAqVoXMNaPArMDhA9e8MGLSqsWgRoetUodwEh/CsCjhket2qoBalU5YQwK YDExfzFR8zSwVm25PSP/tDCAGmSBAvoKwKP+eNT35B3wmufrtmprC2lztGdSGue1PkGtOajq d+J2LfaiW41y5DlBADUX1IKr3jcdqVVbn4za21xGQN/uw3sYz2E+EtTpAfNoLGkOqkfn/cz0 etGtRjlW8HP7FkBt2/J4a8f9MR4Pv/OjeQdcq7YWUD9GRewIZg/M5zYmq+Rwfxevy5oBLCex IzikOagekd9W0uhFN+VylDpBAPUCpOEDJ7qlW4FDmFOVyOgordraZj0X1Ob5fR335WEMmAx9 VR/RHFRVM9a4sV50Uy7H61HmBM0O0HdvzzO+4+dg7ljzbxWumvkSg1rsEUtBrw+vuvrq57cV i73oVq8cOU7Q2i++HtQjqfen3Zoja6u2Nr08pzGlBzsORFIDJseG5jP1OqpmLtuz1Ytu9cqR 0bccNgHUNh67M20XXPW+5d84KNyCtCh4c/qfZr5EoFbyhlMDJkcTzWc0B1XNfLVuqxfdqpWD D2rXeQGoTcM3lRJdzNJc/W3VVtj78xqTzu3cSsDXAlnVgVArkw3a6UW3auXg9i2/PwDUn7b+ HPZ2OWjup2zVltvpmY3JNObUrpkcluwOmDmGNJ7VHFQ18nMVG73oVqscvL5lvGnXAQKol/Zv BBRsMbtKP1LL57hTIwzjKNjeHzAVEsgyoTmoZiV88Yd70a1GORigJhwggNrrEoA1jxB1ID2l jTrg1QGe6lMBum8B1JvankdRyb7gPpvQ/CHMrYIn7SsGWPfaglCuPQXiDhBAjZbTqAIYMBut GGRLXYF0Wweo1UWHQSgABaCArgL/A8bAYFoLyiONAAAAAElFTkSuQmCC</item> <item item-id="81">iVBORw0KGgoAAAANSUhEUgAAAQoAAABjCAYAAABjR07vAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAsASURBVHhe7Z3pkeQoEIXlwPgxNpQX 7YTs2PGgrKlf7UkZoxU6qgAlIpNLgN5ETOz2NOJ4JJ+SQ+Qw4Q8UgAJQwKPAAIUIBV7jNAzj 9Coozuv5nN4Fy6OLek/PZ8lWp2sw9IvRcu73xzA9nm4LBCgMfVfBhrHsYHk/H1PhIt1WNUPy zGBizDHXs9AvjbJKR9cLEqD4aKwg8ZhOoJqmN+xc3s9pLFjo++33W97PsbwOoepCv1DlHM+9 ppHwpgGKTa7XOFzyVs85KM022e6lMggHGAsPvq/FntTJYdZ96rd5tsPs3c5/4z08YX5z/z8e 5lQYoFAGqNYkLvH9VQfmWQtZ3EijTcQ8lDCIdTzOA9YylMSvrUTZ9aifPf1V8IyBRVh+yn50 QAEU8xKid7CqAbXRfTgMIJPW9u/Xed/6ZhjsN/jZQNWfeanyJUCx3UerjhpAlNdxfGPlnYa5 NdE9iu3/l7bfSL/F1ixPT73IQsEdnJ9pQwCFEvLUm1iJviax38rHxU818D6dau+eUD8fyqam CGqg8EFx9Caoun/mXKQRZpuKnWpig8Jst6Gt0xNsXD8KCstg5/e/4a5F5KcvEt8eFN4V87Ot UrIDNbB4tlnJAU0841yNJst3bXW5/p1eF6A9jQQzhlNNjqAwOGo926N+S5ts74HyCphdEZWf 9hK9OSj80w5S6L2TSJdQH5Cmy287D/Y8cHnvOw3FeqMsg4byNHQPSLemc4Bw6sa0TU+yM03k oLCnTa3rFzWwCeXj8vuOj5uDwr9oFwcKbT1fTUmsdQrqjcgx9MUFV/NYcu3CtXMg8zQoiHFA sdbN8dei0TftPieXg8JehG5dv2VhnfQoyk891tnd2jf3BoV3fWLbEXHND31Tj8PIMgcr13Ve jIeqg6h8mUeRbepxqkk8KEitWtKP6tPoxUzCG2Uuju5Tc4DCuy1quvLm4BYuZtpzTXJblt7O 4oNC5jksW6HEeYpii5mGJjJQ0NvaresXtp3p9vbi8gMo1gUB3qlIfXv08GY/3x61XXHzaMPx YMva4dY8fpR4FNs6BwHAz7ak/jvnOku+U6puTYSgcG4vt66fWf/iB6406gAUElBwJudBafyL qUu2Itd5ecB96tKqp/McxVjDR2o+UaGfT6HY3wMUVYBCvf0Z31WIQeH2KgzDcb2RuZ5WrBUm eB76JRDxJAuAohJQqLf/0/dRWAAo9umLewnG7XWwBl9e+xTkDv0EYomTAhRKst+f6e/Pr1i8 1A+857soyn7YftYCxsBLLUBkftAvUsCTx39//kx//2F7lLeYma8ftpz95zmyV2EpgDnnL1MZ QSnQTyCWKCk8imqmHqJ+Q2IoUFQBgAKgKGpwKKxNBQAKgKJNy0WtiyoAUAAURQ0OhbWpAEAB ULRpuah1UQUACoCiqMGhsDYVACgAijYtF7UuqgBAAVAUNTgU1qYCAAVA0ablotZFFQAoKgEF QuHF2T30i9PP9zRAUQEo9k7wdVaR3yOUYJzMDerHaTBAcTUoCn/KjVCCnGHhTtOdfkw5AIqk oOBfFLP3T85PudsLJci0Wi1Z3/rhhiu5ReR8ovBb/duUfF9pHi/sJe7QRChBp1Vdr1/cHZfH hsXlB48iwKP43Dl5CA+IUHjkyEMoRvlrLjgEoKOoyPwACikoEApPaPQIxSgUbE1eWVwPgCIW FIYVyG6P5sbzWD0YIvBLC6EEEYoxiBPuAEZht6LH5gdQSEFhX6Fv3F0nB0VvofDsUUEa6J4I oRjP10hqiT061xKgEIPi27cIhed/WcaB4kxr+oZx95vz65HVHIrx02JMPfzGVTxF1K6Hvpsg 9yjsmJnNh8KzOy9m6nEwhBuFYkRIweIY8BcoAYVt+AiF59EXoRj9BkiliNvOPOYYlx+mHgFT D4TCE5o+QjEKBduT48BVoHCZHpN4FEmrwDxwJQ78wz8hilCCxG7SbUIx8o0ZHkWAR8GX15+S dQRZDAqEEjSUh35+Q/SkqA4UnI9uolttZ3CZR6EqwojIFWDoCCWodTL0ix4yB1CYx5OH+aCP +dcdw1Jel+CPluRFnT9xKSjU2x+hBGO6FPrFqMd79tyjoM6H8/L1por76MabvSzBxaBQXsVo H66RtSBRauaaSaLS0mUD/dJpSed0ESjUYpu+iGSu7upnC+jFtsSyXA6KxO1BdlAgsQKXgIL8 xmE7Gm0faSY/jjFXqmboDNPhOYlQAIVELaS9oQLBoDDXFxzKZfxoKWlfARRJ5URm/SmQDxTL SrNaCLX3qc2Tel9JiYtVll+u/85ZRLUPQhkLsWcZABT9WTZalFSBOFCMOwzMgVzio5vEKkzj 8500S2QGBXpSIAoUw75ST04xlDPwnB7wKHqyF7TlpgpEgUL35sk1C6xR3NSs0OzeFIgAhXnT Dh8U7uPFn8NeJoGmj+dCqr+ueWDXozfTRHtqUiD4CDd1qvKwXuiakkR/dJNYQixmJhYU2fWm wAEUw3+D0UbXz8uC5UyG5fcaEIz087+rn/Xb4vbf02cpLHmd18kn7gaAIrGgyK43BQxQqEGs D/SznxdQbOmHYZ2GuNLvoDB/79v25H8qHd0pAEW0hMigbwUOoFDN3WGR+7/VSAtQVNMVqEid CnxAwfUkdpDEpq9KjmpBkfqGo6pUz1iZ3nTzed8+KeO9cxIUulexV4G7dsFN72ta0d9XCYq4 Ow6L6ldVYb3p9oUe53Qy3RUJQVFVX5euTI2giAwBV1rCasrrSLfPcYHHOF9DwPuMAaDIaYk1 giJ1XIec+tWUd0e6fS/kqWjqUVNfF69LhaCIDQFXXMNKCuxTt9SgWA8pLh9NMi9MCj5wVYld pKkGQJFGxwpyASioTtDXKEzosM4zzVkCFErXCkGRPJp1BYO4SBU6mnp89UrpUVi3yzlPT5u9 BVDUCgqqA8mgvkWGXzuFdKlbQlAcTjvzdkQAilpBsUdN/+yJJfj4rZ3hHlHT3rZHFwNlX97k 3fU4vGwACr6x1Tj1WGrf28EhfpfEpexNt4SggEcRYVrVgiKiTXgUCpAKYI0i3DAAinDt8GRj Cph302LXQ9J9AIVELaRtXgGcowjrQoAiTDc8dRsFsOtR7a7HbWwQDW1AAYACoGjATFHFqxUA KACKq20Q5TegAEABUDRgpqji1QoAFADF1TaI8htQAKAAKBowU1TxagUACoDiahtE+Q0oAFAA FA2YKap4tQIABUBxtQ2i/AYUAChUJ/3+TH9/fhvoLlQRClyjwO/Pn+nvvznmzzXFV1IqjnBX 0hGoRq0KwKPA1KNW20S9KlIAoAAoKjJHVKVWBQCKqkHR201NpYZBL7rlaof8xiyAYgPFIzxe Wybr7/Hux0xSGdn2oluudoSFKAQoagVFR6HxSuDhU0YvumVoR0yIQoBisbD5xh9mxKRiRt9l fIoC6vWiW4Z2xIQofI2P6fm++/boctv1OOOinj99RrzKr28vuuVth3SN4js+7n2OYrbf3bXK b8q8EvIaCq8OLabqRbe87RCCQk2DtjW824NChRWsakEzg+vZ4sAX17kX3bK2QwYK/SUKUNQ2 /egyNJ542Msf6EW3rO2QgMKclgMUy5rmOA3VbJPm2h6Tj722nuhFt5zt4INCeRMPtYq5/QEo NiFe4zBVwwqEFAxkVK6DSoHVCX4sVzuYoDiEH7z9rofek0rEdSsIf6DAfRWwQg/Co6BMAbC4 7wBBy5dzRQN9XABTj4N97G5fXecrYMZQIJ8CfpsHKPKpj5yhQDcK/A/YESVEbhwAPgAAAABJ RU5ErkJggg==</item> <item item-id="82">iVBORw0KGgoAAAANSUhEUgAAALkAAABaCAYAAADkffdwAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfaSURBVHhe7Z3dlaMwDIXTwPQxNdBF mqCP7SDV5CmdpBgWQyBgDOjKkp3JuXvOPK1i2dKHLP8gLh3/0QJfboHLl48vb3j3trtc2u6e 1wp/rbbAs7s1l665PdUthB8S8qT5RuNeWuKdRZfRj5+3JivYEPKNIwLgTZcZPIzcy2beFrh3 rXJWJeQRR/f20uUH8HEmyG9n2bnX7HLpZ5j+L3cKXw/bs+1Jk4GO561rmluHJi+EfOntkINn k/l2ZnZTc9/i9ClENSvQPduOAJ8Nou9/SF3QB5yQr0DKW2SOuWMfaZu2ay0jeYhglyiFCg+k IqptszPHtmfGLXXgaQshXzoiM/Q+b7fXToxxupICegA/76Echu7Z9mRbYx0hmCCuIuQvR6CG O14S2kI+zBBx1E5Fd8U61bPtd/ww7n8YO0A5IR88EaA0iIpRDg344RBPTxA923aDHPQXIR/n 7D6HPl61h12XId9O/W1oto3krimFcSqRfFoddNxb+TYvIR8COTb9nWcFxpCn8m/ThWc0i1m1 vVp42upA0ktC/hcgH6bn5Qmsfgtu+4B6tm2/hbhMgaTpICF/Qd6aHnEaR/J53fBOl9C9YslC eUrFbNuOQDc6zGIkP88n1hJ9OmALOdoByqMWIOS4xQg5arPK8oQcdQAjOWqx6vKEHHXB49r9 Xh/oryhf0QKP60/3+0/WAS48XRaeMuNTSm8BRnLUdkxXUItVlyfkqAsIOWqx6vKEHHUBIUct Vl2ekKMuIOSoxarLE3LUBYQctVh1eUKOuoCQoxarLk/IURcQctRi1eUJOeoCQo5arLo8IUdd QMhRi1WXJ+SoC9SQG9QSQfu6kbe41ltiHLY6CDkKjgryEi8bnA3EosZLiXHY6yDkZ2zE/6+B 3LMWiqD/ZjVeSozDQQchF0CyEtFA7vByLtJtsxovJcbhoIOQI7QEWQXkJUo5yIaRl5OXGIeH DkIuo+MtRcjXRTSNChdNBibkKJAe8grIPWuhFK3x4pBKbFzkoIORHH0QNJB71kKB+p+Xrgw1 Z+Kaiqy7AnngbwhrIHethYKYLRPyIuPgFiLiUR9ZFeTDinUs+mNUS0Q3uFzIS43D1lZMV1Ba 1JCjiihvZQFCjlqSkKMWqy6vgnw+Qdup3CqtOycZ/fa7PEdTWaj7J69gKtG/kSHkKrPV/JEK 8lWHjfdJl20PD9PqiREsSkJ/LD4dsucVQl6TV5XuD4Y88b0X4b2GEP19ClGG9SNrIapIq/ij j4V8G8V7K0kPCqz3btfTC2shVgRWo9oVctF3LlMHDK/ttjgay498HXNzRnINZ1V/Uxfy4Xv0 Ye84/gbPWDg+XsDKIT/fD8aOwxc+IuRVgdUo94e8nUBeQztC1u+E3FOf39uJxNJ0ZWcm0BiI uysmVqvaiDvk8+f2kmnJuJDbfmMyHcnldycYyatS9WHK3SFfphzJHB3Iyeej8dNPUjMn/zDO qnbHGfL1wYwc8hDg4z3yyU6Cew3cXakK1acpz4f8YERrqHdSiL00JnwvU3l6yX3yT8Osbn/c IZ9PLKGcfDTKfjQ/MBpPPOsS9YHa3SFv592VnTslu5F8wHy4niq/C6OP/mLfqLcQBWmWuBNn giV0ob5J9Rns58BK9KVrwRUOV8jPXPEn/18FueDOjZkxSuiqVMMlrLXkEW+2KCFH4dJALrxz g3YlKe+sa76B2rRdC82yUW8V/RSdoCeMQshRsjSQiw+x0M4k5J111avhEmaPpr9hukhXBKnK tLaTTgD8+ttoMfiClvw6Qj7k5XTl5eR4P8cDwtV9JuEmAyM5yhUhf1msNOQpR+2cjG8yo0a8 ecFIrozk4ivC6AOX9Hu/OIun8cMdLK3SPMhtbCLrAyM56mNFJJffuUE7k1xl+ddGGdTKANsd UerBOzqpHm6spm6rnr/uSMhRrjSQF6lXMg2kxBaiAeSwTRIPlfD6BiEvAvkbijJ1V8BDFtQG FpF80caeTbbXM8YcfJLfpGU74yDkqINVkRxVQnlLCxBy1JqEHLVYdXlCjrqAkKMWqy5PyFEX EHLUYtXlCTnqAkKOWqy6PCFHXUDIUYtVlyfkqAsIOWqx6vKEHHUBIUctVl2ekKMuIOSoxarL E3LUBYQctVh1eUKOuuBx7X6vD/RXlK9ogcf1p/v9J+sAr9oGOzGSy2j5IClGctQZhBy1WHV5 Qo66gJCjFqsuT8hRF6ghL3H9dRqMpy7PtmNnZL6Y8WqOkCsgb6Svfs9tl3qRYVg0jN8LPS2K ig7cu+004OHuOGzuqClCjvo6vLaFWl1RYwTt1vt5ClWmolfChG/QnOosNA6z2i6M5Kcu3RHo 304R1vuYG3CuhbLqqKcuz7YXgzCr7fJq896evwc6qecW4mCJkA7EL9QePzB4jRHtA/gqkpp8 W1/u6D3tJccx9sEiJ8f8RcgV09/gqlBr3Qm8TSbrqKvkOMwgB9NLQj4RBRrOpsaIMLp7phSe bSeHlx/JkUVn6AIhf6/usJQFrTEi5DnNReIbTKYLzyhVs2rbBXIsVSHksROgMsKe23qbhOVL thDzc/IQxdEvczOSRzxhpYTLH6L41HgpPw50x3Zcs/YzGroLxnQlNZ+O5YRvz5z8gr+1t0Ao QoTtgE19YCTfzRsJuj2o2hb1gDMnP7T5NIXroofWnfzd0gI2PmAkJ1Vfb4H/snGMB+GnfnMA AAAASUVORK5CYII=</item> <item item-id="83">iVBORw0KGgoAAAANSUhEUgAAAeoAAABgCAYAAADSMTEwAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABaFSURBVHhe7V3tleyoDuwENo+NobO4 SXQcbzPoaObXzWSC6edvGwxGQoUb7Jpz9uzODpahhFSSwPD48IcIEAEiQASIABGoFoFHtT1j x4jAz+vzeLw+Pyci8fN+f35PfF/4Vb+f9/vMUeMGTPxysOz0/Xx8nu+TZt4X7CoHlfs8k9Y/ ifo+s6GhkY4T9/E6l6x+38/Pya+M66Rzpqc5btDMIH42IHv8ygam37ErGyr3efpI/yTq0Dxg xBmxjnTkZzer/h3Pz1nJxdLf3/fndeJLf3/T2dPv+3U+DrkKJH65yHnP/XxeRapIX7IrECr3 ERPWP4namQGMOCUGUTLy/3k9vpLVliRFd0x+sNMbZiQwOZn8Vt0f9CkWwhUMKr6H3+QPHl11 p/vHVuFQyOr0/nxil2BkdjX20VZVUoxT4mxC/hmiD/XLpwf0tqF+U0D/JOo1pfpOJqfWYi0P FIj8+0qGzUtkgtM7lzJr4UNQ44wpUJWIOuYOY7DDzgQo8dgV8fOD9n6+55K1XlY/b2yBwUZl IrtaCTbfBPXjlM/HkrLlvfh0O2aigbVGTMqiPP2TqOc4SZTJ1RZxoqNXpTxo5C9w9v37pmj6 sSMwt+/+38cqwJgZPfwM9ogot8/89O/XELofzHh93HjEPuPZO+ay5co4JltnNP33MPYb4TfM Na/S0RNeTuCUJQsVCKftapkHXbD6smTUWeMUsltJ2cIujM3OIerxPauvIVEP2EsyudoiTnSE mScPFvn3hngYyo8ZzdjEz0r3SxY98S1O1d9zEPp99+5QibonKjlR77PpUN+XSDFIArKSpcrT TP7G21HvYOITtTtuB9uo/TSOX4iUB7KQ63/RSqYsyOa8pF111tR96TBu2zQmIpnjFM3ekrJF HZgbnUXUvV7Wza0k6mFyHhtflREnOsLMloeJ/JNO6WiDX9CBbog9sTkwSKiBZ6Jr88H3B0rc G2e4z57DDiCcaas8S7jxISZ7onbiGO/ZK+I3jMnPnkM2IlBFtiwByaZen7QrR4CNqLPHmRpE H0IA9SF43UETz063Vb4lkbC9YXl6o38StcAYqow40RGmQZ7OGYQmsTBYipUdgyXJLVG6JWc/ eQ5VBeKOwQvqBtIKZdrbCsB2zMcELukbxg0cYaInaj/waB0/JDHky0rbxfFc0D5Pok7bVmBZ aP6AIzOQi79z1d/tiVpHMvVM5HzjD08LkzxBsHNsAOlNU8H+LdWo0NphmBCHsq23Th3KCCVE M8rq1jGDa9exEpku085dWljHOY93828vGthjoidqfxNg6/gNy2HBjPq80ve4qmD5VDFtV65d 2vwbFDPfYSD1kWZjWUYdWDJFL1XN+r85UbcbcZqINTANbfK0OHodkBC9pfS9G69LltLS7eCI QmuUqdJ7oLwY3ji2/zSmWOn7EBM7UQexagm/kE5Nm8kClRjBxjRdIpFhV8DSd1ef3q/h52Lm z8+SslXEfbRGjV+/nvV/c6JuOOJER5hGeabIX0LUwy7IlchcclVuJvNLVMHNhOHNdXKi1mXO sd2k6Ah98Uk+aTqY6Ig6vBmzdfzyNldG6lXeSXvyT72aIuppM9paXZGPM82VSH2k3xZvoa2U Wd61bii7N1GLCGK/vpj9nSEyKkTK6odolGd1KKJTwZyNG34J0l1z9cuWfinY/bQ5dsCEt477 0mTU0waYwGRZNidu/xZdZ7eUPhMLDssywFgWX7ujJOro522t4+f23/Zdc56sU+xqmSbG0vcg J2+cMjorKVvWg3BAjQxIvMWIaec3iVrFutaJjIwKkbI2BrbgoZt85zoUqVFJ2wlL96rSbf9u eSks+h31C3tClRQRXTvip8NL3rptu5KPs9mWU/KgohHFYFn6nrJIUSZXbcSJjjDz5bXuUERH iKqJOp5VO7Yay0i7/6+bnwoPAG5K/MCATuJat6syqFQitTBJjxQ1fkt9+4y6FUdYydSMdqN9 h/LTXS2ZuCgjg6jTh0jEs24R+VUzMYhfCVW0b1clUKlD5rKEtZzY5y8h2ftJos7KqO3AX1WC yaH8/fP598/fr0Ozfi//9a4MZfNk4FBDNzd9IH54hfz988/n3/8y5VZiV5m952MdArP+mVGn sihOFxECJqKupsSr/QpABE1GI+Gab4bkso8QPzS+17ArNCr3kceMutc1I07YjDdF/tUQNQwO CiICEARI1BAYmxVCombpGzp56VCgcFIYERgQoF3deyKQqEnUUAugQ4HCSWFEgETNOcBd35MV NPP5S+1zlkRdu4bYvxYRoF21qDVcn5lRM6PGzSaW6KBYUhgRmBEgUd97LpCoSdRQC6BDgcJJ YUSApW/OAZa+WfrGWgGJGosnpRGBMZcYT6bK+uHXFFmw1fQQM2pm1ND5SIcChZPCiAAzas4B ZtTMqLFWQKLG4klpRIAZNecAM2pm1FAraJ2of9413FLVnUj2zq1zQtWpFkb81JCJHmjdrkSD ZKMoAiRqEjXUPFp2KKa+Q1HshHUXf9juPUZ3KC2P+KUxym1hwpZr1LmwV/MciVpF1PnXP8Y1 br3behjA5/0cb2zp/7E7+Hx5zTqUk53Z72/ihq5eq+/Xp5kj6IlfUaferF0VReU+wknUYqKe yGvZetlfS2glxZUQs3d0ziQN65dtnHU4lPiVkTHTLkmKP6/HZsfuiO8aTB309WTys7i9a+OX H7juMc2TdY5d5fUtPG+QsqQzE5H0SN81tztnnCRqKVEPl4M/3Qynv5f4mbem2QM/ZMDP1+fV Oe5sogb3q0vjTOM8x6FojSnVvtwtVYOeHeX6RD2kzp9ncB7VcgvVnfGzBa4ucvmyyttVft+i wQgseUjNP7eqmO1LJa9x2iAxO345iVpK1CFSHkjt1d0YrP9Z7+w1RoHgfvVro7vgQzHO8g5l xXoJdoaS/zaI2map03//9Lqalwe8gOuIKLfPDDI0+u7fvW3vRt9bAu+z7v2SRd/e66t+qm0B WzHYBQZe37y/x7FOBBqt42cMXF2/nh8EF7erSsaZM71hSY/25UjMEu8mUQuJepgMvnMLKUqr 7Kl0nRsFovtllVfcocz49gHFlgSd332i7gl6JcyeFB1d9s/uFBAqUbtyUqreZ9Nr5L8j5Uh1 xi2bp9549PdxqWYcpj82PzPo97JtMDrEuhN3ZfyMgaujEYOs4nZl6Ntu1iFlCaY8LOkRvAul T+2rSNQkai/otwUkxR1KjKhdC+pIac5EtwQ1NfKIJ0ioPjkNiWO/XBHIqIMVh0CJe3h97P+H 16rDmbbWzCcyjVUDgv3f4BbAYtuDK+NnDVx3OGUG+6XtqpZxZszszSPG6qTy5UjMUq8mUQuJ 2loSjivCOLnQ0atRXmmHsuLolmrdhHifUTt/DxC1n+HGjdAj6kFWKNMOBAiHRB2eB30/7Lv4 pyAjtp8imM1vA4ojrEfZV8UP6YwtskrblaVvvm9DykoRmPt3oy/VvWwM3DMDL+WreDLZ6Dvf 6WsuQ1mHYTOZTzi5pe9x81eAPDI3uVnllXYooQk+lGmddWo9UfulbwlRj+/tMvfg2nVsN7cu 066DqFfU91hPQYA3gS+DnzFwdQs9+fs/ittVJeP07Xudb+vnp/NnqLHlqmxfqmVPJGaJdzOj lhI1/DOoWTPWKBC989Amr7hDiU7oLQHaiXqooIQCIHHpG5NRV1H63mHuBhvS0ncQ08n+9pv0 KsEPGQgbZBW3K0Pf9tMDnDyICdTqS8UvGhsiMSNRC8CXZNSbsiXuYJFB28N3tbYoEP0tX768 4g5lVqdPpM7GPh1RH22GWqP2kTi+sUZtmxsLYJvNZH4WrNxM5m+iPNhM1j5+tsA1VJr1MZEs bZS3qzrGKfDWB00QvlTTAyRmx+9lRi3OqDUKvG/b8g4lVIYdy2IroSmJOvp5lrc2+wpk2dGM MFwSHptP39BvGTi6Tlzo86xdZeD48yy/BOl+Gh77Dvwq+OUHrntPkCfrHLvK61vY2yFlSf3p 2US9JlrY5C0wa6ZrTh9SKC7ZTpxRX3L00EGd41CgXZ6qGoLvo2O7n6PfmctPSIt+R/3KO1AH jVAi3u+qQsSvJOZt2lVJRO4lu7qMWnIGMlxFJGoYpK06FNERmGqijmfVDuCxjL6heUn8YCYU FNSqXZVF5T7Sd0S9lOWWE4Xc3XaY9bIR4OwzkNH6acghooeOlteuQ/nprpZMXJSRQdTpPQjx rFtEfmgFZssjftnQCR5s164Eg2OTJALHGTXk5K1wH/Y7RQOfrUTXDpPj0jUgUevwOmjdskNZ TziCwWEQJCA+g/QSjxK/EqiOMlu2q3Ko3Efyl4jaegYyWEEkahigbTuUWi7B6INWwZovTGso QcQPhaQvp227KoXKfeR+haiD313GjlZMHioCuG6SRA2b8XQoMCgpiAgsCNCu7j0Zson68LKA oWS+rm2769q6k5m6lezNuc2FlEWihgFLhwKDkoKIAImac8BZ+gh/nnWwRh0nao9YdzIwJw6F 9Kc7bm4jgUQNMwcSNQxKCiICJGrOAQBRDwdAeIdNBE4pckkdcwYyVH8kahich0Q9VVqiXw5Q DzA9UNC1EKBdXUuf2tGYSt/LzSHRAx/67vjEzIxaq6SW2jOjbklb7GsrCNCuWtFUmX6aiNo9 ATF0XnVoPZpr1GVUWYdUOpQ69MBeXAsB2tW19KkdjYGo3TOI92vW8d3Y4V3fmjOQt8Pkrm+t 0ku2p0MpiS5l3xUB2tVdNT+O+5ioD7AJnSq2ZNiptUjFTm7YNX9HeubaKMwK6FBgUFIQEVgQ oF3dezLsiPrxP3cDeOz3YYd1x8zD3zdr1P3v/adZM2nHno9l1Y46qjuZDHkjDFLWjJr19hj7 p3B0KPd2KBx9GQRoV2VwPVOq5R4Lh6h7Ut0S69HvA1FP7R+PsQy+/j59Q738fSRuV16KVOyk IVaCKKNG3j2KlOWStHvdoxiBqaEdczoULeZsTwTSCJxjVzUmDyFsSvQzrQNNC/Q9Fjui7jsz k3Xpf2sGXrSthKhD35QnT02L9Bopa1q/GD6T646dfD1Dm/qk6JGopUixHRE4E4HyRF1r8uCj XKKfWE3uq8X2eywWopZm0jORW9tjoTFKkxB1iJQPP0s76BNS1kDU727Vv/9JVSlSOJGoUwjx 70TgGwgUJ+pqkwcPbXA/97ocNyeP54N0leKf/pRNzbn7Ze6xCBL1NqueByJdu5a2/8Zkj75T QNRDlPR8d1S4+cm8XQwpyx0Tmqg3k9Yfe7RY8Fz2J6h1LNCDWibkgfpLbZBhwoVcDTerfa3B 9HxQ1DN1teqkk+JEXW3y4E1KcD9D/nPVyez/5EQd3nsV+SRZUZHN3vUNt+lvChQQBJJckbLK EbXrlESb/4bs/mpEXX+p7ZumE3/31XBbg47oyXpJReRjUtqu6vVJnocDJkw7dQXumx9w2WbU X7rHgkQ9BLnvzysV2SIjOaQsZ7ZZI/5t6dsr4QjL/KUdStIXohsUL7WhO1yJvAvhNjprwB4Q Ayal7YpEPZ3jEayazhn19+6xIFFLiTpEVIrShcungXWPXFmliHr3aZxs/bq0QzmdhooFVaeP 5NwXXgg32B4QAybF7crQt+OJZU0ezit9x4OViai/eI8FiVpK1NNGrf7b8fHHciJafgmsrFFs yHhnuPck6nKZxrm8efbbrombjXQsmBQnamQiAk0evJlbrJ+9S+8vmfLWo0P/b+nSefdYkKjF RD00/Ly7z5+0G0HCThIpa36DzZE4F6gwox5AtTjXs8mxpvddEzebfVkwKU7U0ERkOxNtmO3n dKkkZ+PfvWRsR96jZxi4wN0MGNk0Fmw7J3vuUdwxGyZRq4i6JldYui9cox4LJ12UfbhuVVoP jcq/JG5G0jFgUp6o0YkIKnkIzf8SSY7b3+X65uEqZ3/X91n3WKxjJ1GTqCNM4EaHt931XbLU 1igHi7p9SdyMRG3A5ByiFmn2Xo380veX7rEgUZOoDwyP31Evyx2QvQl38nElS5TfwtFI1Iby Mon6SzrfEnWSpMc+ipIa5T0WJGoSNdQCrulQSpbaoPBXJuxquFmJOr+8fE27qmy6hrqzIerl M73l5LJxv9L+u/rUPJFtzN12h0RNooZaCx0KFE4KIwJLlpZ90IrknAjiXDUCJGoSNXSCkqih cFIYESBRcw4sJz66l1DfDRhGnDCNk6hhUFIQEVgQoF3dezIwo2ZGDbUAOhQonBRGBJhRcw4w o56sIH3WNyeLCAEStQgmNiICKgRoVyq4LteYGTUzauikpkOBwklhRIAZNecAM2pm1FgrIFFj 8aQ0IjDmEle7PpZ61SDAjJoZtWa+JNvSoSQhYgMioEaAdqWG7FIPkKhJ1NAJTYcChZPCiABL 35wDLH0Pc+Dvn8+/f/5yOgAQ+Pvnn8+//2UK4mdymcDxsasjwAD46ho+Hh8zambUUAswORQG TFBdUNh1EDAFwLSr5ifCrH8eePL+bV6ZNQzARNTMqGtQIftQIQK0qwqVcmKXmFEzo4ZONzoU KJwURgS4Rs05wDXqyQqEB54gbwOqVdbWKlK3wOwtiERNr0IE8AjQrvCYtiSRGfWUUT+TV9Mg 79etVdaepMPXuMWn+DUdCjKoask9WPt6FdxKjEMXBJ9jV8hxImX587Ck7Nw5r9On9i0kailR D5eGPz/OUnZ/V+nz3V0Hr/ypVdY0jH5S9AT9eL4+r2fovtVyRJ0OmJRYm5sjgypzZxoScBXc SoxjJZpkfrCxSWnb3STp/U3yYeQ4kbIiJL2Mp7/b+fF5fnWPkV6fWkMmUQ+IdcpOEW6IlAfC fXVPK39qlbU4hfc0Jn2U+PPyghkNNCKHohEIaIsMqgDdaUbEVXADjyM3CLZm1EmiRo4TKWvH 08CECWBMufrUvppEPSDWE9Ix4Q4K8ck8NCEFGqhV1r7rWqJO43gMjyBgEuALbYIMqqAdq1zY VXADj+P3nRcEmwLglhMRf5qD9WG1olx9at876//en2f1VJ04S7dWckX2y0zU5ozYSvTa6Z9u Xxbf9PtbbXEV3MqNQxMEW+0i/TxynEhZ+4QalzBhbUujT+2bV/3dnqg7pj5ex0FGcrXK2s0f 3eRLBTuS6YmQIXmPtE1JpyPtQ4vtroJbuXEobCvlmwQTJGVXyHEiZZGohyxy4SYSdar8HVqP Nm0m80rtNcgyEXU6ahf4E2dSitqXboQMqkr3tSb5V8Gt2DjkRJ0iWZHaU2SPHCdSVuWl77V7 cn2K9LVptNU/iboHpp9g0d2RyJ2Mtcraxa/d2r1s13c/mTA7L0GEr7WGWHtkgIbqUwtyroJb sXFIHTvKHhJykONEytqn1PsNvLlJDtSOpPrUvtTVG4l6wu/ndURMyO/3apW1nUjCydcbZmrX vGZ+HgZMGkGItsigCtGfVmRcBbdS45DZFi4AbjURCScPa0JVw+dZfR9l+tRar69/EvWCYA+4 4RMjrSaab98bSsYnaolxHwdMZ4OGDKrO7vs333cV3EqMQ+DY0QHwwNUtJiIRsu7Pevj6N9Rz 3wT61JpiQP8kagdEkrVsTpUh6fHd1IFMB2x1TQRK2Rbtqo35EtY/iXqnvTmKxmeLbUyUo16e hQ2dSvtzhSPQI1CKpLfZH6uGer2c9URc/yTqs3TA9ygROCsoUHaLzYkAHIEz5/qZ74IDdVGB aZ2QqC+qeg6LCBABIkAEroHA/wGw8cVbwpcdqwAAAABJRU5ErkJggg==</item> <item item-id="84">iVBORw0KGgoAAAANSUhEUgAAAVsAAABjCAYAAAA1kaOZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA9YSURBVHhe7V3ZleM4DHQCk8fE4Cw6 Ccexk4Gj8Vdn4mC0ImVJPADepEmq5r15uz1N8SiAJRCEgNuCP0AACAABIFAdgVv1EUYc4PVY brfH8mo499fzubwbjkcP9V6ez5ar/vqCtQlABmXkcU0c171zvy33J7+LQbaafm2A3R5tCef9 vC+Nh+R31fqicSlMme3YXy+QQRmZXB1HsX7OUAPZHjomiPa+OF5MZbTR7OX9XB4NB32//fbz +/loj0MddMN6hQzCcPK1Ao4fhF7LgzgZg2x3eB63r1iXNYntpa3JPOYIhWBeLtmb5nNCuK2n hPVvW0vZsS6GLOaUgY8Zy/9+Thzj9Ukiu+6h+113DYJsBTDCR/uVc7wgpTq+YXmc0dZE+JQI hdi24KpghqKEb03TFSOUtTXhhs923RUTyiBm/aXazopjItlKvr1rhgbINmSzCVL6WGk3i4R0 K878/ebD2Sy8m2lJushOfeYlxo8hZfMYY8xRIWFh/dqWZ4ZLRWJlWMziZZZM3jQZ8Liqm+Pz /xK/C8nAxZ/Q5ci3SzrZSqNF2bcgW6F8Tqt2s8y2JqZ1aF+oCfI6iMWMaqB+tsamjvuCKMLJ 1rZqqbkf/hOSCHUXRIR+UsQqN3j4/L2jOXE1yVbHTpMPe6oZXAYsgNBlr25ZDXLIdrNu9y1+ ebL13p66wsBIElEU2hNCRpIi8Qx7w0mOz4WgcP9OKxNt8fpVVc7VtGIpa9ffFd/CiatNttr7 zHh2RhnwXOsIaYQuM7AZ+0M9GRxGmEOZFWPu4mTr9zOR5LFjSx6PVVLTj++mEWv6dKT9yZKV YRlK0qAsXtV6UZXATcIhcwvhxyZk+zlh7O4Zfe7xZGu6UUaXAScn6HKIBpttCLfUHtATZESc HHNxsvVfBOUp6Ck4eXw1/LaUVRWy0be+Vr8o6cvljj1xFi/1IghS1RZuBGUiNq7xZGtejg4v A0ZQ0GUCmI+lynsSFX0iLtJD3G2vx3aHcW2y9fprV+HkuBEs2eqEF3qEZefgO/pp48dZtqlu BBnyYvpnK1yQ6dCqa8snWxJvTg96lAH3VoQuB9kLeiOXzzbMn7u7KkG23pAv/ViuE2TkBZl5 7CBDzujQKfKCrLLP1gsNqboNQr9M0tBwjSNbOuxvdBmwbKtc9n5cVoeQocs0arEnRbsXkO3m IA37ektzipu36u7Qr/OYu7kR9NBXO/B5E5Xh630wFxvMLT8djfDZXMKVoU6C9TvnfE1X/6MG HtdIsmXD70aXAetLUMLgoMt+U5ci27jYcZBtDNn6JZLYwn9BJzuOOsLKB/ivw4yZsnG2jx4S 4yTCGvUYZBAFF9v4Ijh6fbywbGkVCbVsy2gjfegOyUMQTbbmEdFh5VAfG3SAS0XIra6DPjOF DLwimR7HBKLdbLot1vbyPtuWSWBobX2taQ09yWESNvruigi6ZTUmFrRpvFtvpAaQQRlpzY2j /tXiHl3kz6kCshXa9fuz/P35LaNnGb2811y2bZM6uiYbsGEy1trro5BBGckARxvH358/y99/ sGzDLsjK6KGjF3+8b/UpyAEC/W5tJtN4FMigDODA0cQRlu3mTOmEbMuoOXoBAkCgPwRAtiDb /rQSMwICEyIAsgXZTqjWWBIQ6A8BkC3Itj+txIyAwIQIgGxBthOqNZYEBPpDAGQLsu1PKzEj IDAhAiBbkO2Eao0lAYH+EADZgmz700rMCAhMiADIFmQ7oVpjSUCgPwRAtp2Q7Wv9VNeTGaGB 9qxfjj37+WC4wYKjhoCMwuACTjROINsOyHYXQpgqV261JruxS5pXHnOA7iGjMCEBJx4nkO23 ybbxp8Lvt99+vl62Lw+RQEahTNv0s/fRdBlkW5Rsw5N179pbk9j0InRm7THHXIuRS/1KDWEs kNdqbhlx2ECXN2TiceAQBdkWJdvYTV0vu5ZdEoco9MiWgimRsalBDbJYuJPazyyjJECYh2bF CWRbUkuis37pyYPVGl1EbXlZZtwuXy4X4CI79RmyVLkLAjEPta6UUR9NySTOlsO559Qe+6xN lFlXvRY1q+uq9eGsqhPu+nC8PCeXkVzeXdbE2/5Cl+1dBbL9Htma1RK0n+0ig2o1XFmcUCUC R1Xd85JqKypHVtXlbAyxgazSDEwJc4YAdRdEAtxUv0xhyoTejUfUysfmOiOrxVLy9WI5sIzU lzJ0mVBFkG3+/lR7iPFRcqVpLP+OXvp8+7VeHZesfkv0v1kfZgXU3XqkK6PaEQUM2TI+Kdri DYddztm0MM0S7uHduVu6ZEISvCIbpzyZGm6TyIgtIApdVvTNIFutwra/FI5OM6hBFulGMEpb a2GpceWzBSGZpMiTlEGqcsNTFi9B8pvPYnneb0RY1/bvpvFGzS2GG1uSLTnWPlm2RPuOhUue G9nOKqNdJ3Y3gq4D0OVNhQjX4O4aizQecEEmeSitUoN0C2i+rngFNY/7IWS7jbv610hfLnfs cZMtRShZ8bYF3QgnzmdxvcPPuDJEHtmerxBbnrRlO42MVPvtqrrsrZSr7CfC7RfjbgPZZpDt pqsqieWTLXm0i6qqW8ayzXUjyMs/0/VR64Isx41gmev6SynU1cMeyX1uDG38uNNHtoyca4cu 25atCVicPxdkG0u25sbWjhJxCio3KHP5cv674/KF3MhxFiwXRxjzxqbdCy1Dv/QXjE6QkRdk 5tFwZhlBlwM8Y7EnRb5LkG0s2QovznHk2o61J19Gki0b+mX4ER/6xdohTuZ2n7TGpLfkE+aj Ejzr08wM/VKs/v3In+WW8G0L7eKCvjQ8XA/GxR0vz83FdLdCyc4TzeHvHFRG0GWfYlFku73c Y/UZZJtAtj7xhP8+MBA8yo1gOvXds2HjbB89JMYJR7JeS8goDNuL4OT18cKydetL4gVZmBL6 hn7ogf9U82iyZUKWzL45q+2LeJTAtHQfQZ/rQkbrIWByXc4g2s2m6yz0KyS5ROnNlBqNUGYe rzWtoSc5TMJG3i/uLJfwMWneuR+0acosfpBeIKMwQc2Nk/613RkZw+8xHTWLbLkO6Vi8MBFw rZITpeQNaz/9ZUvuveay7SeLbMCGKY3/AP1BRmFCAk6pboTIoN0wcWyt8hKlxIwU0PbLZCsj AshLmIC5F20S6HcrOuYonUFGYZICThxObjdCNbLNTZQSJvbgVl8n2+CZoiEQAAKDIvAVsqVD k+ISpZx4p4VhaPIC2Q6qvpg2EBgHgWSydQa9O5M1lAm6LwoxyLYonOgMCAABG4EKZEtlyTHz ZFLZcuI+VaSE6fuGnlUAkC32BhAAApURyCNb+dWM8RWVN1lD7OdvHAkXRAZkWxBMdAUEgACF QBbZHvlKnUmhTXItkygFli0UGggAgZEQyCJb/RP7UNcAfLYjKQjmCgSAQBkEMshWT1RiX5jx UQL5iVLUxSMaoYwqoBcgAARqIpD8uS719ddh6Xq/IQ7PA1k+ZycBJ3y2NXUMfQMBILAiYJHt 7b+bBgz3s7z5X9lV/l7x2YqfRTXZnXi55znrVhucTW9XWHYg28KAojsgAARMBDSyFcSokqPr Z0m2n/Z7CeTz50+ShuP3G/nq/dG1r84Jhlu/2WIF2WZDiA6AABBwI2CRrWi+E27t/3YjHJBt N6LARK6LwFcy/jWE+yDbUIt2J+Pc9g3X6B+qW7LVKzbEZob3L7xVC98pptU8csaZRRY5GJR7 9nsZ/xqemA24SLJVrdu9fagvN7R9ObEV6KlLsm1Zw6sAhmwXJ0mF5v2sOZu0vmeRRdrqSz/1 3Yx/HZBtaUCH6q9HsqUyrtWqTltJWEdu5PtjTSFJxWFXGrh0txPIohwkewFScS+zhn++iCrK zsG+nfEPZFtOF1J66pFsKWJ1fqmXsvC6z5yJpAd3I0wgizKSNj9IclR+ZgYsm/FPGWSVUdjJ CWRbRhdSe+mQbKVSmgnFq+UXTgUu9LmxyXYuWYTKjGhHlGfaTi9KNeNvZfxLJlvFUq+cwD/5 o4YMkfX3KMi2skxAtpUBbtI9/9LZyfZ7Gf+WJLLV9TIo9j8DaZCtAK9DshXKQ1u2ihWRIfi2 j45NtnPJIl3yXrJtnPEvLaWq+kIw/MeV3XQg217JlhL8YBdk57YenGynkkU62cqXjuoyEF1x lZ/lMO0y/iVZttYXqnX9uSDbXsl2mSncaHCynUoWGWTL4GARsByCyu5XMeNfihvBMl5Atjna EfZsj24ERWH3BO34qCFMnHVa4aOGDVcdh4csIGC6tlpl/FMknUK2sGzrbBVnr92S7RewwJBA IAYB040wVMY/+GxjRF2mLci2DI7o5XoIqGTrJdqPbSzCxXxBsU0y/uluDUQjtFBfkG0LlDHG jAgoZHt8MfipS2jVJzzW7/Ph1/Wd6mJAnG1btQTZtsUbowGBCyKAaATp838uj+f7guLHkoEA EGiFAMgWZNtK1zAOELg0AiBbkO2lNwAWDwRaIQCyBdm20jWMAwQujQDIFmR76Q2AxQOBVgiA bEG2rXQN4wCBSyMAsgXZXnoDYPFAoBUCIFuQbStdwzhA4NIIgGxBtpfeAFg8EGiFAMhWIP37 s/z9+W2FOcYBAkDgggj8/vxZ/v5bltsF134uGV+QXVr8WDwQaIEALFu4EVroGcYAApdHAGQL sr38JgAAQKAFAiDbrsl29OoAo89f3YIzraUFtZQYw5eKscQY7foA2X7I9u5LZtxOJp+RRq9B Nvr8CaI9dIQv+9JcTaYd8Hy5dbc1EzEH2fZKtjLr/X3RMj+OVF139PlrXDu4LBLJ4VuPHUnI 74/lcb8tINtvSaLKuKulcn+upew6+kMRa+W69kVXP/r8VTBmWktRIdfp7P18rkXQpRW0PCci 29djM56uHfolhWpWCK2jSKG9yre7+QKgrMXQDhu3G33+umE7tiwai77gcDOR7ckxFydbUazh 3tVxZXSyGn3+INuCnJnc1URkKwyljz/k8mQrSuN0dUk2+tF19PnDjZBMkeUenIdsVWMOZNub K4Hyzw53QWa4Zkaav3VBNslayjFhg55mIVvdTQmyFaojyKCbq8/RQ6dGn7/GtvKi5tQNhH41 YNppLsiEVXtXwopAth/teT16CjUZPZB+9PkThHtbSXf9q26eNsRzxVEmsGzFCdW46AbZHros BGzEt15Rz7FmIAAEMhEQJyA7yglkq8EKws3UMjwOBC6OAE20AhSQraUa+xG4r/jbi2swlg8E OkfAzxsg285FiOkBASAwBwL/A3PwoUukTZxRAAAAAElFTkSuQmCC</item> <item item-id="85">iVBORw0KGgoAAAANSUhEUgAAAMkAAABaCAYAAAASNHLoAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAj9SURBVHhe7Z3dlesqDIXTwOljakgX 04T7uB2kmjxNJynG1/gvNgZLW4iJmbXPWvNwlmUstvgQYAduPf9RASpwqsCN+pwo8Oz6263r nxSpUQVe/eN+6++PV5H/hCQp3yTurSMeRa3rIje/Hveizo6QHAIZALn3hZ3PRZoH3Xgr8Ow7 46iAkETt6Nnd+vIEMmWisnLmbHYbMtrwVzZk8CxLAg99lmwfYhI0mP6iDuz16O/rtdnm/uiT A6xgm7t2Ui1CshUnzEHKWvZQ2jvo9qLi4V7oBa2geJalBGStuOS37FsAZNdBxPNEMGZh6IV2 OIRkjXsIWNkkfRr7Dr3ZUE5XkknG3jHqMUNjMPSCvWdZIiOg35JvqevFmR8fdhGSRfQQEHvX P5byejzmlbDC4VYKiLHBGCD2LEuCBH2WZC92DNP88R4WWZYhl6IjCZ0ZEmpCMgceFe68vZRB MmakONiKXjXlk2dZEiPosyT75fpzydAjCNuOIjGc08w7wA6RkEw5oHiotW9AhOQ9ik0MwTYd 01lnsAxfT+ckB3IncM4zBRZvQjKKPAgrpOn9Cst2tSX1PqUMkl4ahkhderwYkcxK+NBN1AD1 W7BPZpp5YSQPgU77Z6df5ick02SieD7imUmmyXbUiMXxeYYcz7IkONFnSfbJOm8gSH4RETKJ DAAyvCYkV4RkWUZWL6WetV55mVVq+/rr6LMk+0RW2IGRue48eSckMySd6yt2XcrXTP6XVRt0 bT+V2XzKkpA5fzl4eO+xea+Ufmm6L+/4Ld00B0FWt6aQ61e4CEkVSKSGxOufVoCQoBEYxsa+ mQR1gPa/rQAhQRUnJKhizdsTEjSEP9/91/cPehftG1bg5/tf//WfrgKck3BOomspf8yKmQQN KIdbqGLN2xMSNISEBFWseXtCgoaQkKCKNW9PSNAQEhJUsebtCQkaQkKCKta8PSFBQ0hIUMWa tyckaAgJCapY8/aEBA0hIUEVa96ekKAhJCSoYs3bExI0hGZI5D2jUFfe9jXK9viE316j/Z01 6qf3jZDotZosTZBIPxhCndja1yjbYz+wkjrVrh/mGyHB9LJBIu0Zhfqwa0Pg/lXCs9z2Ayup U8X6WdwiJKhqlkyCbnqA+ORcttt+YEgdzmyd62dxi5CgqhkgkfaMQl3Yd7R++26l5gHIxmwl 9cjdW1M7rb+ERKvUYkdIUMWK7AlJkXwfutkAieveWHG1qw1HLrK6Va1++vbDTKLXarK0QCLt GYX6cJjYOu27tfPjIpDU1E6pOyFRCrWaWSBx3RsrdrjGEvDYGzicm4KKm7KvVT+9b4REr5U9 k0wpaDo2zuWgnQwormVfBZLa2skNgJDIGu0tTJkEfQjtr6QAIUGjQUhQxZq3N0GyvpWNz5+b /++5tn48l/Bs2KLbALkoaoSkSL4WbzZBsl8EyZ8pUSrICOOOOMUkTnMwS4ljhKREvSbvvTAk ifPqlN9AHTdadowNIXEUs42iLgvJMYsMgmpfLFnP59DEjJBoVPpTNlUhOT3nfMwK7yXR/Txm GlbFRwjoP1GoODchJH8KAE1lPgRJ1IgPw6j0WXZ6SOQ1fvG4spx6hETTrv6UTX1IuuFM8XjV K3Ho/D7rZDKBdrg1v7grO8wmE2dC8qcA0FSmOiTriampb3BWD2MoMqeiqr/jYSbRBJ82OgWq Q7Kda6TnKKn5R3pOsn7aIZ4PyDmJLvy00ihQGZL9yaZHSBIH0M9eJ1e3xmuKb6C4uqWJPW2U CpRDcvKgPRTREGhe3cq/nbdnA74nUUafZioFqkOyvjHfzidEQCbf89nkpG58464KPI30ClSH pFtXt95Dr9y3X8esIk/A91W1Zx+1ZObVLcUwUe1EzhDVK1XORf1MfW0RvWsbV1Fz57Kn7lfq XRUSpQ9tmZkgUXxzVqyCx15ZV/Vzqdt+jjt+gaH6mjZzv1JzQqIUajWzQKL85gx1ZbFfM/O9 67vhSwVVu0kmEd89vOJHWP0M992HEcn9Ji0EpRXM3a/Vm5BolXq3SPwcd/VLUNSZZe726J/T LK7sJ7dX9HOZYx46mlDXAZ7Nrz2TQ63s/XqtCYleq6VFwpDoP6dBnTn01UWQXM/PCYTHK/Af Z7nE64PDos3Z/XqtCYleK0KCapW112W8cZg0EpKCJFX4/ksN/P78cE07hOU57nOwuiVw2kZT eRjzdkPX+LJuX8nPOCuoVqc29TfdT0i0Tfrczjxxr7E3lu9waxrSXMPP3GuCsMw79uoB6NjX YWbWzZN78X6gNXC4BYi1pH04k1Tdd2tbgcJMcmU/kxP3aCXv7HMkVSZiJkFxyCkGT9znQXXF fbcWV0shGceTH/Pz9HOiZCOf5iDLTzGyLxLVcxpC8mFIfB7PUn5fAQ63UM0tcxL0GbS/lAKE BA0HIUEVa96ekKAhJCSoYs3bExI0hIQEVax5e0KChpCQoIo1b09I0BASElSx5u0JCRpCQoIq 1rw9IUFDSEhQxZq3JyRoCAkJqljz9oQEDeHPd//1/YPeRfuGFfj5/td//aerAD+VDzoxk+ha yx+yYiZBg0lIUMWatyckaAgJCapY8/aEBA2hGZKan6B7lu1ZFiquZO/xUwDpGcfrhATVLPyu QfuD57XsmvtZeZbtWRYqrGTvsa+Y9Iz0dUKC6maBpOa+W55le5aF6npib92vy8sFQgIrOfwa LreVZq6smhsseJbtWRasa/6G18NpXzGjT88u2jnypBwuAY/ihLQfbZYgiF9zPyvPsj3LMrZH ScmifcVsPmHxJiSzykj6HbEK59HH2adgY4JtsD3L9izL1iCluz4wcQeH14RkiSEonPpobamN pK57DpE8y7LURbzn9yFBO0RCsgYRS8FV97Py3CvLsyyxwVsMfhsSMM5DlQjJNq7qbf+Xecyw 9Y141qO94fiUfeUl4LeO8Aq8RdZ5mIye4ExIIrHTB6XmIlLzJZ1n2Z5lGVtn9rZfzCSHzbd1 dSEkB502u5brNKRVEwqETe+wFcylWoQkGWCC0kS7VztpByQ8gpAIw4DjBs7qyNDw4wosw0xb BmEm+XgA6UArCvwPsnSRlCJhZhIAAAAASUVORK5CYII=</item> <item item-id="86">iVBORw0KGgoAAAANSUhEUgAAAmIAAABgCAYAAAC+AR7EAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABpLSURBVHhe7V3r1eOoEnQCm8fE4Cwm CedxM3A036/J5AvGVw9blniIbrqQANWeM2d3x6iB6lfRIHR78R8iQASIABEgAkSACBCBUxC4 ndIrOyUCEgR+Hq/b7fH6kbQFtfl5Pl+/IFn5Yn5fz+eRs84fqfsk8cvBctD3/fa6Pw+yvBP8 KgeV6zxzsP6vA2wzMyURa0ZVVxroHJhuj2PJyO/z/jq4y7hSh2R5WGIGmRbxswE54ld24XGO X9lQuc7T5fV/HSxbmymJWEhjXDFG7PiIldvYx/11VHFgmejv8/U4sNPf33T14/f5OB6H3AhG /HKRc577eT2KVIFP8isQKtcRU0r/KwSZ3w42p3TeJBHbqIQrRomFlly5/Txup1SlSpKe7Zxc pxwDb4R4HkxuvrrfGVOMohckjefh944Ht6E6O/yxVSgVsga93+/YLXKZX81jtFWFFfOUBJtQ fIboQ935+wG9b6h7KqD/eQzMb2pdAB/Yy5skYt+SyDmVGKCijxVVYOU2rtRsWSATgjFAlTmL NjnfZk6B1VE08A4YgxNyJkCJx3rEz01ao73nkjG9rNFubMTPqYAk/epLoJJNo9agn6fcHkvK lo/iNZxYjS6cNGJSHoXU/0LCTthpAGLSh6hw3iQR+6xzRJWY2laM6NWnUh505SZI5mN/79Xw zSMo27G7v8+rkbmycXMrUHtEaP3Mz9i/hrC5TueMcZXxxoqFn3jLbifFMVknm/d/T3O/EH6T rTmJa1wo5BDjLFmohU7arxY7GBYjD0tFLGuewvRaUrZwCHOzY4jY3I8m1uxPos2KqDIfqfSY alyw70C+IRGbfEtSialtxYheIebJg63cR+PcXYrPFYm5iVtV8kvuY+BZkqZ7JiL0/17foS3E kYjIg6NfDQuNfVkJBJO8LICmgkrg911MXCK2nfcG26j/NI5fiHRNZECu/wX1TFmQlx+SfjV4 0/Cm8PxajHGhmTlPkfWWlC0awKfRUURs1Avo5SHmN5WG/S1cSzU83LWbN0nEpuCzH1yrXDGi V4jZ8jArt2TQ2TtgGkyQK+KWOJwaJEyBZ6J7/MH+A1uQq2TnV7/CAT5cKVPGlVDzXUx8Irbh qc6zPeI3zcmtfoV8RKCKbFkCEpXqPulXGwE2IpY9z9QkRooI1Iegu50mjp+uq/TLQtHWw/I0 QP8zqWB+U2kkOxdqetnmTRIxgbFXuWJErxAN8nTBPmSswmAR2xYKbhmtidC2zOwWv0JVvXjg d4LaREpClbJ1BW89532CJhmbxt3jbfcw0RMxl1i2jh8y8efLSvvFvi1onycRS/tWYNv+8wJ0 JlHf99GMCuwm3KR2GiqtiBryUVqHiRYH9b3Om5cnYjoSUU+gyg/u8VJpdgVAQGb3TT99KD04 32W3IHR2J0x4pm0155xYqKIjIRKzrOEcUfDsWGwLQ1cpy936/c7zM9/Vvx2252OiJ2LuSxat 4zcdVwhWxDISo0HWz8NywDrtV1u/tMU3KGZuwDBgaE7MGwEr3whs+aGPEtj0r93etOkfmZOQ srT6P6zvVd68OBFrd8WINhabPC2OjmtIiJxla9LzxC0Zkm6tTYkmdEYotTUa2P4JH8z3rw4o tjW5i4mdiAWxagm/kE5Nh/UDlVTBwX/dQjHDr4Bbk8P+oX+GLhcz1z5LylZl6r0zYvjzYyb9 C7YlkUTclkOckZy4FY2ch7RifXEi1vCKEb1CNMozrdwkRGx6i+hLVLbkSXlY391CCB5mDb+8 ICdiuspX7G0s9Ap7CQwuKdpgoiNi4ZddWscv7+WVSL3Z+VKE/PCvKRGL/MrfNuf1FXvpU1vp VrE8f3lkOrDP/JaFvjEXavr85M1rE7GjAxVyVYeUNVqOUZ41YYhutd8cjHW3iLZnntxtJXer bnu1V+wCTecc1UNTEXsfMA5ktYlEjtuj69+i59wsW1OJDeFlm3betvwOR0nEAq9jzz23jt92 /LZ7vfJkHeJXi5nYtqZCOrdh5pXFZkJb3YWucmKtSdJzWDa8Ocn8poX7bcIFK7te0XrWL4mY avlnDVR1rLLRq3ZEwBARsTy3Ejwl3FpVba2N3cq3KqL3iD2wN6wLwMhoQvwyQBM9Yk3E5/qV aIptN3ovDlVpRDFjq/73rwQKE938udSc3xSge18gKE+0L0/EdIHKSsT8KoFtxZi3yo6bZL48 a8DQ6UHjVLK2ok8cqYlYvCq2GVWsojT8/dm4yNAb5yn4Libxk8L5rVEZKyKt2I8amBoeKEzC jl/g9p7fNEaTnwtVvbz9m0TswA89axTUWtvWidhYvXqmbCGDSKQvyYxXzUTkphpDIX4lVNG+ X5VApQ6ZyxGD5YsT7ha/fZzUvx3DmiV89Esilkq+NWuxorGZAsa/v68/f/+dPpvvfXGnD2UY gIDY1DDM1RiIH14h//7+9/rzv0y5lfhV5uj52ICASf8NVdSvqmwSsbnu28zWT+2GaiJi1ehB +5ZRKa0Iz1yV6j5bLvHLhi7yYB9+hUblOvKo/751TSI26pcrRpiVc+UGg5KCiMCCABPxtY3B pH/mt+qN55M3uTXJrUmIsZoCRjUVMQgUFEIEYAjQr2BQNimI+m9SbeJBsyLGrUmxsUgaMmBI UGIbIqBDgH6lw6u31tR/bxrdzodEjEQMauEMGFA4KYwITAjQr65tCNR/3/onESMRg1o4AwYU TgojAiRitAES8c5tgESMRAxq4iRiUDgpjAiQiNEGSMQ6twESMRIxqImTiEHhpDAiQCJGGyAR 69wGSMRIxKAmTiIGhZPCiACJGG2ARKxzGyARIxGDmjiJGBROCiMCJGK0ARKxzm2ARIxEDGri rROxn+fz9QtFJEfYcKP+8yfnwdOfIX5lVNC6X5VB5TpSqf++dU0iRiIGtfCWA4Zp7FAUB2HD h8XvjV0yTPzQRvCVZ8KWFyWXU8xBkqn/g4A+qRsSMRURG7/9d3vdbvMfTKKcZT5MBRD0uPLl NRswDk5Wv7/putvv8/FqhosRv6IhvFm/KorKdYQfo//8uB/XRI35TWM3JTDx+ycRExOxt0IW xjR82NhMxr5Kzidi6HHZ5B0TMFKONOrmriIxJUnPz2NNtGd8vyR+Z6wHk5sUqnu/940fMhjn yTrGr/LGFrYLpCypZSKSvrSvT7tj5lle/7a4n7KBevKbRr8lMIkg9bxPxRh+azJVehiS4t1N 7sP20e2ed6ZodKypsnZ/vB6Wihh4XMOpUNM8ywcMjSNJ244O93iZipKRriY9b6KQS8SGB0fM g3Y0kLRM+5LOHNOuZ/yQwThfVnm/yh9bYH0/7xxAF60pS0UsalN9uL8jMdvvu7j+jXHfQ6bW /KZRMRiT/YUsidiUCB8pIhYiXZOi8hL473AofE78xlUceFzj2SSPXCrmWTxgrKx5IbPTVvG6 ArauMr3/+2fU1Wdb2amW7RGh9TOTDI2+x77X7ber5zVBG6tm/lb32F5X2duNM5Me3xh4BM8Z m/N7HOsEkWwdP2QwNsgq7leGsXk2h5QlSJywRa2gr02TA+dZXP/GuO8TsUrzm0bHYExIxFLg C4jY5Oxu8go5YqovP2qZzoihx2WVVzxgfPAbnWRNcjb/7xKxkXx8CdFIeja6HJ/1auehLcSt nJSq/WrYl3h7pCtSXd1ua6Z63Pt93kqfp+nOzV3Zj+8KrDDaxXoQ1zN+yGBskFXcrwxj86wO KUtg8rBFraCvTZMD51la/9a4H4fOVmgoN660so/sm2fEpryUroiVU0pdhmqdZ+mAsbiPSw62 EXJ1RmxNQN6NnGeDhCkgf155BypiwYphYAty6j729+GzYuFKWTqIBJNjrJoXHP8Kt12s5w9S e0S2E/ys/rDWg0VWab+yjM2vhpRatKbs3hZLU9LPnGdL+t/iZNMJ0i5b0C/PiB28Nfk1Cpuh WrcS0avZ0gHDxe3zBuu2oOVXxDa/B4iYW6GKBwCHiE2yQpWyAAHcJWJhOxjHgXg7NzifD5jB atyaMG63Ld3iYWiMveCHTAQWWaX9yjK2MwkKMum3kKi1Y5xDTrrQAM8jy0Ary28aAE+oeJKI pYhYqGpgOKwPI2LocRnllU4YIT+attE258T0RMyt6EiIxNzvcIYreHYs9jakrlJWBxH7ou5j Ha6IdYMfMhgbZBX3K8PY0Iu5tbyvvX2vDfosvmLHCfLf0NNk6aEtErNE18X1b4z78eEbiVix cQl0fWDf3JqUrhjeW0r4N4GMhgofl+1NoOIBI+o/a4JjJ2JTkHW38mJbdKmtvc2Y94mYm0Sq 2Jr0MN/OQbo1GcT07X/+SxCYiqIZP2QwNsgq7leGsfnmEXipBbJoTSVPayxNyXd+R2J2NhGD 55HPhKw6seUjpUZdBR/29i+JmJiITQ15oevpAeM9AJcUbV6c0BGxvcPmLvE+44wYZoW/JTZb 8qQ8rO++pLJzWL99/JCJIF9WcSIGTcT580QkToy/SEZy3DzL6/9K+U2i2y2RxF7i7vdPIqYi YhoFXrPtMQFjxtbdtvgGYCURi15f4ZyNegSqZNGKTuQQ+0jnP3fsrDNG9JxWoesrvIP7+9dX xLGeJhS5B60X/JALsDxZx/hV3tjCkQ4pSxpLrdUXaT/rdsfM8xj958yfzyAQIBEjEUPY0SKj zYAxBlPB/WCqrcmJKopv+I/eI/bIuzAYqtSkMOKXhMjYoE2/Mk6ajzceV6lAKQLVETHJN/ik kxO3k7xVIhZ27YatJgzRJ3rURCxeFdtYSayi1JBdEr+yft+qX5VF5TrSqf++de0RsWXbZLkR e/u2CnL/PfsbfGidNJTw0FNHy2s3YPy8nqk3ZzOIWPrLCfGqmYjcoBWYLY/4ZUMneLBdvxJM jk2SCFD/SYiabrBfEYPcHB/Gx3/TKvA2WfTsCRhzEjEYoC0HjO8N3TA4DIIExMYgvcSjxK8E qrPMlv2qHCrXkUz9963rk4iY9Rt8YKWQiMEAbTtg1PKRbeGZK5jWUIKIHwpJV07bflUKlevI pf771vUpRMyvhk1rvulqCOk3+L5qmV/LN90+TiIGs3IGDBiUFEQEFgToV9c2Buq/b/1nE7Hd jxEvn30JffpFd7O45s2zbFWRiGVDx5U7DDoKIgJRBJiIr20c1H/f+scTMee2Yb/6hbkxO6QW 3ecwVhJIxGBWzoABg5KCiAArYrSBCQHG1b4NwUbEpgsu57cqo29Tep+BwHyDD6oWEjEYnLsB Y7KFfVt5pN5chI2UgohAOwjQr9rRVYmRUv8lUK1HpomI3e7vyyaD39qbJ8mKWD3KPmIkXLkd gTL7uBoC9KuraXw7X+q/b/2biNj2Cy1OpeNd/bjd3E+08IxYzybFgNGzdjm3sxCgX52FfB39 Uv916KHUKAxEbEuw4of3/a3I8FuTmm/wreHgW5OljCNHLgNGDmp8hgjsI0C/uraFUP9963+f iO3MPXQrfuycmE/SrN/gAyuFZ8RggDJgwKCkICKwIEC/urYxUP/169/yeUYTEbt9mNf6jNh4 dcXn7NiEXZh0xapiG7iru1l/3lb9vKBgurvsfW8aRtYHtXl8+Z+hkhPkmFswYNQfMDjC9hCg X7WnM3fEiESdhYK40NB7fstCL/gQ+vOMJiL2WN6a3G5TTiRr+Vale0ZMShrspEAMu8hQ30a6 sBzLlihS1hbP3TdYk4DYMWfCSILMBkRAjcAxfoVMxNI4r4ZieKDEOHPGEX+mVKLOGiXzWxZs e8WGpQg1NbJ/njGbiEFndrYwiaGGvrvpVf+EE0HKGs3gQ3zvj9eDFTGhEtiMCLSDQHkiVuvi 0KsrzbsSkAVxGf37uz24RJ01Yua3FWxzAWUuFA1Fop/xSqXHsG8n/afM5xlJxCZC+3wl768K ka6dazt21YqUNQ3/+TYkbk1K3YntiEBLCBQnYtUuDh0tgcfp20DdiTrLZpnf3rC5hPijazkR Cx+pyv0841ebJGJCIjYpYHP2bSZwd+96jrSrIGVte0MTsVVQcucemWbxhJGGt0CL+rdCCkwa ILI33Kz+NQWbrHOmxf2q2sWhY4bgcYbi5/fsb32JOsspBUQMmZOQsqD5bfr04pZ0zbtJq787 6fOMJGIkYk7Z9nOmb5t0RC9XTNz0nv+ygCBgZAUi00MltmxMA2rk4d5w+xKo/Jdh8jEp7VfV Jk+vIIZbEHuOJEnUy/2YoS/KlLsjsyX912pL8XG9idiJn2ckERMSsRdyJYaUtYkm1hX7+rC+ sxcu3IYtHTAOZyHFt0IOn9ExHXaEG+wMpgGT0n5Va/J0jbXcON9nbYO7Hp+KifMyk6fPct9R Lq3/K+S3JBHzjc05P1bu84wkYlIiFiIipsP6zr50rqxSRMy7OkT2RmXxgHEMjfj2Uow0Hz2R g/vrCDfYGUwDJsX9yjC2fcuyLg6P25pMJuoRI6ccun07snyizvJiyU7DFfJboOI5EdDIYX1/ F6g80b5lKbiXhySG+jnbAXlbJ3+LomzQWwUS4X1woRVr9taNSA/HGl3JFfixMzm2tz5xs5EK CybFiRgyEUMXh97epP+WG2QRO/SjTNT+HZnlE3WWF4viKjInIWWtZ2zzv+V8ppPDPSK2bD8f 93lGVsSkFbHJHvIO2oadBynr04PVUFdEjBWxWePAlzSygmijD/WJm82/LJgUJ2LQhSYyeXpL vYLXV4QJRLhiEjoP1u4ZsRllZE5CykLlN3+O812osbcmS3+e8WvbJGIqItZoVswaNs+ITbAV 27LJUko7D3WJm42IWWypPBFDJ2Jk8oyQsfd9ULYvnOzLDifq+GXesZealnOG6+0CRSXvGP23 E15gI93ZmpzDv/ulGtkRnc+zUtskESMRi9j0dnUXCzBeGOvtrcliWzawUFKnoC5xMxIxAyZM xCeZuZuo39tW8eMXZRN1Fgqircksye0/tNav8DiOKBd6O0r7UJGIkYjtWAjvEYudK5CudNqP VLkzKHVOJHc8iOeMRMyw/UcihtBfhox1ok6SsFl+yUSdMQPZheVZgjt4yCHaS+Xyc/P+b2iO qTggJ+Mf6SRiJGJQb+ozYZQ47wCFvVJhveGWCsASNeRh0qdfSfA6uc0qUW+T9OczOe7W1ZRQ pnNsiKqZm6iz0GBFLAu2Ix8iESMRg9obEwYUTgojAkuVpae3kalWHQKMqzq8WmtNIkYiBrVZ BgwonBRGBEjEaAMdfrGESl0jQCJGIgb1CBIxKJwURgRIxGgDJGKd2wCJGIkY1MRJxKBwUhgR IBGjDZCIdW4DJGIkYlATJxGDwklhRIBEjDZAIta5DZCIkYhBTZxEDAonhREBEjHaAIlY5zZA IkYiBjVxEjEonBRGBEjEaAMkYp3bAIkYiRjUxEnEoHBSGBEgEaMNkIh1bgMkYiRiUBMnEYPC SWFEgESMNkAi1rkNkIiNCv739/Xn77/OVX3M9P79/e/153+ZffEG6Ezg+FjvCHCB07uG9+dn 0j/zW/XG88mbt+pHWnKAJAAwdBkwYFBSEBFYEDAtcJiIm7ckk/6Z36rXPyti3JqEGqmJiDFg QHVBYf0gQL/qR5c5M6H+c1Br5xkSMRIxqLUyYEDhpDAiMCFAv7q2IVD/feufRExFxH5fz/vt dbvNf+7PX4N11CprPaV5jJqPDTNgGEyCjxKBCAL0q2ubxjH6rzUnIceVa0f6XKjpiUTsTcTu SbbxNoal3c/rkU3GapXlk7CRcCahWT12TMDQmDiibQ2BADGPo2X0gluJeegC+zF+hZwnUpZr tyVl5/qITp/aXqz6Z37TIm7PhZoeScSkRGw4v3S/3V+bItjP43W7P1/qulitst6WMxrFVPW7 P16Pgyti6YChMW9EWyRpRoynFRm94FZiHl8iIV3kXDcRR0gYZEGM8iW9PrU9F9d/rTkJOS4t 6EN7Sy7UdEciNqE1VLdShCpEuiYjeQxPK/+pVdZCxJ7vOelXeT8Ph6xqoBnxlGYmjVxL25MD gWXopz7bC27geeQG9ssmYo+HARfEAAfJ1ae2a5P+md+0cC/tf5/5uVDT6SdvXvv6iqGm9Ryq P3uEanI4l6yFgrQA/Vpl+UPXErE0jvvwCAixAF9oEyRphg6scmG94AaeR25gNy1wWk7ErpmD 9WH1olx9avu16T8dl2vNSchxaTHfttfmQk1vX/1cnIil30pCGkStssxEzFzRSgcMjXkj2iJ1 hRhPKzJ6wa3cPDSB3eoX6eeR80TK8gtiuAUx1pc0+tT2nNZfSmKqoobUWa2yUhjt/15Qv6u8 eXkiNmwG72+LIVditcryLFFnfClnlzgCQoakH2kbZFCR9tlDu15wKzcPhW+lYpPAYFJ+hZwn UhaJ2IAAQP9JGbXmJOS4BH4Sb6LwV2U/a98kEUttT4bOg5kO6ztboTXIMhEx+6pt6h4RdJSO sNu8mkCAnNQBsnrBrdg85IE9RaJE2kz5FXKeSFnu5ErKFgEZayTXp7YbiP6Z37SwO+1L6Xeb N0nERthHJ48eFke+PVWrLG/9Kb5HbAwWtnvVPn2DCJ3R7ZbHkQQcNaYW5PSCW7F5SAM7yh8S cpDzRMryS2L+C1K5i1ioH0n1qe0UpX/mNy3y2/Zl9OvmTRKxN+o/j717s76vKfNC15WZjoE3 9dapxgt2CbFGEKItkjQjxtOKjF5wKzUPWWDHLXBaTcThxeF3wWy5zxHpSzJ9anuE6n8yAeY3 rQ7m9gX0G8ibJGLfEshQBTJcwZCn5YafGgNhxhUeiRnvB4yj4UIS8KPHfmZ/veBWYh6CwI5e 4DSbiCNkDPKFE5R/CPSp7aqA/mdCwfymVQW+fThvkohtkKaxygyvDAn7rkAYMGR6YKv+ECjl W4xtbdhKKf1/qjuMrefZQVy3JGKeVj6rYHy15zwDQPV8FDZMGiiNUU5LCJRMwkzE9VtCaf1/ t9puBXYz6sf3rBGm8yaJ2Fm6Yb8JBNLGSwiJQB8IHGnrR/bVh3bKz4I6KY9x3T2QiNWtH46O CBABIkAEiAAR6BiB/wNTSwVrSkVLegAAAABJRU5ErkJggg==</item> <item item-id="87">iVBORw0KGgoAAAANSUhEUgAAAd0AAABjCAYAAADeitrfAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABLeSURBVHhe7Z3ttaQoEIY7gc1jYugs JomOYzeDjqZ/3UxuML3iJ2AhIKiAz5yzZ+fOVcSnCl6qQHh8+QMBCEAAAhCAwCkEHqc8pbaH fF7fx+P1/ZxY78/7/f098Xnyo36/7/eZb335CxsVwAZ57AHHPBxrKwW7K4t1fejz8X2+3b05 omt49gDs8TpXeH7fz+/Jj3S3527AseUwtXUEofXFBqGktq+DYx6OtZWC3U2LKR6uwA3RnVkp wX1+NwYox7SD3/f3deJDf3/98fTv+3U+h2PohpWKDcI4+a6Co4/Q6vch7TG60LNvwO4O4p/v S8iYIrojrs/rcUm0eaTAme9kpz2UQzgGGcmNaMwYPLqsQfffuZHzxns5mkabNkjteeGYStC+ f3d7zF2RzOW12X7i/V/E2vWlz6c5dYjoKlJqDveS/K4Sp2Pmjvv0hvFOwlyD4BCD43QOZzlK eDu1U/TKec8W3vDaDnMwrdkg5v1zXQvHLZJp7TGXjY4op1W7ZxLdDrmyvR54ILohna4SpzFq e6zEyIzq7N8Puf0h4nvYkeWW6On3fNTzY4TBTmtYddTEWI2+15FoQqq9Z2VF0GpQs1vE5Y7C zVVvLOPfe343skFE3wrHEFjDwHFuw6e3x5A6eq6hD4uEmE90+yBG678RXeWMm1Hu0OCGS+xo cb3wSonYLDD2Kmjp59WzpTSwavDhorseVUt1n/PqoiDuTrdLAts3+PD6e1vHJldbdE12hn2c WY7KbeAFqNlet4vBFY4DpTJ8QTRpZ6+wBB19WGiTWK7LKbpDtDvZ6vai6111t/X5kCgmmoN7 Pj0SxVG4x7kSTny+a8m6699l55IjYL/r9nW1o1op+vUX5b5ik+taLIyOybq3RRsEo4WjH1VI e+yvmSJhe3CZpz0miS59mN/OqyusflHPFMxBWESxWnB3c9H1z0eIIjKxFtOmeiMz07r2qNTO 9ffjaqdoWY15buh2I9dHtbpTbDf+kLqFuNgpojtGH1NHZ9Y9XnTt9HrtNgixkx7FwdFNzOsL 1sB3PYjL0x5TRJc+LLxFyJGuJMCxX7osWnNz0fUvGEpzWM2EKu1szetKUZa3kXdF9ilSNW8q zi250iJxI25pQBDkumekl7WKDCz0+fJ40bUX0VVvgyBDmRfdluMYwbjStCG+YJBcZZ/ytMdl nD/5u/B/x0vQhwkNwmP3YR52FFZhoe2e6bfPayjv3qLrnc/tFc49n+pLL69sbQpfaGrTWYeo 58dFunvTy12ovp6/PWAhlYlWf7d00RV5u/ygRBvsEF098h0ifzj2TCS7b/QJJUa69GF7GsTW nO6++d5pKhPR9a5EMNNDZqOKXEhlz22KnyrJn9yIC6kOntP1ohF9+YRPhuxOz+AaJxby52K1 2yCwk4FjAKhAX5jn/Oy0Y1yGyRzseKq3ayHVOIU1N276MJlybIbC70qIrmIUugmEMYkuL5SY F1JYi4iWtN2QDjI/nV1/OC3Otb0c0bZjVbC8enlsbCoVq1fCOS8dO2ehO505l33E5hhurpGi 6/xsy5qPr84G/k5gCOTMNOXiGnBcCAb6whAarzadSW+PDlsGi+7Q1y2fzdGH+VuHJLpDALa3 P0N0Y0TXb6GdV/gXcjlTXGP95U9xwtMfzu90XyUcwLATa9Rt2CAKl/PiG3H0fJWwnu9LbY95 LHRMKTexu3cO2E8X0S1CdNUANGCf46j5xDFWXu1IJTiFK8oLzQD4/ayKK7BBHjPdhqPeHleZ IllgXdGuQd6Zdcljn6NKad7uGQR3kJvhW93bz+meediA7PSf7jg9zyEEO0R3+qjfPS/rHn0H NaKjWvAl5WKDPNhvwlH61tu149kMdkhR72mPeWxzZClt233YJ2G9Wjx2zQuiq3zw5+/3z9+f I70xqOzf7izdcw8T3KpWQAMKequ6LsIGeewFxzwcaysFu/st9vP3n++f/4h0Tz1Wz20W//fC fpPmuCJwfibHo4orAxvkMQkc83CsrRTs7rMYke6QZC9EdH3m4vcQgAAEIFAzAUQX0a3Zf6k7 BCAAgaoIILqIblUOS2UhAAEI1EwA0UV0a/Zf6g4BCECgKgKILqJblcNSWQhAAAI1E0B0Ed2a /Ze6QwACEKiKAKKL6FblsFQWAhCAQM0EEF1Et2b/pe4QgAAEqiKA6CK6VTkslYUABCBQMwFE txDR/XRbQHp2Xj7Bz7qdqN7lbER5wgtHPQIbReHyXgxPL6ImLsDOphkR3QJEdzJCES2s28R9 7zmRRdT/oEpgo7xg4ZmXZ6mlYee1ZRDdq0X35C0of3/98fT9ThfydFnYKG+fDs9oniHtNrrQ o2/AziJhRDer6IYfUj1Z40iBMw/RHo4UW6LYjbpmayzDM6fjsGqNoNu20dE9rzTSDzg7eme1 rvf5nRXXbtv9DumP3iiBvm2AE8/BhoroZhXdWK8/7jSf9WHZtuh2dXUelp3jpJBRcOfDJpWz 6qIfy+qq61u20RVM4blFPa3dXmFP1zNbtTOim8fLIiM78zDj53c5e143yPj3z/v7dB1svSV6 +j19Ga+Is3bVs/XrzYjzoZ26rEbV6whUXa+/1w7M6t0eVhnq0O/nQQvG+ueNUfXqGdb7W793 29MzMKndRtu9Pzyj3X4YWA6Znc73T2+30RVe3UDf5mOI6PoIhf0+RnSVcOiCZvxsi65qfIv4 KYEzREfdqwngUFkpDWyW43up9WhZKncsxSGEZorL90Th91K5vTDGDB5Cnzt0dgNKm58dcXcJ It0Om/bsimvZRk688Az1vOW6MtqtWO/Oh1fdjHQhfVuA2RHdAEgBl6SIrlH8WnQNZ7ecWhRH 2/H7YOtpCv30TFHEhDSyKOZTIbITyRFwAMvxkr7OdsQpRb/hRbqvFJjNF4uMNFHZundib/dY jdjIrbnWwFK/EJ4ythCf6K+ZImF78Jmn3WYVXfo2KZroBvhaBk/PsM0D/+1OjTndPjiKOcTe TFWa/XG86NqpXbdYWY10bsB249WjFKO3tBZSzcrd/7utK6oeKQufzhRd8VnzmEJKaesd3JY9 hwFPqzZydQ3wjB8JetutNVhZD7jztNsk0R2zRNPAgL5NTAdoomsFLIFBBaIbLbqLIfo05TR/ 03+JEy+6dnrZ23jVU/rnuuaMXOmPuJF0quj2aVkx0o1PLy+cl5XQc8TQ9QxpIrFlzzHLYI1I arcRPOW2sOnzY0TjStOG+ITRha8yBnna7TLWFNrKFGUH5Jpv27d57Gz08cLUU8i0HKKbILqD g+sNOF10e7Gy5z1dKVBfqs9s5VGRbmp6uV8ZLb3HEQupUtLLq8Gs2SGHTgGIdht9az2PnSeq SbaRK6CDZ3yoG9Nu++RaN/1izj1p6xL2Z6jSIl37bvq2Nc+tOd2w+V5EN1Z07cZlpBTiRHdr kc7SIKcVkUKEePCcbsCAeKNzOvOTIVPEzA4tciGVnSLaWEhVv42cqmsIADxDNFj299UAep4D tL8OiMtERX0vunchFX2bYPjYjMS6CEQ3VnTn9O6SvlnEKVJ0nZ8MWfOML8fCFsdqYHn18rQg q6u3rqbi6uUMnwxpWYBTNscwFjTIi1TmlLQVbdvpVmOw0byNHIICzxClta4JbLf9XevOO73d OqocKrr0bQE2l0R3GPSHroFBdHeIboBlAi8J/IA8Kr0sN2h3JtHxne7roO9pA8mUcxk2ymuL G/H0rIxfz/+FpSf7Fi5+X5/XUmml3cTO3jlgIl3Zj6JWL6e5on130BaD0aIrLwBa1dwVxV3I Iy/dPKVhozwcp1Juw1Nvt6uMkiywrmjXsIAz+5LXTqmlNW/nHYI7xHjP/muRRyrgXPdfsrH3 pSLz6Y7T8xxCsEN0pwVe7nlZ96g6qLHkMngV5WCjvGa6CU/pu3zX7nQz4CFFvafd5rVRjtLa tvOwf8J6lbhvLcxKdF0Fyd9upRmmmI29LxVdNfJ5R2zxmMbcf3dAQ/EX0twV2CivSeGZl2ep pWHn2PRy4Me+ewy+TqMIq/fOSqNcLLr9ooojPqWJNkzgPEx0uS3cgI3yWhGeeXmWWhp2ti2z nV4+THRVajNlQ/7MDna56GZ+H4qDAAQgAIEiCVwiuvJiAcd3auInLTrLuOXaohUQ3SKdk0pB AAIQaI3AbtHd3O7qqo2991oH0d1LjvsgAAEIQCCCQH7RvXBjb9+esk4uiG6Ey3ApBCAAAQjs JZAmuv1OScOSaecy6YM39t774sZ9iG4WjBQCAQhAAALbBJJEdz5FxrEdoXr0mRt7E+ni7hCA AAQgUDKBJNE1t/C1ot0rNvbeS5pIdy857oMABCAAgQgCCaJrnpLhXlh19MberF6OsDeXQgAC EIDAhQR2bwMp7SblmtctfmNvIt0LXZBHQwACELgPgZXoPv41t2F2/dzPn3Yq2/9em9NVP89z vR1H9fPrsUTFU3lFbeyN6N7H43lTCEAAAhcSMES3F0xNdLd+7kV3vP4xiur087x/8/j7aT9/ s7yCNvZGdC90QR4NAQhA4D4EVqKrXn0S3qP/XwxmRLcYU1ARCNyZwCWnrN0Z+AXvPotuaIQ7 iXLq9Re8q/uRxYrukA2YvoV++o4ALAqqXhlfVqPYimsVa8UWNbC+Rx2vO2XNfaznPchf+5ai 6OrR7lS90Lne0OuvfW3r6UWK7tjJz6vTMqzSvgT6Ila+cyYvqV7QQ1uxRdDLctEJBK49ZQ3R PcHEzkfsXr18ZaWzP7tE0ZVOePIe/pCdTFKB89z+89UdXbh1MHfSY46/uQFbHA/pTk8YBsBD BqpbJPp5f5/GqWk+Flefsobo+ix05O8RXUW3RNGVBHZj568jnWRv2csB1pWnlxuwxV4bcp9N wD4NbRJg/ajSbWp5T1nTntX5aVg2CdG90q8R3UJFt2+Y9sH2h51vfLQL1i26bdniaFs3Xn5/ gpopsENGR/u3eTc+aV96xxGmX9e/RwjkbtHVIne7z2ncnFe8HqKL6J7gd4juCZB5xAkE3AOw SXQtkVwNlAeBW0ek22IcFMHuEl2zbQbtn3AC55YfgegWKrrfplKadYtuW7ZouTs7/t28oqva raWQ5iplV+QaGwEP77rvkBe9Dtb8cmVTWMdbPP8TEN1SRVdy/soWUi3uWrnoNmWL/J3IrUoU 0sv9oMy5kMoW2cIiXeXbRko5Ip19K8Pne1lEt1TRHed4llFzrZ8M9YD7742DUmT5fDtjSXwy lBFm5UXJviCLrhS9xka0ESK4J728GshHPK9yS15VfUS3WNFdxIrNMa5qHvpz2RyjBCuUUQfT F14vKdJ1D5Jd86bzJ3bmmanrBZUuCHtEl0j3dJdCdIsW3dP9gQdCAAKxBOz08rh62Z3ZCY8m 1ZztsTvRMacba+7U6xFdRDfVh7gfAvcmoIuuV3AHVEGrhFdR6BGYzXR3UL2OqMaNykR0Ed0b uTuvCoEDCGiiO6eI5x2rpG91l6mjHNFw+hvxnW46w/ASEF1EN9xbuBICEIAABJIIILqIbpID cTMEIAABCIQTQHQR3XBv4UoIQAACEEgigOgiukkOxM0QgAAEIBBOANFFdMO9hSshAAEIQCCJ AKKL6CY5EDdDAAIQgEA4AUQX0Q33Fq6EAAQgAIEkAoguopvkQNwMAQhAAALhBBBdRDfcW7gS AhCAAASSCCC6iG6SA3EzBCAAAQiEE0B0Faufv98/f3/CqXElBCAAAQhAYAeBn7//fP/89/0+ dtzbzi3dxuKv928778ObQAACEIBAkQSIdEkvF+mYVAoCEIBAiwQQXUS3Rb/mnSAAAQgUSQDR LVp0h7MuH+MxYcceZn2Ef9Zef51JS+9yhK0p8xgCg9+5jwA85qmUehwBRHcU3WdxXj128nO9 hjMv6xHe2usvCG61tjiuA6HkIwksA73iuqcjX7vxshHdUkW3W9z1fDy/xvoudVj28/2tYslX 7fU3NLdyWzTeibX4eqpj7jNcz9f3RaTblIkR3d6cXRRZmphJAtsL2aurbQV/aq+/jrild6nA daji9/v7fo/tnPRya/7weQ3B1L0/Gepix3c3oixJzPqRrj0QkKLHQj2y9vqbgW7dtijURahW EAFENwhTNRctWnNz0VUjy2dRixVqF63a64/oVtOLNV5RRLcpA6vAaZygv73odqo7wyjCyLWn NGuvP+nlIpoBlUB0W/IBPbhDdEtLMUvzt9UtpLJS9jXVf7WQqpF3aakHu8W7ILrtmNmcxkR0 +/VU3ergYtbm1/7JTe31N1R3+F6aT4ba6f+qeRNEtxpTeSqqolz9k09EdwT2eZX0IXrtGzLU Xn9BeKvdqKSVrutu74HoNmFxlbm0FsYiurNllZNb38c2YXVeAgIQgAAEziegNjZafx2D6BqW QHjPd0yeCAEIQKA1ArLgqrdEdFe2nlKjZX2/25pL8j4QgAAE2iPg1w9Etz2r80YQgAAEIFAo gf8BlQOcb7PqEsEAAAAASUVORK5CYII=</item> <item item-id="88">iVBORw0KGgoAAAANSUhEUgAAAMkAAABaCAYAAAASNHLoAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAkMSURBVHhe7V3tsas6DEwDt49TQ7o4 TdDH6yDV5Fc6STE8PgIBY9CuLZ/gzN6Z8+NOZCGvtJZsjH1p9U8ICIFDBC7C5wCBe9NeLk17 F0iVIvBsb9dLe709s+wXSaLwjeBeGtEjK7pO0vh5u2YNdiLJxpE9Qa5t5uBzkvCQGW8E7m2T WBWIJEEc3ZtLm59AxkyUp+eVzS5dRuv+8koGT10W8dhn2fK9T3oMxr9gAHve2uv820vmemuj BVYvu/fbQbdEkiU4/RwkL7I7bW+np6sKy71+FEwliqcukCBzxy27bdt6gqwGiHCeSPqsL73Y AUckmf3eOyxvkj7Wvt1o1ulpcjLJMDoGI2YfDAmjYOupy+QIabdlW+z37MzPl10iyQR675D0 oX/Q8rzdXithmeVWjBBDwCSQ2FOXRRL2WZa8OTCM88drv8gylVzAQNIPZoyrRZKX41ngjuMl jyRDRgqdDYyqMZs8dVkcYZ9lyU+/36cMPRBhOVBEyjlk3kEOiCLJmAOyS611AIkk7yo2UoIt BqajwWAqXw/nJBvmjsQ5zhScv0WSAeQOWCNNr1dYlqstsfcpeSRprTLEGtLDxYhoVuJLNxMD 1m5DPpppXgsj+yTAsL83+DK/SDJOJrLnI56ZZJxsB0Fs1uc7zPHUZZGTfZYlH+3zggTRHRF9 JrEJwJTXIskZSTItI8NLqUfRay+zWrGP/84+y5KPZIUVMXZ+d568iyQvkjSur9ixlI9M/qdV G3ZtP5bZfHRZlDl+Obh577F4rxR/abrWt91LN85BmNWt0eX4CpdIUoQkViDp908jIJKwHuhq Y99Mwhog+b9GQCRhERdJWMSqlxdJWBc+ftuf3wfbSvIVI/D4/df+/Id1QHMSzUmwSPkyKWUS 1qEqt1jEqpcXSVgXiiQsYtXLiySsC0USFrHq5UUS1oUiCYtY9fIiCetCkYRFrHp5kYR1oUjC Ila9vEjCulAkYRGrXl4kYV0okrCIVS8vkrAuFElYxKqXF0lYFyaTxD4zijXlLV9Ct8cWfrRH 6LPQfqL6MPtEEgynRTym7AK2PhhijVjKl9DtcR4Y2if0WWg/UX2offqeBEdqkkzJJNaZUbwV K9K6nbvVaXU7DwzoE/UsAENKH2Df2+X66IqAa4gi/nsS9tADxiJn3W7ngQF9oJ4F9JPSB9gn khAgrUQTSGKdGZVqSt+unG7fuv64j/azuH7a+hjMNSdh0Bqjks4knIM5g8rp9g00kYTza93S CSRxPRsrRA8oQ9IAPxdJOAx9bVcmYSMohSTWmVGsDUv5Yrp9Ay03k3Dni/naLpKwAZpCEtez sUKD0aVRuqMO96agz0SCmuknog+1TUvAOFLvpQ56TjI2RV+E8SaV0e0baCmZhD93a3aSK8GV SdiYTMok7EMkfyYERBLWGyIJi1j18kkkmd9shvfPvf7PXHpiIbi9l/CobMEOQLaeefi7SJIF X42Nk0iy6mhsu4ATEgMZV4wDJm+9PcAhyMkmiiTJ0NXa8MQkidxXB+zf6R2xnfA5ukckcQSz DlWnJck2iwzRv3P1mdP9HIjPRBIEpa+SKUqSw3vOh7sjpmPww5uUxrIqvEIA34JRcG4iknwV AZDOfIYkwVvibdaI32WHk8Re4zevK9tDTyRB4uqrZMqTpHlnjN1Vr83Wip1MgJZbrxd3eZfZ 7PhZJPkqAiCdKU6S+cbU2B6jl4VoJsH37yiTIM6XDIZAcZIss8dmjjIQp5+XhJc7xuck8/YL 835AzUkw90sKQaAwSdbBvz+R3wZ1dHVr6BGwByr19lkMscS9W4hyyZwRgXySHPRqTYrjEmhL oPRsoPckZwy1em0qTpL5jflyTrIZ6eOE2M8mB4DrjXu90XhSy4uTpJlXt9al13r/196F8/YE fI1revaB/ZO8ugWUibARu+vTDlvET2pnbLfFPKcFrp3O2D5VlCTZPj+jgiSSAHvOsvvqcd7U We2c+hYMpn1FAu2m3WkPYi6SgEDNYikkAfecsaZM8nNWvjZt0+1UgOIm9rCT2tn379pVJOH5 Yoc7Ohb922uP4i2SoEi9I5Jf3YJfgrLGjPJu502d0c5pjrkhcJ8dOvJ0g8K8vSm2+3u3PY61 SIJjNUUkTRJ8Ow1rTCjPzuHW7c9n50iE23MYCYJMMm5dWu2q2CzaHLXHsRZJcKxEEharXXmM zEOZNDAkRpKY8vWeP7593GCRhHV8ypykcBnz7gIWfLtdPpOdYVaAVqcW/U9qL5KwdNhDjC63 8D1nuSZmkiS2v67I7gXbzvUrgsW8oyuxhoWJ4VOL8BOL9ysAsz0BtTIJAdaU9pupBIDb/sXS 6lCTZL4nObGd0Yl7sJJ3RGgoEymTwCF9KJhSbo3sGgJ4Wokpso0/mySftfNwO1E0yMc5yOHq 1uRMkcQn/iEtySSBtEvohAio3GKdIpKwiFUvL5KwLhRJWMSqlxdJWBeKJCxi1cuLJKwLRRIW serlRRLWhSIJi1j18iIJ60KRhEWsenmRhHWhSMIiVr28SMK6UCRhEateXiRhXSiSsIhVLy+S sC58/LY/vw+2leQrRuDx+6/9+Q/rwAUT+3IpZZIvd/C2e8okrMtFEhax6uVFEtaFIgmLWPXy IgnrwmSSlNwq76nbUxcLriWf+72MpT/+u0jC4tZ/l0Cf2VPyYyZP3Z66WGAteY9zxaxniCRp CIWtUkhS8jwrT92eunzQHrS4nSuWaJMyCQ1c9zUce7tvyQMWPHV76qJx3W/gdq5Yok33Zu8Y 3q1CLQGP41r3GW54AMEx+iXPs/LU7akrMR6NZp+Yk3D+FkleLmTS71wuhNkn45vrZSR5Bran rq8hCVleiyST50ng4Ku1UyLLs0Ty1JXSF7PN32cSdkAUSWYncim46LlbnmdleeoyAz5F4K9J Qvq565JIsvQrfOz/NI/pjr4x73pMDxwf3WdeAn7jSK/Ap8D6WlVjj34SSQKw0aP/x2YlX9J5 6vbUlRidu83+MJOEx6SCXRFJNkAtTi0HQZRYDQj0h95xK5hTr0SSqH9FlBrCHrcxnSD9M0QS owzYHuCMu0aSn0ZgKjPTMogyyaf9p+dXg8D/S9U+4Gv783AAAAAASUVORK5CYII=</item> <item item-id="89" content-encoding="gzip">H4sIAAAAAAAA/+wXS0xTQXBef7wWammBogXkY/2BgCwf5SM+KBxMFBIgHDXQvmi10FKeiRxM 0JMx6MXoWRPjxXgw0cSLCagxGhPBsx7w5JWD8WACdXbn9fW18QN+Dgamme7u7Px2Zt/ubAEA SIjDiC7Rt+C/TUuqahlwYIjyRHhw/Kwa1gQFhhC7UEixMsdXgFkbu/8MR3bmx2bWweYWsMlj bkVwy/rYyWyryCW7mO8tts58ZvEARNCo3TYCDTAOzQAF7HoCmV3gFrN3CwAskjC7jbme44zT Iya0bXxCagIoFONHNG7hnF7yQ/aRW94iBsih+HCqmBz2lTDhfzGAX6zXGRod7p86pqkTkvAZ zYLDTHAjlgpWWZ0aUk9H45N2McEtOiPxMNFsgtZuxNExfSbRG79AYTuOmIeEISOQJxB5kMIl AFexPecHOIltooTm+2RKjgUs20XHZ1jq0bRkdPy8ppJ/HYgeMMOOjpqscSCdjzLKR6Cc8lFW Qfko30n5qMjKRyXlowKqKB+VRj6qKR/lNZSP6nQ+dlE+qjP5CLJbL5CzbDflIYikPaI7G8zy cK8IWQGmIhSfGI/z4NNEIQ8ckjMUvtQu3Dm92F7CYLVh+wExleLcyDoYU0OxqDqpCRmMUVDf 5/o/yi4tepfvPAx8hBzoBiuspZzgMNEkQ5rcsejjtRS3SJDagv8KVhHXTLgFmwuGII4/Daqg HyaxTcJM7lHwU/CD3fjm+VlwGVqlGu97741ZcI++tAfMvEsXHwflgTeSFfvz+kESQuvcrir+ pzdkm4MPD1jzetYrd0X6Nc964Xfs/034E/t0sQLwnPB7m9/n/MzfOgs2B9ixqLuJSX/qp/3g ytoZWYN8oBKjmEjFOkYgKnaPR5e26iJRkzivJJ8gfk59d4cKUz149kRhDGI5k68eFPnM44Uf fLlfNqB7HnXKhTm6lz+V8mZlgdo0rGCd2MU7I3Ovm8JL3nvX4HZw0f4uXQ3JkBMrs2FjwL8x UQsDRQ0v2yw0A4+gQkX0Pz8fRbb2USHK/bJIVGIPq8noWOxUX3Q6ERubGYhHVOIfFKvZTwJe otXqb5o6qqFrD1ANXZdVQ9dTDV0HDVRD1xs1dCPV0LUHqYZuTNfQTVRDN2ZqaKa/aZrpTcNa qJZG7dBKb5rmNnrTtPKb6RB52SqWpQyCdJgITHjdrivpICX8udJJStq7SEknV3KEZDoNJd0m JUczsoqiCys9JK0oXFzpJXY+0hUooSyGPjMDp3wDAAD//wMADsb+bI0OAAA=</item> <item item-id="90">iVBORw0KGgoAAAANSUhEUgAAAEoAAAEICAYAAAD4N2KiAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAmhSURBVHhe7Z3rteIwDISpi4JuPVRD MxSTG+fpl5RJYgeZzJ6zP3YRBn8ZO2asyI+OfyACDyiKQR1BgSIwA+rz+YBf+TthC6jP69k9 Hg/x79+73Bd8/z26tb1P93o+uudrBvXu/h7PbvlnuY891VJeUZ9X96z0ZYcLElCPQfX9cZ// fHWWNHYxKKeWv24V5whpUbIH0KluVdkpMRR586WgUjW5PmQU5f77/dc9DKlqN6hwfokuluvc Ms/5ylGASKB63Vmaq8qBGua1FU6qHtdxfxKfIQuKmgCWvInsGYNOEMHNLftmZTIfFPW3Kkfs SASuH0uCQnRQVuapQ4pa5o4ExoqdigrWQG7OjYbTAM/JNl4L7VVO83NUCECe3NOO5u96btk0 LXb9cazd9RQlb85DB9+7+ydMblUtzVMpRFwl8jpqvCk8gvXYJp4lYJyk4zvy9vsPgVpW1v7V SRSQhyKpKviqwsp8Vt6zv5n4d9jtbk4Rw3d8HnrvIVDrXS8chuHvRen32jhXybd9WXWf93v8 WXNo+LjP7ZV06L1dozbLgc66izgsNQ68112b3YqCZV4zcHdne5XOP4d2v3fsyC1ABTcVgpIk PN8lU69tz8+jWygquaNesTyoOfXAbYvDZ1KPJpVbDb0Nou9XeXe0zaEngtpao8GaTQJ/DNRx EFvvJKgtQtPrBEVQIAEwjIraC0rbJW75NZDDZtiiKAfj1/6U7BNBgeogKILqPaSC00klRXnW hpo/oMX5CRya5SxvFhgHFf7ekjcT9LjAbIs2LtT8B28oGQcVpfaoloi3bRTExelB/kTiAGOJ ZrZBJVtNwq6KFje99loSJXwwqWMp2U+2QYH7e2n+kwd02pZfAPhQkwQSWWGmQAXpMa5nBRW1 pibqO8zSnGUKVLoMKTRHBXfLnwQVZq1s3fXm/Kc4LtlimsElQ3vaAc4sHI0ryn1jYX2UTS6b tpGS9ZY/aYdJFdjWfRMLTvB3QeWwBhRVmQDYPEERFEgADKOivg2qZctX+u4g082wSjbL5ude EsChB2ImKIICCYBhDSiqrhU8P7o2TuCyiWcc1MVWsPKEg3FQhWwWMX1Qs4nDMWkbVEHjLmsF qzZxS6AusYK9Jx+UB7VNKepyKxhVbC8uU6Cut4K9pxCGD5dtYuOgKlvBDo3/MGUrQy+/9qtr BQdWs5Jcb1xR4LL5gjCCAiETFEGBBMAwKoqgQAJgWDVF0TOXrwA9c1Sdc1xJmYKfXT2sZJ+o KPByEdR3QVX2zJeKQnqdFeNDr7ZnHlY2G3KlhFx246Aqe+Y/Y9yhHTmaPo22b97hrO2ZT2mP c2r1mKaY39szNfQu98zdXcqbzJ+vt/gkgylQ13vm8SfK+3zGQdX2zMPNBK3CmXFQ885IJi26 UPr08HjIXEFWecytAVDgcrdyGEGBgAmKoEACYBgVRVAgATCsmqLomdMzBzVIUASlEag2R53G bqyBBkCd88ylU4/S+gZ6lUTjoMp45oE4hVzyGWibBSIGB1IqJeJ3f09cxsEcLOG/vqq0XBvd tqJQTxuMk08ncvBaHnolPPNFePJxBGO9hIZAVfHMZ1C5uSlQYkOg6njmY6u5kzykO2LuRCLb c1R0aNfRkiPjsNqqE9W0okp65j8PysYS3fjQswHJfQuCAq8FQREUSAAMo6K+DYqeOa1gUIME RVD0zE9roIkF5znPfGCE5JJvnENlfHlQwjPPZNXFCWNLMpl88KlxUHu8cMFbz9rEa+xoFvbO wjs8ljwerbZBgV64XnwZUNQyPFtVVDHPHJjnWpqjqnjmcc3yYT7KKKclUFU8c1SVbYMqkGd+ D0UV8sz9XHKpjl3biiqwpC7UhO3lQaFOlmiGoECKBEVQIAEwjIr6Nih65rSCQQ0SFEHRMz+t gSY8c62XgM80vF2JQ/z0voWGlwel/PQ1Zbrh2ixbajqZg45azU0rCu0kULcFOaSw3aGHOpdq XKYsUgu1WdSBthx22m8vlTr2Mtocbbg2S+U5Kmm+2dosGqgCfnpU6L3x2ixbqjpZt4W1WQos x70m2r3rleWw2RpBbSIaAwiKoEACYBgV9W1Q9MxpBYMaJCiComd+WgNNrKNQX3yikc1zAtpo Oz8K9cUnSNl8caCN++SZj3UN8vnieq76vfLM/TkoHkJ7vPVmj41DfXENFNpGS3PU4Tzz2ysK rh/lkcpWpQb2/1pSVLrcQX1xDRTYRtugHAD0DNBbr6MKLKkLNUE/CgRJUAQFEgDDqCiCAgmA YdUURc+cVjCoQYIiKHrmpzVwG89c+x04U2y6YCngd/tq0bzvDV/8JvXMNc9cf23gfJt65prD ufnaXEe45aGH+t2bMOQ5yg25+9QzPwrqfvXMNStYfu2G9cyPgQqXVy3PUUNPSnjmP7+OKrCk LtRENZul0Pcz0wxBgZeCoAgKJACGUVHfBkXPnFYwqEGCIiiNACdzUB8NgAJyxLdslqD+SnQq 42/UZinhmUcHEAaVXjMFIuJa59NFMK4otJ654os7lzQ6AdUl1Q7/haZW96G2Qe3oyDL6NnIx R9tmOkJuR/u2QZX2zKODDWevaxbc6Hjmz+EzBapKnvkitXE+So6t9Cbzhmuz4HOUOvQmGNJh zetNs9naLGCOuLY8UCFlzmMQaJoaevm13znPfPMsddZmAZfcYFgDigJ7UjmMoEDABEVQIAEw jIr6Nih65rSCQQ0SFEHRMz+tAevG3dDBAp75ai10r2fkmU8e1XjzyXtR7u3GlwclPPNVTrlc 8sUWHq5Jbxvf1jOfOWVzyWX/KR6tthW1w9PWPXMhl3xq/7VUtm516BXyzMVc8tjUSy7MqitT iqrimWu55DsUawpUehc/75nrueR9+8HkHW2Wel/IOKgCnnlAP80lD+56rQy9Gp552GYu6d5b pzVbaKvAirpUE8aHXqlunm+HoECGBEVQIAEwjIr6Nih65rSCQQ0SFEFpBDiZg/poAFQJz3z8 jZfzxVN3wasC25p7ECSjavmFQv0VzRcPXlPUZVxRuB8F1zNPbBfZ/vVDbYPa4UCKnrnqi/sW yzg0JcHaBlXCM9d88eBxD4d63oRIx6ApUPU9cwdAtnuHV+fHPyJWpkCl1xGfo8Sh58CAvnjD oMp45qIvngxt93lNLg/moYKc8zlpautcmMgXD9dRrW6AgqvmK8KMz1FXIMA+g6AwTtbTfsBe XBBGRYGQCerboH7NMwd5QmEPKIpBHUGBIiAoggIJgGFUFEGBBMAwKoqgQAJgGBVFUCABMIyK IiiQABhGRREUSAAM+wc1nRj5d4uzVQAAAABJRU5ErkJggg==</item> <item item-id="91" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTURCebWnZQkt/gBYLCtYKFkVgLaiEmGLlYKI0KYaDF4V2I2sKLWU1 cGs8eUAvRs+aGGM0HozReDEBY4zGRPCsiXDyZEKM8WAidd6bZdk2iKBeDEzzdfbNvJl5b/bt e/PsACAg+hFl/NmE/yVqVpZrgZGEEEcSsaHzckLlEogjutEoYpas3wFyJdL959iySF5kOas0 NYOsVHJEeG9Ra9skz1vsJZZJJidA0gZgEiYAyqWrGVTbwM7lt8uZnAdykD+xgtw7nBJgh0gF qlwUuMIt8XG4ADx83LboQH/v2HFVHhF4bDvCahQ4EJW8qyiPxeVzSnrUwhVhZp1MJ0hWwmWH 9XxYx4czR9MTNP0TiFIUxPWEnETcRSSqAb4w7gV4hDxTTfqoSEk2gamKP3j0SD2qmlWGLqgy ja8L4QQjVXcFCtre5bz6KK/eGsqrbxvltUbLq5/yWgO1lFe/ntc66cYL1Pi2Uz7rULSDP+bq CiLV86nbMaXR9MhQmiWRFC6WABSvSNiQu3H53EM+iZPuRP4Bkc+z3tg1lpKjKUUeVbkNzjWk rTvtH23nZt3ztx76F6CIjoAZlvI2sBpkgm5NwzFp7aU8i0iU36L/in4glgzYos1FcUjjT4UG 6IVR5FmYLN4K1iQvWPRvnu0Fl6BDCLjfu6/lwDHw0uI39m0bfhIU+94IZnye1jaSKEZncWX+ P76h2IzwBBKM81mv3WXh933WS38S/1/S38SnAxKAvRN2/rJzme35W3vB5iALFmfX8aU/89J6 KCtYGQUNrBF5iVFFoioNSVD46nFq1mbNRDGYs4rwKeJrftUVykP14N6jwCCkipSvHlR6jO2Z X3y53zbgexp9iq4i3/OffIwtzhBfpkWs97rZw6mp1+2JOfedK3AzOGt5t1wNiVCUK2NgvcG+ MV7TAmUND9sCGOk0LEAGR5vEPfHz6pNdk5IX+aA47cjXN3xE/hjRjGBTK0WcRVSatLfVQIWo i41RoFK5X84qg6kzx5TxTGpwsi+dlMlfjM9mJxk4SBbQ7hi7qBYOaLVwkGrhAOymWjio18KN 2h2jie4YjXuoJm5CVYjuGE3NdMcIsR1+L0UL8eFFYiDsI0Ejj96iOdlPTlpQ1EpOWtrISStz 0k42rboTyeDkwIptWLPtINsws+2krmHd9qBBecigZO2fAAAA//8DAExV2n7cDQAA</item> <item item-id="92">iVBORw0KGgoAAAANSUhEUgAAAEoAAAEACAYAAAAUZODPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAj2SURBVHhe7Z0Lkuo6DERZFwtiPayG zcxiMnG+tmMrDZGDFHqqXr2ai8aQk/YnbSHfOv5ABG5QFIM6ggJFoALq7+8PfDu/YW+Dej1u 3eM1X/Bf97zfuvtzBvXqHrd7t/zql8vmk78F6u95724rpb6xHFT4p2d3vz/7V671s4AaICwX OAJIoQS1PLpFTBOk262PC/9FAIPqVpVdA1ikqABi6lYFVWzVFAAUFBX++fWIoF8O1HSBvTLS cUgAUgPV6+5qY1U2RpW63CCRVW2JQCqKmgAmw1lBWOGGLF137sKFrmxBkxmoEcgtGYtmUKXZ TAZ1pXEqARXGoXBx8//XO0lFraDCAL4oKR9j3lXOhceoYbzIpvj49/KsF5ZN/bIiWx5cf9YT R01cJRdfR+3PLTVVpRPhxVfm+5jW9VR92sdVh72fnai3nvXsfOzzPwlBgcwJiqBAAmAYFfUu qOrDaf6w6ux3kMNu2KKoAOpqP5rXRFCgOgiKoLrhYV3rp5GiZgOwdyTEHRkpbnJbh8kjNQ0X x2KZWOJNjxWNcVDjBc7Pg/UHaTku8e2zzYqtp1/WjXFQ2bZWYgjGFyTF5Vtj8d8FwNgmq21Q m62uiqMgxU2vPZfNhxhM1F2nrldzM2yD2uzpVUBJcYMKo637GOrwWgyurjBToJItp3BrFRW1 bsvLPldtzDIFajuMKo1RyWx5SVDpjs3erDfv/eVxiUpilW66bHg/l8uDecN02gWOlbGZAaV1 VDxopyDSdVR9BjTe9bTWwsfbISiQIUERFEgADKOivg3qinYwyHQ3rJHNsvu+pwSw64GYCYqg QAJgmANFtbWC57TtcfJx+whzshUs5LQbV5SSzbLJTJ77m2QTp33SNihF465oBYs2sSdQp1jB FZs4G+RNKep0KxhVbA/NFKjzreB+jAJtYuOgGlvB/Z2p2sSWu1557VdZRylZwfOXmMZ1VNkv D5/LuKLAZfMJYQQFQiYoggIJgGFUFEGBBMCwZoqiZ16/A/TMUXXOcZoyBd+7eZjmNVFR4O0i qO+CauyZT6mLzp/1WnvmaQ2GtPiOJ4dzKE8SPdFrp09fxrhDL+TT9Gm0ffM2S2vPPCuoM6Yp lvf2TC0PTvfMwzAUDeb356v6TQZToM73zPN3rO/zGQfV2jNPc86l6h7GQYU73tgzD+Pg/BU0 4WtuDkCBy93GYQQFAiYoggIJgGFUFEGBBMCwZoqiZ07PHNQgQRGURKDZGHUYu7EGHIA65plv S4qMX7vd1jdIbef8PhkHpeOZJxddySWfgfosEKHimceYpEocjz6fs6S08e9tKwr1tMG4emX+ YP967noanvkiqLKa1jLijkA18cxnUKWxKVGiI1BtPPOx1VIV69qMWKrGb3uMyg6s+LTkyPhV s706Ua4VpemZXx6UjSW68a5nA5L9dZQdTsYXnARliAD4UThGfRsUPXNawaAGCYqg6Jkf1oB1 42587p/O6TtQphvJJa9mHHtwOLPTGvfcg3I570JWXZ4wtiSTuf3ytUKeedEmXoGMZmHvLLzi MwG3fdX2ghP0wuXiy4CiAhfXXU/NMwfGOU+gmnjmec3yYTwqjEWeQDXxzFFV+galkGf+G4pS 8szjXPJaHTvfilJYUis1YXt5oHSRGs0QFEiRoAgKJACGUVHfBkXPnFYwqEGCIih65oc14MIz l64S8Jn2fHfET+/bcLw80MhBv0xtlj01HazbglrNrhWFXiRQtwU5pNBv10OdSzGu0PU81GYR O9py2Gm/vaR17OWy+zJ+kchxbZbGY9Smebe1WSRQCn76sF2/plU7r82yp6qDx16yNovCcjxq wu+sp8thtzWC2kU0BhAUQYEEwDAq6tug6JnTCgY1SFAERc/8sAZcrKNQX3yiUcxzAtrwnR+F +uITpGK+ONDG7+SZj3UNyvnicq76b+WZx2NQ3oXe8dbdHhuH+uISKLQNT2PUx3nmP68ouH5U RKp4kiOw/+dJUdvlDuqLS6DANnyDCgDQeuY/vY5SWFIrNUE/CgRJUAQFEgDDqCiCAgmAYc0U Rc+cVjCoQYIiKHrmhzXwM5659Bw4U3RdsBTwu2O1SN73ji/+I/XMJc9cfm3gPNjFv1DPXHI4 d1+b6wh77nqo370Loz5G/VY9809B/V49c8kKrr/2g/XMPwOVLq88j1HDlWh45pdfRyksqZWa aGazKH0+M80QFHgrCIqgQAJgGBX1bVD0zGkFgxokKIKSCHAwB/XhABSQI75nsyT1V7JTGa9R m0XDM88OIEwqvV6mNgtaz1zwxYNLmp2AGpJqh39CU6v7UNtd740LWXrfTi7maNtMtQ7eaN82 KG3PPDvYcPa6kiMIPNRmaZJnvkhtHI82x1ZGg7nj2iz4GCV2vQlG7bDmddJ0W5sFzBGXlgci pEvVZjnmme+epc7aLOCSGwyzPeuBF3FGGEGBlAmKoEACYBgV9W1Q9MxpBYMaJCiComd+WAPW jbvhAhU889Va6J73zDOfPKpx8lmLl+ZsjS8PNDzz9ZJLueSLLTzck942zs8Hnf7cOCjcj9qt sVLMJa/7T74U9YanLXvmlVzyqf3nUtnaa9dT8syrueS5qbe5MauuTHW9Jp65lEv+hmJNgdrO 4vgYVet6ci55334yeGebpdEHMg5KwTNP6G9zyZNZz0vXK68Lj3nmaZulpPuofbeFthRW1FpN GO96Wpd5vB2CAhkSFEGBBMAwKurboOiZ0woGNUhQBCUR4GAO6sMBKA3PfHzGK/niW3chqgLr zT1IklGl/MJK/RXJF09eE9RlXFG4HwXXM9/YLnX7Nw61DeoNB7LqmYu+eGyxjF2zJljboDQ8 c8kXT77uEVDPmxDbPmgKVHvPPACo273Dq/PXPzJWpkBt7yM+RlW7XgAD+uKOQel45lVffNO1 w/u5XB7MXQU553PS1N65MJkvnq6jvG6AgqvmM8KMj1FnIMDeg6AwTsa/2AhexBlhVBRImaC+ DepqnjnIEwq7QVEM6ggKFAFBERRIAAyjoggKJACGUVEEBRIAw6goggIJgGFUFEGBBMAwKoqg QAJg2D+RHbEP38No3wAAAABJRU5ErkJggg==</item> <item item-id="93" content-encoding="gzip">H4sIAAAAAAAA/+xXy08TQRj/trRlWx6lBQoWkIf1BQIyPJSHuFA4mChNCuGooWWj1UJ5rInc qicT0ZiYeNbEeDEeTEzkYoKPGI2J4FkPGi7+AcYYE6jfzLdddhtf+DgY+JpvZ+eb7zXzTWd/ kw8AEvIwslu82/Bp12ZUtQI4MWR5IhaOnlZjmpBABLkHjZQc5vwCkLKzO4+x52B+bFJONv8I m1xWoAhtWe+7mH0VtWQ3873C1pXHbB6AcQzqsI9AE0ShFSCfXZlCZTcUiNFb+QA2SYQtZO4n OOLyiAGtkA9ImFyR6N+nfhvX9FIeso/S8hYzQA3Fh0MllLCvlIn8SwD8Yr6u0Ojw4PQRTZ2Q RM4YFpxmQQFymVCV1emIejKenHSIAR7RNZ6MkcwuZJ3GOjpnT031J8/Rsh1FzkVBxFjIY8jl GCBWCnAc2zN+gA5sp0ppvF+m4tjAVi5efEakPk2biUfPairl14XsATNt66qz9AOZelRQPQKV VI+KKqpH5XaqR5WlHtVUjyqooXpUG/WopXpU1lE9ajP12EH1qF2vR5Bdf4qaFTupDkEU7RKv qaAlw91iyfKxFKHkRDTJF58GivjCoXhdwqfagzsngLM/X0qb9C1yOs21UTWcUEOJuDqpCRvU Cur7XH+i7fKS993Ne4H3kEW9kANraRc4TTLJsKZ0bHp/Lc0jEqW36L+iVeQ1E2/R5qIIJPGn QQ0MwiS2MzCXfRT8kPzgMP7z/Cy4AO1SnfeN91oKCkafOQJm3auRB0F56KWUg++L+kESwug8 riqesxuKzcmHB6x5Pr9qd1H6uc6v0u/E/5v0J/HpwwrAa8K/2/x7zs/8rbNgc5ADQV0DFv2h n/aD27IzLJ08IIhRQqISncchLnaPR7fO0U3iJnOOJBeQP6a/uUNFqD48e+IwBomswed3i33m /qXv7ORPG/C9iD7lIqvv8s8fyni7sEJthhZWEGXxl5H5Fy2xZe/ty3AjuOR4nUFDMmStlTmw 0eH/MYGFgVYNP7YWNhNfQYVA9D8/H0W19hAQ5XnZJILYw+pMfCxxYiA+O5UYmxtKjqukHxaz 2UsGXpLV63eaBsLQ9fsIQzdYMHQjYegGaCIM3Whg6GbC0PX7CUM3ZzB0C2Ho5nUMzfQ7TSvd aVgbYWn0Du10p2ntoDtNO/8yHaAs28W0lDBIB0nARNadupMucsKvK93kpLOHnHRzJ4fIpttw 0mtycnjdVlF0Y6WPrBWFmyv9pM57ugMlZFEYMCtwyVcAAAD//wMAGUUDz40OAAA=</item> <item item-id="94">iVBORw0KGgoAAAANSUhEUgAAAEYAAAEICAYAAADiC4IsAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAj2SURBVHhe7V1hmqsgDPRcPVDP09P0 MnsYV7QqIAlEQAnO+7798XZpKsMkwBDDMOJfEIEBuIQRADAEM5oB5u/vrynybsD8fV7jMAzk z/tb7rm/72Hc7f2Nn9cwvj4rMN/xPbzG7b/lvlZkKcyYv8/4qvRw8wA4KPvATM9vvv/1Ge/k 0MXAGDa8x518CygbUy3ADKt2FokGu0jjS4E5ssX0IcAY8+vvexxuZI0YGDc+eINjOrPFKZsZ DAAUMBOv7ow15YCZ49IOxpEdpqN20F1BJRjzA6xk0Jf42Dlg3jszyAf3gJp8g2AAD8xdceYU MJvvHzq/j8kzGWOtaQ4xZwbLzDT+WkTKDHUxxu0wHYyPHQvPSmbZ8ltc2n4ZmpU20Jcp/lT8 YVhuxyDxliC0aqUe8AhaOguO6xgveM8zoHyFbOwOzlqq0CZyNrwiYaN/GOEwCBRrnMcLrXwP 9hfXFLFmtvFyZk9qpjrHmG1WckfM3W9RoxnrUCqrqOmf6qr53mk5UcuVJGuBmm3nQRCsjE37 eervGZiFmf7KmhuGiV0riL0Cs4AiC7rOJNAjMHKmzLvReSsS0pq4wC0OvjXjBmu7lEbUG2OW 9cfxxx31Hzs4KvQGjISp30+++qfHlZKQia2RkozMjToDJr3jsZYAhkAIwACYmPO4fwdjYozh TiE1/U3GC7r1xhjTee3/SvYBwKS4EhizIwDG3M6Y6ObNkgcoZS5iQ1+M2c60KdXN3eMEBfOo jWl/U3ACqe5Ki1wwKW5f92zbZbCXHuIxI82GMmA2ADg3OByXECcF3bmSQYfrVOKZVEzhV+VK YExsEcS6AR9jksA14pKm4JvWKTcTgjzGfUSMCSYW/cTux6xjYm5W6O86XalQ5zkzAIba36gM vmDMBQhczRhNEib1rKWGpfomstSDpthB8L3alVJGpeU2YIw6xtSWL1XulaLSY6Z8GbXf4O46 TXo8L1+m2W8QmCRpoYR8qdKVrpAvuwQGjKHOjgrIl10yxnsp9JR82Q0wpeVLtcDcvF/AlkDd lgCMuRkBMEY2AIgxVzMGmu+OODRfin3r70v6pywylGtdsg9gDBgjY2ZZxtTWfCPFdtp0pagm m6n5TgO+lkig3gVtDpg0Tfa85js7wSx0vac37ulCF80BU1/zNWwzb+fzL4PqBCYjZXUrWKEy xsTE8LOar/O5Hhkz11iw9GBqBvN+T9UADVU70+lKJTTfblyptOarFhjZ4rJ463ZdqXhXZQYB zNVClWx82msNxoAxMlZWYww0X2i+USqWFaqiX1e3QTVXqvvY9a0DGHWzUi3Nd7a71sCja2y2 yZhqmq9bnparytocMFU131SBa3Kv5oCpqvl2D8xpzTfgSkTZ2mcxZtOSl+D7+nx/JwbHqUkn MCc132P3/Rt3rGV8s2/RstP12TIFbskUrkq9HsaU0nztW3iYAurtAlN/1c9+A4BRtyUAY25G AIyRDQBizNWMgeYLzTfqo9B8Kbdcf18ycEWHo1KDkn0AYy5hTI7m6+i6fmamfWctfYVQm4zJ 0ny9oqMzSDsAzv1IzB21zQGTrfmaznpZzTsYtP7ie0FzwBTVfGdjFoN+mu9nu0ZImyttEiRx 7pOq+fq3Gf9iz0aogziuXcFLUvsX4dtJVU363AKOTleKab4+MzYiWDf2+W7mBRmlwDCaLwnK 0vPDrX2EvKkHmETNl8r+3icq++Y+bWfXlZb5ErPtMkbSiwptAczVQlWFQbzUJBgDxsgIV40x 0Hyt7QUUvDAroeBdouDJQkLx1tViTPEnvdhgu8DkaL52Doz9tu0E7nEvFd4vtQlMjuYbeqXY kjqd3TXDwuaAydZ8/c46QK3lC+J+2Rww2yNzriRQ4tw8O1tyWDI31VQDSQImRfPdzpYswds7 SpkiTmfprALGOKcEAQ+iYo5OV4ppvh4AXMDtDBhG8+Xc7PA3Y0fTdG1G3A++iZrv8tHXHFiX H/dQjfubTbR2XSk+o1ZtAWAgVMkIBsaAMWCMDIGrGQPNF5pvlKHQfKH5RkniNABjLmFMjua7 izrTJhF5vofxCtXsfW6e7wrPLGb5NXsfn+dL1Ox9ep4vWbP30Xm+jh7s1ewVaMXt7q7ZWYmu 58vX7H1ynq8zNx2rPD82z9eds0Plr5HnK1u3e63bjTFZ3cr/MIC5WqjKH7N7LYAxYIyMgdUY A80Xmm+UilDwLlHwouNQt0G1GFP3setbbxeYDM2XzeV16j5oeycyJ893IhOdWvboer5MLm/3 QhXbQSaXt3tguARENpcX9Xydaeug2v0SF59bz/cHDx+MtaezBrTctdKH874Am8v78Hq+bC4v 6vnmrY7bXfnm9Sv70wAGCp6MRGAMGNMIY6D5QvONUhGaLzTfKEmcBmDMJYw5qfnG6+CtT6/x 6vhMzdcTY8YhUB0xlANsf665BV7Z2g5e0eONLKEcYNcPmgNme7wCtR3C9ycROcBefNAJTEpt B7vAsdVpMge4C2BS1P5QPXAuB7gLYBJqO5hY5RQ5njrO5wD3EGO8ktfHWJJSQEfjdG0GL6O2 Q6w0ysINrcDIVt3FW7c7KxXvqswggIGCB8bIEABjZHhVizHQfPeBgFB1iVAlY37x1tVcqfiT XmwQwKiblU5qvss2yFxPttbBI3J5I/bbZEyW5puQyxu13+D9Stmab0TESrPfIDDZmm+KuheS NbpQ8FjNNzGXV2WMiY1ojBVW8CVzebsEJkHz3T2DqBnTJzBMPV/v2CR8thSQTtXGGEE93+m9 nL2eL3F53UFTVgPMxVsA/+vaXODdDIr5egCjbq90M2vAGDBGRsFqjIHmC803SkWI4RDDoyRx GoAxtzMmqgf/njCW4Ojd72b3q9qsJCOboHWCXjtb49ol2FAFTKpey7VLtaEKmCQ92Cbfo1wp JnsCGLooThKz1EqbXDzGrESgA2ASgaGAelzwFSx7zjbVOV2f7a3gcwAGCp6ALjgloMGCK13t Sto1X5nj8a03oaqk0R5sAZiYgtfDKJfsAxgDxsj4BMaAMWCMDAEwRoYXYgwYA8bIEABjZHgh xhB4/QPKtOMlbh+gPAAAAABJRU5ErkJggg==</item> <item item-id="95" content-encoding="gzip">H4sIAAAAAAAA/+wXS0wTUXC2pWULLf1AWywIWCtYEJG1+CHEFCsHE6VJMRy8KLQbXVNoKaux t4aTiejFxDMmxovx4MGEiwkaQzQmgmdNhJuJ8WaMMZE6782ybCtBUC8Gppl9O/95s6/vzbMD gIA4hFjF3034rFBzstwADCREcSwZH70iJ1XOgQRiHxpFzZL1O0ChQnr4HCmL5MOhYJWmn+FQ KTmiXFvUaJvkeYNaYpVkcgKkbAAmIQ9QLd3OotgGds6/X834PJCD/Ik15N7hlAAVojUoclHg GrfE83ABeHjettjw0MDEaVUeE3hsO6LVyHAg1nJVUZ5IyJeUzLiFCyLMOpVJEq+C847r9bBO Xs6ezFyn6Z9BrERGQi/IWcQCBkh6AebZ6AO4iWPWS/J+kYpsAlMdf/HokfpVNaeMXlVlyq8X 0QlG8PYGS2jfal39VFdfPdXVv4vqWq/VNUB1rYcGqmtAr2ujdPcFSvy7qZ6NyGrir4XGkkjN fOp2LGksMzaaYUUkgYsVANlrHJZyHy6fKZxF3kuL5j1isci0UTWelmNpRR5XuQ1qhbV1pz3R dnHBvXTvcWAZyuAEmGGlaAOrgSfo1pSOSaNXiiwiQXEH/iv4gbhiwB3YXpCADP5UaIEBGMcx B/nyrWBD8IFF/8+zvWAKeoSg+537TgEcw/OWgFF3yTsbEgdfC2Z8n9M2khhGZ3Fl/pzcUmwG eAIJxvls1u6G8HudzcKfxP+X8Dfx6YAEYN+Enb/sXGZ7/s5esD3Ags1ZB370pz5aD1UlK6OE wB6Rtxh1xKrTMAUKXz1OzdqsmSgGc9YRziJ+Ka67Qnmoftx7FBiBdJnw5aNaj5H+ZFp/JX/d gu859Cm6fvXNYObbR38pjV0Wezk3/ao7ueh+cAtmQguWt6vdkAhltTIG1gmWNO9pgaqGh20J GuE8LEMWs03hnvh5/cluCKlrPCkOTcXmlg84PkFsR2RTq0S8iFhr0r5WCzWiLpajQK3ykJxT RtIXTimT2fRIfjCTkslfnM9mDxk4iBfU7hh7qRcOar1wiHrhIOyjXjik98Kt2h2jje4Yrfup J25DUZjuGG3tdMcIsx2+g6KFeXrROAgHiNHKo3dqTg6Sk05kdZGTzkPkpIs56SabLt2JZHBy eM02otn2kG2E2R4h1Yhue9QgPGYQMvonAAAA//8DAHmDl1TcDQAA</item> <item item-id="96">iVBORw0KGgoAAAANSUhEUgAAAEYAAAEACAYAAAAOWABBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAgmSURBVHhe7V0NkrQqDJxzzYHmPJ5m LrOHccUfBCQkKDgEe6pevfpcRGk6AZoYXiN+UQRewCWOAIAhmFEMmL+/v67IdwqY7+c1fr4b Dn/j8H6N72ED5jt+Xu/R/lMpXNnA/A3v8bWjMjU7BMZcGsb3e5j+ovdngTEs8Bts2heCYNjw GS1ZVlBer+le858DmKlvZ5E+gHbGfD9T446NdslxBMo0OMIYc9nUp5g1jikZNji+w5hDBKgj CwhgJl5p9jWej3HNKW5GrtOlnK9/3XNHEYuan7mZYvh/7uaKFuo7X8uShQX+e1EMoBhDXa/Y moJVB6PSCsgQmtHsNHxTsy+RBobrdB2MmUfaaSQKRpgFg1xmdORjlvYbtsR8SWz4XiGLgdnP qLTaxmE0cg1XzoJ+5jEWl3dyYhafywRer6eZ72ZC/KQsNmKdY1XBQaR4VdlrpeJv0GiFAIbo GAADYPJsFozhGEMu5KgFXqPX83hBl7aMMcBo/5VsA4CRmBIYsyMAxvycMcnFqXm7Re+ZBwFK K2bq0OdjZqHdNNoV292u8tdf0YUqW8c4P6PUr7opLQrdtAH3jamCWzOCbZmAGbI6lAFjezBl BgeZgtB9ujMlqwwSpnRQ+wDMpo0GW7oAZrW0tI8RmeNUSJXzlTXK34Eg5dNH+JhDI584jyk1 uWDq0WlKN4ADYKj1jaaZ7w1EsY8AY+5mTA/yZimGVl9ElnpRST0wpbtNSdIrLZcBY9QxprZ8 qXKtxEqPF+VLtv4GV9cy6fG8fCmrv0FgRNJCCflSpSndIV92CQwYQ+0dFZAvu2RMEEB9Sr7s BpjS8qVaYH68XsCSQN2SAIz5MQJgTF4HwMfczRhovjvi0Hwp9m3XS9pnnmcoV7pkG8AYMCaP mWUZU1vzXRei1CfLbZoSq8le1HynDt8+fVYDjEyTPa/5zkYwC12f8XPIIOAMsc1GO1QLWTVs M8l60h+qtmlKFTVfY0JLFpIegTmr+Xr39QjM/BGFowdTZhdct7kmgi/qYtmMdJpSCc23G1Mq rfmqBSZvclm8dLumVLypeRUCmLuFqrz+aa80GAPG5LGyGmOg+ULzZalYVqhiH1e3QDVTqvva 9WsHMOpGpVqa75q0MP21f6tRm9U0Xz/H5yxDELkfmjOlqpqvVOCazKs5YKzJ19B8uwfmdJqC iCkRWeyfxRgrsi+5Zd7Dd90xOA5NOoE5qfkemx9mute+r3Ra8/UTYKSyw+phTCnN104FEmma mh6V6s/6k09olzEA5scIqFsr/RgvmBIYk0fBaoyB5gvNl6UiNF/KX23XS9on2x2VCpRsAxhz C2OuaL6erhseSrOEmC2DA32iYJuMuaT5BikkZ5B2ALzjFxOn8DQHzGXN1zQ2iGrewaD1l9AK mgOmqOY7V+YwaNV8B3vWmzZTshLkxdS04clfq++xhDqI49oVPJHavwjfXqiq6L4FHJ2mxGm+ ITMsESawvA02+lQwpcAkUtOSoCzoeKNSF6Yk1Hyp6O99oHJS2pKZ6ls2pUpTfWm17ZqStAWV ygEYKHh51AJjwJhGGAPNF5ovS0UoeLcoeGw/1C2AUUndqHRF83VjYIL10HEtFdd82mTMFc03 9kmxI3V6q+uENTYHzGXNN2ysB9SWvoD3T80BU1rz9ePsXMlh2UJRkw1EBIwkztfuLTmCd7CV suR3iAvi3TPG2yWIWBDlc3QCw2m+AQAph9sZMAnNN2Vmh7+ZejQN17F9JaHmu9w6fW5jM374 PiT1N5do7ZoSP6JWLQFg1C0JqvKBrxyMAWN4lsD5CjCqZkrQfKH5svyD5gvNlyWJVwCMuYUx VzTfXdSZY3p9Meqxcb57t8Vy9j43znfDJZqz9/FxvkTO3qfH+ZI5ex8d55vK2fvkON90zt4n x/l6c4ljlufHxvn6c6xY+mvE+ebN24PS1WSHS2/VwM0ABtJmHg3BGDCmEcZA84Xmy1IRCt4t Ch7bD3ULYFRSNypd0HyTsbxPzudLh5Y9Op9vIpa3e6Eq2cBELG/3wKQCEJOxvMjn6401B9Vu DVx8bj7fFZ60M9YezhrRcrdMH973AslY3ofn803G8iKf77UlA5YE6pYE1zr88t1gDBiTRyIw 5m7GQPOF5svaKDRfaL4sSbwCYMwtjDmp+fJ58La313h0/JXcDmGvETl7YzHA7q3NzWPK5nYg cmlGY4B9RJsDxr5eypSE2m38/CQiBjhgmk5gJLkd3ATHTqPJGOAugJEwJuZbUjHAXQAjyO1g fJWX5HhqeDoGuAcfw57hJkmgo3G4Np0XOt+M3A5capSFG1qByZt1Fy/d7qhUvKl5FQKYu4Wq vP5przQYA8bksbIaY6D5QvNlqQgF7xYFj+2HugWq+Zi6r12/9naBOan5LssgczzZdk4bcUYT U3+bwFzSfAWxvGz9DR4Kc1nzZUQsWf0NAnNZ85WoezFZowsFL6n5CmN5VfoYrkc5VjjOl4zl 7RIYgea7WwaRM6ZPYBL5fINtk/jeUkQ6VetjcjRfSSyvWsbUn9wmn9DmBO/HoJjHAxgoeHk0 BGPAmEYYA80Xmi9LRWi+0HxZkngFwJifM4bVg9c35AIcuzrvWqDXzrCkygnqUDXBk+q1qXLS OlQBI9KDXTt/lClxsieAITbSAAyAOc4OMFwTMyY2BviJ85i82fjp0jqH69PNld8IYKDgydmC XYIEVjClu01Ju+abZ3jp0laoKllpD3UBGE7B66GXS7YBjAFj8vgExoAxYEweAmBMHl7wMWAM GJOHABiThxd8DIHXP3dL8K1G6IgMAAAAAElFTkSuQmCC</item> <item item-id="97" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTQRR+W9qyLS3QUoq2ID9WVBCQgar8iAuFg4nSBAhXQ8tGq4XysyZy q548oBcTz5gYL8aDiQc9mOBPjMZE8KwH9ObdeDCh9c28ZdlFouLPwcAjr7vvzfubecPsNx4A kJCHkd3i3Ya/dm1GVcPAiSHLE8l44rya1IQGhpC70UkpYM6vAFk7u/sUJQcL4iPrZPNP8FHI vIqwlnXZxeyraCW7mf8NPl1FzFYCMI5JHfYRaIYEtAF42PUpNHaDV4ze9gDYJJG2mLmf4Yir RAxoxXxAQo9SIT8guZ1b+qgO2U9l+coYoIXix6EAFewvZ6L+AEBQzNcVGx0emD6pqROSqBnT gtOs8CJXCFNZnR5Sz6Yykw4xwDO6xjNJ0tmFrsNYR+fsuam+zCVatlPIhagYMhbyNPIKJkiW A9Sj/YUgQA7lqXIaV2Rqjg1su8SL38jUq2kzqcRFTaX6OpFLwEy7O+sscmitH2HqR6iS+hGu on5U7qF+VFn6UU39qIIa6ke10Y9a6kdlHfWjdq0fe6kftev9iLCbz9EyvI/6EEFVvXjNRiwV 7hdL5sFWxDITiQxffBoo5QuH6nUNn2o37pyPOPvL5bRJ3yPn89waTeNpNZZOqZOa8EGriL7P 9V/0XV7yrdy6H/oAG6gHCiCXd4HTpJMMbyrHpsu5PM9IlN+h/4pWkXMm3qHtRUOQwT8NamAA JvE5A3Mbj4IfUhAcxv88PwuuQFSq873z3ciCd/SFI2S2VeBRRB58LRXg+6J+kMQwO8+rit/Z LeXm5McD1jyfX/W7Kv3c5lfpd/L/TfqT/PRhBeA94d9t/j3nZ/7OWbA9yIGgrhGb/jhI+8Ft 2RkWoQgIYgRIFdB5HFJi95To3gW6S8rkzpHkQ+TP+U13qEjVi2dPCsYgvWHw5b0yv1kusm2+ k79sIfYixpRLv4/NaSH+qcIqI8riLyPzr1qTy74712AhsuR4u4aGZNiwVubEhsCLFlgYaNXw Y2thM/EVVAhE//PzUXTrAAFRXpdNIog9rM6kxtJn+lOzU+mxucHMuEr2cTGbg+TgI12Dfqdp JAzdcIgwdKMFQzcRhm6EZsLQTQaGbiEM3XCYMHTLGoZuJQzdso6hmX6naaM7DWsnLI22EKU7 TdsRutNE+ZfpKFUZFdNS4iAdIwUTVXfoQTopCL+udFGQjm4K0sWDHCefLiNIjynIiXVfRdGd lV7yVhTurvSROZf0AErMYtBvNuCabwAAAP//AwAxwMdVjQ4AAA==</item> <item item-id="98">iVBORw0KGgoAAAANSUhEUgAAAEYAAAEICAYAAADiC4IsAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAluSURBVHhe7Z0LsusoDESzriwo68lq spksJtf4CxgkxMdG3H5VUzUzDxO7aQQcsPz44U9QgQd0CSsAYSLO6EaY7/fblXl3Yb7v5+/x eET/eX3q3ffn9fgd9X1/7+fj93xvwnx+r8fzt/9nvZ8V1RR2zPf9eza6ubkBHJV9Yab7N7// fP/u9NDFwhg3vH6H+RZRdqdaghlXHS4SNXaVwpcKc3aLeYaAY8z//rx+jxtdIxbGjQ9e45iH 2eOU7QxCgJgwk6/ujDX1hJnj0iHG2R3mQe2gu4kaccwqWM2gL+ljecK8DmdEb9wTauobEQfQ wtwVZ7KE2fv+6eGPNvmfjrHmNKeYM4tlRhp/LiJ1hroY4z5wPBifHyw8Kplpyzq5tPtlaFRy gnvmJJBwuR2DxEuC0Kw1FmfOoqW74DSP8Seds0j+yMeHV1NvynVZwuwzV1v9UwuHRYi5xnmk pJlvush73fM9Pp3RMyZlljCvfVRy7eyut2JWX2JNfBhOe+D5t0QTQPO7k8NadSXerI1LRIM7 /btGyHnoH1aY7flFMWZy4eau4YURLBmcQQDC7NaalyIh1kQtN8TBt3EEiVfvd52kkStQ3YiO cUe90BxmWai6IMwTZ0RhUt36eZfTPz1dKUkVbo6UVMlcaDBh0h+cKwlhIgpBGAjDdR737+EY zjHULqSmv5P5Il56d4x5eO1/aj4DhEnpSnDMoQAcc4ljEhdo2361vew/H0MJLRLpKX+fMWbf 2uDJ/SaCu1tCceClWUPX2Q3enTDLlsQEvz/u/nXQpTNHeU2o0T88xOwTBa/zJmUVR9a6MYbt SqYrGAH8LrFyFIu0uXQtdt0gwuyk3j/JcDrBtQlxdKFlc19jjFmCQHwzy0GRPDfZAbbguu5i zG5o7vRDAErHjnlswsQOTYauUymMGw08x5y2d9ddw1P0HqUrRR10fsAa27v9OubmNQWEiU3j u53HwDE3KwDHyBqgWYzRhDBj9yqTEmhTrFfdRaT45+te0Kwr1b3N62uDMOpGJZbHbE/ELQnc s7hp2HM6odDlBK8h2iRfBbLc050wbdGmC62oyNWdMCk8ZmVxGWiTw56HVGqFyUKbDPbsepcg yTECRGnqo+JK7O9UOkaCKP+VMNloMxl79jpch3YJKqHNNOzZszDXrwKcX+w3xkCYmxVQt1a6 WS90JThGZsFmjgHztdZd27/WVFvWzvVK13wGMN9YvIJjwsrAMZc4phHzXU5qbW/Cxk+F9hlj mjFfN6UBlbqgO2GaMt/Ta8R+ZrQB0OZy6lJ6nFWxY5LQ5lQoi/nOlVtAnMgA0l1XShIml/kK EuqoFCab+SYm7DGNo1KYbOY7pGMqMd85veQ+j4m/jNGvY+qtB7NqgjAAVTLjwDFwDBwjU+Bq x4D5gvmyDgXBu4Tgse3QtgCG66uDb3F7FjDf7dXhZQDw1kNk9vreCV5N5mujBk9sKh9wd12p nPnGOe7JxYQruxMmieDNhSLMd6V77zlHRCgR+yGPKsekCkMzXysJRijB6L63pJHH5KYwCG6R xASIp85W2ZVo5mtlaN53BeLOGOoANMl8zQaJ/TEq20FDwnAB83X2jrzvDeCcb+EMs98YU/hg pZdDGHVrpdImL7wejoFjZBZq5hgwXzBf1opgvmC+rEmcAnDM7Y7J5MGxVXnoSzfNRiWZ2QSl C3mw80vEN2pVCVPOg21Z6O+7qRImFXvGzwCn8V5Takhhojx414X/GuB4wqScAU74/vVwwqSc AU75YvpwwnA8+Ig/9Eg4hjBiHsx/lFenMIJpT25RCANQJfMOHAPHwDEyBa52DJgvmC/rUBC8 2wke20blBTBcXx18i9usFdf9z7kd4lx3eRl9g9//LLcDwXUFBxf7jTFsV+I/OXY6x/sfhMnj uoGu5L9rsBpOp2NKuK4VfJ/vz5pR5DxUqBSmFtddTneGsw6pFCaf6wbyx4T2Z7veV/KDby2u a7+vpDJ/TPEMsayCfrtS2XMVXw1h1K2Vitu8rAI4Bo6ROaiZY8B8wXxZK4L5gvmyJnEKwDG3 O4aFWNsdBr5prZr5Uk4tOuermPnSmqwpCT4mi3M8e/NcxwyzXr/Xk3prX+ML6ZRCbFei8z58 97r/mTBxHjwC8811DMeD1TPfTGFSePBRtUbmmykMzYNHYL4SYSQ8GMxXNm33SzfDDmW3df/V EAYET+ZCOAaO6cQxYL5gvqwVQfBuJ3hsG5UXwKikblRiYNR5FW0TPeIbSqPn842lgtySHDtn eY//cJCoquysafkbNnQZ6gceY+GSmY51Bs/qKusngfajdIKzvKocs3uAbWn73WnLQSmJRofN 5xvoQXvMEThmOc4afjm93+Ga3SJx1TmCsSDGTFWMlc/31F1MV9qG62Vb9vledo+cOJLSzVa9 9TjGcxCdlzc+j0E+38JVQb+OKXyw0sshjLq1UmmTF14Px8AxMgs1cwyYL5gva0UwXzBf1iRO ATjmEscUMd/1DkN1qD7nm3CWN858V1GCdQROVEVeGG02XMt64VG6nPkujGX+2p9/HjgIsYZ6 75pgvnaLnLqSYscUM19SGPOXxJ6TdW13XSlJGIr5UsLMDrIY7xyHhupKZ2WCwdjvSkOiTVsL kvlaBYNpEEZzjIj5EvMYZ+9a43cic8f7Stf1G3wrPWBuNRAGBE/mHTgGjunEMWC+YL6sFUHw LiF4bDu0LYBRSd2oVMJ8ibO89PlgK2BOhx5r/akXY0qYb2ixaWVHZFnxqkZ3XakG83Va2hGK Oh/s+qM7YdIIXiLznSpzz/KmX6dTGB9R/gJOCJ3lTbmu166U5phEtDkXoz9kN9Zx1sBwQQXV nL/T2ZUo5ksB71RWPAmvRxgB86XO8uKcb+HsrF/HFD5Y6eUQRt1aqbTJC6+HY+AYmYWaOQbM F8yXtWI9HsP+VPsCzbpS+1tv+wsQRt2oVMB807huINevJVKfjilhvobATMdZIx/BsXDPc15B x8p1J0w5803guqFcv16X6k6YNIJHsVuO6/LffjP3oFMYit0yXJf/9tvSNDqFyUWbXK7f7oOv ucHs3A5n1bZgLMn1q9MxIuZr532wRdM4XIccU4n5HtJoFabtjJ+tvd+uxN562wIQRt1aqa0h 2NrhGDiGNYlToJljtDNfmYx06XqH1mreVQd1QZhYvOqgcbq8BTgGjpEZE46BY+AYmQJwjEwv xBg4Bo6RKQDHyPRCjIno9Qd7jYH9JMbmowAAAABJRU5ErkJggg==</item> <item item-id="99" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTQRR+29KyhZb+QFssCFgrWBCRtfhDiBYriRqlSTEcvCi0G1lTaCmr EU+NJw9ITEw8a2K8GA8eTPBggj8xGhPBsybK0YM348FE6pt5y7KtBEG9GHjNt7PzfmfeTmfe 2AFAQAwgKvi7CZ9lak6W64CRhBBHk/HhC3JS5RxIIHrQKGqWrN8B8mXS/WfYs0g+bPJWaeop NuWSI8q1Ra1vkzxvUUuskExOgJQNwCRcAaiUprMotoGd8+9WMj4P5CB/YhW5dzglQIVoFYpc FLjKLfFxuAA8fNy22OBA3/hxVR4VeGw7wmpkOBDVXFWUxxPyeSUzZuGCCLNOZZLEK+O8g3o+ rBMj2SOZyzT9k4hyZCT0hJxCHEO9pBdgmrU+TCi2WS/JD4uUZBOYaviLR4/Uq6o5ZfiiKtP4 uhFOMJK3O1jU9y3l1U959dVSXv1bKK+1Wl4DlNdaqKO8BvS81ku3XqDEv5XyWY+sBv6ary+K 1MinbseUxjKjwxmWRBK4WAKQvcxhQ+7B5XMCLSa9tGg+IAoFpo2q8bQcSyvymMptcK5hbd1p T7Sdn3N/uvMwsAAldAjMsFiwgdXAE3RrGo5J6y8WWESiwib9V/QDsWjAJm0sSkAGfyo0QR+M YZuDydKtYFXygUX/z7O94Cp0CUH3e/fNPDgGX1oCRt0bzx+HxP43ghnfZ7WNJIbRWVyZPyfW FZsRnkCCcT5rtbsm/F5nrfQn8f8l/U18OiAB2Ddh5y87l9mev7kXbAyyYHHWhh/9iY/WQ0XR yijqYI3IS4waYtVoSIHCV49TszZrJorBnFWEM4ivhRVXKA/Vi3uPAkOQLhG+elDtMfZHzLAi fVuH71n0Kbp+9c1oJvLZX9zHKou9nJ563Zmcd9+7DrdDc5Z3S9WQCCW5MgbWO+w/xmtaoKzh YVsEI52BBcjiaFO4J35ZebKrUuoSHxSnhkJj00dsHyFaEWxq5YhziGqT9rWaqBB1sTEKVCoP yDllKH32qDKRTQ9N9mdSMvmL89lsIwMH8YLaHWM71cJBrRYOUS0chB1UC4f0WrhZu2O00B2j eSfVxC0oCtMdo6WV7hhhtsO3UbQwH140DsIuYjTz6O2ak93kpB1ZHeSkfQ856WBOOsmmQ3ci GZzsXbaNaLZdZBthtvtINaLb7jcIDxiErP8TAAD//wMAEnFbw9wNAAA=</item> <item item-id="100">iVBORw0KGgoAAAANSUhEUgAAAEYAAAEACAYAAAAOWABBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAjeSURBVHhe7Z2NkeMgDIVTVwpKPakm zWwxOeNfwAgkwD6JvJ25m9kEWPP8EPAZw+OLn6QCD+iSVgDCEM7oJszf399Q5qsS5vN6fF+f TYe/7/v5+D7fmzCf7+vx/O6/GpVLLMzf+/l9HKpM1Y6FcR+9v8/ne/rG7s8uzFzhxyP8Fwjg Kunc8Jr+D92y5/PSO1cdLrInUNox7o4nmsPZLa7CCcfMGr6+D8OuSQhDVJQSgPzcdqw5CTO7 InmnXUX9oEsF3/DzU2uMWpVrcqcmvDXpUuYLW2gozNyEUpXf4kuqt5E67MLadCzaE2apYNjj +H/pRx2z9Ep+jxPLL3XGEDFmdUvcXU+/+11uuldyw5a1q/djwni9Uq6h8l0w5jgmow3lmiDL SCNffkBfmh3dk/Jdxf+b96cUz5Xuv8T/8xchDKE7hIEwsiYJx5QcQ07kEoM+zWllvqBT745x lbX+07MOEIbTlOCYQwE45hbHzKArhy5ouneG8aly8tMRnTHGYYa5BysLs4kQUorc/GsRNJXP v+HqhFm47YQ9PwzHzDPv1/cVTESdEwoP6ZL5wnagTpj98opNaRMgbhILNvXHR+Hsnco3iDCu KSxEMBLm9BwrdBCZLwqcNh0TwKsS03HP69aYI8hnUpjkI+CIKfsG2ISR5DMpTOj6yDEncO6+ H6W7XvrTcBxDBuNzUwqdQfVQFscxCuYTepvSfxYHwlDzm47oBJPIWyaRozYlzciSe2297g2a EpqSzEtwDBzzPx1T5DF1aJOHPb8zz+n1068pXYg2wyX6dNXVCXMt2mRgz1UrdcJcizZL2PNw kFlhqtBmAXuqfkrAcowAUbrycnGF+s6kYySI8qeEqUabbOyptbu+EG3ysKdmYXqNrirL0Rtj KivUKxuEAdqUeQmOgWOUOIbLVTWnk0mZmalvX/Vsn70uTlpOzzr04zHSWlyQHsIg+Mpspdcx FzHfZXnJtkaPXhWqU5jLmG/4KiG9k4DCSeSlzPf04mm8I8kAaHNZrelWS0mWsxp2DAttTomq mO9cuAfEM1uv6IwxKVDldyq1zDeG4XMsSwdgk8JUM98T2qTf6zYpTDXzHdIxvZaz7kOB9WUO YlcwvY6RDVS7p4YwmCvJTAXHwDFwjEyBux2jmeVyr62LwlMhQJuU+wDD08rAMXCMLPr0dUwD 891eOV6CbPTqXzBX+mXm66OGSOzcPnzqRr7tzJfmuKcGkHGlOmG4aJNkvivde+97+9L7PJhy DFeYPPP1dgNJbUm5P1uiRbPpmBzzTT4ioQQYDG3mme9U2YD+5/frHGoBdJb5ugck/iEQvoOG hOEC5hs8O4oej2Cdr2xwekqtN/g2Vqw1O4S5G1S13rH/nR+OgWNkHrzMMVyuqjmdTEo6dV8e 0+uqKsu5zDGV16MmG4RB8JWZ0aZjKnkwNStPnaRhT5jGNcCBbzKn8JgSpp0H+7LkOY0pYbjY k14DfAhTOqlnSGHKW9OWT+EZTxjOGmDGCV/DCcNZA8w54Ws4YUo8+Ig/+XHNGMKIeXD5RGSb wsgGsVWpIQzmSjLjwDFwDBwjU+Bux2hmudxr66LwVAiYL+W+7fOeEb3XXZOW07MOcAwcI/Nf X8dcxXV/eW8HmusuL6Nv8PvH9nbIcF3BwkW9wbfYlMpHjp247i8IU8d1E00pftdgNZxNx7Rw XS/4Pt8f8oRAk8L04rrL6s6BNr2o57qJ/WNSz2fd/Ebl9vuu5g1HlS1OILiu/76Syf1jZIPL 7qn1OqZ7VWUFQpi7QZXs/uhLDcfAMTJXXuYYLlfVnE4mJZ26L4/pdVWV5VzmmMrrUZMNwiD4 ysxo0zFFiLWJkDi62TTzzd3cpnW+hplvXpN1d49PdEh4KtMMs17TO9i5t/YtvpCeU6jYlAge PATzbRCG5sEjMN9aYUo82DzzrRSGw4OPoi0y30ph8jx4BOYrEUayzhfMVzbSjVPbHPm21ZmV G8JgEskyyp4IjoFjlDhGM8vlXptMSjBfsV6A4VS82j7vGdHFt6dThp51gGNucUwBRp1n0f7K qMwZSqPv50ttBbltchys5T1+mQ62OwQ0tTsrb/+GDV2mvBsxlpzzxtvP12sq69GG+1I6Adc1 5ZjdA8U77a+x8xzE2Wh02P18Ey1ojzkCx+QWMertrouPSEJ1jmAsiDFTEWPt53tqLq4pbb3N 8lj2+V7OIAviCKeZrXrbcUzkoPy+vPQ4Bvv5Nk4N9DqmsWKt2SEMCJ7MQ3AMHKPEMVyuqjmd TEowX7FeIHi3EDzxfembAb2SuV6pifmutU2VYXqdL2MtL818V1GSZSRWVBEvjKprSu3Md2Es 82l/8XrgJMQa6r3rDPP1Y8apKRl2TDPzzQrjvsw8c/LyqmtKLGFyzDcnzOwgD6LPcWiopnRW JhmM46Y0JNr0tcgyXy9hchuE0RwjYr6ZcUzw7NriOZF9R/ji0vQGX3FV+maAMObmSn0NIC4N joFjZKa5zDGaWS732mRSgvmK9QLzBfOVmQaOucUxLcw3s5Y3vz74qNllvZLMbFHqFuabmmx6 uyMWWfF6KeqE6cF8A5kDoXLrg8Obo04YHsFjMt+psHAtLz+fTWFiRPlNOCG1lpeTT2tT4jmG iTbnZPmD7MZazpqI7LmgWvOdzaaUY7454M1lxZPwdoQRMN/cWl6s820aSGl2TGPFWrPrbUqt NWvMD2GANmUWgmPudgyXq2pOJ/MYmK9YLxC8Wwie+L70zYDge3fwbb5/DcyXx3UTe/16F63T MS3M1xGYaTkrcQiOh3ue8wyaSqdOmHbmy+C6qb1+I4urE4ZH8HLstsR1y2e/uWuwKUyO3Ra4 bvnst+XW2BSmFm2W9vpVH3zdBVbv7XBWbQvGkr1+bTpGxHz9fR980Sx21ynHdGK+hzRWhWke IbYVoLcptdWrOTeEMTdXar7nbQXAMXCMzEGXOUYzy+Vcm0zGfOodbfYsdISyIAwVr0a4u1fU AY6BY2S+gmPgGDhGpgAcI9MLMQaOgWNkCsAxMr0QYwi9/gFD+IxYeCPtMwAAAABJRU5ErkJg gg==</item> <item item-id="101">iVBORw0KGgoAAAANSUhEUgAAANMAAAAVCAYAAADctttwAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARWSURBVHhe7VqLsawgDLWuLch6rMZm LMbHnyQECCrq83Jndu7MukB+JzmJTPv4GxYYFrjEAtMlu4xNXmeBdVn27XVSfUmgbV+WFSk0 wPQl/zpdtuW3z9jPH9TyBSqt8/5bYsq6BUzbNnJkzfWX2Whb9hk4uHbueH7OAtsy797cAEzr Pk/T6Yy2znAPVQp/E0CvPuMXDj+nRs/V19hCJiG1EbdKbjfoXL2TrlKT8mvuc18Fs3q2n2fX BfmbN+i8HiSvS8FkHIeUZQJFHf77vZ3Pvw1MMlgq6KjAm/csw9O2fySZxYBuxYJOzjGmJIkH 26r/ehUrLp7zYDKGh4rUHKoDEDoynxG0gpBr1nY++hxnZVgRGbAo/jsF+d1z1cQbG5gP0M0H pSrxKGOaPdzvYdR4W4IKYR9zNtLfKVnD3lruWJmMTiEZufX+rFqiegBMwQcK5HNrZWLkxfpX IuOW9c5fqpPhweSc35JF0qoUgyUBjg66YnWywXwKcAgcShYOLDCFM88hgGxQOEDRRONBBIM6 VIAUuCZbBnDSbOsAguwDaR7Yj4JHy1Fy2iNgWlylPErzIGDaKxOGW5/1vrVhwJQLZPu9ybwJ EHJC5r6X9wBHqxIGD91FWJkQXyJBjPpLul+FJiLg8mDCiYTYy4EG96euPzoIJroXIUsF30s9 dAZMoIIfahH6rvdMKwGTpSl0SIANkVahXPCUQSapfDaLZz7FDTCFwj+VgIm3gQnyJMPT5MDZ AyQjRBt5MKXyQnkIvQMj8WI1L1SmPJhqvr8DTOAMyjikx/vfdViv8aDtztO8hIaRfsg4BfZH uUrTWrFaLSP7fQSkD8g7wRRBFAJdUJnKYPJ74mEDT7WBjWpgmmPPF8+v+V7mA98fShJoeccz FS62HsflSM8vg8k1xsH5SWMrycSFnsntL1HoeGWiLoHAloCJjnEpzaMDjcyAg+sPT4LJO8// 95qeBVOg7zBZVn3fEUxsFalQaCjOTeuzNC8EuBHEBQhbqVLakVKMF/VMKCtTmuQpoc/0aeY3 oPZ8vYXmUYeGyZ63XyPNQ6yA76Wy4V2rTKBHDLSv6vuOYOKSbnV4lQ4sUNLusL4wgIjChAAS ZKdcVgyjUahRVaELpnlmgId7La5vCj3iCqmrC1LzHTN0aQFTIocGLM6u2EYcjYmgwe9NnI4X jMbXGfeIAUwC3ysp7ICiOBwo0bPSevL6gD3jyfXsaLyUYSS8WT6hu+s9kzRnfud32rGFl7YF RbmbKxajEt/bjTf1Xu7MlcD/c72y+WwvIQjv5mEqUqxCtUao9mLxO5H9iCb0OpFUCFTxEJWU +L7P+xup7H64cfy95An5+etENdHBaDdbzmuTFnn1qkkznucssKrbE+0Xi01lCtM8+lpA4vu/ 6ZHMRde/aYwvan2WLn3RJn10wolLSPP6iDJ27WUBVUkO3RToJc8X90370wGmL/p56PSIBQaY HjH7OPSLFvgHNPR675etZ40AAAAASUVORK5CYII=</item> <item item-id="102">iVBORw0KGgoAAAANSUhEUgAAAOQAAAAVCAYAAABWmUIxAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARiSURBVHhe7VrZsYUgDLUuC7Ieq7EZ i/Gym4SwCup1eDPv5yox28lJgOkYf8MDwwOv8cD0Gk2GIk09sK3rsTeVOIS198B+rOuGxA5A tvfy4xL3dT4WHOfHdRoKBDywLce8nqXzFkDu+6jVqYRs5qN9PRYQ4NR3ez9vZldvRR+Uv6/L YUMGALkdyzRdrqzbAmUISp4nUAHkN2b38Qd9kPh0G1/k2Ud9xK3K9xsMrpQk2XIScQ39t2TS /rHXvirXWa9zPigW0Hk9KKJNAamCj4xlkk18fJ7fPt+8DZB50BbwE4m3HMFuVfq+U0HsH/sT FKV4koXizMucAoj93X+9yDeDiTAgVfCgIamkkEkMkyFcVaSBsG9OSa59jtkBMjMDONHLT05/ 81xsjCgfqH9gm01s0WqgqqtkmPdh1lhfAqbSjzkfyd+Erk621PtkSGWTK2hmvf1Wqth1A2Tf 2Ls4imKzlDIkYzP2YSK7bllvYi4mOx6QJoFKKpFfIc+E88AnEzfKkhoQl0CLACZ04QAHqYR5 DkGok8KAkhYrC0QIDMdEPvhVxXUApxXbgAz5B7asQB4FoNQjFrROgGwbex8guyiMOlS1LSuU Wc6QWKM+6227zwAyAQYVVNoWhZQM/Z4/E9WyIwYglZLJkKj3I0BA8zaVl2h5Efh5QOJiRPxl gIdnNjMvVgKSymL9/njsrwASdCNVI1Pf9bZr9ACpW67AxotrySggQwkYB2oOA2s2CfxHBeB2 EL+aA0jqA2CLxzS0wHD+0L+dtlgf8oD09YX6kFbVoEcyVbSriDBkEpAPxJ7hyspNHSKJdk+l Vb/Dehs7vmVlWkoNDJEUG8eQIcYrZc5Sz+S9f4LaJvWdgDyB6MCSwZBxQFqZuDDyrSPwUQqQ yzkDw++/J/ZXGNJvW3MIgc+wq3r46+OANL06W23ZtuWNDEldCYtDDiDp9jptWekmUWDTiJuX LwLSBo8y4lVAurmejbE6Q2HGlX6xb8KQLJsV7KLftD7YsrqqoRRhWtfH54g8VvRmSMQOtOWz 7a1lHJ+BFEvY2aOkZaUBdTuu1reFLSvyPz9bBj2UYkgwM7Mt7OOxr2EmZk1yUzHBph3WRzZ1 TmVQEtqfA9UzVJ3dljXugfrvsqqNVTx7cnOkm5lRK24SXf1mZMCNgBJAenpI0OMKjX3EJd0J PHwmZmxscOyxLbj45gMyvJlUFntTBKMbLjFAxtaT4yX2G0+uZ489Mpkn1M6oJMu7hXPXOWSm RR96TQY2cjEgYil3y8absW6I/XnEUReW/1wv4rboyzLld1mDQcnYdldHSf9wU6cuGd6wil6d y9UJMW/RDKm/kJxfk7Hvc76Xa78946w/+76gv/C3vX/cFJDpg9t8Fs135HgTe2ATt3zKL/Mr hnS7rIFOJ1KMR+zr8zBwubxe4Fj5Lg9cbdveZc3XtcEFtJwhv+6fT9gnOpGq2yifMP6PjPBn /gHIPwrfUPX7HhiA/H6Mh4V/5IEfeLizmN+5tJEAAAAASUVORK5CYII=</item> <item item-id="103">iVBORw0KGgoAAAANSUhEUgAAAOQAAAAVCAYAAABWmUIxAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARcSURBVHhe7VrZlcUgCE1dr6DUk2rS TIrJuAuIazTLHOec+XmJiMDlAnE559+0wLTAayywvEaTqUhXC+zbdh5dJU5h/S1wnNu2I7ET kP2t/LjEY/udK/bz4zpNBSIW2Nfzt/nUeQsgj2Pm6lxAdrPRsZ0rcHBu39HPu51rtKIPyj+2 9bQuA4Dcz3VZLmfWfYUyBCX/FpAB5B4/t/mDNshs3ccWZeejNuJWldsNOldKkmy5CL/G/nsy 6Xjfa1vV66zXORtUCxi8HiTRroBUzkeHZYJNbP77vb2/eRsgy6At4CcCbz2j1aq0/aCEON73 HhS1eJKJwsdlSQLE9h6/XsSbwUQckMp58CC5oJBBDIMhnlXkAWHdnJPc+hyzA2RmBnCill+c /ua5GIwoG6h/cDYb2KLUQFlXyTDvw6ixtgRMpR9zNpK/CV2dbKm3Z0h1JpfQzHq7Vy7ZDQPk WN87P4pks9YyJHNmbMNMdN2y3vhcdHY8IE0A1WSiMEP6gAvAJwM3yZIaEJdAiwAmdOEAB6mE eQ5BqIPCgJImKwtECAzHRCH4VcZ1AKcZ24AM2QeWrEAeBaDUI+W0QYDs6/sQIIdIjNpVrSUr lFnPkFijMettuc8AMgIGkuWx32NKxn4v74la2REDkEopZEhU+xEgoH6bysuUvAj8PCBxMiL2 MsDDPZvpFxsBSWUhi73G91cACaqRppZp7HpbNQaA1CUXHbyQgAgybSwA00AtYWDNJpH/pABc DuJXSwBJbQDOwp4/UxKLHC9Z35/FlsA8IEN9oXxSqhr0SKZKVhUJhowD8jnfM1zZONQhkmj1 VJv1B6y3vuNLVlpSMqUQdmCM8WqZs9YyZe97UNugvhOQHogOLAUMmQaklYkHOHzpCGyUA+Tq e2C3/6t8f4Uhw7K1hBD4CLuqR7g+DUhTq8ezLQXgGxmSmhImhxJA0vE6LVkpI0YYkuuXLwLS Oo8y4lVAur5eATc2rb3P910YkmWzTEsBN75pfbRkRZmRHZFzrFfLhA/0kIgdaMlny1sbhCED KZa1vUdNyUod6voxC+DKkhWBhe8to3VDjiFBz8yXsE/7voWZmDXZoWKGTQesTwx1vDIoCNXP 8elnLDu7kTWsD7IH6jBlVYNV3HtyfaTrmXfICibQ1W9GBhwE1AAy0EOCHmdobCMu6Dzw8Dcx c8YOnz32FffMISBH+94kweTAJQXI1Ho8T+An/E+ul/pp+5dfnct+Cilnvbu+Q5Z1mP/pLenY xMWAxFG5WzYugd3oe/+Jo80v31wv/LbqyzJlgMw6RBsv28Polz5wU6ctGN6wil6dK9UJMS8s i2/z/Zjve6Xnt9842799X9Bf2NjePy4CZOw+ZDilytX45Sxabsj5JrbALm751F/mVwzppqy+ fJ2+Hx9fkcvl4zeeO9xjgatl2z1azl20BXACLWLIabqvWUBUIk23Ub52zq/rG/b8E5Bf9+nU /19ZYALyX7lzHubrFvgDi0+IYKiIemcAAAAASUVORK5CYII=</item> <item item-id="104">iVBORw0KGgoAAAANSUhEUgAAAOQAAAAVCAYAAABWmUIxAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARvSURBVHhe7VrZlYMwDKSuFEQ9VEMz FMP6tmRLvrCBZL3v5WcTC2mk0YWXc/5NBCYCr0FgeY0mU5GuCOzbdh5dJU5h/RE4zm3bkdhJ yP4oPy7x2D7niv38uE5TAQaBfT0/m0+dtxDyOGauzgVkN4yO7VyBg3PPHf19N7tGK/qg/GNb T+syQMj9XJflcmbdVyhDlOTPAjKAfMbHPfxBDDKP7oNFmX0hRtSpctygc6UkWS0X4Vfu07OS jve9xqpeZ33OYVAtYPB5kES7ElI5HxlLBJt4+Ofz9vnmbYQso7agnwi89WS7VYn9oIQ43vee FLV8konCx2VJAsR4jz8v4s1wgiekch40JBcUMohhMPBZRRoI++ac5NbvcXWAlZkgnOjlF6e/ +V4sRhQG6gNss4EtWg2UdZUM83sYNRZLUKn01xRG8n9CVydb6u0rpLLJJTRz3j4rl+yGEXKs 750fRbJZayskYTPGMBNdt5w3PheTHU1IE0A1mSjOkD7gIvLJwE1WSU2IS6RFBBO6UISDpYT4 HpJQB4UhZZisLBEhMVwlismvMq4jeJixDckQPrBlBfJCAko9Uk4bRMi+vo8JcojEqF3V2rJC mfUVEms05rxt9wlCMmSA2R9VwgTxDIAxscpnotbqiAkYSimskKj3C4iA5u1QXqblReSnCYkx C/AyxMMzm5kXGwkZykKIvcb3VwgJupGmkWnseds1RoTULVeweFGZ1bdscUbkApDLJuXA6mrC fJIlHLeD+KclhAyXT8CWqNKECYbCQ//P22LxpAkZ6wv1CVpVwx7pl2RXkaiQLCEf9D1RKxuX OoGksHuqzfoDzlvf0S1rrqUMnCT6QWZ7mibkpZa0AkRPahvUdxLSE9HZW1Ah04S0MvECh24d AVA5Qq5+BmZz3aO+L0/k6fC4Kqf/+TQh2VZTm/kdFTJ0CUwOJYQM1+thyxouiZilEZXcLhLS Oi+siFcJ6eb6iHQeyzt936VCktWsYot+03m2ZXWZUSlCta5ES8sSmKuQD8yQqDqELZ9tb23F iSuQqrJ29qhpWUOHuo2rxbayZUVkoWdLtjrkKiSYmaMWNtLbPqW2C7ri+5bKRJzJdYAIwHvO J5Y6XhsUhHjKj1pULju7lTXsgbKAdNiyqsUqnj2pOdLNzDuck03QqP8ZGXARUEPISA9Jepyh MUZU0Pkgxu/EjI0dXnvsK06+/JInJlQf35skmFy4pAiZOo/3CfSG/8nz5GuPiqHMBFl6zuHl 3fUess6iX/i1dGziYkDCROqWDTdHxmQtr3o53/tXHG3++M7zwm+rvixTdpc1qmi0A7IzjB5A v+CmTlswvOFUeHWuVCdUeWFbfJvvx7zfK7XfvuNsXzRe0J++OpfZS6E7kdx91FyPX55Jy4Gc v8QI7OKWT/1lflX13JYV+5e/8QSfPH3fGonM5fJWcfPc2xC42ra9zZ7f1gcn0LKW9bcR+UHr RCfSdBvlB6F4tUnxzD8J+WqHTeX+GwKTkP/N49PeVyPwBx+jllKAZYsAAAAAAElFTkSuQmCC</item> <item item-id="105">iVBORw0KGgoAAAANSUhEUgAAAFAAAABCCAYAAADAD1E9AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOtSURBVHhe7ZztcYQgEIZpIH2kBru4 Jqwj6cBq/HWdWAxxQTy+WVjnzsBmJpO5Cyg+vvshCwrJPyQCgtT7P3ZeZynELFfU2De5TEJO y5ZsPRBADUPMOHQ2sW2ZktAHAQjwJpkREkKPq5wjyh0C4DoLmRbeoUyxq3P/zZmr3BY5TYu0 Dbp/gODzkvR8swaV5SGCOduQOwcIgDIBAxQlPNMG4J7KXPt2TblvgAAoFzRisBTUfJQGFZrD dg3QvtBYlFDR1VdbTJV+Z+vGdAywYL47lGaAexgxrqFjgLuvyvqynWCjCYMg11n7zn4Blvwf UIj5u2IQ0fZs3MPYAJUp2k8n5TTGuMMhAM6oR4+KRNoKJgwQ8fCWa8IAGWCBwB4gcCbcRrJ/ BT4f8vvxbKOD6PV8fMnv387TGFYgQgnJJmzCFHo6SWYFUhgyQAo9ViCRHgNkgHQCxCOwD2SA J4FtS1f2iZjS3d+vQD0X1lC4dy7CrcH6SyPgHNQCNxI5GuBl01l0gKrG4NyByNqSSHEaiaSu GQrgpROqHkA13V2zlsRf+uDeWRssqDS7AqAOVbw1BmBTXVifLjIbYwE84NWYc6g+dZr46qZi 3QE/tU56FiYUlTIAU4PX38P6kbByn1oGlvr+Db4QocD2smZGgQpQ4Og1CKPIUG0p/5kHi1E4 mLseU+Q3d4BPAVRjCqTt+begHJhSVK0yr3B+xzEQACl14bwP9H1XEDl9YP9TgRfXhT0Iains kbNFFWnnc7VKu4cPNEHulSHgg1dBgdoMlP+B5RFFBR7rTCI+SS+P9dKhu0RhnZDo4jpmgaXl YSqLSiUfqHCjnzJukwcSXG4AUPy4qzzcz5uEzyb5VaqKtI/ngt4ob/Uk0k7QAQgwbCCpz2ce mGzvpjvh8PAqbb+0iihMOEkAEI5lIFL/EsZ1XVdMGkM42wkQozxzHoxSCWO6tusnANoqtKHZ V5b3ldcyIB3tXQBJg7xzZwZIvDsMkAESCRC7swKJAHl5GxEgK5ABEgkQu7MC3w2w9Bzvjqdy Oot4MZ/ojtmpdI7rNSeIqdNANwZ4wDsnfPd9xbNVOCvd8/4BwgRvabOhUtJyvMGjzoT732xo bUktqUn/vwbgENtdX37qcoBjbLhW9pnf8u+QxStwmC3/2izr3lJUjsLuMfvdL2zUlX3tiS1B nAIHe+2JBpR/8Y6BiAAYqSj2r8AzwlJXxg786qdXmtIKMQ4PjjuIAl0zrX39Xa79YABxGWFN qz9kEbMibgemMgAAAABJRU5ErkJggg==</item> <item item-id="106">iVBORw0KGgoAAAANSUhEUgAAAFAAAABCCAYAAADAD1E9AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOdSURBVHhe7ZzRccMgDIZZoHt0Bm+R JTxHu4Gn8VM28TAUgZ0AESCQz0lBvev10hiMP/+SMJJRWn5YBBSr9X9svM5aqVmvpLFvepmU npYtefRAAB0MNdPQ+cS2ZUpCHwQgwJt0RkgEPa56RpQ7BMB1VjotvF2ZyqjT/ObMVW+LnqZF +wbdP0DweUl6sVmDyvIQwZx9yJ0DBECZgAGKUpFpA/BIZaF9h6bcN0AAlAsaGCwLNR+lQYVH t10D9C8UixI2usZqw1QZN/ZuTMcAC+ZroDQDNGHkcA0dAzS+KuvLDMFGEwZBrrPznf0CLPk/ oID5u2IQcfZ8uIexAVpT9J9OytOYwx0OAXAmPXpUTKS9YCIACQ9vuUMEoAAsEDABgmbCbST7 V+D9pr9v9zY6hFb325f+/u18GiMKJCgheYiYMIeemySLAjkMBSCHniiQSU8ACkA+AWYP4gMF 4IPAtqUz+0xM6ebXK9CthTUk7oOLCHOwcWkEnIOb4CYiJwM8bTmLD9DmGII7gNSWIMlpIpK6 w0gAT11QjQDa5e6aWpK49CG8sz5YUGm2AqAOFX40BWBTXtidDlmN8QDu8GrM+VV99jR4dVMx 70BfWmc9CzOSShmAhcGjiedUGVjq/xf4QoIC29OaGQVCgY1KOXpbWwffx5n7lP/Mg6UoHMzd nRP5zXXwLoB2TIi03YWYCLpipQ8pRdUq8wznt/dBAMjJC+d9YMp3Oe+J1I78TwWenBeOIFhz ReZsHfnAI8g9Zwj04FVQoDMDa7Zo8c1r9RIehff6k3g69ClR2E1IXHKdUmDpeZj2pFKy/Ise WT9mHshwuS8A1U9Y5ZH8vAPEvk+pMBjnRz2JtBMMAAIMH0j2swGQ/t6ZQ3p2QVdp+6VVRGHG SV4AQl8HRO5fxrjOa0qZxjDO9gBIVt4OuHQ8Y0znNn0HQF+Fx9WQfeO5l8/v7SqA/JF+aA8C kHljBKAAZBJgNhcFMgFKeRsToChQADIJMJuLAq8GWHqOD8fTvpzFvK7LmsOqDyXpYgf0XBOk NhGAj0Ub2A8BFo5n824dvTKjf4BmX47iy4agvWXZd/CoM+H+Xzb0XkmluY0agEO87vpMfp8O 0POv/b6taWNDfSChBJFhXvl30bVul6IywLDPvhUIKsxue+IbN80HDrbtiQOU33jngEgAiGQU +1fgY6LMrYwdeOsnpzHO/lk4POh1EAWGZlq7/V3u+MEA0maENUf9AVH1xZx0N+/rAAAAAElF TkSuQmCC</item> <item item-id="107">iVBORw0KGgoAAAANSUhEUgAAAJEAAABICAYAAAD26RfEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAafSURBVHhe7Z3plaQ4DIBJYPOYGCqL ToI4ZjMgmvrVmRAMYxtc+JCxZMsUPva9eTs9bXxIHzoMMtM2/hsSyJTAlHl9fZe/522a5u39 hZm/l2VbvzCuPeS6LQtl9aL9a9peS3jmHUG0C2OaKQLk0/i6vLYvDe0vQtxIV1BAq5bzD918 nUAkAXptFzcTHy2wBrb5xsHXNW7v1mVOkMd7mwEr3gVE73litAJSkDQg0xSG49pem+t6Lua6 Lmlgi+teL9sttw+RjIG+6kekYsvEYMrFWGsD4hdA6TueAjAHBhy22ybHNd1h4xClK3CPAUQM pf6Ylse8u4+/v8XdCbYVarlSonmN6oMCm+tajphP92nAJa2VHwPluHh77LYhkgpMsUJuBmf9 7EIkITuVLxU2mXc4aAkht2P3E7MKvhWSVwQyKTkHwOrkuHkzUWgaouSM6HIbwIfI4tS5FlQ2 0H8w+5E3gmehQml36N/h2Ai2UDF8j98bN2jDEKW7Mn1Ha3dmGzM6RK4rUcC4lgGCRcEGWSg5 ByhZuIbLNcpubIPER1P0ifUahig9cDSFqdyTFRfRIXIDewxE+7giFgNjpVDWRbNQeRCJ0Hze Y8V2IUqNh8Db0VROPkRC+v7GXciFgu6MxxJluTOVM+wbqAMiCBpXoUqROkOjQaSA8YJ7d/d8 hwLcES4cE6XkHVpkXUCUs0t8urHdnZ3CJkIUTPHtlHyeA8/0QIh2KwDtf322Jkw6wOwsJ8Xf MRoQ0aLIjNbIAJ/kzo7NQuTOeXCfaM57IDwgysCCeinqsQcZorA1suYXsoSpjz2MzgdEVBKy 2r/F6xeRh6IJEOmtiHBcE352hgI7sub2Ifr92f78/GapnvPiVbxL9J2XUMDMIQ41YvG/P/9t f/5vPDvLCawRMiQ24dm3Ig4KNEfGaIiB2rdEDD4fIceumwyIulY/z+IHRDxy7LqXAVHX6udZ /ICIR45d9zIg6lr9PIsfEPHIseteBkRdq59n8QMiHjl23cuA6EHqr7O8erwK8hiEkosJSqyA WF59qyXClPWyy6SGxx43zxGjB8rTfQCi0Hu7NPUml/XShom3vllB8Qn5LSgKo/afrAeC3IpA 5L+ySSnrpYop0p4gDOaRkd3xPU13B8zTA/5tgzhE6t1eylEsuWW9SNljm3FBpOUgZeFVkTql y87vP+87e6XYYhENlFdfQ3QIjlIJAL84TivrPfnYXSv1DB2LLxaITBfvrsU/78gqob4sxRYz baC8+gKigALNO9KrvqQVzakTKZAvmWMNj9eOA6KrcupYPVjkRDbwpqusvDoIkX8KhlSPo3Sr Dkv/Pr+sFwLGLd05T+qIuFoGiJSiQ8evBMtwtAV1SoKcd2Nl37WXV1+7M1dAgOm1o3+est5k qwNdiIAoBmgeRIZz9kqx4UoNcDzH4j2pvDoSWMcOe3Sh4SnrfZolAsud9SRj7sz3r9YBmlh3 FpwDaXzaQQ/Y8up4dqb8M3SsHDShRmMi5cZPN20rnhhYuyFAA+XVcYhUAuGmteGsCc7ODrPt bhUEDl16XnZ2pOKfE83ck8yuU/xwKfZVil9PeTX9sUc07cdnXFhzmRUjIWKirP6zL0ZuNpKL GnP1IOaFLK/2IJr+2geEWD8LhcifzX0jqH3IGrn7N+7po9n6SAysi4xL6BT12IMM0X3l1RZE EggTitDPn/T6aK+hOtvvpjilrJcge1zTx1uifWuk5vJqDyK5JA1S7v9xWi7cqgqIpNWot7z6 AxHGAml1YyxWYTTw3VcCUc550nhhYFoiYzSjKxAi0xqZ4JhTuIydMHO9q001EN0lEP5x6NkZ /xzK9jggKitf0fuAqLiI2x9gQNS+jouvcEBUXMTtDzAgal/HxVc4ICou4vYHGBC1r+PiK2wf oocd/Flco18YYBz8+QWhtzZk+5ZobDYWZ3ZAVFzE7Q8wIHqMju03GbNq7W5eUxcQJX3/9VZF wJ+sqgWkAdGtsAQG8+r3RLvo++dPmPg+h/Yhyvju+21qgoABS4FumxFpoPY/36k+7035zjxJ fiyNw8WKUKkWy5CMnZzybffznYa5ZZQca1dVQyQt5vEyfdMQqeNbKEebsCKC6Kxid6bjIbnK tiF6ukuD4p8qAms7VGgcoiPbeaw1qjPFl1bI3IZoHyLF0VUtHMLtFG1S2WYjcMJbFxDt30qt IeMpSitD5+6RinuXnUCktsYGSFkYwQB1BpEGSZSMT8/eP8rSNfvF2t2GZdaRJWKX7ujwkMA/ RHNrGTCVV4MAAAAASUVORK5CYII=</item> <item item-id="108">iVBORw0KGgoAAAANSUhEUgAAAJEAAABICAYAAAD26RfEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAamSURBVHhe7Z3pkeQqDICdwMtjY+gs JgnHsS8DR9O/JpMOxmuwaXMIkEDY5tiqqZ2exhzSZ0lghKd1/BsSyJTAlHl9fZe/53Wa5vV9 Q8/fy7J+bmjXbPKzLgtl9Fv517S+Fn/PO4JoF8Y0UwTIp/HP8lpvatodxHYjhaCARi3677v5 OoFIAPRaAzcTHy2wBtb5wsY/n7i9+yxzgjze6wxY8S4ges8ToxUQgqQBmaYwHNfm2GzXE+jr Z0kDe7vu9TLdcvsQiRjoVj8iFFsmBpMuxhgbEL8ASt/x3ACzYMBhu66iXd0dNg5RugL3GGCL oeSPbnn0u/v4/b3dnWDZTS0hJerXyDoosNmu5Yj5VJ0aXMJauTFQjos3224bIqHAFCtkz+CM zzZEArJT+UJhk36Hg5YQcjtmPTGr4FohcYVnJiX6AFidHDevTxSahih5RhRcBnAhMji1rgWV DdTvnf2IG8GxUL5pt+/vcGwEW6gYvsf32g3aMETprkzd0cqdmcaMDpHtSiQwtmWAYJGwQRZK 9AGaLIThso2yHdsg8VEUfWO9hiFKDxx1YUr3ZMRFdIjswB4D0d7uFouBsZJv1kWzUHkQbaH5 vMeK7UKUGg+Bt6OunHyINum7C3c+Fwq6Mx5LlOXO5JxhX0AdEEHQ2AqVilQzNBpEEhgnuLdX z3cowBXhwjFRyrxDiawLiHJWiU83truzU9hEiLxTfHNKPs+eZ3ogRLsVgNa/vksTOh3g7Cxn ir9jNCCiRZEZpZEBPsmdHYuFyJVz7zrRnPdAeECUgQX1UtRjDzJEfmtk9M9nCVMfe2iVD4io JGSVf2/bLyIPRRMgUksR/rjG/+wMBXZkzO1D9Puz/vn5zVI958WfbS/RPZtQwJlDHGrE4H9/ /lv//N/47CwnsEbIkFiEZ92K2ChQHBmjIRpq3xIx+HyEHLsuMiDqWv08gx8Q8cix61oGRF2r n2fwAyIeOXZdy4Coa/XzDH5AxCPHrmsZEHWtfp7BD4h45Nh1LQOiB6m/zvTqsRXkMQglJxOU GAExvfpSS4RJ62WXSQ2PPS7uI0YPlKf7AES+fbs09San9dKaiZe+WEHxDrklKAqj1p+sB4Lc ikDkbtmkpPVSxRQpTxAGc8vI6vieptsN5ukBv9sgDpHc20s5iiU3rRcpe2wxLoiUHIQsnCxS K3XZ+v6739lJxd4G0UB6dRiiQ3CUTAB44zgtrffkY3et1DN0DL5YINJdvD0W97wjI4U6mIq9 9bSB9OoARB4FfrMxodQWWtKcPJECuckca3icchwQhdKpY/lgkRPZwJuusvRqL0TuKRiH6dXy wV0B8CTTQcDYqTvnSR0RV8sAkRyn7/gVbxqOsqBWSpC1N1bUXXt6ddideU6R+CrZuQt50nqT rQ50IQKiGKB5EGnO2UnFhjM1wPYsWT8pvToSWIcPe+zFEoHpzoqNmDtz/atxgCbWnXn7QGqf dtADNr06PjuT/tk6Vu47U7GPm2s0JpKx25n9aiqeGFgbqdjhwPrMbH12enUcIjlOaForbjHX fcGzs8Ns20sFMXd5KO/+2ZmKB9XJIPZJZuEpvj8VOzTFrye9Ovuxh3vKFn7GhTWXWTESIibK qj/7YuRiIzmpMVcPW7+Q6dUORNNf84AQ47MYyPb9mcP5lp/1pE75veeQAXv9xj59NFsfiYF1 kXYJlaIee5Ahui692oBIAKBD4/v8nV57y++mOCWtlyB7XNHHW6I9LKg5vdqBSAxJgZT7P07L hUtVAZGwGvWmV38hwlggpW6MxSqMBr76SiDKOU8aLwxMSWSMplUFQqRbIx0cvQvB2AnT16vK VAPRVQLhbyd7dsbfJeYaB0TMAnWrGxAVF3H7DQyI2tdx8REOiIqLuP0GBkTt67j4CAdExUXc fgMDovZ1XHyE7UP0sIM/i2v0hgbGwZ83CL21Jtu3RGOxsTizA6LiIm6/gQHRY3Rs7mTM2s15 8Zi6gCjp/a+XKgJ+ZVUtIA2ILoXF05i9eV8Ui+4/f0LH9z60D1HGe98vUxMEDJgKdFmPSA21 //pO+XpvynvmSfJjKexPVrRTsliaY67klG+7r+/UzC2z9NiqqxoiYTGPzfRNQySPb6EcbcKG B7Kiit2ZiofESNuG6OkuDYp/qgiszVChcYiO2c5jrVGdU3xhhfRliPYhkhyFcuGQrqdYscoW G4ET3rqAaH9Xag0znmKkMlVsH6m4V9sJRHJpbICUhRIMUGcQKZCg4wKzpNv4xcrd+tfcOrJE jev6xuH9AzIxbj6lTCNRAAAAAElFTkSuQmCC</item> <item item-id="109">iVBORw0KGgoAAAANSUhEUgAAAFsAAABCCAYAAAA476rKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOsSURBVHhe7ZzdkawgEIVNYPPYGMxi kjCPm4HR+DSZTDBcGnRX/k+Dw1hLb9W8bCHgx/HQQsuk5K8bgalbS3draFvUNC1qg/r1Uus8 qXl9QaVThQaEbcFNC4b5DO61zowBCpEPBptAz6pNoJta4CfCBT4U7G2ZVFrQu+InrXr9y1rG a1XzvCquqYwDmzw6Sdq3FlJvHjhZCtfDB4FNMDOTISl18uyFBierXr6djAGbYOYmxBhYMwD5 aIXUzZlnh4BdgmKiDF/FMbX7AUZpEL3yA8AuWIgGUg1bT5FZexoPtvbWUuRQaSPEclvwUPLv Kxt51GP+XJwgrWxLFnUWt8C2yLy3ynLod0AU2O47tlqgV0bGS82pfoFdBbtujUlgC+w65TRf pSc/zEbqWhJln7k9H+r78awjCVz1fHyp739AQV1kiGhElI2Job2U2Eg7Q7gGgQ2jai8osNsZ wjUIbBhVe0GB3c4QrkFgw6jaCwrsdoZwDQIbRtVe8J6w7RouZwMzRiLMzcgtXVKb+E5HFXkY dtcl1nbYZi/PGS1gUb4y4QUGD8EG+plosHIhyoNttoo4OXGRPAowH4OeBm7Cy6WwwX7G2myH vYPmWEqoat01dCMV3O+DAZ8LIspG+xnpQCPs1P6b/T/lwYWZQvGUWjxF4I3eDcDG+xnSboJt YAaTloV5KD1Ucdzv8Ztw609NvLZvkV/uEbwzbNPv4LHy/DjY+k8oE348r0k2j9oMABu2u+tt hGr0bj6IGHy4iUgGzsf4rLJ18keY1wfOI0028vNEms8g9hg4qvRzfJxSJhpSfdazP5A3EqqT QjIzGRaVvefLRb0TeFkAVfS2aMRUDPTzOhvJ3UrJs+naenV+PM6uGkV7UaWN5Fp0bSIaU+8N sz8MusUbZD3tN8A+lJuKs4/Olic697bqnwYYDxKNwJVdFmc3tHjnSwV2x9ER2AK7I4GOTYmy BXZHAh2bEmUL7I4EOjYlKcMdYYuNCOyOBDo2Jcq+M2ze+s6bFqI6ArqyKVpVhNMEfte00UsE 9nmwQNj2/CfaLFn0t+54ZpjAdp4M4KAAsxa/7ieh8WxEDgpwYPOOqTi2xzAb4dX99z/N23eQ MHg0SgxlgxZ1jP0QsE2qAkwbh83xawI+BmzWiTcobJ6FDARb32r2qDknfHFS7VJRqBw1V4jP 84coHhcDyq7MCBjERs4gW7904J/nN9YEGYSCtcDrQY/l2QFwyoHhHemMl4/72WA2cuWiC7+u /7TLRuJIz/QlAAAAAElFTkSuQmCC</item> <item item-id="110">iVBORw0KGgoAAAANSUhEUgAAAFsAAABCCAYAAAA476rKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOWSURBVHhe7ZzdkeQgDIRJ4PLYGJzF JOE8LgNH46fJxMFwCM/c+kdAC3kZ16Kr2qfDgD+aRgYNztu/ZgRcs5bu1tA8eudGP0P9Wvw0 OD9MC1Q6VahD2Cs4N2KYt+CWaRAM0Bl5Z7AJ9OB1Ap39CM+IPfCuYM+j82lBvxTvgurDX9Yy lskPw+SlptIPbPLoJOmjtZB688DJUqQe3glsgplZDEmp7mAvNDhZ9crtpA/YBDO3IHJg4wDk oxVSt2Sd7QJ2CUqMMo4q5tR+DDBKg3go3wHsgoUEINWwwxKZtaf+YAdvLUUOlTZCLOcRDyV/ v7KRqc75c3GBXGVbsqituA32iuzwVVkO/d4QDfb+G9uP0Cej4KNmU7/BroJdt8dksA12nXLU T4XFD7ORupZM2Vtuz4f/ejzrSAJPPR9//NdfoGAo0kU0YsrGxKAvZTaiZwjXYLBhVPqCBlvP EK7BYMOo9AUNtp4hXIPBhlHpCxpsPUO4BoMNo9IXvCfsdQ9XcoDJkTjnZuS2LqlN/KSjijwM u+kWqx52PMvbjRawKV+Z8AKDh2AD/Uw0WLkRdYAdj4okOXFMHgWYj0GzQZrwcilssJ9cm3rY L9ASSzmrOnQNPUgFz/tgwNuCiLLRfjIdUMIunL+xySt8Si2eIvCD3g3Axvt5pq2CTUmFLrVo xZxm+v9jphDv9/hLrIOVT1paEx7Zv9yDd4Yd+81MK/LVOAgzl5aVUCY8Pa9JNmdtBoAN2931 NkI1Zl6etZFEJAPnY3xW2SH545zXB64jKhv5PyOjZTAxsMCz8XyMz3o23s+LPXtrf9E62ITD c3YnG43EvgEfC6CKfiwaQft5nY2Ar5JMpa1X58fjbPDVL4yzwRYzectpdWfqvsUXJPju91H2 t2XgH0P1swHGg0QjcGWXebaixTs/arAbjo7BNtgNCTRsypRtsBsSaNiUKdtgNyTQsClLGW4I 22zEYDck0LApU/adYZcPMra9rzw8aAigZVO0qwjvjH3vvaOPGOy99CDY6/1PdFgyht+645lh Bns3c4CLAkL5ZZpeN6HJbMQuCtjBll1T8T7Gw2xEVvfv/2leVK3kxhuBskXrQQ+/g4wHSPJF ElG2bBB7gS268QZVtsxCaMy7sJFo4dmr5nbhSzEVbp0sdtVcNoLPX6L4fhRQdmVGQD/Kjizt etCW35NK4PKLE7cv15my91YhvdIZL8/rp1PYjSfTq7l/fp9dIcq2NqUAAAAASUVORK5C YII=</item> <item item-id="111">iVBORw0KGgoAAAANSUhEUgAAAFsAAABCCAYAAAA476rKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAN5SURBVHhe7ZzdccMgEIRpIH2kBnXh JtRHOlA1enInKoZwIDsI8bOAfKMJlxm/ZDCgj2U5wRml5Y+NgGJr6W4NrbNWatYr1K9NL5PS 07JBpVOFBoTtwKkZw+yD25apYoDOyAeDTaAn3SfQVc/wjDgCHwr2OiudFvSueGVUbz5Zy9gW PU2LrjWVcWCTRydJh9ZC6s0DJ0up9fBBYBPMzGJISlWBvdDgZNVbbydjwCaYuQUxBtYOQD5a IXXXrLNDwC5BsVFGqOKY2sMAozSIQfkBYBcsxABphm2WyKw9jQfbeGspcmi0EWK5zngo+f+V jUz1mD8XF0gn25JF+eIW2A5Z8FZZDv1eEAX28R1bz9ArY8VLjVe/wG6C3bbHJLAFdptyur9l Fj/MRtpaEmX73J4P/f14tpEEvvV8fOnvH6CgKTJENCLKxsTQX0pspJ8hXIPAhlH1FxTY/Qzh GgQ2jKq/oMDuZwjXILBhVP0FBXY/Q7gGgQ2j6i94T9huD7fmADNG4pybkdu6pDbxk44m8tWw XX9RDo17I/2w7VneoZfApnxjwgsMvgr2nzB4YdujopqcuEgeBZiPQbOhNuHlatguj888r8kv mVmVvYNGR5ce/Kxq80/0IBU874MB+wVBZW/Lsme0stpI4vztpfQ9F+44EPGUWjxF4IPeDcL+ Gx9G2HYqnRatAMbJHuJ+j8MuPyBZjetb5JObgneGbfsdTutIUuIx6kgoE7WR/XT7I759e9jF hw/hJiIZOB9jZGWTgdmfQcRi4Jg/p34GAYR+1iwH9Wzf/qxPHlK30skr0WjEggTyMW4QjTAv kIXAqhgOtqvzDnF2U1i5h7xoiIwd+BZBu66m1Z15lFu9QdYjb3xdTzf0frsKwq7ziJYXumMr 7bMBxlIdjcA1vwV2rbLr2r9XaYHNOB4CW2AzEmBsSpQtsBkJMDYlyhbYjAQYm5KUYUbYYiMC m5EAY1Oi7DvCBraCI92+fCOKEc31TdGuYnGnCD3kOHdPYPtMENhgfktMCQL7QEUuCrjeLpI1 lq+pwFMuwkbKdfvfwE5qGNF8oqnSVG+GjViU90BDwDbndXJt0SdUHK8TuZAruA+qeOJfZyHU rzGUTU8qV83xadvxlksUGYnL9aCMsKmpHuD1FycOF/pFXrLdnVDwBbavfRP0Cui4fsZZIJnn T6y5X7ABR4XmwaOUAAAAAElFTkSuQmCC</item> <item item-id="112">iVBORw0KGgoAAAANSUhEUgAAAFsAAABCCAYAAAA476rKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAN5SURBVHhe7ZzpjeQgEIWdwOYxMTiL TsJ5bAaOxr86kw6G5fBM21CmXsF0yVpqpJVGI8zx8XhctUzOftQITGol3a2gbXHTtLgNqtfL rfPk5vUFpb5KNCDsBG5aMMxHcK91FnRQiXww2AH07PoEurkFHhFn4EPB3pbJXQt6V/zkVe// VS3jtbp5Xp3UVMaBHTz6knRuLUG9deDBUqQePgjsALMyGQalTpm9hM6pqlduJ2PADjBrEyIF NnZAfbUS1C2ZZ4eAzUGJq4xcxZTa8wUG14lZ+gFgMxbigTTD9lNk1Z7Gg+29lVs5NNpIYLkt +FLy/1c2MtQpf2YnyCRbzqKO4jbYCVm2q+SXft8QDfZ5j+0WaMso2NQc8jfYTbDbzpgMtsFu U073V37yw2ykrSRT9pHb8+G+Hs82ksBXz8cf9/UXSOiTDLEaMWVjYuhPZTbSzxDOwWDDqPoT Gux+hnAOBhtG1Z/QYPczhHMw2DCq/oQGu58hnIPBhlH1J7wn7HSGK7nApEiUsRm1o8tQJn7T 0UReDDvVF+XQeDbSDzve5Z1qCRzKNwa8wOBFsN/C0IUdr4okMXFEHAUYjxFGgzTg5bdhpzg+ 314fX7KoKnsHjfZuaHipav9H9CIVvO+DAR8Tgsp+rese0apqIxf3bzHENsXBlaG2dEgtHiLw Qe8GYb/7RxF2gplNWtntc6li2u9x2HwDg9W8Ozv7vTYE7ww71psb1sXV/4UyURvZb7c/4tu3 h800HlW2N/IyXo7syJGVHQwsejRlJ4TNXHYOsPSLZjmoZx/tL/okGbpVwiFXIxEkEI/B2VbT MmT/6J42ImtRuVNsV+cd1tmy1h/WLoKwYezCt1AeDfZa3ZWm3GoHKUfeuF2vF/Szw6KWhj+f 8hPduZT20QBjEdsInHMyyV9Xtqz8e6U22Ir9YbANtiIBxaJM2QZbkYBiUaZsg61IQLEoCxlW hG02YrAVCSgWZcq+I2zgKJiotp2NHKGEU0U2TAC95ChpG2wpbDC+hRqPBvtExR4K0DRt9pkK POQir7Y9gVF0JDfUm2FD88G7Oti1mKIOP1IUBwWObznXjuvEvC1jwOZevIHjW04zL2tPg8L2 zban5j5iGpeZ2iOKqrzteVBV3ClCq/W/lsgfTjw2bpAJklofU3HmV/3+fW6CPgFN5zMobOXB tBf3D+5YTn6O1IREAAAAAElFTkSuQmCC</item> <item item-id="113">iVBORw0KGgoAAAANSUhEUgAAAMwAAAAVCAYAAAAKEwEVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAP6SURBVHhe7VqLkYQgDLUuC6Ieq7EZ i/EA+SQhYkDR1eNmbm5uF0jIy8tPh7X/dAt0C4gtMIhX9oU/Z4F5mtbl57T6kkLLOk0zulAn zEvxXaZxVRjLl97kx9We1TpOMSx1wtyI17JclA+WaVUAxBuv8C9FLZNavbkBYXT6GYd1GJjf 8Yupf16Vvus9UXqzLYxUqecZfcYATM4zIYBmnck2LG4Oy3vuaDWx9yyXR3yv/ABnrkbyQYBK CJPqKgH7jYHn1wgjtaHBQ6271ZgGdxQSTypRti46fam/z0oH6bCp1t9ayte+4pKGgDDaXLqO G340y+DoCiM0Qwhzj8E7m/teN85jyKrAEb3j6XQcorcB1Z7hsjD0DLseZ+ftay56ms+0ruFs o3fMMPZOwd5uv5dl5OSweIAwAQNNZFWaYRh98f2P6dpevsNLV9QPEmZz2HyZcmAsRABHbEoI GIoZwkQC+dLGkcYTwDuqJwp03BDJU3LaqBl0oVHTkQA5PizJwHmUIEaPXAh/hDCTy3i1JRHE uTzDLDrobTC3k2/wNGYXECZ1bL+Zd+dtvY3CrbMSJQxSSJhhUG1DHBX1OPS8g5IO6cYTBgcL 0sM4YlBb22haSZj2uJ1xWJCJq/2mnXxjO4OXrOknAO0bHit8CK5z8C0a7/xmC2Jc7uClEsLQ Jhs4dhKpaVPOEQYEC3sfX+LxhEn1hfqQUsy3tZow2aycyTBX45YGzDMOC07LBsLsOKRy6EDO ZOQbX2YJA0HEZUU81BpexVo+7jEOQ/uATIN6XJ6KV0TSeae7kzCRKMGZBRkmTxh/JrbfYRA6 IkxT3C4iTHVp1U6+iDDGWznS2M982rQAgbp/ty7f9/36DEPPhJFcQhg6AqUlGR0i7AwVuKHI ScJ4gPxff9OzhLkSt0syDJtNaieYFYQRyt8tydIKyEU68AVN7eH/xHHkzxbEqQQupJdF0ZWW NL58w1My2PSngaCAMElmNSWZ319YksEgpNtZ9HzmRNPfHrcKh+WySfVUtp38gqbfT5/irHxW uPYPQCQjzxxhLpiShQwY+x+uj9n6I63zDLKhd0T7GTOkKOxhcJY0pMRRMow+rYIcsNFW+LmE y/IXjJXP4eYCZ7Yhzzlsbj8ZvbMynpTPjpXlMR5HKmik53oYufZvX2nsXdcXXoFbHOHW2fGd +7XN1fa2S9W7ZCgCovIBlx6H9Xadzf/9LvpqjNQg53Arfz6C9Xrxfv7VGKnZtxIhTsnoaPbG 5zBylT+2ctZvCZS/yNlxq3ODnZcv6w7ru56xwNnS5hmt3ygVB6eqkuyN1/6ezjqTVz8R/541 2two7Rc7YdpYup/6UQt0wnwU2H6tNhb4A9LceINeoYnIAAAAAElFTkSuQmCC</item> <item item-id="114">iVBORw0KGgoAAAANSUhEUgAAAO4AAAAVCAYAAABBu9L4AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARvSURBVHhe7VuLkYQwCLUuC7Ieq7EZ i3ET8wNCviar7uZmbm5mVwMBHjxIbjrGz7DAsMDrLDC9TuOhcFMLbOt67E1XHIu1t8B+rOuG lh3AbW/l16y4r/Ox4Hh4je5/p+i2HPPqUuyjgLvvI/enArKZjfb1WEAgpOT2/r7ZvnoreuP6 +7ocxmUAuKIcz9MxTczv3J5ObcsEsr2S7TLKdizTbJW80VYJ0VJPuI+emlIbcbLy7QaDQK4k qy/rex0PLStzf98rW5XrTDBQvoB2Sif5INl6wPV1zQmYsoA9gwQJYmQIJecOCaNM09TTTwNu Sl/zvbT3cgRZsrR9p8TZ3/cOfKW4kwnFxWVt3PeUL+JNYyIDuMLZgl9PzUAkgx0GTTjLSUNC Xp8blqXP4WoDKz0DTGkLq7/+Xgx4ZstUwN4MAATFsdVMRtO5hmY2MLrO5zHjUV9zNpKfCV3t 2lJvV3HPPVmf6feNrFRS7Abcvr63fhRJaSmtuMyesQ3TUdVfvva56Ci/Dlw/47rA9ECaTBgK OJfAjYCokxQFJixNDHAdkA3l1OA1QDSAMYCFALKVzU8SZwWwutAKoMGIEiqkymA9ClSpR6wc dQJuW9/7QNpFAlWuqqWqcM3yivsN+abNyACuDw7cowQy0el8SsdCxgh9nt+zpfNh4AkKXPRY ZsVFnJMABvXAdL0E1Ua68cDFSYvYSwOU+osHENh4BLjv8P0V4AJ2U80y+8k3LDRvOEWyc9J5 lgpS4IYCNQ7onF5FVafAb3QBTEPxoznApUM0sBcPADQRcfZQn7m9GBvywPX1hfoQimxGJ4JG R1nKFeDe4Hum9lYOp8hK0aQeKxVXgAvWZeTLpCt9F624mKq5BU/gLq5Pg8Gj3hHBs3EVN1RB SytxdX2NvujAb4L/m8B1gLWgyqi4ceCaNXECvVxxH+/7RsCpptz95GcBV0Y5B97zM0MjWEos 24wQcLkx/Z0Vl2IZ6pIDXLofSpXpsCsw/OL6+YvANU42f+1M2ZvqExskKu7TfN+k4rLVtfbU oAK4mfKDVNlnlTprgy8oVWap81t7XBS0lGoaWm0qmF/R/KRWAFw4E7ATZvN+IVVG9ud73yD9 KKDKz/R9BXC46pocjoYs2E9+wXDKTFrdGde24L4u33l66sr0nHaUjnl34hiqwVTZsgrXV3J9 ruo5aQugAXG2Bfp9ONAo7HFxny6TA8742EZccDiA4jNJzZwaHAfd73udLKODoxhwYu/jeQd/ BHqnfPY4KL9v5G6+eFgMUegzGPNuRX3rHDd/57/ypAyAyAWMyDaf4nt39FLnk3e+L/y2qFuM VXeVUTYv6nGVkZPDEfXQC25O1QXNE96iVx5zdbrf9+Xnq3hvL36fv/KY6zpFu9xUOVA9gxX3 RGViXJ9flfO1Hk9iC2zi1lX5P3UM398XR4F/MrhPoSH5HgtcpYv3aP2vUnGiraLK/2q639u3 YDbVt4N+zxrP3ZE/kxjAfa63hmbDAkELDOCO4BgWeKEFPnDuvVcCrZ/lAAAAAElFTkSuQmCC</item> <item item-id="115">iVBORw0KGgoAAAANSUhEUgAAAO4AAAAVCAYAAABBu9L4AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARzSURBVHhe7VuLkYQgDLUuC7Ieq7EZ i/FAfkkI34VF97iZm5vZVQhJXt4jcMs1f6YHpgde54HldRZPg5t64Nj362w64hysvQfOa98P NOwEbnsvv2bEc1+vDefDa2z/d4Ye27XursQ+CrjnOWt/KiGb+ejcrw0kQmre3t83W1dvQweO f+7bZUIGgCvoeF2uZWF+1/Zy6tgWUO3V3K6iHNe2rNbIgb5KTC3thOvoaSn1ETdXvt9gEsiR JPuysdf50JKZ+8de+arcZoKB8gF0UDrND4qtB1zf1pyEKUvYO0nQRMwcwsi1Q8EoszT19NOA m7LXfC/9vV1BlSx936lw9o+9A18p7mRBcXlZm/c95xf5pjGRAVwRbKGvl2YgkskOkyZc5aQj oa7PTcvS5zDbQKZngCl9Ye3X34sGz2qVClibAYCQOJbNZDbdY2hlA7Prfh4rHvU15yP5mbDV ji3tdox7r8nGTL9v5koVxW7A7Rt7G0dRlLZSxmXWjH2Yzqr+8+uYix3l14HrV1yXmB5IkwVD AecjcCMg6iJFgQmpiQGuA7KRnBq8BogGMAawEECW2fwicTOAtYUygAYjKqhQKoPxKFClHTE6 6gTctrH3gXSKAqpCVStV4ZjljPuN+c02IwO4PjjwHoU4kLAGzo+QM0Kf5+/Z0vUw8AQFLnos k3GR5iSAQXtgOl5CaiPbeODiokX8pQFK48UDCCw8Atx3xP4T4AJ1U60y+81vVGhec4pU53Dw SOJ4CRBK1Digc/Yqip0Cv9EBsAzFj+YAlzbRwFrY9SekuOAMqSLcWoz05oHr2wvHJxLZtE6E jI6qlCrgjos9w72VzSkyUrSox6jiE+CCcZn5ZdGVsYsyLpZqbsAbuJvbp9nkYSQYBnmIQUuZ uJpfoy868Jvk/yZwHWAtqDIYNw5cMyZuRH3MuI+PfSPgVEvufvNnAVdmOQfe+zMjI+7qHOpQ UqA+kXEplmERyQEuPXagUpkybIBxuf38h8A1QTZ/bU/Z6+pz2x3+OO6JsW/CuCy71p4aVAA3 c/6gVPZVpa7a4AsqlXnpzLFoKbMO2OMimUilppHVplD5jOYndgFwYQG0vQLzfqFURgWV3/sG 5UeBVH5m7CuAw7Frsjka8mC/+QuaU6bT6s64jg1XYz944W5vSKbZVjqsHEnHNegqW1Xh9pXc PlftOcW6D6gwNCDuz/T7sKFRuMfF+3RZHHDFxz7iksMBFJ9JauXU4DhofOx1sYw2jmLAib2P +x38EejI+dnjoPx9I3fzxSa7ZopwPyifRb91jpu/8l95UiZA5AJGZJlPib07eqmLyTvfF3Hb 1C3GqrvKqJpDSZYErXJysjmiHnrBzam6pHnCW/TKY65N42Nffr6K1/bi9/krj7mhU7LLdZWd bA7ddw1do2zByvlWzyexBw5x66r8nzpm7MflUeCfDMYZNGce44FP5eIYq//rrLjQVknl/+q6 31u36DdU3w76PW88d0V+T2IC97nRmpZNDwQ9MIE7k2N64IUe+AO835IfvSCK2QAAAABJRU5E rkJggg==</item> <item item-id="116">iVBORw0KGgoAAAANSUhEUgAAAO4AAAAVCAYAAABBu9L4AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAASBSURBVHhe7VuLkYQgDLUuC7Ieq7EZ i/FA+SQhQGBh1T1uZudmVoXwkpc8gjsd428gMBB4HQLT6yweBjdFYFvXY2864hisPQL7sa4b GnYQtz3KrxlxX+djwfHwGtv/naHbcsyrT7GPIu6+j9yfC8hmGO3rsYBAyM3b+3qzdfU29Mbx 93U5rMsAcVU5nqdjmpjP3F5ObcsEsv01t88o27FMszPyRqwyU2s74Tp6Wkox4uaS4waDQI+k qy/rexMPLStzf99fWJXbTDhQPoBxSqf5QbINiBvaKgmYsoA9gwRNxMyhjJw7JIwyS3N3P424 OXvtdY33ckRVssa+U+Ls73tPvlLe6YTi47I27nvOr+LNcEJAXOVspa+nZiTSwQ6DJp7lNJBQ 10vDsvQ+XG1gpWeIqbFw9pvrqsEzO6UC1mYJoCSOq2Y6ms4xjLKB0XXejxXPdZnDSH+nbHVj a7t9xT3X5Hxmnrdz5ZJiN+L29b3zo0pKS2nFZdaMMcxHVf/5jc/VjvLrxA0zrg/MgKTZhHER 5yNyIyKaJEWJCUsTQ1xPZCs5DXktES1hLGEhgVxlC5PEWQGcLbQCGDKihAqlMhiPElXbkSpH nYjb1vchkXaVQC9X1UpVOGZ5xf3G/HabISBuSA68RyEAwmqCKmuCoAbokIDyPVs+H0buoMRF twkrLtKchDBoD0zHy0htZBtPXIwZwcsQlPqLJxBYeIK47/D9J8QF6qZaZfab36pQWXOKZOeo 806He6kYBkgsUGPZTQ7AVZ0in+RmB8tQfKuEuLSJBtYSEIAmIg6P6zu/FosnT9zQXmgPkci2 daJkdFKl1BD3Rt8ztbeyOcUVoUQvIFot5HGbLDhMUdGc0r5LVlws1fwUJ3EXv0+L8oI4U23u It3iNHE/ksIFpdiT3wb/N4nrCevWK6i4aeLaMXHwfVxxH+/7RsSpltz95hcRV8c8R97zOysj AnJ6pryj4lJmwyQiIS49dqBSmTa7Is0vbj//IXGtk+1/11MOuvoEg0zFfZrvm1RcdstUe2pQ QVzh/FGpHFZPk7XBBSqVA+nsuqMJGYnQjlXcG/a4KGip1LSy2lawsKKFSa2AuLAnEGBYKJVR QuX3vnGlFz8OeofvK4jDVddsczSGYL/5C5pTttPqz7i2BRMy3rAIiReTaa6VDjNHFrgGXWWn Kvy+ktvnXntOte4N7uPN+s7vzPOwoVG4x8X7dJ0ccMbHGHHB4fHGZ5JGOTU4Drrf9yZZJhtH KeKknifHbuwcd87PHgfJN4Pcmy+xfW5IankV/dY5rnzlv3KnDoCapsuVALyv05Wlp+/90Uud T975vMJ7ud5irHpXGWVzKMmCCsmTNNscOU+O3vDmVF3QPOEp+sqj1Kb7fV9+vorX9uLn+Vce pa4zWdd1FrFsjr+FBMfP7QHkVVlu9bgTI7Cpt67Kf9SBTxSG778ZVZEfGXzThDHXExD4VC4+ YQ3/xwacaKuk8v8B69dXqpRN9dtBv47Nk9YX9iQGcZ/kn2HLQECIwCCuEKhx20DgSQj8Aex3 oBEpN4pHAAAAAElFTkSuQmCC</item> <item item-id="117">iVBORw0KGgoAAAANSUhEUgAAAFMAAABCCAYAAAArOOo+AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOfSURBVHhe7Zy9kbMwEIZp4OvjaqAH B26CKpxc7oDYDbgDIjt26tRDBc7cgT4tOmEk9LNIO5g7rWcusE8s4uHVrtAuqgR/yAhUZJZ+ o6GuEVXViA7V9160dSXqtve2LhSmAlM1OIxTen1be29AgTABZC0CAkPotBONQ9HFweyaSvgF +aPYSqpW/oWGtOhbUdetmA76smCCj/SStIc+qC8MFIb8FHhBMAFWINiA0ipr+AN8S32mDzCH ezkwAVYo4LjADYDD0R7Uqc0WA3N60a4IM0RpW4UutdoHT25SITAjQ1wCSoYpQ5B2H4XAlL4t 6PskzcRhDkLtGuVry4AZ85dAxOUfowFIjXntQhjm6AOXT430ocXBbFCPPAsm7ZNAxDARD43Y JgwTSwrRjmEiIGGblAXzshdf+wuWzeJ2l/0/8fVd0NQIF4AWcyxzasQw04QyP0pOyBkmw6Qi QGiHlckwCQkQmmJlMkxCAoSm/qoy+95fEUGIzzT1F2CaOWq7vAQye7nFAEj8aJgbXYIbcipG NtBRq+NI5CPxLGuGgrnZxWG7fMS841PIoN5g5cQybO7WGJhJeXN1Oueq0ePxEM/n09mh8/ks brcb6tLmqhxO6a4ii+ZZ4pUV0U5hYGYk1Jwwj8ejeL1ezr7tdruh/kZ91AXC93nFg6/0zvf7 Cr4TATM91etRJqhv+rnf78Z3BVNB0e5wrkIFel48EYaMqe4DlzDcQNdfyMAnYJ5OpxEegHwr Uf2sYFv+cJYi9SltqWKjgxffAAEzJ2/uHea6hzZMGP6Hw0Hll42Evg3vdyqTPG8OsECdEGi0 j9SBB1R6vV4dlQ82zKUK3IbP1O7rPdPABz6nMkF92h9BMILorr+PLiCqzJ+6HYcPUyXMVvnz VqK5muSo8mxMsevEyWQk1GI+U0d73NPNZuaZeA88a5kB0xzG7jmlX51GTzb1BJROMwNmbJ6p O2VOoeZdXcFXjl3hHFC6VOwjMVOjjLNlKjPjzJ84lGESUmeYDJOQAKEpVibDJCRAaIqVSQiT SwoJYbIyGSYhAUJTrMxPwFx9CY7wItcyhXlDTa9ljuuwmYvDa13b6ufBwKTOm69+kaudkF9E JUTNr0gTwnwXCviMJhchlPfyvkQY85uJ5TFFbiuhMo+xDU+s/0czp6bNMt4312Obt+IhdZ2y CoY3iSIkytuXEcIEUzlA3fvAgdWyfKZxS/Rz+LItH0NbRBYMk1js0tx/1vwUQhFWA10AAAAA SUVORK5CYII=</item> <item item-id="118">iVBORw0KGgoAAAANSUhEUgAAAJIAAAAVCAYAAACtzrfuAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMJSURBVGhD7Zi9tYMwDIU9FztkDabI CCmos0A2oEudNm0OE6TLBn7IxsYWMv4BA4dnzkkRSIArfbqSzXg5SgRWiABb4R7lFiUCvIBU IFglAocCqeu6VUQd5Sb/Sc9uILU143WrUt7xpmK8ahRILa9ZxfXXrGTAs8x3SXvYbnramjNW cx3KtNef/CtWzy4gdU3F2UhRLwKDBKcaXlVNfyX3sRykXfVkAClFzw4gQeLMCpIQsd4VxMcA DKpidKlcQCGQAGD0HvNP3lqPfF8Zr961G+xI6HoLemIcK02PBdLn8+Hf75eM2+Px4K/Xa3E2 p7TDLQlHgtNQbbOuJIO2DDYDpAEiyyw9itfV4wsvNQIAUAoU33Xf/aER4G4Rlh8LpNvtxn+/ H/m0y+UiqkAeBvWuRIuk4EpwAOMCSTwn96ykQHJBOad1Yz1UGzPPEdcFGJQjrZwfCyRwHfN4 v9/WdwmSDJ6qWpJgIcisFHUb1zwyn5AQh4A2qNujtv5pu5xWCWoF1lDm05pPD1XNIta4cA0g fNf1PTPkxwLpfr/rZwFEowPJ0xI01EMR2TKhvYuQvdnlMLGV7bfo8F8YMExa6bxWGQvKMRP1 eFqrDxTfdTkt5MnPpLWpBGCQoOVdr1diNeUIJmmd+Sp4qSNJ10MATFaOWGs+PWQhJLQ2MWcG t7Z0PRZIAAq4EgzVaiZSQza40/P5JAbgGJBiK3XLGUmNfxD4wWVIhzIdaGs9wwpX93rVlu1h e1z54usGnjlnJHAdNWfA4A2rOPVdtz1vlQ4vS76oa1UwnMfL7q1XbZql3v5hFgnQSq9yUvWE NGRzu4Ra/tvbKXUd40jp+UnYR/LNDfMguecKYgzeZB9pLnkhWsNdc5t9MaQnqrWJKSp4pWzq SQDJtnNXRYqdacdGmPM/Zgw229meAylM66H1RIPkdiUrUig/CSApaoelddQ+knoVe1lNeFFw VYQ0g2W/CdgzQ1sih9KTABLe4gnRkwjSstSUf58vAgWk8+V0F0UFpF3Cfr6HFpDOl9NdFP0B tEUSDQzoakkAAAAASUVORK5CYII=</item> <item item-id="119">iVBORw0KGgoAAAANSUhEUgAAAFoAAABCCAYAAADXLcH0AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPESURBVHhe7Zy9keowFIXdwOtja3AP BDThKkg2JyCmATpwBDEpKeMKyOhAz1dGWJL1cy15tea9w8zODowsiU/HR9fSRZXAqwiBqkgr n9hI24iqakTL6nsnDnUl6kPnLQ3QEzQDtKrhIdYv7w61d3AA2gBNkGsRECZD361oHHcCQGvo 2qYSfiG/lF71au//QjYhuoOo64PQjQSgFWjyZC9l205ItWHYZCP6YAC0BE0gAxMfKbSyLIUG xlKt6SumhQC05NyDDE1+LqgSfjgqIVWragFach6BuGY7GU3Y6nWp3L5YG0CAjtnGayCSQGt1 A3T/SNIEvbYnnWgdJPC2GbwdoGP+rDzc9uPoZDj4iLIlgOaAlhagPy3Gwztl1wA9khAN61Fw xgOLNikC9GzQjKdvRxGABug05SRf1Xs0zzrSWoCiFbfzVnxtz2kUGVedt3/E1zfCO/n4DUUz FJNdBKCzEfIqAGgep+xSAJ2NkFcBQPM4ZZcC6GyEvAoAmscpuxRAZyPkVfA/gu46f6YPj1pC qX8dtJlDYadU0XpvbiILEzob9Acuk8rNTmPX2ZG75khCYaKbV4wF+iMX/u2UKVMp+gCQ6oMZ QfOQuktzQCfldQzNOVfv7ve7eDwezg6dTidxvV6zv9pUzbI77mzM6L4cf0vJ23EO6IzNWSfo /X4vns+ns0+bzUbmnBkvVxKJ/GzIT6M/My/Fl97q+7yAVzNAJ+d1+BRNqtVft9vNeG+AlvnD BFPP1rHATG65QYHTpKDwAHAyaMlm1OBO/ocq+A3Qx+PxDZYg2wpWAzF8qT4qaK20KEeioBld +BQ6V+nZDjZWwACdk9fhtQ7VAxs0Wcput4tbh1HCBvuZipa5eUvmdRBIUjVNesqT1SRI6r5c LjNAu1Q6V7nr8Gg1WY8REX8SdiqaVKv8jSZGikLUe91W3rS9GZX+jrijjiEMkm3pfrqWqGMI 1IYkGk4iuibHZTZnA1GHf/7hq3Q1cXTGlPAzoF+hXSxK8Kl6EjrGkg8zAOh35fo3Zy1Fv29/ LY6extLjbbiE6rNZc6KOjEaWUXRGB1ZzKUAXGgqABuhCBAo1A0UDdCEChZqBogG6EIFCzSBt txBoWAdAFyJQqBkoem2gf3OZtBCLH22GFsZiy434QecCQ8ABvXRexwLd/sAq8KP7QoMWOX2G NrFSz+vAMRLmGOJglEKaxlE/pUDHTqFJyuswLQnndajBxHFsxWTdZ37hgMFCtHFkZiHQ1EwO bPe5pFQrPNo5hGpdY96xxqFjkAG60L3yFxhHIFfnPzRGAAAAAElFTkSuQmCC</item> <item item-id="120">iVBORw0KGgoAAAANSUhEUgAAAFoAAABCCAYAAADXLcH0AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPOSURBVHhe7ZyxkeowFEXdwO9ja3AP BDThKkh+TkBMA3RAtMSkpIwrIKMDfT/JAkmW5Gdp5y3wLzM7syyyZI6ur2T5rhqFlwiBRqSV d2zk2Kmm6dSRde692rWNand9sjRAT9AYaE3HQ+we3u/aZOcAtAeaILcqI0yGvo+qi1wJAO2g O3aNSgt5VHozqH34ydmE6neqbXfKNRKAtqDJk5OUQzsh1eZhk424nQHQGjSBzAx8pNAmsBTq mEC1vq/4FgLQmvMAMjf4xaBq+PlZCanaVgvQmvMTSGy007OJUL0xlYcHOx0I0HO2MXZEEWin boAebkm6rNcOpAutgwR+7Iy3A/ScP1sPD/14djA0PmJtCaA5oLUFuHeL89M7a9cA/SShOtat 4IIbFmdQBOjFoBl335EiAA3QZcopPmrwaJ51lLUARVtu32v1tf4uo8g46nv9R339xfRO335D 0QzFVBcB6GqEvAoAmsepuhRAVyPkVQDQPE7VpQC6GiGvAoDmcaouBdDVCHkV/I+g+z6d9OFR Kyj16aD9DEUYqaL13togCxM6G/QbLpPqh53eU+dIdi0SQmGiW1aMBfotF/7DyJSvFLcDSPXZ RNAypPHSHNBFuQ7TXHT17nq9qtvtFj2hw+Ggzudz9VebqlmfTjyNOftcjv9IKXniHNAVD2ej oLfbrbrf79FzWq1WOnM2dtMQHjEZNPrxXEDHXe1nYcAkFW9N/V3Aqxmgi3MdKUWTat3X5XLx 3hvQwZd3L6sgvTNVr1HgNBSU7wBOgpZs5tnBwe+5Cn4D9H6/f4AlyA8Fj3/VHREJAyZTmJPY VEqhS5Ve7WDPChiga3IdSeuwZxCCJkvZbDaRb5i+vD9F0Tqb95O5DgJJqqZBz3qyHQRJ3afT KQCdUKI+Mbp8w7nwUuW+hkfbwfo5I+IPwlFFk2qtz9HASLMQ+961FUOb09gUVHzWYaZBui3X T19l1mFmACZEwwmiO3Ksezg7KpY7SPnl+Cp9mXl0xZBQDjoHeaLAONSUqr3v81J3huWki0E/ LnFnHu3Opf3PU+sV5jJMXxF81ZcjGI/kzDoqGikGXdHmax4K0EL9AtAALURAqBkoGqCFCAg1 A0UDtBABoWYQ2xUCDesAaCECQs1A0a8G+jeWSYUYiDRDq4Sz671vmesQwcdvhAP6p3Md/LP7 pJL4p3uh3pzZfYYeYpXu14FtJPw+xMYoQprGVj9SoOd2oSnKdfiWhP06bGdiOzYxWQ/JL2ww KEQbW2YKgaZmamDH9yWlWuHR0S606xrLtjXObYMM0ELXyj8dGxG0zmpOfAAAAABJRU5ErkJg gg==</item> <item item-id="121">iVBORw0KGgoAAAANSUhEUgAAAJQAAAAVCAYAAACg0MepAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKYSURBVGhD7VjLscIwDHRd6YE2UgUl cMiZBuggN85cuTKpgBsd+EUODlb8iWLkPONxZjgk5OPVrlayhKxHjQBjBATju+qragRkFVQV AWsEdhfUMAysAHJ6WcnYzDiHcCYVVN8K2fZ6KYPsGiGbTguql61o5HyakzIIaykZmwl/K85k ghq6RoqPmsY1LgUFlzrZNN34z28dJWNDThTBYSJBgfu0cjant5iEEFL9DKFBBnxc6xeEVTI2 5E1RHCJBPR4P+Xw+naxeLhd5u91IjNsZDI85HAou960UQZcCAr8XXZ7YjHCOcUCGHog0F5YQ mbEcIkGdTif5er2c3zkcDspd0AElCzlRQDg+QY0+tkcvRcc2CVg5qSV0T1JwYNsgKB4sbyaZ OUQKARcyj/v9js6RoMBZVODN0qYsRxFiZ1uYDEp2Qnmcy6Ym3VFGXRlBwzatUa/FztJ02MCp KTEAbDxY3tWBmUMkqPP5PHMBYlo6kgYyETvu0HqXQ/kcZ2t2k6or+SYatkV/ZGUvL7bYBOHA kopDq+RphpaCglJ4PB4JJS9dFscSAIuGMrGKzdp1LgWUDtsWh+LBEip58TiRoEAwoH5ovnXP pJtxcKvr9UoQ1FYn2qeHImGzNgjLtSXEtqHk8WDZoYcCF9I9CmQB7Cb0uWmzs6qcDR2Ml5Yz qOkJdX0xNthrl0fCtupQ3NiM/NwgKC4sb1IcG6t4nN/NoTyCmhpz2hQ8rznUWg+lNx2/gI2C RWW5U1CxHCYSlF/hqGZmNynHJS3otGtbsn/HRsPiF1Qch8kEpQeZ/rjTXYy8lWO5MTSH0h/A 4wX7s7lgI2DxOpRqUtAYhYLzO0GxEFhfUlIEqqBKYjMDLFVQGZBQ0hKqoEpiMwMsf3A6HiC0 +bf5AAAAAElFTkSuQmCC</item> <item item-id="122">iVBORw0KGgoAAAANSUhEUgAAAJQAAAAVCAYAAACg0MepAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKWSURBVGhD7ZjBscIgEIapKz3YRqqw BA8524Ad5ObZq1cnFeRmB/tYEhAQ8iBZImHIjPMmPo38u9/+u8CgXjUChBFghM+qj6oRgApU hYA0ArsDNQwDqYCcHlayNj3OSzqTAtW3DNpeLmWArmHQdBKoHlrWgLrNiYyAtZSsTZcfqzMZ UEPXAPvQxNdoA4VvddA0Hf/Psa6StRlOtCKHiYBC92lBmdMME2MMxEsDDSvg41pHAKtkbYY3 rcqhAdTr9YJxHJ1Zvd1u8Hg8gjL+XcH4NYdD4dt9C2zRpTCB26HLU5sWTh4Hw9AXIk2lZSmZ a3NoAHW5XOD9fjt/53Q6CXcRF7Yq6Tb8rxkIDzg+oLiP7TFLBWtTIx9q1F12oSgotEUARaIl UQ4NoNCF9Ov5fBr3E1AWAGJh+nA9Ocp3tS2DFlKd2B5V29SAttuoqyLCtM3fRNcUz7eBSqcN nTokBrjC7VrS5dAA6nq9qlwgTMqR5neFEAy2pdzcCfgcJ9a5grpr8IeCtIkOjCDxAuldDkWr bW2BbNaSMIdfLU9myAYKW+H5fHYk0A5yuipemwBcNLaJKG3CefN0KBoteirpcmgAhcAg/Th8 y5lJDuPoVvf73QLK5TqxTrTPDBWtzQlUQm0RLY9GixoWrfPBbbOiARS6kJxRsApwNyHvdZud luLffbl3CDjL87Mp69hgr11enDa58bAdatbgGHbWadPqMwIoKi0pcrjuHGreIfiHyHDXyfYc yulQspDCTviz0ebSkiiH8UD9u5Cp6nwuZfTMnE/KvUAdUJutJWEOo4FS1m5t233HBBQuFryV o/zgAlDykPYw2iwtKXMYDRRlzuqzyotABaq8nP5UUQXqp+Ev78crUOXl9KeK/gDs8B9m5xAW 0QAAAABJRU5ErkJggg==</item> <item item-id="123">iVBORw0KGgoAAAANSUhEUgAAAJQAAAAVCAYAAACg0MepAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKOSURBVGhD7VnBkcMgDKQu95A2XEVK yMPvNJAO/Ms733wzriC/dKCziLERGAI+4cEMnsnM2ZnDrHa1EoqAetUIMEZAMK5Vl6oRgCqo KgLWCOwuqGEYWAHktFjJ2PQ4+3AmFVTfCmh7tZUBukZA0ylB9dCKBubbnJQRsJeSsenwY3Em E9TQNSAWNY17NAWFjzpomm785lhXydiIE23gMJGg0H1amM1pEpMQAuRHExpmwOJaRxBWydiI N23ikAjq9XrB+/1eZfV2u8Hj8Qhi3M5g/LcVh8LHfQvC61JI4P9Flyc2LZxjHIiheyLNhcVH 5lYOiaAulwt8Pp/V95xOJ+ku8kIRKLchTuQRjktQo4/t0UsFY8MyPGPTe8DE2CIExYIlEYdE UOhC+vV8Psm9FJQM+FLObCV/HcXONodDTUILyU4sj4uQjb9/LBCEzRS3xKofHNJhwyQNiQES 8m8sCTkkgrper7OAUEyzI01PTSDysbG50b4cjuMXVOo+KggbZq3BKj3l8GLbmiA8WDSvYOTQ KnnqNaagsBSez2erHB7FobBMxGKzkyMPh+LBslDJySERFAoG1Y/Nt+qZVDOObnW/3/VdTL2G OUuKdaJ9eqgobF/rNeZm+fRQPFhUdcHWgY9DIih0IdWjYBbgaULd6zZLbcoWxPoJAavjOJsy xgZ7nfLisLlPlrzYtEhG9FBcWJa383HIMoeifYY8Bgaf3LKbQ02nPHeDfCBsP7FokiK/amzn MF5Q1txoPcCuTCbultukPJCAQ2DzYUnIYbygZOmdSpec17h+j/v2IByZbp0EEj2guJaxhGsE kjO2X1hScbhJUIn4rMsWEIEqqAJIzAlCFVRObBSwlyqoAkjMCcIf6Z8CIDqlkNcAAAAASUVO RK5CYII=</item> <item item-id="124">iVBORw0KGgoAAAANSUhEUgAAAREAAAAVCAYAAABhctosAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAW6SURBVHhe7VvbleswCExdLsj1uBo3 k2J89RYgkJFlJd4b7Tn7sVnrNcAwIOd1zJ+JwERgItCBwKtj7Bw6EbgNgX3bjvdts82JxiHw PrZtR9NPEhmH9pxZicB7W44V+6Vy5HzsKwjs67FsmfIfQSLv98xBX3GGjkVvs9l7O1bgkB1b um3obWe7bUfPm+i9rUc028dJZF9fIOsYabS8AKvtx/pa0ubGQufXfr2Y3+WvSWuLG8R1JHLU ZtxaejtCZ6QzWYVi7TNSpYz3R49X+xmIf7ZPkOE0RL30xBU3HpD/R0nEOQUCg3FIu+GPBLFk XE2QjAzSK3M/jUS0Z7BYrwdfyfgzLYvxmUH+MN4fMxG0coAltxwrPT4Z93A1OUvjjX2CXQCJ hOyxW9aK2VkysNZJ4HN2fjifzLQWQFhzXVntfEwlQ5iab5Tj1vYVM69XR9DoDEnYPSY8w/9N c5K1XcwkRoIm5WW92s0RbA293D2PFZr/N2cz+5nZa5rb7jsrEXemRAJhfFyrljDi+XqzqAj4 WH9MtjQkubYqEebMGMdz745P2HHLanoYF5WIPD7Y3XQiCIlYx8mB7oG4h0hK1s9OWRDGaRCH LNVVSz+MRBApGGw4koApm/m/aLtICjF4I3nAYE5OVhKWy4rJD2hWDMSA1AIsZ8B8lDTsPoQU nRNJTxaWg+1efyzXeRtC9+a6Ws7AOS9iEPG+SsQn42MpWJAItil1KP+3y16SxHQbpsQjgSB9 rq+p9ZxcVNxCrVoSFK6b6TwKTDSbpCSCxiiVCKoLSPCi3gJvV1Fyo73xJIITAbFfIAuKIx/I Nu5wDc8nMwXurC9WklcI+FIF9/hjD4kA5ddc0mWlQPHUuKMnv6CGBRKKRF+WM+iiBDoMBoN1 gCSPKYlINXudXDR1pM+Swm91AiLN4RxknEwiCkx0FitKhTqZc0qF1rwA28IJaFBw9gFB6rCJ NuVJpNwv3A8pYwImTiozarKU7nR/CtxFX7SLj/NHRpNcbKySmapJhlNCANsLSgTZRhgfn2kg EVJDEpb3wWwcx/VUOBLhGjutCkUdkYoHywyBZXuewpGIqSsjWeWAqWOCNhFKijZijJhplMhd JJLJIwW4QonUSSTOif2CVyKUvECCSNm4xxcjiXzKH3uUSFnSaPzHKQ+oXFpJRDleIBF6FVWp Zx2bM4ZgJeQ45u9VItQoHJG4z6JR4PmKxmCP7OXLLR/IGhI5sV3RqBUat1w/qpNEorNR5SGr WaYP5/YA5LXYgwE4iuXMOH+8RYmwqkPaM69CJHWuISHc4Oca7H5NoZzBjVUUPIVztZBIq+K4 MxglUSJliJAJAdq0nEl/azFR6CLcSKV9AVoOxFIsBluZ6Uvio6RRIRGoJNNNTXy+sZxBgcz3 SiA8+GqzzMSOVLW4/9meCOObp5cNFSdrVSJFPuPfM5Ebq0C2o+apNusKhpOaaIn1IEWeAuaD pu8a+OR2xvYBwp72FSuuRCJaTDQkEpgdZhCuL5Kuf1HZGIITXs9X5Wy9J4LVnSUqnAWxzTgc 8/yUFNDfStkc4UsNVi3uIonY3i19Z8mv0uaPgbyrTc9aOVMbT3p27Bqa9WlCQpTtL0rOmrYs CeXG68ntDF0QyEzJQFUJqXvh5TPviSgjOwR3DmjoFA09Ef1yP/SkxfLKKwRK3Csk4kvEe/wx X+deM93fHG9st/o3uxtIBMvY+vUc7xjiGKRaP/XGqt7gRfYUbipU59Mv+xNP1l57lwHo98Wk Os6aBIXqEUqsS9aSynztZF8cb3CJ33lqIBF7MNA5b3pPJAnSk+sufXbQwnzHc/h2hmYvBSZ3 bOK/nWM3b7te+QKmAveqEnE08if98Qmu8NUv4D0BgLmHZyHQK+efdZpf2A0m/o9+Ae8X4J1n vIKAURVnzb0r084xAxAo+1iTRAbAPKecCPwSApNEfsna86wTgQEI/AOdpSHPYdscHAAAAABJ RU5ErkJggg==</item> <item item-id="125">iVBORw0KGgoAAAANSUhEUgAAASIAAAAVCAYAAADituMXAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAXcSURBVHhe7VtbtqQgDOx1uSDX42rc jItxQHkkIYGgYNt3mHPux3TLI5VQqQT7s49/A4GBwEDgywh8vrz+WH4g0AyBdVn2rdlsY6J+ CGz7sqxo+kFE/dAeMz+IwLZM+4xj+8HVx1LVCKzzPi0xbbyCiLbt/8xj/6vdPmib2b8t+wyC uvpQdBjQzLYOe3vLlNsy795tjxPROn9A5jISbfoAZlz3+TOFzfUF7Fz782H+pvYS/z12S6ha 7KFveqJP/c6tpY8FGNB0JquUrI97qqX+vj3xqreBxHj9BBFOQ/bTnbPJjQcJ5FEiOoICgcEE pN1wByJIQ11yruaQ1B3Sd9n9K0Skxdj6a975quwk12kycdcppvr7NpJJLY9Ygozn7U5c+z1c FQnSeOMf5xdARC4DrZb5vEqQHKwNEvicnR/OJ7O1BRDWj1dWK4/JZBlTv7YL3Gft9grgVHow cBjFY+0MPnHfm4Yv63+f0YycDirSnoxjDhcv8KQcz2O1eX7N+d1+ZvYa5rb7jorosCkQiRvv 18olLm/f3WwuBlNf3wZfGqKdaxURYzPGsXxCQglt8J9m09O5qIjsuvx453fTmSFEZAMnksUJ RBsySjNHDMqEdIpE4DLdrb7AM0TU1u5C8CBiMc9yRAOlA/O96H9PLJ4APAFBQgiBmpLekZ1D LNHs7MgFqRZYmoH5KPHYfQhSISa0O2pAxry3bzeTFE53XS3N4N4vYuDxvkrmhfG+rE2ICPtU 6BscmyIERTIgnkcCQfpc3x/Q83rSPRDq7pTkcA9AWJHDxAVQqu462U2JCG1VqYhQjUMIAPVa 6HyFHhPaG09EGCcSA45wqC94MrBnF/c0skm1Op4zSVT0+Z2YvkNEQIFWl6dRsVA8deeuPN4n i7Q0QxdYzIEJUhwSEQE5YU8pSPMEpamJz0wr/GUnICUCnIOMKxIRi4l1VT+7+UDANhWTSqKI aA8A+If1aaH0c/ZH//iY4Yko3S+cn5RkDoBD9jPKOC1DBF9ciuenfXuHiECkZBNVGlEI2wuK SDPeP1NFROehN8Fx9JEAETHyGB9eKRvUKiUdD+ueSp2Ly4c4y2GLqZH9gYIHRsTkGN7Ybqc6 6wjaH2aNImpFROdaFq9AEgpFlCciPydW4rwiiusnSQqoguvx3MG32aBtREQ1JR4tgWuJSDle ICJ6RVhRmiVlQClbluVt3YFjVJFCEdFHODI6PvMBzJZgvhSg/bSnFRFffp5koCGijP9rFBHX 47tJRD5gqQJiiUjK/MfnzM2P5NMAJ5dQnvTtBSJiMSiUzyB88KUHd+mQT/fa8UJphpvV6ACi vhfTIwrfcyqnVvncqad1ekhuALpsChiKlmZsqfbGHhEiD1ra+DLOk2eqOFICpslFSDb0EIT+ oX++sjRD2PK9I+h1fG2NApe8txbqu7TnmY3nchJNy8U7MX2BiDj1U7wEypydWkWU5ET+PSS5 WQ1KEPEKW8wgaaPX70dqKgbmxPVO4fpcXkdLQ9mbCHIjtM44i+qJyPZM6btT5w6v2V22jvbM uD5RuNpHJbY7KPD1DdjcrFFEVn+h3p0lO5yNsf3cQYsHlxIL+r+yBEBxyF60cLfD+Thr41uX ALKN5BwR5caTPii7hmZ9r/i594jujI/N7MKtmRD4mVsGuRrSZ4Rn3iMqH2r/BPfmbGJnlpx1 L4K9zW49Qt980gbzzVdMLsWztbldTMer+mtY/uZ447v5/BVDGyJSNlHFq1Za9lVfM15znnZU koG5d6syfYZftVuLz7efy/3EQ7U36jtlPAdlW2pmUtWGNiW1LVQ7t1KFLze1w7853uDifyPY hIikxlTqn1Ktq88wapwbPIhvzQR1k214/qbdDaB7aIrVvJV944fTxHf6eD6oqPA7sHfG9EOO yS7z1R+9vgGAsYe/h8Dd0uTvIfJ2i3DyePRHr2+HZuzvlxEwyuNlJf0vo9l372lfbxBRX8TH 7AOBgYACgUFECpDGIwOBgUBfBP4Bz6tFf3GNNvQAAAAASUVORK5CYII=</item> <item item-id="126">iVBORw0KGgoAAAANSUhEUgAAASIAAAAVCAYAAADituMXAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAXdSURBVHhe7VsBsqsgDOy5PJDn8TRe xsP4QASSkEBQsL4pf6Yz/7WCZBM2m6CfffwbCAwEBgJfRuDz5fuP2w8EmiGwLsu+NZttTNQP gW1flhVNP4ioH9pj5gcR2JZpn3FsP3j3catqBNZ5n5aYNl5BRNv2m3nsV+32QdvM/m3ZZxDU 1Zuiw4BmtnVY21um3JZ59257nIjW+QMyl5Fo0wcw47rPnyksri9g7t6fD/OZ2kv899gtoWqx h77piT71O3cvfSzAgKYzWaVkfdxTLfX3rcOr3gYS4/UTRDgN2U939iY3HiSQR4noCAoEBhOQ dsEdiCANdcm5mk1St0nfZfd/ISItxtZf885XZY5cp8nEXaeY6u/bSCa1PGIJMu63O3Ht13BV JEjjjX9OvwAiOjPQapnPqwTJwdoggdfZ+eF8MltbAGH9eOVu5TGZLGPq13aB+6zdXgE4pQcD h1E81s7gk/N30/Bl/e8zmpHTQUXanXHMccYL3CnH9Vhtup85v9vvzFrD3HbdUREdNgUiOcf7 e+USl7fvbjYXg6mvb4MvDdHOtYqIsRnjWN4hoYQ2+E+z6elcVET2vvz40++mM0OIyAZOJAsH RBsySjNHDMqEdIpEcGa6W32BZ4iord2F4EHEYq7liAZKB+Z30f+eWDwBeAKChBACNSW9IzuH WKLZ+SQXpFpgaQbmo8Rj1yFIhZjQ7qgBGfPevt1MUnDuulqawbVfxMDjfZXMC+N9WZsQEfYp CSiS5dC1MDMm5CWBIH2v7w/oeT3pHgh1d0pyuAdA5slhcgZQqu462U2JCC1VqYhQjUMIAPVa 6HyFHhNaG09EGCcSAyfhUF/wZGD3Lu5psEn1cjxnkqjo8zsxfYeIgAKtLk+jYqF46vZdebxP Fmlphg6wYMAQIKGjj/8TJYVZSmiE5glKUxO7TCt8shOQEgHOQcbJRJTB5PCUtDnv280HArYp m1SO5dHSjPYAwDqTjEg3Fmer+y76x8cIT0TpeuF6SEl2AnDIfkYZp2UIR5xg/qp4ftq3d4gI REo2UaURhbC9oIg04/01eiJiJLC4QQkxuQ3JNbpqlZKOh3VXpc7F5UOc5bDT1Mh+Q4UNU8Sk sd1nBq8jaI+7RhG1IqJIQIEkFIooT0R+Ttwq4BURJUBAhl4VFH0HoiiJZ09ET8V0IyKqKfFo CVxLRMrxAhHRI8Kc3JalZhoc/ZTBXUVENzVHRsd3PoDZoPRBq1EJZVmvIZoasnVkoCGijP9r FBHX47tJRD5gqQJiiUjK/Mf30slPTTz/A0XEYlAonxH3usceuI8mPvGhCXdo4W4mlGa4WY02 IIp8QcmEmjuTWTXziApKt/10V0lZ5symAG2q/HglyGFSq/ju9BFoqWX+RuRBSxtfxnmFkSqO lIDpKZxwKkc3QRIXlaUZIn++dwR9jo+t4S+V/hDjuZxM0nLxjm+vKCJmTPEQKLNzahURnUoY LzerQQnCH2Gnzdx0+SnoUlMxMCek2SJgmjWU6CjjXHIitM6YWFMiktfT1u6STS7DwCzG9YnC 0f7xqAYkImMnfHwDNjdrFNGZ6XBvCGdj7HfOFzGGKLGgv5UlgEcubVprYoknkTa+PRNAtpGc I6LceNIHZe+huT9Naoj2XR+w1AhniSg2swunZiTwK3sU+Zpf3lTPPEdU3tSh4GKeBg+2FTHR Z8K32a1H6JtX2mC++IhJ0XfRLl4Ft/NtPKq/huX/HG98N7u3GPRElHNaomDqMgiu1p56slrv 8CQDexWhDGTxiBlVDe+zW4/Qd6/MveIhrqxBPB8FWvK2AHNHqtpwwJPXnGqxlMpN7TxfHG9w 8e8IqolIaj7F59lgc0tqCJZqXX2G0cLc4jp8ahZtK2ES7/0/7W6B3TNzrOap7LoXp0u+w7/n Xm0Yvr3q46++9Hp10WPcQCCHwN3SZKD7NAI4eTz60uvTpo77/RICRk2XGqa/BMerbU37eoOI Xu2wsbiBwG8gMIjoN/w8rBwIvBqBP5dwEp0bM5KlAAAAAElFTkSuQmCC</item> <item item-id="127">iVBORw0KGgoAAAANSUhEUgAAAGMAAABCCAYAAABDy2gGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPJSURBVHhe7Z3rkdwgEISVgPO4GJTF JqE8nMFGo1+byQaDBUi3gAZoYGF153bVVfnBS/0xM4AGeVL8dRkFpsuM5GoDWRc1TYtaoXE9 1X2e1Hx/QqVjhQjjpIwVdlowDG71530uAHhGQhieJhrErNom+KoW2KJ8IITh6LEuk4obxG4x 02Y120/SJT3vap7vqtRpEcYBQ8eIKInQdenZnwaiXVZpDCEMA0OLnQjWeqZPgfvS8JKzv9xd EYZhsYmdCtiS8AZQerWlraNkHUAYhkVaNLNKCq1AspZwgZSDHJQnjJyL2mFVwQDadnkQxrat W3Irn0o3pYVeF3ypTBiIK5HiQzaA2zmfc4G0DH/bnA7e36std1eeX9oeXRBGyQnRNusXaMtd sOlz+ieMLjBKGn2VJYwS3WDLKGmUMGrVAt1UbfP4xo+rqcdNfd0edUoDtR63P+rrL1BwK0IY dFPYTBlSijCGyIx1QhiYTkNKEcYQmbFOCAPTaUgpwhgiM9YJYWA6DSlFGENkxjohDEynIaX+ Zxjn3KTU0bR+b4C/KauCB8P4ZUfo5sW+ly4B5CNVJoTBYCAYwDgjHVYeoe+zcNUpKDZrDk/8 RR5dyCMC85G0NZUmhCEjMmUQGOA4pT4bYPgAWhN53cGdrWL7V/RFP/i+GQbgDyx/hI6OUxhA Eww/6cq+6339nf2zsZpYRoWY3CWnzOP5SB1jB2AZ+DjPNBpghMHSFdH+/gATnemiewuh2kHj D+n3LVmAdmXWtQo/qbS+nwkj8PmBBVgxNpgm5oRpj5GZDZv/ey6jiG4MgAG702Fu6rSqiQgs uinZMkyOawhOjA+ftQx8nG91U34AN7P9iA0nkUpgxGY2umT8bMywWepD86b22bvou2xCkG6y jD0+iL4b2Ex9ejVlI5wFglyWcQykIYCnbu6kY8Z3/9FU+frZ/fF9RtWa+bVIQa8FOAkJEb/+ Utm70SmupvZNVOzeQrRO6mEvsQOvp9HJMvSAavcZx8PkA7H/2PXWBMuHrKbgxt4WwBt6/MlV CeNC9AiDMCQFmFFIy6Bl0DIkBWgZtAxahqQArwTQMmgZjBkXsgLC+C0whh6hX1y0XsPTp8LZ M+7hL5d6Pe3F20VgjM+burho3YbHD7l0k7a84cxX2LYG8ZSisPd8224NHhTuYqdTq/jxr/JJ XlsjFzfg/C5/ACWvXHVNWobRD/lgZJCYl81YKXNRhOFOZH5Ktdav9KnHjwz30bWyVX5+u1K4 XtVagJR/WJhL2yzH4xyq7L9saL3pxdVUFsy4Av8Av3cp9tmVVg8AAAAASUVORK5CYII=</item> <item item-id="128">iVBORw0KGgoAAAANSUhEUgAAAIcAAABCCAYAAAB9wsUNAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAViSURBVHhe7Z3dldwgDIXdQPrYGtzF NuE+0sFU46ftZIpxDJg1PwJJYJOZOTfn7JOxY8THFWIkM234BwsULDDBMgULrMs2Tcu2vqWB nttjnrb58ex6e8CRmc8ZdlreE4uwO8/H3AU44IjgMGDMW+eE65qt19+8bkujAgKOYDTWZdra BeNQnGlXnf2Pl3S+vXkf8yz3l0D7fGzz77WjzfzYSEdi2pauVWgEHN44Zo3RTEbqisxsrQHC tzdgRIClayDl+xoXwwMbkwI4rD3MYHUsPu0sTma2GbzaTK61p56XzHC9yundC+CwbOyD26wa +/0UCHaAC8Bx7Wtg/cK8K4FZOHvXInAbRj003QQclg2d0VI3baOCdHAqs59r76+vNtrwAISg EW5Lsq5QTgLA0etSDrguhyNds7D7Lg6YujLo3Cfg2Le5FkaS46ghjCCO/RDOTaRSw7QnlcVC XBt87rp7iXWRh+qAQym1ZORHrS/YBWmyHgnbk/cGg0+qiFEOfuA1LhRwXAHHMavPULg3lCVU IAKicP3iRSng2OFYLtkSrW9qZfsWHqjipln8vPx3HgegJlpxgZl88Q04LoPj+o3vO54IODRW BRxFa0E5AAfgKFrg53v7+v7RaM1bt/35/rN9/ZV1AcoB5YByFC0AOAAH4HAWQLQic6neWhft c2j+0//XFnBobA+3ArcCtwK3otEMuBXGWghl4VbgVuBW4FbgVhgLvHS0kmdN137qliWw6IkI 7hjuVvh6la7+vCscNv0tSnLk6zdsZrggiaXZoEPhEPS3uSOyGxuV45ila1hJ1VHLkb0rUTch rPfIE2VkhhC1GgmHsL+i925s1AGHySw6gegtxA3fP1eN/ao0MZet42i0lLltJBzS/nZ0h7u1 C444tb2Q7k4l1Ca1m/Fz6E8CcPUbZ0dvXHsMhEPeX26I2693wJFmLxODahNdY4XZJSDOfM7k k4ZMbiw+7Z4tHyjZE3BI9jmo2RnD4QZgB8iuS4L1CFHUG0clhZkvltlrPkZCWmEgHGI32i4M 7J0dypEWzSjcSvRaKQyK53A1G4Xuv4Ny2MgrrZ+9cz1F2KoLjnBBag1OhZG1IuEj5T4u9y/N fGlo9xlrDlfNH341iKtvYYVA3aALjmXxa4oCGMcKn64gL3eWjFZs1wSbQnfOrpFuRdpf9ZDL b+iDQ/IprEq0Ui7kbZ/9H7PPIR/D21qOh+MIY7lvP5TVo2KLj9ohvW3MxQ8eDofbLEuqz8nP AfAhadzLdrVRWAtpggVjIZ9j+JpDjO0tDRuV45Z3ef2HAg7JJtjrj+Mtbwg4AEfRAoADcAAO ZwGsOTT+B8oB5YByQDk0muHa4hMMUA4oB5RDrxxYc0A5oBxQjoHKIUg1iN4m+TRk+itlkoNr f6vSnLog7DlCWaGhjsC/4cQEbdJO2p44Kkx8foqHkv9aMWUGwHE3HNr6E+pz1MkzpOenmMGd 94Ss7HwXYZ8Bh9BQrhn/YfzsceLE6NPP5y4izKs1aiA4P8XntlBwCvuMD+MLDXUMnfqUJnlJ xfEiReXwCd2S81McQPZL3M1w4EgNFRqmsUZqfXvN+Squric+jtRny9fTKs9qAOtO/DfaW+Ew 93HpeoH1kOzjRltltLb6kzhaWVYuKy64nqZKNsKhnQSAw4UsOtdyRf1J+Azm/JRSGqYJd+VC oOzjbhXA4WVUHEp6mBT1J9lMT+t4lOenNChH5JaEjhdwBIaShpPnQvZMqk7PbKXPhS23/12X SE571MLRmMEPOKJZFEQEwtn1+s3058n6PgGObHQ/CZB2MIxZAAc59f0W9ZVfNhqpMde8P+AY OWZv9n/9A6jmQvvs93jEAAAAAElFTkSuQmCC</item> <item item-id="129">iVBORw0KGgoAAAANSUhEUgAAAHcAAABCCAYAAABtjkmUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARGSURBVHhe7Z3tkaQgEIZNYPPYGMxi kzCPy8Bo/DWZTDAcHzqDCPo24CxsvVd1VVc3gE0/dNNAo4Pinz+rgeHP9qy0Y8ukhmFSS2k7 WfWfah4HNc7PrNpbJcI9qM8pdph+B6svznMeiwYY4e7gGrCjKjSYIms7Vl7UlOlBCNfT5jIN qtxgV8sftPXrv6Wu1Yr3nNU4zkrqpAl3g2vm2GKyoUs3VlcHsHHR0oFCuM40tDuuEDwZCxsC t24GTYbV1XDPhLu5vWKr1Q3FQFrgFQaO9c6jaNog3AylpSImG92GVhqz5tyQy7QlGISEW8sl r4PkVrhCWQlXb1NMVebE+92yMfhlwpdqhCt0daceNTa/Vguo3JMl8y7h1oRr3aa/u1VvKbQN KsKVBCwa7lR1S+qGTQyvP4T7q3AlD5eXJVyJzqpbruTh8rKEK9EZ4Uq01VnZx4/6/nl0I/Tj 50t9/8PEZbRMy8VGSpelCLdLbJjQhIvpqctShNslNkxowsX01GUpwu0SGyY04WJ66rIU4XaJ DROacDE9dVmKcOthO+YGnx2RmfNQPPMgS0oxXCfvdSoTevSHtud61+zBgU0g22kFONzOTMiG QYvgvoGdwwX65VC5w32d23w9WIrgrlaymFRM98C6F6Ei1yLAPF9j7dKE7Npw3b0drROd3zxd WS7QL1F7XmcyLdelhPhASy8i+Qo+Wq3+Fc3zrZyHtAMPWu5zntcbf4AbBfolaq8W3L17cMBf /2dH5GbVgSuxVx5TFh+/kojn+d4494Jw3/q9hov36+2aP+OWd7eNfCiBgn3XE2T9Ha00GCSr pnAlXCvUuO734Ar+faY5wtXEIxelkrfiDimeCcsD3NcaRlS5jBydh2+AC083XlD1AcsNo7a4 xTklpV0larn2amJ4jyY6v/ZluXi/PuqW9wGVdXXRbPzEtf7XnByuTVOvAUCXDH3Nua8lzssc z/KXrwduGJiiVu6l2axWOnmBURQskmh9hBGNloO1XvKycgPR8lVAdVyuNbWJceaCXxGQjZaR kXOcj/Otr4V1Lrxuvrlg0To3CW51udHfD5YVB5m23hONNLVDdTM5oPlb4L52VLx1rr9ttv89 tR8sm1/OgjZAD1gRcbSMNXtXqUy4d4nTeLuE2zigEvEIt0R7jdcl3MYBlYhHuCXaa7wu4TYO qEQ8wi3RXuN1CbdxQCXi8QpnifYar0vLbRxQiXiEW6K9xusSbuOASsSrDhc96ssTmnvLEr2Z UyfkDBNqE00+gBqLFiJcie5qwgXylSWixcoSrkiDfLGnSF19Fa70lnTdaTxVN1dDMln5qqIV So1p93a4wimEcI0RCZWWtDs4DzvPciXzrXkC4Vo9y9xdEg2ch50DVy4j4W565qdnckZcP3X4 0ah+WGVIys+9ZSitpyotAc7/jh8DqnRktL7OoM7HnuRDe9ufLns+Ayq55rup8R8+YE7VMwem gAAAAABJRU5ErkJggg==</item> <item item-id="130">iVBORw0KGgoAAAANSUhEUgAAARQAAAAVCAYAAACHWxFoAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAWQSURBVHhe7VyNkaUgDLYuC7KOK8Fq bMZiPECCCSYQQF19w87s3LhPIHxJvvzAu2HrPx2BjkBH4CIEhovm6dN8DIFlnrf1YzJ3cd+G wLrN80KE6oTyNh09IM86j9tE7eCBVfsSP4nAMm3jfISmVxDKuvZYmTO2yzBa521CBpBb9+7P L9vX3YL2+UUE1nnawKQeJ5RlGlB0NCnTOCCGW7ZpGINw79WhlRPv405JY4y4tfS4YeXbmWy2 Mpi9SL9XZjJ/pfsn95i2hF2X5Zju44KOyic4xDIBZWzxMW48ClKPEopTLAGDcRYr8Pj2+v5t hKIlNIv3tInVTquxJcR4je5v3KOGTCwplPKBJeLDbzQBRpIEiKk2aEvjjT94n0WE4qPcYhkM 2DBhfFobDu/Z+fF8MutaAHFdVryUcgCNXBhkhjBMrTgE+f3nprHJYgVGa1JBElXcHB5bbFXu fZol7B9zGNm/GVnD3FbuI0NxewqE7MfDWjmyvs3ZXqT72/YoG12wM0PmU2mGwshLdaw0dp+N jpPpeVRmKHZdfry3SdO5iAjFGvXh9DsQ15DKOUIdDnMiD+t4ySxld+gm0iEEYWThCAOHcuZz ESsgCHBkIBLs2EGpZ/JyESngHkckTxIEH1zyoPliArFypMLjTc52re71DsS+edMeU1KtJvDs plRb8uDZKzMUsIXa/WfGQzl7IhRqb7Gx788uykoO7wSOSUgCQfq7vidQbV4xoZCJlBkKqR0i RyapLY+j6NtENp5QKJlGeHnioD0L3y+pJJR4LtlZX677hEOl96iw/awxthAKylaLWwJHBmGa ZhUZSn48VBXnkoccuGBjpmCwUSek9LFRST2HNNFoas09mgu/yQloOZEmUi6DietQtJeT0mKC 5PBABuv2AxjyhHKWF8sTlTre0F3KmjrhqXY2wIdmuPuy9+k+67/cC1V7VNi+SpgWQkELJIPh WRCi9wpC0YyHdwoIJaqDo0xkd2xj1K4HwxEK1wgqzVxUWit+6SAlkFGToVxFKAeRBGdXZChp QoE5qR740gPBlXM2U38DeeP1n9R9fQAJrCpGaJehsHtM277e4C4ilJLSKS57SwlFOV4glLgD najHXeRhSIItee6LUs0GFqwBk5uGUDJYEWwSGQrXL2okFFBunJG0Ekooc1kdu66fEEy4k432 7FTvyHrSZPd4ambXluQVhMJmI5I/8dlJy5WA1JF7HFRsQEw2ZZ2zQr12MvwSQinNRGoVVmBi saIIc8clA5RHEPHPGQDBqqTkYeXw2Z4rPwtLHuLUfG9FRCmXoaCeEdtv+EL/rGaPWtvPml8F oXDZSPbQIiFIaYYSTyWMl5uyKOUjjVctSwvRS4qOgQEp3d1/yuPKfu6oFhDEPY24lPOOio/Y caOshFBOcljSohGIYsQZ5UEc9M6C3+MFx8bLRLNRPaHIzeA63We9Nv1CklCEPaps39tLsmGa IpTUeNrv4w9ENOtDFsm1H1rGH03bzCkP1o2yjpTSYalEYtT/1D2URtP84HCr+LprANwt11PP ++O6l/eotH3nr3BEXGce3xxv7GraL6MGQhn+mToXHXXaZ/xjn/E1efuM7zSE971RceOzNbzL 8L9wU7bOWN4wKr56r5WJZD5FPZR9hS/oXt4jLTuL7tVoAT6VtuqB/kWpraCdp2G8sQf4fphj DUcOiFDgGUQ5nn1a5N+HE2byvplcHp+rIR/onWjx/dn3FnPLtvzLmPQERLi6LWYojlIy32P5 e92n94hK4OJ7ID9rTD5YRF8OhGziqX9/G9737641rX7/DruEzyFAA9SASxM5s9jFu+Lz5zba V5IRMNG2R9luIM0InHtyhFCANPA6XC+k5fPmPfQJOgIdgdci8Oh/X/BaFLpgHYGOwCUI/AcF p9Vy6OmdhwAAAABJRU5ErkJggg==</item> <item item-id="131">iVBORw0KGgoAAAANSUhEUgAAASUAAAAVCAYAAAAAavhuAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAWXSURBVHhe7VwLkqQgDPVcHshz7BE8 jZfpw7igBBJI+KqD3UzV1FaPguQlvLxEeqd9/AwEBgIDgY4QmDpay1jKgwhs67p/HnzeeNRA gEfgs6/rRi4NUvrBWPms877QOPhBFIbJ3SCwLfu8uhTZBSl9PiNnpwLkMow+676gAEg99+7r l9l190Ib5v8FGxvgOYZ+1mWHsHyclLZlQllaSbd5Qiy57cs028W1GnrfeL1ObMd9T1Lu8jDi npWPG3b+GQzzPilbpN8rFdVf+f67bDzjodwv5zjr5/IJXOCpxDa37FNuPEqWj5LSERwEDGbD 6QXPvfc7eiOlXFLUeC+7WLm1BltkGd34/tU2OmIp5RSdENzey0l0kjNhDbXiQRqv9pTZ94iU TLbdNAsCo0YCOHcf2Pv0/Hg+mbk1gLjGLH5U5gCaQTHIDOmouney6zfXVbOYxQoCX0lSkpmO OQy2OKqO+6laOS9zGOm/qbXaufW6nVI6bLKkbsbDs1KEf9uG7cj3L7XRxqpKKkupUmJspnGS uWGMsp4X1QOqVEr6ufx4E9eqk+ORkt4YjjhOIK4hpjBTuk0XEJDevFG1dJJCE3ERklFr4UgH SwrmuogVkAyQAZARJgfr1JAAj6xmcfezmiEagg8u39B8PgnpdcRS7E0b9lrf528g9s6X2vhR CfAMx9ryDaNRqZQgnmoxTIyH8j4gJRqzQplyLMojKy/b03kkEKS/5/dIqkPUJyUyUaZSInWQ Rwak5+TPlyj/yNp4UqKE7OFlyIf2cEz/qJKU/LkIXG/yfWRDRW0Eg7nYF/t+d8R3Cykh5V3c InFKRjUiK5RSejxUSGH5Rl6EMaDaEgSTkrcpgkVLmzBOVjl186kqhN/oBLQ0SpJxoJT8mhrZ wtqfKA9VHtTqz9kC+PKkFK4Xz++VbWZDHdI59uatasP+ne+rElKVjeZJbOzra/fFd2hjCymh 2aJJmXkqjp0KUiKxJ4yHe4pI6SQAFfxH3wmRElMW0KwjKZ9SBVUVhslBjthgY+copatIyZGR JYwMpRQnJZiTqlm+jELwpDas6iUAadrnP+z7+iRkmVnM8kfMcjYe1b0Q+8e0T8b3RaRUUgb6 bYBSUsocL5CS/6qxoHwLyp+UMoj0lAoAaw5Su25MkDmkFMGqRClx/bNGUgLn+sqolZRsn48t YQBIf4M+qSKS+UfXsFFSStrI2v6kjRWkxKqiRAuB5Cr52EhONRM7koHHC+UbbXQfG56rPaNB yamfUkX0Bz0lEqx++QOlHiiPUIkQrEpJCatO258BUi8s34hv+F6TuHVTSgn10Pj+ywt832rj K3tKDJElXyZFCL5UKflTCePlRjeSr+IbMJGU5LdiUpa2LEop8/63b1aSuz4O11c6yxW/ZDWb HR+fwORdQkrBOjTx0SxGMeIypSMfeh7FlB0XHAnYFlquhqT0lO8z1FDsligppWxUEwuxf018 m2QXbULHlFJsPO2h8ns75/mAAXdOqWW8a4Qn3r4J3uUcYzK8LOfy1c9T55Qaw/uFw7Xj6454 cKexra+/xPdRG8Hb0YScd6AwFd/u9X9diL1zvIrN5Tw0bUlp+qd6JOg1tv6Mf8hn5Rj92ap5 8xkTEjc+2dM42kxvONFdFyw9jPK/ZpK7JqLA8MZMEtL5hDf4XrQRgxRpXbTbKLU5cr304vEK V/hO5sE8mkAwKcFngEL6DKQE1+3rbJjP3ODGp5p0+Woq103jPh+BTZ0GL/8CNH0z5RSB1MQM FXP/vpdsJAhm9FOvqBZ+LW6DL+SCqnnq318DvDd7W+V9b/aM9bwdAZooJ1xm5SqklIKKXX87 fN+xfqVIi0/0foflw4reEAj7nISUoJTDy472lkzpV3J/b5CM9QwEBgJ9IfDof13Sl+ljNQOB gUCPCPwHvbXrp36nhWoAAAAASUVORK5CYII=</item> <item item-id="132">iVBORw0KGgoAAAANSUhEUgAAASUAAAAVCAYAAAAAavhuAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAWsSURBVHhe7VyJkaQwDCQuAiKOC4Fo SGaC4WzjR5Ilv8DAjrdq65YBG6sltR57btrHz0BgIDAQeBAC04PWMpZyIwLbuu6fG983XjUQ 4BH47Ou6oVuDlH7QVj7rvC/YDn4QhSHyYxDYln1eQ4h8BCl9PiNm5wzkNIw+674AA8i99+r7 p8l19UI75v8FGTvgMUM/67I7s7ydlLZlAlFapW7zBFhy25dp9ovrFfS68XqdUI7r3qTURTDi 3lWOG1T+YQzzPilZpN8zM6pv6f5vyXjYQ71ejnFez/UTBMNTgW3u8VNuPAiWt5KSMQ4EBuNw esHz0/sdTyOlUlLUeC+7WLn1GltiGY/R/atlDMRSyyk6IATfKwl0kjLdGlqTB2m88inr94CU bLTdNAs6Rk0YcKkf+Of0/HA+mbk1gLDGrH5V4QAcQSHIDOmounfy67f3VbOYxcoZvkpJUWQy c1hsoVWZ53G2ctzmMNKfqbX6ufW6Q6ZkZPKkbse7d+UI/zKHfZDuXyqjt1UVVJbaTImRGdtJ ocPYzHpeVA+oMVPS7+XHW7tWnRxCStoxAnEcQJxDTHGkDE4XEZB23mS2dJBCF3EhklFr4UgH phTMfRErRzKODBwZQXLwSo0J0EQ1jzuNapZoED6wfAPzURLS60iF2Isc9lzdlzsQ++RLZfyo AHiYY2v5BtFozJScPbVimBnvyvuIlLDNEochER09C7OAiMgkEKTPy3skzSZKSQlNVJgpoTqI kAHqOdH5MuUfWhtPSpiQCV6WfHAPx/aPGkmJzoXhAhng03WfcKikjCnbF/t+V9h3DymBzLu6 RRIyGdWIbMiU8uNdhRSXb2gjDIJKDB8uzPxNMizMWEJjOE1WJXXzkVUIv8kJcGmUJGPtgVGm RGtqIEukNEqyHCkdnwVZHJ48KcXrheshZZtlEJM6p3beWhz2i7pvCkgtMqocBW3AsPrlms/9 9h3L2ENKYLZkUGbeCm2ngZSQ7Qnj3TPlpMSk/mJkIYaqPFrYVavNoJrMMDsoEJtz7JJM6SxS CmTkCaMgU0qTkpsTl958GQXgyTms6iU40hT5/mLdtwchz8xilDf2zMmYtf077fskUqopA2kb oJaUCscLpETZPlVmyCVWbPzSPP2RpNtIvU/SrJBgkes5GeK1Y2oyJa5/1klKTrk0M+olJd/n i4gnENudus9GG+6BDPGWyBgH2evs+5RMic2KMi0EFKvkYyMl1UzqSAYcL5RvuNFtHJ6tPQUy 8XV3IotAKF9RcxeaKlUUMlZa/rhSz2UecSaCsKolJdiHiTCsLN8QYfC9JhGhXKYEemhRlvwW 3ffICBrNuAyuzfh7eqYtmRIzJruZlPCj2kyJTiWMlxvdIH3lCalk5ysGXYrSnkUxZV6/+2ba RNw2vEMQ9ngUyZqjEpCU3Gd2DkjeNaQUrUO/A0cxjBFnlAFvfB7FynjCkYBtwYFGbgpfrfvC oCM9liSlnIyy7Z9j39bmkk3oFCmlxuMeasq30zvfClgRw5L1S+NDIzyz+0Y0a6NhScoWG215 dLjrnFKneb9wuFZ82xEP7jS2ZAdv1X1Sxqztn2ffYfu/zcTeOV7Z5nIcmvakNP1T/RCwja2v 4Y++1gf8nCGi+zoVVPfDxt1mruFGj7kfnehmQKdNsTa9jFECAvRrJqVAoQwMlohRGcA75xt0 L8qYJaQDxX4ZpTKwVEsvHq8wdt/JNMyjCQOSkrt2ULhrv11tn9fXmqSk+3R8/uBXebQpVdN4 jiKwqdPg9V+AxjtTuMyRT8bDd+d6Id/XvSSj1KiNM8Xny/hUf4i+kOuynrv+fSowv7Ku3vT+ V3Aact6FAA6UEyzDpAwpzniOT1qev0vM8Z4UAiorqT7ROxAdCFyBQNznRKTkiAa+must9dy/ Qqwx50BgIPB3ELj1vy75O7ANSQYCA4GrEPgPCiPNJTOtzdAAAAAASUVORK5CYII=</item> <item item-id="133">iVBORw0KGgoAAAANSUhEUgAAAGMAAABCCAYAAABDy2gGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPJSURBVHhe7Z3rkdwgEISVgPO4GJTF JqE8nMFGo1+byQaDBUi3gAZoYGF153bVVfnBS/0xM4AGeVL8dRkFpsuM5GoDWRc1TYtaoXE9 1X2e1Hx/QqVjhQjjpIwVdlowDG71530uAHhGQhieJhrErNom+KoW2KJ8IITh6LEuk4obxG4x 02Y120/SJT3vap7vqtRpEcYBQ8eIKInQdenZnwaiXVZpDCEMA0OLnQjWeqZPgfvS8JKzv9xd EYZhsYmdCtiS8AZQerWlraNkHUAYhkVaNLNKCq1AspZwgZSDHJQnjJyL2mFVwQDadnkQxrat W3Irn0o3pYVeF3ypTBiIK5HiQzaA2zmfc4G0DH/bnA7e36std1eeX9oeXRBGyQnRNusXaMtd sOlz+ieMLjBKGn2VJYwS3WDLKGmUMGrVAt1UbfP4xo+rqcdNfd0edUoDtR63P+rrL1BwK0IY dFPYTBlSijCGyIx1QhiYTkNKEcYQmbFOCAPTaUgpwhgiM9YJYWA6DSlFGENkxjohDEynIaX+ Zxjn3KTU0bR+b4C/KauCB8P4ZUfo5sW+ly4B5CNVJoTBYCAYwDgjHVYeoe+zcNUpKDZrDk/8 RR5dyCMC85G0NZUmhCEjMmUQGOA4pT4bYPgAWhN53cGdrWL7V/RFP/i+GQbgDyx/hI6OUxhA Eww/6cq+6339nf2zsZpYRoWY3CWnzOP5SB1jB2AZ+DjPNBpghMHSFdH+/gATnemiewuh2kHj D+n3LVmAdmXWtQo/qbS+nwkj8PmBBVgxNpgm5oRpj5GZDZv/ey6jiG4MgAG702Fu6rSqiQgs uinZMkyOawhOjA+ftQx8nG91U34AN7P9iA0nkUpgxGY2umT8bMywWepD86b22bvou2xCkG6y jD0+iL4b2Ex9ejVlI5wFglyWcQykIYCnbu6kY8Z3/9FU+frZ/fF9RtWa+bVIQa8FOAkJEb/+ Utm70SmupvZNVOzeQrRO6mEvsQOvp9HJMvSAavcZx8PkA7H/2PXWBMuHrKbgxt4WwBt6/MlV CeNC9AiDMCQFmFFIy6Bl0DIkBWgZtAxahqQArwTQMmgZjBkXsgLC+C0whh6hX1y0XsPTp8LZ M+7hL5d6Pe3F20VgjM+burho3YbHD7l0k7a84cxX2LYG8ZSisPd8224NHhTuYqdTq/jxr/JJ XlsjFzfg/C5/ACWvXHVNWobRD/lgZJCYl81YKXNRhOFOZH5Ktdav9KnHjwz30bWyVX5+u1K4 XtVagJR/WJhL2yzH4xyq7L9saL3pxdVUFsy4Av8Av3cp9tmVVg8AAAAASUVORK5CYII=</item> <item item-id="134">iVBORw0KGgoAAAANSUhEUgAAAIcAAABCCAYAAAB9wsUNAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAViSURBVHhe7Z3dldwgDIXdQPrYGtzF NuE+0sFU46ftZIpxDJg1PwJJYJOZOTfn7JOxY8THFWIkM234BwsULDDBMgULrMs2Tcu2vqWB nttjnrb58ex6e8CRmc8ZdlreE4uwO8/H3AU44IjgMGDMW+eE65qt19+8bkujAgKOYDTWZdra BeNQnGlXnf2Pl3S+vXkf8yz3l0D7fGzz77WjzfzYSEdi2pauVWgEHN44Zo3RTEbqisxsrQHC tzdgRIClayDl+xoXwwMbkwI4rD3MYHUsPu0sTma2GbzaTK61p56XzHC9yundC+CwbOyD26wa +/0UCHaAC8Bx7Wtg/cK8K4FZOHvXInAbRj003QQclg2d0VI3baOCdHAqs59r76+vNtrwAISg EW5Lsq5QTgLA0etSDrguhyNds7D7Lg6YujLo3Cfg2Le5FkaS46ghjCCO/RDOTaRSw7QnlcVC XBt87rp7iXWRh+qAQym1ZORHrS/YBWmyHgnbk/cGg0+qiFEOfuA1LhRwXAHHMavPULg3lCVU IAKicP3iRSng2OFYLtkSrW9qZfsWHqjipln8vPx3HgegJlpxgZl88Q04LoPj+o3vO54IODRW BRxFa0E5AAfgKFrg53v7+v7RaM1bt/35/rN9/ZV1AcoB5YByFC0AOAAH4HAWQLQic6neWhft c2j+0//XFnBobA+3ArcCtwK3otEMuBXGWghl4VbgVuBW4FbgVhgLvHS0kmdN137qliWw6IkI 7hjuVvh6la7+vCscNv0tSnLk6zdsZrggiaXZoEPhEPS3uSOyGxuV45ila1hJ1VHLkb0rUTch rPfIE2VkhhC1GgmHsL+i925s1AGHySw6gegtxA3fP1eN/ao0MZet42i0lLltJBzS/nZ0h7u1 C444tb2Q7k4l1Ca1m/Fz6E8CcPUbZ0dvXHsMhEPeX26I2693wJFmLxODahNdY4XZJSDOfM7k k4ZMbiw+7Z4tHyjZE3BI9jmo2RnD4QZgB8iuS4L1CFHUG0clhZkvltlrPkZCWmEgHGI32i4M 7J0dypEWzSjcSvRaKQyK53A1G4Xuv4Ny2MgrrZ+9cz1F2KoLjnBBag1OhZG1IuEj5T4u9y/N fGlo9xlrDlfNH341iKtvYYVA3aALjmXxa4oCGMcKn64gL3eWjFZs1wSbQnfOrpFuRdpf9ZDL b+iDQ/IprEq0Ui7kbZ/9H7PPIR/D21qOh+MIY7lvP5TVo2KLj9ohvW3MxQ8eDofbLEuqz8nP AfAhadzLdrVRWAtpggVjIZ9j+JpDjO0tDRuV45Z3ef2HAg7JJtjrj+Mtbwg4AEfRAoADcAAO ZwGsOTT+B8oB5YByQDk0muHa4hMMUA4oB5RDrxxYc0A5oBxQjoHKIUg1iN4m+TRk+itlkoNr f6vSnLog7DlCWaGhjsC/4cQEbdJO2p44Kkx8foqHkv9aMWUGwHE3HNr6E+pz1MkzpOenmMGd 94Ss7HwXYZ8Bh9BQrhn/YfzsceLE6NPP5y4izKs1aiA4P8XntlBwCvuMD+MLDXUMnfqUJnlJ xfEiReXwCd2S81McQPZL3M1w4EgNFRqmsUZqfXvN+Squric+jtRny9fTKs9qAOtO/DfaW+Ew 93HpeoH1kOzjRltltLb6kzhaWVYuKy64nqZKNsKhnQSAw4UsOtdyRf1J+Azm/JRSGqYJd+VC oOzjbhXA4WVUHEp6mBT1J9lMT+t4lOenNChH5JaEjhdwBIaShpPnQvZMqk7PbKXPhS23/12X SE571MLRmMEPOKJZFEQEwtn1+s3058n6PgGObHQ/CZB2MIxZAAc59f0W9ZVfNhqpMde8P+AY OWZv9n/9A6jmQvvs93jEAAAAAElFTkSuQmCC</item> <item item-id="135">iVBORw0KGgoAAAANSUhEUgAAAHcAAABCCAYAAABtjkmUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARGSURBVHhe7Z3tkaQgEIZNYPPYGMxi kzCPy8Bo/DWZTDAcHzqDCPo24CxsvVd1VVc3gE0/dNNAo4Pinz+rgeHP9qy0Y8ukhmFSS2k7 WfWfah4HNc7PrNpbJcI9qM8pdph+B6svznMeiwYY4e7gGrCjKjSYIms7Vl7UlOlBCNfT5jIN qtxgV8sftPXrv6Wu1Yr3nNU4zkrqpAl3g2vm2GKyoUs3VlcHsHHR0oFCuM40tDuuEDwZCxsC t24GTYbV1XDPhLu5vWKr1Q3FQFrgFQaO9c6jaNog3AylpSImG92GVhqz5tyQy7QlGISEW8sl r4PkVrhCWQlXb1NMVebE+92yMfhlwpdqhCt0daceNTa/Vguo3JMl8y7h1oRr3aa/u1VvKbQN KsKVBCwa7lR1S+qGTQyvP4T7q3AlD5eXJVyJzqpbruTh8rKEK9EZ4Uq01VnZx4/6/nl0I/Tj 50t9/8PEZbRMy8VGSpelCLdLbJjQhIvpqctShNslNkxowsX01GUpwu0SGyY04WJ66rIU4XaJ DROacDE9dVmKcOthO+YGnx2RmfNQPPMgS0oxXCfvdSoTevSHtud61+zBgU0g22kFONzOTMiG QYvgvoGdwwX65VC5w32d23w9WIrgrlaymFRM98C6F6Ei1yLAPF9j7dKE7Npw3b0drROd3zxd WS7QL1F7XmcyLdelhPhASy8i+Qo+Wq3+Fc3zrZyHtAMPWu5zntcbf4AbBfolaq8W3L17cMBf /2dH5GbVgSuxVx5TFh+/kojn+d4494Jw3/q9hov36+2aP+OWd7eNfCiBgn3XE2T9Ha00GCSr pnAlXCvUuO734Ar+faY5wtXEIxelkrfiDimeCcsD3NcaRlS5jBydh2+AC083XlD1AcsNo7a4 xTklpV0larn2amJ4jyY6v/ZluXi/PuqW9wGVdXXRbPzEtf7XnByuTVOvAUCXDH3Nua8lzssc z/KXrwduGJiiVu6l2axWOnmBURQskmh9hBGNloO1XvKycgPR8lVAdVyuNbWJceaCXxGQjZaR kXOcj/Otr4V1Lrxuvrlg0To3CW51udHfD5YVB5m23hONNLVDdTM5oPlb4L52VLx1rr9ttv89 tR8sm1/OgjZAD1gRcbSMNXtXqUy4d4nTeLuE2zigEvEIt0R7jdcl3MYBlYhHuCXaa7wu4TYO qEQ8wi3RXuN1CbdxQCXi8QpnifYar0vLbRxQiXiEW6K9xusSbuOASsSrDhc96ssTmnvLEr2Z UyfkDBNqE00+gBqLFiJcie5qwgXylSWixcoSrkiDfLGnSF19Fa70lnTdaTxVN1dDMln5qqIV So1p93a4wimEcI0RCZWWtDs4DzvPciXzrXkC4Vo9y9xdEg2ch50DVy4j4W565qdnckZcP3X4 0ah+WGVIys+9ZSitpyotAc7/jh8DqnRktL7OoM7HnuRDe9ufLns+Ayq55rup8R8+YE7VMwem gAAAAABJRU5ErkJggg==</item> <item item-id="136">iVBORw0KGgoAAAANSUhEUgAAAFgAAABCCAYAAADT2BHJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPTSURBVHhe7ZzrleMgDIVpYPuYGtxF mnAdux24Gv9KJy6GtcAkAguQeWSdRTknZ8YzQPDH9UU2CkrLqysB1bX1b2x8nbVSs15Zfd/0 Mik9LVu0tAB+obGw1MxDi4luyxQdFAFsSAHcSSeEyNDzqmdC+QJ4R7fOSseFeyhb7ere3yk7 0Nuip2nZh+v9EsDguVG6oW2AStOQwS7wIAwOGAAmJjRQpAqsAwYkUKnvH75VjA0YAKYmNQqm gZ6OMkDFrtmhAWMQ1CxmooNQrZSqw8po4AYGnLEHiC1KAZuoxKp8YMC7Vya91IQXEQXnb0TW 2Xr3uIBz/mvCY8Jvs5Oc9QtnPwI4eQtxPUxzzQngXZ0z69btwo0GGiwBzAbMuEsmighgAVym HHYtAcxGVVbw+dA/j2dZXUat5+OX/vkzeJjGm+QYNMWDSQLMKEIAlxIQwGXkmLVkkmOCKi0m gEvJMesJYCao0mICuJQcs54AZoIqLTYS4G2LZ8aU8svW+18B+zkIYeoRrMjWJoBk0doCbMBf 9LjSrHF5q7hEbheRvMFEdq0YC3DTB+6HelZYJrFZLPwkOM65halFvjIweFB5MoOG83G5MhzA RXkR7gKxS/doychmrWCoqaS2XP/D/5/Va65TOjsxu+6Vz7DJ9o8DuGLRk3jgbjvt52GEf3OD sA9EbEWWTMyIpXnG/v4BL2YALl+2Jxc9qZPCAOzvbgBIRZrcWspaqMFLKPhQNieTFOzEfibx TjVwP8CBhwZKtSe6RwDGw8O8gZgiryo7e+HzCzAA1+RFXLeI0+wegUZaxHcquHFexHmSM6p0 Xnsy/CuAryr1Hh7sJuF3hMOfXOMKnp2PBhNZlYKPPC/CE22kEqTu3yWKsHck9qsFnARsZFBM i8CWlvbgV8loeidflbeJg/mOfip5Aqx+7xECCtPgGL/gGH+jBo7xzcGr/AGYqk/HwkHfbnUn V07YA2xgIcDu2DX/Pj58+ijvHtF45XdA8fp+qHfuPl/l5ad+1OREERUfcgIMbTnV9f5Z0e92 VT8FGF/KceXZ82rx/3aEKlv6F4CxirE9hF5cc1yJpV31TwFu1+Mva0kAdx4wASyAOxPo3Lwo uDNgSV/tDFgULIA7E+jcvCj4LoCbPa7sfEJ3ax6e2mUX/ZrmRdyNQOf+cAC3zYvofEK3a16+ DN55SGQ7g86A38khsQ8qTjxB9jPut+2Bas6HC1OnZEuZl2Q5myIFSTTZFW+/zbEVDKBlW6/u Viwb0/VHLFsr9mdctX8lvW8ldFo82Bs699whv6uUrZYvL4A7Xxt/AR04cd+epVjPAAAAAElF TkSuQmCC</item> <item item-id="137">iVBORw0KGgoAAAANSUhEUgAAAMEAAABLCAYAAADJaeMiAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAimSURBVHhe7V3ZteMoEFUCk0fH4Cxe EoqjJwNH46+XiYNRswiLpYoqJATIqj6nz7THmKW4l1pkrqdF/ogFbm6B6ebrT5f/mpdpmpdX Q8O8ns/l3XA8eKj38ny2XHWrBat1Pabl8cQtLCT47IU11jS3BcL7+VgaD4mjTx0AObC0gu0Z 42g7Y4ebkMBYXBPgsWQOizP2RQ37XOaGg77ftL95P+f2djjHukCvr2UGvLyQQJnqNU9dTuMz AReuKQ4JNBgQ0lch5upVJ+VZ1V/au9Dt9Xp0X/ZvNHc158fnvbXNAwkxddvoPSGBzgG6xCN6 48/JPYzrD9YExMUAGOzRqQiCAYh1YsdhpSZcjgh0e02AgEhx3la4h9o+fn83JwEDiP4pk4Aj PMGm6H0bh2ZOLxBsFjSfE++lT7kSssQuP5qjR44EXDVCQ2Ov6KTWIM2dzLn2UH8RGcs9eWij e5NAGzjrBSwgbZP4NE0TaeOy3WZDp5UPZvD0gsIWTQg+CVIvAM19RRECznJQeaiE+jRARtZA tc8RyCPtQxc13OHB8GR+QeLWJCArM7lyKbixHmmIUisIVuAzaFUDHB8rB2L/H84NYA/BioVU rq+8XwzCzGlOtXfvvwKv6hMKCLfQUM9bg3cA3pgEdCgEbpCzI3hC+WALw5DY4cRxqTmvUQBF p6ghC+QhfM/lgzZPDs7ceBTIrQFOxFkkiHMK8lkOZofYJtauNyYBnQAeI8Fm8K2ysQEB8gQc Eti+VD9groBVfco8BETQz2rWHAmNIqnwJmYT0R7eA7sePJKl3l9LALPdj/uSgMwHTO0Uj8ep cCg5OkMgcsMhdA5F45d5giPhkH72kcT/ZGIMeDo/t0IKEoYE4B5lSsBBRGQfVAoJsn4+dKsh cAsT4zguziTGW3nTVYqApPLknGB/1ZgueYYmp9oDp3oAfOT9guT41iRgPa0NHsTEYMyXSMMH PJH7RpO3KJeYEW+EVFzg6tAaq+s8wkc3mtccfXqef/iVehrqYVlk56TS5JeVvQodkci4woiQ gJvxVW9HJ+ZmSCwkQ8uOvFDAdg09xFLzmkf4Ql91g6cB6vq9LSHB+bZGR2B9baKYBOupT8Uz mCeq8rWJjkYtGFo8wRCb/VJfXya+1LaDBO7BHs4D3FuwiFkAtJGbCgl+f5Y/P7/d9+it7hK0 /fJ2bskMUna3WL0J/P78t/z5/+bVIVZiXM/mSE/084rTp2AGYOYobSbTZBTxBEOEQ032WgZB LCAkEBLcnhxCAiGBkEBKpG2vNt4ecQMaQDyBeIIBYdl2SkICIUFbxA04mpBASDAgLNtOSUgg JGiLuAFHExIICQaEZdspCQkGIIHIL7YFfTyakKAzCchL/i3x8cXyizkzCgl6kqDx2CK/CFNh KBJwNqn6wVgNiPxLLG4NZ35dWeQX+ReCupFg9ybVZkE1EpRO7Lxva6ZXK4EL9ui1zqPfZqXu CicReaQCnuoH1ZZfHCInOLZJpWAj2heSwMwdlFT0PcH6byOHIvKL5mroUPKLISYATwBtIF/+ j4boUY1MeoSiFiUkyEoqxiQIRbECaUY9QZFftNtE6ROdJL/oYwQhQbiB9vSrQwRYBQHRwyEN QCkdM+hwhARB9ykJgmuNEYG4ekOo7U+WWqFl1PEk8xLyi970URKE91IROTtoIwJpklgdrEwB zciDY/r5DHyzmpSQYBXjdeFQaiMnUQLYCyBBDDRQZQ0TsRL5xcx1VI784oYOPBwK7n0D4AV1 MCPQxkJTBtSQbF6ZMhoE7ljbZ4vbiZ9eKiLBNnIqqXjcE3BIIPKLeg8oeUXqfW5OkCEBuhFA nBtWgepoZLJOeG6jnSSw3fvkPU4CUFuoSGWiziFzF/lFB5H64RAaJ5ss6NqeIAZk4OnKSJBL jEV+0RcDO09+kSSBnwgnlY3t05lfT4FCnKvnBFatzQ+1trygkARonV7kF9Ok/Bz5RZIEs9G+ ZPz4GVg1wqs2xzUyfVfTuDrEDbFY7ZgPy4rCIedteRqid5dfpEnAUYLKVIf2qJ7F2DkUm7KA qMP6fneMWV+bKCaByC9ytx4lwfRXVW+8Co5+7f8JXisA6dcfvqyvfQJAn8e8QTAQGi6ULpFo 35EEOkcS+cXK+7mjuyAx1oD1SeBeu36x144E7v1PGOX6Wxtsn6dKWA2eD3h5TU8FOpFf3IHa yh9JSKD7d6f32f+tvJZ93XX1BGsMz/ghiX2LK/kUM0cp6fIibT8k8MMWrgegPETu/WHs050E w1jithMBSeB7Ax/IaG7geQ9u+2EsLiQYZit6TaTbfYJeC07GFRIMsxW9JiIkEBL0wt4w4woJ hATDgLHXRIQEQoJe2BtmXCGBkGAYMPaaiJBASNALe8OMKyQQEgwDxl4TERIICXphb5hxhQRC gmHA2GsiQoJBfse4FwA443ZRBuRMrFIb+R1j8QQBlIZRBqwEcE434gmEBB+cDKUMyEFvpTZC gq8hgb1qau9yqOuVRgKyRDBtMGXASgDndCMk+AoSxAIGjhB8EtRVBuRAb5w2QgJ9jRO/ED3O TuVmAtxDTuQbr6YM2NDyQoIvIAGtXNdPGbAhlncPJSTQgmBDXG/cvYdKMEMJJsdr8JVArqgM uN8cxZ98zVaiJpSUKO7myh/4gru1kCwLJtVitioWMjhPGXB8ZGz7f2MSWJ2ea6cF8K/DwHL6 F1EGbMUeLxy+NQm0ANflk+NYNt4oCMbVoVbKgK0QfHwc/wC8NwkMgPjlxOOmb9ADKB4MyeK7 ufC1npooAzYwkVUV3/b95iTQYbI6Oa8dE4Ww8Umwlkep5Q2lDNiABHq9vvivkMDwIHdSNtiV mkN4JLDPDEI1bf06JcVAyoA1bQH1Bch8CgmMoTQIeIrOZ++R9H+mBeKviNixhAQfmwsRzoRf /75hAggJkp1xPwrxZclyfwR2nAG9p+IJOm6PDD2GBf4B4kS3WdpkPCUAAAAASUVORK5C YII=</item> <item item-id="138">iVBORw0KGgoAAAANSUhEUgAAAMUAAABICAYAAABGFjH2AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAgPSURBVHhe7V3h1dsqDM0Cb4/OkC2+ JTJH3waZxr++TTKMa8DYICQQGGMc1HN62sSOQeJeJGFz/Zjlj3hAPOB54CH+AB6YXvPj8Zqn Cxwzvd/z54J2/SY/8/t9hfWtDF/sez7m55v2tJBiGwvjrMfrGkB83s/5oqZDNC4TQww0reB7 ZjvK39TkJ6TQnleEeM6RyePM8Vmaf8+vho1/Pul49Hm/rvMHw9scG9KXmeYXkhUIKRbPTa9H xVlaOTqPYGcC0LcNpg6RvjYmagzAxTakWaEnpOfTT1uFFKqGuDRvUUA9p4bRKYJnG5JPI6Aw WFoIA8DCwVjtc47ZwOuNasNNFwcnRTkgTU661CD6rxsZ3Nl3/f+0zEbouSpzC2eqDZTub/Q1 csgDU4O1ZrLXdMiiZuKwhqiRUqo+OD5qbgOPFHoCcHw7NikUIEuiBFyh8j5DUihQ7GBWAHy4 MzAaqbA0x79OarjDGdbWTggBVB+QqHAsrezDhpSf7HF3oWNoUhSv+ESXbUNSeLwDv0XBi1yf XC1RxA4iCLXsSH2P1xZ4BGHCjGODPsdGEhgF69jA7K2J2OtADUyK8tTJrFbZwYRFej4pYOqi CQBnbgz8G6ggoEzaEgbBONDg+TDXZgNMZ4UJG4A94eRQxwZ+n3c8DEyKOoWkToe8uiKfFLDQ TwJqXTHTtQyap1OrSnmzb5QUGtT0qh3HBg+wAenr2MAnhVqFNLXhuKQorSdQL7tgO06KZXTC G0tUyoamT3Vm2drpE2rX6s/rI4WJbipaCilyphJ7LgSoBqZdgcojhQZKkOfAu+t2FQdZfTq5 pihZhzBuYtqwRhx/BS+yKLBeN1wty78/BIdeSHHw5tSeNpn0aQdPJinIJVlQt7yIZ7JQUqw5 PYLobSnZPYauPtVYkmXaYO+LgJue+AraaptKWZM25M14QoqDpMhzd+xsZsGflT6p9vgzJ3mf 4lX5AcXEw5bhEvBRG/JGSUjRDSnUzMd4ziibFHS0CApc7M71Gf5xbQiiE04AKlqwbMjjhNQU rR/Ci4/PtDyunXhIr4AUNq+n6wJ6JmYRNRN0sNCmnwpwL2xSsBIbcrsnkeL3Z/7z85vrt9PO /yx7Ka55aB0ziUHS0zxx3YV/f/6b//w/+OpTy8e100Nd575Jup3UGcwaJ3WZGx6XSHFGznxD IEiXdw8IKYQUwgfgASGFkEJIIaQIPNB0C6ggsH8PSKSQSNE/Shv3UEghpGgMuf6bE1IIKfpH aeMeCimEFI0h139zQgohRf8obdxDIcWNSCFymm3YIaS4CSmKxRXOwNGXy2l2RYo6EoiZKLgD KRr3kTMOpzw9mzl0sdM5NlC/v4wUp0og5ji3MeByumbPPROAxePQkd+KbSAG4xJShBtGcmQc S2AV+U1Hg4v38rynVY+NQx9P8x6zgfB4KFyASTzmyDSmQHtUxjF1/czjtUixbbwHyn+6O0Cq Euxwi26yIfduXy1FWWPv9tU2ZJHCl2Y0g1aHGPi2QkKHiJBx3E0xTj30DoUqpHClZKAtUM3C qJtvImdR6c3FUpHTJGe5uljam0HSJ0wrCHznzopQCKsnCURO0KhBithG/JQeU2ITPzrwHCnK vSAROU3tC774AUEK+F4FSuRLZQaO1hEAQDigdcS5MKxDqZldmzTxVqIKpNB2UnL1pGyMjXAx 6U0jOiBympj4wnlYyicFEs5JVepglmwvgZgMFgxSpAh3jBROMhhIb+JKHGh7wNemzyKn6SRF yXfc7cE1UAhkpE8e0mJKEPBlIeexOwXcSGJ6fD/FkfQp6Jhfk3DTJ1KKMpW+ee3nCS9/q5wm WVNE36WwOZJw4lZzxNIwdzTypOGTs3/OCYxIkb6cT3YfyJmFtpuO6lRY5DTNi27aYYkutLU8 46qkjebLnJWfMIrgKwalEoicPiQgXYUUtraKv2OB8ictvbleF/U/U4oSjRQipxlDBXP1CVxi jQQc0d2rJRCTs3wtUiQbKj2BefMuWySNvxozmpxmQIrH30WFzVlmVZ/dP+qz+z4C77gamOX4 rnE36c+u6J0+HryYEAEMedOqFFzE77onhchpmpFrJ6fpkUIB1iWF/WzhZD9vacB6vlXbpo7D 3x+RcaxMiebvri7rP0OpLztSqJ6US1Ge8jwWsCF6px/UtTXlNANSqLbs7H/2v2UAqfyrG0QK DV+R06w88PTlNlK4aRAVIcIZ33xTcn4zC1MN3YQUvbzP2kSXOo/8pIbmquMoKdxo4RLB7SRW a+Qcv8rgoN3bkKIbj319Ry55dLwrrwopuhqOHjojpBBS9IDDrvogpBBSdAXIHjojpBBS9IDD rvogpBBSdAXIHjojpBBS9IDDrvogpBBSdAXIHjojpOjsRZA9gGL0PsiLICVSjM4B5H5usPNu MB8JKQYb8LS5kj4JKdIoGewMIcXwpPB38B3S0PoS8ggp1GYmzhbCLxlw3wy4f7zC9t4v8JOQ YmRSQJEEBeikKuMXoD5hgpBCbXOkhMy+ffwxAhBCB9/uCte+6WWUQ/yN2CN5YIBNM9Rw0qJq UE5mJEDsm6gGJoWRexmxrBBSIGR30umhSaH1cEdkhaRP5I07dWBsUoyaQmH1w9CFtr//fHBS rKsuw0ULWZJ1Q4VKJ937NEIKzYtFCG4aqahUtsrNOz3iiPiekMJ4ZpFvGXnlZbQJwdoLXzln vhdSbHgQYoxFDZwQQopwDUK/4KPWe/7GAtldrLVpIy3sJpHiLmMp/WzmgX9BmS3Lz4qH6gAA AABJRU5ErkJggg==</item> <item item-id="139">iVBORw0KGgoAAAANSUhEUgAAAGMAAABCCAYAAABDy2gGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPJSURBVHhe7Z3rkdwgEISVgPO4GJTF JqE8nMFGo1+byQaDBUi3gAZoYGF153bVVfnBS/0xM4AGeVL8dRkFpsuM5GoDWRc1TYtaoXE9 1X2e1Hx/QqVjhQjjpIwVdlowDG71530uAHhGQhieJhrErNom+KoW2KJ8IITh6LEuk4obxG4x 02Y120/SJT3vap7vqtRpEcYBQ8eIKInQdenZnwaiXVZpDCEMA0OLnQjWeqZPgfvS8JKzv9xd EYZhsYmdCtiS8AZQerWlraNkHUAYhkVaNLNKCq1AspZwgZSDHJQnjJyL2mFVwQDadnkQxrat W3Irn0o3pYVeF3ypTBiIK5HiQzaA2zmfc4G0DH/bnA7e36std1eeX9oeXRBGyQnRNusXaMtd sOlz+ieMLjBKGn2VJYwS3WDLKGmUMGrVAt1UbfP4xo+rqcdNfd0edUoDtR63P+rrL1BwK0IY dFPYTBlSijCGyIx1QhiYTkNKEcYQmbFOCAPTaUgpwhgiM9YJYWA6DSlFGENkxjohDEynIaX+ Zxjn3KTU0bR+b4C/KauCB8P4ZUfo5sW+ly4B5CNVJoTBYCAYwDgjHVYeoe+zcNUpKDZrDk/8 RR5dyCMC85G0NZUmhCEjMmUQGOA4pT4bYPgAWhN53cGdrWL7V/RFP/i+GQbgDyx/hI6OUxhA Eww/6cq+6339nf2zsZpYRoWY3CWnzOP5SB1jB2AZ+DjPNBpghMHSFdH+/gATnemiewuh2kHj D+n3LVmAdmXWtQo/qbS+nwkj8PmBBVgxNpgm5oRpj5GZDZv/ey6jiG4MgAG702Fu6rSqiQgs uinZMkyOawhOjA+ftQx8nG91U34AN7P9iA0nkUpgxGY2umT8bMywWepD86b22bvou2xCkG6y jD0+iL4b2Ex9ejVlI5wFglyWcQykIYCnbu6kY8Z3/9FU+frZ/fF9RtWa+bVIQa8FOAkJEb/+ Utm70SmupvZNVOzeQrRO6mEvsQOvp9HJMvSAavcZx8PkA7H/2PXWBMuHrKbgxt4WwBt6/MlV CeNC9AiDMCQFmFFIy6Bl0DIkBWgZtAxahqQArwTQMmgZjBkXsgLC+C0whh6hX1y0XsPTp8LZ M+7hL5d6Pe3F20VgjM+burho3YbHD7l0k7a84cxX2LYG8ZSisPd8224NHhTuYqdTq/jxr/JJ XlsjFzfg/C5/ACWvXHVNWobRD/lgZJCYl81YKXNRhOFOZH5Ktdav9KnHjwz30bWyVX5+u1K4 XtVagJR/WJhL2yzH4xyq7L9saL3pxdVUFsy4Av8Av3cp9tmVVg8AAAAASUVORK5CYII=</item> <item item-id="140">iVBORw0KGgoAAAANSUhEUgAAAIcAAABCCAYAAAB9wsUNAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAViSURBVHhe7Z3dldwgDIXdQPrYGtzF NuE+0sFU46ftZIpxDJg1PwJJYJOZOTfn7JOxY8THFWIkM234BwsULDDBMgULrMs2Tcu2vqWB nttjnrb58ex6e8CRmc8ZdlreE4uwO8/H3AU44IjgMGDMW+eE65qt19+8bkujAgKOYDTWZdra BeNQnGlXnf2Pl3S+vXkf8yz3l0D7fGzz77WjzfzYSEdi2pauVWgEHN44Zo3RTEbqisxsrQHC tzdgRIClayDl+xoXwwMbkwI4rD3MYHUsPu0sTma2GbzaTK61p56XzHC9yundC+CwbOyD26wa +/0UCHaAC8Bx7Wtg/cK8K4FZOHvXInAbRj003QQclg2d0VI3baOCdHAqs59r76+vNtrwAISg EW5Lsq5QTgLA0etSDrguhyNds7D7Lg6YujLo3Cfg2Le5FkaS46ghjCCO/RDOTaRSw7QnlcVC XBt87rp7iXWRh+qAQym1ZORHrS/YBWmyHgnbk/cGg0+qiFEOfuA1LhRwXAHHMavPULg3lCVU IAKicP3iRSng2OFYLtkSrW9qZfsWHqjipln8vPx3HgegJlpxgZl88Q04LoPj+o3vO54IODRW BRxFa0E5AAfgKFrg53v7+v7RaM1bt/35/rN9/ZV1AcoB5YByFC0AOAAH4HAWQLQic6neWhft c2j+0//XFnBobA+3ArcCtwK3otEMuBXGWghl4VbgVuBW4FbgVhgLvHS0kmdN137qliWw6IkI 7hjuVvh6la7+vCscNv0tSnLk6zdsZrggiaXZoEPhEPS3uSOyGxuV45ila1hJ1VHLkb0rUTch rPfIE2VkhhC1GgmHsL+i925s1AGHySw6gegtxA3fP1eN/ao0MZet42i0lLltJBzS/nZ0h7u1 C444tb2Q7k4l1Ca1m/Fz6E8CcPUbZ0dvXHsMhEPeX26I2693wJFmLxODahNdY4XZJSDOfM7k k4ZMbiw+7Z4tHyjZE3BI9jmo2RnD4QZgB8iuS4L1CFHUG0clhZkvltlrPkZCWmEgHGI32i4M 7J0dypEWzSjcSvRaKQyK53A1G4Xuv4Ny2MgrrZ+9cz1F2KoLjnBBag1OhZG1IuEj5T4u9y/N fGlo9xlrDlfNH341iKtvYYVA3aALjmXxa4oCGMcKn64gL3eWjFZs1wSbQnfOrpFuRdpf9ZDL b+iDQ/IprEq0Ui7kbZ/9H7PPIR/D21qOh+MIY7lvP5TVo2KLj9ohvW3MxQ8eDofbLEuqz8nP AfAhadzLdrVRWAtpggVjIZ9j+JpDjO0tDRuV45Z3ef2HAg7JJtjrj+Mtbwg4AEfRAoADcAAO ZwGsOTT+B8oB5YByQDk0muHa4hMMUA4oB5RDrxxYc0A5oBxQjoHKIUg1iN4m+TRk+itlkoNr f6vSnLog7DlCWaGhjsC/4cQEbdJO2p44Kkx8foqHkv9aMWUGwHE3HNr6E+pz1MkzpOenmMGd 94Ss7HwXYZ8Bh9BQrhn/YfzsceLE6NPP5y4izKs1aiA4P8XntlBwCvuMD+MLDXUMnfqUJnlJ xfEiReXwCd2S81McQPZL3M1w4EgNFRqmsUZqfXvN+Squric+jtRny9fTKs9qAOtO/DfaW+Ew 93HpeoH1kOzjRltltLb6kzhaWVYuKy64nqZKNsKhnQSAw4UsOtdyRf1J+Azm/JRSGqYJd+VC oOzjbhXA4WVUHEp6mBT1J9lMT+t4lOenNChH5JaEjhdwBIaShpPnQvZMqk7PbKXPhS23/12X SE571MLRmMEPOKJZFEQEwtn1+s3058n6PgGObHQ/CZB2MIxZAAc59f0W9ZVfNhqpMde8P+AY OWZv9n/9A6jmQvvs93jEAAAAAElFTkSuQmCC</item> <item item-id="141">iVBORw0KGgoAAAANSUhEUgAAAHcAAABCCAYAAABtjkmUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARGSURBVHhe7Z3tkaQgEIZNYPPYGMxi kzCPy8Bo/DWZTDAcHzqDCPo24CxsvVd1VVc3gE0/dNNAo4Pinz+rgeHP9qy0Y8ukhmFSS2k7 WfWfah4HNc7PrNpbJcI9qM8pdph+B6svznMeiwYY4e7gGrCjKjSYIms7Vl7UlOlBCNfT5jIN qtxgV8sftPXrv6Wu1Yr3nNU4zkrqpAl3g2vm2GKyoUs3VlcHsHHR0oFCuM40tDuuEDwZCxsC t24GTYbV1XDPhLu5vWKr1Q3FQFrgFQaO9c6jaNog3AylpSImG92GVhqz5tyQy7QlGISEW8sl r4PkVrhCWQlXb1NMVebE+92yMfhlwpdqhCt0daceNTa/Vguo3JMl8y7h1oRr3aa/u1VvKbQN KsKVBCwa7lR1S+qGTQyvP4T7q3AlD5eXJVyJzqpbruTh8rKEK9EZ4Uq01VnZx4/6/nl0I/Tj 50t9/8PEZbRMy8VGSpelCLdLbJjQhIvpqctShNslNkxowsX01GUpwu0SGyY04WJ66rIU4XaJ DROacDE9dVmKcOthO+YGnx2RmfNQPPMgS0oxXCfvdSoTevSHtud61+zBgU0g22kFONzOTMiG QYvgvoGdwwX65VC5w32d23w9WIrgrlaymFRM98C6F6Ei1yLAPF9j7dKE7Npw3b0drROd3zxd WS7QL1F7XmcyLdelhPhASy8i+Qo+Wq3+Fc3zrZyHtAMPWu5zntcbf4AbBfolaq8W3L17cMBf /2dH5GbVgSuxVx5TFh+/kojn+d4494Jw3/q9hov36+2aP+OWd7eNfCiBgn3XE2T9Ha00GCSr pnAlXCvUuO734Ar+faY5wtXEIxelkrfiDimeCcsD3NcaRlS5jBydh2+AC083XlD1AcsNo7a4 xTklpV0larn2amJ4jyY6v/ZluXi/PuqW9wGVdXXRbPzEtf7XnByuTVOvAUCXDH3Nua8lzssc z/KXrwduGJiiVu6l2axWOnmBURQskmh9hBGNloO1XvKycgPR8lVAdVyuNbWJceaCXxGQjZaR kXOcj/Otr4V1Lrxuvrlg0To3CW51udHfD5YVB5m23hONNLVDdTM5oPlb4L52VLx1rr9ttv89 tR8sm1/OgjZAD1gRcbSMNXtXqUy4d4nTeLuE2zigEvEIt0R7jdcl3MYBlYhHuCXaa7wu4TYO qEQ8wi3RXuN1CbdxQCXi8QpnifYar0vLbRxQiXiEW6K9xusSbuOASsSrDhc96ssTmnvLEr2Z UyfkDBNqE00+gBqLFiJcie5qwgXylSWixcoSrkiDfLGnSF19Fa70lnTdaTxVN1dDMln5qqIV So1p93a4wimEcI0RCZWWtDs4DzvPciXzrXkC4Vo9y9xdEg2ch50DVy4j4W565qdnckZcP3X4 0ah+WGVIys+9ZSitpyotAc7/jh8DqnRktL7OoM7HnuRDe9ufLns+Ayq55rup8R8+YE7VMwem gAAAAABJRU5ErkJggg==</item> <item item-id="142">iVBORw0KGgoAAAANSUhEUgAAARQAAAAVCAYAAACHWxFoAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAVCSURBVHhe7VvbtawgDLUuC7Ieq7EZ i/EAAiaQxICPYeZw1zofdxww2Ul2HjDD1v91BDoCHYGbEBhu2qdv82UILPO8rV8mcxe3NQTW bZ4XJFQnlNZs9II86zxuE/aDF97aX/GTCCzTNs5HamqCUNa158ozZ7sNo3XeJuAAZ+99+vlt ej0taN+fRWCdpy241OuEskwDyI6mZBoHwHDLNg1jFK5dG1o5oR5PSppiRL1Ljxs0vt3JViuD 0YX7u7OS+ZTt39RR9oTdluWY7uuijco3OMQyCWW8EmPUepCkXiUUZ1gEBhEsVuCx9f6+NULR EprFe9rYbueqswliNGP7B3XUkIklhVI+sER8xI0mwXCSBGKqTdrcehMPPmYBofgst1gGC2wo OJ/Wh+P37P5wP551LYCwLyt+lXIBzlwQZIIwTK84RPn9czPYJLEKTmtKQZRV3B4eW+hV7vu4 StgfUxjZz4yscW8r91GhOJ0iIfv14V1nZP1YsDVk+8d05J0u+pkh86m0QiHkxTZWOruvRsfJ zDwqKxT7Xnq990kzuUgIxTr1EfQ7EPeQSp6hjoDJyMMGnlil7AF9iXQQQRhZKMKAqZx4zmIV CCIEciASGNjRqDl5uYwUcU8zkicJhA9secB+KYFYOaT0+FCw3Wt7fQCR33xIR0mq1SSe3ZVq Wx64e2WFEnyhVv+T9aGdzQgF+1vq7Pv/XZZNAx5m34yEOBC4z/UzgWr3SgkFbaSsUFDvkAQy Km1pHNnYRrLRhILJNMHLEweeWfh5SSWhpHthuEDl1brthYASdTSUwPq+2gmvEAqoVotHAkcF YYZmFRXK+frQVeQtDzpwgc6MwUBZxwmZVDbIcbmZg0w0ml5zz+bMn7gBbidkIqUqmLQPBbpk RksJksIDOKzTJ+BJE0ouL5QnaXW8w7uSVTrhqQm2D9peHccowfMBxROK4PtFQlwhFPAiMRnm AiG7VxCKZn34TgGhJH1w4khIjewZV3GUVi5F1lN/+SClEJSaCuUuQjmIJAa7okKRCSXsidtV uvUAMJ0Rium/A3mzXP2w7esTSGRVNkM7QiF1LPB90etuIpSS1ilte0sJRbmeIZR0Ai30464E pKfFueO2WKGklofkpiGUE6wQNkKFQs2LLhJKMG5akVwllNjmCsnkTdurM0ZBhULqmA2za1vy CkIhqxEunujq5MqVAOnIHSYVpuXBQ1mXDUK/ljk+AWo8rRCyNy5lknso4WGtwQpcLDUUYu60 ZQjtUcj4eQWAsCppeUg5rB0ChoUtDwp2erbConRWoYCZUdYefIvta3TU+L7K9SoIhapGTg8t BGFKK5Qs79ItIz+UBSUfGrwWsXROCFx2jAyI6e75Ux43FqGOaiGphecmuN1xOiSU8BkxpC4h lEwO+w6cgTBGlFMeeOM7C17HG46NlwknCX7e8LTtVZHLf0kkFEZHle/7JCMOTCVCkdbjeR99 Aqp5v4GF1f/KeuHYmJ9jlvWRucPpq4637qFcdM0vXG4NX3cNgLrlyvnKt9qe11Hv+8cRcZ17 fOd641fTfhn15NgYNZ+oPUEVh7IkPO3h7euybFBnmL6KRiC9eq/FCVU+sK36IduzOvq2IwzN i+7VaAFO3qFeFr9YeT/ljvXGH8LvwwoIxb4ZHG0mpR1/6zQnJbkKqr0WXG6C/7liMbdsy3+M iU9AsI1+xfaSjpLv/08/OrT+6I8D/zv4Leh/taxuQYcuQysI4AT16o8DW4Ggy2EqzeLblh21 jkCKQD6T64TSvaQj0BG4DYFOKLdB2TfqCHQE/gA4DzlmPiKr1AAAAABJRU5ErkJggg==</item> <item item-id="143">iVBORw0KGgoAAAANSUhEUgAAAFAAAABCCAYAAADAD1E9AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANZSURBVHhe7ZztcewgDEVpIH2kBnex TbiPdOBq/Gs7cTHEgElAIBBoP7xYmXmTmTyD7eMrCZBAaflhEVCs1p/YeJ21UrNeSc++6WVS elo29OoLAXQw1ExDFxLblgmFfhGABt6kC0Ii6HHVc0a5lwC4zkrjwjuUqXZ17v9K5qq3RU/T okODHh+g8XkoPWjWRmVliMacQ8iDAzSACgHDKEoB0zbAgcpi+45NeWyABlApaORgWajlKG1U 6LsdGmD4orkoYaMrVFtOlbBx8GEGBlgx3x1KN8A9jHjXMDDA3VcVfdlOsNOEjSDX2fnOcQHW /J+hkPN31SDi7Nm7h2sDtKYYzk7qwxjvDi8BcCZNPRoG0kEwEYCEyVvpEgEoACsE9gBBM+E+ kuMr8H7T37d7Hx1Cq/vtS3//DD6MEQUSlIBeIibMoecGyaJADkMByKEnCmTSE4ACkE+A2YP4 QAH4R2Db8Mw+ExPe/FMVGOdgYWmEWW/jJriJyMkAT7ScZXMMURYsU1uSSU4TkbRdRgL4wAVV oxyYgM79DX8LWPoQf9mwb9NvsQKgDVX+agrArrywu126GpNULbnlbWotTqo+e5t8dVM170Bf WmfNhRlJpcxyFgCGADX1I2nmHisDw/7+Al9IUGB/WhNJKoUmG5uvA+HVmKoNU2sZLEXd9jmO wp/kd6mDdwC0eVJb1gCBAP+WpAMxRbUq8xHO7+iDAJCTF0ZWpA9wC6gPSSInBPaZCnxKXthV Y4KInDhbCLBVaefwgT7I/Y8Q6MELz4lY8wTRt6rAo84k45NoHwSaLv1FWFHYDUhccp1SYBnc rDGpVPOBpme6qk4zDmS43EaAsYnmx3y4CqPnPNVMpJ9gI0CvsEPqaNVTPNxJH4+u0v5Xa4jC jJt0AGTc7R1NKcMYxnMJQAa8/FyY2eHpmosCmZ9EAApAJgFmc1GgAGQSYDaX8jYmQDFhAcgk wGwuCnwVwJcsZzFf5h3NKTuVZKNN4ctQAD40L/wOlTz1nrLZkIlXtrsyAf4nv7GOuhPr19hw vWOr+cHO0o7LbPl3GbfaoRPg/6t1O3Gf4+4X9nYrx56wXeFewSEH7zApytFPTIA2DcQ4Pyt/ bpbpdXwfGKH389624+9Kx+VdDOADhAy6+AUtWP8JaMi1BQAAAABJRU5ErkJggg==</item> <item item-id="144">iVBORw0KGgoAAAANSUhEUgAAAFcAAABCCAYAAAAi00pEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOTSURBVHhe7Zz9kaQgEMVN4PLYGMxi kjCPy8Bo/GsyMRjOBr0F7IamZ3p1lt6qq6va4kN+PJ8obxmc/agRGNRa/sSGl8kNw+QW1rWv bh4HN84rWdrgejQB1DDxsMY013kkJ8TgerCjKwiQoePFTYjiu4e7TIOjBbsrethUvf0rWYBb ZzeO8zZV3z99wwWPJcnmVgHqLAMGi4gnoGO4AK/w8AIlDpldwGRk6kw9I7WHfuECvNIDDAPp gZdXE6Deo9lu4cYQsCeWXwXkKsXUnFeOJq1TuBVLgMWZFK5ffQR1dwp388aid25khLYAQl6m 4NV9wq35rX+vQPy1+kALHnFYjsElXxHal2JHU93DnVivZA0vEdEkGVwWXMabL1LE4BpcmXKq tbaHFc8Wqi2hBfpW7vPhvh5PGTlGrefjj/v62/FSzJTLUImoiNmCCBuvksHlcRKVMrgibLxK BpfHSVTK4Iqw8SoZXB4nUSmDK8LGq9QL3HWlEys8UoJSvxFumhHI40Cwc/pqOIMJmg33Qz45 +j2pZLcVyVohwQomrrZiLLhv/FgOqsoDEtjv2kZxlM7jPqki4n6hz2KyRXYBaS0OXFFuIXRz /ip2SviFhIkgm3Ya/lm1/hLwlGB1n6qefKny58B9YYMS+eSYwSRgQ2aKTJ2goQkqakn9/ge8 lwFXvrVObFDGNpBaQgBxqBhVop8MCKzliRTqDihD59wx/hr3kNzp/1IDV8D1e/UeTg4k88xM oWGQ25N+weI+lBJbFV292fkFGHBfyS0QOxE71DmDdHqKE8BQW/hM5arkFkJSOls5nMy9BW6r Qu/huee0Of9BSu+hefVlq4SXlLvnrhAP5E1kfrfzB0n6BMcWwqIqxPk54eeos8YNyrLn/m+X jFjy1XibdS7fwdGlJ2iJGWdKb2183epXz2R+lawTX9qt3tDkdBuVCx2F27F9nXtcZLqcO186 X93yYe812bYg60kAV9bRLWsZXMVpMbgGV5GAYtOmXIOrSECxaVOuwVUkoNi0RUgV4ZotGFxF AopNm3LvAPdHPjkqDvSKpuHrW3WT7o25hSvGeFmfHLhvzS1cNtIrOrY/rFakbkcCKML9Dm5Q nYhDIZHlMLd5VMd5TeM13xXGmewYFj+dnAOEsvRQNceWttmvcoGvHX2l6xp2aJsqXztuUBVv 8F/pnwzg5zjCBfftucmUHd8R2o54LR0Ja3AV74l/mo0KipxZn7UAAAAASUVORK5CYII=</item> <item item-id="145">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAVCAYAAAB/nr22AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKtSURBVGhD7ZiNkYQgDIWpy4Ksh2ps xmI4AcUQEn5FnD125mZuZVVe8vESEGp+ZgQqIyAq75u3zQioCc+EoDoCw+HZ97168l+88T/p eRWebRVq3a6U70ouQi3ygmdTq1iU+9qVDP0uOJe6lw3Ts61KiFW5UNZNP7irVM9r8OxyUeIm 55g4hkdfkmpZ5DHS+9MOz1A9HeCp0ePg0dT5yVWKulaXVp0suFIsOOJY/eYPQKXfebtR3dvS dyF4NLRoHvFnvK3HztfG63BniZ0HjW9aT4kz1em5nSeguX11ugIVuI4eIZxHX9bziLqPnVcb YEDbCY5nign6wlXaoieFOlXeNUQXHKnx1PO14eOqkKcHlC0EC2eNJtiI6mvlnqvDTwQDCQfP Ucn79z6X1gSIlFZ23pzORj1UHuA1YtzAAHPUKT9ezwPLFFmyzEQh9cYq/GSbicLGl3OwOFQ5 TmDm6Owc/R99ALJ5qskitV56qWa7XQ/lEQYE7MQA6tR4z/z4DbOjOEy4TdQBBa6n+h6UKL9r 51ZeqSOl7Tf/F0AfUSZZreYFD+tJlM0UHKlx0wZ0yg/abZ1BlZGGi7RymDYc3O86j40pB/G5 +wsaz356SPgrypYBhm2Yn8tPsFW39TLceTlhUXioRJQ6TGOPkGU/VH9HnDF9oec54b7d4yq5 fsPMj8OAPJuf8Jwntftg4eGbT7qbP7t8DOrbu60ztqZURXoLLwXk7qRWTw7t8GiD2qr7Rx/r SjnP8/kpPySM7Lb4HjXfTd4558lJGFe2Yn1P+NwhenDZShlCwQ4X6mmHJzkxG1DOfbxwv3bC 3ArPx/VAeDrmpxke1yOhLXPoQtZan3CnzNS3/yyjv/ukHgBPz/yUw9OekvmEH4nAhOdHEjlC xoRnRNR/5J0Tnh9J5AgZfzfaGCu9IYVAAAAAAElFTkSuQmCC</item> <item item-id="146">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAVCAYAAAB/nr22AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAK9SURBVGhD7ZmNsawgDIWpy4Koh2ps xmJ48iskQBCB9frYmTuzu6zKST5OApfJ9VoRaIwAa7xuXbYiIBc8C4LmCPwcnuM4mif/xgv/ Jz1T4dk5k3x3KT+k2JjchINnl5xt0n8cSoZ6VjiXtof9TM/OJWNc+lC2TR9ddVfPNHgOsUl2 kXNOHMKjvhJy28Q5Mvr1HJ6f6hkAT4seD4+iLk6ulKnv2tKqkhWuFAMOO1e//gugUs+83Kjt afRVAB4FLZhH+R6z9Zj5mnid7iyg84DxXem540xtei7nQTQ/X52+QCHXUSMJ51Ffq3kU3cfM 6xlggTYLTmSKBH14lT7RQ6GeKu8KIgcHNU7dXxk+rAp1eoKyBWCBMLnVaVdAFGz9W7cyIPEZ SHLwnJV8fO/jtGZALGnNzjun86GeVIkKv0uMaxhC5xmUn6jnCctUXLJAAHRwbXOr31/AYIpz DlaGqsYJ9Bw9tOB98QbA5qMmq6BVL+JxelIeoeMJnTiIOTWu+8hB+YkbZk9xwoVAMuLOPJAN JmuCndpF3XUk2n7rfxHog2VSfS5q7ayHKJsUHNQ4iknH/IDdlg2qoBquvBX/JecxjOQgdmGH Wuc6j+4BYfNLlK3kNVZOz/ygrbqpl3jndRGcCbbvE6DL3HWYhz1Clf2k+rtad5ytx+5MvRu6 khs3zJdbwnFPjdlRoirQrgef8xRttGang5Of7uZtlw9Bnb3bsrHV/VPUW+S19tVTQ3t4tJHa qsdHH5yXDhH75af+kPDGlhb3Q/VuMuech9yL61Wa77lfroc4ROyVnzp4SuAgp0gHNrdaozRO O2EuwFO5SF6tB/ZEyFFxiW7RUwWP74PAttitzHg89/8pY609VnON0bf+htIKe79X6gHOMyo/ VfC0JmJd9+0ILHi+nd+h6hY8Q8P77ZsveL6d36Hq/gG2SfrW2rN95QAAAABJRU5ErkJg gg==</item> <item item-id="147">iVBORw0KGgoAAAANSUhEUgAAAG4AAABCCAYAAAC2NeO2AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQoSURBVHhe7Z3blaMwDIZpYPuYGugi TdDHdkA1PKWTFOO1DUzA+CLJUUaZ/eecvMzxRdZnyTKWYXD4+0gNDB8ptTWhl8kNw+QWklwP N4+DG+cHqXSpEMB1qW+FMEw0ZMeuHvPIgH0VEuDE4AK00fUZzuImsqWeBQU4IbhlGlzZ0DZL HLw1+l/VLT5mN46z4zpOgJOAC2takVrqPoNV1eEFt8ld8wCODS6AqQQiwYKGxIUG0FWr4rtM gOOCC2BqwUgOUoRZjzqD1XFiHIBjgmspOEaLqXXlrDDttzUhkvIAxwLXcJO+LTE4H55UXTDA sUglhf1a1IoAha4ydLRM9O0FLI7DkeLOcutZMzhZhWi54aOoAPdqcNHlHZ+mtLcDuwgAx4HB KeutaSI9KmFswA/9AxwHBqcsGRyn0WdZgJPprV0L4No6MlkC4ExiaQt1v7mv271dTljifvvj vv7SKiOqpOlpj9eJwQmnUaxxMm1xasFVcrRlqCzAGYLBEQXgONoyVBbgDMHgiAJwHG0ZKgtw hmBwRAE4jrYMlQU4QzA4ovyv4K65iLLjD3/kGM+8zsk14dyLfoLM4fVdlgxONi6TpwMxF+Ok aemB41Mpl6woYXIpGSIJnHRcwhPwYA1pkmfuf+RBngpm8gYF+Ydrvr2X0+c1TheLWzsMMnOT S8ljooATjGvvX2Zxlxsn65E7J9evpICrtUUNF9LYyvmHj3nebsTkXOXWOzG/gwzrWJACTjCu PnBeJSdQBZDrjC/kumcTP/PXiuRpbGGYFXBxHEprHQFcz7hkFre5md1dnt3kWVFFC4qXHFKL yVtuzwDr4GpQn+40TsDcr+ZirIKL7isqPlV2skYllhUhh1m+5FKtCxbQ4VIo4FTWOQI4yRLQ 6Srj0r66S7+WnHLdL9FaAUbWVRbWyo78Qwq4enp/wdqCBXZanE+OvN4TIK67YlcZV489cjsO 4NIxB1zp6qw8bLa8xu2yPSfAu/Iq44xJoskui9smQ3Ym1zeq5dDecFQZ/Z6ZDXh9jTs+Wchf J1KM9JK4/sf3caJ9xlqpy1Xm+z27u2xUufZcvAdWrNMx0EtVE09O5ANSAPcMXPj7uO+YKfN8 UT7Ia803WDUlquwYkhK4Dol+S1WA+1CSAAdwOQ3AVWrNC1iclmaV2wU4ZQVrNQ9wWppVbhfg lBWs1TyuWWlpVrldWJyygrWaBzgtzSq3C3DKCtZqngzOzLGOliY+rN1w+tBMe5MfEOPJidZ8 oIB7e16l1mB/Vbt4CduH4my/mlCedthu+6g0vC6DOYVa65AYHMUNH2QFOCa4mJ6BV/tytWah POVl2kk2dzOvkucmgxZgcZK5gNfXS7Rmow4+GGGDg0AKfKJFoDQrVXrg8T8Sge3AS7nvzyV5 nyGjf7YsLyyCk5dCfF9j/wAkf2dItfHTWgAAAABJRU5ErkJggg==</item> <item item-id="148">iVBORw0KGgoAAAANSUhEUgAAAHoAAABCCAYAAACYcMIkAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAASMSURBVHhe7Z3tkeMgDIbdwPaxNbiL NOE+rgNXk1/pJMVwBuyNjQF9EDJR8t7Mzs3syljoQR/Ewhkc/n2FBYavmGXvSV4nNwyTu3a5 z93N4+DG+d40OkA3mS9CGKY+iPeq3eexaTEBtBq0hzy6RkcT3v3qJmXkAGihqTfx6zQ4uSOv EWBYosDyowrH99mN4+ykgRygNaB9ThZTTsO8904dbB/GpYsEoMWgPTBF4eU9cUhCvV8wCu90 S9knDeEALQXtgYm9eblJDmqAr1g0y3DeqyVqALQQtNTA2/Chak69N+flXH2ECw6guYYNcsqw vXrgU0ELdQFoEeglN6py6vNDt1f7OvG3dwAtAS0Ml4ehc/lYXYzFkSVpBKBfBTqE2v2naPrt 1T7vcwsygBaCnpo+CnvCByY7feHREngS2SX8toGW3IyWBWjaRjoJgNbZzdxVAG0OmU7h28X9 Xm66aztcdbv8uN9/vIFRjPHstO1nkKMl9jIri9BtFp1McYCW2cusNECbRSdTHKBl9jIrDdBm 0ckUB2iZvcxKA7RZdDLFAVpmL7PSAM1Dd+6F1j62i9cdn8X657v8jguexolUM2jtfPPavuXT q9AcdyCjfRD/MNbpobuyuZ0NvQm0dr5l7VSgvbelTem537GNchDM9CEr+pzj+aNFz6Wvejp5 dLyh11na3M6eUwtoxXwpvVSgQ9/xocc4trpwW1VqSp29ORAptL+W+5zv87yeWMyF7lWDxj6s qnFbQCvm2wd06P7fgS0dBc01uYXfxfNE/ue4OPLHPtv6nCugwzw65eoG0G3zfXKO3ofqbNgO 8D3Mvdclhj2FqHxkaJt4DXTtb4/wvi3K0/+1EPYpoB/h+wwngPeeck2OkWQOnB2r64KHNYUy GnSXPN0AWpOqOoXuUMrE8L3kwuKZIPK8UAq2kOub+pxp0DXHjIu28NPJo5cm7LNNG+sJXTG2 Lp+/yrY04SroXD4uvZqhZbthL0fH4zzv1Ne9FlbFhV0EXW5Iz1bdYWHVP0Aob5UMVt2M+VKh Ov17k0eTN6tU3eWo17ESThR+2300aVi5wGtBUxFgnxKesSmvb9hVr31gm7ilGGPfhC/4UtB/ OT0pbs5M6W0Pf4o5yRdEja8C3UbD9tUAbZsfW3uAZpvKtiBA2+bH1h6g2aayLQjQtvmxtQdo tqlsCwK0bX5s7XFslm0q24LwaNv82NoDNNtUtgUB2jY/tvZs0ML+7aTnLna60u/k7vtQg22V DxT0QMgncIoGA9X7v/HmwH4rjANa0b+te5s/QPcD7XvqqJAqbnqM380x+jaj7VEvdY91hnjp azfU9Guc5W3MmRYsHxVI2LQuezPg9VPCRUEVQHLQOQUYp2Q4aWQ3NEALQYe23Xovsfio0VkF uhuHWnDpmAAtBU29+V7av509+kS1RcnCtp8iQItBLxdUt0PS7VXGe4nGfnwdkgaa8pr6lkja rx5zMqvqZhVq50nBo5Wg4+GDTqc2izrJv+9qGwqg1aD9ha+ErYeMHN0Eebt4C9O6LyqjVXjO +PBo2tIfIfEftohxZKf3RZ8AAAAASUVORK5CYII=</item> <item item-id="149">iVBORw0KGgoAAAANSUhEUgAAAJIAAABCCAYAAAC8RY+hAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAXRSURBVHhe7Z39kdwgDMXdQPq4GraL a8J9pIOtZv+6TrYYx/gbEKAn8K738jKTycxFYJB/fhI+hLuBf+iBBh7oGvTBLh790HX98PhI TzyH+60bbvdn1egJUpX75pvQ9Z+J0HHqz/ut6mEgSGaQHES3ofJBNl/9nIaPoTcqK0Ey3pFH 3w12IVqUrBvVbPxbDita+9kuHpffPqugz/twu90HNNARJAtILicyUxSGQ6cCOZi09jss4dAc 9Pt4yzmRC3NluH3HESQYJHcjKhJr98R3QUh0YKZUQGE/5zcjLOO4+lCRhPaTfVZ18BBHkFCQ 3I0xq9F4MQma6WYn4FTYP+/3ZcWYCm1eWq1apTnYkGkSJBAk1MFh96IaSKqzNMTscyAd8iRN DgQ+MAQJAqkyrI3XwsBA7TWKtKhicXWGzZUgQSCNuUPhaZ4S22U1Fv3rYoUiVHlDguyVII1r Mnl15zvj0etfbxAkBCRQ7sWupXyomGwH+VPSXgBEfOs+rxRLORASxgnSq0Fa1GBfjrda/ruJ SEqTgEuRJxEkBA7EdlSTvsmr7PwLRhce/fc4jV9IKiCasARWblSkt4CEXPR9tgTpLN83U6Sz Bti2X4LU1p97bwQp6VmGNgS6n+/h6/sHafHRtj/ff4avv7opECSdn2YrKhIVCeElaUuQCBJB wj3AZBv3ma4FFYmKpCOlYEWQCBJBwj3A0Ib7TNeCikRF0pHC0Hb0ABWpCTVCJ1QkKlITtgjS NUCKa8G02yPC8Uv7bty+Hv2OPhNYZpDAeU6b34KdlkiVyVgK4Dau7Ts0bVUvlwxt015lb0ue tl5Lhsg5KdrhZyzuU0NlAskwT3Xd3Aro8QGKN8pZy7FNIPlFdLNrpZ+pne4ZCnVSinqtCKFc /dZiHG8Ks41YbGUByTBPbRXvVMjY936dXHJrLa7WJpCmTeleZYFuX6/mNsVqNFEaF+nl6rvG Jqr6rdz+Z81gczYWkOB5zmcK3NzhFGt4ksLaqr6ZUqZtKhobcW2hr207/PY/ACcEK4jbXliZ bNeJh/FYLhFGy3L8eeaqIE7MlQwg4fMU9nBHIftwgEURkjC06p8mmyIFocwPa8HNOQ4+UJFY fWRlwx3sveHIlNOUS22KJUMpX78EJOnivg+92vwsSHaI3CjMIO3hTVCnILNNxvEoPCUUApZ8 DCT0EATVc2oAyRLC47EcHo5QnVIgLRGkxg92kJZlYz/Wkidr0ec0PLnU1iqS2yQWXUOd35RL k3M1W69UJHiehWR5OzBCKMLc5jz1gSfX0uKmVPu2tol2SG4DTfaQOBZly6HCCaSOUTEsi/fs MRParpUjrbVmaB1blINq3yMVcyaV9k5GFYo0tZ5ehskclYr5ZLUSV23zUOej8xIHTqWX8hlF Uqua3qHH1Y+trg2dZ/BCMVeHFoCjUizl1OtAyiSaacD8RnH+dKJKBOO93Hsk5U27oll7kHIq FSmADE1alRq68JJvthvO78VdNQcpJZdr+PP/P5XklZfldX56gepZVm11k3pr6+YgvXU2V7o4 QUreDda1IaASJIKE8JK0JUgEiSDhHmCOhPtM14KKREXSkVKwIkgEiSDhHmBow32ma8FjbahI OlIY2o4eoCI1oUbohDkSFakJWwSJIH0mSGA9XJNJ7p0wtDV26Nad212g3TJYPYaajX/VF586 IEht/Bj38kqQpJ2OZ27aE1NCUznSWd7/Tf2WP2rTbLZVxRFtRsGP2rTxo/SM1n09EhhXXbkW cKGkKT+z1cKLafcC3+eoGcjbQQLDOPcjoXcbdDDa/Wb/5tCGJNpuzAQJvtOY5MPdrw2q6v7M V10a4nMkSBafq4+dsXS+kTSXau1Vj4XPutdcy2/rlYQruyVISkeFZtqjZ4zdH5QhXfdX13ei tbEShyCZ78bhRBBzH1drKJxjpRwiQVI6Sjb7TTDZIWKyXQVRkMsUP3/e5GIndLL+Ps92zuQ6 ICrSCbfmf+zyHz5tqU2/x8wdAAAAAElFTkSuQmCC</item> <item item-id="150">iVBORw0KGgoAAAANSUhEUgAAAIEAAABaCAYAAACfWTW8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAVlSURBVHhe7Z3ZlaswDIZpYPqYGugi TdDH7YBq8pROUgzXhjAhbLK1JJKinDNv8CNLH/KC7GmG+H29BxpzHrh2Q9N0w9Wc4Z8y+D70 bTO0/f3QAEMQTI1pugg/Bqd73x6+PEYgyAC0wwnMGL984T3XodvJoiYguHbNcJwAHhmiSVki /Z2lPb6oT8+kJSVOuyu07v3Qtv2w7Bz0Q5DHAIfeXncRmXRpEJ4Ox0PAaXe9Vu4ali+Lcghy A08GgZnqZtVNZGhWpHNlgKlfTRkn2dRRMgGn3Sit125BNwS5gWev217AR6fIzB7uff+YlRC7 A067kVoZ6Nm1qiFYGrr3No9v5vqt33szuFLBnw4NAk670VqLF0wxBEBXkAKCdgAZCgcQpKHh 3NUqhiD1W1DfjkyFewzkGcjY3+/9bbokGgQDo90UrWs3jaf0QgCNB3Ik9/p/wYHhEx4iBJx2 E7Tm7tY2BGNKW64ivmOKONJHXCfgtBuvZQKCrmiJsGKhhDwWmAWoEDxBmrsf2iIXzgeOIGCL 7NcJBQRfF/JtgwOCgGCcYueJj96B4e0y/F5uESpBD9wuP8PvP80QpKlP2cBQ0EvOpfVngoBA HMGAQNzF+h8QEOiPkbiFAYG4i/U/ICDQHyNxCwMCcRfrf0BAoD9G4hYGBOIu1v+AgEB/jMQt dAgBx+fdtd9xn2jLosepjdNyBgHHXoADAP5KyzgLVvCFIDvfAtGFNW4gYNsLsGFAcE8Daq/A QX4haDmCgGkvwNrHnMWgktoEO91A8PQv75hAspydU5uiFRAAozeKc6GBIac2RSsggCJFSLOQ NGWvwEabYGdAAEWKUM8PSbPulyDYGRDAkUJPvUBp1v0S+OlmQABHKl2BW4QpkmbVxtnpEIIy 18dVi/mU+mrjqDEU53UnE7ymlOfu3A8dGBUQfA6CzS7s8dxA6iFNiPYEBAin1d1ymAn2TofZ XZCoe1791QFBvc8q76iCYJrX1nQLDF/cAoLKkNZfXgdBOq4pHw2HP7Kt3sAMXuxAQvit4pa3 QVB3DMyiBQFBRThxl9ZBsOwOxhMxp3P8RA+aDghwka24qwqCl4HhCER51xCZoCIqb760HIL1 FFHwsMgXH0QmEEcCv1hUBEHMDsQjyPAA/LeDIghYLIzZAYMbzyQCAmEHW5B3BAHuM2pZkKxo 4+zEQ1DmPfpVRQNDfEEFbKAVbbydPiAg1NyDEFjRJtjpAwJCkSUIgRVtgp0uIKCUW0MQWNGm 2BkQABRQnPtOwCh2uoCAtX5/HTlCmoUgYLWbYKcPCAg192CgrGgT7PQBAWv9/hoL/NQLBIzV brydTiDI7sYtlMCBsqSN84EjCMrCGVdtPRAQBBUGjrovWjaOSFI8EJmA4j0n9wYETgJJaUZA QPGek3sDAieBpDQjIKB4z8m9AYGTQFKaERBQvOfkXv0QxL/EE0ct/iWeuIv1P0B/JogVQ3GK AgJxF+t/gCMIcJ9Ry0JkRRtnpwkIWvBUDHxBBQyBFW28nT4gINTcgxBY0SbYqR+CfERO26e6 oZMfocgShMCKNsHOazedQ9WAzvjYBTnNdQmF4x+l3BpqlhVtvJ1P/yqGIFUPPo5dPQoY3gEQ AtOzm3Umqj7Fbf85nNpordyWx5hLNQTj0Xlng0NCKgQxsKKNtHP5gumGYKwkPukSCDX3IARW tFF2vvpVOQQpVJn0w2yAnx6BELDuDVg/jdPueq2cBdo8Inz89EMwcnB2WhpuoQSGIF9hRbvC zvEIwtdZlwkIpmDUHKtbFuLvuyofKLbtXo1AML+VAQIe3H0Asp4hCJbp+Xz9AO8oj3fOXcWx z4xB4DFIn2/Tf4pv6cdv5lwCAAAAAElFTkSuQmCC</item> <item item-id="151">iVBORw0KGgoAAAANSUhEUgAAAHgAAABaCAYAAABzAJLvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAR8SURBVHhe7Z3bkaswDIZpYPvYGugi TdDH6YBqeEonKcYHQbLhYhtjxUGS/8zszD6AIuuzZGELpXH4mLZAo2p0Q+eapnODKqVLKvtw fdu4tn8Ev0QJ4HkgTQe0PpKPvg1OfAWACW7rIpO0pIsokj24zhPdxAMeusaFHffp2c3o3eNf LFQdkzIg69G7tu3dMmDLBkxrbpDuNmzTDM6FbEcWhevlRBcMmIweSahotjab0E0TYjODjz13 vMKUrHWolguYjB5LqnwwJ1AZWbYxWeTFL9OJBbxUMpg5br3V54kJLjxloZZkLZxDKOCD8DxF VWNQPBMxf4xv+wkFPK4jR2upsbDqDTSMMQ7dnJ/IBHy0/pI1fOstK8narN3KZb2WOL2Ax6e9 9e4WHpOWUUA84C5p68rA5sRhEpg3RiOAD61T7QUAbBw9AAPwhRa439zv7X6hAvq/+n77cb// BD8mpSVZ+kGUGgFCdCnLCpELwEJAlFIDgEtZVohcABYCopQaAFzKskLkArAQEKXUAOBSlhUi F4CFgCilBgCXsqwQuUYA5x2l+RnYkmUAMA78Y8FCP2BTtcwBVIwx6gfMKEjbmdOgLPWA80tK 995iURYALzgD8LdT/3HtOTwPNhhWP7l0qPdg1EXHvU4/YNRFRwkbAEzjs7U58ckNGCOAv50c 6Pk+ANbDKktTD+B1uKOeF/PfBQ1QUrLorGHXc1MQ8O6l+qk3VawRSgGjATDbqOmAKZXxvWzN ViEiAIDZ1j0F2NukJKgC5zXOp1AA/jLgsXkgtSiawnduo5MzKgPwGWt5rz3nwZmAqYnZO1nb /B/roAPAXwb8dy45e/IMLaNdUaraAJxqqeB1pzx4lWSdCNHwYDanbAHpgLePSScAM7Q7Pk3K Fl7HjfkbHYeAkUVLmEL5W5WHgD8wPKzBbCMCMNuEsgXkA/47opOQRddwXPiaSPNYU5veMwB/ YeYmhega6qLXcM+cCegHzKgZ3k1RqbJe5wC07zD2zu6q8uAaiu4mwP3zV2YqC9EWS13jix8A +1vzJ6QMUifLWvXKALtKQvQbcm2Aa+gXvXLh2gBXURe9JFwdYBo8NjpCKYb+5+CE5KnmSwDY OH0ABuALLZC0F32hfgq+Gh6sABJHRQDmWE/BvQCsABJHRQDmWE/BvQCsABJHRQDmWE/BvbIB 42d12FMIP6vDNqFsAbI9GBsd7NkDwGwTyhZgBHANx4V5YxQPuD2s8K6hLjp/jPoBS61lFqKX bMDUUaDtx3qNyKeGojvGGIdubn/VyEwVKDTF332SWuoqQ6+3/YQCnls3xdt4tOPrHBsv94XH hBksA8pe0Wy9yA5P44kFPHXziRFmhK+dKY3JWjqHXMBTxWQkTNdQF501xrXdBAMe/Yw8K+jF +Y8QnmA4vXv7/i5OG4pr9SLvbSm7en5kA54Yx156ztsE8C/LBmSRx2/yEvGA5+L2CzreJiRn si6hqLNf0hQAJjMCcnwy+eHSPUoAvyAX7rAnyyUTtHktK+FkVBHghPHikp0F/gPJqjk+9Tqv QgAAAABJRU5ErkJggg==</item> <item item-id="152">iVBORw0KGgoAAAANSUhEUgAAAV8AAAAVCAYAAADhAe0/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAbpSURBVHhe7VwLEpwgDPVcHshz9Aie Zi/jYawgnyQkEEDdrqUznc6qKHkJLy9BO+3jz0BgIDAQGAg8jsD0+BPHA7+OwGdd9+3rsxgT GAjkENj2df28GqJBvq92b2rcts778u6Y/s88+mJzP8s+r++VCV8n3217L7hXLYvLMNrWfXlx MF+F91P3ucyvT034C8/Z1mX/5ZDN+fhR8v0sE1BdR1kxTyCzffZlmn8AaDNPaMedEUkx4p6l xy0XyEYRT4/ZJWF22mvmgf/eGxdP2H5/7J/Y1Vc1BPP6G0RnHsl97lnD3Pg7BMOhqKdp2a8u AGt9/Bj52gBHjmWIxYA//+v9yH+NfLXkb/CWAu60aZ4PH30Vf4FA7GJpIRYNNvfbfn/sRwKt 5U5DGHFdapJ9KXG2JkpvAx1/+OfqmLyBfFt8HMgXO+EEmDumCef0GhPgcOHL2dY884k+j1c7 p8KCDmfIFTnLnT82reag0IBtPnsf5VJQb2ZFOAKxx+AKsddjpXee5jAyx465hnubeUfla20K gerG+2flEpu3r1e5tAUHGCWrN2xb94PiDW63/d7YD3F8JNalVvky/m7F2Yybl6NH26h85fEu 5ru6k+eaDWvdrh/IR+T8x6zJGmXc5uOofJNscJ3CS7NCJJeEaM08spnOKZWeRhC1lSNXWJMw 56HzzgXgnOXJ1JOeJ11IgiFAU4xtwguOp0rEESrCB7YdwP0o2Zp5CLIoJrwe5XMFIWZK55sS w922Xxv73Abq6srn1rYDvGej/32stfqoMB6X87VxxrU3c2vME7GefFt9DNoOhAgEMrbZQyJH Cz6dtORQ6bi+h1nrhnB9tuxQKl/UMCKkh0pker9CUkNz48kXJyyClyNZGrB8gBiBjft0KJE4 wPLBD1RDd3mYI5DrxECIA4XtR8kSVVNV3GcEhqtq0gqvJ/Z7yBdUWdU+BMq0iXzL47uqYW6t w2PMeW4N2Ji5mN9Qzxe2GbheUBRvtH9rexRO1lPylRZNnpQ1vatTJQp/szfAJT2+VEO+tC8F bEkCkC4oDg9Y9pSVbzpfOB/SbnBMY8s6plpIy0xejfNw4gUvErw6Sz5LvmXbFfaJcW8bd8Lm bH/sMxq4ccON3KmyH4riqoF8NeOl2NWEFdtGASRaOo8FG1yb/ky7j/GGWwCeU2u0rxl/nyR4 EADbK5Gyea0i1kBdf00kcE9gT5JvJN1AjArlmydfvmziiZGSPkhkQAFZ5Xv083yii88nvS5W GcCW7tnflvOisu1gy9TF9jjFXWvX/pGfpbE9b18+7j35chtQd8R+j/JNWw8a8WOVIFTKteSr HJ8l34KfS+RaOm+9eBO/kbcdHPHYzSRCtmKfkS6uX1C+lKThYtCQLyUQ2nagG3jChh7X3+4k Xx+oNGBZ8pVUjj0e52yDz/sfEmyyiddTNscynVv4aJEUiVWRhDW2a+0Tk067KlJYQC5pIF8W A317B29ac5vGeSu0459uO5xVPNPzZf3c7uPkVbMACFwBCUkIi+zinkh9ACpHUHBRxqZlu29R eGekyjIlpwrypUkOvX3B93xF5Yvw53vBECH5bRb8XNrzDb+1caF0i3/DIyFfV9qH4yWFrXie ynatfeJ8ahVuT/JqIF/Xe0Z4Fze8M+DWKt9EA/HvCV+x4RY3m+n6peudrxztVC/mt/Q9X05V dCoAqReoI3rqoROc3tfRaL+Y6/uGV1NQO8UtEHvMZfts6ZXv+eJ5GILHmRRjxC2weH9KKOi3 ssTzaMNNh8+CS+ewGLRxoSDD8xLci4/9fFK695JvgSSC7Vr7MvO5JvYdIWQ3w8r9cn6jnGDO PkPzfE9OXJulZzzYkFPHEV/Zyq+akT0g22LTKl/DycwemIXj/HAJvWUEkpvyIwtlby9bfule vu4qMZqd8z8MNAGmf32GKuSYnOAiV8bF1fD2kq96Pkr7svPRq9lS7G9HO7Dnq6zfHH/E2/Lw h1dVbQcTTG0+DuQ7/cE8jH9vu/nt1aZldO56EIT0vGonPFEa6lUyLlQg0PqdfKKghfeQVT5W zLN4yWPki9sGon2F+ahwyca+1L4oIuUu+OHxBy6P/38k1eQrq1/kIeJjy7iGKCFZSr/DVyLS 9S4IufFiPy/MTp89tCE3rktbNmvDxyn4bQfm80+u/XIn+I+Rr1c1THsJ2lecT6kfO2JfCpdW wdAVfg3k28JvgXw9Cd/5bxcgY/AlCPSWnpdMYtxkIKBC4HN8St/1XbHqKd+6aNIoXj85rUKW rv+WkeO5EIFDZVV/xTQQHAg8jUD7HsXTM219HiJfqHohgcKb53vDZwsjd33rRMe4gcBAYCDw JgSUbzu8yeRhy0BgIDAQ+D4CfwG3C4JK2Ui/nQAAAABJRU5ErkJggg==</item> <item item-id="153">iVBORw0KGgoAAAANSUhEUgAAAZMAAAAVCAYAAACDggMQAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAdnSURBVHhe7VwLkqwqDHVdLsh1vCX0 anozvZh+goAhJCR8ZFovt2rq1qhIOPmcJOAs3/lvIjARmAhMBCYCjQgsjePn8Bsi8H69vp8b yj1FngjcF4HP9/V631d8heSTTBQgPemRz2v9bs+26Sepa67lSQi8t+/6em4a9+dk8vk8F9xe ftANo8/ruz3YmHvg3Q3rHsLc7B0TO1lhn9f2vbML5nQ8lEze2wKy4r3sWxfA1O/vtqw3ANrI CdchG1D9Exgj6k163HKGbCqWZdi6ZERGyDPGHg8dGmzjn+ts/RnYHbiVV9EI7/IXnMa5J19r S0yixl+R0O0Vz7Js394Nh1L/GEYm1sAjxRKB0oC//no//9fIRA7MxxMGb87gjjWt666jn8D/ ennG2SMTFG0AqAmWkr6fgN1JCKVcYALgGWc0yRiHp5ehlvS58bt+evvYBWRS4x+BTGIlHABT 1yRTpu8bA4eBjM8ezJwj+oo+ezuyRWgwBFlEynL3903sNWSbYG0+G9nL2ZCJGo9wwcNegx5i n4+z1uM2hZG5tssa3m3kPisTu6ZgqG68nytH1H59rZlYnXGkoy6XZ6Q98hl2rK9O4N0cu+CX e+KzlVYmhP3WYmzGrdu+x1FZmfDjnQ83dfePGBRil40HML6i+28TY0oqlzr/OCuThN36ZeAp y53BMiEOI0eWuV3m1dJ4xGulyALWjMR9qLzDAZyyPDn4IO5JBAb1YKApxpbAg+JxZuUIIsIH trnA+zB5GDmYNO8k8JZMrlMwdEnMYRfXyNPXHqV1Z9o1F5D31bq8GrvPnqQdrlfb5oL6qLQf 7zu1+hHGx+0jyX7wfWp7IBczPLHoyaRWx6DNhQIbVzpZgJFgKLuOYxanUO66fg+gVA3h+WxZ qKxMogYlCuJR+wK/TyDpSDaaTGICRng50sAGSxuI8dm4LxwRowMsb/wgC+pRvivk2cu8MzPj 5qTsFASptPq9yh5zQRHbjd7hSdtXYedGFvtxJgFkSb/Fl1vIBFT1xTYJKocqMpHHN3VfqNgF rxH3E5++KF5HeyawrUW2uEKrBpdUoE2UKIALnnmS0fRKjyye+cm+IG4hxY9qyAT3UcFayPUL bTQYHO16PL40maTywvej9laIHXvZTlRzaRuArpZoOGOHZwmrgPVleRRzknbqhbjOHulljiMT GbuQHTi/KfFjM3Ykdi1kAjRRuJ9g21PeTyrIRDM+eqbANyydR63sNDGQ7h86vCZexxvwAXiu /bILgftvRPskzmS57KS0YilEXfn4SUge4JFkcmbYwYAVlUmeTOiylg70sLeKSBlkdFafe//Y E/c5P+qtstUANPrcprNGnvychz4JOz3LUubUYKU9uiyPz100bS64bqY6EefRYOf2QSl8RD/2 ZEJtSFdil/XRTmRS0i7DreFSMlGOz5KJoGeJLKT7du8WGWuveI1Oc7lAajeXc0adK8cxeVyX zdRXJrk+pIZMcEDE7QpciTCVCbU/1Egm3lCxwZJkwmVt9vops8XZkwskjGRTv6WtYRJf5ogj lEc7J0ts19ljaWUSOb5ExFJypMEOvkOcj9LlSOwqyITEQGgrA0ziQznUoZi8ErTjR7e5WL+y y+kXr5OjwQEQLtXKGiGVoZRmLY0BSXI6ix8KWlEGgttEviXmCTTN/NNgW0AmkLRDL9OPL2xz RbpBODIZCb0pH8+L90zC7wkZtumOPz0I5NHO+et7Jq4VF9xMDO55w1ZhpyaTUp+9Yr+pgkyo KoRK2DQx4ugpVZ/mslMw43tswJ9+i+MRjl90p+KAoG+8Tr8zkcppIeNj+/IEOZHEJSr/AKf1 +DCuaqh9k3D0LmrtuYBpr7nsBW7yFe6ZxHIYwoozqRgjysHOAI4DSvS7sgT3fgY37d5b3NoI zqCtEjTOKzhukEc7ZyY4c3s7dfYoLS7enzv3+FC7qIVMtNipyCTvX32wcwEuuzku7zXRpz4R 3uQcmvlzZNIyHmzQS6bD3odr9J8K8J9eHC1q3E3i9Vyr4/KPFimjlwgoKaV4FJtKwGrl/AsD jQHWnRaKMyno5IV7Jl1gVs6ZDc76CmqYPbaQSQ2uVX5MtUXqffk8BlyzAJP4+2PEdxq/+882 +MNsshMj7V3qPtaE/hHIZPkv5hX2d2eE4b5vzQjjVSd9kqyzzkjmKBqB2r8LlFQ4zGkzlY6b lROX5uycQnBWyTrSHv+aTMSE8FRcO3ZcW0xrHDcev+M8/O/jQTJR6rlGx5ZBDDFA8sj+vgsD 79tJ3fhQwhPvkz9C0meLWpObz2EE3vvX8+Wf3sanuXDGAk4RFZ/pr9WQYk4xOEs9+dH2iPfm arFRjkP4cJvHmiPh6YyjsVOu+Qceq03omkQHZKLXc7l/BDLxpHLl/02AzMFdEGhtDXQRYr5k IvBPIlCXzN0FqkVdkZRWMMTzdwHl2XLuWeOwCuLZSM7VTQT0CNTvWern+NsnIzKBVYkXS72X 4gZIz//tcufsE4GJwERgInAFAuWnua6QYr5zIjARmAhMBG6NwP/yqS3dTTDU9QAAAABJRU5E rkJggg==</item> <item item-id="154">iVBORw0KGgoAAAANSUhEUgAAAcgAAAAVCAYAAADCdn6vAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAggSURBVHhe7VyLseMqDE1dKch1bAmp Js2kmKz5WhISiI9J4sub2XlzY4PFQdLRB/v2Xv8tBBYCC4GFwEJgIZAgcFuY/D0Eno/H+/X3 lr1WvBBYCAxF4PV+PJ5DZ/y2yRZBftuOnCzP63F/b9fW6ZMRXNMvBBYCEYHn9r4/rhtuf5wg X6/rgjvKjIZh9Hq8twsr8wi8h2E9QphBc1xxTYOgKU6zsCtC9H49tvcvu5XcHk8lyOd2A9nL np7fbyD6eL632/0HgDZywnWUFaj9DooRN5Met5wim8zyNm1dZURmyDNbH6+zJqeXRl/wv/Ps 9xrYOdzqKzgE7/oJDoPbg+R7j5/lxp8ReO+Z6e22vUcXu2ptfhpBWgVHG8s4fwP+/dv7Y99G kGWycXcYvCWFc2u63/c9+gr8z5dnvj5eaU2Co7dOrYUASjp8BewOkqvlN+PUD9+pCZolPIMM rYGMNH7fn9F+4wSCbLH5SJB4ExzA3G8lVeavGwWHzlmOiMwzZ9S0Q0TqImCoMAwBos3y1/eD LvcYQYO1hQhrLzvE6NpYhHce9jdoIfZ+HIm7yxxG5rdd1ji3kfvIIO2aoqL68eFZueAjrK83 umxTjnTU6fJ8QB8vtSY5E8I6OEghfhy76Gv2AHWrzSAZm2zF2Iy7b3vPsDGDlMd7v9TVLXN+ Nfpj6+MgZ5DrT+M3azLMNps/MsiEscdlSilzHwSQkKGRIxuN+Giyp+hN18oRIMztmetw85wB +M0KhBeIKRAjJKqooCnGNiiJG0+jRU96CB9YYgXzUUI0cgih6xGU9ESng5yhD8ycXpwjz1h9 1K37bIznrilTKjwhyPp17F57MO3cSWuJFepYo00Ef9C6P4XxuHSpswlQ92XabTk/GMhST5Ct 9gFKrMRZUxIhmQ7ytTA7Slhd2lDpd31PrXYb4v3Z9F2ZQaLiOCEmVGai8xUCDyQbT5A4qCB4 eSKkCssriLFZ3JNAZO8Byys/iOxGlFkU8uzp+BFtSs+083AG9AF9VK3Jg83JnbM94HjTystZ NpZz9NQW9E6MtWcNds2+KROoi8FZj3/qIUhQUaq2M5DhNRFkeXxX5Y/zx/A35nrip07iINSD hCVVXF4lSgFBJgadOmKJEPKOSlOnd9mW8C87AS5f4ls1BElr+GAtiQJSg+LwgOWDcgaZygvl IaXV6Hf38gqTdaflGj6r5eHEBi+ScEUkU5ZH8cxoLJxzPk8fpWWW1xQjEa/PtLQE9pd1cLPX NI8gy9j1+CbbSBIO3fX7p1QfeggSzFbZn7Ol0WD7DQSpGY/uqbB3G6Kg1lAaKJauuyD/sJmR HIQP6UTgmWySeEgxq0giYCniqo3kK1FX3n6QbHBCMwnyIMaowIoMMk+QfPmBJy9KzCDYAFGq 3eu9dxGCkeP5Zjztv2YyBh/py7GLRp78M91+7nsp9igG6+OQNfl+Pyc3UxpPbW/2mjQlVriX gk6MwE6FTyY7twTJHVo5wz8NIsiaUi1ttdQSpHJ8liAL+1wiwNL1xNUP5CByitWTgz2AkiuN yGWGkexd4rj2DJLODI1BQ5D0pB4tK9FDP8IhIK7f2kmQQVGpwrIEKUWi9vdDZotzIEyofNR4 RGdT2kmYQTF6B+XRPlMssc7MGEyCIhxXJxhHhES5wx2c7U1eU8ZBI2dWXEtBL2qxs9PV+KYf yCBZDKT9ZnJW//oWV2nTVOlcKZOv0sHxs0usol2FjBT3AJurBMlrHhEQET0hsop9gEz5Ee3f Wf0RhTNm+6tBblqiDOXY4LjTDC0lkAqCTDIweKqW70GKGSRySMRRCJE2f3AHP5dmLPHvhOBl 56TYlcypaSCP9plf0oOUT4Ln7EgKTmuzmrNsTMiEfGk76mcnQVZjJ/UNRd9kC3zkgEjQ1DOw a8kgmTFcYK0xMFfPbD7Fah8hjB9xSOfwRdTHUp/MV8mcbPSthL49Tt+DzKbDTrD8axipk5R6 UywZFzdfI0NZW2j2yfUh45FjVK7z67O/+cgKNs0re5BYDuMYcXSIMeIM7MCbOhT0t7JUEt0D OJn73HDQE41Bm82Vt6NouLEpr31mxjmP1cfM4grOiDsQRfspx+x5vZ+2JucldR8K6CHIauw0 foEP4MZg55129gBNuXfLn+AneLPP0Dw/R5A94418re9W4oBEfs0DY+BaPrn3urE8rXus/1BA sV8ATBl9MSdf9qDupStV1zjiP3uPUbC2E4U4OoRGnu8HngO18plZ56zPdKfrIye3yva+cE09 BFmjPCp83IR8pjMOu+OVjpoFHPf+5vjdJ2yTP/BSOKik79On+wRtPhLk7R/mSvT3roDmb5hl xes+4zvud8pG51OdcEyygzYlW6N4BFq/mZhkosJ7mqo97t4cXPoSn1lwzipZP6GPVO4K5/91 a5pBkDl8tOV4m1jRL30xiprVB6kkq1X4Hx6/4zL9G8/0NRDx3XAYfNTvsWVFQ2aQ0KS/Y7PW 3x8IM9wf0mNufPklWX0Up1W5dV+Sn+9f4an/3AU+xUpLKaEfAA7ynA684plF51zqB31IH4nc 0iEJzWs3TGw8+XvHtH8/XjFK+ODruTLgl+rDeMiGz9gaeHcJQjJI3T7X73EkyECUZ/6/C5A1 eAgCvSWcIUKsSRYCC4GLIPBsCrp/ZfE3TeYYFqPNNKX7fwWUa8u5Z0bVX+K4NiJrdQuBhUAL Au3nGlqe9okxiCBh9ghJDgqW7VXuN5auf2KR65kLgYXAQmAhsBCoRUB/irV25nX/QmAhsBBY CCwEfhiB/z0OMl2lCuWVAAAAAElFTkSuQmCC</item> <item item-id="155">iVBORw0KGgoAAAANSUhEUgAAAG4AAABCCAYAAAC2NeO2AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQoSURBVHhe7Z3blaMwDIZpYPuYGugi TdDHdkA1PKWTFOO1DUzA+CLJUUaZ/eecvMzxRdZnyTKWYXD4+0gNDB8ptTWhl8kNw+QWklwP N4+DG+cHqXSpEMB1qW+FMEw0ZMeuHvPIgH0VEuDE4AK00fUZzuImsqWeBQU4IbhlGlzZ0DZL HLw1+l/VLT5mN46z4zpOgJOAC2takVrqPoNV1eEFt8ld8wCODS6AqQQiwYKGxIUG0FWr4rtM gOOCC2BqwUgOUoRZjzqD1XFiHIBjgmspOEaLqXXlrDDttzUhkvIAxwLXcJO+LTE4H55UXTDA sUglhf1a1IoAha4ydLRM9O0FLI7DkeLOcutZMzhZhWi54aOoAPdqcNHlHZ+mtLcDuwgAx4HB KeutaSI9KmFswA/9AxwHBqcsGRyn0WdZgJPprV0L4No6MlkC4ExiaQt1v7mv271dTljifvvj vv7SKiOqpOlpj9eJwQmnUaxxMm1xasFVcrRlqCzAGYLBEQXgONoyVBbgDMHgiAJwHG0ZKgtw hmBwRAE4jrYMlQU4QzA4ovyv4K65iLLjD3/kGM+8zsk14dyLfoLM4fVdlgxONi6TpwMxF+Ok aemB41Mpl6woYXIpGSIJnHRcwhPwYA1pkmfuf+RBngpm8gYF+Ydrvr2X0+c1TheLWzsMMnOT S8ljooATjGvvX2Zxlxsn65E7J9evpICrtUUNF9LYyvmHj3nebsTkXOXWOzG/gwzrWJACTjCu PnBeJSdQBZDrjC/kumcTP/PXiuRpbGGYFXBxHEprHQFcz7hkFre5md1dnt3kWVFFC4qXHFKL yVtuzwDr4GpQn+40TsDcr+ZirIKL7isqPlV2skYllhUhh1m+5FKtCxbQ4VIo4FTWOQI4yRLQ 6Srj0r66S7+WnHLdL9FaAUbWVRbWyo78Qwq4enp/wdqCBXZanE+OvN4TIK67YlcZV489cjsO 4NIxB1zp6qw8bLa8xu2yPSfAu/Iq44xJoskui9smQ3Ym1zeq5dDecFQZ/Z6ZDXh9jTs+Wchf J1KM9JK4/sf3caJ9xlqpy1Xm+z27u2xUufZcvAdWrNMx0EtVE09O5ANSAPcMXPj7uO+YKfN8 UT7Ia803WDUlquwYkhK4Dol+S1WA+1CSAAdwOQ3AVWrNC1iclmaV2wU4ZQVrNQ9wWppVbhfg lBWs1TyuWWlpVrldWJyygrWaBzgtzSq3C3DKCtZqngzOzLGOliY+rN1w+tBMe5MfEOPJidZ8 oIB7e16l1mB/Vbt4CduH4my/mlCedthu+6g0vC6DOYVa65AYHMUNH2QFOCa4mJ6BV/tytWah POVl2kk2dzOvkucmgxZgcZK5gNfXS7Rmow4+GGGDg0AKfKJFoDQrVXrg8T8Sge3AS7nvzyV5 nyGjf7YsLyyCk5dCfF9j/wAkf2dItfHTWgAAAABJRU5ErkJggg==</item> <item item-id="156">iVBORw0KGgoAAAANSUhEUgAAAHoAAABCCAYAAACYcMIkAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAASMSURBVHhe7Z3tkeMgDIbdwPaxNbiL NOE+rgNXk1/pJMVwBuyNjQF9EDJR8t7Mzs3syljoQR/Ewhkc/n2FBYavmGXvSV4nNwyTu3a5 z93N4+DG+d40OkA3mS9CGKY+iPeq3eexaTEBtBq0hzy6RkcT3v3qJmXkAGihqTfx6zQ4uSOv EWBYosDyowrH99mN4+ykgRygNaB9ThZTTsO8904dbB/GpYsEoMWgPTBF4eU9cUhCvV8wCu90 S9knDeEALQXtgYm9eblJDmqAr1g0y3DeqyVqALQQtNTA2/Chak69N+flXH2ECw6guYYNcsqw vXrgU0ELdQFoEeglN6py6vNDt1f7OvG3dwAtAS0Ml4ehc/lYXYzFkSVpBKBfBTqE2v2naPrt 1T7vcwsygBaCnpo+CnvCByY7feHREngS2SX8toGW3IyWBWjaRjoJgNbZzdxVAG0OmU7h28X9 Xm66aztcdbv8uN9/vIFRjPHstO1nkKMl9jIri9BtFp1McYCW2cusNECbRSdTHKBl9jIrDdBm 0ckUB2iZvcxKA7RZdDLFAVpmL7PSAM1Dd+6F1j62i9cdn8X657v8jguexolUM2jtfPPavuXT q9AcdyCjfRD/MNbpobuyuZ0NvQm0dr5l7VSgvbelTem537GNchDM9CEr+pzj+aNFz6Wvejp5 dLyh11na3M6eUwtoxXwpvVSgQ9/xocc4trpwW1VqSp29ORAptL+W+5zv87yeWMyF7lWDxj6s qnFbQCvm2wd06P7fgS0dBc01uYXfxfNE/ue4OPLHPtv6nCugwzw65eoG0G3zfXKO3ofqbNgO 8D3Mvdclhj2FqHxkaJt4DXTtb4/wvi3K0/+1EPYpoB/h+wwngPeeck2OkWQOnB2r64KHNYUy GnSXPN0AWpOqOoXuUMrE8L3kwuKZIPK8UAq2kOub+pxp0DXHjIu28NPJo5cm7LNNG+sJXTG2 Lp+/yrY04SroXD4uvZqhZbthL0fH4zzv1Ne9FlbFhV0EXW5Iz1bdYWHVP0Aob5UMVt2M+VKh Ov17k0eTN6tU3eWo17ESThR+2300aVi5wGtBUxFgnxKesSmvb9hVr31gm7ilGGPfhC/4UtB/ OT0pbs5M6W0Pf4o5yRdEja8C3UbD9tUAbZsfW3uAZpvKtiBA2+bH1h6g2aayLQjQtvmxtQdo tqlsCwK0bX5s7XFslm0q24LwaNv82NoDNNtUtgUB2jY/tvZs0ML+7aTnLna60u/k7vtQg22V DxT0QMgncIoGA9X7v/HmwH4rjANa0b+te5s/QPcD7XvqqJAqbnqM380x+jaj7VEvdY91hnjp azfU9Guc5W3MmRYsHxVI2LQuezPg9VPCRUEVQHLQOQUYp2Q4aWQ3NEALQYe23Xovsfio0VkF uhuHWnDpmAAtBU29+V7av509+kS1RcnCtp8iQItBLxdUt0PS7VXGe4nGfnwdkgaa8pr6lkja rx5zMqvqZhVq50nBo5Wg4+GDTqc2izrJv+9qGwqg1aD9ha+ErYeMHN0Eebt4C9O6LyqjVXjO +PBo2tIfIfEftohxZKf3RZ8AAAAASUVORK5CYII=</item> <item item-id="157">iVBORw0KGgoAAAANSUhEUgAAAJIAAABCCAYAAAC8RY+hAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAXRSURBVHhe7Z39kdwgDMXdQPq4GraL a8J9pIOtZv+6TrYYx/gbEKAn8K738jKTycxFYJB/fhI+hLuBf+iBBh7oGvTBLh790HX98PhI TzyH+60bbvdn1egJUpX75pvQ9Z+J0HHqz/ut6mEgSGaQHES3ofJBNl/9nIaPoTcqK0Ey3pFH 3w12IVqUrBvVbPxbDita+9kuHpffPqugz/twu90HNNARJAtILicyUxSGQ6cCOZi09jss4dAc 9Pt4yzmRC3NluH3HESQYJHcjKhJr98R3QUh0YKZUQGE/5zcjLOO4+lCRhPaTfVZ18BBHkFCQ 3I0xq9F4MQma6WYn4FTYP+/3ZcWYCm1eWq1apTnYkGkSJBAk1MFh96IaSKqzNMTscyAd8iRN DgQ+MAQJAqkyrI3XwsBA7TWKtKhicXWGzZUgQSCNuUPhaZ4S22U1Fv3rYoUiVHlDguyVII1r Mnl15zvj0etfbxAkBCRQ7sWupXyomGwH+VPSXgBEfOs+rxRLORASxgnSq0Fa1GBfjrda/ruJ SEqTgEuRJxEkBA7EdlSTvsmr7PwLRhce/fc4jV9IKiCasARWblSkt4CEXPR9tgTpLN83U6Sz Bti2X4LU1p97bwQp6VmGNgS6n+/h6/sHafHRtj/ff4avv7opECSdn2YrKhIVCeElaUuQCBJB wj3AZBv3ma4FFYmKpCOlYEWQCBJBwj3A0Ib7TNeCikRF0pHC0Hb0ABWpCTVCJ1QkKlITtgjS NUCKa8G02yPC8Uv7bty+Hv2OPhNYZpDAeU6b34KdlkiVyVgK4Dau7Ts0bVUvlwxt015lb0ue tl5Lhsg5KdrhZyzuU0NlAskwT3Xd3Aro8QGKN8pZy7FNIPlFdLNrpZ+pne4ZCnVSinqtCKFc /dZiHG8Ks41YbGUByTBPbRXvVMjY936dXHJrLa7WJpCmTeleZYFuX6/mNsVqNFEaF+nl6rvG Jqr6rdz+Z81gczYWkOB5zmcK3NzhFGt4ksLaqr6ZUqZtKhobcW2hr207/PY/ACcEK4jbXliZ bNeJh/FYLhFGy3L8eeaqIE7MlQwg4fMU9nBHIftwgEURkjC06p8mmyIFocwPa8HNOQ4+UJFY fWRlwx3sveHIlNOUS22KJUMpX78EJOnivg+92vwsSHaI3CjMIO3hTVCnILNNxvEoPCUUApZ8 DCT0EATVc2oAyRLC47EcHo5QnVIgLRGkxg92kJZlYz/Wkidr0ec0PLnU1iqS2yQWXUOd35RL k3M1W69UJHiehWR5OzBCKMLc5jz1gSfX0uKmVPu2tol2SG4DTfaQOBZly6HCCaSOUTEsi/fs MRParpUjrbVmaB1blINq3yMVcyaV9k5GFYo0tZ5ehskclYr5ZLUSV23zUOej8xIHTqWX8hlF Uqua3qHH1Y+trg2dZ/BCMVeHFoCjUizl1OtAyiSaacD8RnH+dKJKBOO93Hsk5U27oll7kHIq FSmADE1alRq68JJvthvO78VdNQcpJZdr+PP/P5XklZfldX56gepZVm11k3pr6+YgvXU2V7o4 QUreDda1IaASJIKE8JK0JUgEiSDhHmCOhPtM14KKREXSkVKwIkgEiSDhHmBow32ma8FjbahI OlIY2o4eoCI1oUbohDkSFakJWwSJIH0mSGA9XJNJ7p0wtDV26Nad212g3TJYPYaajX/VF586 IEht/Bj38kqQpJ2OZ27aE1NCUznSWd7/Tf2WP2rTbLZVxRFtRsGP2rTxo/SM1n09EhhXXbkW cKGkKT+z1cKLafcC3+eoGcjbQQLDOPcjoXcbdDDa/Wb/5tCGJNpuzAQJvtOY5MPdrw2q6v7M V10a4nMkSBafq4+dsXS+kTSXau1Vj4XPutdcy2/rlYQruyVISkeFZtqjZ4zdH5QhXfdX13ei tbEShyCZ78bhRBBzH1drKJxjpRwiQVI6Sjb7TTDZIWKyXQVRkMsUP3/e5GIndLL+Ps92zuQ6 ICrSCbfmf+zyHz5tqU2/x8wdAAAAAElFTkSuQmCC</item> <item item-id="158">iVBORw0KGgoAAAANSUhEUgAAAW8AAAAVCAYAAACJ8m8HAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAcVSURBVHhe7VyJlZwwDKUuCqKOlDDV TDNTDMH4QJIlW77YZdZ5b1+yYIN1fX3JJss+/0wNTA1MDUwNPE4Dy+NWPBc8NcBo4P167Z+p mamBoIHP/nq9v1ofE7y/2rx/Q7jPa923747Tv2HI3lK+t319fW9K/3Hw/ny+V7kpX/yrcnud dJP/89q3Lw7Q6UNtiP55bfuT3SMVJ7eC93tbAEM6ypp1AZnxvW/LepOi7buXhflZ+5ffv0du KRCM7qFt2gImPZvanRut94U4OCXbjvMtw/yNL41k/+N9yOqtXAai7/IHXA5wJOK1BQO4+SOS +8Hol2Xbexd7pTa+DbxPB0eGZYLYKH8AeMbwIDmqBljKgO13yf0U8Nbq2NiLBpFg2zPgasAp txab+Nb18O9Bvjvehy4ALsVeAzhXXLfEj19DbZKV5h/26W2XAeBdY+MA3tgI1mG5azlX5u8b B4dBJmdr887xfaoEyzCG6Wbse+X2DNBWFDAIGGaNHNDdPzb91lCNAHt5RnOUoKFaMVHuAPG8 BqP+HI+rGnubs7u5dqw1PNus+2Lep0zBHm6+fxeb7GXb4mfVeXI0y+uxlTWKyxnrQ8FnjiS4 lTJvRuZaHZt563b0qCuZtzzf+VdTd9bGR4ir01chnpH7b+P/Jcy8zsYX846ySb9SOs4qVyBH QJ0FT8d0mhpZ94B3X7kzYEPtx4EzrPOY+9AhbVA7B/Rg7EHTgzYE0RB0sd+cJCA4M2VnDpBR woRtE/A8CtZmHRFVTNh2AMBeZKOFdcq2He1DnyNhW7eobZvAtVfqwNu11j6Z+bgdUZq0ufZu yp89kOvBu9bGoG1Cgo6CAWFTKGYgA4syjmRQ6bq+31lqBtBcE/p7cWJIGj6lExcMcRUxSO5k Kadk3qiJR0ATtRzo8zKJHq2NB2+sJ+IDDqSpLVJOz5f/VCZ9gLG+RsAGJTw/oTpuEgRH9K2W 2GkBb1BRFVetgBlXgXd+flM1z8UVvMbcj/xgED6injdsk+CWCXEKqOTz31cQxAElBXYa1DW9 N8vohJ/kA0j5Dp9B5sngndCJbToJm4DtcvNJC8uExdCAN+01gnVGQUVBgpMVlpJ55h2vF66H tEucAs5SOarAUiDUF7zjFgGX1IAcRXFztw+1gDfwyMJ+MLJhBXhr5vN+oqN+bBsIYF7u/j4Q H/GGZVA8w8K1oEYWa0GM24QoZeQ6ZetGxY6KS/vrKSd4H704nySCGpiSHQN9Z7kdgytLal7v d4L3BdoBWBXMOw3efClazLwDOMDEIrDvrL5pcgIkwrPPrI8Ab43ixoP3XbHTCbxL2i+0DVYK 3sr5SfDO2DkHzrn7ER51xEdy2sQF+blxlSop5fLsScybAiEH4Oc1H4xsgHnzaNhovhTWgHNJ grIAqgFvehKDslS6ASpsiHJ7Fo3g7YOPBmEpeKNAS9pSoWGJYZ7XpRMTJXHzAObN6iDTQkP5 yh6x5H40cYA36LkNcvuyu9smdiOfx8+e+BgdFQwKEbUnMObQ20uU3ygmBvV+FXEnb844NgVk p20Tvo3CyVJaWbT0K08PxQ6DWAxtO/gWi3ewmNnGSasAvKHjRn7B97xF5o1Alu+FY5MLDNL1 HcN7GsFbPolVaHcxbvKJPm4ZtfhQDfNm5mQPHCQCtJR500cJ83tsWF4b4zRWaGzxVaJtn9BT YG02js95J8sIu7D0Ub7YgXiGdECo+7gBnRjIGl+zhhyCJxyVnKR4bzgZxY4gr6ev3DmZ3NFO wGS4vnc47oSOMzmbndccg4EbT4U9b7wXYRIEZmPY7pwtLh+iIIl+p2XzqSJpP4OQihbwzoBM vHGp8VkeePv4kAOU5GZifq+AP0JL9M2+Q/N+YzrpI52W+WBDMx9Cwggooz/WKh99tm1WqXPR Dx/1H+lke4CkTxydXNAdvm8qcaqNI0/kvnrC7C314YeeCf02uQeocsAjTVBVnhhpAe8SSZri xrdO+sTOdSywRIBr7DPnHz6y9f9qOqnBzKYtTwDLbRzAe/mHcRz9fjig+R0yuXDfMeVrvAUs +jyJQeBOyl1fWOqdN2J65Oxzrjf3VLn1GvrZkdX/d8Ud4J0C7qjCLO2HE72zVYgfI7VytLZ7 8PxDL7f/3zf0KKH4DQNMjPQLdMY2xMYnYhughWAr/R42Ftx4D1x+vC/Jufn5jwD0LFXrcj3G 4dMmV3aUNktiMM/1En+n3D10d88z3sfXmTWfz9G+f//V5nwE308xr+lDtdapTu61LzyLJdw2 0dm53MYBvD2Ij/y7RR9z7tSApIHWcn5q9ls1UJvYn6GPRcO4vShahi6Nf4ZK5iqfp4Gjein+ su95Us4Vl2igYT+k5DU/OBaBN2TdEIDh+pK9cdeCSY3/QVnnq6cGpgamBr5GA/rTJl8j8hRk amBqYGrg+Rr4D554Bz4Yj0TZAAAAAElFTkSuQmCC</item> <item item-id="159">iVBORw0KGgoAAAANSUhEUgAAAJIAAABCCAYAAAC8RY+hAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAXRSURBVHhe7Z39kdwgDMXdQPq4GraL a8J9pIOtZv+6TrYYx/gbEKAn8K738jKTycxFYJB/fhI+hLuBf+iBBh7oGvTBLh790HX98PhI TzyH+60bbvdn1egJUpX75pvQ9Z+J0HHqz/ut6mEgSGaQHES3ofJBNl/9nIaPoTcqK0Ey3pFH 3w12IVqUrBvVbPxbDita+9kuHpffPqugz/twu90HNNARJAtILicyUxSGQ6cCOZi09jss4dAc 9Pt4yzmRC3NluH3HESQYJHcjKhJr98R3QUh0YKZUQGE/5zcjLOO4+lCRhPaTfVZ18BBHkFCQ 3I0xq9F4MQma6WYn4FTYP+/3ZcWYCm1eWq1apTnYkGkSJBAk1MFh96IaSKqzNMTscyAd8iRN DgQ+MAQJAqkyrI3XwsBA7TWKtKhicXWGzZUgQSCNuUPhaZ4S22U1Fv3rYoUiVHlDguyVII1r Mnl15zvj0etfbxAkBCRQ7sWupXyomGwH+VPSXgBEfOs+rxRLORASxgnSq0Fa1GBfjrda/ruJ SEqTgEuRJxEkBA7EdlSTvsmr7PwLRhce/fc4jV9IKiCasARWblSkt4CEXPR9tgTpLN83U6Sz Bti2X4LU1p97bwQp6VmGNgS6n+/h6/sHafHRtj/ff4avv7opECSdn2YrKhIVCeElaUuQCBJB wj3AZBv3ma4FFYmKpCOlYEWQCBJBwj3A0Ib7TNeCikRF0pHC0Hb0ABWpCTVCJ1QkKlITtgjS NUCKa8G02yPC8Uv7bty+Hv2OPhNYZpDAeU6b34KdlkiVyVgK4Dau7Ts0bVUvlwxt015lb0ue tl5Lhsg5KdrhZyzuU0NlAskwT3Xd3Aro8QGKN8pZy7FNIPlFdLNrpZ+pne4ZCnVSinqtCKFc /dZiHG8Ks41YbGUByTBPbRXvVMjY936dXHJrLa7WJpCmTeleZYFuX6/mNsVqNFEaF+nl6rvG Jqr6rdz+Z81gczYWkOB5zmcK3NzhFGt4ksLaqr6ZUqZtKhobcW2hr207/PY/ACcEK4jbXliZ bNeJh/FYLhFGy3L8eeaqIE7MlQwg4fMU9nBHIftwgEURkjC06p8mmyIFocwPa8HNOQ4+UJFY fWRlwx3sveHIlNOUS22KJUMpX78EJOnivg+92vwsSHaI3CjMIO3hTVCnILNNxvEoPCUUApZ8 DCT0EATVc2oAyRLC47EcHo5QnVIgLRGkxg92kJZlYz/Wkidr0ec0PLnU1iqS2yQWXUOd35RL k3M1W69UJHiehWR5OzBCKMLc5jz1gSfX0uKmVPu2tol2SG4DTfaQOBZly6HCCaSOUTEsi/fs MRParpUjrbVmaB1blINq3yMVcyaV9k5GFYo0tZ5ehskclYr5ZLUSV23zUOej8xIHTqWX8hlF Uqua3qHH1Y+trg2dZ/BCMVeHFoCjUizl1OtAyiSaacD8RnH+dKJKBOO93Hsk5U27oll7kHIq FSmADE1alRq68JJvthvO78VdNQcpJZdr+PP/P5XklZfldX56gepZVm11k3pr6+YgvXU2V7o4 QUreDda1IaASJIKE8JK0JUgEiSDhHmCOhPtM14KKREXSkVKwIkgEiSDhHmBow32ma8FjbahI OlIY2o4eoCI1oUbohDkSFakJWwSJIH0mSGA9XJNJ7p0wtDV26Nad212g3TJYPYaajX/VF586 IEht/Bj38kqQpJ2OZ27aE1NCUznSWd7/Tf2WP2rTbLZVxRFtRsGP2rTxo/SM1n09EhhXXbkW cKGkKT+z1cKLafcC3+eoGcjbQQLDOPcjoXcbdDDa/Wb/5tCGJNpuzAQJvtOY5MPdrw2q6v7M V10a4nMkSBafq4+dsXS+kTSXau1Vj4XPutdcy2/rlYQruyVISkeFZtqjZ4zdH5QhXfdX13ei tbEShyCZ78bhRBBzH1drKJxjpRwiQVI6Sjb7TTDZIWKyXQVRkMsUP3/e5GIndLL+Ps92zuQ6 ICrSCbfmf+zyHz5tqU2/x8wdAAAAAElFTkSuQmCC</item> <item item-id="160">iVBORw0KGgoAAAANSUhEUgAAAPQAAAAVCAYAAABxN8PZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPlSURBVHhe7Vq7sYMwEKQuenhtUIVL cEDsBtwBmWOnTj1U4Mwd6HESAv11QhJgjZh5M88f4PZWe7c63JB61AzUDBSTgaYYJBVIzUDN AKmCrougZqCgDOwi6HEcC0oZIaXhEckpCVtJWLAcJRf00DWkG/jtR9K3DWl7LuiBdE1Llpc/ IPPS8IgpLwlbSVhiOEoq6LFvSbOqeYpLFTS81ZO27adPzn+Uhkeq8gVxVSpPW3AtgoYKJ4uR ENN7dhlC9+3I0pxnMTfNdF34E4QO1127dh5h/zqe+PhdeT0XV3Er4Cgss9scpgbF17i0/uNQ TerbpKe1Qw/dJDxRkHBB0T67A9SrCXzf0KHhbbiXs0uze0eJ/lR4hNxNcUkmxpbWyPhdbKXl agO26ZT3+00+n48xzPv9Tp7PJ0oR6bCoAqILVRGVZIbpGhU1Q2NJJOqtuATLrQhYW1AzGLDM WtAW4doETROVey/tw8M+p+5BKy4Z8WAFTXMkFFSLwM3xH8QVGhsh1+uVfL9fo2j//v4oL+zY kydRwC4xr3HJxVltgq7Y83Ak7aFFm2e023RRyVVJTLreedzCwHQqGsdiaZT/PRew42Fx8dP1 amhzJ/F4wJ1gcDMjs25VZD588c8uaGeuQrBBFxaP1+slvWaC9uHMwRMXoehWTXXH1JTE9eGL PQ9H8lBs6QJ6opiwpq5K9wwqWFvHDe10KJeF/5IVj1J9NdeRFs/morQx/j252ortdrstPIKY 147M3maC35cn2RHECtodey6OlCn3LOTeJFqXRchRKef0RnRobtc6FY82aVcFnA9PSBfbHv8x XIVgA8vND1XQYMUvl4vhiUhunhJabu8ay8OR9tiKbez1ifeS/Z/ZQ7OIjXi0oZy6UEKdRcBM IMByb48/z/7Ma40CsIFgoUvD8IvvmfkwDNbf4/EwDE9z8hQ/FKNdl89jvGssD0f6c2gqWMd0 2yjoWTiGzSFOUOpSYR0yasrNL2nCg6ie5ikjtkA4ln7Aop8rks4HIv71XN06ngEbdGE+G4Fu DVNv/nqx4wic2bD4qxcbWnZ8rqQMVxGx5+Ao/IclFkEze4ibXO/xHNrNh29vBmefGQ8mfmpP DPOOs2MTmcPgPIon27aMx4+JPT1HCQVt79KSuE7xSzHZUjurvG8kfQgeXPx2Qf8KVzicNv7y rjufoHGxp+YoqaDVxwx6l8RXU6/jif4Cfzxheg69+HXp8da58CDit3Zoujs/MTa1S9t+L3Ak Tz5BcyfkiT0xR+GCjhZSvUDNQM1ArgxUQefKbL1uzcABGaiCPiDp9ZY1A7kyUAWdK7P1ujUD B2TgHwLTDwAGRH67AAAAAElFTkSuQmCC</item> <item item-id="161">iVBORw0KGgoAAAANSUhEUgAAAPQAAAAVCAYAAABxN8PZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPFSURBVHhe7Vq7kYMwEKUuerg2qMIl OCB2A+6AzLFTpx4qcOYOdKxAQhL6IcSCNcvMzZxtDPv27dsfrhgd5AHyQDEeqIpBQkDIA+QB RoKmICAPFOQBFEH3fV+QyxgrDY9KTknYSsISy1F2QXdNxZpO3L5nbV2xuhWC7lhT1Uy+/AGZ l4ZHdXlJ2ErCsoWjrILu25pVs5oHu0xBw1stq+t2+OT8R2l4tCxfEFel8pSCSwoaMpwuRsZs 77llCNW3YbI4T2KuquG68KcIHa47V+19hP3reLbb7/PrubjaFgFHYZm6zW4oUCLGtfjfhmpQ X5Ke5grdNYPwVEHCBdX22W/gMpvA+ZYKDW/DvbxVerz3JtGfCo/iu8EurYlxuXWj/T628nKV gG34yvv9Zp/Px2rm/X5nz+czShH5sJgC4oFqiEprhnmMqprhtmQSdSoupeU2BGwGFLTKMhOZ QncI1yVo7qi9Z+kAHjnmAy41kXkSUQ48sYLmPlL8vBD4BIDzYth/FFfR2Bi7Xq/s+/1aRfv3 98e7Ou2w4XTy4YrHUNypAvaJWYjd1IGjCCJypHlNbfP0ls9wBDdQFaSrmvuFHlOpuB1KItH+ D1zAjWcKFS4SPcuOn+yHB7qTGNxjIzOPKtbxx2r/cVytwQZVWD1er5f2WhM0Kk8j9+FKa0sO lnhH5khPg7IKWKqDEYX6VtGV+dZW7qguK/4kFx4hFkhKfAYyK3RePMlJKcV++A4iV6nYbreb 5BHEbFZkIfjx+jg8qck8h6Cdtu/IkdHXTEJubUFuzg/nr9Cy0vrwWFu5c1TodPuP4WpNhYaW WxymoKEVv1wuES13bp4QW24NnVlA0nEtHluNg/1y4z3f31Z111bi0CwTX4RDZwbxoMxmipUr Wm4+zYf4sNov7ofM1QpsIFio0rD8EjOzWIZB/D0ejwhB54y77UsxXpFty15EjpbPoaeFin3O c2+f7Vs5R0BibLllTI/LPOfc6nB2XjzpgubP7RPsF9Xd9qTgDNigCot9CFRr2HqL12o7Lj2H zVOoUog9SyP2MA4xj1nZMtbNu5qcHMX/sCQUWCs21xjPoYN8aII3Z2jh7LhN/KF4PBtU9/It vkM6FJtKolcUR/DkaostkYfIUZygg2IeQbgyvwbxbL8U87RDP4HHtL9Urk7H0wZB78hRlKDl HGc8PlpWgHGmyVEZoivs1hMj5ptT4zHsL5ar0/GULug9OYoS9FbN0PfJA+QBHA+QoHH8THch D6B4gASN4ma6CXkAxwMkaBw/013IAyge+AeNJyco5ar8bQAAAABJRU5ErkJggg==</item> <item item-id="162">iVBORw0KGgoAAAANSUhEUgAAAPQAAAAVCAYAAABxN8PZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPXSURBVHhe7VrLkYMwDKUuetg2qCIl 5MA5DaQDbjnnmmsmFeSWDrzIxiD/jbENeMzMziyEYD09PUkWaUg9qgeqB4rxQFMMkgqkeqB6 gFRB1yCoHijIA1kE/fl8CnIZIaXhweSUhK0kLL4cRRf00DWkG/jyH9K3DWl7LuiBdE1L5tMT yLw0PNjlJWErCcsWjqIK+tO3pFnUPNolCxou9aRt+/GT4x+l4RGyfEFclcpTCK5Z0JDhRDES ortmliFU347MxXkSc9OMz4U/JHR47lK10wj77Hi222/z67G42hYBe2GZus1hLFA8xoX434Zq VF+QnpYKPXSj8LAg4YG4fbYbqGYTuF9ToeEyrGWt0mztTaI/FB7ku9EuoYkxuXWj/Ta24nIV gG38yvv9Jt/vV2vm/X4nz+fTSxHxsMgCooEqiUpohmmMYs1QWyKJOhQXarklAcsBRc+naqsY bRCuSdDUUan30g480PrPeOTElRCPr6Cpj5BdMh82+/fiyhsbIdfrlfx+P61o//7+aKzRIytP WMA2MXOxy3EjcbYDR8IeGrd5QstHDVuqt5o9TNXcLgyfSkXtQMIT/nc8wIhHTigUH04w6fBA d+KDmzUyy1ZFbMGlhIjt35GrNdigCuPj9XoJ50zQFpz07hQ8sWe6K62uKOF434cjcSg2VwFH uy0FjeL4mZq1lc6ry/K/yYQHrkuqEqekpg4iDE9wUgq2H7koMVeh2G6322wkiHmuyNNVKvjM PLGlIwnaaXsajqQp9yTkXqzIsoLOUqHnDO7AoyakFJl/8uKKCh1u/8JYTq7WVGhoufkhCxpa 8cvloknccqKNzVPklltAYN5mxuRIeW3FNvbqxFvcz8j737WVK8cemnnTiofdIb0rN12zXV+B Z5WgQ+2nwKcZQUauVmADwUKVhuEX3zPzYRjE3+PxkASdmqftQzHarWiHvQZ9JOBIfQ89LWLf 56kBrJ/KGQIyx5Sbh4MVD8vwuml6XDwoNlcEPU6iej7M9i8rpuYqDBtUYT4PgWoNU29+jttx 3AZn5UnTH4iXpu6gQ8NirZjzchT8wxJxz8n3Hn6T6xzvoZ18OBOXf9XdBY/TfiRp4dd7J+PK iXMvnhxzJtYe0i7JZwgaS09+glYqqt6JpqomiOsIvxTzdPRh8djsL4mrQ/PkMzg2iDkhR36C xntROtI3VWK2VzBnJP9s6qywG26Y99XS6zDV7mPicdkvfn5erlw4lxDYgye7oF22p+LIW9Ab 9FO/Wj1QPZDJA1XQmRxdl6keyOGBKugcXq5rVA9k8kAVdCZH12WqB3J44B9l3+WUklj9/gAA AABJRU5ErkJggg==</item> <item item-id="163" content-encoding="gzip">H4sIAAAAAAAA/+xXTWwbRRR+a8eunTg4NsFt3ABp4iYQkjaepoUap7zEDaVJExO7hFCQID8r cOXEabKgFi4WJxCFS1WuNFLFhVOlHnqp1NKqFarUliOCA9w5gAQIkBrzZt7sZu1W0AISQs2z ZmfnzZvv7b5vd/xtCAAManlq9ercQ8c6a8k0N4M0QS0wP5udOWzOWsoDOWppWoRe4f8doFwn PvucRj4Ro67sF8cvUrdBNKKKDuhxULx/laIC9cITBpgLUhbvUdgGfQANYutvFBIMiU8oFBsa VYgVAvAYBs0/oMan1VheQ1jFlRuaGCqs/RFRd4vc4aiIXieYyIM8HZWZ3qJMOwCaxUeLFBKF hxiy2YaEmKi/RDORjZw7pnInATap8VlnLGtEJWrhmw3E+d5bNgugMIzTdCtXJf6wUEVqBXhE FTWYmcwPH9lvmfOGgqHbAb/b0UjtURUaMI/kzNcLpQWfmuiXq+dKs+yrU77dDln+5TcWh0pH mZsD1DaQI+ewNUZNMvFaG8A56j/YAvAO9eU2nn/by0+ABzxt6iTqZBq0rKXCzJuWydeXkqUH t21JtVeN223SO5j09gST3rGVqUi4SO9k0hNdTHrnY1z4Lpv0x5mhLpuhbia98wmG6tb+Hia9 u5dJ79nG070u0rcz6b3Qx5DbHdKTTHqP4NxJm+QdTHqyhvR+8fFlCu/YyWRLWnap03J/VRme VLyEiO9MaX6mJBnmiSbJDrnXPLKeaXrxhqhfIUZ2Uf8NtUpFRlNotmhmigVzwVJrDPmEMF/6 SGtv3oh8u3Im/h3U2B7wwmolCH6Xz3BW8+V49Hi1IjOyVdbtf2W3qK262rrdX5aDEv0saINh WKB+CY7VbgV/ajHwOe+83AvehZ1Ge+TryIkyNE5e8cXdsRd+/ioRGL9meOW53kgylF3mNdVx +Z5yS4vSLuu+n7td957x1zF3a38n/79p/yQ//3sDSE6kOJCiQe7563vB/WE+Uo4nifTzMX4e 6quejKpBA7DEaGZXs25zUFBPT1iv9uolBddyKVelfvypcscnVKUapL2nANNQrJn8NRSJusc/ euGO9ss9YP9AmIGm27GlLfZ9v7F6TCpLnhw8/kVy9mbk0w/hVOKG70tbDQWgplbuxM5AvmNK cANXjf5sq9p/ZaqYT7EQbZXXaLCOz5tLheniq3sLy4vF6WPjpTmT47PyYOzmBS3sS+mvs6dZ PqdcQj3NQj01wEI9vYfF8oAt1J9hVT1gq2pEVuppHGQwRD2FQyzWETHDch2HcK8OyrgUOw6z ZCcnPsvwOOyodtzHsp0WP8fXgvtspY77WbqveYCZwxH9xYaj/MmGI3iAdTyOStAx/mzDURzn Dzcck19umOU6yREhYhYMfF67RhQ6TjiAOQ04Id15DTiBBzVgXgG+oFfn1wAn3YD4ohtlykF5 SaNMKZRDesnUGsrLVQGvuAOk5w8AAAD//wMA0o3SqOsPAAA=</item> <item item-id="164">iVBORw0KGgoAAAANSUhEUgAAAHgAAAErCAYAAAAVCUc/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA67SURBVHhe7Z3tlfQmDIW3gfSRGqaL NDF9pIMpIGljfqWTLWZi8BdgwLKRQDB3z8nJeXcxBj1IYHMtfj74GdoCP0P3Dp37APDggwCA AXhwCwzevf48+Pf1efw8P+/BwXB1D4C5LKm0ns4Avz/Pn5/Pj/3v8Xn9KrWqomZ1BniyHEL0 peGjGvD7uXjr05lxAXgMwAbuY4rBM2RnUQXAAwA2EBevtYAfr8823QJw/4Dfz8wCygLGAotK WeEcbFbKuefc38/rMc/N7tRM7fC3ldMH2HioG5K/jQhzf/UB/vvPz88ff33+Y+7ot1YHwIOT B2AArmwBhGhWg8ODWc2przIA1seEtUUAzGpOfZUB8EUmv7/97FGatuoD/H76754vAuAsbt6D 72/L5jdoZgNk/jFv3BS9MjV2294A7m0F4MSI+H09Pj/eu9AQ8LI3reWt2xlg26Gtscv73hYv exk82O5ABW2P/S7t7eH78P39t1WTOHWv25qckYNWV6Buea0eHLR1r2y+wLad433wBOrW+GAA PG0i+3vINpzSNyeO3musFPFgG6lbTCmx6cLdN0+FaNPYiYo/96zzzaKuoIakloBDoCFw++9V 2xXuXCVApgC3mIsPA3gZaOdzcCw0z79bvTE+uiNBpSlg41h7KPXCcyAYOPYn5e158LeiFS0W H0r50+nyZ69fyUXWGtfdUR3MRxlFxaah2rxj9ZLjnJjsG1fI20b5SXg+9Ce1Or7q2TfpES67 DdhcaB4D1v/bex3mY+LjQWMPnh9jpsjzygvle/Tg4xqDEqK9kexAPHhUL4DN2JyeDIJV7+Yg tr8xffVVTyXag+CZ9CLhVBpG3kiIDh8jtn9368FL9DldPR8BpdYZ0QGTm1JKBIKn17qPQ9ML l+0xaR4mW1vPRw19Dj6vi1CCaw4m3GotEn9qoL2lSj8Hx9Yz1EaVXOvfg/Amyw9Z5FU0tS9h OWnAxCmH1M/E+4LVex7P5+UP5UqujZmcAPjmc7BWwG74yn7j5D8eHruTnnt/3+9Zx30aZo+1 llxbAPgurRvXSXvwjSbdvuQGYH8RWP6ZLNGDb3fx+oUAvK6SLof3Pjz4X/No8/j8c31o6LsC HhxhAsDwYH2ummgRPPhbPXh5zs3tUJQMDses+hZZI4Xok1Dznt6TSyu8ALhJvD97xuZrFADz 2VJlTfoAc8iFVJq6TaN0Aq4pj2hj92p31Qd4epO1a4+r2WHYG6kDnM7P4e5/lr+jHZZo0LH2 gK12at17nZ4PE6rNpIjuW0jd7GdzwPP+pwFsPDS1yR5szTG9BLhps64uaw543jM9yT1JVj52 ZfsqjW0PmNJNAKZYKVoGgG+bro8LAbgPTrdb2Qfg8PsfLLLIwDsBnPnWiNzV7yzYDeD1U5T5 q0C86KAO144AU7uEcq4FAHjw8QDAADy4BQbvHjwYgAe3wODdgwd/C+A964yTVyOWa6Oz3w3O 77R7mwcbwKP9jNinq4wA+KrFOisPwJ0Bu9pcAL5qsc7KCwF2EmVmUx/mygVZZJyPeLYMMsl0 hDMFzMGTDdYByWcMaurDfDkv803w1f8xK07crfj61JnbOs0VAExNu5QrlzveLqe+9EEAsIQH UxOn5cotf3ut5wd7mdXdPMn5MwwBWAIwMQ/VMc+yo31epLTbJ0ruYDicPpr2aABmAOxlmDVE GD14X1fl80Gm5mQAZgB8XH4wzcHe6huA7y7zBBZZ1NSH+XKeV7pR4TAFmHriGi14sIgHm7GW eL6NfqGQOirAXUz5AP3n4HTSUAAWA3w3oPBeB8AAzDuiFNYmMAfr6SU8GB6sZzQKtQQeLGRY LdV6gEeU7WgxdKt2wINbWb7SfQG4kqFb3QaAW1m+0n0BuJKhW91GCLCsZGc96nVeFOJVZW7w CACuLNnJHOKBFx0iLzqYtguTX/Hn5DyQ7ITezO/BjBv+UclOVs4DwPKAq0h2nOPaM/mlEaIZ QnR1yQ41QkxDGYAZANeX7IQZadNyHgAWASws2TF6kUlOG1VcBqMNgEUAy0t2qDmzAFgMcKv3 NlhFy6+idbC1rYAHw4MVDUeZpvC/6JBp561a4cHw4FsDp6eL4ME90brRVmiybhitp0vgwT3R utFWAL5htJ4uAeCeaN1oKwDfMFpPlwgBFtZkbael5c9vwHOwyHOwtCZrHjzrbpL9VjiRiwuA RQALa7Kw4X9phuAP0VQAd9MoUevHZsO84bIOB7ZwJq3JWtJDeCE6oY1m69Mln9FVuBhwdU2W sZ+zyHq83slzhwFYwoOthzlJU5LnDJ6kMiSnUUrrpAFYBLC0JssX2dlV9CbQ8sMjAIsANkaW TaNk0yCuqYQz6YoBWAywjoUGAAOwjpEo2IriVbRg24qrhgfDg4sHkfYK4MHaCRW2D4ALDaj9 cmiytBMqbB88uNCA2i8HYO2ECtsHwIUG1H45AGsnVNg+IcBlmqzj0XWp85F8eVBoC7zoEHnR waPJ8mAlcmGtAyGxmYTPR0UUHSz7wS7eRA4OK915fp4PJ51D4MLwYAkPpmqmiOXi+73raWcI 0WdTNP8czKHJ2lod914D/fEy56IBsDhgEU3W2urY3Ot5PgCLAz7egEOTNddqBs/sqftPaoUd ljNXYA6WmIOXsLkaPK2ZOtNuUc4Jhgc38GDre/bzEqubcjVTl4+2S+eCnjsGwI0An922zt8R okVCdB14lLsAMABTxknXZfifgxWZAx4MD1Y0HGWaAg+WsauaWqHJUoNCpiHwYBm7qqkVgNWg kGkIAMvYVU2tAKwGhUxDhACXabLm18yTYmN9n506BS2ZPWA2Fp6DRZ6DOTRZka/4ww+9t4/A nXQRgRMAsAhghv3gqJxnBzmLDKadprfxcgDOBXf+EE3UWtkQnEy0QvDgLYwDcF3AbJoswjyO Ofh0ZVbswSKaLAvO2ey3823EUwFYHvDxDgxzMDUKAHALwGdaq7VNmXLw4FNw1ALFITp+IwZN lpsLK5GLcn5WxiKr7iKLOrQqlMNzsMhzcAVyxFsAMAATh0q/xYTmYB0GgQfDg3WMRMFWwIMF jauhamiyNFAQbAM8WNC4GqoGYA0UBNsAwILG1VA1AGugINiGBoAJ+7y2w5lyFL3WVAOeg6s/ B3PptXB2IdXpK3sww14xVRIED7ZjoC5gKhzCuYZ7apZEojQAbgCYqtTIloscL4uzC5MRW9SD RfRapis4u5A6BVcO0ex5LNfVdlzVgVV07TmYJYcWzi4ku2/1RVbu+fZKDi2cXUhmLDoHk1sh VBAhunqIFiKZqBaAAbjuiGtwN4ToBkaveUsArmntBvcC4AZGr3lLaLJqWrvBveDBDYxe85YA XNPaDe4FwA2MXvOWAFzT2g3uJQSYqrtaehz9zpdQB74PPh0yAoCpuqulbdF8V4Q6kCfrFK4p IACYqruaz0WK57vK14E8WSS2thA/YKruym1jGGqpdSBEn5LmB0zVXeUAU+sAYHnAt3VX8OBT OBwF+D2YrLtymh9Vczg6q5SnwoNPx4AAYGqerBxgYh0A3AKwuSc1Txaeg08JFRYQ8ODCFjFe DsmOxGMSI6DSqgAYgEvHkPrrEaLVIyprIACX2U/91QCsHlFZA6HJKrOf+qvhweoRlTUQgMvs p/5qAFaPqKyBAFxmP/VXCwEm6Klc0+Q2DbIbCr60J7Q23mSJvMki6KlcEjlt1Ynu6vf1sMnO nu+4IwGwCGAOTVZOr+XsQD2en+cDgHPzBH+IpuqpikK0iRLmZDSE6LNFAD9gqp6qALAJzY+X SYUGwOKARTRZOfhehABgccDHG9Dn4O3aC6vodWFlFlDuf7NH+z9YZIkssoh6qoIQvV8KD27g weaWHJosZ7WcPJ8QgBsBPrttnb8jRIuE6DrwKHcBYACmjJOuy/A/BysyBzwYHqxoOMo0BR4s Y1c1tUKTpQaFTEPgwTJ2VVMrAKtBIdMQAJaxq5paAVgNCpmGCAFm0GR55xMGqg2cXUgeDQKA OTRZwWlmFqhRcOwbGasOy24fPl7T1v/xBy86RF500PeDk/mujCokUNKZsvZXFyRBACwB+AKA zedOcm3M24+LB1+oH4AlAHNrsoLDtNa9Zi9E4+zC5JxcPAfLarLmxdpBjoOzC1susuhzcDZE LxBTova9h8H9nK4jREuEaPL5hA6JWK7K5BcLOLuQ7L5TweIQHb9ZmSYrpZzcvBlnF5IZCwEm 31+0IEK0mAeLciNXDsAATB4svRZEiO6VHLHdAEw0VK/FALhXcsR2Q5NFNFSvxeDBvZIjthuA iYbqtRgA90qO2G4AJhqq12JCgBk0WftW05RwJcykM8uC5i/8VynPEQHeZIm8yeLQZO2wYrmw NvmOKXYQGOzXArAIYPp+8OkZhFaeE+bCSu//hj4MwBKAL2im9ihsVJPOQVj2D4lcWEv9L3uw JUL02dqAfw5m0mQlc2GFSo/DgEKIdqEXAxbRZOVyYV2IEAjREiGa4ezCfC6saQ72hO6BSN4Z vgAsApg5T1YkXaG3ikaIzk7DxSE6XnuZJsuvM5YLy6k/mUNrGr3TIuzbf4QA6zArAIuEaB1w TSsAGID1jEahliBECxlWS7UArIWEUDsAWMiwWqqFJksLCaF2wIOFDKulWgDWQkKoHQAsZFgt 1QKwFhJC7RACzKHJSuuujrtNoVhgthbeZIm8yeLRZOV0V97fMiMfgEUAc2iycrqrVcpzHtMA WALwBcXFhiiWo2Pa1I/rrtytwlmXhdNH04Odfw7m0GTldFdeWkPTsbRHw4MZPFhek2UgpmU5 9q9rmsNgIAMwA+BjcKDPwckQbYASdVcAnF+L8IdojjxZoVe68/phCjAhGo9JKcwCgNeQugjT XU9MJR2N/j6tu/Kfg/FtUs6HhQCfP8LUKIE5WGQOroGOdg8ABmDaSOm4FEJ0x/AoTQdgipU6 LgPAHcOjNH1oTRbFAKOXwcc7gxMGYAAe3AKDdw8eDMCDW2Dw7sGDAXhwCwzePXgwAA9ugcG7 Bw8G4MEtMHj34MEAPLgFBu8ePHhwwP8DEXHL5T1XFDEAAAAASUVORK5CYII=</item> <item item-id="165" content-encoding="gzip">H4sIAAAAAAAA/+xXTWwbRRR+67/YiYNjE1ziBnAdN4E0aeNpCtQ45SVuaJo0MbFLCBQJ8rMC Iyd2kwURcbE4gShckJA4QaWqF05IHLgg8ScQQqLlXA5w5wASQoDUmDfzZjdrq4IWkBBqnjU7 O2/efG93vtnxN2EAMKiUqLSrew9dfdaGae4FaYJKcG2lsPysuWIpDxSp5GgQekXgd4C6T7z7 CbX8Ik5VPSDOfUxVm+hEFR3U7ZB45QuKCrYLTwRgNURZvFtwEEYAOsT+3ygkFBZvUyh2dKoQ KwzgMQzqv0W1L6i2fIaIiqt3dDFURPujwneV3JGYiH1NMNFbuTsmMz1PmQ4DdIvXaxQSg9sY stuGhLho/5R6ons4d1zlppe/XbXf53ZGvZFBU9TDLxtM8Lv37BVAYZig7l6elcQdQk1SL8Cd alJD+YXS5NmTlrlmKBh6HQi4HZ1U7lKhQfNs0Xy6XF33q45ROXq1usI+n/IddcgKbD5Tm6i+ wNycotJGjqLD1iyVJCV4KgnwFtWv7gM4Q3U9yf0venkFeMCTVDcxJ9O4ZW2Ul5+zTH6+rJx6 cNu+bKqpnbJJ72PSU2kmvW8/U5F2kd7PpKcHmPT+u3niB2zS72GGBmyGBpn0/gMMNaj9Q0z6 4DCTPnSQu4ddpB9i0odhhCEPOaRnmPQhwbkzNumHmfRMC+mj4s3PKLzvCJMtablX3dZHm6bh PsVLmPjOV9eWq5Jh7uiS7JB7xyPnM0cfXoqm+HySP7dvqTQaMppCCxUzXymb65YaY8gVwnzp K429fCn63fn3Et9Dix0DL2w3QhBw+QxnND+OR7e3GzIjW2PX/ld2lcq2q+zazWVFqNLPgiRM wjrVG7DVuhX8qcXB73zzci94CY4YqeiV6Bt16Fz43J9wx460XUkH574y6E8DPtIbSZ6yy7ym um7eUG5pMdpl3e9zveNeNv465nrt7+T/N+2f5Od/bwDJiRQHUjTIPX93L7g5zE/K8QCR/mGc 10N708poanQAS4xudnXrsgpltXoierRXDym7hku5+gGVnxvXXKEq1TjtPWVYgkpL56/haMzd /sl37ZX8yw1g/0iYwa4W7PoPe2RVm+LattoUqSx5c/rcl5mVy9GLr8E76Uv+b2w1FISWuXIn dhryG1OCG3jW6M+2qfxXpti6n4Vor3xGg3V8ydwoL1WePF7erFWWtuaqqybHF+TFOMoDetiX 1aezB1g+Z11CPcdCPTvGQj13jMXymC3UH2RVPWarakRW6jkcZzBE3YUTLNYRMc9yHSfwuA7K uxQ7TrJkJyc+xPA46ah2PMGynQZP8bPgCVu540mW7tqzo91xWp/YcIaPbDiNp1jH44wEneVj G87gHB/ccFae3LDA8yRbhIgFMPBh7ZpW6DjvABY14Lx0lzTgPJ7WgCUF+IgeXdoBXHAD4qNu lEUH5TGNsqhQHtdDFndQzjQFPOEOkJ4/AAAA//8DAElq3yTrDwAA</item> <item item-id="166">iVBORw0KGgoAAAANSUhEUgAAAHkAAAErCAYAAAD6yywBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA4ZSURBVHhe7Z3bteygDYangfSRGqaL NDF9pIMpIGljntLJLmZizPgCNiBASGD/e63zcPa2EehD4iaLxxc/l9fA4/ItRAO/gHyDTgDI gHwDDdygiWNa8t/7+3y8vp8bAOJoIiBzaLHzMgaE/Pm+Ho/vY/73/L7/OtdwB9UbEPKkNbjr rK7TPeTP62e1r90IDMjXgWwAPyd/bEHvJlqAfBHIBuTPemfIz/d3HX4B+RqQP6/IpGqGjEkX lXSnY7KZQcfWwX/f99OO1fuhmtrouz3XJ2RjqXv3fDcqzO3tE/K///l9/ONf3/8xN/auxQHy DcgDMiAraQDumlXxsGRWdfZZGCD3yYW1VoDMqs4+CwPkAi5/f+Ocb5q69gn583L3qgtAcL1i 9s23XTW702YOTeyP2ZnraHvV6G3dKdzqCsiR3vD3fn4fzr6pD/l3tt3L7lwK8nzS420EHxvJ ZR+Jchgs+aw9Z78L18TfP9/2y+eolJ2uliNRIe3sxHhRMu/Fkr26rm84vcD81j5YdQAwlVn0 PgPk6RDaPYOeXSu9Pecd/MSSZ6+tMbycDR37c/dTd+0p4XBmu+s1VPekCdmH6kOf/7/Eivkn XgGYv46/jcmLiSiMzYdO/OtsqTF5787cnuxaNdmNq0I2Bra5VcdVex342J6Q1cfhF3mtQh8/ 19k3NqddoYnX+pDvqr3xKRKZscZkrVayWMtxzA+2j8v9rb094apPvdbZrDnXwgsJEl4rh7yM w28veP1wvkt0T8qWbJc40zjst8dT4oiWfJxzEN31PN0ybsCbPR4nFqNADrRngTxb8Fn8dq7F EvVBsFD6I78Z9DpGLHOmZX4RWyf/Gu4uD/1IDWKj1C35t45NzqqP7QnNO2hGsMldJndF43Uy YHG/VJqGl3UJZbvKWtdDzzktmD4m03ti5EmuMTmjMu7O1rwuIu9mHdfJ3hxgnhvk7oz5lpnR GO/Rw46XoX9cIrjuizy7Lq1Xa8iH8s+Bktp5Fo92KD9vz2GxwOfrxfJh3wZ5GZ+Ca+CCdXKv kPeuLPpNVQoO1dozN2I+HxtjnnTXNAVj75qmp6qnTpc7lBIBmaIl/Wes6y38lvrSkP9rFPP8 /kefUVUNLODcCddOJCBX6b/5y1UWvNQOkJtzKhfA9a0WIJczaP1maP/e3RD5rVZiuySA3BqV TPmfaV+9dcRYn0uoi0y84t0ktQbn62SAzKfLbkvqEzI+XWXtMP1CLjq2YdXNZQrrE/K0wX88 JLmMzsUb0iXkcL6Q/flp4VahuIr1BfYB2TlvndaPgZOwYGCevh67rkEXkLc9XmOpob1e71iP aaOgazpMlesCsj03TeTKJEdUMmnmQsX0AZmiUECmaOn0GUAuVt04LwLyOKyKazoOZD96EhMv MvSBIEe+bSI3954PDgV5+ezFBqxjM4TaZQeDTG0WnttrAJBv0B8AGZBvoIEbNBGWDMg30MAN mghLvhPkLRPOLsfHWd6Pzn93A2bZTVwt2UAe/ecKbWjBAJBbaLWzMgG5MyAtqgPILbTaWZly kJNHg4R0FYkyMCaf9y4ZyGsey9DJESGtY7KM75x/DD9HDTSHbD/jnCIwP7Er6uMppGhlAHKo gzeHvAqOuVpqWke46yJH1QdkYl6tVMojuGvNMdnIhiUXWSHHS31Y8hykR7jpHO66iHknkIlp HQF5MMinX0T8DkdCqR8BuXPIRdXLewkTL+2JVx6voqcBGZCLOs4VXpKbeAloC5YMSxboZn2K cCz5CiFAfapZt1Zw17r6F5EOyCJq1hUCyLr6F5EOyCJq1hXCC7l1iA+2NYt6Cx/kZHhOZYhP snxEhoR6AAtkWnhOeYgPrXxAbgp5Lbx1YADctbK7NuJjEDhCfAC5c8gcwXqA3DlkjhAfQO4d MkOIDyB3CJk7xAeQO4BcVAW+l3CejPNkvt40WEksmyG9tBmWDEvupS+K1wOWLK5yeYGALK9z cYmI8RJXubxAWLK8zsUlArK4yuUFArK8zsUlArK4yuUF8kJuHeM1XQz/fj6+oVt3sRnSejMk GYNVGeM1xyQ85zROgJznDVgsmRaDVR7jNTdpDjp4TTeyAnIe4in2bXmBxdU1i/FabmOFu84F bJ6Xg1wR42XctL0ZHZD7hlwa4+W8B8h9Qy6M8VomW/5ntday3R+WIadEi52/I+euf652gTPD O5smR5dhsOSS/tQWMneMF8bkEsbME6+iKvC9BHfdejOEj1VxSYAMyMWdZ/QXecdkZW3AkmHJ yl1QTzwsWU/3YpIR4yWmaj1BsGQ93YtJBmQxVesJAmQ93YtJBmQxVesJ4oXcKsZrLne51zl0 Sxyy/4S6ER/kZjFe9g7H5cBqPr0K3FGBzZCGmyFNY7yowQZT+wC5IeS16BYxXoBcPZjzuWtT lSZ5vE7ctbng8xgYAksOdAc5yFSLPOsou4nX8/2ZAuwBOce85SAXxngdG+PFb+8ewJisPSYX x3gZqJvlBmPDMPEKGndbS+aK8VqXZ9NaOXTFHyALQc4ZKBo8C3ct4a4bgMspEpABOae/XOpZ 3jFZWTWwZFiychfUEw9L1tO9mGTEeImpWk8QLFlP92KSAVlM1XqCAFlP92KSAVlM1XqCeCHX xHg5cVx+hh/78bnNNnB+zGhUiHVy63VyVYyXe9Jkgw82mCa8aE1KcEgwszUMkBtCro7xMuC8 1BIb2PD5sd8kQG4IeS2aI8ZrLmxn2b+IkvdkzXDXZeO63JhMzePlBRdY171z14cwIrjrFHo5 yKQYLxu056RvIr1nmwl3re2uUzFevsWu9Z3AO9Eg3iRt1y5AVoccuasxCNhW2pldw12nvPPh 723dNTHGK5R1b5twWzduJ174FiqXMi/kXOnMz8NdS7hrZmi5xQEyIOf2mcs8D3d9GZThhgAy II+lAYzJhDHZTxw+4v/H6pYytYW7ltGzqhRAVlW/jHBAltGzqhRAVlW/jHBeyDUxXvtvkL39 6ePe9vn+NWbXhNl1Vb+qifHyOoefTcA5hYpUEpAbQq6O8fLr5kBfrvBLd0FAbgh5LZopxsu1 5P0xoz1uxK2r6Q6/f0JuTKbEeK2x17vYai88197XiBRPOZjlIGfEajnRmietCY3RcNfa7joV 4+XVLzbZAuQcO5a8WjeWxyvmyg9/M+4aS6gczG3dNTHGy1TYXQu7Y27sb84EY5qU4eeoAV7I yhrGmCwxJgOysgYAuUsAEpWCu5bQsrIMQFYGICEekCW0rCwDebyUAUiIhyVLaFlZBiArA5AQ D8gSWlaWAcjKACTE80KuifFaW2s/VncDA5DHq6Yz8EGuifHatWA5jNhDRh6vGsRMR41sMV5z YMFryhGyt2Tk8apDzAR587QmHVMg3UMyMmQJ6/HcNfJ41TL+8rlrU5WKuxqNm7apnU4gI49X FWg5yDFLdv52bsnb/ZtI8ZRLXA5yJMYrlP3HWjbyeOVC9Z8XhBzJ4+XU6riEQh6vOsxtIWfE eG3NOFsnI49XDWZeyDU1YXgXMV7nSgRkhs7VexGA3DshhvoBMoMSey8CkHsnxFA/QGZQYu9F IMard0IM9YMlMyix9yIAuXdCDPUDZAYl9l4EIPdOiKF+vJArYryiubqcexxxB0Uudz7IlTFe 4fQR9nBiifmaO4NzhdDWZOxdN9y7ro/xiuTqSoYNAXLKsvks2UgqzuMVydUFyCmGyb/LQY4l f4nm6jpx14E7lOGuG7rrtehiSz5W7hAN8rv86/n+IFlb0nbdB+QsmS2PVzgOG5asbclZebz2 ubrc6Ew/g+6+WYCsATkjxiuaq2ufCzuwfDLNA2QJyJljBffjgAzI3H1qmPJ4J17KzYYlw5KV u6CeeFiynu7FJAOymKr1BCHGS0/3YpJhyWKq1hMEyHq6F5MMyGKq1hMEyHq6F5PMC7kwxiuU aeB4ydfZt8ubrrAZ0nozpDLGy6neIcDA/vUsx9f+PUBuCLk+xmtfuUDil9McX26jALkh5LVo hsiQ8/PiQI4vr02ArA2ZclfjHD1yvIcxmOMLkEmTN7mJFyXq8mwsjuX4AuTOIBNivMzYbnN3 bT/xHF8YkymU5Sw5FuNl587BKMwd8pM0yVhCpUC3hZwR45W6Tve3iALkFNGTv/NCLqgA5yuY XUvMrjmJFZQFyIBc0G2u8Qrc9TU4RlsByIA8lgYwJhPGZKOk0f+N1S1lagt3LaNnVSmArKp+ GeGALKNnVSmArKp+GeG8kAtjvOz5hLk4bJn4RS4QC10uNhWB2TVhdl3Vr6pivAi5upLlA3KI H4slV8d4JQIKaOUDclPIa+GlMV6UqJHVpSPtYq7HZbFkEuRojBcxV1dizMeY3HpMTllaylp3 E69gri5AzjXi+Xk5SybEeG0tCOTqAuTeIcfuaiTm6gLkDiHnxHhRcnUBcgeQi6rA9xImXhIT Lz5eRSUBMiAXdZwrvMQ7u1bWCCwZlqzcBfXEw5L1dC8mGXm8xFStJwiWrKd7McmALKZqPUGA rKd7McmALKZqPUFykJPxXz8lpAIPEOOV3VtkIBPis+aax54jlIHNEKXNEGp8Vuw5ahmArAR5 FQt3ne1muV6QcdemtoDMxSy7HEDOVtl4LwDyeMyyawzI2Sob7wU9yKExGutk9l4kB5m96scC sYTSXkIBsoAGAFlNydqC4a61CQjIB2QBJWuLAGRtAgLyLxXjJaCvIUWskIesPSpN0gAgk9Q0 9kOAPDY/Uu0BmaSmsR8C5LH5kWoPyCQ1jf0QII/Nj1R7QCapaeyHAHlsfqTaAzJJTWM/BMhj 8yPVHpBJahr7IUAemx+p9oBMUtPYD/0fUm+K1pnx41EAAAAASUVORK5CYII=</item> <item item-id="167" content-encoding="gzip">H4sIAAAAAAAA/+xXTWwbRRR+a8eunTg4NqnbuAHcxE0gTdp6mgI1TnmJG0qTJiZ2m6YFqeRn Q42cOE0WRBEHixOIgiJV6hUqIS6ckDhwQeJPIIRE23N7aO8cOCAESI15M292s7agP1AJoeZZ s7Pz5r3v7c63O/42BAAGtQK1RnXuoWODtWya20CaoBZYmM3NvGzOWsoDeWoZSkKv8P8BUGkQ H39FI5+IUVfxi3NfUrdJNKOKDuhxULz9HUUFGoUnDDAXpCre12EX7AFoEjt+p5BgSLxPodjU rEKsEIDHMGj+ATX+UI3lNYRVXKWphaHC2h8RDTfJHY6K6I8EE3mQp6Oy0qtUaS9Aq3hviUKi sJkhW21IiInGr2kmsoVrx1Rtytiqxp/yOKXuyKAlauObDcT53tu2CaAwjNN0O69K/CGhFqkd 4GG1qMHsZGH4zGHLXDAUDN0O+N2OZmqPqNCAeSZvvlQsL/rURL/MnivPsq9B+fY7ZPlXTi8N lV9jbo5Q20SOvMPWGLWtFPdiAmCV+ne2E9vUVxI8/4aXnwAPeBLqJOpUGrSs5eLMK5bJ15eW Sw9u257uqBl32KR3MukdSSa9cwdTkXSR3sWkJ7uZ9K5HeeG7bdIfY4a6bYZ6mPSunQzVo/29 THpPH5Peu4un+1yk72bS+2APQ+52SE8x6b2Ca6ds0vcy6ak60vvFhW8ovHMfky1peVydVvpr luEJxUuI+M6WF2bKkmGeaJHskHvdI9czQy9enDIuJvh1u0atWpXRFJormdlS0Vy0VI4hnxDm Sx8p9/KlyPWLn8RvQJ0dAC+sVYPgd/kMJ5svx6PHa1VZka26Yf8ru0ltzdU27P6yPJTpZ0EC hmGR+mU4W78V3NJi4HPeebkXvAn7jI7I1cj5CjRPfuuLu2O/mL+WDIz/YHjlud5IslRd1jXV ceWuakuL0i7rvp87zXvLuH3Mndo/qX8v7d/U539vAMmJFAdSNMg9f2MvuD/MR8pxJ5H+eYyf h8aaJ6Nm0AQsMVrZ1arbHBTV0xPW2V6dUnSlS7n6GbVfqn/5hKpSg7T3FGEaSnWTv4UiUfe4 72/e3F/vAvtnwgy01GFXftoiu9V57m1bnSeVJU+Onvs+NXs58tG78EHyku+KrYYCULdW7sLO QL5jSnADrxr92da0/8oUW0+yEG2X12iwji+Yy8Xp0qmDxZWl0vTZ8fKcyfE5eTD2c0Ib+9L6 6+wpls9pl1DPsFBPD7BQzxxgsTxgC/WnWVUP2KoakZV6BgcZDFFP4RCLdUTMslzHITyog7Iu xY7DLNnJic8wPA47qh0PsWyn5Gf5WvCQrdzxMEt37VnX7jiiv9hwlD/ZcASPsI7HUQk6xp9t OIrj/OGGY/LLDXO8TnJEiJgDA5/TrhGFjhMOYF4DTkh3QQNO4FENWFCAx3R2YR1w0g2Ix90o Uw7KCY0ypVBO6pSpdZTnawJecAdIz58AAAD//wMA6zdobesPAAA=</item> <item item-id="168">iVBORw0KGgoAAAANSUhEUgAAAHgAAAErCAYAAAAVCUc/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA53SURBVHhe7Z3b1fOmEobdQPpIDe4i TbiJ5GZ34AL2bsNXuxMX4wjJkjgzoOEw+P3WykV+IzTMwwwIXqHbB39Te+A2devQuA8AT94J ABiAJ/fA5M2TF8Hv5+d+e3xek4Phah4Ac3ly0HqEAX59Hrfb57b+d/8834N6dSCzhAFePIcU ndV9hgb8enyj9aGNuAA8B2AF977k4A2yNqkC4AkAK4jfqF0B35+fY7gFYPmAX4/IBGoFjAkW lfKAY7CaKceec9+f530bm/WhmdrgXys3HmAVoXpK/jUizO0dD/B//vzc/vjr83/mhv5qdQA8 OXkABuDGHkCKZnU4IpjVneNVBsDjMWG1CIBZ3TleZQCcyeT9lrNHqWwdD/DrYa49ZwLgLK7W wc/Vsm0FTW2AbH9qxW2gJVPlt2MF8LQVgAM94v28f27GWqgN+Ls3PcqqWwrw2qBDLeHZh+UM jVhdDBG87kBZC9W+fwubYa+Hn+vfq4+0uvdtzVbuOe9jqVueewRbtnoN49ixWUAVbQYwAF42 kc095DWd0jcn3OhVXvJE8JqpewwpvuFC3zePpmhfQ7TeQk1JPQHbQG3g6//v2i575yoAMgS4 x1jsdOBvR6OMwWvvNSBuDd6j0d+7PXmgK2AVWGcqNdKzJRhw2xOK9jj4omxVmNddRt/5QBLw 2ng7lVnjUURRcWio7LHcGrei7eJKeUcvT6Rnpz2h2XFuZBfSI1xWCPg7ONtd0dmfJT4edI7g 7TFm6azPuFBeYgS7cwxCit5m0R4lhRNRUgArhe33ycCXP7/ZytVX50Yq0R+EyKQXsYNxnyPt /JxJljW11lLs/Z+/LYUFsUHdI3gfl1KzZ7c9oXmGt8P4hhRjEle4GJIUF+rMlnscj0lbNzls Tfca+hicrotQgmsMJtxqL2KuWK3PPuRVKuc52H7E9M14k7bZEZm8IFiAsJJlpizyLLrUptqA iUMOqZ0k/Ri9s+iRd388WF6yIwDee/T3uZH6HDwqYD19Rd9xMh8P3ebQwHlnvBHfvF+vTQOe TNE0BxMB0ypjKVU7glmMJFQSnMQRrgVgopNGKFY0Bs8cwf9Tjzb3z39HgMNiAy2VO7eaNkUD 8MYagFnCi78SOyWTZtoeMwCYnw1Xjebeuu89q+9zbmyHAoC5cPSr57Wsk9dWeI33mDTdGOzr QKlnbL5OB8B8vhyypvEAl05KhnRvf6PGBNxSHtGfQVULxgO8PGac2uOqbf+JyocDHD6fQ9// xFGG1N7ZH/C6MLBvii/Ph4HdqqCIjtrSHy3XHfC2KKAAqwgNqR+s9VymRYBfYN4d8Lbmmjh7 kqx8/AVkeW3sD5hiLwBTvOQtA8DFrpNxIQDL4FRspQzAtsoRkywycCGAI+8akZv6mwXFAN5f RdneCsRCB7W7CgJMbRLK6R4A4Mn7AwAD8OQemLx5iGAAntwDkzcPEfwrgJ0zsnznbAj4t8l5 ZTfviGAFWPrfDG3gZgDA3B4drD4AHgwItzkAzO3RwerjBUzexnNf3XAPQ/VtKMRf+cAY7PYu PsDH0UHpnZ4dpq5vd0+6cY31XWcsrE8wUeROACyAtyMMF0Xki/D59fXVlOUkWu38y+0k18R5 Ut7rTHcggmtGsKo7maJ3kHaq1c8+9n2XMHQdAKciniWCj5skAKsUu72WYgF2zqc2Izp4ndU6 RHDPCDbeGky/H3uMyRnXAXBHwN5PBiyTotCLZjvgnOsAuCNg89ZWBDuHn6nf8ZiUGl8pv9cd g4Njcuo5ODSjxnMwBarx6Lj/zwzpbYY25AJMleeN4NTdKv8OwLXH4MoAU9UDMACn+sh0vyNF T4fUWt3TJ1kzyHYm55XdPERwtstkXQDAsnhlWwvA2S6TdQEAy+KVbS0v4OR+8G5faqnSfAeY Juf5rF8UxV9kFn3JORUlOxQ5j7IdgCstdNSV7BDkPN92AXAlwEe1yRRdItlJyXnORgFwZ8BF kp2EnEdvEgD3BJwhvVFmxsbd0G8A3BFwjvQGgC9Nd42Lx3hMikl2yHIezKJ93aIuYCbJjhn9 YYE8UnTtFM2XWYpqAmAALuo4ki/iTdGdPYEIRgR37oLtb48Ibu/zpncE4Kbubn8zAzA0We0B 1L4jIri2hzvXD8CdAdS+PQDX9nDn+gG4M4Dat+cFnNzw35uTp8k6v44W/14DFjpqLnRU02SZ 3y1cNx4CH7AE4EqAq2qynC+CK+D+s7gAuBLgo9pkii7VZJ1bhIjgvFG76RhcpMla26MJ7wLp WZVCBPeM4FJNli26W8d6pGhqHDeL4GJNliPZsT4WrbUUEdwzgo17ZxyjhAimBqu3XN0IZtJk LRradXzd/oMmK4c4L+CcO1coixRdO0VXgJZTJQADcE5/maIsUvQUGMONAGAAluMBjMGJMRia LDmdmWopUjTVU0LLAbBQcFSzAZjqKaHlAFgoOKrZvICTG/67Wb6j+bd/8643G2vR4S+rYRZd cyWLU5OlbxFanWbddtS/iYftwmgws0TwdU1WWGflWB/JEojgmhGs6k6m6IAm66v2eK7fQIxv CSKCqaPvVo4lgo9bXvq03e1zZF5HSbl3HuwH5+FtCTimyfJKY0Mb+5Ds5EBuFsFxTdYCzVBL hiGqxuEgNDriZoBNk9zHJAOaHtEQ3dFpekrWBZyhyTK0z5YsFudklTPmBVxuB8uVeEyq/ZjE gqm8EgAG4PLeI/RKpGih4KhmAzDVU0LLAbBQcFSzcU4W1VNCyyGChYKjmg3AVE8JLQfAQsFR zQZgqqeElmsHOCkG2D1obkSEdqF8qh2sZPVaybqo1zLMdnaXzl8BuAPg63ot3ej4PjEAdwB8 3DKZokNnaJ1Gx/RYqhQADww4eIbWYXM8egHYPwscY5JFOUMrMvbuTUMEDxrBlDO01Fh+f76j DysAPChg06zQay3h45MQweF+3y9FZ+u1ALhkraUd4BLrMq9Biu6ZojNhlRQHYAAu6Teir0GK Fo0vbTwAp30kugQAi8aXNh6arLSPRJdABIvGlzYegNM+El0CgEXjSxsPwGkfiS7BCzi5qb/7 KlN3tda7H9CCc7Jyehwf4Gq6q+2jWLvIDl8+y8HLdAhLVd1VxgEtWIuuvRadTNEFuisAzgtZ qzRfilYVl56TdRjl0115UnTg20mI4J4RfEV3pU2y7s/Xcmipf/MfgDsC5tJdbafx4OOU1Lzd NEWfRuXorjxfAMdps1S+lc+q5NJd6edF4/vBZLiqIG8EZ92avzDG4NpjMD+zrBoBGICzOswM hZGiZ6AYaQMAA7AcD2AMTozB+HahnM5MtRQpmuopoeUAWCg4qtkATPWU0HIALBQc1ex2gJNi gN1kz0YENFlUnk65NoAv6bWgySqm22Kz4bJeC5KdK3wb7iYlU3T8u4bn8Sv48lkO8TYpWllU rNeCJisHqF12DMApvRY0WcWMhwBM0WudLYQmK4f2EIBNg+3HJGiycoCOk6Jz9FrQZBUzbhfB xSbSL8R2YWK7kO7KMUsCMACP2TMrWoUUXdG5I1QNwCNQqGgDAFd07ghV45ysEShUtAERXNG5 I1QNwCNQqGgDAFd07ghVA/AIFCrawAuYsOdriuv1N/W3fd/1d/sdYH0tOvB2v/IRVrJqrmQR dFdKvuN/Od9zMNp5MNZyCNrZEWJfPwPgSoBpuqtdkuPLR9YebywTRH4D4EqAj2qjKVpLwd9U fERzhrAOEZw3YLcbg1f4+vFHWkQ7n63zCOsO2U74+0mI4K4R7N78GJMzIng7RgnnZFHjuF0E eyw6J10ZY/BST2iyhgjuGcFOGlYpep8db7Po/eOTxjhLSd/fdgFwa8DWpMtUT9ppNvwcHL/u bBQA1wZMHRgqlQNgAK7UtcatlneS1bmdiGBEcOcu2P72iOD2Pm96RwBu6u72N4Mmq73Pm94R EdzU3e1vBsDtfd70jgDc1N3tbwbA7X3e9I68gC9psr7t9tWBc7KKOwUf4EuarK/93jo8b/gH PsyBlaxKK1nXNVnbHu9NbeS/lPJDU1t6xQD4bhI1pPkiWN2xVJOlW+vUgQimwvSVawc4psmK AlY/RjTT2rVI0ZVS9FFt8jQ70wCv9Mauw+4Y6ziNFE2N6nYR7LGIBBiSHSpLb7l2gKOaLM02 RPAloPbFdQFnabIiz8HGu0nQRef0AF7AOXeuUBaTrNqTrArQcqoEYADO6S9TlEWKngJjuBEA DMByPIAxODEG49uFcjoz1VKkaKqnhJYDYKHgqGYDMNVTQssBsFBwVLN5AV/RZEXOwnK/yoLt wvaAr2iyfJsS2oFa4fO1zGbiManSUiWHJsswzQAeO18LgFOR3DBFR87Jsqw0z8KiX4cIrhTB R7XJE+oC52TtFfjOwqJquZY6ALgnYE8uCY+t4bOwVDU4RimVmM/fG6Zo16jY5KnkN0RwzwiO abJiwjqqlgsp2hvWdSM4Q5MVOwsL52TRU7JdkhdwuR0sVyJF107RLJjKKwFgAC7vPUKvRIoW Co5qNgBTPSW0HAALBUc1G+dkUT0ltBwiWCg4qtkATPWU0HIALBQc1WwApnpKaDlewBc0WTTd lfkJPGfddfngFv5MD/ABvqLJWmyi6K72TuD//iE2/H2dmwXwdU0WQXe1npf1+DyWz+8AMD1P sQA+bld8TlZKd7V3AKRoOtqtZDvAMW1VQnelUvP20SwAHhewxzKSLMc4yhCApwPszq63r4Tv n8HTG4z9YBd/uxSdpcnSv2uoG40IHiuCmTRZZ6MAuC/g3Lszl0eKrp2imYHlVgfAAJzbZ8SX 551kdXYHIhgR3LkLtr89Iri9z5vecSpNVlPPCbkZNlCFgCo1E4BLPSfkOgAWAqrUTAAu9ZyQ 6wBYCKhSMwG41HNCrgNgIaBKzQTgUs8JuQ6AhYAqNROASz0n5DoAFgKq1EwALvWckOsAWAio UjMBuNRzQq77F/1vh4Jygd6ZAAAAAElFTkSuQmCC</item> <item item-id="169" content-encoding="gzip">H4sIAAAAAAAA/+wXS2gTUXA2v27apPlYk5pWTWNsrVrbrmnVUiQ19iDYBlLpVdpk0ZU026Zb aA9CsBcPVQRR8KYgXjx58yKoiPgBW/Gogh4FDx5ERDBx3pvtdhOCttaLtBNm387/vdmXefNc ACAgjiDW8ncLPm1aXpabgIGEKE6kk+Pn5LTGOZBC7EejuFVy/AAo2KS7j5GySwEcCg5p4REO NZI7zrVFnXZK/leoJdZKFg9AxglgEWYB6qTLkyh2govzb9cxPg/kJn9iPbl3eyRAhXg9irwU uN4n8Xl4Afx83s7E6Mjg1AlNnhB4bBeiw8xwI27hqqI8lZLPKGrOzgUxZp1R08Szcd4RIx+O 6bOTx9RZWv5JxBpkpIyEDCE+Q5wP40Qw0HwLwBukr4RJft5KSbaApYG/+I1IA5qWV8ZnNJnm 14foATNs7YuU0YHlvAYpr4FGymtwG+W1Uc9riPLaCE2U15CR12bp+hOUBLdTPpuRtYO/FprL Iu3kS3dhShPqxLjKkkgCL0sAslc4bMr9uH1e4HgDF92L4zvEUolpo2oyKyeyipzTuA2uNazv O/2JtkuLvg+37oU+QgUcBSsUS05wmHiCYU3Tseh0scQiEpQ24b+Cn4hFE27CxoIUqPjTsDIM Qg7HPMxVloLfQgDsxn+e1YIL0CNEfG99VwvgHn1qD5l1u2bfR8XhlwLWZXioF5IERmdxZf6c XlNsBngCCeb1rNbuovBnndXC38T/l7Ce+HRAArBvws5fdi6zmr9ZCzYG2LE5u4Yf/UGA9kNt 2c4oI7BH5C1GA7EadMyAwnePR7e26iaKyZx1hPcRv5aq7lAeagBrjwJjkK0Qfnf5/GY6bqu+ k7+twfcX9Cl6K3wXPgd5vCEajfjYZ/azl1MLz7vTS747l+BmdNH+erkbEqEiV+bABsH+Y7yn BcoaHrZlmMMKrMEMuIUcfKq+wHVDNf/8a4WpEfWyOQrUKo/IeWUse/q4Mj2ZHZsbVjMy6Sf5 alrIwE28iH7H2EW9cETvhaPUC0dgN/XCUaMXbtXvGG10x2jdQz1xG4ra6Y7RtpfuGO2swu+j aO18evEkCPuJ0cqjd+hODpCTDmR1kpOOLnLSyZx0k02n4UQyOTm4YhvTbXvINsZse0k1Ztge MgkPm4SM/gUAAP//AwDQAKei3A0AAA==</item> <item item-id="170">iVBORw0KGgoAAAANSUhEUgAAAEoAAAEACAYAAAAUZODPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAj2SURBVHhe7Z0Lkuo6DERZFwtiPayG zcxiMnG+tmMrDZGDFHqqXr2ai8aQk/YnbSHfOv5ABG5QFIM6ggJFoALq7+8PfDu/YW+Dej1u 3eM1X/Bf97zfuvtzBvXqHrd7t/zql8vmk78F6u95724rpb6xHFT4p2d3vz/7V671s4AaICwX OAJIoQS1PLpFTBOk262PC/9FAIPqVpVdA1ikqABi6lYFVWzVFAAUFBX++fWIoF8O1HSBvTLS cUgAUgPV6+5qY1U2RpW63CCRVW2JQCqKmgAmw1lBWOGGLF137sKFrmxBkxmoEcgtGYtmUKXZ TAZ1pXEqARXGoXBx8//XO0lFraDCAL4oKR9j3lXOhceoYbzIpvj49/KsF5ZN/bIiWx5cf9YT R01cJRdfR+3PLTVVpRPhxVfm+5jW9VR92sdVh72fnai3nvXsfOzzPwlBgcwJiqBAAmAYFfUu qOrDaf6w6ux3kMNu2KKoAOpqP5rXRFCgOgiKoLrhYV3rp5GiZgOwdyTEHRkpbnJbh8kjNQ0X x2KZWOJNjxWNcVDjBc7Pg/UHaTku8e2zzYqtp1/WjXFQ2bZWYgjGFyTF5Vtj8d8FwNgmq21Q m62uiqMgxU2vPZfNhxhM1F2nrldzM2yD2uzpVUBJcYMKo637GOrwWgyurjBToJItp3BrFRW1 bsvLPldtzDIFajuMKo1RyWx5SVDpjs3erDfv/eVxiUpilW66bHg/l8uDecN02gWOlbGZAaV1 VDxopyDSdVR9BjTe9bTWwsfbISiQIUERFEgADKOivg3qinYwyHQ3rJHNsvu+pwSw64GYCYqg QAJgmANFtbWC57TtcfJx+whzshUs5LQbV5SSzbLJTJ77m2QTp33SNihF465oBYs2sSdQp1jB FZs4G+RNKep0KxhVbA/NFKjzreB+jAJtYuOgGlvB/Z2p2sSWu1557VdZRylZwfOXmMZ1VNkv D5/LuKLAZfMJYQQFQiYoggIJgGFUFEGBBMCwZoqiZ16/A/TMUXXOcZoyBd+7eZjmNVFR4O0i qO+CauyZT6mLzp/1WnvmaQ2GtPiOJ4dzKE8SPdFrp09fxrhDL+TT9Gm0ffM2S2vPPCuoM6Yp lvf2TC0PTvfMwzAUDeb356v6TQZToM73zPN3rO/zGQfV2jNPc86l6h7GQYU73tgzD+Pg/BU0 4WtuDkCBy93GYQQFAiYoggIJgGFUFEGBBMCwZoqiZ07PHNQgQRGURKDZGHUYu7EGHIA65plv S4qMX7vd1jdIbef8PhkHpeOZJxddySWfgfosEKHimceYpEocjz6fs6S08e9tKwr1tMG4emX+ YP967noanvkiqLKa1jLijkA18cxnUKWxKVGiI1BtPPOx1VIV69qMWKrGb3uMyg6s+LTkyPhV s706Ua4VpemZXx6UjSW68a5nA5L9dZQdTsYXnARliAD4UThGfRsUPXNawaAGCYqg6Jkf1oB1 42587p/O6TtQphvJJa9mHHtwOLPTGvfcg3I570JWXZ4wtiSTuf3ytUKeedEmXoGMZmHvLLzi MwG3fdX2ghP0wuXiy4CiAhfXXU/NMwfGOU+gmnjmec3yYTwqjEWeQDXxzFFV+galkGf+G4pS 8szjXPJaHTvfilJYUis1YXt5oHSRGs0QFEiRoAgKJACGUVHfBkXPnFYwqEGCIih65oc14MIz l64S8Jn2fHfET+/bcLw80MhBv0xtlj01HazbglrNrhWFXiRQtwU5pNBv10OdSzGu0PU81GYR O9py2Gm/vaR17OWy+zJ+kchxbZbGY9Smebe1WSRQCn76sF2/plU7r82yp6qDx16yNovCcjxq wu+sp8thtzWC2kU0BhAUQYEEwDAq6tug6JnTCgY1SFAERc/8sAZcrKNQX3yiUcxzAtrwnR+F +uITpGK+ONDG7+SZj3UNyvnicq76b+WZx2NQ3oXe8dbdHhuH+uISKLQNT2PUx3nmP68ouH5U RKp4kiOw/+dJUdvlDuqLS6DANnyDCgDQeuY/vY5SWFIrNUE/CgRJUAQFEgDDqCiCAgmAYc0U Rc+cVjCoQYIiKHrmhzXwM5659Bw4U3RdsBTwu2O1SN73ji/+I/XMJc9cfm3gPNjFv1DPXHI4 d1+b6wh77nqo370Loz5G/VY9809B/V49c8kKrr/2g/XMPwOVLq88j1HDlWh45pdfRyksqZWa aGazKH0+M80QFHgrCIqgQAJgGBX1bVD0zGkFgxokKIKSCHAwB/XhABSQI75nsyT1V7JTGa9R m0XDM88OIEwqvV6mNgtaz1zwxYNLmp2AGpJqh39CU6v7UNtd740LWXrfTi7maNtMtQ7eaN82 KG3PPDvYcPa6kiMIPNRmaZJnvkhtHI82x1ZGg7nj2iz4GCV2vQlG7bDmddJ0W5sFzBGXlgci pEvVZjnmme+epc7aLOCSGwyzPeuBF3FGGEGBlAmKoEACYBgV9W1Q9MxpBYMaJCiComd+WAPW jbvhAhU889Va6J73zDOfPKpx8lmLl+ZsjS8PNDzz9ZJLueSLLTzck942zs8Hnf7cOCjcj9qt sVLMJa/7T74U9YanLXvmlVzyqf3nUtnaa9dT8syrueS5qbe5MauuTHW9Jp65lEv+hmJNgdrO 4vgYVet6ci55334yeGebpdEHMg5KwTNP6G9zyZNZz0vXK68Lj3nmaZulpPuofbeFthRW1FpN GO96Wpd5vB2CAhkSFEGBBMAwKurboOiZ0woGNUhQBCUR4GAO6sMBKA3PfHzGK/niW3chqgLr zT1IklGl/MJK/RXJF09eE9RlXFG4HwXXM9/YLnX7Nw61DeoNB7LqmYu+eGyxjF2zJljboDQ8 c8kXT77uEVDPmxDbPmgKVHvPPACo273Dq/PXPzJWpkBt7yM+RlW7XgAD+uKOQel45lVffNO1 w/u5XB7MXQU553PS1N65MJkvnq6jvG6AgqvmM8KMj1FnIMDeg6AwTsa/2AhexBlhVBRImaC+ DepqnjnIEwq7QVEM6ggKFAFBERRIAAyjoggKJACGUVEEBRIAw6goggIJgGFUFEGBBMAwKoqg QAJg2D+RHbEP38No3wAAAABJRU5ErkJggg==</item> <item item-id="171" content-encoding="gzip">H4sIAAAAAAAA/+xXTWgTQRR+u2nSTZs0P8akplXTGFtrrbVr6k8tkhp7ELSBVEoPgrTJoqtp 06ZbsR4k1IuHKoIgeFMQET2JFy+Ciggi2OpVkXpX8SAigo1v5m23m1C0rV6kfeHt7Ly/b+bt ZOaNAwAE5B7kCv4u4rNMyylKDTCSkaXBVGLglJLSuASSyB3oFLPIth8A+TL53lPsWWU/Nnmb PPkEm3LZGePWkt63y95XaCVVyKILIG0HEIVxgEr58jCq7eDg8luVTM6BnBRPqqLwTpcMaBCr QpWbgKs8Mh+HG8DLx22P9/Z0jRzSlEGBYzuQbWaBE3kNN5WUkaRyQs0OWbkiyrzT2RTJyrhs r5EP2+jJ4QPZszT9w8jlKEgaCTmCfAcBLoQAPrO2DuABtldCpD9voSSLIPr4i9dA6tS0nDow pik0vnZkF5hpbXu4qO+fy2uA8uqvprwG1lFeq/W8Bimv1VBDeQ0aea2Vrz1DTWA95bMWRRv4 a762CGkjn7oDUxrPDg5kWRJJ4WYJQPG8hA25A5fPXZzF9RAtmnfIhQKzRtNERolnVGVI4z5o VaevO/2JvtNTnpmb94MfoIT2gwVmC3awmWSC4U3DEfX+bIEhEhVW6b+in8izJl6llUVJyOJP gxB0wRC2ORgv3Qp+S36wGv95thdMQJsQ9rz1XM2Ds/e5NWi2ze97H5G6Xwq4L8NjfSOJIzrD VfhzdEnYjPAEEszzWazfReHPNoul5eD/S/obfDogAdg3YecvO5fZnr+6F6wMsmJx1oQf/ZGf 1kNF0coo6mCNyEsMH4l8OqdB5avHpXtbdBfV5M4qwofIXwsLrlAO1Yl7jwr9kClRfnd4vOb+ jLjwSv62hNhfMKbkLomd/xjgeH3UGvh9WGWxl6OTL1pT057bl+BGZMr6eq4akqAkV2Zgo8MG zWtaoKzhYVvEy6HTMIbzOgef4AzObfHk8xwT3ogTosWtf60QFaJuNkaBSuUeJaf2Z44fVEeH M/3j3dm0Qr4JPps6cnCSLKzfMTZRLRzWa+EI1cJh2Ey1cMSohev1O0YD3THqt1BN3ICqRrpj NGylO0Yj2+GbCK2RDy+WAGEbCeo5erMeZDsFaUZRCwVp3kFBWliQVvJpMYLIpiA7532jum8b +UaZ7y4yjRq+u03KPSYl6/8CAAD//wMAFZ+r09wNAAA=</item> <item item-id="172">iVBORw0KGgoAAAANSUhEUgAAAEYAAAEACAYAAAAOWABBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAgmSURBVHhe7V0NkrQqDJxzzYHmPJ5m LrOHccUfBCQkKDgEe6pevfpcRGk6AZoYXiN+UQRewCWOAIAhmFEMmL+/v67IdwqY7+c1fr4b Dn/j8H6N72ED5jt+Xu/R/lMpXNnA/A3v8bWjMjU7BMZcGsb3e5j+ovdngTEs8Bts2heCYNjw GS1ZVlBer+le858DmKlvZ5E+gHbGfD9T446NdslxBMo0OMIYc9nUp5g1jikZNji+w5hDBKgj CwhgJl5p9jWej3HNKW5GrtOlnK9/3XNHEYuan7mZYvh/7uaKFuo7X8uShQX+e1EMoBhDXa/Y moJVB6PSCsgQmtHsNHxTsy+RBobrdB2MmUfaaSQKRpgFg1xmdORjlvYbtsR8SWz4XiGLgdnP qLTaxmE0cg1XzoJ+5jEWl3dyYhafywRer6eZ72ZC/KQsNmKdY1XBQaR4VdlrpeJv0GiFAIbo GAADYPJsFozhGEMu5KgFXqPX83hBl7aMMcBo/5VsA4CRmBIYsyMAxvycMcnFqXm7Re+ZBwFK K2bq0OdjZqHdNNoV292u8tdf0YUqW8c4P6PUr7opLQrdtAH3jamCWzOCbZmAGbI6lAFjezBl BgeZgtB9ujMlqwwSpnRQ+wDMpo0GW7oAZrW0tI8RmeNUSJXzlTXK34Eg5dNH+JhDI584jyk1 uWDq0WlKN4ADYKj1jaaZ7w1EsY8AY+5mTA/yZimGVl9ElnpRST0wpbtNSdIrLZcBY9QxprZ8 qXKtxEqPF+VLtv4GV9cy6fG8fCmrv0FgRNJCCflSpSndIV92CQwYQ+0dFZAvu2RMEEB9Sr7s BpjS8qVaYH68XsCSQN2SAIz5MQJgTF4HwMfczRhovjvi0Hwp9m3XS9pnnmcoV7pkG8AYMCaP mWUZU1vzXRei1CfLbZoSq8le1HynDt8+fVYDjEyTPa/5zkYwC12f8XPIIOAMsc1GO1QLWTVs M8l60h+qtmlKFTVfY0JLFpIegTmr+Xr39QjM/BGFowdTZhdct7kmgi/qYtmMdJpSCc23G1Mq rfmqBSZvclm8dLumVLypeRUCmLuFqrz+aa80GAPG5LGyGmOg+ULzZalYVqhiH1e3QDVTqvva 9WsHMOpGpVqa75q0MP21f6tRm9U0Xz/H5yxDELkfmjOlqpqvVOCazKs5YKzJ19B8uwfmdJqC iCkRWeyfxRgrsi+5Zd7Dd90xOA5NOoE5qfkemx9mute+r3Ra8/UTYKSyw+phTCnN104FEmma mh6V6s/6k09olzEA5scIqFsr/RgvmBIYk0fBaoyB5gvNl6UiNF/KX23XS9on2x2VCpRsAxhz C2OuaL6erhseSrOEmC2DA32iYJuMuaT5BikkZ5B2ALzjFxOn8DQHzGXN1zQ2iGrewaD1l9AK mgOmqOY7V+YwaNV8B3vWmzZTshLkxdS04clfq++xhDqI49oVPJHavwjfXqiq6L4FHJ2mxGm+ ITMsESawvA02+lQwpcAkUtOSoCzoeKNSF6Yk1Hyp6O99oHJS2pKZ6ls2pUpTfWm17ZqStAWV ygEYKHh51AJjwJhGGAPNF5ovS0UoeLcoeGw/1C2AUUndqHRF83VjYIL10HEtFdd82mTMFc03 9kmxI3V6q+uENTYHzGXNN2ysB9SWvoD3T80BU1rz9ePsXMlh2UJRkw1EBIwkztfuLTmCd7CV suR3iAvi3TPG2yWIWBDlc3QCw2m+AQAph9sZMAnNN2Vmh7+ZejQN17F9JaHmu9w6fW5jM374 PiT1N5do7ZoSP6JWLQFg1C0JqvKBrxyMAWN4lsD5CjCqZkrQfKH5svyD5gvNlyWJVwCMuYUx VzTfXdSZY3p9Meqxcb57t8Vy9j43znfDJZqz9/FxvkTO3qfH+ZI5ex8d55vK2fvkON90zt4n x/l6c4ljlufHxvn6c6xY+mvE+ebN24PS1WSHS2/VwM0ABtJmHg3BGDCmEcZA84Xmy1IRCt4t Ch7bD3ULYFRSNypd0HyTsbxPzudLh5Y9Op9vIpa3e6Eq2cBELG/3wKQCEJOxvMjn6401B9Vu DVx8bj7fFZ60M9YezhrRcrdMH973AslY3ofn803G8iKf77UlA5YE6pYE1zr88t1gDBiTRyIw 5m7GQPOF5svaKDRfaL4sSbwCYMwtjDmp+fJ58La313h0/JXcDmGvETl7YzHA7q3NzWPK5nYg cmlGY4B9RJsDxr5eypSE2m38/CQiBjhgmk5gJLkd3ATHTqPJGOAugJEwJuZbUjHAXQAjyO1g fJWX5HhqeDoGuAcfw57hJkmgo3G4Np0XOt+M3A5capSFG1qByZt1Fy/d7qhUvKl5FQKYu4Wq vP5przQYA8bksbIaY6D5QvNlqQgF7xYFj+2HugWq+Zi6r12/9naBOan5LssgczzZdk4bcUYT U3+bwFzSfAWxvGz9DR4Kc1nzZUQsWf0NAnNZ85WoezFZowsFL6n5CmN5VfoYrkc5VjjOl4zl 7RIYgea7WwaRM6ZPYBL5fINtk/jeUkQ6VetjcjRfSSyvWsbUn9wmn9DmBO/HoJjHAxgoeHk0 BGPAmEYYA80Xmi9LRWi+0HxZkngFwJifM4bVg9c35AIcuzrvWqDXzrCkygnqUDXBk+q1qXLS OlQBI9KDXTt/lClxsieAITbSAAyAOc4OMFwTMyY2BviJ85i82fjp0jqH69PNld8IYKDgydmC XYIEVjClu01Ju+abZ3jp0laoKllpD3UBGE7B66GXS7YBjAFj8vgExoAxYEweAmBMHl7wMWAM GJOHABiThxd8DIHXP3dL8K1G6IgMAAAAAElFTkSuQmCC</item> <item item-id="173" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTURCe7R8ttPTH2mJBKKWCiIisxR9CTLVyIEGaFMPJRKFsdE2hUNZE vNjgxQMaExMTb2iMF07ePGgixpgYE8GzxOjFkzEcjDFGu857syzbRhTUi4FpZt++mflm3pt9 fW+eEwAE5H7kcv5uwqdFyUlSNTASke0j6eTQOSmtcAmkkLsQFDeLtq8AeYs4+wR7VjGATd4m Ts9hUya64tzarvUdou8lWtnLRZMbYNgBYBIuAlSI18ZQ7QAnl9+tYHIeyEX+7JXk3uUWAQ3i lajyUOBKr8jH4QHw8XE7EgP93eM9ijQi8NhOZJtR4ELewk3t0nhKOiNnR61cEWPo4WyaZBYu O6TnwzZxduxo9gJNvxe5DAUpPSHHkWfQ7nIY4D1r6wFmsb0eJv0lMyXZBCY/f/HpkY4oSk4e Oq9INL5OZDcYaWtnpKgfWM5rkPIaqKK8BrdRXqu0vIYor1VQTXkN6XmtEW8+RU1wO+WzBkW1 /DVfUxSpjk/diSlNZEeGsiyJpPCwBKB4RcKG3IXL5w4iboVp0SwiqyqzRtNkRkpkZGlU4Ric a0Rbd9oTsQvz3re374feQQkdBjMUVAfYDDJBR9NwTFq/oLKIROom/Vf0Hblg4E3aWJSCLP4U CEM3jGKbg8nSreCXFACr/p9ne8EUdAgR72vvjTy4Bp5ZQ0bbhcKbqL3vhYD7MjzWNpIERmdx Jf6cWFdsRngCCcb5rBV3Rfi9zVrpT+L/S/qb+HRAArBvws5fdi6zPX9zL9gYZMXirAU/+qMA rYfyopVR1MEakZcYfhL5NR4Gma8et4Y2axDZAGcV4QPkT+pPVygPdQT3HhkGIVOi/OL0+oz9 uVVW8ud1+F5Cn3ZPie/8hyDXydQu0xJOpIu9nJh+3p5e8N67CjPReeur5WrIDiW5MgbWO+w/ xmtaoKzhYVvED01keFrjMHxT6/CJUwp+xH49UKhF5F4zrEo9OFdGtWpdmP2fG4DKbyNZvCcF v2XKZPb00NcKUyHqYWMUqFTul3LyYObUMXliLDM42Zcdlgib5LOpJ4DmOKLdMRqoFo5otXCU auEI7KBaOKrXwo3aHaOJ7hiNO6kmbkJVM90xmnbRHaOZ7fAtFK2ZDy+eBGE3CRp59FbNyR5y 0oqiNnLSupectDEn7YRp052IBif7VrAxDdtB2BjD7ifTmI49YFAeNChZ/wcAAAD//wMAvIQN DtwNAAA=</item> <item item-id="174">iVBORw0KGgoAAAANSUhEUgAAAEYAAAEACAYAAAAOWABBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAjeSURBVHhe7Z2NkeMgDIVTVwpKPakm zWwxOeNfwAgkwD6JvJ25m9kEWPP8EPAZw+OLn6QCD+iSVgDCEM7oJszf399Q5qsS5vN6fF+f TYe/7/v5+D7fmzCf7+vx/O6/GpVLLMzf+/l9HKpM1Y6FcR+9v8/ne/rG7s8uzFzhxyP8Fwjg Kunc8Jr+D92y5/PSO1cdLrInUNox7o4nmsPZLa7CCcfMGr6+D8OuSQhDVJQSgPzcdqw5CTO7 InmnXUX9oEsF3/DzU2uMWpVrcqcmvDXpUuYLW2gozNyEUpXf4kuqt5E67MLadCzaE2apYNjj +H/pRx2z9Ep+jxPLL3XGEDFmdUvcXU+/+11uuldyw5a1q/djwni9Uq6h8l0w5jgmow3lmiDL SCNffkBfmh3dk/Jdxf+b96cUz5Xuv8T/8xchDKE7hIEwsiYJx5QcQ07kEoM+zWllvqBT745x lbX+07MOEIbTlOCYQwE45hbHzKArhy5ouneG8aly8tMRnTHGYYa5BysLs4kQUorc/GsRNJXP v+HqhFm47YQ9PwzHzDPv1/cVTESdEwoP6ZL5wnagTpj98opNaRMgbhILNvXHR+Hsnco3iDCu KSxEMBLm9BwrdBCZLwqcNh0TwKsS03HP69aYI8hnUpjkI+CIKfsG2ISR5DMpTOj6yDEncO6+ H6W7XvrTcBxDBuNzUwqdQfVQFscxCuYTepvSfxYHwlDzm47oBJPIWyaRozYlzciSe2297g2a EpqSzEtwDBzzPx1T5DF1aJOHPb8zz+n1068pXYg2wyX6dNXVCXMt2mRgz1UrdcJcizZL2PNw kFlhqtBmAXuqfkrAcowAUbrycnGF+s6kYySI8qeEqUabbOyptbu+EG3ysKdmYXqNrirL0Rtj KivUKxuEAdqUeQmOgWOUOIbLVTWnk0mZmalvX/Vsn70uTlpOzzr04zHSWlyQHsIg+Mpspdcx FzHfZXnJtkaPXhWqU5jLmG/4KiG9k4DCSeSlzPf04mm8I8kAaHNZrelWS0mWsxp2DAttTomq mO9cuAfEM1uv6IwxKVDldyq1zDeG4XMsSwdgk8JUM98T2qTf6zYpTDXzHdIxvZaz7kOB9WUO YlcwvY6RDVS7p4YwmCvJTAXHwDFwjEyBux2jmeVyr62LwlMhQJuU+wDD08rAMXCMLPr0dUwD 891eOV6CbPTqXzBX+mXm66OGSOzcPnzqRr7tzJfmuKcGkHGlOmG4aJNkvivde+97+9L7PJhy DFeYPPP1dgNJbUm5P1uiRbPpmBzzTT4ioQQYDG3mme9U2YD+5/frHGoBdJb5ugck/iEQvoOG hOEC5hs8O4oej2Cdr2xwekqtN/g2Vqw1O4S5G1S13rH/nR+OgWNkHrzMMVyuqjmdTEo6dV8e 0+uqKsu5zDGV16MmG4RB8JWZ0aZjKnkwNStPnaRhT5jGNcCBbzKn8JgSpp0H+7LkOY0pYbjY k14DfAhTOqlnSGHKW9OWT+EZTxjOGmDGCV/DCcNZA8w54Ws4YUo8+Ig/+XHNGMKIeXD5RGSb wsgGsVWpIQzmSjLjwDFwDBwjU+Bux2hmudxr66LwVAiYL+W+7fOeEb3XXZOW07MOcAwcI/Nf X8dcxXV/eW8HmusuL6Nv8PvH9nbIcF3BwkW9wbfYlMpHjp247i8IU8d1E00pftdgNZxNx7Rw XS/4Pt8f8oRAk8L04rrL6s6BNr2o57qJ/WNSz2fd/Ebl9vuu5g1HlS1OILiu/76Syf1jZIPL 7qn1OqZ7VWUFQpi7QZXs/uhLDcfAMTJXXuYYLlfVnE4mJZ26L4/pdVWV5VzmmMrrUZMNwiD4 ysxo0zFFiLWJkDi62TTzzd3cpnW+hplvXpN1d49PdEh4KtMMs17TO9i5t/YtvpCeU6jYlAge PATzbRCG5sEjMN9aYUo82DzzrRSGw4OPoi0y30ph8jx4BOYrEUayzhfMVzbSjVPbHPm21ZmV G8JgEskyyp4IjoFjlDhGM8vlXptMSjBfsV6A4VS82j7vGdHFt6dThp51gGNucUwBRp1n0f7K qMwZSqPv50ttBbltchys5T1+mQ62OwQ0tTsrb/+GDV2mvBsxlpzzxtvP12sq69GG+1I6Adc1 5ZjdA8U77a+x8xzE2Wh02P18Ey1ojzkCx+QWMertrouPSEJ1jmAsiDFTEWPt53tqLq4pbb3N 8lj2+V7OIAviCKeZrXrbcUzkoPy+vPQ4Bvv5Nk4N9DqmsWKt2SEMCJ7MQ3AMHKPEMVyuqjmd TEowX7FeIHi3EDzxfembAb2SuV6pifmutU2VYXqdL2MtL818V1GSZSRWVBEvjKprSu3Md2Es 82l/8XrgJMQa6r3rDPP1Y8apKRl2TDPzzQrjvsw8c/LyqmtKLGFyzDcnzOwgD6LPcWiopnRW JhmM46Y0JNr0tcgyXy9hchuE0RwjYr6ZcUzw7NriOZF9R/ji0vQGX3FV+maAMObmSn0NIC4N joFjZKa5zDGaWS732mRSgvmK9QLzBfOVmQaOucUxLcw3s5Y3vz74qNllvZLMbFHqFuabmmx6 uyMWWfF6KeqE6cF8A5kDoXLrg8Obo04YHsFjMt+psHAtLz+fTWFiRPlNOCG1lpeTT2tT4jmG iTbnZPmD7MZazpqI7LmgWvOdzaaUY7454M1lxZPwdoQRMN/cWl6s820aSGl2TGPFWrPrbUqt NWvMD2GANmUWgmPudgyXq2pOJ/MYmK9YLxC8Wwie+L70zYDge3fwbb5/DcyXx3UTe/16F63T MS3M1xGYaTkrcQiOh3ue8wyaSqdOmHbmy+C6qb1+I4urE4ZH8HLstsR1y2e/uWuwKUyO3Ra4 bvnst+XW2BSmFm2W9vpVH3zdBVbv7XBWbQvGkr1+bTpGxHz9fR980Sx21ynHdGK+hzRWhWke IbYVoLcptdWrOTeEMTdXar7nbQXAMXCMzEGXOUYzy+Vcm0zGfOodbfYsdISyIAwVr0a4u1fU AY6BY2S+gmPgGDhGpgAcI9MLMQaOgWNkCsAxMr0QYwi9/gFD+IxYeCPtMwAAAABJRU5ErkJg gg==</item> <item item-id="175" content-encoding="gzip">H4sIAAAAAAAA/4ySyW7TYBCA5/cSL0nqErK0dcBJCcsJBQuQ6ClUFUJik8IDVK5jWiNCguui HqM+ADfOXHgExJ0XQDwDJ97CzOKawonfGv8z42+Wf/w3AEChvERxWdfxbSfvpslhunhrAq27 KM5sEYvPYN8Dwubxi4PXSZyzB6Ycr+G7dny03F2civspioWOaQU+Q/mF3I8BwE+sdzb8Y9Nq m9KUBprOSqsq/jDPs/TgJE8UkzsoHlxcxs72X7bJCYw8SxKfHSFKc8lqLdz8BrAyrfAT7pOa LbvlyG67sjv18OMTgF0XGqGG1b7UMVSZY7gNY7gP9yghE2curAnRrIg7JQEeJ1s56yF1PKGu L7G6kgO0wtZ3NOzLnGHWwuMrnGA7/IDNrlrQYf/nNvlljl3JaPWkze6G7L1NJt9vEKnGAFts f61s8CWw15dWaC5XpBUZ0VUxumwEAtcGkj0Yyj7Ylir46wyl00lxsNek0rCqNJLgwXWpNELX DUk+4uQ35VDB+aFu8fXxZuH+YRYtj/ZfLbJ5lFvMdugWsnsvyiP5u1vlX9bo5ujlXe6Ul0Kx 5Uan6fEjziM3t093UpWsrAIfUP3/954nt/IsipNwT+dPfgkGah2UrwrSlPLxSEWgNOXrGBoo XflGQR4DGShQMZFZTfBTjRiKsphBxSaGYIfyULiLDIfXkeHwBjIc3uRaqKwxg4pHDMHSrvf8 ZJ5kaRy9kYHY3PZjlBmk+Ojl5Nxymv+sxkXjNwAAAP//AwDa3WSlOgQAAA==</item> <item item-id="176">iVBORw0KGgoAAAANSUhEUgAAAPoAAACyCAYAAABr59I8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA5aSURBVHhe7Z0LtqI6FETvuByQ43E0 TsbB2EbURj6SlKE8gX3Xuuv1684hRX0IhAB/V35gAAY2z8Df5veQHYQBGLgSdEwAAztggKDv QGR2EQYIOh6AgR0wQNB3IDK7CAMEHQ/AwA4YIOg7EJldhAGCjgdgYAcMEPQdiMwuwgBBxwMw sAMGCPoORGYXYWBjQb9cT4e/699f+j1ezx/1/dD2croe7tt4/B5O1wtegYGGGdhU0M/HWzCP Xbz7f57S52Pb8/G1nYa1BToMvBjYUNDP1+Pf4Xp6Dr33UXluVP/cNh0EDq8N4RYYaJ+B7QR9 FOxBmPtafWybTul7B4z2NWYPYGBDT69VC3p3gDi8rvXHoX9du/ev4/nz/zkNuMjmwnUMYkTv ruj/n/bfDxj9cKd/e78ESEGP9BMNT+ImGqZoeNwcxXLsKD39mfHeLHgaMR6Tbq+SaiP6EMT4 EiCaaaLhcZs456C7d46CBz1HwmebepNx770S9BIVnm2jBSsaHvfBcENBf7+lJt9eS7fW+qfq 6UxhcB89mmmi4XGbOOdAtHeONhX07lp7esHM+JbZfNvL6dCbTBnfootmmmh4CHrOocc7j7Gx oOcR/G2riMH6dp+o9zPg9BFBF/R1CiTAo6QRBpw+IuiCKZwCCfAoaYQBp48IumAKp0ACPEoa YcDpI4IumMIpkACPkkYYcPqIoAumcAokwKOkEQacPiLoiinSEthPv8o2qdkdAwQ9uOSLAi0d CPr/HnxfgbceA4s+qtg1I7pAZlWBODMQFNhGSVUfLVBC0AXP2ASaOggIeCmJyYDNR7fdJ+iC B5wCjeANwy/gpyQGA04fEXRBc6dAi/AI/iJFURs4fUTQBRc4BSqGR/CLKftVgdNHBF1Q2SmQ AO+9hBn+rylcawNOHxF0QUWnQAK8+ZJn6KtulI2pDDh9RNAFlZwCCfCWSwj8MkeGFk4fEXRB UKdAArz8Ek7r87laoaXTRwRdENApkABPK2GU13j7osrpI4IuCOUUSID3XQmB/46/gmqnjwh6 gTDPpk6BBHh1Sjitr8Pjh604fUTQBTmdAgnw6pcwytfn9LZFp48IuiChUyAB3nolBL4qt04f EXRBOqdAArz1Swh8FY6dPiLogmROgQR4vhIC/xXXTh8RdEEqp0ACPH8JgZc4d/qIoAsSOQUS 4P2uhMAXce/0EUEvkqZr7BRIgPf7EgKfpYHTRwQ9S5L3Rk6BBHhxSgj8Ry2cPiLoQiycAgnw 4pUQ+ElNnD4i6EIsnAIJ8OKWpMDz82LA6aMdMX+5ng7Tn1Se9V76Nnr/W+mPhk6BNpcLRneC vqap0/fR/47nexf9P8/3+fx+evzvo6/J22rbJvDWSd2djOgptIfr6fKw7cxI/TT15XS4i3A4 HhnRV0v66/Ro7R7Cbt95ZriPoI+CPQj+wAqX8/l6PyZw6u4JyU5Hd4Je216FQX91/yHoSaTh b23Yu9veRgM/5ZXn37k0ZkT/xDQjusuH7/3sZHaeET3LXv1Z9MHo+ph0mx+ZP5+654zoWRBp pDOw0dG9TwhB1+0xU1k2GUfQqwugb3DDoztB120xW1l+e43JuBVk0Da50bATdM0OC1XP++Lp NP/93ng6CBxe9956m+EafRUlpI1u8FSeoEtO8BU5BfLtVSM9bWh0d/poH7PulT3sFKgy9G1s biOju9NHBF2wvlMgAd5+Shof3Z0+IuhCLJwCCfD2VdJw2J0+IuhCLJwCCfD2V9LoqbzTRwRd iIVTIAHefksaG92dPiLoQiycAgnw9l3SUNidPiLoQiycAgnwKGnkVN7pI4IuxMIpkACPkicD wUd3p48IuhALp0ACPEr6DAQOu9NH1YKe3soyuYw0kZ6Wkg6fKGvYjk6BGqYpDvSgYXf6qFLQ 0zry3vrxiTXiaT35VrLuFChOWhpHEvC63emjKkEfjeZTD4Ocj9e/w6l7RVPjP06BGqcqHvxA o7vTR4tB716UOHyxYv9pr/QCiN6/X/tPiQ3/vv//8TyQi8gpUC4m2hUwECTsTh8tBj3RN3yW ++1afGr0nny8s3sjzBZO350CFdiXpiUMBAi700dZQb/NpnUhvb3+eHT6nU7Jhx85mHmOe/a5 7xKBArR1ChRgd7cL4cfX7U4fZQb9Pqzf33o6GpGnrr0J+nbDscU9+9HoHjDoj3eunSc+UZR9 6t5dAszegmvIQE6BGqKlbag/CLvTRxkjenfa/gzofXKuP3s+G/ThxBvX6G0nYQfozWEPFfT7 RNzbbbHHrPrrHH4qwP9fxfz/VD/zFcsN+MkpUAN0bAuiMexOH2WM6Ms6flwV9yznPvoykbSI wYAp7M0F/Xb1/b4ybkIuVsbF8DAoMhkwhL3BoKfl7Atr3TeyKi7ZxClQpi1ptgYDK4fd6aMq p+5rcBx5m06BIvOwC2wrht3pI4IuuNUpkACPktoMrBR2p48IumAKp0ACPErWYGCFsDt9RNAF UzgFEuBRshYDlcPu9BFBF0zhFEiAR8maDFQMu9NH80F/Lvh3/3dNkSpt2ylQJchspiYDlcLu 9BEjumAAp0ACPEocDFQIu9NHBF0whVMgAR4lLga+DLvTRxsL+v819qNn5OfEn30oJ31H/fE7 WOzjFMjlWfoRGfgi7E4fbSrowzfh/C2+zub52qveiy2T3mld/odap0Ci/ShzMiCG3emjDQV9 8HTczMsvnvp378K7PX57e2vOYfCGnKXn5p0COf1KX18wIITd6aPtBH0U7M+PxV7O5+6NtKO6 4csux+I7BfrCepS6GSgMu9NHuw36ywMzB4jD7WUb3TX6+M21r2v35zX8479uX9FfQAYmwj7n F4Ku6Fc4os8G/b6d4Wuq36/hnQIpVFDzYwYyR3anj4KP6P1Z9N4seBpBh5NltYI+8sj4EsAp 0I8tS/cqAxlhd/ooeNBLWC6bjJs/dR/2SdBLVKBtj4GFsBN00S3lt9cmJuOG76lPZwrcRxcV oew2yTNLAkGX/dH/HNT7dfXsLbOJ23DPW2/dJMrgHvsNm1MgmQoK4zAwE3anjzZ06u7T1SmQ b6/oaVUGZmbjV+2zfxXh6mhL/RD0Lalp3JdB2J0+YkQXdHYKJMCjJDIDvbA7fUTQBVM4BRLg URKdgUfYnT4i6IIpnAIJ8ChpgQHzakqCLpiCoAukUTJiwOkjgi4Y0CmQAI+SRhhw+oigC6Zw CiTAo6QRBpw+IuiCKZwCCfAoaYQBp48IumAKp0ACPEoaYcDpI4IumMIpkACPkkYYcPqIoAum cAokwKOkEQacPiLogimcAgnwKGmEAaePCLpgCqdAAjxKGmHA6SOCLpjCKZAAj5JGGHD6iKAL pnAKJMCjpBEGnD4i6IIpnAIJ8ChphAGnjwi6YAqnQAI8ShphwOkjgi6YwimQAI+SRhhw+oig C6ZwCiTAo6QRBpw+IuiCKZwCCfAoaYQBp48IumAKp0ACPEoaYcDpI4IumMIpkACPkkYYcPqI oAumcAokwKOkEQacPiLogimcAgnwKGmEAaePCLpgCqdAAjxKGmHA6SOCLpjCKZAAj5JGGHD6 iKALpnAKlAMvGp6EORqmaHjcHBH0nCQN2kQzTTQ8bhPnSLh3jnYU9Mv1dEhfR53+QuqbWe5f WH22/bsez+9WimaaaHgIes6hx3vWs5ug5387vfv08ivc9++lH66ny3/xogUrGh6CTtDzGKje KoW3F9aJb6K/ukzBPpyu/3PdnQn0R/VowYqGh6DnGdip2z5G9FGwB8H/qMtghGeiKcvFThPn AIqGx30wJOgLLrmcDoMRvru24hcOangg5yBVow1B/8DiPeR/x+tgLq4G72wDBqwMNBz0/iz6 YHQZTpMLp+5dyN8n4azK0BkMVGSg4aCXsFAwGXfbLCN5Cbe0bYGBnQT9es2+vXYf/RnJWzAv GPMZ2E3Qb1G/3x+fWjCTDgKHx43y+wFhYrJteDWQTzEtYeD3DOwo6LXJLlhp93XXJX19aDtY 8fe+XuBbkCUYH319Ws9QDKdS/1E4WlidWUoPQS9l7NE++1JA3H6/rKSvj23TYqCVTk1KMHb7 9jzDqnNXo1r/IThaXp1ZaiuCXsrYy6SZK+2k7b/FPH9V3z0887j6lyhfw3rbgDLZebtcOh5v 8yE1gl6v/xAcZazOLNWPoJcyltoLt+uUbu41JX19bJtObVeaZCzBmHbpfO6WGNc6da/WfxyO 3v0yXp1Z6ieCXspYafiU7fdrSkz8sW036h1eT/BVDH0Jxo/7JpJVrf+AHN2Ph+PVmaVMEfRS xloN+ui2YTJ1jdPmwrOOyEEPyFGtNR0EfS9BH+1nyYM9CyRVG1EVMdY80PyWo5qrMwm65K2y yR+pi1dRSV9ftP0KZEm/vY5qXaMvTELO7tpi/xWDXoix1kj+3HeCLhq8/HaO2NGtrKSv2bb3 F2j0TtWTyd+eu9fxpcoSjK+eFoOWj6lK/1E4WmF1JkHP99Kg5fxKO3mTs4V5q/q68vm23SiR +Tqt4p0owfjYeMWg5658fNutif4jcLTG6kyCXmxoCmCgPQYIenuagRgGihkg6MWUUQAD7TFA 0NvTDMQwUMwAQS+mjAIYaI8Bgt6eZiCGgWIGCHoxZRTAQHsMEPT2NAMxDBQzQNCLKaMABtpj gKC3pxmIYaCYAYJeTBkFMNAeAwS9Pc1ADAPFDBD0YsoogIH2GCDo7WnWBuKqT6a1scuRURL0 yOq0jI2gh1KPoIeSYytg+s+mV3wJ5Vbo+cF+EPQfkL6LLhnRQ8lM0EPJsSEwBD2UmAQ9lBwb AkPQQ4lJ0EPJsSEwBD2UmAQ9lBwbArPCm0w3xI59Vwi6nfK9dPj/M8YrfcB1L0RW2U+CXoVG NgIDsRkg6LH1AR0MVGGAoFehkY3AQGwGCHpsfUAHA1UY+AfWry3FTz11yAAAAABJRU5ErkJg gg==</item> <item item-id="177" content-encoding="gzip">H4sIAAAAAAAA/4xSu3LTUBDdq7cUKzbGCjiyrSQ8SsbR0JDKMBmGgseM+YCMIiuJGIyNojCh U03BL9DwDfT8AAUVZf5E2YfiBCrundXdPTr7uLu3BQAK5S2Kx7qOXyf7OM2O88UHE2g9RnFn i1Qwg7EnRJunbw7fZWnJCEzZX8OvdXqyfLY4F/glio3AdEV8hXKBef5sAfzGcF+2r21agSlF aaDprHRXyZ+WZZEfnpWZYuYeShtuLmNv5y/b5ABGWWRZyECM4i9ZteL+T4DKtONveE4sR07b ldPx5HTXYg2TfML+mMrYhUewixtajP64RseEgs9OlbseU2UTnypktfI5aSfu/kLDucXusw5e U33GK8ZfsaiqA7cZ/94lXPrVk4h2IOX0NuQM7khZG8RUY4C7UtDKhr44BptSSh+hUErpc+CB GD02hkK2RhJ9GMk52pIsETZR6WO8JjZwWzJFq0w74jy6J5loBPcluEzjgVxqeHWph/xM2rP4 4LhIlicHR4tinpS2TJ9eG8P7SZnIFDebaWr0QvTmzQbN8BVbXnKenz7nOPJCB/T2VMOVVeMG Nfh/9Cq4XRZJmsX7Ov8KG2KkOqBCVZOmVIhXqiOlqVBH10jpKjRqQgzkQI2KiZxqgr8s4pCX zRxUHOIQ2aU45O4hh93XkMPuLeSwu8+5UFlnDipt4hBZym2/PptnRZ4m76UhDpf9AmUGOW69 6ZzXdPOf1bppXAIAAP//AwBkCyrXIgQAAA==</item> <item item-id="178">iVBORw0KGgoAAAANSUhEUgAAAPIAAACyCAYAAAB4MJLIAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA0YSURBVHhe7Z0LlqsqEEUzLgfkeDIa J5PB2EHbxCgqCBQF7F6r17vvXoTinNoW/h8jPyiAAsUr8Ch+BkwABVBgBGSSAAUqUACQKzCR KaAAIJMDKFCBAoBcgYlMAQUAmRxAgQoUAOQKTGQKKADI5AAKVKAAIFdgIlNAAUAmB1CgAgUA uQITmQIKADI5gAIVKFAmyK/n2D36cXAxwNZ2+rvH+Fh+u+f4cumLNiigVIECQR7GfgLQBeSD tkM/Pnqn3YBS2wgLBX4VKArk17ObqmjX95cV+azt0L/7eFKDgaEeBcoCeRjmJbDD0vp12PY1 PrtuPOP4s+ReL7/58/dQBC2ctZDaVRQF8kcUB5CP25rldjd23XKMvIf6CGQpU7bjmHi0/WiL KWc8Zzt+Kd/0ZYjLzENAnrZdw2vA/j3ezpkUtulri8fEqC0mbfFIa9QeyDtS5gq9XmprSwpt 8Ugnqcu+vXWNAPl9EQuQXVDZnCVVttwHZH8P828RsrQ2l57WS2nT1+Y6srak0BYPFdkNAUnf qqnIh5eULNAvl6bmkxT769GSBrilBK1KVEAyj8oEObGrkgYkngrdZ1RAMo8A2WK0pAEZ84yh EysgmUeADMiJ07nd7gE5s/eSBmSeKsMnVEAyj6jIVOSEqdx214Cc2X9JAzJPleETKiCZR1Rk KnLCVG67a0DO7L+kAZmnyvAJFZDMIyoyFTlhKrfdNSBn9l/SgMxTZfiECkjmERWZipwwldvu GpAz+y9pQOapMnxCBSTziIpMRU6Yym13DciZ/Zc0IPNUGT6hApJ5REWmIidM5ba7BuTM/ksa kHmqDJ9QAck8oiJTkROmcttdA3Jm/yUNyDxVhk+ogGQeUZGpyAlTue2uATmz/5IGZJ4qwydU QDKPqMhU5ISp3HbXgJzZf0kDMk+V4RMqIJlHVGQqcsJUbrtrQM7sv6QBmafK8AkVkMwjKjIV OWEqt901IGf2X9KAzFNl+IQKSOYRFZmKnDCVG+76/2PwUgoAMiBL5Vo74/x/qZKKnNlySQMy T5XhYyuw+tysZB7VV5FDPrn6b6qkAbHziP4yKrD5ZrRkHlUGsvlouf1TqXt7j9tKGpAx7Rg6 pgKWD79L5lE1IC/fPO76fuws3zxee3bVVtKAmLlEX5kUsEBsIpHMo3pAHobxZdRzWFq/LtpK GpAp9Rg2lgIHEANyqMAOIH+GOGhrQLb9hobG9pUpsDo7nTtnqqnIV3BaU+gE5MpSjunEVuCk Ei9DSa7sANlyPC1pQOz8oj8BBRwgZmkd6kOkpXVoGGxfqQKOEANyqP+AHKog2x8p4AExIIem kQXkoX+M3XM6p/37wzFyqNrtbO8JMSArSA2OkRWYoCmEGxADsgIDAVmBCVpCuAkxICswEJAV mKAhhACIAVmBgYCswITcIQRCDMi5DXyPD8gKTMgZQgSIATmngf9jA7ICE3KFEAliQM5l4Gpc QFZgQo4QIkIMyDkM3IwJyApMkA4hMsSALG2gZTxAVmCCZAgJIAZkSQMPxgJkBSZIhZAI4mJB Nm/dsN4GaWZkboXsBylrgscB5GAJy+ggIcSFgmzef9WPH1QP7ncuhWVALoPDoCgTQ1wkyLtq bHsYYejHR/ecX8ej/AeQlRsUGp4AxOpANk8OPTaldHp53efvXuOz68bvw0XL2ynN63K2f7/+ /1A30m0PyOm0zd6zEMTqQN6/zM6A+xi/HL+Pf7dv2bA+HrjZLrujxwEAsmJzQkIThFgfyO/F 8Cm4ZsnsBPI4Hj4XHGJOgm0BOYGoubsUhlghyOak83cpvTseth37HjywD8i5s7nR8TNArBLk dy39Pyu9PR5+h2uDFpAbJUbZtA3AmSBWCvK8LO6f7+Ph7ZnnQ5C3J7Y4RlaW5nWHkxHgRVjJ QzT31+FOx8Krk1yfNLABOv/db3tT1TlrXTc9SmanAGK1FfnsUyynd3Ut3nIdWUmWVx6GEojV gvx77XibDJs7uyy5Mi3NC7lLU3JJVDlWctPLfDxsm6hkHl0vradj4OtPlV7ea13IXV3Se1K5 TK94JEVVeK2yLpAr9v9oapIGNChv3CkrhVi6IFxX5LiyF9EbIBdhU9ZLSy4KSeYRIFsckTTA JSFos1FA4fGw/mPkBrMIkBWbrngpvVVNMo+oyFRkxdRaKnE50Yq+VvkY5GX5Iv1fBUZJ7kkV TFd/CIUspanIylIJkBUZUtBSGpB988bpG8jf20Ttj1nOt5BOv5tr3IDsa0ii9gVDzOWny5xY 3kCyekeYZZv1m012bzkxt4ue3GYGyJcmpG1Q6FKaiuyYFtNtom+Tu77fv5Xkp4/NAxqbCn71 XDQgOxqSolnhVXgtiWQeFXXW+jUM88v7rpbWu39fg215pnp3crQoWVLgJN9nJVUYkH1SJwjk Geru/zHL3xcEzkF8jp2XY+j///qESFsPBQqvwkf5QkW+yoEQkKdtt2/3/D3eljTgaqrV/3vh EJ/5I5lHZa4hQ0DeKb9/4YGkAdWDejTBCpfSnOzyzeYrkKd3jK2q7ml7QPaVP7h9xVWYY2Sf 7LgEeX7H2HKJ6efy0/b1vaYvriP7qH+/bQNVGJB90uPg21K/H5Fbf/Hi9xh4uYw1n6TYX49m ae1jhkPbxgBeFJHMozKPkR1yJ6SJpAEhcRaxbSPLaJsXknkEyBYHJA0oAsY7QTZahVla30mW RNsAcoCwAPwRTzKPqMhU5ABqN5s2vIxmaR0vjaL1JLknjRZ0zo6owlb1JfOIikxFvr8LAOBT 7QD5fmpF2VLSgCgBS3cCwE6KS+YRFZmK7JSUUyMAdtdqkksOL7mRvCTI21jSgLwzdRwdgB2F +m0mmUeATEU+TlIAvgXwshEgB8kXvrGkAeHRJugBgKOIKplHVGQq8lcBAI4CMBU5qoz3O5Pc k96PMuKWABxRzPV+Ua5Oyo2URKo0nTYB8gKv4JnVNG7p7VUyjwC5taU11VeMfEAWk9o+kKQB YlMFYDGpOUYWl7pykFk+Z80oyYLA0rrGpTXVNyvAVGQV8sveWhd1ygAcVc7QzqjIoQoGbi9p QGCo3/ufOfscLGXsDiTziKV1aUvr9XEv8MZmL2p/gBxVTv/OJA24jA5wLyXS2kAyj6jI2ioy 4Grl0jsuQPaWLO4GYgZsoWWpHNfIzL2J5dF7nlTk1BXZBitnlzMjJjM8IMvofDjKpQFncLI0 zuyenuEv8yhiqFRkm5hXoEY0gK7qVQCQM3sraUDmqTJ8QgUk84iKnPoYOUKiSCaEa7jaYtIW j9FRMiZABmRXdn/aSSapS4Da4gFkF9ditTn4zrK2pNAWj3SSutjdukYNV+Tl+8n6v4/cepIC 8rUCTYK8fOi86/uxK+BD54DskMgKb6aR9K1NkIdhfJncYGl9TchBC8kkdQlSWzzShx9NgvxJ jBOQTWLwiwahOeCyE4rRBpAtS+sYwtIHCkgqAMiALJlvjJVIAUAG5ESpRbeSCgAyIEvmG2Ml UgCQATlRatGtpAJtg3yq9Gt8dstZ2/1NI3FN8hnrpO10Fn51prl7zpfZovz4xPg/4MFVgXvh RBpfi0abOPrhnirLVoB8oN/Qv4H4V3f95zC57Vv7jHXadug/MceO0yfGeezjO+fuxBZtfBUa zdp84DUxPbrxGbDXBWRrVhmhV8JGrSzbAX3GOm9rkr0LyYZDwnxiNPfZdNM1+KM75/xBjje+ Co0MuD+rpXm1EVKVAdmWVTtwN4nkn4nHW/iMddrWJEPYXv0wSJ8Y3528Lu6c85Yv2vh6NPrV YFOhvQXinV12yTwT54bu3018xjptO+9sus9xfUSofWJcixFrJRNtfIUamR2fWcEEns+gItdS kadkX8NrkjbSSbpoIN3c5cUaX6FG82FIuE+AXAvIu3lEPByIBdJNjvcPtzjO7XJF4NiPS9w3 NJohjrNyAuSKTnbtj7viJMl8BvrGyb9LkFwIWc6Apxg/IsieGsWqxIuCgHyQS/6XO1yTct/O Z6zDttMljNUSzUAUeNy1jtQnxs920UB+70ruXA7cjq9Fo90S/37uAPKldst1UHODRfgxzPlw x2PtL5cct10u+8yP3sWO2SfG/9lGBPl7XXo/t8NLSpbxNWg07ZQsj8ly+ekSShqgQN0KsLSu 219m14gCgNyI0UyzbgUAuW5/mV0jCgByI0YzzboVAOS6/WV2jSgAyI0YzTTrVgCQ6/aX2TWi ACA3YjTTrFsBQK7bX2bXiAKA3IjRTLNuBQC5bn+ZXSMKAHIjRjPNuhUA5Lr9TTe7qE82pQuz lZ4BuRWnY88TkGMrGtQfIAfJ1+rG62eTY72FpFUt48wbkOPo2F4vVGRVngOyKjsKCgaQVZkF yKrsKCgYQFZlFiCrsqOgYABZlVmArMqOgoJJ8CbIgmavLlRAVmdJKQF9P3Ma8vbHUmarPU5A 1u4Q8aGAgwKA7CASTVBAuwKArN0h4kMBBwUA2UEkmqCAdgX+AFA45c9C4dVjAAAAAElFTkSu QmCC</item> <item item-id="179" content-encoding="gzip">H4sIAAAAAAAA/4xSu3LTUBDdq7cUKzbGMjiyrbygZIImFKQyTIah4DFjPiCjyCIRg7FRFCZD pZqCX6DhG+j5AQoqSv5E7ENxAhX3zuruHp193L3bAgCF8grFY13Hr5O9n2Yn+eKdCbT2UdzZ IhXMYOwh0ebpy+M3WVoyAlP21/BrnZ0uHy8uBH6GYiMwXRGfo/zGML82AX5iik9bVzatvilF aaDprHRXyR+VZZEfn5eZYuYBShuuL+Ng+y/b5ABGWWRZyECM4i9ZteLBd4DKtOMveE4sR07b ldPx5HTXYg2TfMD+WMq8D/fgAW5sSovxb1f4vuDgs2PlrsdU3cSnKlmtfE7cibs/0HBucIBZ B6+qPuI1489YWNWBm4x/7RIuPetJRDuQknp9OYNbUlqfmGoP4LaUtLJhII7BhpQyQCiUUgYc eChGj42RkK2xRB9Fco43JUuEjVT6Hl4Um7glmaJVpm1xHu9IJnqGXQkuL3JHLjW6vNRdHpX2 LD46KZLl6dHrRTFPSpu5AU0cw4dJmchLbjQvqtGU6M3cBs0AKLa85CI/e8JxZEqHNH+q4cqq cYMa/j96GdwuiyTN4kOdf4UNMVIdUKGqSVMqxCvVkdJUqKNrpHQVGjUhBnKgRsVETjXBXxZx yMtmDioOcYjsUhxy95DD7mvIYfcWctjd51yorDMHlTZxiCzltl+cz7MiT5O30hCHy36KMoMc t950zmu6+c9qXTf+AAAA//8DABHveX8mBAAA</item> <item item-id="180">iVBORw0KGgoAAAANSUhEUgAAAPIAAACyCAYAAAB4MJLIAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA18SURBVHhe7Z2NtassEEVvXRZkPanG ZlKMN2hMjKKAwjDAfmu99f0EYThndgbR6N/IHxRAgeIV+Ct+BkwABVBgBGSSAAUqUACQKzCR KaAAIJMDKFCBAoBcgYlMAQUAmRxAgQoUAOQKTGQKKADI5AAKVKAAIFdgIlNAAUAmB1CgAgUA uQITmQIK1Afy8zF2f/04nHr7HB/d3/j3N//tHk8yAQWKVqAykIexn+A8B3noX226xzjhO4Hf jbBcdB43H3w1ID8f3Vxd+95RkQ3sgNt85lcmQD0gD8Oqwp5UZK+ld2UuM53qFagG5I9TLlCH flpWD+8Kbqp4vzmhXs6d+ed3HwEtrmkh9Q3SJsjrDS4D9mapbZJW0x9t8RhttMWkLR5pjXRl bAx6PCvyd5963sFeV2VtSaEtHukk9UmL1jVqD+Qd6IDsA8q2jTZwtMUj/WXXHsgvhc3lp8+1 42lp/bs5pi0ptMUjnaQ+XzSta9QEyD/gTlnxe0OIbbPLJ3mk2rSepD46t65RfSD7uO5oozEp IkyLLoQVkMwjQLaYK2mAcG4xnKACknkEyIAsmNptDQXImf2WNCDzVBk+oQKSeURFpiInTOW2 uwbkzP5LGpB5qgyfUAHJPKIiU5ETpnLbXQNyZv8lDcg8VYZPqIBkHlGRqcgJU7ntrgE5s/+S BmSeKsMnVEAyj6jIVOSEqdx214Cc2X9JAzJPleETKiCZR1RkKnLCVG67a0DO7L+kAZmnyvAJ FZDMIyoyFTlhKrfdNSBn9l/SgMxTZfiECkjmERWZipwwldvuGpAz+y9pQOapMnxCBSTziIpM RU6Yym13DciZ/Zc0IPNUGT6hApJ5REWmIidM5ba7BuTM/ksakHmqDJ9QAck8oiJTkROmcttd A3Jm/yUNyDxVhk+ogGQeUZGpyAlTue2uATmz/5IGZJ4qwydUQDKPqMhU5ISp3HbXgJzZf0kD Mk+V4RMqIJlHVGQqcsJUbrtrQM7sv6QBmafK8AkVkMyjMivy7mXlFjemNn+vdx+//3aP18tU 33/OPns1kTQgYR7RdWYFJPOoQJCHsZ/g/H05+c4z8wLz7YuPl0ZnnwFy5vSvZ3hAPvDy+eim atn1/avanoO8f7n5t9Ozz0wrSQPqSVtm8qPAeyUopUpRFfk5DPPy2Lm0fo6Prhsfn7X0Ws6z z+Z2gCyVfpWO84JYOo+KAvljuxNks/zuxq5bzpHXUJ999gX5c269Os+uNO2Y1k0F1rnyqgLf fZk30De79zq8TpAn0LfwvpfiZ5+9JaMie+UOjbYKbMCVzKM6Qd6l2FyF7Uvt/WeSBkBDJQpY qq9kHgHyCMiVoJRvGgdLaEB2WeI6RzaXl9a72qb9ch357DOW1i7l+dyxnF5/DMiudLGAvL2k tFyqmjcifi9VnX0mvdvomiqfK1bAsZkFyJm9kzQg81QZ/qoCHjvSknlU5jnyVfE9j5M0wDMk mmlSwANi6ZUdIFsSBJA1UaMsFk+IAVmBb4CswASNIQRADMgKDARkBSZoCyEQYkBWYCAgKzBB UwgXIAZkBQYCsgITtIRwEWJAVmAgICswQUMINyAGZAUGArICE3KHcBNiQM5t4Gt8QFZgQs4Q IkBcLMjmtsfO/vOi+UEAR4/dyWnYwdiArNAUqZAiQVwoyOYXRKv7mQ/uhS6FZUCWokbZOBEh LhLkXTW2/TrJ/Opo/SRLZR6uwwFkxeakCi0yxPpAnn729/v4EvPf3+q6fQbW8pRLc8z+ETtH q+9U/lzpF5CvqFbwMQkg1gfyxh/zc8Gfx8zaqq/198IG+PUXgF7jAVmvN9EjSwSxapAniLfL 4+0P9c0MDn7473oMbXSTLnYIyBeFK+2whBCrBXn6Mb7tHNd27gvIpaV0e/EmhlgnyLaqu1jv vbQeRypye7yonLEAxPpAniA+egLlwTJ698jZab3NObLKrG4sKCGIlYE8w7fftV6DbQP0e9x3 d/vskbS6kolzZF1+RItGEGJlIPtJeHpX19IF15H9xKRVGgWEIS4S5NfZ7++dXRYrzPkxd3al yVF6dSiQAeJCQTZXnBz3WhdyV5e0AUCYUAEDcCaIpfOIh+9Z8ohz5IRwSXWdEeBlipJ5BMiA LIWW3DgKIKYiy9l9OJLkN6mC6dYVghKIAVlBWgGyAhNCQ8h8PmwLVzKPWFqztA5FRl97RVV4 LY4OkJdvOOl/KkgTSQMUTLfsEJRCzNJaQVoBsgITfEJQDDEg+xh41sb17mRz7NRmdevp5ho3 IN81IfHxCs+HOUeO6vnydJLf9yHvhjC3i57cZgbIUU2J25nyKqzvHDmu/Ml7W15e3vX9q9qe g+z6OSUgJ7fr2gAFQczS+prF43MYXj+UXJbNZyBvnzG2HxCQL5qQ6rBCltLb6UvmUX2Xn5zn yPPPKbvPzzP3v7W2PWxQ0pRUPBTZbwFV+ChfJHOmPZB3Dz3Y/3JL0oAi4ZIKugCIz6SQzKP2 QN7vfE0Vev2YXkkDpJgoapxCl9IsrWNmmXNpvR1s/+QSQI5pSGBfhVdhdq0D/T5s7gJ5+yBB 057ryLHUv95PJVUYkK+nwO+RB++dWr9gbrlUNW9S7He4qcixzPDsp6IqDMienks0A2QJld9j VAqxmZ1kHtW32RUhByUNiBBumV1UuJRms0tZKgJyYkMqrsIsrRPnTkj3gByiVkDbBqowIAfk Q+qmgBxZ4cYAXtSTzCPOkS05K2lAZGT0ddfIMtomvGQeATIgp4G/0SrM0jpNOl3qVfKb9FKA mg8C4I87knlERaYix/taaHgZzdI6XhpF60nymzRa0Dk7ogpb1ZfMIyoyFfn6VwAAn2oHyNdT K8qRkgZECVi6EwD2Ulwyj6jIVGSvpJwaAbC/VpNccnjJjRQkQd7Gkgbknann6ADsKdRvM8k8 AmQq8nGSAvAlgJeDAPmWfPcPljTgfrQJegDgKKJK5hEVmYr8VQCAowBMRY4q4/XOJL9Jr0cZ 8UgAjijm+ntRrk7KjZREqjSdNgHyAq/gzmoat/T2KplHgNza0prqK0Y+IItJbR9I0gCxqQKw mNScI4tLXTnILJ+zZpRkQWBpXePSmuqbFWAqsgr5ZW+tizplAI4q593OqMh3Fbx5vKQBN0P9 3v/M7vNtKWN3IJlHLK1LW1qvz3uBNzZ7UfsD5KhyhncmaYAzOsB1SqS1gWQeUZG1VWTA1cpl cFyAHCxZ3APEDNhCe7BUFosnQEZtMWmLx0gpGRMVOXVFtsEauLssmRC+LGuLSVs8gOyTSa53 IK/7sLWd/p95per7b+j7kc/gTLA0bj1JfVKidY0KrMjD2E8A7t9rbDN86C1tzcvO++E4P1yg +mRWxDatJ6mPlK1rVBTIywvKu75/VVQPkA2wXbdra+Bev/h8myjakkJbPNLLRkB2K1AWyMMw Ps2cvJbWz/HRvWDftTX/vxsfU0f2P9rA0RYPILvBktaoKJA/8nmAbKr3VHV3bc3S/PVZt5wj 76H+nDuvz6P59++eAlp4a+GH/P1WlYL8gnXZwNqCPP33Gl4Dtscy/b7W9IACyRSoEmRzDvzZ y3JW77lCny21k6lPxygQSYEKQV52tVeXl95LQftGNSBHyiW6yahAhSBv1NxWZLOTvV5Km883 15Ez+sHQKHBJgWpAPrykZFlaL5ex5k0tzo8vZQ4HqVKgTJBFJDSXqZbleWrYQ8Y6aeu4Y+2e bCExvkdy7k+ERBRpfC0abeI4uz/JRyVAPlBpuiPsre76331EDW0TMtZpW9cda6GBrdqHxDgf FnYHniu0aOOr0GjW5gPvdLp3b8MVkK0ZtNkAi1pZtgOGjHXe1nXHmguW489DYjSX7rvpOqv3 HXjOwOKNr0Kj6Y7Dx3xz0/RnXm3cqcqAbEuig5tIklyiChnrtK37jjUnL0cNQmI0aRl0B55H VNHG16PR76w3FdpDkm0TQK4GZPcdaxfy410wzE00630Cz0t2sVYygSB/C5097rO7+sQ1Ml98 ZgVz88oJINcCcso71qKBdBGTWOMr1Gg+Dbm/mQrItYC8m4dn1fRhKxZIPmPF9MO5Isir0Qzx vU2uRS5AtiZX2ObK1fycjwsZ60bbW0GGjLsayAmSb1Cpxo8IcpCPy4bg/UoMyI4cCr/c4ZuU +3YhYx22TXzHWkiMx+eoMhodjq9Fo90S/7ougOzUbn3PdrxvTvuwx2PtL5cct017x1pIjO9Z RqvIy8rFfoOOnrv6/DSan1rj+1sAZ6JODVha++lEKxRQrQAgq7aH4FDATwFA9tOJViigWgFA Vm0PwaGAnwKA7KcTrVBAtQKArNoegkMBPwUA2U8nWqGAagUAWbU9BIcCfgoAsp9OtEIB1QoA smp7CA4F/BQAZD+daIUCqhUAZNX2EBwK+CkAyH460QoFVCsAyKrtURxc1F82KZ5nIaEBciFG qQsTkFVZAsiq7CglmPXvbuM8qqaUmWuNE5C1OqM9LiqyKocAWZUdBQUDyKrMAmRVdhQUDCCr MguQVdlRUDCArMosQFZlR0HBJHgSZEGzVxcqIKuzpJSAvq85vfPysVJmqz1OQNbuEPGhgIcC gOwhEk1QQLsCgKzdIeJDAQ8FANlDJJqggHYF/gGyjp05RxdiYQAAAABJRU5ErkJggg==</item> <item item-id="181">iVBORw0KGgoAAAANSUhEUgAAAFAAAABCCAYAAADAD1E9AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAN/SURBVHhe7Zy9cfMwDIa1QPbIDNrB hZfQFG6ygWov4A1UuXfr1qcJ3HkDRiDNmP+ECMeWKXx3ui+XiBT16AVAChAbwf9IBBpS609s PHSiaToxoMY+ir5tRNuP0bNXBFDBaDocOpPY2LdR6CsBCPBakRASQo+D6ALKXQXAoWtEXHh3 ZTaTOqcjZa5i7EXb9sI06PoBgs+L0nPNGlSWhgjmbEKuHCAASgQMUFTjmDYAd1Rm27dtynUD BECpoBGCJaGmozSoUHdbNUDzRkNRQkZXV20hVbqNjQdTMcCM+U5QigFOYUS7hooBTr4q6csm goUmDIIcOuU76wWY839AIeTvskFE2bN2D+sGKE3RXJ3kpzHaHa4CYIdaesyYSBvBhAEiFm+p UxggA8wQmAIEzoTLSNavwONWfG+PZXQQrY7bL/H9U/k0hhWIUEL0FDZhCj01SWYFUhgyQAo9 ViCRHgNkgHQCxB7YBzLAPwLjGM/sEzHFm3+qAu0crFsaAe/bqAluJHI0wAW9zpI5BisLFqgt CSSnkUjmnYYCuKgXqm7pg/1kTbCg0mQFwDxU4bMxAIvywupywbcxp9NJljfoY7/fo2/FV5+8 TLi6KZt3wL9aJ62FCUklDyDA22w24nq9yjHB/zZAdVMSrpftipWBxX7/Al+IUGB5WjOgQICl 4flPVYHQ7s1Xm4LrFwGkwWIqzcDcTauwfk518GqAl8tFDnS328njfD4bHB3/5qUDY4qaq0y0 x8ifiABIyQt7JgwKBDM+HA7yuN1uj0F6kdMF9pkKfGpeGNRnQZvw/anQc7YuwLlKW4YP1EHu MUPABy9PgdqEtY+xzDirwHudScAnqfJYp7R2KVFYTUhUch1TYGk4jplJpZwPhJ7xqlrMPDDv SROzJFXihiztsE00POeLq9AaxaJWIuUEZypQKyw2D9QDsac7/vDwKi2/tXtLTBQmXKQAIOFq 72jKAInUGSADJBIgNmcFMkAiAWJzViADJBIgNufyNiJANmEGSCRAbM4KfBXAl7zOIt7MO5pj vlTiD20STwYD8Nl54XcI5f+uyR8bEtny565EgI/kd6yj4sT6Oj64nrDl/GBhacdqPvlXGbfc phPO37MZQ7tPZFKJbE3v64C3PaGz5413yAx56ycyQuUPS8uLw/tmwaDq94EWer3unbf9XWq7 vJUBfIKQnS5+AeTECw8uDu45AAAAAElFTkSuQmCC</item> <item item-id="182">iVBORw0KGgoAAAANSUhEUgAAAJcAAAAVCAYAAABL53yqAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMRSURBVGhD7ZndkYMgEMepyx7ShlWk CJ/TQDqwhbzmNWMFeUsHHIuCgAsLKDjncDOZm5Oo/Hd/+8Ee4+2nWaCQBVih57bHNgvwBleD oJgFTodrmqZi4s548NX0UDYM6a0K19gz3o9quxMfOsa7QcE18p51XP9Jqdq1Du8y95L3sNP0 jD1nrOfalO72qfU8uTxVbzW4pqHjbCVLyHPhgksD77pBrJT+2Q/XqXooeKj1DPPm6K0EFzjT jLQZLCayh/wY0EF0rNkswwpRtzhwAdTOPsKPqa1n3u9sL5HdBzdzJa6PoDeQ+Tbi8/RacL1e r9XhQsjj8YhyFfWlLfVwB5K54DJEXTB7zYbcB6AB1wKWlVQJQcfqIa2HtA8AmYIDay9S1qn3 Q0Fxq06c/zRcANbtduPf71e+DX7bcBnR4XO+dJQbER6IfHCJTqJ876Xg8oEa0lpZD1bizGsZ 6xIWLHMd7D8NF4CkwNqyPBtURTdKshRpRox6iq+/CTspJpNACdWlVZeNband6nHKiNXkUVrL 6cFyiLS1G8wGBHvX9TsL+E/D9fl8pKPu97v8vN9vQ6tTcx3CZyeLXgCt5b5MlJoB6PQd/w0D kE0ZDmsVdduTWTP1EGV5LzzU/XMnUsZ/VuaC0vh8PuXn9/utvtqc4jwGRtNquUjfm7nm7OhA QWotpwcNjoyyJ/tWVfao+82XHuw/DRdkLQso8VKdvdDoRmZSB9fs+EyU+k0HEOmARQ+pNTVD 7e0hl5O17hNUSbcb+vXEnbpu2O5g/23KouphrNJIRvOyQXRzvtPGct0dAdQ+LS5bl1kQepsI rfjpKVdPTGCYoxtsFJGyLnrn3jOEPdh/kXMuqg8Jw+XvU5BWu8qcK+TQGK3x2ajO3C4GULOF ToMr13+RcNmlwBe5csLuGc5573FrfpUJfcgZcVr/jx5Eq2+Cf7D/IuGSZ4p1Spw051Li7CM+ Ph6o9b9FKtIjtC4HAf/IJD67Ubs5fD0DLnXwSdGbANfhEtsDL26BBtfFHXymvAbXmda/+Lsb XBd38Jny/gAwZG8yzJmu5QAAAABJRU5ErkJggg==</item> <item item-id="183">iVBORw0KGgoAAAANSUhEUgAAAFcAAABCCAYAAAAi00pEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOqSURBVHhe7ZzNcYMwEIVpIH24Bnrw wU1QhS/pgLMbcAecfPfVVw8V+OYOFFaCsf61LIjB0WbGk0xGEvDp8STQsyrBP9kIVNla/saG u0ZUVSM61Ln3oq0rUbd9sDTDlWgUqKrBYdVp9m0d7BCGK8HWIiJAhI470XgUXzzcrqlEWLCj oqtB1cMnZgGib0Vdt0NXfX7KhgseGyRrWwWoMw4YLELvgILhArzI4AVKrCy7gM6w1Gl6hmkP 5cIFeLEBzAdSAo/PJkC9U7PFwtUh+EYsOQuwVepTs11Z67RC4SYsASZnVLhy9qHUXSjcwRuj 3jmQIdoCCLlrlFeXCTflt/K5wuOvyQFNecRkOQw3+Igwfyo2NVU83Ab1SDbjIULrJIaLgot4 8vUUYbgMl6acZK1hsMLZQrIlb4GylXs7icPpRiOHqHU7/YjDb8FTMVYuQiWkImwLJGy4SgwX x4lUiuGSsOEqMVwcJ1IphkvChqvEcHGcSKUYLgkbrlIpcPs+nFjBkSKU+o9wzYyAHQeCldOl 4QwkaDTcL3nlKNekjNVWT9bKE6xA4ppXDAX3a16W23EfUxE6dFB3NNkyD6O/NAYuKbegDud9 K3a/32VsZ/pcLpc1LkWtpDoZgUBKMLlOlU6+JE8aA3fBAqUDF8Aej0fxer3kucFvL1zfwp38 36dTTI6hqGXo/xt4LwIufWndo1wAOYEN9rzMrwJEPXViwXBuJ6U0N9wSh45Jc4KF6Hea8Xes ga3hPp9PeaLn81l+Ho+HwVhdyDCad9aSsyfMZs4KQkqcq+jkzY4vgIC7JLfg2AIoF6zher3K z/v9Dg4G8byUDfM7lbtqbgFUawO11TsOhZEwmk+NcxW6D8910+b4gdRR7mQLk2/5rCEON3xw /2xhzGOBh+v+uJfZgrpYFefHhJ+1+5y+QBmZLYTHELwadzPPxTu4U3I9uOM0LDW6h9RrnNmu ntDodFeDq77N4k6JQlOvNdRNv+yxJma2sOAgdLgLDrqbqgw3Y1cwXIabkUDGplm5DDcjgYxN s3IZbkYCGZvmCGlGuGwLDDcjgYxNs3L3AHfrV44Zr3mzpuHtW+o1nrM1y4KX5Ztd2B4OhIG7 dm5hD9e9zTnwF6szcuYtATLC/QQ3Qgchh0I0yynzW+tANOW7xDgTb8Mi5YrZQMjazya5Mm22 Wa5ygS9vfZXVege+vGlbRsK83WBGuJP/Ur8y4N/HEVot23ONLpveI8zb4jW2JSzDzXhP/AGL VRckDIFsOwAAAABJRU5ErkJggg==</item> <item item-id="184">iVBORw0KGgoAAAANSUhEUgAAAFcAAABCCAYAAAAi00pEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOvSURBVHhe7ZzNccIwEIXdQPpIDe6B A024Ci7pgDMN0IFP3LlyZVwBNzpQvBIK+tdKsB4TbWY8yQRJtj89P8vWQ53gHzICHVnLn9jw OIiuG8SIOvZJ7PtO9PspWprhSjQKVDfgsJo0p30f7RCGK8H2IiFAhI5HMQQU3zzccehEXLAP RXezquctZQFi2ou+389d9fxpGy54bJSsaxWgzjRgsAizAxqGC/ASNy9QYufYBXSGo07bM2x7 aBcuwEvdwEIgJfD0aALUq5ttFq4JIXTHkqMAV6UhNbuVjU5rFG7GEmBwVgtXjj6UuhuFO3tj 0jtnMpW2AEIeB+XVbcLN+a18rgj4a/aGpjxCWw7DjT4ilA/FdFPNwx1Qj2QFDxFGJzFcFFzE k2+gCMNluHXKydaab1Y4W8i2FCzQtnJPW/G9PdWRQ9Q6bb/E90/DQzFWLkIlVUXYFqqw4Sox XBynqlIMtwobrhLDxXGqKsVwq7DhKjFcHKeqUgy3ChuuUitwpymeWMGRqij1H+HaGQE3DgQz p6+GM5Cg0XA/5JWjnJOyZlsDWatAsAKJq6wYCu7HvCx34z62IkzooO5ksqUMY7g0Bm5VbkHt LvhW7Hw+y9iO3g6HwztORc2kehmBSEowO0+VT75kDxoD94UJSg8ugN1sNuJ2u8ljg98WXNmT T/AWKxm91J+5oYlY1DL2/wW8FwG3fmo9oFwAqcH6Pe+csHnJOLOkvkqV0vxwSxo6Js0JFmJe adbfqQaWhnu9XuWB7nY7uV0ulyfjQGAtmg70pqRjSixVdPZixxdAwH0lt+DZAigXrOF4PMrt fr8nDjZ+6f4X5b41twCqdYFa6v1DHVHcnye7Y9VSha7Dc/20Of5G6ilX24L2Lc8aJFzMDnw4 4dHCI48FN0LTH9cyWlCDKhXnx4Sfjeu8fILyoUzsjcYuh1fjasa5eAf3SpbBTYH1lBYGGVOv dWSrekKrp1sEV31jxR/2aHXan8feD6hLLK58vLrrT/tREzNaeGEnRXBf2M86qzJcwn5huAyX kABh06xchktIgLBpVi7DJSRA2DRHSAnhsi0wXEIChE2zctcAd6lXjoTnunjT8PYt++70Y3IL i+NL7xAD9925hZUhIDwc/mI1IVxeEoAQ7jO4EdtJdSjEsJw2v7UORHO+Wxln4mVYpFwxCwg5 0azszLTdZrvKBb689BWp9c58edE2QsK83CAhXO2/tV8ZCK/jCK227blWl+n3CGVLvKaWhGW4 hNfEL1mSCIEpzthFAAAAAElFTkSuQmCC</item> <item item-id="185">iVBORw0KGgoAAAANSUhEUgAAAPYAAAAVCAYAAAB1whPkAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOTSURBVHhe7VrLscIwDHRd6eG1kSoo gUPONEAHuXHmypWhAm504IdiHPyPEn9iPMoMM/AeBK1Wq5VtGKeLMkAZaC4DrDlEBIgyQBng JGwqAspAgxkoIuzH49FU6lrDo5LTEraWsLgEFMKXXNhjz3g/yjAefOgY7wYp7JH3rOPzyx+Q e2t41JS3hK0lLC5ZrMWXVNiPoePsq+p3fKaw4U8D77rh/Z/6r9bwaM7cEFct8wScbcGXUNjg xj2fzfojasYYnx6K4KH7fF28VoG3hkfz6oa4apkn4GwbPk3Y1+tViPDzOJ1OaNXZXWXqNcYo /rnd2HMWdG0AEy/+evAoaXxj14aaQIZj4g8Rl5arbdju9zt/Pp/OMM/nMwfsmCsdFlNALlHp EaXCkIOrWdiQyL+/vznZkHSnsGGU1pw5IGCfsKculHetvYxHNI+piVlNxtOQUuBBCjsu/k+p lOYKiQ2iOx6P/PV6OWsa6hB4EVdJnlRxu4Suh5sGQx6uZmGDiH0ddIYDTjuJQR25v8m3nSgs EIxzwdiuThHa88ANwnhEXPLjdtcXxZQDD0cWf1z8oIfyXGGxQcWAK6vX7XbTXgth78GTbCRm jds9KA2GPFzNwoaxApJ5OBymh5loIbC3y44ux/Y58FrnwwxfuPeE8Rjd2HK2tHi2NKeY+Ety tQUbMKhOg1BrX4cW/ArRlOVJnxCWhZ0CQy6uNMeG8Q8SCg/fmDTtav+IY3vxWDvzppDrcOzt 8YfGu/2xyVFctmhT2FB7YC72CUpuntaP4vEY8nA1Cxs6pilm07WnEEqv23AGbb0riMfavDML Zu2ksWLPADmKx8WfZ922SAUSG9wHhAuOJ/cSAK/cNIPnl8tFLCe0/Y+cPK3fPEuDIQ9X1igu 17CucdwvbNdZmwh4Wr8ax102YWbJxO+Ky1HWiWfRsVPjUfAhiz82/nJcrccGnwATkdzAJpSK dx5x9+RpsYulw5CDq/Xn2E7HhtDwrrX/OfbS2q12PJj4fdNV7dhURWFw1l53GAzpuUoobL/L ac2vil+e6aO2+yy0Zjy4+N3LJmWSWjqW2J0rHE4ff3XUHQ5Daq6SCts8nrCnGXx3RUxCkW8J nY/KW+vHLXXhQcTvna6mRZJ25FcXNtO1fb83+AWe5IS0gCExV+uFHSkn+jhlgDKQPwMk7Pw5 pm+gDBTPAAm7eMrpCykD+TNAws6fY/oGykDxDPwDEaT4yn3IsWsAAAAASUVORK5CYII=</item> <item item-id="186">iVBORw0KGgoAAAANSUhEUgAAAPYAAAAVCAYAAAB1whPkAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOESURBVHhe7VpLsoIwEMy5uMO7Bqfw CC5YewFvwM61W7eWJ3DnDfJsIJiEJA6QBEwNVVTp+8h09/TMJFFIvpgBZqA4BkRxiBgQM8AM SDY2JwEzUCADWYz9eDyKoq40PLo4JWErCYvLQCF80Y3d1kLWrQrjIZtKyKpRxm5lLSo5vv0B u5eGR6e8JGwlYXHZYi6+qMZ+NJUUH1e/47ONjR81sqqa92/2f5WGx+jMBWlVsk7QbAm+iMZG N67l2KwHUwshZHdrhkf1+XTxvRq8NDxGry5Iq5J1gmbL8BnGvl6vvQmH+3Q6kV03rSpdrbFG 8eHj2lqKYNcGmPXm3w8ejcY3dmOoCTC8Jv6QcHG1Wobtfr/L5/PpDPN8Pktgp1zxsNgGcpnK jCgWhhRajcYGkX9/fyPZIN0wNkZozfRmcnoM7DN2V4XSrrW/4hm3AYBLnzQCBSkGHqKxV8W/ lVZEbGD4eDzK1+vlzGnkIZqLcXWYUuukm9tldDOkKBgSaTWyBxP7Kmg/DmhG7ILRjdl32Gkn Chue0rkwtutThPE68AFhPNrk0BUrO2HS4ZHE5F8e/3ZaUbGBfXRl/brdbsZ7w9iY8LLp1Gs/ zYlpDVqPIZ1Wo7ExVoC8w+HQ3QbRINYykblL5+vAczs5Zfii/U0QD1YuXcF4F6fW1Qni4llS nBbHn1mrJdigoD4NItfsDq1Mk1OnPrPoxl6NIaFWRsfG+AdCcfvGpA/4/XdsEh7niLePjr08 fr342UVqe2xqFFdR2sZG7qG5fB/FY2OZP4qvx5BGq9HYqJi2me3xqA/B1YXndub0a2wynixr N0084ii+Ln71vMxaEbEhOhgXHU/tJQCv2jTD68vlQjB2zLybv3kWB0MarSajuFrDTsZxbUxx HVW5dyeHMzjruAtrsdS74mqUDeNBnXKN4q6zw6Gs4fx3Np75xl4bvxop02s1Hxv+A01EaYNN KB2v8zQmt05mWXG+i4UhhVb0c+xh986/X0Xvwrs6x/YkzGTDMCD0pnhc8Zeo1a/r1A27jiaS SCuasb8+XOtm37a69/bNM2/C+Lv2ZO235Tfp7PhL1erXdXIZO6FWJGN3Y7Z2hq1e+463YnR1 wiQU508CCaP2E3aNx4q/WK1+XSeHsVNqRTJ2HAfxpzADzEAuBtjYuZjm5zADGRlgY2ckmx/F DORigI2di2l+DjOQkYF/Q3ARAeMfR+UAAAAASUVORK5CYII=</item> <item item-id="187">iVBORw0KGgoAAAANSUhEUgAAAPYAAAAVCAYAAAB1whPkAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOZSURBVHhe7VrLscIwDHRd6eG1kSoo gUPONEAH3Dhz5cpQATc68ENO7PgXR3GsEDzKTGYej0C0u1pJdhCSD2aAGaiOAVEdIgbEDDAD ko3NScAMVMjAJsZ+Pp9VUVcbHlucmrDVhCVmoBS+4sa+tEK2Fx3GU3aNkE2njX2RrWikefkD dq8Nj015TdhqwhKzxVJ8RY397BopRld/4vONDf/qZNN0n3f2f9SGx+nMFWlVs06gWQ6+gsaG btxK06wHUwshpDotw0P1Gbv4Xg1eGx6nV1ekVc06gWZ5+Bxj32633oTDeTqd0K4Lq4qqNd4o PnzdpZUi2bUBzHrz7wePReMHuzPUJBheE39KuLJa5WF7PB7y9XpFwzyfzxKwY45yWHwDxUzl RlQKA4VWxthA5N/fnyEbSHeMDWY0prc7c8LAU8ZWVYh2rT2LB5YEVhFzzTZRkErgQRp7Vfzf 0gqJDTLmeDzK9/sdzWnIQ8g1dWyqk23umNHdcItgINLKGBtMPFVBe3JHM4dVsu+wYSdKGwTT uWBst6cI5+/EFyTx+IVF4bMLDR0eiUz+7Pi/qBUWG9gDurJ93O9353VvbK8BbKJTr71wlpXx nroaA6FWxtgwVgCZh8NBnT7RDjQvoEAAc/HSzocZvnDXJPFAlfSKgrvrODVR5OHJKU7r4rc4 ItYqBxtEZ0+DkGumQw+hK9NsrFN/a7yxy2Cg0crp2DD+AaFwTo1J/XTk737Tdbg1iYPFExYm OjzYrgZJkx//mCxbaoXFpkdxHaVvbMg9aC7h4Rfc0jotH8XXY6DRyhgbKqZv5qBrm/WOvz5e 2sno19goPIrTWOyEeJCj+Lr4VfUd9hA21AqJDVgH4+ripdfUetMMsF+vV8/X1Dot3zwrg4FG q2AU12vY9DgeGjO+Ozl0d+9xlxqxiHfF9SibxjO9+14Wj5WjyORfG/94R2qtlmODT0AT0drA JpSNN3wa8wWdECu+UhgotMp+ju2uSfXaBLfTvYvn2ENHm95/w08VX8EzG7+VLs6vAX9Mq1mc O9epX7uq6Qm7Wexel4cPZ+ygw8ZvNtXlnOK3h1+eIYneLZ5U/DVp9es6zZmaUCucsfWGmXnu O9WZ+3VQiS6ImISyL1GGtZ5h67+nHtftDc9c/O77v6vVHE5r22m3eTeHgUortLGzXcQfZAaY gc0ZYGNvTjnfkBmgZ4CNTc8x34EZ2JwBNvbmlPMNmQF6Bv4Bl0/PbTdUSl4AAAAASUVORK5C YII=</item> <item item-id="188">iVBORw0KGgoAAAANSUhEUgAAAFEAAABCCAYAAAAvzToDAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANoSURBVHhe7ZztdbMwDIW9QPfoDGyR Jdjj3YBp+JVNGMavhXHjbwtZpQlWz8mfhpjw5OrKWMJKy183AdU9wicOsM5aqVmvqO++6WVS elq24tGDQbRA1IzD51PblqkIfiCIAHDSFUEhdLnqOaPgYSCus9JlAR4KVUal5lULXb0tepoW 7Qf3GBDBA4sE4xAHtdVBQmj7oAeACJAqSQSUpaIwB+iR2sJYD8P6/hABUi2R5IDtYOvZG9To hr09RP9ic5ljz7qx6nLqjD/s/Tg3h9gIZQOGDNGkFmcTN4dovKvqbYYiMZxBmOtsvfTeEFt+ CCRy/tdMLDa2nVUIxD0s/buY9hTH2eMwEGfULcqJybaXYAQi4iavdYhAbBFCvC8QEZBah4wB 8fnQ349niwX5/efjS3//G2CKg0ssNI5jKNHMAQUiTSCvTwnEXoL2bkSU2MtRIPYSFCUyEBSI ApGHAMMod/PEbSt3EDDgyg/xyRDDGm/chgHrdb1FdCR2NMQ3WwrbaxZBdS3Ty5IpgCOxnDsM BZF7UXZfKrddAO51rm0lbrMIf2EfLqi12mlwDhc9nEl1Z3u6zL2zXRb3ocGF4runjspZQr3Q VdWsY+CX6Yu8MUrsKFThFiCSFjR7YbtKkypaqQWt9P8LvBEBkV4yrRaqPFA7MNcJYGE4oaXe lyr5EH2hvy8crxa9NiIKr5rfXA/xBe/HqwIlRn6XlBpLyjqrUA4zPMZAQOypO6fhnPMGH2KS UWNon6lE3rpz7H8/mfqY0yWQY4hnFfcenmicjbfuHHoPeKGnrqYSS9n5+D94Wpj6Ee1rndMg TDjbyYoFiWny9NwGl50De2p5IhyMV9fbzBM7LJgAMQzXNDu/JqDNxvK3umOhUyRAdEorzRPd l2lNXfBqpV/eiezccRIixI4z/sVH0Z5I+3ICkcYt+JRAFIhIAhLOSFC1wwSiQGQgwDCEKJEB orTWMUAUJQpEBgIMQ4gSr4R42VIYw0VdPQTmiSruRdmrr/HXz4eByFt3/vVL+oMTyAOSDNDl UV0GiK8Ce2kwcvHes4p7P2UK5Fq+SGwjGWr7AlvJa22kEb3f7BMKx7y/EkGNsqULizUajrK5 EANJ2eaKAeKeZTr2C8vvEwajjuGJwU/g7pPPbf1Xa3YdECKTqL1h/gNhWu0E2cbRggAAAABJ RU5ErkJggg==</item> <item item-id="189">iVBORw0KGgoAAAANSUhEUgAAAUsAAAAVCAYAAADPRMytAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAASHSURBVHhe7Vy7saswEKUuenAbVOES HBC7AXdA5tipUw8VOHMHuixCePUDBBitdNczzLzrZ0Bnz+rsR4JC8IctwBZgC7AFZi1QzP6C f8AWYAscboGmrkV7+F35hl8LtKKuG80gLJbsH2wBYhZo61JU+jwlNsJ/MpymEmX9DVkkxLJt /08MzRVrrrhMWfg5zrYWFZqgFGTp55gjgVyCq60roeg4XCybqkBRs0t1ywKpdyOqohwHF8mG u902V6y54jKJj4ETT87dHDHgQjEwBwxv9U9X40LB61CxhPKi0OoLUyw7W3SDK8v0+zW5Ys0V l5VBRvFVmA+ViFWB58rtNlxdAjfokS6WIFRFIQp07Nc7gawRO4IUyvFe6EYQBXCvYHU4iXZi LKxDZt5gHvecfLFwHU1kJJxRE4VImLvQ0FeTZH0WdEpWu0gsYdC4RBYCRKvQBG6909rqDtdy ZJbwdddYLSazSznWrYL6eDy0wHC9XtcDRGfuh9V04N44RtDBQ5Z2wZz1YyHJIRp3x/fSoPx6 vcT7/XbydLvdBHC69RONP/B7hyGyxtz7M22fVSX8dBkO5GkTTQHrwPnErM9OzWzGI4o+sVTR 5ofrPjCpTqfTOPFgAupiSQUrFscpoVRCqgc8Ka74Oyq41onl5XIRn8/HqYfAJ1Qq8kMF53L+ 3CItRM6Ybf90+XFcLlWl6xBLNDBN8aXgqcDnJLYXV1c2amet0qGnRXRJtiGzX88xcQEQRl+G osZFB6sdfd3Zk2uBDNuYJodQSSzhGjBD9og/z+dT+1uKJTWcy/iDOeWqlnLGLMXSXNSl5bOK F6sMB2cbCdMySyOrMTJIKVqq92Bmli6DzIvl1jJ7qhyD0gawns/n/tAnHTWsyybbvOPRwbUl yClegbNvJim/lcJCB6ee5U73j32ZJa54csOcgs/aYunqE2KxtJrPHgF0luE0M0soxWFywaGV dqSwLi/jZksaUrjWl+E+sQQOIfDZOypi+upy/qbK8Fwxp+Czdhlu9ifHlfEhRbbENMQB6fUs ISMxe19jdkkGq6tHOdW3tDPQPoNT/WUyuIycP6AMBzGETEv1nIFHtbAD/77f744Fwli+Gsif Z4Ena8yOBR5qPutc4NFLIygZUEa4KSuBYG/usRy6lv1qbTehcdPqgNVwVYarfqdWipPCOtVM MP9v4KtSvWNjIY4qrgCxhACnOIOFD8zjWK5SxTlHpWfrUNaYlcaQ9Vnn1qE5Jqf7QOPZzjJc rXAtezon/j7LVLH62h2KnVRxzfmmK2ig/qDPJ8n56pZN6alyS91nO04q+ZBMwBM8eintyxT7 fpFnX5/3HOzrUTfmqoGkinXO8VLFFSqW6eJc/7hjqpiJ++z6xx1VTyx0n6UuQv5tIr5V89DJ ssfvU8Q653gqwx+2WgXtlU2NwxT5k/zUq1+kkSJm2j4b9UUae8gYX4MtkLMF2u5dlrGeD8/Z ruHY9MAVUIaH34rPYAuwBdZYoMu2MniZzBrkdM6x+8cslnTY4ZGwBdgChC3AYkmYHB4aW4At QMcCf6z3PNgvQjrsAAAAAElFTkSuQmCC</item> <item item-id="190">iVBORw0KGgoAAAANSUhEUgAAAJgAAAAVCAYAAAC67CcnAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALDSURBVGhD7Vjh1YMgDGQuB3Iep3EZ h+ETEA0hASSg7Vf6Xn9UKuRyxyWg9PiMDHTMgOo495h6ZEAPgQ0RdM3ARwhs27auIJ+e/L/h yeUvhfdxga2z0vPqQ970Mik9LV5gq57VpM+fOWSicbMWjKVustfwrLNWatZnKnH4ufE6uPou 3kcFti2TVpe6dohYYObRoqdp2Ud6f+QCexVPTkC58Yr01uANBWbI3Xe1At9ADxVBXa8YQuGO c+I61wILmV1yuZpo0cTLSGAeezHgp/G4eF2+dpdfsIPdHF8N1wkHjDJXhxcILN7RhuikDd/g Pla/eZlwMPPY7L6ki7lYZSIEeA9xFWvLGi12YwmeXCKpVgJyIx3PrV+PN10iOZu1hCD1I/cL yWKExAls7yz692JeYBmxUljZuDmcQjwUD/BZxbjdIJDDTvwRAoNWSziYBYOfowTaYGGzzvU7 aeGVOIpzWeabnACVFKrpI7Fai2UOCHI8lJdYMWBHB8KXjjs8gK+G/EUl0pB1lh60MxyZeyC4 fpv/ITLD0wa3g+86W97Ky/8BREKUZBarXaAxnkyJlgoo975tSTrxdwmM6nvulMiAWUxAvx0v dTCXV07ox6k2aob74SE3SEUJtKLxcefeJxv6NhUoFBhZk4l7KbIv8VFSZN11KmHPUmRjSCSW hFKsT+M5Ttyny/jy7vtg6ThMWFv+gh4sdAMTPLNTWYHxDTN96jpOJ6aHghb99CnyyK/Fn+h1 AhrIU2QtnpIdAa91qGuKO+P7BfNMXdS256/uojVxiuT76nJXeuYerIRUrkSm+rB43o/C48PD ZTN7VVPHXxuBZYNzqDgXCyh57CZfKrAvxUMJrCN/TQTm7lTiq4LYzZyNt3C5QnnI/1bQb34V HkJgPfmrE5ictjHDj2RgCOxHiH4L5hDYW5n/kXWHwH6E6Ldg/gEEeZ8h9ZYXUgAAAABJRU5E rkJggg==</item> <item item-id="191">iVBORw0KGgoAAAANSUhEUgAAAIAAAABFCAYAAACCG+7MAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAS4SURBVHhe7V3blawgEDSBm8fGYBab hHHcm4HR+DWZGIyXhyhP8QENI7XnzNkzq4LS1VUN2y3dgp+mR6Br+ul9Dz8NS9cNy/SKgZmX se+WfpyDTwMAbEMjB6sb3mF63eLz2AdBDQCIkeLG75cDR3kBH0zL4GE2AICZdhq6hc7xV6bp GNuwzxE9J0fdPC59PzK47z8AANd8MuvbMsO9khYEXA500DUOAG4QwoCPe2BnSQ0HoOWVyT3f aNCUgrYBwA1C5v1Ca1xjC1AQgpBHPIwF1GM3DQB9IPJ6nWxdROO2t/tYIffNaMBvGADE9F8T AMSsR7JOwwBgWkiqvfVIACeYaZCxSLsAoNZ/qQGu3pMHgbsc8TgAAMitt0b75aeB6nZU/NM0 AIYiS38FF4I0MAIAjI7LAICUcoKdAQAAgFgLgATU4ZDkdwEG+PwuP78f8oGvpcPP75/l5x8Y oBZ7kN8HGAAxAGIAzAIgAeTUW0uHkABIACQAEgAJqIWRye8DEgAJgARAAiAB5NRbS4dVScA8 h0uXsg1YMQlo/N/BZhGGXbvGU5aJKnSKAKDxhBCRFWukYXuKFz3VK1lYoAQAqqgLOEoJEzco S5bUJ13avF2bZlKhDgzOEtlLpkoAoJK6AJWibuUDyDIl3eDcEKlKpV3vF7fhL1+OJkomKKkq AIBq6gLWFPV4QkioVt6X3Wqxh8kcoTr10N8JYgEAILQOIL1rlwGrbEmAwmYGy2CO1rnssipR 4AUGEhhn5EeyVOBz1EABANRSGnYoAUbJssUAcrBZlD5Z+e2eClsz2g959FVmSBgOlgBA1XUB Pt29IgGGbWyDgwF0xtsD3gSxzE2fcBeCbGNvmu6Zlx9WtPq8+qqnvzMGMEBQ4gURsboAU0+5 9gc8NwiAMKL9s4C1YpYPhjn9iNTMJ/CcEhJw01tzXPZsKfhgFhCOu8579WvXAXJY8mabDgC6 v2aJwOF3BgB+fHuf1vpdN77v+hALGM/w5pXAm8bKcZkBAG4s3WBnvysAqPO36dja3vYWiq39 2PTuPEs8HhRIwL4OoIxP9fux8VI0AABIANzxfDX+Z5lCPz+F7ZK0AQC4AOADeykWuHF+EuOl aAQAQEoYUsKQEpaCS76yjWfrAF/5yNZNQwIgAZAASMAbuOzWM0ACIAGNS8AL3hDyJJ0ebwi5 ywCxLWVix28Rtr2nwfN0ekjAFwEgRzo9AHAaAHqOJEuOGe1NpS4et9PpooyQJ50eADgFAB/V 6gmxT49HrS9fMe8kWdxNp9/7AwB43kEs7din5/rfbhx3dvAqlE4PAJwAQLiQQ6bKPz3OQjuz FpIwnR4A4IMf2S/gqYFj14s6AYuFqNLpsV+AtmtGUIlvULwwqtoDKHa90zFVOj12DBFDr2gw HIr5y7n3esmnx/WeCdPpNflr92XREgHxQHAtYJX5jr5poF7lHDvOyt0G397EVOn0EnA68NsG wBkZiM/Urp0RKMChS6c3N8tqHADMdqQ7h679qRhhnQLGZqMp0+l5W9g51PJZ0r2DNQaQawJu ZbMLiETp9J6aCzCAVEXsHn5NyN549ptB4N86nlsRDGBgWUX0tHv55nOn+PMAAPlG/yta/g8Z vR84dORyqgAAAABJRU5ErkJggg==</item> <item item-id="192">iVBORw0KGgoAAAANSUhEUgAAAJgAAAAVCAYAAAC67CcnAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALMSURBVGhD7VkJkoQgDORdPsj3+Bo/ 42NYuTQESDiEXVemaqp2RI5OOp2QFXJ+pgU6WkB0XHsuPS0gJ8EmCbpa4E8Q7DiOriBHL/7f 8HD2o/AOJ9i+Crnu7siH3BYhl80RbJerWOT1k0PWNK72gmepW+zX8OyrFGKVlynx8bnxOriy FO9Qgh3bIsXNrhMiJph6tMll2c6R3p92gv0qHo5A3HiFeWvw+gRTzj2jWoCvx4eKQ91TlENh xBlyXXuBjVSU3KrWtCkxGRHMYc8GPBqPOa+x16nyG1awwvFd+ZpQwMBydXgBwcKIVo4mZbjA 9yH71eSIgqnHKvpIFTNnbSMhwGvJlc0tLbRYjVvwcIaMlRLQN63j3P71eOkUiWUWKZznEP2u izAcGQkipQh2Vhb9azFHsARZKazJc6dwNuKJpTv4rGJcBwhUsE7+ixAMSi2MEmQk7QBbkOu/ b1KF0Z2qd2ji5SiKUdnEl1wApRSv6COw6mDvhyemJdqeWNGBzVvHdd3byX9BilTOulIPjhLk MP9GAUyDDmwcErsdliobL+X5bwCS4JSsfpNYH8bDpOhWAnHzA5s96L+bYLG6h7yJpGX/TQpm eJQiujM9xjpWwXRNigvyxhQZXdPCfdJ/PsEgiKsGKVCe5JxSpWqsWbJkDJFEOywX62g89sZ9 qapL764saR2/mGW7CNgO9Xi9GsyvZ9ThY5Gac4MLCRK/ddnbiaqhYEoafYu09tX4vVonjfVZ PDkRAds6sTZFyfjZYF6pRu1z/itrtBZc58P6LF+VxvTBGKeyWF+GB8NlGrFP+S+fYJTBA8WJ Gz8V9R72YZ18gmAsuczc1+CJQcU1XKDcYblQgzebYKZvErYDXGbzx1P/TzQynu4e5KtCTlKp fYfDeq/7DjxROyAF6+W/bILVOmvO+7YFJsG+7f/u6CfBupv42xtMgn3b/93R/wC6J4HbCu/G SwAAAABJRU5ErkJggg==</item> <item item-id="193">iVBORw0KGgoAAAANSUhEUgAAANUAAABICAYAAABhuLAeAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAicSURBVHhe7V3r1aQqEJwEbh4bw2Tx JWEcezMwmvn1ZTLBuAI+eHTzEgS19pw9uzMqQlPV3bRO8ZrwBxaABYpa4FW0tTs09hmm12uY Pg3G8hnH6dvgvuYtv9M4thh984FHdmC2z/s1vUd+pkCqzZTKWK+hDaC+43tqdGsXTLNj8YEm En23Pk3MF+d8QSo59YJQ78njfOoC5DtOw4k3/37D8fA7Du3sUdfaasYjbBDuxmcaiKwGpJot 9xleBaOEMHQaQWsC2Bybnbp4+lqD6KHUOnQ8jHLyjGwbxNxvttP7babtIJWYyKZ5lwB6nTWc TFGMsRHrAQIUCksz4SywxGDMe06INKHjGR04ZoO4G4p76Onyw0mVD2iVU89rMPlXj0y691/+ /5m9GXmuyENcT7eBWr9GtpFCPjs1WdaMa5sa2YQnd9dQJVJi0QfNRnNKaa5DEo+fboM4UkkH pM3Ns0klAJ0TpWyPany2SSVAtZNBAPilRwAyUlJpmtlOaLpdD72uHQkCiT4QUelYWhwaw9Hj IQsIf2VH6nQbhO+iztALTY8mVXbFzZumuKQyeGtdS0480T5bbRKOwYlgXNmX+55eW9ERLBJm lI307zKOOzaQbayR0I7iZWwQOVqVcSwT/WBS5ad+qlq4TqZd5EgnlZ16SfDYkYMizwYqG1Aq rXKDsB9o9vn2WiEaYIvn9o0hNMbQcQlizZm4zqmMDeLHvOPpwaQqsxCX6ZyxrkonlV0oCQJq qVjKtRy5zuCqemne20sqCWq+ahoaw9HjDtgdp1PGBvGkElVktbZ+Lqly11OklXWwHifVPDvu g0Uu5STTvzJeurf0j7TLMh/tI9W+rgKpUlzReq4NcAnstQKYRioJFCdPs9/uWKtkRPWv8poq p46zLN2tN1TsMYTGGDq+sWmprNrPBtOisqrgpT1ftKGzrtEfTaojbzHsaZ9K/3bwJZKKLalb 67aBeSeRJBVX+Vq+F+mqzhay+leipK6PYQasU1JPOT7bmLOBRLdLCrr6l2KDNI8LUtV4YyBt DlZXG/fwNyn9o0HGdY99TjX08IKv1uvAw2H3EUB89DmU6mopqPBViFRZRCh7UdRrSsmk4qOV 0XsuUnbjdBhSOdGVJhAXraJskDjNiFRdgeYzp0aBl1wzSLWW/vl1Ee/Jo4ieCLrDp1PP+Lg3 VbabqRQzxwap/QWpfn+mPz+/qXardv53/i1Vmx+dUEOKIHk1S1y34d+f/6Y//yP962gGyzw3 Oz6gIw/Fj9/9yi0gUnWV/l0ZSuj7agGQCqQCGwpbAKQCqQpDCs2BVCAVWFDYAiAVSFUYUmgO pAKpwILCFgCpQKrCkEJzIBVIBRYUtgBIBVIVhhSaA6kuRCrIQV+DsCDVRUiVLU5TA4eQg/Za tStSlZHgTUTRFUh1ch9j5qHLt9cTp953eowNuOubkaqqBG+KcU8GbErX9nfJ6umZZ89DDbuF lGlDx3OMO1+TbQPmfk1I5f5gLEWGONNyvFs5dVOA9N7Xe1v82DxUeJs+RJrQ8XTjEkKbx7FI k2qRndoFCksL9+vCJakyxBmW88b5Qjtt6DZzVF6tMVrHJbghB01oV1xTDpoglStrpcRNUvS7 eRTTP2tmFG8YGeK9ddXXQ3soFUljdJvZY7HVgFS6sQlMeqWjZW7Cqizt4/aoLHlSFE69ybEn 5KDVPERu1BCX/pFSXIwya08SvDFBrQSpfGlJSI8vkNKQToi4RkW786XLsh1aSNMw47hjg0ZY 9JBKD716pLL0DHStOwtALiDKiDtSXLGlwvTU1btFTgFSyXFyXoyV/VojrE86Wom2QA56mXEN X6TNdfw1xCKb/glQbpOpew0iHWF3hXC89PkSvMFgFUGqEGGPkUpLZh3paFoJKQiopaIFOWht 9k/EoksqyrN6UxSfEo+9hck9I5VPhtgW0FfTzNlBHDPXZLHpH9uHUPppeJ20jQsOaeRlpHfG GEPXW970zKyJJpWem29VLUoKl5kE9przJXhLRKpgGxZJzAlMLFTo6bTkH+SgdUe0rxv7lYMm 11RmuiMWv5Rnjam81ZbgjelDgBIR6V+YVCLA6Lsk0nskbes8a/3FS0cv7ZLrNchBO1sZDYwk 9pYdmIGBrkQfl4OOq/7ZqFoAFCNa31qCN0iIUqQK3ij3hMiHv8kim0elkOd+QQ6anFSHVK+/ pgI09Vnfj8g4LiZ2vn7XWP3Iz7roqjxObhfpJMHObt+5sPRe1z2phOeMeE0pmVSQg5Yr2ApY NEglAK+ThPu8pTHL+etuF+v59vEV1Ht750nwBol4AVKJwgbkoIMzqdaf9q6KDeSgHVKJrq/E qv1vhJnqn3IJUgmPCjno+mAoc4eNVDERyo046pvYCKdfX6b7BVq5CKlkGT7yNZkCVvE0EbnG q9uJrlsnSaVHK44IMWsvfeT2+d1Y5TKk6sZi6EjAAnnVvzuZFaS602x2MRaQCqTqAoh36gRI BVLdCc9djAWkAqm6AOKdOgFSgVR3wnMXYwGpQKougHinToBUINWd8NzFWECqzjbS7gIV6MQh C2AjbUSqQwDCxa4FEKlAKvCisAVAKpCqMKTQHEgFUoXeZJvG9y5Hly1J9iCugVTiV8wxP2F+ ECj2odI6ECCWHwwgFUjFI8QWoRFnJii1PtIPzYMGqbr5nVKHEKQIREqeddj3hl36DEpgxhSm aNih82+NH91xNudFOym5uvNnrs877nh6MKn2cN3nJLXrFUiVYXttOfFoUknNPhQrXAQh/Utm 1bqeEhc+m1RSarnMVkHJs9DzBdT6CYUKz4yZOHo4qZaqFqKVBRiU1FN8nohS+uMGkEryquSO kSnT0fO5prw0nlExcyWiuqV2BVJJWwkAobLVM8X77JuQ0HaXDyDVNlsgVp/A7bVXNKFQqHDm a015ULzoFcrt+xXGCCJV+1lCD25mgX94t9z1t3ZbAQAAAABJRU5ErkJggg==</item> <item item-id="194">iVBORw0KGgoAAAANSUhEUgAAAh4AAAAVCAYAAAAJm+egAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAckSURBVHhe7V27deswDNVc3uGtoSky QgrXWSAbuEudNm2OJ0iXDfgEUZT4J0iKPwU+x8XLk2zi4gK8AGF7YvQgBAgBQoAQIAQIAUKg EgJTpfehtyEECAFCYEXgcb+zJ2FREIEnu98fBV//Oi9NXKzhS5OPJDxq4E7vQQgQAisCz/uN zbQnlmfDY2a3O8k7H9DExfI03N9B42M14fF8Xi8IrmiTTMXR7Rt9/a60MKxdzzubG2yGw+Ll 2RcwNj3vM2sA9ym7Gca+rDciLmbBp9+M8ZfMxyLC4zFPUlWztFluk6S+H2yebsMFxBVtkskz un2jr9+VBdraBbE6sWl/ziynWVFjI2yL16m5XCoWE/Npo801FoUWPiMuxnrpuD7ZXxIfTxce 0L6alF6qLjzWfiu73cY5572iTUpnY3CfXdU/be3iokNu16/rmVLFB+SB1HtxSbItXrg1xl6V Z9Piw87zbJ59sWiK64mLychl7RUHH1XhAYJAqXBkpY1ZKiQrOblw0bFXTJIgAdVU5QzyCjZl 2+DzXYc+w1DtqAcbcW7r3D3kmDlzY23sl+VM1hQZGd3K4sVGG7wgj6mF1jI8a/lbFKVP4zbk 3567y218Vr7wbWTX0o9cTxO6zUkHHyXhwSscuVmxBlBEhWOqV4ggS8cD/gyJzavGzYorPnh7 s0myYLEfN2SXb4MPt3N9lmIfY5+fn1I7f2Jvb29oV5+3fj1ZrCTVRI1yOLUdQxxiI68joJp8 nl0alGjeWVywCuDEjQzi3UL47+9v9vPzY/X3+/v7yg3M4zy8InlgCDQzXjHrt11zhk1qW9yz kgheXMJnV+Timq/UPbu3nCT46D9qsVY9oCUgAenVnUNguISHUGe1Z04diWLtyhhCqKBNEYFu pIsoG7a7a/sMaR9sLP/+/ds3H9iEVOEhzRkU94+86fhEhxAlekdQ33R8a+/bL+YWtXUvcWrZ uN2+iTL2+vrKfn9/rTsi8ALikj8G4UFnsYnuLCPjFTwxus/+DBeluDnCtm1OEny0CI/AQNka WLZOiEvp+zdvTB7jnRfHE/MCctJS1s7XJl7CJGQ5m6Djg1r6npJdfgnZADm7vs+w9oHIcFW8 oltW1z9m1WCvE23HDjLXx/aL1n/hR6ZxhFVeAmLLdrQKXQ358fX1pfybC48QliXiFMsD9WhF PWYJrbt8bLpwtxUzWPeO7rPrcrH/nCSwN45aIND3BKGpdy4AxBmS3vFwnf/Gdg1SG5O2+47N 2m6TVtUaXYFzbUoTUHk21PRZin3QtgXOvby8rE9146nrH7WyDs1rhILcv/be/bJH0zZfFJzH 2q5zbV6uKlPuboHvjw4HXwHf5HrmgRAPwBdbx0vikZZfanDAJzxS4hV8MrrPrsvF/nOSKTxs MxdRRy0lqo5tK0jteIRsMgbedMeVswnbEbDOwsh+CdqwbSHWo5b29kESg+MW2GDgqbTdg7ad vf4Tj1qCa+/bL7xLC52yxJkOrQ7wtbfFpbrwAC6AGDWHAUvHaQwPVqD4fNzyjazKEXQHHCh1 1DKyz67LRVs+lP7WER+PjocuMvZPUlgST+15gdQmSMgmQ5joCS22W+PqkFgMwB61ZNvg2+Da 2wcVrn7Gv3c9qvpHq6r5zhs1XLpWkGIOJbj2vv3C57jOER27iLG0Q0BYCPEpZjrEUClw4+Pj wzKIXjJOY3nA/ciH+LTjqA44UGK4dHifOQadh7fLMlzaW06yDpeqrTdb69CXLLfgsyQXXFDq mzNXasEWb0CUeG1CKECXOk6zSVosVnishaf+JU5nqdizfRZvnzhqETM8ynFLS/8Exe7mg1nM z2jDyYi1bzuWZVC7vV92fltmq7CzAAqEjo/TgugUvoehRZkPe0sfgWWxOA3yQM6J2rAxYt1l ORDxcdqIfDS8zy7Lxd5zkvXjtNgIW+W9NVnyChFXJaFbgBHLir80dHYsqt6ebcLYMKrPMLa1 4pzrmEewELP2Uf0SH2l8QDQ0N+N6XQyWrXjgwwKz7pIcWDCfW31RI8b2Vj67Khd7z0kHH9O+ udQpPNyVGqb6SUlnefeoRw3eqilU5hX/giSXpTgb3GKxZ5/hbHP5rSznQkGOW/uYfkmLuvSv qcZh2YYHPixw6y7GgSUntfhtHI4IzvZWPrsmFzvPSRIfTxce+kffzLDEq9y09BZ7F3eW/Xs8 xGupH4vrzyaEDR6x2LfPELZpH7es459QkItuWYBbw/olNs44HvfkXy3rlQchHBDrLsSB9M01 ZBP2/xG2N4ndq3Kx75xU/EfisLSk6wgBQuBvIfBcPvmR80NzfwutHGtzRF7O+45zL3Gxpq9U PqZ1PGqul96LECAELoTAUpV1/sNl44OdM8MwvvV4C4iLeKxyrjT5SMIjB0+6lxAgBAgBQoAQ IASiECDhEQUXXUwIEAKEACFACBACOQj8BzUbcEvhcdxsAAAAAElFTkSuQmCC</item> <item item-id="195">iVBORw0KGgoAAAANSUhEUgAAAh4AAAAVCAYAAAAJm+egAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAb0SURBVHhe7V3LceMwDFVd7iFtqIqU kIPPaSAd+JZzrrlmXEFu6YArUKLMD0iDEv8Lz3hmNyNbBPAAPjzQ9iT4wR5gD7AH2APsAfYA e6CQB6ZC9+HbsAfYA+wB6YHb9Sru7IuMHriL6/WW8f3HeWvGYolYunhk4lHC73wP9gB7QHrg fr2ImffE/Gi4zeJyZXoXcjRjMT8M9ztYeCxGPO738ZJgRJt0KPZuX+/r95WFbu26X8VcYTPs 1l+BfYFi0/06iwruTrKbUew7dSPG4in32S+mxEvHYxbicZsnratZZJbLpLHvm5inS3cJMaJN Onh6t6/39fuqQF27IFcnMe3PWZwRK0pshHX9lbSWa83iwXpaaXON9UKNmDEWY6P0uP5wvDQ8 JiceIF9NhpZqEw+pt4rLpZ8574g2GcpG5zEbNT517VpJhy7Xy/VMR8kH1IGjr6UVybr+oq0x 9qpzNi0xbLzOnrMv1pvqesbiYc+d2iseeDSJBxACo8PRmTZlqVCs9OKyko69Y9IICbCmIjPI EWw6bUModg3GjAK1Rz9YCXObcnfTcyblxlo5LstM1iUZJ9TK7M1GHX9BHTMbreXwLPK3KEgn wzbU35bV5Toxy9/4VrJr0SPlNKHZmvTAo0Y81g5HFytkAkV0OC57hQxCFA/4MxS2IBt3O674 5G3NJs2CxX7aIbvzNoT8ljZmR+wT4uvrS5PzJ/H+/k4Odbr128VCgtQiNcZwahtDPMjGOUXA NDmdXZYrybhDQiAJ8MGNDPIdAfzPz4/4/f1F4/3x8SGxQXmk81ckDhyC5uYrZf3YNSlsMmXx wEoicDFEzEbEoqxX5p7dWk1SeAyPWuyksjpvM3YeguEjHoqdlT5zinZywI+gqNoda0abIhLd KRcxNtSKGdE+2FheXl72zQc2IZR4FImPvumESIciJbYi6Nl0sLU3Hhd3i9rUSxpbdl6Ob6JC vL29ib+/P3RHBFyAWmo8WsdBY7lJVpaJ+Qqx6D1m/w0WZeK0VZMUHhHi4TtQZsmsTvfjY/rh zZtSx1blxfOkvMHOBNV7WARDFgtM3clnEyg+pKXvVffJQT/Uhnoxo9oHJMPX8T5MLxkft2vA +0Rs7IBgvdO4WLv9OjKNA6zFFy7oaBVUDf3x/f1t/N8gHkXzlIoDc7SCjlkqYgA2WdJIO6Ie 9R4zn096t2slGbYi2VZNUr53Ri2Q6DtQdfaOSKWmjOeb/8aqBkeFSex1j80atQn4oCQ1ai5m Kx5pbTpGoE7YUDhmR+wD2RYw9/r6Kp/2xlMyPiuCqBvO8yT3rr2DuOzZtCkzTzev7TofN/F1 mbq6BbG3FQ61GbSLA1lEtpG0byyK1JdCGAgRjyP5CrjoPWbjYrH9muQSD+zMhU823Au0zq7y qQNHEwQ9RxIjhfpkKu/4aCVZpMaQ2mHExAWVoXVCZgMzX8xiFA8Yt8AGA0+f7I6PwlKvv+Co xeDJ7cVlTXHYUA+e6bD6gJC8rS61iQdgAcioJZ0gI9GaONDk7OUbWd1x7bb6SrmZa9TSc8zG xSKWBxGjlgI1yR21eM9zYIUHUzFilQ2fmpBQ8YixqcjsWLMthnjoZ0/2swFIXILFrXDMiPZB h2uTDVv1kF7LHh/sTAf2NxVDVxmRBBk7MN1hXFZ/pyEdO4lBGDkQC+ig1VkfwIM6VAr//vz8 JBCPlLUnFgfr8tZDfIFxVCUM5Dhc2n3MELUJYti9XYha21pNQg+XmsoCjB38DAqTXn1MEk1K rJN3GNf5j9zSbPJtbFtBQQrmMZsOEA/ZeNpf4hTLYtfr88cs3j41alFneLBxi594ZIzPU/67 xWBW5088pMNLmh6dcotx2fGNnK0iKXq2/zwfpwXSqWIPhxZ1PNAPGdfEga5oBNROL/HImZsR H6clNgpgbfcxGxaLrdck9OO0Tyvt1nWGRgl0FYMsARKWleSSYGGgdX7VbQp8esK/WXQSs+bi 45P3ETSOHBdy8iX60qbmcEB0QBUMLD6fG/iixuZiNioWW69JDzzSv7n0yeExlX4+1cNIz+xf JkQsBvplASm0G5tsG0aKWXPxOZHkI8UlItWSfE11czggOqBGbi73rPHbOI5HGozZmFhsvCZp eCQTD5/06nbSzw5Y0jtsYkqnuYwwg02hGqRZrOddLBuGillz8Tme5EPFJQrQt+Xn2k9+cU9z OCA6oEJuJtlcieYFL2syZiNise2alP1H4lJgld+DPcAeGM8D9+WTH2d+aG48j+SyKMHGmmtp jbwvY7FkIEw8khWPkkvke7EH2AOjemDpyhr/4bL+PZ/oDEP/jnhiAWOxTIhdPDLxKON5vgt7 gD3AHmAPsAfYA4sHmHgwDNgD7AH2AHuAPcAeKOaBf1iOzHbrbG8nAAAAAElFTkSuQmCC</item> <item item-id="196">iVBORw0KGgoAAAANSUhEUgAAAh4AAAAVCAYAAAAJm+egAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAcvSURBVHhe7V27deswDNVc3iFraIqM kMJ1FsgG7lKnTZvjCdJlAz2BEiX+Cf7Ez4PPSfH8bIu4uAAuQFqeFnoQAoQAIUAIEAKEACFw EQLTRdehyxAChAAhwBB43O/Lk7AoiMBzud8fBT9/nI8mLl7hS52PJDyuwJ2uQQgQAgyB5/22 zFQTy7PhMS+3O8k7F9DExfI0PK6g8PEy4fF8jhcEI9okUrF3+3pfvy0tdGvX877MFYpht3g5 6gLGpud9XirAnaWaYexLuhBxMQk+9c0Yf4l8LCI8HvMkdDXrmOU2Cer7sczTrbuAGNEmkTy9 29f7+m1ZoK5dEKvTMh1/85IyrLiiENbFK2suF5rFyHxaqbiGolDDZ8TFUC+dr4/2l8DH7MID xleTNEtVhQebty63Wz/7vCPaJE02OvfZqP6pa9cmOsRxPVvPFCs+IA/EvheXJOvihVtj6KvS bFp92HieTbMvFE3+euJiNHJJteLkoyw8QBBIHY6otDFLhWQlJpdNdBwdkyBIQDVdsgc5gk3J Nrh816DPMFQ7+8FKnNsndw8xZnIW1sp+WfdkdZGRMK0s3mzUwQvymNxorYdnDc8FUTobtyH/ tjxdruOz8o1vJbvWeSTbTWg2J518FITH1uGIwwoWQAEdjq5eIYIMEw94GhKbU43rHVd48LZm k2DBaj/ukF26DS7c8vosxr5l+fr6Esb50/L+/o52db71q8mCkVQRNdLm1L4NcYqNtImAbHI+ uxQo0bwzuIAJ4MhCBvFuIPzPz8/y+/tr9PfHxwfjBuaRD69AHmgCTY9XzPpNr8lhkzwWd6wk gBdD+GxELrJ8Jdfs1nIS56N7q0UNKvZvPsFQuzuLwLAJD67Orj5zqtqkTBNkPha0KSDQtXQR YkMtnyHtg8Ly8vJyFB8oQpLwuNQ/YtFxiQ4uStSJoFJ0XGtv3C96idqnlzi1rL3dXESX5e3t bfn7+zNWROAF5Bv26IUHjcUmerKMjFdwRe8++2+4yAKnrZzE+WgQHpYDZSzwle5OSkI2pe8u 3pg8tk1eLH+YDziUoCqalNGx1tGVswkmPqilHynZdtDPYUNFn2HtA5Fh63i3oBE67Ev8o3cN 5j7RtO0gcr1vvyjzl23LNIyw0kdAsjdtrcJUQ3x8f39L/96ER8s8kLdW5G2W+hyw4W5qZrDu 7d1n43Kx/ZzEsde2WiDQjwRh3OfdKasUNS05HMwOnRrEDiZN7zuLtdEmw/hXHk2aHMnaL+Wb Ovzatue3/48TUKk2CLgU9lmMfTC2Bc69vr6yP6nwXOyf3UvauDJKeHjX3rZfzvDdzrB4z2Pt Ewlb8bJ1meJ0C3x/TDj2BbAi58Uyb5yG8YAF9r4lrTQq3nWX54BLeMTEK6y4d5+Ny0WP8GiI j6fwMJ25cAgP3XnlpgOxAWI8R+ISU9r2TzmbsBOBdBvO5Halz7D2QRKD7RYoMPBnG7ufxUA8 Y5DbP5m3WiTFYiuO20215GlCbruEhYRM2lisRJ7pUNSaa7zNX6oKD+ACiFH9oWKZG68QHrCW Yjsft96RVZwK+9ddPjZLbbX07LNxuWiKA1tscN6a47tUTtK3Wqx7k8rCjr1WdcGhUwB7IjZ3 mBHPYm1iH21af0GbsAUg2QYwjX/z4kKfIe2DDlcVG+q4ffN8af+IxYZzzfSc+H/yQS4mkI0H pi08atgvG2fyiA6GmOVwKQgLLj75mQ5+qBS48fn5qUoYw7QxZ5yG8mBnJ/uqsWs7qg4HShwu 7d5nw3JR3yZuLScZD5fKkwU4zxGmlmxKcjtZqwSlacKidYiIEa9Hj+Bs2uw0jZPz2hTXeaba cF5VF3u17eNbLfwMj7bdslWt6/3j1bl7bMzCgWuj6LCvvWW/HDFrOFuFPQsgQWj5Oi2ITu57 OLQo8kH/dlOLPNitdG411eJAwNdpkY0CWNu9z4blYus5yfh1Wm+m1V6gq2n8FAM9AgxfVtg7 PHvT9rMr+mWq2eS1QShx0l1leVHHdbZV7PPaVotzLlGOKUYyf4aIJWfkJd60qVkeeNKNd90l Y3PFfK54o0av7bVid1Qutp6TTj7i71yqTSjMpLF10JjuJ0wxZHi1NzCEMaqvzSt+gySLvS4b evdZ0/7xBPnIfokMvejbVDfNAwcYtTmwXr/Gb+MwRBr32ZhcbDwnCXzECw/GpX3LhI1fbV3y tpdpr9N4lRuZ39Bvs42T9bW3a5PPhp595rPtdHQN/7iD3Lf2nv2CDjB9Rrr+XHv4jXt8WNbl gR0N37pLcyC6uMY7+Hinz/b6PnsMyMW2c1LxH4nLwFv6CEKAEBgQgef6zY+UH5obEJJCJsUV 1kKLafJjiYtXukXmY9DE48pl0rUIAUJgRATWrqzxHy7rH/XEMwz9A4C0gLiIBCrxZTofSXgk QkpvJwQIAUKAECAECAE8AiQ88FjRKwkBQoAQIAQIAUIgEYF/8Tks12GOTXkAAAAASUVORK5C YII=</item> <item item-id="197" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTURCe3dKylFZoqUVBoGJbf+rvRg8SYorVg4nSpDVcFdqNrikstGsi t8aTJngiMfGmFy+evHkxUWNMjAfwrAfwbIwHY4yJ1Jk3j2VbiYKaGAPTzHtv5s03s2/29e28 AAAoyHlkvxir2DbZZcPoBiIdWRsvZMeuGAVbaCCHPIigtEf3fQWoNukPnqHk1aPYVX36zFPs mvVgWlhrUm7R1TaAogagKujIz9ZaK4P9AR1wOt2KiCC7bd2iiyhBwBl6qpbMSP701BnbGFeE 5wCyz61AS2gXppoxlTMumdaEV0wcJXTRKrCuSeiOO6v1VS5PnrSu8eLOIjejIucs9xzyAnIl AdCHgSpJgEWUqwmeDwc5hSqoITEIO5GGbLtsjl21DX6+AaCluCk80F8ndyxnLcJZ69jKWYvI rEX1289RHenkbEXRcpsYVqN1fraLhQUwYRlrfMyiFPFEOy0P1SsaeqBBfPXvsL+JS0ph/xa5 ViNrNM2WjEzJNCZsgcGVJOSekS1i5+dCC/cedi1CA50ADyzVWsDn0ikOmh9HlfJSjSIy1Tbp v6JvyEsu3qSNRTmw8GdDDE7DBPZlmG48Cn5KUfA6/3k6C67DMaU/9CY0W4XgyAtvl9v24uz7 uDb8SvHg+Ik8SDIYneIaoq2sKzZRGE9X93rWiruh/NpmrfQ78f8m/Ul8/vwB0Duhryt9denM 3zwLNgZ5sfQq44t/LKsQf93OqBOowKMSI8KqiOQimGL3tEm0R0JMF5zqvUfIn2qr7lARagjP HhNGodQw+SUQCrvlOx5YlT6vw/dH9Km1/+ib6HD+Q2e9jFUWDc7PvDxSmA/dvwV343Pe18vV kAYNuXIHdgT6j4mKFThr+LGt439FIpldXIhSEa4qXAjnjbI5WrpwyqxMlkanh62iwfZZapRu BsjNsqP+ftAj7we9fD/o6eOKtxctY3w/6N3J94MY7Zp+9hUTwdNZUHaxokf4jksnCXYSR1WS ncR3s5MkOdnDmKTjZK/Lyb4VbEpi9zM2RdgDbJpysAddk4dckyR/BwAA//8DANj/aS92DQAA</item> <item item-id="198">iVBORw0KGgoAAAANSUhEUgAAAD8AAAEACAYAAAAEBK4TAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAaiSURBVHhe7V3tkesgDExdKSj1pJo0 k2J8wV8xDgbZXs6S2Jt5P94c4VitBGID6NY1/HNrGHtH8Ev23+93M86wYP7dPe+37v4k+CbY H5kfWL/dxn+PV0vgA1a6PWM+5/OvxyI8pjAxGi6c7QemZTFP5p2sBVF6+37eh+WuvaXOCZ07 YHBjs8NYrpqSeVd07gBD5ncYy1VTMh/onPfy682Kwv+j3G9mPoC38IMcJ8FPbk/mlVvAqdu/ usc0ud6fH3Uh/eMQ/CCkTDvpfmu9sa12CD6w/uhmwfz97O7L/y+cwB/4ADZy9WCMe5f68sgf +NejuzULvmnmP9HebsyvZPPGZvswnTe7zsvTSn+zvRx7v/VG/XBXx10d0J1Qbpnqp5rbW5Gy UMZlzDPmW495VCzV7KfahHd80LLUNJvC9gLG97DT1vkIZeClElSu3Uq86A1hQsyQbkcz7YKY saI6HHxKsa+LeakQIW3Xx54VGUsqQUnbFY7EOWZ+mDhzx951gRdLUIW5YZztS6fglIGPT25u S1CZdkLg6EwUlNtvrPM/Xz6k282HH1dnAfTP9sczo0OfVOb2hzAc/hDBHzZd/EFQzINGI+iG zAuMJGlC5qf1kxqexF8ubMOYBxmfMY/OmUHEJLtR6PYADW+GGstdawsoA4/Q8L4Qp02OEQET oOFN2Hup69E9FmfydDMv1eaK7YIHBcXWkttLtblCu+Dug3xlCXyR0dFxc+2i31kCD9DwtpSc lJCpcrafBnpIw4tmNVPMT18yjN+zLY+RCjW8eEY3B75mTrdSX4BfpTO3Z24PdKeaQaBstq8J 9bdvggfZO5rwqOGBrFqrG7o9yLJc57nOn1rnERre8k2+9DE0NEkAt8doeNHRsx/h4xvkyiY8 hIa36iMzoekCD1RynvNbe1bcHqHhrQ8k/RhUq9sDmf/embdyAhOg4fXHTW1eJAacw/t4dTTb m3H7PhzPncMbInrRx8bDAQrXeVCiLexG11InHDSqGcGDLAlIb0EjEXZD5oWGKjUj89MSQg2v 5CsX/54xDyKAMY9OG0HEJLtR6PYADS+6S7t4JGxlAmXgERpevH/vT3dsvImnDDxAw0sKImn2 dYFHKDmru7N2mEdoeDlNQHXMI5hf35cPBrXxEiIg5qXe8/ECXTEvfs6tdJd2odXbYR6k4fWA pzczrHxpUTOdS/StzO3/Fz3Bg+zNXR13dadOZoD8UNBNtZinhiew/pVNqjF/JSjp3yZ4qaUK 7bjU1V3qpPreSFPmYX/0OCszL9X3RuDz5saMgJkLLOlefziWcgsPAL62SzrYYl6q8izt58bt dyg0M3434JtmXnxGb+H3bpgX63suwe/R99yt86A8dNENc3uQTStneKBRkvnBAnR7kEPR7Sd3 ooYHcqla3TDmQZZlzKOXEBAxyW4Uuj1Ap/Nd0yKn07mvaZHR6dzXtNih0/mraSEGHx9cWs96 uiY8qE7ntqZFQaoSlnbQxTxCpxMCR+cjoAxPepc2rdOxpoUwLVTm9sJRg5oRPMqQUz9Ii4LG ZmVjUxNu3DeSJNBs7wA8Nbz/I/HQX6LbHzLb74cY8+icGUSMlaUOoOHNUE29dY09a+e0poXg rJ3bmhZFGctzTYsCeN81LXLg/de02NbwGqhpURAwbS51YdTnNLw4mzG1ztfM5xL5OPAKHHN7 5vZAd6oZCNzPg6zLmJ9inhoeyKVqdcOYB1mWMc91/tQ6j9DwXNe0GAN1476s85oWOQ3Pe00L gZLjt6ZFCfxnzplLMJt53B9xDm9HH8qSHPkd+a9Stb4j776mRV7Da6CmxWiA5E1p1rQoZu3K Yr44XmgDggeZk7s67upO7epAfijoplrMU8MTWP/KJtWYvxKU9G8TvNRShXZc6s4vdQANz3dN i5yG576mRUbDc1/TIidjua9pkQUffimbN3QtdTv0t00Zy39Ni4yMtePFRF3Mw+7Suq9pkdHw WNOinLcqc/vygJEtCB5kTW5szm9sQFQIuqHbC4wkaRK5PTU8ickubEO3Bxmfsz1n+2rf2Mj2 6Z3N9/ByASi9Z2v2PbwceOF5HbPv4WWJ/xw8iioLrxje/Ox2OztL3Q6F5msHS+/hQZk39x4e IOZDF8Jn4ey4vVTfEwJH5yP/kOGV79nyPTxhvm7I7YWIdjQj+B3GyjX9h5gHjXTshsyD7Enm p/XTgoYHIr3vZmYe2amVvgjeClPocZJ5tEWt9EfmrTCFHieZR1vUSn9k3gpT6HGSebRFrfTX NPN/PXxUsRwFmaUAAAAASUVORK5CYII=</item> <item item-id="199" content-encoding="gzip">H4sIAAAAAAAA/+wXXUtUQfTcux/eXXfdDzcrP/JrtdLUHLXyI7u6CgWloGGP4celbqyuHzdI ell66sGCCHo2iAh6CnroJeiLIAq1t6Ae6gcEPURUoNuZOde7d5cwrSBCz3Jm7pw5X3PO7MwZ HwBIiIOIXvEtY+s0pjWtCDgwRGV8tH/knDZqCAoMIHagkOpg7u8ASSe7+wRHLlaAXdLN5h5j l8P8quBWzLGHOZeRS/Gy8AL2nlwmBwDG0KjTMQz10ATgY1cnkdULfjF3ywcgS8JoHvM+xRlP QEwYeXxCagQIivF9awwQIi+UMDkVymeAHGoYpyLkbngbE95HAArEaj2xocHeqWOGNi4Jj9Es uO0EP+J2wapoUwPaGT0x4RITzVx6LDFKNKegtVpRdM+cnexOXKCgHUfMQcKAFcYTiGVoYKYK 4BT2F6sB2rBPVtF8vp9SI4O8Q3yELUtdhjGtj5w3NPKvDTEAdtjZVpExLlzNRhFlo7CYslFU Qtko3kXZKLFlo5SyUQJllI1SKxvllI3iCspG+Wr0Kykb5elsRNmNZ8hZVEVZiCKpWnwmoxn+ 7RYB82EiYonxkQQPPU0EediQnKbwhXbgrqnAtV/DUKE1eIeYSnFuZO2Pa7G4rk0YQga5Ks09 brYou7QYen/zXuEHyIJOcMBKygNuG02ypMkd2RyvpLhFgtQW/FewjLhiwy3YXDAACfwZUAa9 MIH9NMxmHwVrQgG4rP88PwsuQYtUEXobup4E/9BzV6Gdd77hY1Tpeyk58PuReZDE0Dq3q4l2 ZkO2OYTxgLWvZ71yl6Vf86wXfsf+34Q/sU/XKgDPCb+1+W3Oz/yts2BzgAtLOh2T/7CA9oM3 Y2dkDHKBSowIkSImjoEudk/AlHaYIrpNnNeRDxA/p366Q4WpLjx7dBiGeNbkV18obA2Cabr6 7ZX/KCzIb+QF+Q6eM182oPsT6lSCWbrXgA7enJx70Ti6FLp9Beaji67Xq9WQAlmxshu2Bvw/ JiphoKjhZZuB/wpEtvZQIcr9kiUqsAe1aX04frpHn5mMD8/2JcY04u/njbSXBEJEqzHfM7VU Qdfsowq61lZB11EFXQv1VEHXWRV0A1XQNfupgm5YrZgbqYJuSFfQzHzPNNF7hjVTJY3aoYXe M00H6D3Twu+lg+Rji1iU2g/SISIw4XOrqaSNlPCnSjspae0gJe1cyWGSabeUdNqUHEnLqqop rHaRtKpycbWb2PnIVKDGMhh67Ayc8gMAAP//AwC6IVZahw4AAA==</item> <item item-id="200">iVBORw0KGgoAAAANSUhEUgAAADcAAAEICAYAAAD7gGyKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAWKSURBVHhe7V0JkuIwEMu7eBDv4TV8 hsd4cC5y2InkuId00FRt1Q7bNi2p3XZEyDbhwj/NhbEFgauh7uv1qjENNYeJcs97E+7PIY9X eNyacHsM4J7h3tzC+CuVLhdcHdzrcQvNB9k7myW4+NIj3G6P97/Y/szBxTdtmtBM/szy3M0l qnIPo2g9sHG+yWRR3Y+auxMXBUzAxcSm5RRCTKCZJbv9HmvVYnxCufjy8x4aY/W2yzImMAXX /j4oO1VoA0QO3Ftf67WXANcpuALRluwH0FqltfKdzhnl+te5sueqc1WWEdS4FpbKTedegH3X WUaJbXCW6+4DLrUGNsD5Um4JZOyciz0p9/pO+a0V+uc113XHacPIraO23a3KMN0t47b23vvi vNMFttUtVyVPrLXJ2EOb+PwkkgacSyu/zw0NbdmNEYDzsTi4FdPpssqpN0stc0IZFL7d77PO jMBKjcXBtaemvrza0s2dD7vumG/x+bX2ej67I1lBWabGUuAQBqvEFIAb37fWmqsCJDWJwGWo lXJmNQdM/Jtl2e9jW6ft05fljrjPB3YVf86tIAtubw+dD3QGDlivkxCB4/g6T7SUO48WXCaj clOv8lt/51Lfj56B2w+3i4iE1v4RuNqMpuaTciTL5mU5tybynz24VG7tkKXpdwguHnSxDxod glt+qJJ3xfyBay8cp8rllTw9uJkdn7lazq3B04NDOvV1wK0s+FiW6c8AXCqHWfCh/RSo9o/5 Jo4mLHAoU32clCMJKwpXWZK0yWYgCSsKV1mStKlbkoQVhbssS9kMb60dKieboV2j/pSTzdA1 V3/KJTYF2QxFO+V6kPkJRTbDVdZcruIu0VAEzktDQfNUWaJMpay9b92iMbwvmftuuPk+t5vB wLLsdJSq/rw6hFssaCYVi/dXWTIKLGPlofg8W8pDcXolLg9FHkpRw7bd53SrxoXKUlfiRSvs C9YemqcOzihTqStxcmzVcClH0qn7UEjCisJVliRttscvIhkpR5AVQ82Vk4ciD4WsSfuy1Ndd fBhE+rrL7NmXn3Xkb5+ThyIPhd8H7LcCPCd/aw7Hdo279mTtEYpvhZpfFaB5mq853YeCSkHG mStH5lM1XOBIOn+noZDEQOHyUOShQIUyCzJec/JQ5KHwRfkPjvMyKX2Xp0SmxBjjhoI+tfsi XzHTxaqXskTz1FUBylQfZ95Q0HykHMpUSjl5KCR7aLjKEmVKDYVk6ki4y7KUhyIPhS964xOK PBR5KHxRykMp4awfo/tQOiJcbuKo7gKHMqWDM8nUkXCVJcme8fELz8ZcOXkouBhUpLlyVDaV gwWOJPR3GgpJDBQuD8XnwVnPQ3F6yaPnoVzoYlX3oUCbzH6Q+SauZ8r63Of2S2eI0MEZ56rb Oy2ZY3KRcgxbP6WcPBSyNNBwrTmUKdnpJFNHwl2WpTwUn2dLeSjyUEqaVdWDs56HouehlBTh ekzVskylJA/F5z6Hl5fL4xcKT+BQpnTJQzJ1JNy8LOWhHJFnY6y5ckZ5Q9MKHETTJ8j8+IXm 41I5eSg+z5byUOShoI1pGle1W8pDkYdSUoTyUOqwxs7i8oSCghQ4lCnZDCRTR8JVliR7+n95 SMKKwlWWJG1VD87ke8/CpRzJnrly8lDkoZA1GQkbhlgs6BD0PBQfBpE8FHkofPNIjTBuKHqm rI+GcqSYLLYi87JEAQscypQMIpKpI+HmZan7UI7IszHWXDmjvKFpBQ6i6ROkfY4kbBYuD0Ue Cl8/xmtOHoqPSx55KPJQ+OYhD6UOZ/wsOluSnBnvc3g2Ug7nqts7bT/lwbORcjhXa+W+6aGQ eUPhY1lC0c6CBM6ZYGO6Uk7KnZABleUJRYFSknIQTScMknInFAVKScpBNJ0w6A/W2TcrCuMJ twAAAABJRU5ErkJggg==</item> <item item-id="201" content-encoding="gzip">H4sIAAAAAAAA/+wXS0xTQXBef7SlBVoraAH5FVQQkIWqfMQHhYOJ0qQYrqbAiz5TKJ9nIvHS cPKAJsbEgydNjBdPJiZ6MfEXE2MieOKgB71xIhyMISZQZ3deX1+JH1ATY2CaebszO7/d2e7O egBAQhxEdIu+Bb82bUpRSoEDQ3SOjUSHLygjmuBADLELlWQrc3wFSNnY/edI2VkxNikHm3uG TR7zykLaqdMuZltDKaeb+d9i68pnlkKAUXRqs8ahCVoBPOzaBIq6wSvG7noALJJwWsDcL3DE VSgGtAI+IGFoRYJ+SHQLl/RRFE4/BeXbxQAlZD8OBShc/24mog8AFIvZuiJDg/2TJzVlTBIR o1twmBlexBIh6lQmY8o5NTluFwNtXHs0OUI8m+C1G6vomD4/0Zu8RIt2CjEPGTFjGU8jptDB dC3AI2wv1wHcwjZVS+MBL6XGApY9ouM3PPVo2pQ6fFFTKL4OxEIww96O6hw6mMlGKWUjWEbZ KC2nbJTto2yUm7JRQdkoh0rKRoWRjSrKRlk1ZaMqk40aykZVNhshdvMlSpbWUhZCyKoT3VQo J779YsE8mIhIcmw4yZeeBor4siE7y+ET7cJdM4tzv45Lhd7gA2I6zaVRNJpQIglVGdeEDkrV 6Htc/6Luwrzv450HwU+wAbrBCutpFzhMPMnQpnAsOr2e5h4J0jvwX8Ea4roJd2B7QQyS+NOg EvphHNspmNl4FPwUisFu/Of5WTALYana9953IwXeoVf2YI5wcDnkHHgjWbH7VD9IIuid+1XE d3pLvjn48YA1z2ezelekX8tsFn7H/9+EP/FP1yoAzwm/tfltzs/8nbNge4AdSzoVk/+kmPaD O2dn5BD5QCVGgFgBHUdBFbunUNe26iqqSZ3XkY8RP6e/u0OFqx48e1SIQ2LD4KrH5zfTVT/4 537Zgu0VtOksyrW9urJcwtulRWozsLSIVRbvnJl73TKy4Lt3FW6H5u3vMtWQEzasldmxQfD/ mKiEgVYNL9sc/FcgsnWAClEel0WiAntQmVLjibN96vREIj4zkBxVSD7KP9JBUvARr15/zzRQ BV1/iCroBlMF3UgVdAM0UQXdaFTQzVRB1x+mCro5U0G3UAXdnK2gmf6eaaX3DGujShqtQ5je M61H6D0T5vfSUYoxLCYlR0E6RgwmYm7XjXSQEf5U6SQj7V1kpJMbOU46nYaRbpORE1ldWdaV 5R7SlmWuLveSOKd0A3IkR6DPLMA53wAAAP//AwBbNvZBhw4AAA==</item> <item item-id="202">iVBORw0KGgoAAAANSUhEUgAAADcAAAEICAYAAAD7gGyKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAWISURBVHhe7V0LcusgEPO5fKCcJ6fJ ZXIY1/gLBuwVZlPA6kxnXvMWG0m7LChu0w0Nf3UNYxsILoe63+83x2Wga6go93l1w+uzzuM7 vPtu6N8ruM/w6vph+xGaLhacHdz33Q/djmyczRGceek99P17/B/dLxecuWnXDZ317czzci5G ldewibYA265nXcyou6t5eeGkAAucmZidTsNgJtA5kz2/h6+aiQ8oZ17+vIZOWb3ztDQTsMFN P6/K2gqdgIiBG/XVrr0AuFlBD8SUsjsgXyVf+VnniHLL61jaY9nppaUBtdXCUTn72gewY55F lDgHp1l3O7hQDZyAq0u5I5Bt5Tz0pNjrF+nnK/TjmptXR3vBiNXRtNx5aRheLU1bG3ufua5d YKFMObSipHq0yuVWE3d3ImHAsSXA73MHIqdMQncy62I4L3xycB7T4bSKqeeADO1QvOvPC5FU vTU7+tdrW9Xl4KZd05JeU+rGWL2alLTWzkrCz4fv5zNv53KlJdZ1sOiJyJQdTOng5gw57oCE 5JQMbgaGLiQW8FLB3VJsxVckuGlSNxQrGZy7gdg3E24rWPrYWX8oUjnhejFtFd6yUzzU54D7 K4Ve9VD3tpWBwzgjOIyvcqKpXDlaYDPZlLO9yv/6Nzb162gH3HW4XoQhNPcXweVmNHQ9Kgey rJ6WrjURf++hSuV8hyxMf4XgzEZXdkarENzxTZW4VVcfOO90HVeyPnCB8orVIMEV1QqCFnnY j6xSOZkFP75pwb0llpfqOxTpdKiclKkljsqBhCWFq6flf9kL632TWDkZxLTMzShP4hkYZVre IZE2w8ieeiu4o1B4LG2GiZf6lKPNMCd0fco17aHQZmgoLWPtpomaI7hMuwlunDMReXoZ1hzI Mh/VAAlLCmdagrRxtQQJSwqvMi3podR5nqOHUulJnB5KQ4fVdp5DoYfSUFrSZkjawPmDuHHO RCRthpxEPict+RxKzryxrlXlYVXKBcFJmVrinrOggMSIwumh0EMRJYoTpFxz/HWXSg2iQCa1 YzM0DY4eCj0UvA+Y3rmO0ti4IjPSuD/BIQqkxlI5kLnnpCU9FDA1pOGsOSlTtBlApu6EV5mW 9FDooeBJr9zE6aHQQ8GT8h/Oc+0YRPRQ6KGklBw9lCTW0EFV7i2lIAlOytTjznP0UMDUkIaz 5qRMPa7mQGKyhleZlvRQ6KHgVUAPBedsGcHf5WnosEoPJbkO3IHKC4r0k88a+TM9MVGq3KFI M4zgpEzxVAAydSecaQmyx7+HAhKWFM60BGlT36FI50PlpEz9qs/RQ6GHAuakIWwdolHQ82eO 259Rzo+uwSWKjFBWzr9rOzZDgNF2wPE5lIasPXoomdbLn6+WVI7KXTPwnLTkcyjX2ZAUobFx f05aJlGeaRCVA4lUT0t6KPRQwJykh4ITto/gcygNHVbpodwpBWvsj/tc/IPTuUMBFVVXTjof Kidl6lfvz0nnQ+WkTD1OOXooYGpIw1lzUqYeV3MgMVnDq0xLeij0UPAqUN448zmUSZIqF5Rj MrVjMwTKpB1wfA6lIWsvtqA3saAQHN6vgyOUm7h8lkxLOVfzxmCN12AOmYvG/fm7PIgCqbHq yqVOLMc4ggNZfM6CAhIjCqeHUudhlZ9tXKnNwOdQGjqs0kMRNZnrIPUm7vY5PodyLYkwQl05 4TzacJxpEEnlvohjWmYi8vQy6odVPoeiJKO6ckrzFl2W4EQ07UFcLUHCnHB6KPRQ8PxRrjk+ h1KpQRTIpHZshqbB8TmUhqw9nsTxlhYcodzn5LPkqUDO1dw713gN5pC5aNz/OeD+00NBVJbG bspJB9QUR3A1qWXPlcpRuQIZYFoWKIpoSlRORFOBQVSuQFFEU6JyIpoKDPoDFZ6JA7Ltml0A AAAASUVORK5CYII=</item> <item item-id="203" content-encoding="gzip">H4sIAAAAAAAA/+wXS0wTQfRtf7SlBVr5aAH5FVQQkIGqfISFwsFEwYDhaqBsdE2h0K6JxEvj yQOaGBPPmhgvnkw8eDHxFxNjInhWE70ZD8jBGGIC9c287XbbEAU1MQZe83Zm3n/mTWfeeABA QhxDdIu+Bb82La4o5cCBITqnIyOT55WIJigwitiDSrKVOb4DJG3s3lMc2VkpNkkHW3iCTR7z ykLaqY9dzLaGUk4387/G1pXPLIUAU+jUZp2AFmgH8LBrsyjqBq/g3fEAWCThtIC5nyHHVSgY WgFnSKhRJMYPaNzGJX0UhdNPQfl2MUAJ2Y+sYgrXX8JE9MUApWK2rvD42NDccU2ZlkTE6BYc ZoIXsUyIOpW5UeWsGpuxC0YH156KRYhmE7ROYxUdiXOzA7GLtGgnEPOQMGos40nET+ggUQ9Q hfKXGnAW2CbriV/ipdRYwLJbdPyGp35Ni6uTFzSF4utCLAQz7OmqzRoH0tkop2wEKigb5ZWU jYq9lI1KUzaqKBuVUE3ZqDKyUUPZqKilbNSks1FH2ajJZCPIbj5HyfJ6ykIQSQ2imwxmxbdP LJgHExGOTU/G+NITo4gvG5IzFD7RHtw1n3Hu13Gp0Bu8Q0yluDSKjkSVcFRVZjShg1J1+h7X v6i7tOj7cPt+4CPkQC9YYT3lAoeJJhnaFI5FH6+nuEeC1A78V7CGuG7CHdheMAox/GlQDUMw g20c5nOPgp9CKdiN/zw/Cy5DSKr1vfXdSIJ3/IU9YJY99X456Bx+JVmx/1g/SMLonftVxDex Jd8c/HjAmuezWb0r0q9lNgu/4/9vwp/4p2sVgOeE39r8Nudn/s5ZsD3AjiWdisl/VEr7wZ21 M7IG+UAlRjGRinWcAlXsnkJd26qrqCZ1Xkc+RPya2nCHClf9ePaoMAHRHOaqx+fPIjhgQ/i2 BdsraNNZlG17te9LmeCllsvMBlbQag/vnF542RZZ8t29CreCi/Y36WrICTlrZXZsDPh/zKIH z1cNL9ss/FcgsrWfClEel0WiAntMiasT0TODamI2OjE/HJtSSH6Ef6QDpOAjWqP+nmmiCrrx IFXQTaYKupkq6CZooQq62aigW6mCbjxEFXRruoJuowq6NVNBM/09007vGdZBlTTKQojeM+2H 6T0T4vfSEYoxJCYlj4B0lAhMxNypG+kiI/yp0k1GOnvISDc3cox0ug0jvSYjfRldWdaV5X7S lmWuLg+QOB/pBuRwlsCgWYBTfgAAAP//AwAs8rZlhw4AAA==</item> <item item-id="204">iVBORw0KGgoAAAANSUhEUgAAADcAAAEICAYAAAD7gGyKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAWVSURBVHhe7V2LlaMwEKMuCqKeVEMz KYbFEMCADRLxZLHRvnfv3ebGMCNp/NGyR9UV/FUVXFun4lKw+36/U1yGuoYJc21TdU075fHu XnXV1a+puLZrqrqbv6XS5YKTF/d+1V21VNZnsy3OffTq6vrV/4vt17o4d9Oq6irvzyrP01wc K003k/YpbL6edzHH7sLm6YUvBXjFucR8OXWdS6BaJXt8jz1rLj7AnPu4bbrKmL1jWboE/OKG 7ydmfYYOiogV1/Nr3XuB4kYGd0UMkl0K2rO0Z37kOcLc53NO9pw6d7J0Rc29sGXOv/am2F5n ESaOi7Psu6W4UA8cFJcXc9tC5plzsybFPj+R356hH/fcODv6E0asj4bpbifD8GzplrV+7XPX 9RssqpTp/hcXeq9dvlrE1zuRcMGxKWC3zg1JeQUd9Xt0Xpkmw3Hiw4vbIR2WVYy9VT7QDoWT 7aSOumnmWR0vbtg1feQ1SDcmm3F2jE/xWNLDvYhF/t2243YulSy5VQeMjk5YzHhWluC1k4Vd 6rm7Mzejg8l3B+atZVlkcaFNBDGhzJjclbn1bLw9dUzr6GYzsNXlXYtDJ6P2hZ3iqXUOvbld 3Nkaur5zZsVxsKk4Dq/7RIu5+3DBZTIz53uV//V3LvXz6FVx5+F2EQ7Q1F8qLjWioeuJORJl c1muN8Pxnz1kydzeIQvDn2FxbqOL+Y8ZFrf9oUrcFcuvuK3ROljuYSbzKy7QXrEeVHG3Wgp2 FryTZcgb6X39HLdfmAWfaXGokrJkTsX1CIg5VAafOPONM5qPOXP/ZS9M90WBQOOewxyKiEWc uSwtkkavqeJQpH41W8pmyHMRl80wdEh+E4pshnFqy4+5oj0U2QwFyTK2ySii51QcuYeMAjb9 g4UsmBwt7q/DKsPA1Vhz5uShXKXmZJw5c0Z5Q5dVcRBMS5BmSxKwVbg8lDzPc/JQMj2Jy0Mp 6LBaznMo8lAKkqVshm+2RN5Y7S0TAXl4GR15SJSfI0t5KKQ00HD1HIrUJ+45PUcCkzQ8S1nK Q5GHwneB8YSiX3fJ1CAKKKkcm6Ho4uShyEPh1wG3dk6jLLY/TEYW91dxDANXY8UcidxzZCkP hZQGGq6eQ5GSh0Ii9U14lrKUhyIPhRe98SIuD0UeCi/KfzjPlWMQyUORh3Kl5eShXEKNHZTl 3hItUsWhSD3uPCcPhZQGGq6eQ5F6XM+RwCQNz1KW8lDkofBdIA+Fx+wzQr/LU9BhVR7K5T5Y DzSeUNA3nxXy3/TESMlyh4IqTMWhSOlUQCL1TbhkSaKnV9eQgF0KlyxJ2Mx3KGg+Yg5F6lfr nDwUeSikJh1g0xCLhh7fOe6/o1yvruEpiowwZm5/13JshgCi5RSn51AKsvbkoSSaL38+W4o5 MXeOwHNkqedQztVwKcJi4/4cWV6CPNEgMUcCaS5LeSjyUEhNykPhAVtG6DmUgg6r8lC+aQVv 7I/XufiL07VDIRk1Zw7NR8yhSP3q53NoPmIORepxzMlDIaWBhqvnUKQe13MkMEnDs5SlPBR5 KHwXGG+c9RzKQEmWE8pWTOXYDIE2Kac4PYdSkLUXm9CLmFBUHL9eB0cYL+J4lpIljtW4MZji LZBjcrG4v36Xh2Hgaqw5c1cTSzFOxZEoPmdCIYGBwuWh5HlY1buNM7UZ9BxKQYdVeSjQInMe ZL6Ir9c5PYdyTgkYYc4cmEcZjrMMIpTukzjJMhGQh5cxP6zqORQjGs2ZM8obuqyKg2BagjRb koCtwuWhyEPh9WPcc3oOJVODKKCkcmyGoovTcygFWXs6ifNLWnCE8TqHZ6lTAY7VuHZO8RbI MblY3P85xf2nh8KwjMbOzKEDcopTcTmx5ecq5sTcDRGQLG9ICpSSmINgumGQmLshKVBKYg6C 6YZBf92/kYSG17p9AAAAAElFTkSuQmCC</item> <item item-id="205">iVBORw0KGgoAAAANSUhEUgAAAGQAAABCCAYAAAChF3N/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPxSURBVHhe7VztdaMwEKSB9JEa6MJN 0Md1QDX+5U5cjA4JSEAS0uxKWvOizXv3IzmZXc/sF2jQYPTnVggMt/JG2pnnZIZhMs8qdt9m Hgczzu+iq3VKyAreMNWh4sjAex6LSO6QEEvGaAoDOZMFTzMxM687Qp7TYNiJ8Z7NOCyZdfw3 ziZapOzaq/9L0NkXIbZnsNlYUCR+3pYvak/piBBbqsoaOD276KWrH0JsCSnJjqUw2d4z2mFg L1lASbJZQjHbDSFUYMIyb6PdG2uRPkEMhE4IKS9X8T68kpTOAJrtTghZgMuUF9sfTtPTcZK6 RHy9n8mVpOeEj9l9EEIsG9FsiN7V2wzJg00pl0oI/KAjkg2WpMqNvRtCpiq35mvPoExZlm/N ED/ql5JVhxA4nU4LlRAlhBc5Yp/SDBGDGjP0epjvxwtb22DV6/Flvv9hF9amjuFUtEp7iPaQ ogBq/2HtIe0xJllQQkhwtV+shLTHmGRBCSHB1X6xEtIeY5IFJYQEV/vFSkh7jEkWeickVGds SsHt0fVZGoNt8pAIqHVjSNFhJRz86J26k1Ke9jR92SZTLFDCCDdDiDqsKxf5hEQiIrdffHYi okNy1/S2OSM7bTarqKIymCMmIXQdVtwjJiGhgmLd+MfFZWF2LA7GtjkdSd51we1QmITjQhYh PB1WzD8mIZFL+Rv77vd9C9MnKi7HdyT5+86xrFleCkAEA3KE1CuthYR4+8Z7JHtRHWZDXKOE E5KX1PCkOguFrAyJUY/osMLPMQn5JeKnlqdeaAnKzkWEoyXLSTUb9ZFqhOSDpl7JigGXIATN EBudWL/If1nRDCnQYYVTN67v/d0x9B34mbi8Cenq75cRDoy97hvcrYfwdVh1CHED0VFOaZt2 qmaGAEanLOdd6sZwc/92U9YeJHQdVjVCqBNMOKfzo/yO9yFUPOrfGKY8CCI4Dv51liSfLbBe /4IBq9bUYYunhcwpK29sfcN0T+ErkXG+OZ8t8bMq7/G24q8SAgNwt4VKyM0YUUKUkCMCzXrI zWDG3dEMwbESWamEiMCMG1FCcKxEViohIjDjRvR1BBwrkZWaISIw40aUEBwrkZVKiAjMuBEu IX9Bl4WjJLjSAkvTM63OfVyXJYiRqCkmIR/WZYlCJGwsf/hM6FA9XZYePhOgSzsiaatXvPOx Cm338Vr0AhLliet1+jJ0WcRy2Q0hTo7Eaewndqi7ofRA6IcQp3zBdcpuwgp0zdTtZqLNhfyO CKGOseW6LD0mFpjdaKMs73ws54YtkcDhZr7LfWXIipQeNQ4ErvCSlqTQD08+fvkOM2T/+ru8 ldDok2FT53odEyKclKC5/+4PXrJ11YqCAAAAAElFTkSuQmCC</item> <item item-id="206">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAdCAYAAAAghRfBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAN5SURBVHhe7VoLcoQgDPVcHojzeBov 42EoH5EkBAOrW90hnelMt4KEl5eXTztZ/VIEXojA9EKb1CRFwCoxlQSvRECJ+Uq3qFFKTOXA 8whsi52nyU77t1mtpvLnvTK6Bas1jpCejOFrNY6gsxJzdFo8fn9PxHmx22HIZpfZqefjhqkB igBCICqoElNp8SoEtsWlcaegSsxXuWVsYwIpJ2N9uanEHJsLX7r9XieCTjt13NPR5eCjIyln u+zFphLzS67R17YjAJUy7RqHmGFWliOShw1H+pzCl3aMSQmK6N8L90MpYlrK2/G8LqgI6kjJ fun98HkYs+RZIPy5IlLtzHE9s++Uy/dIeDUcUfHLIMRMAJ4Rc1+TB2qhO4TkXI1z/PE8rs/P I6ng+kIJPHmqLKHnt30ugyeTIdiLiN9AlGJJJh82Xcar5bRgIxdQaXPqhmKKp4e2HPHeNf5u szHnislFLpyxMc8RZkGxiEI6vTRApb0Tqrzk9qMzySDae8nXZbUXsvb0+SgGlie3sYYqpoRX 31HFaqCY4OL+0MuRdmZZqS4X71Hfnu4ipfJi0Bs878hMyXaEMlFMxgR0pg92FyB+eJwUAmCM hSG9C5KRV1BeMamaf4butix7KcKk8m68+mzAqXxPNSiya845c9qpQ/sMvLY6kiGUigIxWWKw e0BddRq8DakOCkBVMbHKwtTXpb6XgCyJ2Y7XZweTGpNJ4RzJjkKbUZOzZ4yN1RrDq8rFqj2k 8NTA3EZMcIlqumwthaAi7o0PuHPCJv6qzDK45u1Q8m6uPE7M1BUmwsEuMf4uguVUaC3T3Nmz biyEDSKhaTlyeyrPtTiKn/0/Zc6aknw16nDclZsVPK+mTtLQSfc8+BsnBG2x/3AqTwpTKg2j jDelcpFgHzL6KNyZjo91Ri0zpHRdbW7K/4wppkxB8OTmqLgqtKmVmNy6DzGsB1Cl/r7x7JzK kWNAN/nTNSbwiKgkUk0oqEbj+1FQnHb98jiKGwfx6f0qM7k5poTXtTMPYtILHZ+/Qsx/7MpR 6sJpz98Rp1xpYEz+1Ea7anHATQbotHkiQ/KyHBD276VWWxnRQ5wvDtgrZsgD9q8QswcUXTsi AkrMEb3+A3eWiZn+CkQHzTc1Pz+AkZr4AAINxHzAKj1yeASUmMNT4J0AKDHf6ZfhrVJiDk+B dwLwB5VC7tZBbc5XAAAAAElFTkSuQmCC</item> <item item-id="207">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAdCAYAAAAghRfBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOoSURBVHhe7VuLdaswDGUuBmIepsky GcbFPyzJki2TpIGgnNPz2mJb19LVl77J2cc0cEINTCfEZJBMA86IaSQ4pQaMmKc0i4EyYhoH vq+B5+rmaXJT+loezlL5961ydwQPt2yE9GQMn8eyEXQ2Yt6dFl+/vyfivLrnDuTp1nmLnl8H ZgBMA0gDMYIaMY0Wp9LAc93S+BZBjZinMsu9wQRSTovz5aYR895c+NDtU50IOu3ccU97l4NF R1LObk3FphHzQ6axY/UagJEy7/pdYoaxQ5mNwe8Fp/Wzilh4718xrZQPiQTMQY8F7i8RIM1C 8PlwvwYvmfcFnKij7eHXk4XEs9Ap19fF+phzuBsRE+5E9XSzVB5IgwwJNRiNCpVLPTns360T jQLX++fIOIFsmdzJiI391J4VXn+e6FV9/CN84ZwRi6b3qeVr5GFHBk6dN+duKKZ4KlQj4uRr EEkYrOxzr+zkzYxnI50Jnl8kkUGy17KvqySiMXi8EWVeQifIUgH+A+aJjumdeXELjZjcfauZ 5AGhaQtI5UBxXqgYWY4Lo0Y6FPoPia+jm+qYJtnImV2jjERMDq//3bzZBUSVno26ztLWwnNd UykT8SCn4O4b5NHyR6XpahGuMVOqQJ5JhTHvNfdTW8+O4XvPrl60ZKVIWQPUVYAYOXo+cpQJ dWptJJi6xqMfKRWaAeSdWa8mJs6wSYEvOgI0A2l+mMsgYpLUgIC0nsn8EmsMb1i5Sxkg7JFo qTQqIHxOe3KNWddguGbdi6qqdm1oD79nLhEivtZ7i/5KaQeP+2di5q4uezrs8rbfMcX3Hl1b zwZopF2qJvSoF6eoryszSiRhDZVq9WBQMfWRjnQIL5NitfjTOh13v5zKvXK9QfK/gSTNuqFV XOsKbzXBtIyl67q1H9iQ/rKFnXqIzVGqvVg5wKBaYkp4e82Zv0YL/1H9RRLUNSbHixFdd/CU VC6lbJGYrRR5JH2+pDlxM58umeXdSNWLGsLzvc4UUjlpYGS8Hfld/K/ol5FdTW6OjYskVDsx qUL2n1litkBoAGrWvKLIsreaLaIAWZqJfTTCDOVLuiMD9qorpq/iaPNDBuBMV93CW70AoM3X 8AsFrY45YpZIml9I6Mofncz+mx+hK2drk6G6RQfQVt1TA2PEbBHPSHlPBn3o1n1i5lpiq5VW NKPD/0dDSoW6ru9Dt7NjL6sBBTEvezcDfmENGDEvbLxfhm7E/GXrXvhuRswLG++Xof8BScrg O/QfbpgAAAAASUVORK5CYII=</item> <item item-id="208">iVBORw0KGgoAAAANSUhEUgAAAJ4AAAAdCAYAAABbodUNAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAN0SURBVHhe7VqJsaMwDKUuCqIeqqGZ FOPgE0tI8hEIkOjP/NnZBVvy0/PTwQ5GfxSBCxAYLrCpJhUBo8RTElyCgBLvEtjVqBJPOXA+ AstkhmEIv6OZX0ZT7fmo/7mF12zGwZPN/TgSrr9/Dose/+sILGZaiajE+zrw/23wNa+kG2cl 3n/T4IundynX1nla430RdTWVENAaT8nQj8DLzGPsUtGf01LYVmu8ftx15QcI/ATx7CHyGzcZ 8b6lOiNbsxa6rtMHsyZ4i8lLjMcELhRQCcY0QyDiRK6P7/l9KLvLlPuWjSk+oEL0e2+v4Tyc /ZBaU1zsuZ/dXHjS5cF1HdM6I2LJZ0EopoINQRfkSEwAbAxIHvjwb2n/vX/bFtR6SDo7cMWu Wn8AmXFQu8i3kQvaazmPbNjHJV4YH580Toltrp/zYaNdJzp3EQm6l3FOaGzgqnknBNViNU4T HIxSCmb3IIhLrreoxwCNk5mw4okK2Qd1sz3mPD3Wszmev6EuMEEO47C5Z2N5jaQGH1grpq+V MHlRTKrZdvHIVBmxoSbyeD/3DlJgbr2DfQ5qTaTaA4OetLXVHnWeznDBAXJIRUAZsDFQCyFQ pWedDtYvK6k0QXbugrFqZ20ERUXEgxkjeL27CPx6eM498eL+C5G26jHi3uTtAfE5UHXRlwsi eDnxEAkdGDF3Sc8EZGCx3Nqao7qoOo/GdZnKJx89BpTauRQZ83gH8aT1VcRDNW387lkaYJSJ eTnxYpcYlSzvGomiXZLeA2VZBC50qmIHyW5ApDTuVmN1bE21pfXAx0oihFqc77pra9rK1H5g TIHixRu5v5l0pwgUDwVXepa/+pHiuZRYOVKobUaEhmDrzIhxCxWUbC/Y2ZXGNZVEkIhXlrns De4CEqUUWxc3Gcy+1QLgsu6QK5Cz727wssJvcm3uNLzdXG/UBdNdhJqUTdZv+dpCA1VshLBa Mf5L46NqOKm54XHjFMqNpHgY8PR3UV6l8UXpGV1H1WJVoyC7udfaM4KBM3F792sYj0jiNAxc m4m3ddt4JlaLGf8eN7BuOE+jE+X/FlXI69JsrGlu1ui4vv5sBNqIt6t/MlWTnj0bI/X+BATK xEvfH32hCVMcLOylZyf4rls+GIEK4j34dOr6bRFQ4t02NL/tmBLvt+N729Mp8W4bmt927A3E pIFhwb87lwAAAABJRU5ErkJggg==</item> <item item-id="209">iVBORw0KGgoAAAANSUhEUgAAAKcAAAAdCAYAAADPR3z/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOkSURBVHhe7VmJcYQwDKQuCqIeqqEZ iiH+H0m2hQ8nXKybyWTu/MnrZbUWyyUfQeClCCwvjUvCEgQuIaeQ4LUICDlfezQSmJBTOPAS BM5rX5drWezfup+S1l9yMtOHcWyKlOt+nRqJc7/WZRVyTs+KVwBwXJsioxLL7CNp/RWHM3kQ Rim36wAwCDkn58Urtn9sJqUfu0rlznNuiqlCzleczuRBaHK6S5BBwnwXzzk5K0ZuP799e0U0 /7Usph+nnNFyurEjw5O5BQEWAshzTkdOu2H40GLw9M0x1tvQU66KHbAeB2QgH08Y/dDflUzC LdWlt0xlEg/mx5myS4gR33Jb7SzCoE4l/Fp48FbTMevaZkzrKrXzhn57rwhgnZyuX+hkvwfQ PDFDuyVybIffdclOm3x8E1UtjuSYXHnGS+p/xo6l63l/FudvtfedZAk/iBfeP3+9nOTZhcg8 beDkDLBtqeGv/wc9LTn0AW/X1lROC2665QwDqHTevPvisVE+SES6hqfnXbfNFJthfS/ABOej 1k8xbbV34F/Fr4VHx3rpkKicCFhuGuyN4JOnjL/muasShenO2U9DOZFx19PSNbpi6jahqDGa 0FUyQdV2KukfBAoCKj4+VGTPKn49eNyIJ0nrQDVS0EsHUDuY1qHdCPKZrhxy2pVSz4ZUFJKD QbA8++g4nFrWxhIqbFQM1ANTpW61f4Yjxs+vl73YeVC9M8+ZpnaczkC6Cuad8FO1NgKh3MCn Zp8oO3QjzCEnVnOECZucUIVt4Cad+zxePEhCNd3YrB5on6RgJXwKjh44b++GrpB5fpWcMUWl B5neXi0RLZnU03/glFZr+wwcPPoeqRnkLKYpp3TcNGZIBy4uaTr3WymRs/A7SYbErrTaEYIu Tt61gsCPi0fnwYPbugtA+bTsXefgtH6PZJ075XjOFjkpHOAY93aDuuSEy0VaqiJKRUYNKW9J /p6QptXeC11BOUm//aDvRaWkAGButsgX89XLwFd6zkJaD0RplE7u+q1Cf6py4kwBrtVm3rSg brVaK5uwVOZ5spSEA8F1Tkrqhyjn79zW45bptI7qgsq4ZEV4pGDlojNbGRtpHceUHly+Pi5d tdrZbAQdxxbhqagK5ASXnCHk7AVJxs2CAJnWs9ueN/JUaviqUtIsR/p/9hnJ6dI5acTDqzam otYI/X+wk50MRmCSd+uDUZTphyAg5BwCq0z6BAJCzidQlDmGICDkHAKrTPoEAj9DsmUIM/jg OwAAAABJRU5ErkJggg==</item> <item item-id="210">iVBORw0KGgoAAAANSUhEUgAAAHIAAAAVCAYAAACaLLqfAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHMSURBVGhD7VhtsoMgDORcHIjzcBov 42Hy5EMlARJa+0N46Uxn2iZF2WU3iQb0tQQCZold6CZAiVzkECiRSuRbENjBWwPGpLf1u3Bj Uv6c8ckVmUF3WyZvA8eSKeXPG7+I3Nxxoi9AEi67t9Vvb9FhvkGwxgIS4ebAWA9NXe6ez584 fisyAGAcnGf7oDFaFuH2hzxK6hm4VIu0SEa5j2IdKX/ieGGtCdiLuBIQCk78ftclRDYXG+Dm k5ToGFR9LVXlRaX8meOoRpb2imwVERkIL+wMAcfF+hTF6xYHA31mLEECnl5Ryp85jpudi7DS VpNSE7iHZQX7IeAGIuJPXOwTqY3mSlZI15HyJ46TrjUT6Emd4erOUVWRQhF4XOxO/FaRRzdW 10Ox2SH1s8yX1ntxvBo/or0E9ZWq6xKZiG/PblxsVHJSnjQuVOaaZs7uuCKt9954PUfmZqVu YGgnyHWdIx3pSI5EZByS2AcCQe34oM058N9ItO+/QyQhrdO1NvuQ1kEY4UNzHiHQtNbKKqtR pDNfKomPyHjy55vIc/5rPhU55ezAnzWUjAtBnVd9bcSe3KT+V0Zg8met8gb/S4YSuQjTSqQS uQgCi2zjD4YHzA4ZuW26AAAAAElFTkSuQmCC</item> <item item-id="211">iVBORw0KGgoAAAANSUhEUgAAAIoAAAAVCAYAAACZt3byAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHhSURBVGhD7VlbEoMgDORcHMjzcBov 42FoeYgRQoKOH7ZsZzrT6UYqm3UTUuPxAgMDDJiBGISAAQ+hQARDDEAoQzQh6A+EsnlnjTcm va3blKxq8cA5Pn9cKDmpy5rFsfpFFIsWDzyKhOGzCGVdaEDifXOWXPRC+92ct8b6k4msizfW edZXtHjgXT4PRwkEm8Xvz+ZXJtHSi7ge14n29A/8ICeKmGy6D7KOFg+8fcgyn6T0pMQVYVDC a/KjqPa+oEqKhA3k/kpIdLzaPThXyItq8cD7fJ56FFp+TmVHEE037kLpir9bhFd9FixNS2wt Oi0e+KBQvk1Jtm1adpLTpEQyli5ZvYRdsY5erFYq6uu0eOAjpSe2r6kvcVWdFxIuNbyjzfBd RzmErfQhO8ztg4oDeNvfZX6a43FMbnAPavkcgfG74DLVqSMdl/rYE05S1tCOs03xSTOX7nFa W29evJ2j5CSfWgOxhITSxIgl5kjDRgZkmrLkAVlwq/MQDgM1eUDJ89MRStWLKL1GSEav55Qw TQLA38MAW3qaMTgVStPwEdeQsPfsGXdyg4FDKHtfwU41dztKTlP6GKZHkbAb94dLXsLAj//X 8xIWJ7gNCGWCJD+xRQjlCRYnWANCmSDJT2zxA6JzywenYppyAAAAAElFTkSuQmCC</item> <item item-id="212">iVBORw0KGgoAAAANSUhEUgAAAJ4AAAAdCAYAAABbodUNAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAM+SURBVHhe7ZrtlawgDIati4JoYm8R VmMzFsOVL4WQQBBH54yZc/bHLmjCy0NCsjMZ+YgCDygwPWBTTIoCRsATCB5RQMB7RHYxKuAJ A/cpsM5GTdosm0UB7z7ZX25pMXqazCTgvZyDG5e/zmoDbjJKa4l4N+r+elPrspjVqiCp9vUs PCOAgPeM7q+3KuC9HoFBAVYzK1soID/a1qzER8Ab1F0eP6fAT4C3aPzEbaeQPnTgpMKJThhw itXsL8a99ty7lJndw/Dj/cD8XHRqHz4fWxJxju+JjX8of3K9FL4YvvmfAA9Zrtu0CAo1vu+2 FzUT08JVSxXgnbS9uGEYeMdmQlP2fYU/oe+1ke/6YOm4b1OMwkf5E/6+O1na5xMXZmLgxV5L lrc7NqHbiasfcBGpsglIBHJrTkC1G89ecsWefa/vWeXg7RorbTSMeNUIGSMuXJ+FgYqqbYG7 /bFrrhzstsVjBv6fi5YIPRbQuRecnuy9SPRq+gifsb9vwKSXZlLkij2rnX0OBX0OqRFJbWc2 dXCf1rnTnyRiNeVtTEDAA6JSxmpOXOgga4GtaIdA6iJ7BhZyGCJE0AnSnofXXYU673gx+i6h y+8zTy2NwlTIUoqYVB4EmA3cg4Ogp8YL8AqDGET7RRsRpjZG3buwstz+jZX3zkS74EgTWA9j 7gZtz6XYeAE/Ax64w/mCBoPvSugcUUWxcy94oao7hE6rKC+Ar7q2U70c3zSIPNXGRs5j9dmh U0hXl94mMk7Zg9HxDHhFaqfsgyIEE6jYy5qKzNR/YSZLIh5xij6cavP2AWhlcCIe926ERo8k opHj4PJO2EOLsxDJy2UwNxqC73w8X0zQ6FGAg2jL1ZoRZXbwyNL8w+AxfKxOceByAMWiVyYk Dwa2vc6Ih0bX9DAMRfaWyljk/0A7JXEjgAcaq8mdS/3727/Kkt/Ry1S7jzdD8nVVbdH7Spws x8A6i9QGGrRIVVuzV+rT20CG+3BEnL6I2gINjlNXjtyf4QZyCV7F0S+PeL0Sy/zvUKD9DWQB 7zt26se8aIMX7kZFWf9Nfbwf25Q3LIcB3htkkDXerYCAd7fiYs8pIOAJCI8oIOA9IrsY/Q+6 Y73rEWSwHQAAAABJRU5ErkJggg==</item> <item item-id="213">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAdCAYAAAAghRfBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOBSURBVHhe7VqJja0wDKQuCkoTu0VQ Dc1QTJbcseOc8ARv4yd96WvJMR5PbMewSP4xAy9kYHkhJobEDEgWJovglQywMF/pFgbFwmQN PM/Ascl1WeRi/4ldcip/3iuzI9ilOAWpxKh/uzgFurIwZ5fF4/YrIa6bPDyQQ27rGT0fB8YA mAHAgImgLEyWxasYOLYzjZ8RlIX5KrfMDUaLchFSlZsszLm18CHrbZ0Y3bTdjXvxtxy4tRHl KjdbbLIwP+QaXradgThSulnzCFP3ysKJTGjTbYrQS4v/Tx5ycj0UKZKJtrB3+xAL7yLGEOG9 BV+7WFA80zflFC60d3XhrmebjF8mEaYjsCBMgkwtEtDKcIPo9fR47z0zJjjLzkHP49Sm5gPn ajGamov69eLr0UsYG8QHhYntMYeuV5zwIEaH0lOtczyKGJl6YMzA52apVLEKUY6YGF5BFOR6 xMl3N0xdNlHrxXNqEf0qvgH6TYpVh1NIgSMmhTfpSQ5saqfQEbOXpO79x05X9zZqgrJFRb0u m3C0i3ZuXg+uAUTql4veenQ59Q58dTaPbbPR2uwH4hSFV3Ocj/D1HcMIQpjIaLwZ8V7TL1d6 1oPqtrHKFpu+e4SZjZYt60V1V1wGZCOmcbgT7g4yV8bJl/CNkJsKkzxoPRxXYCTCTDYEwlQn PKrTAJDSszyKbI2hUsjFUkKnXFeQN5OWj0bd6wEB2YtPZJOz3QsT12ikAG/E16zRp4VpI17g Lr5FnqdXEYXEosjVfyo9ayagfWBV0C7lhiK6rcbMCXhoPexQeCsXe3hOp3oihd6FL/F1iftH Uzm+ZVmgxboBRUlgW+lZGFgVWLtWwUhfuBMtoGIgztR61fXI6Ia+nMG2xNyS+zYKQpfSxOU1 +oxskEYngrTGpHTRVSeXEflUTjU59dSsMAsF+PmtCGyVXKPlltmNqRy2fAo7J+tVRJQZj9tJ yQUDXSbG8V1hkbDN+jhk0HsvtFaY+VdI6+8PcdMqgWgB2DLmCpHEXEKYSd9QVySNvThS6IhH 3ANFTfK054f9kF5+ruEb5ZQSpo5a5hM1G5l7e5glNPUGe+ZWnn8bQr0hGCWE583KQJ8wSwVz VzE9K91sdysDdWH6cC3klimw43YHfnt0sePTageP+2cMNAjzn1nM5nwFAyzMr3DTfCBZmPP5 /CssZmF+hZvmA/kHuijdtcD5RhIAAAAASUVORK5CYII=</item> <item item-id="214">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAdCAYAAAAghRfBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANWSURBVHhe7VrtlYQgDLQuC6KJuyKs xmYshlMQTUIgwOod78i+t3+WjwmTIYSwk9WPMtAhA1OHNqlJyoBVYaoIumRAhdmlW9QoFaZq oB8GtsXOk7HrbpEKsx+3DG7Jas002UmFObgOOlr+tsy7ICc7G6MRsyO/DG/Ktq52O1jQo3x4 LfRJgAqzT78Mb5UKc3gJvEzAZpf5uMgwX3PcuRMfFebLftHp2xgYR5hk5+Z262r4Hb7v+nsY nm9eXMoOPhJeKImckQTaU4Rv7WpgFJotNkGyr00v+63ERcCYvofxRhGmc+LFpicxFlPaWW78 vPgb4+mcez4vMjhfHu90IrHnni+2A+N7USL7nZh9QbrEvjZZ3uLDwqTrifmoxuOEGWpJKC/I RZhq1F8e4BaJI4pb4yU0wR7k9MPv8Xy7Uu75JDw6n9MSM2cwqwQfBWvBvgb6L03MxhoaMSU+ GvDgEP7lJ0fYh4B++AO7q9qOmojJ9IUiDNhgh8fm4Dn4TeF5SB2RUXTMbapq+2QCt2VB0RjZ +QKeIEziFEo+yoXCMXJOmWuTeXipB8iDWqOlC25MtGU3cAIvGTEZYTJ9A/56vpL4k+3mv9y+ FprjHPNdPOatPAKEwiQidX3DNsq1ZbjAyTwpLzydSnDiiGzjI2uTIxDeefEBawpr53I3mgtf z3bwtgPmb7KvWKN/LUwnLriD4S2SRMcrR2J+l9qKCUl3bBN06nYJcFJpTNPRRfHwrdysjD0J fD4VAONr7Yt8nXMKY2ctXqXPQY5Jb1nnTJk8CkVMApxrg13bBFawSjY6pnI6MB9HeGqjwb4t eBy3KXz2dyCYmrkK6MNdUhuISeVK0yXBhkuY/qgojIrnbpvIrddh5dqqCflkQOEuJxC45AMb pfKIgBdFQj5lkPCjC8jr5SLnVKaOKfHxie+uHJMUhsFT0vz9df0VKYY6IhAt8oZeUltdTbFt mWRdZDdHdcEdhPvtxpYKynk8V16C3EYF+jr8OJBI9rWx+GsFdmCe/EfhbEnEE5m6o+TaWinS cWMwUCfMKM8BUTHXNgaXusoHGZCFGZ7izlwGvxAxLyvXUZU64h+0Xqf6twwUCPPfrl0X1jED KsyOnTOyaSrMkb3f8dpVmB07Z2TTfgC8fvGXqDMeNQAAAABJRU5ErkJggg==</item> <item item-id="215">iVBORw0KGgoAAAANSUhEUgAAAFoAAABLCAYAAADwIpA8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAP3SURBVHhe7Z3BleMgDIbdwPYxNbiL NOEmdi/bgQvYOnxKJymGsQDHmABGsoV3ZM17c5gEGfgQP0oQTGf0pwmBrkktV1QyDabrBjM1 qftlxr4z/fjK1iYQtOt0N7RBHJJ9jX12cIWBBsi9KThWA/+ezJCYSaJAT0NnLnDkz8F7jabv RxMKiRzQoMn/BWXHHWQk1GwhoEEy8guf1c63h7XS8K2EyAANU7XozdBpLyuJac0l3DDAS7NE gA47lIXmpWWj4wA9FQLmXneakLZJVRw4gADQZdlY+5+QjBQ0G3/P4WFqAErvJUd4bZsA0LMs RCt82qudfKwAl7/X18Dbu24OD6dPry29V5KeaXDh5s8HvavP2yhgEw1wS4ePPkCn7wF6AxQ8 2X+oUdCIOGCGNex8FLTTPohK3n8r6HNBZ5+moBU0gkCjohXSkW+JD/niUO6sOFrUYvh8mK/H s9Go4qt5Pn6Zr79Coo69xRCP5zyL5VOriPBOQZ/nGAWZ3Q/vWjQjV4d6dCP6ClpBIwkcCu+Q dRGKq0cToFFMFDSFGsFGQROgUUwUNIUawUZBE6BRTBQ0hRrBRkEToFFMFDSFGsFGQROgUUxu BTreMwRgNk2sQa5eArTfHbY5DZDfkEkioQwrp03NR/CPpHS3s9KAsx3QKN0gTjDxo86aNe/q LGXK745RDeg57/+de+fceU3rYt6gzYLejnKUHMiZp7ZLNFOgCrQxoXxsZIM5LSwvHZtjGMHZ DOYGuZSrzG9pjleCXr04lA3+tDAk6H8+b403T43k1LWg5/x7q8tjlFd3N+lg9+gl0oBZE86Q q0CH6aq280umJnODSN7sF7bqzVnbhyjaYO5XfjEclvzgAHK8UodUDiWbtIo6fINTbb0MdO54 HnODWnh0fIDH1sncr8rwLug+c4NYQXvJWA8MbaakOwDKlBaGB+1Xba4GsYImP/y44a2+6ziO i/4EBU1nh7JU0Chc9MIKms4OZamgUbjohRU0nR3KUkGjcNELK2g6O5SlgkbhohdW0HR2KEsF jcJFL6yg6exQlnJA6zlD1MDTC1fvGdKrOGIpx6MV9BE/QNhWgLZ5HHEqQ4s0pbkb9/Vou9vS 7rZHUaDLV7GFsyO6rLXB9twtQVsJCS+6Ys6+giGWAxoSGGtuCfvI6eBPBwPQcm4Js5vGe/dE Z67JZJcOUfferdMzF6u4qCMxGNyg4fk+uvn593U4ISzcTbpc5/OZqdr/+c16Zeaiz9BEGaCr 5CPh76wevZU0IaDtqoM/k8IIOk4/kwPassaeS2G6JQwGUOyN6FYZ9I5/xJcXR4teCTv9jxQE LYbx4GQk4egYZu336xOl0WwcT3jwN/V429BInlScAAAAAElFTkSuQmCC</item> <item item-id="216">iVBORw0KGgoAAAANSUhEUgAAAFoAAABLCAYAAADwIpA8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARVSURBVHhe7Z3dlaQgEIVNYPOYGMyi kzCJ3ZfNwAA2Dp86kw6Gkb8WELCwLNyprjlnHrpF1I/yUsKVHpT8dSEwdDnKHQdZJjUMk1q6 HPul5nFQ4/wqHo0haHvRw9QHcUj2NY/FxmUGWkMeVSWwOsT3oqbMncQK9DIN6oZA3jfea1bj OKtQSPiA1pr8X1C23LWMhJrNBLSWjHLHZ7TzHWG9NDyWEB6g9a1ajWZ90U5WMrc1lXDrBvan xQJ0eEFFaE5aIh3X0MOOy3xeMxb3H7VdbVvpoEEAMABdl42NQUYyItA66oOMxWzzn2vbavfD dm4MQK8Qkh4+f+lWPraHGP/ZfZfpTN/RX9t2oDvLZBvr54M+1Oc4C4iygVQ6ImhJFIO3xeS9 rH0G6JJEFEHXHqmPH7fTp0Wt9SxATwePgloCwhz7/TkL2kpKftyiti2vIawi+gh0UUYLWUc2 U3RZR+szkYC2j29belcDeRKyf0L8GOkoJwYu5Vtz6dmMvG05dJhL21G5/Lajhx0+Ef18qK/H 8+h6b9v+fPxSX38/pDO8jbIbXBLp6NACfKRj7ahOZx0CuoGAgG6AhSkqoDH0GvYV0A2wMEUF NIZew74CugEWpqiAxtBr2FdAN8DCFBXQGHoN+wroBliYogIaQ69hXwHdAAtTVEBj6DXsCwCd zhnq2s1gfuu8VMNp+aKZ0Ts3vb6Ebp1eRu4TV7BdyfHo3c6UbmdWOnA2DZqMR6cGE9fqpK75 9lnlXZMAIlqtvv+3986GczJXGATUxbawIui4lRNzIKVP7WxQg0CvqAPLQSQbxLawsnREr2EE ZhHiEzIgMhOg5rvaPQ4EvUVxKBv0trBG0P+cb43Wp3YqqKGgV/+90eU55yAt9UV4WxheOiIq +BMij2ifaaR3CLEtDNQZmov3Tk3iEzoVza5jA88Z5owwxLawckRP+v08p5ehHZbkhHplHa4Z c9eQfnexYwkoHUGcEZ9Qj4hOX+Axx9yleoX8utYAlZPHgb641U9DhkqHz42zhnVaW1g7aNdr a8c8lU/tFHBw1nGqdvROYqBBI4RVIKBhnNClBDQaIawCAQ3jhC4loNEIYRUIaBgndCkBjUYI q0BAwzihSwloNEJYBQIaxgldSkCjEcIqENAwTuhSfEDLe4boYIBVIKN3ME7oUgIajRBWAQB0 9l3uHjal9Qr4aDQAdNRiZral32qPrEDXl2ILMSerxxTmQS9bJYxbRENBGwkpzuxTrBLGSTq0 gRGySthuQpneDqbvJT6rhJlJ4yN7cWGZzKIpyCCK18GLhL62LZUqe24/f/GqQAdLaYrNOjKN Qe2+0vW77IYFaGOCKaZr3rexd6uOf37HS2aalrpulTCfcehaeYAGyUcm3kndV7GkMQFtep32 d1II7WCp/YwPaMO69b0UIjuYbkC2K6IbZZA1/mHjFpeUuhN2/ocUGHWGaQttktDnR0KOj8dK oy+5IYgq+Qblli7ogcfHugAAAABJRU5ErkJggg==</item> <item item-id="217">iVBORw0KGgoAAAANSUhEUgAAAFoAAABLCAYAAADwIpA8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQ9SURBVHhe7Z3tdaswDIZZ4O7RGdgi S7DE7Z9uwAB3Dn5lkwzj4q/EdpAQUeTcKOo5Paet7Rgei9cCv7iDs68uBIYuvbyik2VywzC5 pUvfFzePgxvnC9ibQtDxpIepD+KS7GUewcFVBtpDHh0SWB3ie3HTxpWkCvQyDe4FgXw/eJfZ jePsSiHRA9pr8n9BOXL3MlJqthLQXjLgiS9o5zXCeml4LSE6QPtLFY1mf9JJVjYuaynh9gOc D0sF6PKEQGhJWiod99DLiSukhGvGEr6bKwQrgzotAkABaFw2bgw2JKME3UAPcpPDEStDL4fb sSkAvcpCM8Nvn3uUj1uk5t83ojfOZnW01wkzXNZ0vkwx3Xx/0Lv6XGcBVTaAwKwiuoGHlbWD nGXtM0BXQH0kp5uaLdDhbz7KN258sDJAQlSBnnZuBf0EWObY198xeVifklwH5A4iVlZX/ijQ 4HyFgnYOu9Ok3oUa6HbC8+lbNakWUYuV7SThBjreKMcnfSlnjk/fch5dazRWhrHWA/p8cl+n s9TNHftzz6c/7utHSXq3NxmyaTE+QE9ErxOagWZEArmpgSaj4lU00Dx+5NYGmoyKV9FA8/iR WxtoMipeRQPN40dubaDJqHgVDTSPH7m1gSaj4lU00Dx+5NYGmoyKV9FA8/iRWxtoMipeRQLo ds3Qd3hkJZtzgBuPSdPSzZJXgQG/A6dXibYE0OviX+M8iisrPTyRAOgaLmasfg6zaGLBnPK7 /VBAhxXtAiziUIqD8jxbGAi6HuXGHCjpU9slClQggY4r2tlyANq9BGxhsHRUr2EU72YI+9QC iGskNT9j1zgR9M3iVcqGvC3sIOh/ybcm61N7KKipoNOK9zQ3njphWxhfOgoqz/CpiUd0zjT8 VVNeIcK2MNJkGE4+m0qED+ihaI55Gn1xNnnnKiUStoXBET0Vs27p3BE5oF5ZRxpGMFjg1zK4 tjCidFT6gHqCuQfUI6LbF3hCnyV8AVsYD7TAAYmCTpJRe+tyj7K2sOOgO/jUHoJ9RKMf6oDX yJxKPH7k1gaajIpX0UDz+JFbG2gyKl5FA83jR25toMmoeBUNNI8fubWBJqPiVTTQPH7k1gaa jIpX0UDz+JFbG2gyKl5FPaDtPUNeJJBb29M7MipeRQPN40duTQBdv8edrAw9bErrSejRaALo atDCaku/3R5Vgca3YisxN5u1tou1T7aD+Z4/EnSQEGhlX8AOpgu0NzBSdgm783TI28E8aD27 hIVF4719ooFtMoXtYHHjlXhs779LWKGDUKYC2o+l3Vf+81N2owJ0MMGA6Vr2bdy7Vcfvv4gp iL9LWJ4IfQDoAE2Sj414R21u3F3CaklTAjrMOsf3jxa0g7X2Mz2gA+uj76UI2cH8AKrdET0o g+3xT350wa/4Stjb/0hB0WTYDk8tCfzB2/uE/f5UafQejleW/wL8zGa4Ux1LkgAAAABJRU5E rkJggg==</item> <item item-id="218">iVBORw0KGgoAAAANSUhEUgAAAI4AAAAVCAYAAACQXNaIAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKuSURBVGhD7VntlYMgEKQuC7IeC7g6 bMZiOAFF2C9ko8Qk3Hv5cSYEZnZ22N0Y2/86AwoGjGJNX9IZsF04XQQqBh4nnGVZVEA+fdGn 4X6rcObR2HHeQ77YaTB2mHbhzHY0g43/3qqMsLcxxGuY7NVSfg5uPalvE84yDdYcqlkRQOG4 R5MdbggcpivsnR3Hf4g4k57r8I2Pwq0Hkwhny/B5DVbMvNFGQ9DvQax0e6XfDTI+iaDLzsOF Lj1E8mWccNaPzKM1l4m3Je574wmE46z6CKjPjizA1wQOZ52Q3cXAOYJeFVcb4VyLuxSLwMtd 8UTCye06bO6fuWuDEhHxPL/DIUDO/rnnLWodTjhYlDK2DSvJVWvcSexiCHTxjMsTXPiqyirB BCxFhnMDoGq3iUwuBUiqJwQ3AJp0+5IFrjsjLmDQVUWuBeuKwmE4WVk5kjA7tywo8dii6VAJ p4un3wbgOimcv832DusLQVq7Hl8T5bWQJ3fcRQWLTs5BajOyZNU172NxBny4xpOwSZwE4VBd ohK3T2SqoN9xS8KpjyeM9W1XVSwokVPdl3mvOg7Mbko8/tleLFdc3+9xHCpp60uPE1dVnmVa kqCdy3OL/VjPrXHSa07G9rwaJ3VNbTxPCSe9YrI2tCK75jG3ZEg23V1sMw5Yjzyhq0rOVMLm SWa4uhZ36SrenD0pGbTxPCccbnBTJRw8Ecbd2rmpcJs5TikIx/uUe6ICluOKrXPw/q/j5koC yRWF7hkkRKHGSRuPunY82ntl9uUNR6vJcZ1wStjY0YWPC5yYE3tfMjF/inC28TvqNLg5TrRI zllKbXaL+c15wcReJesYGWys4/i0ZX7ekLqh+nPyxXheU56JZ+Gq0hyur/lVBt72I+evEv4t uLtwviWSjXF04TQm/Fu2+wc8Y88Hz2JJbgAAAABJRU5ErkJggg==</item> <item item-id="219">iVBORw0KGgoAAAANSUhEUgAAAI4AAAAVCAYAAACQXNaIAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALTSURBVGhD7VlbkoQgDORcHsjzeIA9 h5fxMKy8BEISHqKDVWzVfswokk43ncQRcv7NDDRkQDSsmUtmBuQUzhRBUwaGE85xHE1Avr7o a7h/Kpx9FXLdHeWH3BYhl80JZ5erWOT18VFlmL2FQP6XTfaW8ji425P6M+Ec2yKFV82JAApH fbXJ5QHi0nSZvaNw9E1ITO25Nk8cCnc7mEA49oTvJ1nXyVvlZQjteyAr1V7hs8GJDxhUp9O7 UNcggodRwjlv2Vcpuon3TdzP8gmEo6zaE6pPR0RwH+LSU8ec7ixxKkF3xfWOcPriznFh8vIU n4lwYrs2m+vvVNkIRaQ/+54gXBfXcAiQsn/q+zd6HUo4qShZbExO6LL3FO6Au4uCNj4N9zHX aamKOsEAVCQcQKa+5htZXjgYIK6fYNwAaFLtiza4CnTawCSlCl0L1tHY+JycNc8fwihu/iCx YbOmgx24Fj5xXIXC+bO2Z61PlQ8moTq563mPVWnqYti0VOtEOauuuZ6K04gw7fFIbJmcGOF0 xG1dgBYWJ5wKPglc7aUq4iUOUifdNZSwxD148u46DiQBEw+PLUwKJO4XjgMnRaZUMXzGR9Dg YpvjsiSlTgHtnH9v4cJ6qtaXOA/f44TuymPjsNQ66t3eLm2OW/n0GfQYUscJSkw0hibOoR6H TzT7GlsyTDY+Xdh3HLAfGWGqCmLKYaNygr/DMZSY6RX0YVncuQNh3aUDn2anmOtMqQr7R3yq wmos5jBlfU6ajHfe4+RI8NdZbE19B773fdxUabT7EVMy2jMhuNqEk0mQtkQXAepU2BtUJIGv vTmuEw6KLSuawF1yo1IX3BXC4WInrpULx75+V5PG5qwV/Lbj8hFPHtTvTbkx+26NLxdDzZ0U tqvcEDmBfULdNFQTobs3I5xCPilcP/utqiUVc804GZjCGYeLT0UyhfMpusYJdgpnHC4+Fck/ l/B7fRFysjUAAAAASUVORK5CYII=</item> <item item-id="220">iVBORw0KGgoAAAANSUhEUgAAAI4AAAAVCAYAAACQXNaIAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALsSURBVGhD7VnbkcMgDKQuF+R6XMDV 4WZcDGfA2HoggQl+zXAz+bgkGK12tRLE2P7XM1CRAVOxpi/pGbBdOF0EVRl4nXCWZakC8vVF X8P9qHDm0dhxjpQvdhqMHaYonNmOZrD7v5cqI+xtTOI1TLa1lN+Duz6pjwlnmQZrDtWsCKhw 3FuTHS4gjqcr7I3C8V9KxFSf6/DEV+GuBwOEs1X4vJK1V95od0Oo3yOx0u0Fn00qHjDoqvNw oaZBgIdJwlm/Mo/WNBPvnbiv5ZMIx1n1QaivDkRwG+J41SnVnSXOJehXcd0jnLa4c1yEvFzF JxMOtuuwuX/PtQ0oIkeo4Ey4h1OAkv1L798x60jC4aJUsSk5kdveVbgBdzsFdXx61yVc81aF JkEACgqHiIhWki6cFCBtnlDcgGjS7ZsccB1oPsCwVpVcS9aJ2DI5WXveUYQobr2Q1LBV00kV XAWfAq5C4fxttoetb4+bPNwndzxUyl0sdVo660Q5qz7zORdnECGf8XRsUIvEob1wGuL2OU8N 9DEGTTjn+MQ6D7jqWxXKET4h+aTHgZK2uAsr71fHodWdEo+O7UgKn2eecBwqLKVVKXxC4URc 6nCcTdKmekMqidq5fm8Rw7qq15c4jz7jwDanY4uzoHMr6i5nHfXX2Y4Px7V8+gwSrrnjgBaD jqHMOSAhGOQ84qTRZKdPF9sdB51H3nCqAjHlsB1Z4cS3xZ0riM1dGvCJdwq4Mq1K69nkceAW OOUwZXMOT8Y99zg5EoAcErfd0gDLB+lyF/kdt9QaNyyqEbjrK3l+8s6FK0QZtuBGzAWo44BT jBCgVH1sEGt2+VYuDu2bPmlRKSdysjdkdnOc2K3JjfkJ4Wh8Cp+VC2e7fo8njXA5GI+/ida0 W6T0e1PumF1enW0kUfYUfKrC2LScgLFZ+HlDOw2VxcZbinbqirf14eSoxZ767LHfqmpS0de8 JwNdOO/h4lORdOF8iq73BNuF8x4uPhXJP2LllsyXJXiAAAAAAElFTkSuQmCC</item> <item item-id="221">iVBORw0KGgoAAAANSUhEUgAAAFsAAABjCAYAAAD0H3xZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAASDSURBVHhe7Z3ttaMgEIZtYPu4NdhF mrCJ3T/bgdX4K52kGFY+DIiAjjOQzTD3nJxzkwxBH8aXEQcYlPw1IzA0q+kTFS2TGoZJLU3q fql5HNQ4v7K1MYVtT3yY2mAO6b7mMdvADGFr0KMqOFgDP1/UlLii2MFepkF9wKGPDfia1TjO KhQVXrC1Rv8XpC17LSmhhjOCreUj3xkaLX17WitN38sJH9j6si16tT5xJzGJS7yWkOtG3g6L DezwpLLgnMzsdF2DT4WHuc+tPqTLpCoOnIAJ7LKEeAYJ+UiBM/H5GjqmGqH0XbKV/bExgb1K RNTzp73bSomHuL33n2mvH4Y1dFyO3lv6riRDy2RDUR6wT/V6Hx3sooTaMuKiEq3b/cDeQdUe 7W58BDYwNliBTSe3jEYCgmjl/V5g08PO/qLAFthAAg3NL8hI/mhcOBiHeVRxNrsO8vlQP49n w9aFVfV8/FI/fxlFI2cdJAwPrfV2d8sm9BPYtA5SkN3z0K/VoaSHR+xglHh2g1YQGWkAeatC YAvsmwRQcfbNOgHFxLMBsLCmAhtLEFBeYANgYU0FNpYgoLzABsDCmgpsLEFAeYENgIU1FdhY goDy3cGOn0FqViYlrUFuYHew1SEx3j6hacDaNGpno35Brp91a59CVvmhb4ew1ercPp1hJyGV U9C6hO29OZSQ+ilofcJe5wEYnZ6jPD6REVBsdZoRFQ7kmwzVsGcU2HVgWymJohCBXRN2NB1E YNeBHU8qMrUIbGLYTj78JKbw9+umoCWikTAE0tn3/tXiLguA9mj6fc8gozus7ZTMbe6nZ8ye NAUb2C42LU2AR3klRWFusOtJib2iUI3JBnYoI5V77dtO/q2ww47R/h/odeUBGzv1LfMqXVrf Cjt/TvUHbLrz7KI2V5YR8exd7F95nvdd1+YnI7Vua7uMRi64VWUZuXAEaZPv8+wLpyqwL0BK jSbceuBbd8Dm1pm4UTuZwHSbHrAgSxkBMmhmLrCboTaD/yIjrXhfgG1XkoyGAuqNru3OvNNU BsfARFXtxug7hh0tUNsgnO0W9n4xxcxdMenqZzZbtrPEyg1smDPSZiSzQ9iZJUFFRoBhzOVo JLFWq8Cmhr0NMxyfAo1/ftddHtSoV4+anWpD8Wxqzy78nsBuCNvlxRwWuc01ghtlTK5MnDls kRFge2LMBTaGHrCswAYCw5gLbAw9YFmBDQSGMRfYGHrAsgIbCAxjLrAx9IBlBTYQGMZcYGPo Acvygi3rZwObH2N+YTwb8/PYsrw8W2Bj/QFQXmADYGFNyWHTLmnETkbK2xNCWtM/QqNKmBLY Cf7vFLV1E8+JcLEuXrDXzb6v7ZpX9vDXusKO3c+aVkZ47Zpn4FDur04Jm91+kD5dAKLOeVtC 2PpZphN/Hrt5mCv/bA9fSDPQwd70WtfOBzaplFDB3ssbI9ir65Dtu04DO14iiRdsw5tifVUC 2FrWon2F2cG2YVu7WQXpnmC/uf1mwxD2Fid/CngaNLMOMvaxzARZSFACsj2vj6lngyg1M/4H iWl/JyVD6RIAAAAASUVORK5CYII=</item> <item item-id="222">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAVCAYAAAB/nr22AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJwSURBVGhD7VrbkcMgDKQuF0Q9rsbN uBjOQLB5SOJxgpgJN5OPc2JLu1pWgkSo9bcYaGRANN63blsMqCWeJYJmBl4pnvM8mwHNeuOM mD3xHEoKoQTwkke/khxSqOf5p9o3obbdiUfntKn7335pqHPfQOyOD04OxmDuX89EPAlJh7xI 7VNAU7AgYCyeSy3nrrZtV0O9SMecHrMVT8965sVzlS10A67lr8FJ9ZiajXM7n4dar9THjbji E8/pJp6RmBHxMNazWDyctq3LlrqOuQoLVbsf6T6WKDaBdRIPL+bcIqLFw1HPvHj8tmVI9d3i AwC4Hvb1GCjmZtj1cbOPyZQQD40L5wNdGKgT/BdzQduqqOddQe+egoHZm3egYEZcut2EoqJJ rrVUK6qS1aLjQkO/uVbygP+KB+FDXQ0anEFQ8ZRjhj0IG5jb6mliRNjyznNn5idjhWILdSVz pI5kxCOdsOLCY6uq1pFy1t34fs55EFwUH1Y80MajEbPJkVpQmFgdJ/X1jGtdIR5n5+Vt655T EsfqtwpHOA+Oi2pb/TBTzkOaLXfb4goWty36bMPBn2/mAdszWJRah+k08/hKe694QouOSYZ3 Hp9dWDyfvGi3dUga1zNwpw7NiznXknNtq66TZAbmXDJ1wSCnCV2tfGUNP+chqMjjInhC5540 4BDMfM7DL557d4Mkia3EIJNvnDBnxJPDZbf6wGxodBWfqgPBRmEeKp7PtjLelkNkhbst7OuN 3Ha03J0KpM/ykSJchHjceQ8+W47E7E71I6FT+cPnPCzcrof8EAOv/EnGD/E/NdQlnqnL993k l3i+y//U0f8AELNTsuU4+CoAAAAASUVORK5CYII=</item> <item item-id="223">iVBORw0KGgoAAAANSUhEUgAAALMAAABiCAYAAAAbduJ5AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAhbSURBVHhe7Z3bteIwDEVp4PZxa6AL mqCP6YBq+KITisnEeYATvyQfBZzcM2vNz4yVx9FGkeVEPnX8QwUOosDpIPex/W3cr93pdO3u 25/pD57h2d3Op+58e0L3TpiL8o1Cn67EuCgVOOB5O0MBgzBnHeBAPndgwABd/NfM79218glI mDOs3K+nrp2APD0hTv1Tov9bfiQrxj9v3fnU0I/WXc/51mmTDsKcgtnlyM2QvE51XPTKAa0Z P0PfEMy9T1zKUf7BLp1HmKMwOwc3NNmLRU73Y0tFL8X4AZrrta3IPPhEn24Q5hjMDoZmorLz awTcAdjED046fn6ct5ZmTD5xPzSNGwhzBGatiFtP0YZZ/joKZwCUjfcmt43C3OcaqqBCmAMS G0sxpvzRGuZFTtoqzP0UUJPuEeYA5j5Xq5hJbxqdpWnDfBGl8etqQbMwuwxLPjElzGsKlY+2 TSGeDx7Lj4sTwFU+7Y0fFyfGEt/6ryZH/cS9a1I+wrwHmIfHrb8KaVmaG/KYBqsZo2MIMxIy esdem1zyyy+CuAWeZV12x4smnv8I8yFhRm5qv7aEGfFds5EZuan92hJmxHeEGVHP3JYwI5I+ Lt3v5YEcgbaGCjwuP93vP9kBWc2IVDPanADKHHq0UYzMiEeZZiDqmdsSZkRSwoyoZ25LmBFJ CTOinrktYUYkJcyIeua2hBmRlDAj6pnbEmZEUsKMqGduS5gRSQkzop65LWFGJCXMiHrmtoQZ kZQwI+qZ2xJmRFLCjKhXsFW8ljodiTAj7iDMiHpZW/fO9etbRuEHAYQZcQdhRtTL2LqvY+Tf 880HIsyIOwgzol7aNtfnI3NGwoy4gzAj6qVtpw9q797HtJKPZwkz4g7CjKiXh9nvjzf0uy6n HYQZcQdhVqi3rE4s2hasw27QGmG0LUVnwqxwRzCUMCPqKXJmwryN0P5R1TDLnDJ2tfSargQh qVSDXdlXNuTOC5i6l9K1ydyyaIcg3FaDkVmmbXyUCua3k/OPy3UTl/UeHqUmL2HTl7ErkWXb 3dS9lK5NI/byR1FKMdyRCbNG3/VYIcyvFld9H+drMfcbYfSdN9jP/xBbQPBzzGgUq6vbxqTJ 3kvp2hCtBbaEWSBScogY5tu085QkzShE5lKjwziBiZZasSbd+cbdz1vmXmquDdF/ZUuYETGF ML9PIYF5HD0s5055cxClFf2X+4dvYQcsH15NB/rwXoaorbo2RPzQljAjem4Cc5jzDmBPROuA KYE83/w8YdTk1YQZQac92y1gTj6qp0UD6aN8yF8lO00Nz4GpeoLBrN6CwtijjMyIoN+AOfbe whpw4YrZlNB4e+lhacbY7jbd6xmRWmJbCfO6jhnP7yQXoBkT7rWXq2nazeDRCaAuZ06kGa9c tFD+Er4uGYLspxySCB3L/y1LcxoyxrEQzEHtTxURdBe7KE+Nl15uqu0cu+U2DUaROeyXvAoW wT2kf8Sv0tnmne63XTTR0bEFzBNg2g0GyxceefwJa5ohKOWziUeoYRYfmQMrFLCNzBPMktUa zbWGUdnNWYT73eX289BcRGwsYUYVNLW3hdlPM1IvWEf+Pb/v9Ho59/1IkdU0N8ydCbMpjOjB IJjDHYi8d05TM9shl1tOMPIwh8u7c7Ivg7m8UOEvUAT3lHvMEGaUP1N7COa0n/0JzAjuCEwP +z0s3www93syx1a8xhpo5MVsaZqxWR4/TJ8b3aDHlJHdHGwjmEdHR/drTqQZyy9x/cgdj8zy miYj825oBC+0GZj9KL9MO+I5s6g0N4jDnBlkZDfmjcC8TCPWOXS0mjFILHgRnNWM3cCIXmgl zILTKtOMd2SOpQX10ZV1ZoGvDjKkGZiXL5+Hy6np6JzxRHMrgAehptHb2A7mVwqwAjNVZ35V M1KflJcnckuN66O52FesZoil+sTADWH+xOV/+RyE+csOWJ6eMCPuIMyIeua2hBmRlDAj6pnb EmZE0uZgls4rSn01liXP1+Tc02r5CkC5dRYis9SWMEuVio1rCmZpX45yXw3/m8O5lu+/1huU O4VNWhCpJbaEWaJSakwjMKv6cpT6akTeE198RKv6kgURV29LmPWavS2agVnTlyNyw1lAV68T bLmiiviityXMiICNwOz9ukTdMlcFrURfDS9v9j7bmqO03zvZtvVXvUMIc712Db4CKp0Azjct 7KvhpSZzSrP4NI45M0JRI7Z7jsxDaiHtq/H+kUSb0Gz0uZzWy4zMWsX88XuFOfcVfXKCODVz jObM2icCInraljAjuu4R5mI1IgLmAuDE/5u2zK1zCmGu02202gnMfl1Y1ldjtWhS6NvBCSAC USu2zcHcijDfuQ5GZkR3woyoZ25LmBFJCTOinrktYUYkJcyIeua2hBmRlDAj6pnbEmZEUsKM qGduS5gRSQkzop65LWFGJCXMiHrmtoQZkZQwI+qZ2xJmRFLCjKhnbkuYEUkfl+738kCOQFtD BR6Xn+73n+yAJ9mwPzSKkbkpZzMyI+4gzIh65raEGZGUMCPqmdsSZkTSw8Dcxsv1iCucLWFG FHQvultvrYVcT5WttN9G1cE/akSYEbl3DrOq3wai04dsCTMkdN8daMsdYKFrKxs/b2C/jfIp PjrifpW3CWNpLnCNe0RL9pn+qE8rTnaEnFnnC8IcwUTzaKug7EMmB4BZmfIR5hhaShE/RKfy NPuHWRtUCHMUEd3jTUnZh4bvHWa9DwhzCi3XV2LXJbp9w+yi8qJdmCAEEOaMSPn9vwXqfnXI jmF2aV5FRYkwZ4FzQMhLQ19l9zAnd43T66pJhLkIAYEuSmQ2oB5kdwmEWeSIeXm4LmKITvGn B9noS5j/NETHuvn/4kCrjTt3BKEAAAAASUVORK5CYII=</item> <item item-id="224">iVBORw0KGgoAAAANSUhEUgAAAFsAAABjCAYAAAD0H3xZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAS7SURBVHhe7Z3RleMgDEXdwPYxNbiL acJN7P5sB64mX9NJimENGBswYOcZyEbSnDMfGUfj+KI8hBAwKPnpRmDodqd33OgxqWGY1KPL vZ9qHgc1zs/s3YjCtg8+TH0w+3Sf85htYIKwNehRFRysg58/1JT4RpGD/ZgG9QaHPjbgc1bj OCtfVGjB1hr9X5C27LWk+BpOCLaWj3xnaLR087Remh7KCR3Y+mtb9Gr94KvEJL7irYRcN7L7 WGRg+w+VBbfKTKDrGrzfmZnXSySz/gbtV7qWu6nnBERglyVk55CQjwC29n4vkjHX3OvStdL3 Yv9sRGAvIKKeP/34Vkr2gY57vf4t0cFu34LStRMNeky2wWjAPtXrMDoIooRYRgJwkTdfvhbS dxLHB3ZOLrKwS8Pv86F5PKrU2k8G9nQyZNRy4Mfg2+skbCsv6TxH6VpaT8h59hnsrKxmopFk FLlGI6+OmwS2o+/DLsEEQbuRJCsZyQcMazi4xNqzydjtMbYfa9tsXvra2YCIlmf/fKuv75+z Z37b9Z/vX+rrL6MO8m2k14SUyEinFqAlI0vnBUcjHYAL7A6Q94DHZv7YDGo6sj3cSjy7I32B LbBBAtJBguAQM4GNUANtBDYIDjET2Ag10EZgg+AQM4GNUANtBDYIDjET2Ag10OYC7HgO0s2g 9KgN5DeCPBTG2xmaV+cTEXfgB3tZf7DV+lm33svOGpegMYStlC8lZk7RuXXjEjSWsHdv9iWk fQkaT9jLOgCj03OqcjVX232/BI0pbLsawJQk+D1j4xI0trCtlERRSOMSNOawI8loXILGFna8 qMjEzY1L0PjBdks0kkXzbUvQErD9ECisaesxykJGZpvNheH6rf9/0zgL+wDWDHPfvWL25GnJ wF5j09IC+JsNf9+cGux2UvJ6Jf+hdcjA9mWkccIGdvFPhX0s+I7XBboYtf6aQZMoShScH0Z8 cat8Kuy8XLRP2LDz7KI2Z3MIGtP9hI14tu9ujRM24tmnsO+uGWQZjVzwq8YJmwufIP2Wz+sg Lzxq44TNhU/ACPY6mtS7GrRaMwgBJ+nZEIkORgK7A2R3C4EtsHdfYLZaLLn2vF12LfA0fjM1 h/FCvxw9Y9jRLjgdMplsYYebKUaTvXF+xzTE3d3PbK0KvxW+h5qRPplMhrAzW4I2zmTqroId bBuNJOr5OmQymcF2dSHHmaDxz+9we1ATtdzNZIZjDGawCwOsDplMge0N9beNb1NFl8H7sGUh Antz9ralZyw7yI6ZmsOtxLM70hfYAhskIPlsEBxiJrARaqCNwAbBIWYCG6EG2ghsEBxiJrAR aqCNwAbBIWayfzZCDbQRzwbBIWYCG6EG2ghsEBxiVh123S2NyCWiyscTvtKC+xRarYIpgZ3g v5WoLYd4ThU366IFW0/QXjo1r+zhz2WHHXuedV0ZoXVqnoFT83z1mrDJnQe5F8K8os7591aE rSeRV/GnccCE+eafneH7SjPUg+30Wt+dDuyqUlILdihvhGAvrlPt3PU6sOMtkmjBNryxQppQ ZCrA1rIWRUjkYNuwrd+qgnRPEB5u795DELaLk98FPA2aWAcZ+9heVmYHKq1/zu9H1LNbg8X+ /z88KtIw4D2IbQAAAABJRU5ErkJggg==</item> <item item-id="225">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAVCAYAAAB/nr22AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKJSURBVGhD7VmLjYQgEKUuC6Ieq7EZ i+EElpXPfIADVpO55JLb9RTeh8cMKiM/wkAnA6rzPrlNGDBiHjFBNwOPNM95nt2A3nrjGzFH 5jmMVsoo4Fcf8yQ5tDL380+zb8psezCPndNmvh/nTcOc+wZiD3yM5GAN5vl6FuYpSDr0Reoc AZ1gyYC5eS63nLvZtt0szSI75usxe/PM1JM3zyVbmgajlr8Fp80dan6cb/JFqO1KvdNo1PjE c6aZZyVmxDwD9aw2z8jYtrKVqeO+hY1q049MH0/UMINNMs9YzNwios0zQk/ePPG25UiN0sJ9 vtMinlC6r+dAsTTDvl9X+7iZEuYhcRF8oAsDTYL/Yq7Ythr09JykWlcUzFG9kwyWgcsIp83T GqneVDWrxY4LFf3uu5oHdJuH5sNcGzRYg6DmqccMZxBWMPfoCWPjk+c7s3gyV/rYRMrEiA3j /ta22PZipv+KrarWROKiu/M6lzwQLoYPbx6o8ejE/EkCfD1gZg2cNOiJYGswT4jzuMiNxUnJ cQkQ6pQ8HieuwhXJg+PC+fhV8pBhW+hCzb+8Nsg85erJty36bCNM7H01D7w9QzhaE2ZSzRN7 ADUP1WHf1waYB+50Dp1GdE4y3Hl8urC8PnlQt8XhCgkDdX5jMXNbMrdtYTsJ1bmm19peTyDV ORSNUNLU1T0lKcvPeQhdSFxVdUjdgesSzA16hm4r1rDfPAxRrvYIIyHxiK3ERLtfnDAz5gFx scbxD30U5lgXav7ItTbzfNpKdZ317Mi7oOCXtNvCVhvXjv533+eivf06hgt7N1am8pMwh1N9 Wk/0vV87fXKHMOAZaEweoU0YuBkQ84gbuhkQ83RTJzf+ARoIACjnccP1AAAAAElFTkSuQmCC</item> <item item-id="226">iVBORw0KGgoAAAANSUhEUgAAALMAAABiCAYAAAAbduJ5AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAi+SURBVHhe7Z3t0eI6DIVpYPt4a6AL mkgftwOq4RedUExu4hDwtyUfGwycndmZ3cFKnOMniiw7ymHmHyrwJQocvuQ6+l/GZZoPh2m+ 9D/TD57hNp+Ph/l4vkHXTpiL8m1CHyZiXJQKbHA7HyGHQZizA7CCfJxBhwEO8a+ZX+ap8glI mDOsXKbDTIfc8GYyodrylDN/M07idp6Px/OsDToIc2qsVuFJcjuSV0BtgAtzkDXk0MbQhDk6 XGt4wcleO5JjR1rDiVwIpw83CHNM59WL0Ct3ZdlM9gqhxNpGMwyEOTJkWhG7jvq3HdyEG4WY eb9mpVMhzAEsDDFecv+I8va6sSDMwcgtsVrFTPolAAx3knsO/pGh2DMVkrx8KWbeLvYyyVOj hNkHRPloG46vj+mQDGZNyEeYa2B28qWWN1o8VHrC4nmxSMM1r53Ow66Dr/F8NVRvfQy75vZd mzK7u1h3dU+YSybMNeNoTTqmiiU/A2ImPDG/PygJ9yKsvzuQODGlv6TeY4n9CawLs3+u7aaq AXpbrt5vSFnqkzC/GubSZMZfMFj656SmIr87lxA7fslGocEDsiW3PvmeOXaetT8vmlcQZsVA hsmM86zzzDU7vjybAhzxnOzmIcOQILbYkF+AuJ3P992AkTAj1jcDuMyzIkOx2hJmRMFloFQw l7yy0xcr9rQ82w7rJfUYTnrmVIxuw6tZSQthjt5IDZ8KpaEizCWFcr9fT/Pf6So8Qo1Xvh/a AnR/zKdj5vvkz3LD+2QxPeHcJ4waDzoezNfTv/nvP9lwMJsRyWaIPTPkoZ7gxMMIHyw3mzFd UpmH/YLawLwkesP4mGGG7O56eytNmCGdCEVDESvmjR6nAGsWqHZhxhK0hvGx9LobDCbDDERE Bcxuui130tLEKvH7PskKngC58EY/AXz2PHYDtUvN1QwLYa5RrSLPHOSGrfOGv3mLJkFqy18a 9mJdb6GmJs9blqXjokn55NEWhLlSOGOm8MzIaWgrU4Awy3SKtyLMiHrNbQkzIilhRtRrbkuY EUkJM6Jec1vCjEhKmBH1mtsSZkRSwoyo19yWMCOSEmZEvea2hBmRlDAj6jW3JcyIpIQZUa+5 LWFGJCXMiHrNbQkzIilhRtRrbkuYEUkJM6Jec1vCjEhKmBH1mtsSZkRSwoyo19yWMCOSDguz tnaFor2/X7qqLggietqWMCO6DgmzdoO8pv0Ofb4MVqkuCCJ5zpYwI8qOCLO2doWi/QrLcZrc QuC+fqo30BHxQ1vCjOg5Iszal0ql7Vfo1zdesi/mAm+gI+NwtyXMiIgDwqytXSFrv0J6Dy1y ML/RK6/DSJgJc6I8wDMuNuHFXlMvCfN7vTJhRkDe1NNVNELPt9i71T/dqqKm2KI0bNj7Umq/ hxd7+xTM2fCjwYULDkHPLBAp2eQNMBe7a6CKvK2dKl5YaL9XUHpW5HzeQE6FpBfWx0hpUAmz V//XqgWs+UhKcWC8BuG39nL5UVmBam0fnPYjwrx8Ec/9SmyprKyyfcIDy+uCQIpnjSGYA3DN BEBeil9zWcZDOCcUDIL/iNScUNJ2SJhN/LMBfXcyft2MUp2ObJ2NDMx96nNIBmJr0xbmu4jt LypSeUeYH80VX5HLlGg5LMzwlX3kAbrA3DrUCL2ymQnJivT1jOUI81DQt4XZDjP8iYX5f3zy kP/udDzlI8uPrlp3jJ0J8/fAHM5wrXjZgdkDygsR8jDHq77LYS6VcxWku9LT55en5oaiZ7DO tPXMj4uzsx1LmijyoXQbYPPvZc1/vzncMCXhWaVhRrc43sw4CPNAQHeCeRvo9LcsXECdXVaB XeJ7HOJ8Kj3zQLx17cobYA5jYD/McP+fWiYVpOaMdIyZuxI00MFfDHM8ge9/JtaHO5rN2DKL 2XzqxnLHT3cxzBgI5eo8s+AaEtmMWNou5olFcbOgG8wzC0T6kiaVnllw9TbM97RcKv/sLIUm Yu20d8705WdXAAXj84VN+sH8CAGm+ex8sy7MNbvZjNRyeHki545Px1h5PxHDjKFuiY4wD3Wd fTpDmPvoWnlUwlwp3Db/ZJ4Zka+1LWFGFCXMiHrNbQkzIulwMGvnFdvT5ehv2/X20ZiV2ezm /j7bfrVDQ5i1itnth4L5mXOX71pM1MGIbD+IyySro4FIrLElzBq1/LaDwPx4tek4zdOyKV8K s3lRNVIHI7/x6ylCyh6RFLElzJh6Q2w0up3Py6K9mZGaFVERzHsOPggztrICR+tNlWiIkbRH BMVsCTOi3yCe2fKVQphzdTAiWw6CxSdhHQ1E2wpbwlwh2sPkQ2GW1cGwhXF3LurtEZHltoRZ rlXY8hNh9r1sLJsRXKkVvlTZIyLLbQmzXKuvgPkxWbReYXNeioiW2HpuDSjaI3qCtoQZEfAT PXMkI+PmmSOTyNw2WpFnR0SW2xJmuVYf65mz22CjMHpFflILJiaBEll0QTQFbAkzIB73ZiDi tbclzIimw4UZyMV8vi1hRsaQMCPqNbclzIikhBlRr7ktYUYkJcyIes1tCTMiKWFG1GtuS5gR SQkzol5zW8KMSEqYEfWa2xJmRFLCjKjX3JYwI5ISZkS95raEGZH0epr/TlfkCLRtqMD19G/+ +092wIOs2Q+1omcearDpmZHhIMyIes1tCTMiKWFG1GtuS5gRSb8GZsWLsIhenW0JMyLwupdX 9Co0cpLetjX1Nnr3qe74hLlOt83qw2GurbeBSNbTljBD6i5vZOTewoCO3d+4qt5G/25Vn8H/ AkPuQEzNBeqsj2jvo+vVQ/FOw2+ImXVjQZgjvGkebe/ENX/uL4BZGfIR5hgRShHHBPrzYdY6 FcIcJVH3eCPMPRTQjwFhTo2DuARsj4FscczP9sxOuTChHIQ5I5S0DKxQ6xc3+2CYg6KOMukI c1YnqzKmTE+2ghVYi9XUZZMIc1F8Al2UqFmDepDXLhBm0UDsy8N1HkN0ip9u1EZfwvzTEH3X xf8P6/FaXhmZeHAAAAAASUVORK5CYII=</item> <item item-id="227">iVBORw0KGgoAAAANSUhEUgAAAFsAAABjCAYAAAD0H3xZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAS8SURBVHhe7Z3ttaQgDIZtYPu4NdjF NGETu3+2g6lmfk0nUwwrIAoMRmOA2Ulyz7nnfgijPoSXECIORr+6ERi6nekTJ3pMZhgm8+hy 7pe5j4MZ76/dszGF7W98mPpgjum+7uNuAzOEbUGPBjCwDnb+MFOhR7GD/ZgG8wGDfm/A192M 493EosILttXo/4K0Z28lJdZwRrCtfOwPhk5LV0vrpempnPCBbbstaNX2xheJKXTxVkJuGzlc FhvY8U3tgltkJtF1Cz4ezJy7OHsy7jvrKdCxvZNGRsAENiwhG4eCfMSwM/BOeoJZQsfAbrFd GxPYs0RkI3/5/r2UbBYb/i5YsR/hUqtPHer9Y9nJH5N3RXnAPtTr1DtIvAQAaGLZGUDoWN7Q QeLkwE6gWoteJj4l2O5/1toLkyPo2I6csIM9HUwZ7aAY++Dr35BUzFGVtVHeQELH0sLiYO+O YSBsY6AZ6dnZqsIO9GPY1rVLBtrIeqFjB066wl4BLe7g4lP7qF3ws1PNho5BvHnBft7Mz+3Z ahJI/tzn7Zf5+cvI9TsaIMnECB/Ay7Jn3VXYBGtAVVXYKFy0wgqbxg9VW2GjcNEKK2waP1Rt hY3CRSussGn8ULUVNgoXrbDCpvFD1VbYKFy0wgqbxg9VW2GjcNEKK2waP1RthY3CRSt8Ana+ BmlPiFkhp1ygvBDrW2K8X6HpkYcpD7ZbKY/gAplQ8ypv1RQ0gbD9SnlIZ9hNLWuQgiYS9pZO FktI+xQ0mbDn5wCcTt+zHL7GKWhCYS8eiE1ViEfGxiloYmF7Kcm8kMYpaMJhZ0nujVPQxMLO Hypyk5XGKWjyYIdU32LSfNsUtALs2AUKuW7+Z49ZFmU6bC3zy5J0shlWuHs3m/r0E7MHTcEG 9uKbQg/Ak6yyRmVusNtJie9RpMZkAzuWkdxFqhywuWzk3wp7SwQvJIQDkbIazwy6QNGaiJ79 DnWtb4W9f0/tAzbiLBvU5sYBG7Xs2NwaB2zUso9gr8evPjMo0hs5YVeNAzYnrqBc5PsGyBO3 2jhgc+IKBMFeZpNhV4MWzwxeAs7Ssi+R6FBJYXeAHE6hsBX2Zgt+nyg2+40cxbPT8WUJBbSL riWWJm+l5m2+0C9GLxh2tkFth0imWNhOTuJ1yMaRzJAtK0qzt1X0eE21TyRToGXvbAnaOJIp 0rK9N1LYq7VDJFOYZYe8kPeVoPHPb2AzxKuRzHSOIQw2MMHqEMlU2NFUf934Vnc/OzHtJ8VG 2qaeiRwgTzRZsyIqI83Qvn+wwlbYFwmQNPviORHV1LIRsKhFFTaVIKK+wkbAohZV2FSCiPoK GwGLWlRhUwki6vOCrftnI5qeWlT9bCpBRH2FjYBFLaqwqQQR9avDrrulEa8B0q62VMtu2pbQ an2kwi50nDVFbX6J51Rxsy5esO1mW6femgdL02veYce/z7qujPB6a56DU/P96jVhs3sfpN+O qJbGVrXsaDzhkTLsen79QbJG48VGwAd2VSmpJSOpvDGCPVt3tfeu14Gdb5HEC7bjXWPnnwqw raxlHhI72H5w6/dUQdmZTF9uH8owhB385E8BL4O2V8UU9jYxKaYJI8Iu54umaWyleoxhn8fU q+Q/MNwKDzN+ypMAAAAASUVORK5CYII=</item> <item item-id="228">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAVCAYAAAB/nr22AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKwSURBVGhD7VnbkYQgECQuAyIeozEZ g+EERF7zAERutbiq/Thdhe7p6RlmhZp/k4FGBkTjc/OxyYCa4pkiaGbgJ8Wz73szoLc++EbM gXg2JYVQAvjI7bmQbFIo//5drYtQy+rEo/e0qOvf57ah9nUBsTs+enIwBvPz8czEk5G0yYPU ZwJoAhYtmIrnUMu+qmVZ1VAv0mu+HrMVz5Px5MVzhC12g17pr8FJ5U3NrnM5X4BaZ6p3o17r E+95TDwjMSPi6RjPYvH0tG0dttx1zFVYqNr9SPexRHUT2EPi6YuZSyJaPD3iyYsnLFuG1MAt zD3nFqGLKBXX9RQo5mbY9XG9j9kpIR4SF8EHmhioE9zFXFC2KuJ5BDSLdUHDHPQ74WLJwmlW 0eKptVQrqpJs0etCTb+5VvKCVvEwfBzpBPcgqHjKMcMehDXMDfFEsPHOc+0s3EzsMj5b/XUj HunVGscNy6paR+Ksu/E+5zwormC9NKuNeKCDRyNm834qoTCxuj3WxTNi8sRWIR5n54BwgB7G OIDrU0AiIeA0kSXGMcJ5cFye4ry/+R/nITnL4kLtP793XzxnBqTH+bRs0bMNt7H39TxZeUb4 +JmeJ7QQSDzo/p156LbAOuh98URlzdvyJmOLTkmGTx7nKSztT37otMXh8rHJy1RfzFxJ5soW XUlsj4bN9+y9up8nCJvTUEKBQE5T1vfkpAyf8xBx4XEF8omm54ah4on5EMwV8UwpMe0Bp1+o UTKDvcwNYmLMy51akE1imZitOXrCzIgHxMXwcRXmbKoOLDZqqh7Ghdo/cq9OPOexUpyznvj3 IKBMXacSzP6442h5plYlwY0vx6fIGBfFR9BuMmOHkZjdVN8egqj9Q/cqxXOD9fno5xiY4vlc SMcBmuIZx/XnVpri+VxIxwH6A2NXG3dPRYXpAAAAAElFTkSuQmCC</item> <item item-id="229">iVBORw0KGgoAAAANSUhEUgAAAJcAAABaCAYAAAC16cQTAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAcZSURBVHhe7Z3RleMgDEXTwPQxNaSL NOE+poNUk690kmK8No4TjAE9IZns7L49Zz72WGAQN5KMLXEa+Y8aOEgDp4P6Zbe3YTydhvH2 KzXxGK/n03i+PkyjJ1wm9eUaLwtzGn4nVvGMHtez6QdCuFzhmsE6j8YfvOuI7J3dxqHRAhMu u/ZfPdyG09husJ4W7zRZvelPdkmy/Dyeua/lL4V+hia6Xhv44zqez9dR6yQJlxdcc4zVTFbq SpeFLwMmy89gbdpvYsC0vRxjzS5SBn6rTMLlAte8OIbgfbYMqWWZYShZC0k+d30zzwXe+LcQ 4qvqj0PvHgmXB1zzYjZbrWkAOZACIAVgJfkamGG+essVWk0AaqZJuBzg0io9vWWwGqmVqlgf SX69fgtPe2tctQc1jskgaJQ/IsJlhsvoEp8WwR2uNGbbxFz7mC6AJhKmmyvhMsM1LZTwJLV9 aouf4J4LKrm5dIyCfNayPV1h4KfYXt5GuQ2yzDpcwmWFS+kqsrfLxVdiQJ+4uVg+23aJs6xw aUIAwvU3wLULsK1bERFI6/wQtwjsZREuKzCa9pPVGVy25Oubort9qxXI4qbrtr/9e85kExUA S/vESMulASkn6waXdSB92tNy9dHzchfCVdQ2LZcVRMJFuKwMFdvfL+P35X5Y939bx/fL1/j9 g42KlgvTU1mKlouWy8pQsT3hIlyEy0cDfFr00SPWCy0XLRdGSoMU4SJcDdhgTQgX4cJIaZAi XISrARusCeEiXBgpDVKEi3A1YIM1IVyECyOlQcoNLjkPMR1dPS8xkhazgfB5c58L15Vd0gUu OQ8xB1Y5LzGWXqHFP0+uKYVw2ZHBe/CAS8pDTEejsEQhmXUY9nmR+Aw3koSrUXFNzTzg8kjQ yA1+TcNXwCjpgHBJGvK87gCXlIe4N1xLnmM9LzEqikK4PFe8Y1+fgqual7hkR79iMsLVEQjP WznApU3nF/MSV3e4zpNwea54x7484NLmLQp5iUvRtiT59vl/MalaUB1jro5s+SRoaLcipLzE RAG0XD2JcLyXh+UKw7HlLVbrrxIuxwXv2ZUbXD0H3X4vusV23elbEq6izqLsnyS9OwoIrUFg bcX2dUS179hq8vOcfF57FOdAuHC4diCFAhbHLNC+VGJbYPuuK5Up4JE+luttU70F4TLA9Qw0 tcVW5TXM1Nj0eMeWeUzfF/GQRwdLEC47XN6uMVvg1eMdm3bPCKaoIEi4DHDFbjFduHAtX3Oz XpM9X5q69R3bpj569rH7wNiLcOFw7Xd2o3grhisBLbVEdbj2parDTo9z4dn3rDObjolKxNKS JRUSLhyusvuLnyYzJawT2AJc03dEK6zbfguW5Ci3eFjcGH4RTsXfrP65T/vGfa68NdkMORfP PAVylutVoXjXrnAvbbwEy9NyeaHXF66wwPuzZVK3uP1/6TiQA7YiglYZc/1OuF6j3i5gWlI6 ha18HIjtHVt2y0Q8UcKgerpFJOYCFFxxi8E+RKd25SwVFHcBw9CKcJ9Lq7GyfKNbBAYQw7Wz Bqnlik5kKEApH2YEjEkS4Q69pCHV9ePgen0Wsjwtbj9K274i2j4tll4fyYG2auY74QNjrfVe ZrfYoIPcXt4r9o0+EtScegYq+kC4wBH8T2ImuN7xJf4GpJCHCJ/3aMtjJFw94W6E62X1p3Ma h/XYFGDcpTxE9JRaax4j4QIWyU2kGa4pNSwMQuEW1/hx5xaXNLLzfHD7+jou5xKL7XFtEC5c V3bJRrjeN0bhquUhIp8a+eQxEi47MngPneDS5yFu34Lo2+dVQLhwNOySPeBKt1OyX36kU4ks YlN7wmWHw9pDB7jEPMTNcXfrhN7bMGJ7hQ5ouRTKMot2gGs3xmxA/zyo88XW9EUK97nMy/vZ Dg6Cq/rKKusWFecnQm6VbvGzYIWdBH7PVVoEHixlxZNwFTVIuAiXSgMM6FXqMgrTctFyGREq NydchItw+WiAbtFHj1gvtFy0XBgpDVKEi3A1YIM1IVyECyOlQYpwEa4GbLAm98v4fbljsv+A 1P3yNX7/YBPhJiqmJ25FPDXAp0UrMJr2dIt0ixpeVLKEi3CpgNEIfwwu9Nt7zWRkWbpFWUd+ EvO3UXjSodN9W/IdfW5NuHz0iPXSGa7WfEdsMrIU4ZJ15CgxfQFa+pzY8S5rV49rQ76j4zjS 6kW1rrkVYVb87KIylRbN/UodfCLm0s2VcElrCFzXuAqgO1DkA3ApQwDCBS5lVUypdI9bqsoA +NwwVDXSPLsQLhfF69yFyy01NSZcbqifI+FyUfzUCVzCyOuGfd3iphwAOAXCBSoKEUPLGCF9 yTId4UrLAciDCxKEC1QUJhZVksEa/AKpzBlN4KgJF6goXOxfAqwdLFounBil5Pp65hP7X8qh ZsV9xk/L5bEW7COrgT8Gk6XzBVKj4gAAAABJRU5ErkJggg==</item> <item item-id="230">iVBORw0KGgoAAAANSUhEUgAAAMMAAAAVCAYAAAD7GFqYAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANxSURBVHhe7Vk9krMwDOVc3CHX4BQ5 QgrqzNfnBnSp06bNcIJ0uYE/ZGNHNrKx+HG8jJnZmU2WBT35PT1ZrkS5SgZKBmQGqpKHkoGS AZWBIobChJKBMQPJxdD3/aGSfyQ8R8LiI1kI465i6JpKNJ0OqxdtXYm61WLoRFPVwnz8AxI5 Ep4jYfFRh4txNzH0bS2qrxKGeF0xwFetqOt2+Ev+15HwHAmL1wEW8M+IAVRkk1cI6rs42kLV b4QxhVEIVTW8A36QSOAdX7eIezr3rvXY8sLDxW/f/yssYyfQDQVQ88DiyDpUW2D8OkPXDETF BIbgcZsTH+y08sD/Es4AX8N7g+6g4lglmJXYtsWD8jjEZZlnIMWv10u832/yjtvtJh6PR9QC bYfFFZVcTKcI4pDUOmKOyVh2EMRSjKhNcsiPCQTtDBU0+b2H9D4xyATuvXcIYMPrlRoPQwyX y0V8Ph+S8KfTSTqudSXBgskfEoIWiltc0bowOGbvBdyULOeflUHcTlitBRWoFIutdBWWz1HC QcZUSBmTsVjn95kHeLHpXP4AD7hiDG4IEao/vp7Pp/XZEkNSLNOKT1sUVfQQJxgcC4thOf/s cmLcAD9Qg/0SX5FyqOay/8OtlRYDVem5io1y/fibSGyjfBPiWSro6/VqsIIQXCfQYkm/NluI 4d/YQsVxTIqh0cWYcptl/HO8dRRB65CcYWG5OoOJy8U22yYtrzSzSmU4A7RJ+nLFAO3T+XyO aJO2xvK7NsnsMyfcXI5xMlpVmxpnssQSA9cBUuwZFE9IbLNi2BEPQwxAdnAH2CjrPYLeOMN6 3e/3CDFsiWX9Blq6mB6eMDjmtknh8wSdFh/2L/+m5wwyKMd6GIEa0hHNMEnGFNMkkw8C26wY RhFthge9kCEGqP56vwQuAdMl/Rm3UObpnjWjJy2eQjG7NrPeh8Gq6SRqb6wpIoNjXWO3Qa44 lmKMO3RjBDp24dETohTnDNFL5sPJmHhlgyc7LDOjegbHKCewa1V8t4HXaycx+KupRczcTqC9 BPqDeLLDsq0YzMEt0wFD/IsTgzlBdiZHgYTrQzb/6DBevdGVfe2NR8KTHZa5Q1zV008O4Qgc 9jTJd0alnsfhX6QY1rKs/H/JQP4ZKGLIf41KhIkyUMSQKNHlNflnoIgh/zUqESbKwH/1PixL Ys16/gAAAABJRU5ErkJggg==</item> <item item-id="231">iVBORw0KGgoAAAANSUhEUgAAAMMAAAAVCAYAAAD7GFqYAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOTSURBVHhe7Vq7kYMwEKUuenAbVOES HBB7LncHZI6dOvVQgTN3oGP1gd1FEhJ/GDFzMwfGsG/3vf1IzkQ6kgeSB6QHsuSH5IHkAeWB JIbEhOQB7YHVxVDX9amcfyY8Z8LiIpkP46JiqIpMFJUxqxZlnom8NGKoRJHloj09gETOhOdM WFzUicW4mBjqMhdZp4TGXi4GuFSKPC+bT/Z/nAnPmbA4K8AI/rViABVR8gphuxZGW8j6hWiL ghZCljXvgD8kEnhHVy3Cnh5713Rs+8ITi5/evxUW3QlUTQI0PCAcmYZqDoxdZaiKhqiYwGA8 bnPCje1nHviupTLAZXivtzooOyYJZiK2efEgPzZ2keLpcfHn8xHf79d6x+PxEK/XKyhA82Hh opLBZEkQm6TiiDkmbVlAEGMxojaJkR8TCNoZbLQ811m+JxgH6V1ikA5cenbwYJM63QhPhBhu t5v4/X5Wwl8uF1lx5bEqFkx+nxCMUHhyRXGJ4BidBbhLxvOPzAy4nSCtBTGUkVd+hsnsqih+ I0MypLQJiZD8P/AAJzYuxhXxQFUMwQ3hhuyPj/f7Tc6VGLaITT/j20uULekhTkRwzC+G8fyj A3RbDfADDVhd4uAeFkFqnCvTxyo2qOqH32TFptu0FfGMFfT9fm+xghDaSqCvSrFsEps5xPCn W6gwjkm+FdDWq+RIwzeef2w1SYugtLVFeJ7gveD+K4PKmo3jOLaenLgzx2eaQaVGVAZok8zB xQDt0/V6tbxuaSwLtkkEDcUhE4qZM3l7ZeLcrd7oJw13Jr2lVTXUsJWl3guNpbYXxFaANWYG 005bsBGnr4wnQgxAdqgOMCibGcEMzhCv5/PJxLA0lukDtJ/Ubo7xNsm/n+DjqpllVDLv7zPo AYxuEbBKIZ/vXuWxT/Mw21nIuMZqUusPNSjb+/S18CDORogBsr9pC6BKwOqSOcctlHr6BliG y6CqzKi9IauI1oRrx1EVdMGFi2Ms/8I23RyTvnv4C8/2a+wzDMbJlgA8Zdr3vM3x7BaLq900 XYx9xdLGMVslCJsb+pHD8YoXw6CzUUsytFSyhx3oM+HZNZYIMQzgcK90dmR3VQfaFdNfQISJ od1BLkRpWh22xNnnvepZ56geg5l9wg1t63YCPPvGMiCGCI7R1STXHlU8/wLFMIFt6avJAwfx QBLDQQKVzFzeA0kMy/s4veEgHkhiOEigkpnLe+Afeh3VyFeo0oMAAAAASUVORK5CYII=</item> <item item-id="232">iVBORw0KGgoAAAANSUhEUgAAAMMAAAAVCAYAAAD7GFqYAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOFSURBVHhe7Vm7kYMwEKUuenAbVOES HBB7LncHZI6dOvVQgTN3oGMlJFarDxIgjDVi5mbOMoZ9u+/tR6pYuYoHige4B6rih+KB4gHh gSKGwoTigdEDu4uh7/usnJ8TnpywuEjmw5hUDF1TsaaTZvWsrStWt1IMHWuqmqmPPyCRnPDk hMVFnViMycTQtzWrJiUM9lIxwFLL6rodvjn+lROenLA4K8AC/ikxgIp08jJmWwujLWT9hqmi MAqhqoZ3wB8SCbxjqhZhT4+9az22Y+GJxa/f/y0sYyfQDQlQ8kDjyDpUW2CcKkPXDETFBAbj cZsTbqyZeeC3lsoAy/Beb3UQdqwSzEps2+JBfhzs0oqnx8Wv14u932/rHbfbjT0ej6AAbYeF iooHkyRBbJKII+YYtyWBIJZiRG0SIT8mELQz2Gj+3ZjlDTAO0rvEwB2YenbwYJOC/AaeCDFc Lhf2+XyshD+dTjwe/No1Npj8PiFIodDkiuISwTF9FqAuWc4/bWbA7YTWWmBDidGmCl0VxW9k SIbkNinSkv9nHhCEjY8xdNZJhweIG4Ibwg3ZH1/P51P7zMXwldiYGd9eomxJD3EigmN+MSyP lz5Aq2qAHyjB6iVOAaaKdmb6WMUGVf3wm6zYLD9PjGepoK/XqzIWhKAqwbhKxcKXE2MZS5HR /sSL4W98RhjHuBiaqTvRE4qr05jnH9lNGkXQkrbIcOoEd89MupRIOGgNxUYityeemMoAbZK8 qBigfTqfzwYH02NJ2CYhNBQH54GcM62Ct826852JsbUqhhqys2QTA18DJdN+f16BetT2mBnE G63YpDHfwBPRJgHZoTrAoCxnBDk4Q7zu9zvOUDvEZv0A7Se1rGwmx2ib5D9PUAEm51xyfeKf ec4wkkI/IiCVQmOzSWb7NO8g4x67SYTw/j49NR7kvAgxQPaX8xJUCdhdkp9xCzWXaLaNTXiX Knaa9PZG20X0dB/it1PS7Ro9AVNxLMUYdujmNVScR4T1babz9jhniAkZ3JsTnuNgmdmqj+CY rRJswb94MRiZ3N7muNSpEfMIJ9A54Tk0lggxzOBw7nR65gxrQiT8CxODOkEWh3Kq97bODHqP 5m5J9psV5ipDTniOi2VGDBEc03eTXGdUYnaN4V+gGOboVL4vHvh9DxQx/H4MC4KNPFDEsJEj y2N+3wNFDL8fw4JgIw/8AxJu8bAx9iDNAAAAAElFTkSuQmCC</item> <item item-id="233">iVBORw0KGgoAAAANSUhEUgAAAI4AAABCCAYAAACB1+7HAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAXHSURBVHhe7Z3dldwgDIXdQPpIDdPF NuE+0sFUM0/byRTjGLA9YH50JeOJZ3Nzzr5kMCDxIQmOZA8T/1EDBg0Mhmf4yGOchmGcHh+p ied0vw3T7f48NHuCo1JfUPowfiYysajP++0Q/AQHBsdBc5sOblR4tPc0fEyj0XISHHCFHuMw 2Q3NYqmG2VrNf7KbSNvnFs4teOgr/OVu08339XsD+Od9ut3uk9ZxERwEHBfTmKnZu7ew6C14 /KJv4+1jkvz5vdtxzyf9CzGZe16GOVUUwRHBcQt3IBB2O3rY7Xi3kLVdXmjvwVjbFyFwMC1j lMYTZdS7LIIjKdUthNnazJ2XIPGLi8IInIJiWFpQNmR1cGrEJDgCOFqF7rtLrMX6I2QVojin GYOkrnAd7+FPTfUYKBNbuUEIThOcg25q7tsOTjSxaoySXw+EeEcX44SRdLISnCY4s+8XThzp 6SU+ySwB7mFXtS7q7lTnrVYeZBdB9VDIp8LHiF83EJwWOErzXeyqFM+04pBq8BstvG9TWeRi 3xg4GrdMcM4GZ9ntr+O1dBwvLHIMgxgfVZ4HgnGCI52U0N/nRRq7XBW3LwCze5cVtjW4jdzl GsO8At+Xe3ydinYXiAA03iEqTla0OILF6QMOSuq/bUdweum/m8XpNaFz+yE4vfRLcKqapKtq Qfb9Nf3++u6F4eX7+f76Nf3+g02T4DDG2TRAV4VtGrkVXRVdlUxJoQXBITgER9YAXZWsI6wF LQ4tDkbKrhXBITgER9YAXZWsI6wFLQ4tDkYKXRWaPsoLQF4AXu8CMK9F0tYXrTKVEpGizH6T OQEeMrsqpZxLNl+SKpFkHkr9SXVYgKxzk0vEOD5vJLF7+vqiIO5LKZkZNRaTYWr0mjTk4xjk bNZtyf2167BgaW3gpIOHwUr/h02jUKejrS9adoDfhXNd01jJmc2ToLAZQq0s4BjkbFaJSv1J dViQoMsWNSVyZbmuIcURDZbi+eXWxlOYF6EJ9UXP+315I0QjZ9ZYRwTp0wKOWs5Qk35zLzMo ZPzp9QbUYVWEN7qqHSgxSPsF9r/VanbKEz9WJtJKtj4x1jGAo5ezkIMcuWC8P7QOq75ljOCk rilxUzE4O4hy61K2VLgCSoK1wJEz+MUSlpou3wJOafCXDk16M76/xwyON4s+sTle/PjNCIWy 1czdVCyA2oQnzq9RF2Q3zaK7MoCjdy3CRjHpTd5MxVFNMU4Ih0NcM8cWSW1zIxZBLY47oWT1 0nB88jkWRy0n9BKB3YaN9YbUYYk75EhwvHS+lV/EUXFp0be7h31hWM0CyMfKhvdtWJxrxTjb 9cGmv4N1VGJdllCHBULjmtldVXjal5amVzCttyvkC1c8VXkBtPVFq9QfdKoyybl7UVJWdqy8 ADS8KOk4OGXn13wtR34PcaIV2M3vcvc4ih1+tabHLI4EThaXlCGpW52O6rrkzXFH+d7cVX9w NhcTgrS0DLX2hgNbZI/r6g1WzXKqwgW4XMsTwLmcjO+ZEMGp6plpFS0ECQ7BMZkogkNwCI6s AcY4so6wFrQ4tDgYKbtWBIfgEBxZA3RVso6wFnzNCS0ORgpdFZrxyXsc3uNsGqCrMpmXwkMM jumqTCydBo6UJpG7TJfqUq+7MkmXPUSL00ePITcJdfrwmIaEtkPfy4IndjCRCx/n57c8Axyp Tqqg1WNf58OXiRYH15XQUv4IiHoodfK5UHelnkD9AX4EpJsy3aKhHyTDBtWXu7TrrrBRkVY6 WXkcF3SqMd/Q8sSfSVwfKLmvZmf2Kttqt0q3THCk1VYqVOque92VOCDWQLtBCI6oV50Jl7tT 1pdJdVfigEgDvYwEB9Fr1+Ow9jjer26qJqqzNvx8NAKCoU3fI7G2vkyquzIIFMdXhjosWhxY 5+FY3OW7Z/CYZzfUf298nRHBUa3NT4LHDo1TGcFRgeMar26m7/2OehrmB/rMn+CYF+D/fvAv 3SM1UqBp8PAAAAAASUVORK5CYII=</item> <item item-id="234">iVBORw0KGgoAAAANSUhEUgAAAWkAAAAVCAYAAACE7B9AAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAVSSURBVHhe7Vy9cfMwDNVc3iFraIqM kEJ17uuzgbvUadPmNEG6bMBPEEUZ/JMBieKPDd+5iI9S8ADwAXyk1Cn5iAfEA+IB8UC1Huiq tUwMEw+IB4p74DoMaixuxTMZMKphuFqAhaSfKf6CVTzA8MA4XFRv8wXjahm62wPXXl2GW2ks QtLj+Hi1uXVMrdtPmRCPhPF0LOOgekQUFP+mGHM6rhRGHrwHBeM49Mq4/3SSvvYdqsZTK3/p UJW4qr67rMYcxJ7t8tYxtW4/JdCPhLEEFkwSFH/vGVMC1x47j1yzGyMqkqeSNCyXOmu95JL0 BH8y5nJpR/dqHVPr9lMmzCNhLIMF5mmvzlQ6yuCiZE+6MccwTg3swos2SQNhdp3q0He/JgVd Mg60Juj13ujGUG2wBpPOTc6dDuOrEBPLWaXsX1ZMV5xfZ5FAKYysQBAHF8JyeuNUCNdUduaV exN5CHypVQZE0gAASxNKAXl2FtESc2tukN0uGq4NdNLw8ySUd5vdtLbtGJEfx5cWE/LlhJ9a DL++vqwi+v7+Tg5KOvvdSTYH0SnK2Czte5xLsy07c2sLcDqMzn9hxOjn50f9/v4Gzfz4+FAQ Q8onHRZmvGA+BhKyeVxzjraTh0Yq2ZY7IFhmIs1daKD7Cf4eIeMYSZsKl3s/EePDsyY3JiIB wOR+eXlZCQCIIEjSWezHE3+LoA2B2w2AJvXlN0Zu2RqfS3Un5h0xRmDR29ub+vv7C/IwxA9W k9ansniFi0P7uKycWwNQbx4ahSFA0qbaGGliIeZQIs0kF+q2/a5V+2R7ElG6Sd3dR76UG6zV 1MFnglYAE6wkKKYDIcc6tFvO5YyJ35mEO8TQBjHKBUZubZP0eXlHjRHgh24Zf76/v62/LZLO mm+0eAFJh1atrePSJO0eVKg3D00cPLkDEmgN0NppYuLWpK3J0ug7bocdO7XB7XQoi0LqmBsG H5++R05Me4oNLDchPq+vr/PXnfw57V885i0f+ST9b7nHrdhv4ZhJujeFKNSdh04L7cu7PTEC /Hh1AzFyO2dDdrXGK9ZJt45rm6Try0OfpEO68G6547yOZu/ECereLLnjPEzULg0mCUgeMMnh G1tSzydmPGkqtf3l5I51/8LDmRojKjnE1Y6RO8yVLklDzKDA3pc7UmOhx2tL7mgZV2q54+w8 9OUOl7DWkxBLZ8LQDe/JGv5SKtZ5U7tkwrh7+PAtsmiEfAKAjswlZreb1qpSiKS53eRWTJgb UYENm7nYms1iRm65csf2OVTj4xh2Rt4xSBpI2BRUo0GbDUOI4efnJ4GkC8YrsnHYPK7G8jC4 cWh3qSBh7BPVNU+ETncsv4OmjEXYLKc7jJyBtehItxIhjbSY+CRt5A6jyYckjzhJp44JoTCu QxY/I5nCOs3DImlbznBJu3SMADIUUhMj2ETEcaNv9BaMV+QIXvO4DJ81kYfBI3h3Jh1jIt30 StrThNnOSVN5JYaVcQqlKKbq7I8t3ZeAMHIr1Dnbm6707rhojO6u3GBAKSyJHmaRPCQ9TR3O wykGvX7Ij/7EIWMirYvMSDft6XG1PXEYTa54d1MVpursT0vS6yqMueKpKkYkki6Xb0keC5c8 DJ43J+Xh5Dvz7hQ6SS/H57wHEDYCYbTp+PEyeqdAbYKTjGsdU3X23yFpRm7ZpztiKzWt5zaT d9XFS3fxw9EXLFWHq508zPqCpSSkKTcRD4gHsntgnN4lfeb7O7IDauYf2gWS0Uk3g1AMFQ+I B5J4YOo8a5Mik+Cq+Sb+foCQdM3xEtvEA+KBp/eAkPTTp4A4QDwgHqjZA/8BPpZ7eLtqzU4A AAAASUVORK5CYII=</item> <item item-id="235">iVBORw0KGgoAAAANSUhEUgAAAWkAAAAVCAYAAACE7B9AAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAV3SURBVHhe7Vw5cqwwEOVccwdfg1P4 CA6IXT/3DcgcO3Xq4gST+Qb6tBamtdICtI1F1QQeA9Ovl9eLBAPrR9dA10DXQNdAtRoYqpWs C9Y10DVQXAPzNLGluBR/SYCFTdOsAe4k/Zfs37F2DURoYJlubNT5IuLqfuphDcwju02P1FiE pJfl+XJz65hal58SEM+EMTmWZWIjIgqKfq84JzmuK4Q8eQ8KxmUamVJ/cpKexwFl47WUvw0o S8xsHG6bMCexZ7u8dUyty08x9DNhLIEFkwRF30fOKYHriJxnrjmMESXJpCQN7dKg9UsmSa/w V2Fut3bmXq1jal1+SsA8E8YyWCBOR5Zy0lEGF8V7rjvnHMa1gJW8qJM0EOYwsAF9js+koErG hhYEvd0b3RiyDZ7BXKcm406n8VWIKUpZpeSXHdOM/SsVCZTCGGUI4smFsCQvnArhWtMO79yb 8EPgSzFlQCQNAPBogjEgz0EjWqJv8QLZrKLhWkclDV+vg/IhWE0L2c4R+Xl812JCulzxU5Ph 19eXlkTf39/JRrlOfjPIuBGNpIzFErrHvsRlOehbIcDXYTR+JcJGPz8/7H6/O8X8+PhgYEPK cR2WSHtBPDocsnlc3Efb8UM1KgmPO8BYKpB4FYqqH6Mq1W3qIWMfSasMl3s9EePjOUTvJLJh IhIABPfLy8tGAEAEGklnlR8HfoigFYHrBYAgdfldhG/pMz6T6hL6HdFGINHb2xv7/f118jDY D7pJflRqL3dyaB+X5nObder1QzVhcJC0yjZqNCGJWQskY8GP/w8vANpVq/RKY+FQaUoEF6Wa FNW950O5wZZNDXxmosiICToJiuhAyL4KTTggskEW+e3KxF0huhaIEaFG+FaYpNP5HdVGgB+q ZXx8f39rfwuSrtdeQNKurrV1XJbORaZ8cFJlfqjsYI07wIE2A22VJibulbQd7ZAePK6gNBSi ua2vAqI0hdRzHhhsfBAzdouXEtORZAPtJtjn9fWVf7Tgzyy/0PoVJP1PtqCyDd3BwW0yQocn kqye3K71uyM2Aq3g7gZstFXO0lU52VVsL18l3TquMEnX54c2SbvmwqFxh8aNZnCkq2iOBo5z 7m2OOwpholZpECQw8oAgh4+vpX4QaMruJuG4I2AHbn+1fmGOSfAIhVQE0Ds4qo3gZ2HcoQ6T pMFmkGDtI3UM0e0VGne0jCt63FHYD+1xh3c+KwPdCgiFwFUFJ5wNUgtn87w9fLtBnRATcdwB FZlJzGYrLWCktknkQpSj4g6Trd+3zHFHeB9qyEdVJ0Dcp0+0EdwVSFglVDWDVguGYMPPz0/D Oyuzl2fhsHlcjfmhc+FQr1JhFh0YqnM3E/93za982Vis6q/VEO5Ts+zuULtV8CzaVfHnwoTi lEgAatyhWn1r5JHVJjHZUuoZjSm03TzOAsBth3nUSdUk7Wv9Lt5GcAUkUmUjqKqx3ezdOAX8 bc90ni14zeNSfNaEHzq34O1YzrMC71/w8s0HHY1ern3SFOe05pz4osoxyd0C9dnEN/6Suo3w LVflTJtLV+h31drr5MMs1eJqyQ9XG4ziIT/6E4c4kHaNIJtu515ps9Or5InD1jFVLX9EcOzg 4N2eYmXPCM5XTesTrcJ+V7W9YHfg490Re7WNpddgoVOSGxryw9U/1LtT6CQt55ywb3pSI4vd pxP3FmbolWmUoxw4eRvDNIqpbvl3giPCt/TdHb55cv1+V7e9xChzOvCCpbpxteOHWV+wdIAv +yVdA10DFWhgWd8lnfL9HRVArFQEPUFGVNKV4ulidQ10DSTSwFp5NvTys0RKyHxbez2gk3Rm E/Sf6xroGugaiNFAJ+kYbfVzuwa6BroGMmvgP8P75B+zlvsqAAAAAElFTkSuQmCC</item> <item item-id="236">iVBORw0KGgoAAAANSUhEUgAAAWkAAAAVCAYAAACE7B9AAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAVsSURBVHhe7Vy5cewwDFVd24PbUBUu wYFiz8/dgTLHTp16VMFm7oBfIEUteAqURJFcY2d2xocOPAB8eAQpdYI/7AH2AHuAPVCtB7pq LWPD2APsgeIeGIdBTMWt+EsGTGIYRgMwk/Rfij9jZQ8keGAabqI3+SLhbD50twfGXtyGR2ks QtLT9Hy1uXVMrdtPGRDPhDE7lmkQPSIKin/POCY7rjOMPHgNCsZp6IV2f3aSHvsOVeNZyt86 VCVG0Xe31ZiD2C87vXVMrdtPCfQzYSyBBZMExd97jimBa4+dR87ZjREVyawkDdOlzpgv2SQ9 w5+Nud3a6Xu1jql1+ykD5pkwlsEC47QXOTsdZXBRsue8Y45hnAXswosmSQNhdp3o0Hd/TwpU Mg60Iuj12ujCUG1wD+Y8N1lXOoyvQkxJzipl/zJjGnF+5SKBUhiTAkE8uBCW7MKpEK657MiZ exN5CHypugyIpAEAbk0IAeTZGURLzC0pkG0VDed6lDT8eW6Ud1E1rWw7RuTH8Z2LCflyxk8t hl9fX0YRfX9/JwflPPvtQSaDaBVlbJbyPc4lacvO3IoBPg+jdZeEGP38/Ij7/e418+PjQ0AM KZ/zsCTGC8ajJyGbxyVztJ081K2SeLsDgqUHklShSP3I/2llbKuiABmHSFpXuKvXEzE+XSxK YCISAAzul5eXlQCACAySvjQmeODHCFoTuCkAFKkvf0vILbPHZ1Ndxrwjxggsent7E7+/v14e hvjBuJGfSuPlLw7t4zJybo1OvXmoOwwektbVxiJgPJCsQeUG1VWtyifxQURRk0rdB76UC6zV NILPOxPIhwkGK8V0IOSQQpO9fVREr4mJq0z8CtG3QIxyISG34iRdPkaAH9Qy/nx/fxu/S5Ku OF6QO75Za+u4FEnbGxXqzUMdB6fdAQm0BmhVmpi4Pb1EWwkFlXGq0qFMCqnHPDC4+DzXyIxp T7GB6SbE5/X1VX7twW+gyGz/IgWd6WM6Sf9brhForVk4JEn3j1mcWdx8g3BbHITaaHtiBHfD sxuI0aqcF+fYZKf0izVTzTKGaEU1pKRbxxUn6fry0CVpX1841u5Ao/Ea1aZniDuV9BY+i12u xJSipKHlAYMcvqEptRrz9prA2SozY7sjkluSOPX6hZfY7LbKNklTZjHUGMHdoN2hPzZJQ8yg wNqfmuIVa3e0jCu53VE4D912h92fXXdCLNMDZ0Do6g+kGZlCmPLO2iet/xlSQFSVTDhuC5++ hI17vXTqLCABE7HdAYrMJmZHTV9if+JClGfBJk624dyy2x3xfahrUI/nHTFGcEcgYVCdeg0B 4qYXDOHnz8/PR8LWGK/AwmHzuBrLQ+/CoTm9g7ZGpKlu8KJLSKFqrFb1Z2LH8uWS3R16twru RYfUJYDLjQk5kEgAut2he/LxlseF9m/WyMXPqE1h7ObxCYD1miaOsTcFgU3a5+ZdeozgDCik OkagqnHcwrtxKopXYAte87g0nzWRh94teBsjLTqQFAHS+oPufS7bJ71JJuYBrWOqx/5YMdSq ObxvGuPwKednybt64nXuwyz14GopD+cY9OohP/oTh5ikHeXrn9qHVI3ZAankicPWMVVtf8Lg 2MAhZ3ualQPCoYm8qzpesKbxeHdEkrapGldDebjvsXD9xKBSPGvbQm6HC71/Q50TXphJ6Nsm Zcq+g1vHVK/9G4Nj2Zqp9+THcJi7O9rOu3rjpdp9w84XLNWLq508vPQFS/voks9iD7AHSntg mt8lnfP9HaXx1Xt/s0DS2x31ImLL2APsgSwemJVnQy8/y+KCyy/qrgcwSV8eBL4he4A9wB6g e4BJmu4rPpI9wB5gD1zugf/LBRUDNTsSMQAAAABJRU5ErkJggg==</item> <item item-id="237">iVBORw0KGgoAAAANSUhEUgAAAI8AAABCCAYAAABuFYX5AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAXiSURBVHhe7Z3ddeQoEIU7gc1jYugs nITy2Aw6mn5yJh2MVqCWxE9BXQokt2fvnOMHjxCC4uNWgSnpNvMfLWC0wM14H297TvPtNs3P X2mJ1/y43+b749XVesLTbL7V8Lfpd2ITdvf1uHdNAMLTBI8D5z53TtimJ55f+DlPRgUlPA2j 85xus11w3op1W1TL/cAVrfdJxV17fF3+J4dau753/fWY7/fH3OrECA8Kj4tx4AHPK/UDud+P xhwHcOmjXX1RzJLEYNr1tIXOhbXGQIQHgscNYkdw7GZ2ogw+3qjM9jUeWYBbnjulyiPUF3VD uy72ud19ER4EHjcYHaqTP0JXntfj8V7JCW7LqUzNzWjXC312wLZ0k/AA8LQatVxlEPfAMUYO z6Zaz02dfMxzKKN2vdi+xklCeFR4Ol1WqX54n6gAzwJMKebZXF4tJpKb1dZXwqPCs8QCikrE q5pwBVRbVZVXUXGTysoTr46OcnI8hT3vOeFbEYRHg6dRyuVYVNqNdgEqsvRHY56gnBjzYPC0 uGjCcwU8yw5KtlcDB7XSoBfq2+Me7XolKmsImgkPAM80ZEs52SRMXGG2L3Ps4BU2CZP6sl1i 7Xoh6iE8GhEN1xe3NQaehmf+YFG6rZHGJzxFa9JtaaARHsKjMVK8/v01//n6Nt/+2278/vpn /vMv1moqj2YnKg+VR2OktmXPgFm2DpVHo4rKQ+XRGKHyrBbgUt1MinAjlYfKY+aJ8BAewoNZ gG4LsxNWispD5cFIYcxD5TGTQng+Cp481yk+KqCne9TKuwNV+Mk3E1Mj3BaUzbAeDtvzsLKT 6JXr/khrcoLx/XvLgfaPWqr745BR69NU3dUgZYCA8saENRikbng2+GuQp/3Efq9NPH80Fj5k f1jDrjx+hsQEt5J7NEPIA5JmYO1EHVi+fJAKRqRcsBMen0w3TVneVvRA6TB81Pf8yGo+MYMa 4cP1ebeN8OQNXA9225LdxM5JoHgjFZ6BloePdBpg6oFnU0XFbckH1sPxkJVIVh49J6xmBSM8 QpUhwekgR342HXy5A6KRKobFy58Y+5jhcTZ4uyot5ikqT3xAPszSKHqEDtUZEPMkgdmmCiE8 CUi5ysiZATgMx99ZMr8tDoSeGWBLj/F/7DEdQ41yvzV4ltxQHywHRGztXf8rjw3j3Pdt4vep Tgc8BzS7HO4Uh0AJLiZzPQUlQN3QZgu4fL/RilJugScN4lV4DkC2VdP0VFJppDqh59Rdt81t SQNVc1tBG1DlcbM4i2/UgDmB1ZiTdKXy7C8pEJbP8AIktFVxEiUruAGxnx2eMHDdV16h304G Mi2zA1VSAmDpHU0MtPwnxjzR7KqvtjLFSO1XcFtC+k7Pa2A63NbiWaOXBTlQgtiltiry5eJZ UF5K1jcJ82U3sKk4YMYNdVtpZYI7kd+fc2yT5CupJBYV9nBGbFnYlEdbxVbhWcGLJflENUja OsJop8Kj2faDrp8PTzbTZVCqG1mjDJYGp6Pq3RcwttXW6GZcVd858LzzrbdNwzgoLG2960vo PqNcoG6W1VZfp3707pPg+dE+/dzDCU/R9sye0LAkPIRHY4QB82oBui0zKcKNVB4qj5knwkN4 CA9mAbotzE5YKSoPlQcjRSjFV6wQHjM8VB7CQ3gwCzDmweyElaLyUHkwUj5gn2c/IxVksRhS aKz9pfJYLSfd5wYTPv434MGd3/XqbQHh6bVgeP/F8PR9TbC/44Sn34ZBDfqHS8Y9bk3XubsP 4G7nny90Wa4f/HDJuNFcanIDakt8bG+GkH599mG3qJFtfeWRDGCEW6QcqK6xCPp1nMZqB8R3 hAex+cVxT9yks09jHk9rnSSEB4HnKtclpgpfcNTW26DNZbk7CA8Ej48kuz6NjT2m8J2sC4Lm KD0aayzhAe3ki12zjNbzs1raDJU1BuVUHsi6W6HgzRdN931y4fbvqW+9ITzN4/o3AWQHhzFP MzihAtlffGV+7LAbtxTuvv0rKs+wAfn/VfQfsa1tTX7ViTMAAAAASUVORK5CYII=</item> <item item-id="238">iVBORw0KGgoAAAANSUhEUgAAATgAAABdCAYAAAAxMXo3AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABA0SURBVHhe7V3d1eMoDE0D28Pu29Tw dbFvU0H6mA5STZ62kxSTBWwn/AhJIHAgaM6ZM+dMjM29EhcJsHV56h9lQBlQBr6Ugcv34bo/ r5fL8wL8vd5DtPfb7fn4PgIGQPR43m4R2QP0SrvwnQzcr/B4v5gB/50C90ML1+P284wF7zvN /yFU9+vz56bTx4fY18c+bs+fZQXOgL+eNPgej+8c5Bxcj9v1eRLNQwxoDidDdLRTJ4bCv7LA pQNvS2ulEZ0Nld/3MGnaz8WLYuwzfqYc8NW4TpxI+GN2dVsvgn9dgbPCc32GK0Ryo9uU1+b8 7z+xwJlfLOmM9Jk/WPtfKcNleB0O7+q2XgT/sgIHikxkdHuN3aRgh3S2vS+am7i9Njq8+9ho qN3a1B4V3vf+uo2VWLwlIijFZXkYLWqd1dYSO/ptF8G/rMCZxe9UuDyj7+LG1jYXmMXRm3Uo IIKz/22fn41qYkFxDSLxTJ3VFzXXl0Yi1wJXmN62GqSS+4xiawkGSdtF8K8qcPCgPYy+/ZtG WN7Rk0ScMkKWEzgnWFhU4wsaJm6H+MVrh3EKgvTdiu3rOE0c+bXB1TZilQzsoy1l6/06N9H1 4aQFivp7EPiP7GX3i3Cib+MT9X0vaLmywKEClojPZtTD0KlA5tY0cGfAI8RDlKh0ExJL/7lI 36MB3AuXvW+7lLzAwbOXeoKfm2hews9dq5XYugWmkntg+CN/cj7iT8Y9fL2k7wXXrixwaIqa pJBRFJXM7LmIrHS2w1NP2LSUwFF99+7aCdeoAucmGGC5YDs0aga1W9eEBA6KviW2Lhi0TS71 RCrGDyzfhEsMPXy9Caj0JipwqaBsUVXkrMmmRGzk1rNawxSV7Pubg14R3LgpKmBr3yXAFLW1 rTsNbvS2PoacMPvpvEZwn7AS8kxjQOxoArXJYO/sUpTdsGBE5xu9dPbG1uCgNTdsHS5NZV0E cuAn+271/NiBjSOTNriG3mSIbU0KXBtOPjtgIpH2fT3oGIR1IvyrRnDwWbR0Zn4JBSMKgjcu 9t3V+LgJuota6vp7v6/eZoEv7oy+v5+YCq8cF3JMBIyQmPglbd0mT7gxE0wKRxcyz5Bzsj9A gkHSloV/4whaO50G/7IC51JQavE+Tl+967OpC++8V9uULZcy+SkG1XdP4oI3MVx4w377AsZl uL5C7wVzN1EgwZO0ZQqoy16hNbgWnBz3qD2z2Bk/eUxK6hMn4V9X4KzvlrwjGYbl6AxGHZ4D DxkXDLrkUkrgkL5z0lc3zqEzflFHcrjM/8fv/G7n9Ex0YKLOdBEf50LStphlJEqScCLBIGnL wk+K23aXKfCvLHA2MrkVvQXuba1n1/fCIxmpQ/FnPpYzuosogfNnS29t7pUlbWKz/c1FoPW4 oInkcb9vn6iqSLMkbfmcvshBBFjAycD4DwGNPzWWztsT4P9egfvz/PXXv8//CI9+mG/B6RfL iod9QQNiEqkQuNfDJW0LEHS9VIJB0rYrqIKbSzAw2t5///385/fC34Nz0c9wL4IXOMjQlzLW ORlOmoUoaTsKbxIMkraL4L9ft4xk2Q9ejmLnZfshGaSStqMQLsEgabsIfhW4UQy9aj8kg1TS dhS+JRgkbRfBrwI3iqFX7YdkkErajsK3BIOk7SL4VeBGMfSq/cgO0n3HGjty89UDXPG7olFC +6vArSosk+BeveKZ4qcLR2GurAI3yUBfr5vUGatvZ0Tx+58nq7W2Clwtc9pOGVAGhmdABW54 E2kHlQFloJYBFbha5rSdMqAMDM+ACtzwJtIOKgPKQC0DKnC1zGk7ZUAZGJ4BFbjhTaQdVAaU gVoGVOBqmdN2yoAyMDwDKnDDm0g7qAwoA7UMqMDVMqftlAFlYHgGVOCMiVZ/Haafl5rT+Df9 nGg/fvXOFAPLC5z9PDNVQoEiUX9HGDA1H8aqaK/WWomBtQUOKIbSy/iPh6tA8HV/OLjKivvM TxGHk/lR5hGMhH9pgUsHHqd4C+2aYZHjuEhuj6IzdJ9aXFGN68SJhI9zdVuvgX9hgYPqBciN npZSA6qA2++YTVYHQoZrxLoXq9t6DfzrChwoMpHR9/qQ6Ef3gpDBtveLSW/i9iq/5i32tS/8 bIpr3G2R4uN5JUWtqbhHigupbE89utvvs9q6FSFr4D9N4M7Py4mowRY8TnYXPKPv4layAQEX wgUiOOujScFl33FjQXENIvGMrw8rpG+1LduIXAtcYXrbapBK7jOKrSUYJG3XwI8LnBvkuULA eXKr12ok9kra4gIHD9rD6Nu/6e4fVvg5I2SmvLGN4uB7Ydz6goaJ2yF+l2g3OE5BkL5bsc1G fm1wtY1YWzgKZev9GeBn0dtw0gJF/T0I/Ef2svtFONHPg7+5wMnWaurNlbakBQ4VsETYwy+s pjhzaxq4M+AR4iFKVCQGbVz4z0X6Hg3gXrjsfcc6LuIJfm4Sfwl/zH8PW7f0fc69MPyRPyWB zjz4GwucdK2GYxjuNbTAoSlqkkJG2JKZHRIZ29fS2Q5PPWH0lMBRfffu2gnXqALnJhhgucBG nBcrfG5dExI4KPqW2Jrr162u80Qqxg8s34RZWQ9fb4UrvE9TgWuxVvPuXi5N5BIhFLhYmJJN idjIrWe1hikq2fc3p70iuHFTVGwSsvNTTuDiJQF6MitZz+V6ef11vr/mhPm4e29fr0dBtWwo cKWzV24WoLrM/R0XODdrY5sM9jEuRdlnajCi82fxlvihNTdsHS5NZV0EchxFIft+DOQ9agnO JLfBNfQmQ2xr38W+fg1uB+v7ejDEIPu38QnuSJZc11DgWkcwXizn0oXM3+y0SAgc55iI07hd KBhREBzB2iDA7mhGNR7RXdRSk+7cX73NAv+cHaPvYeQcpl9yXMAxEXQRm4lfVBc19ddgUji6 kHmGmJMp8OezqFnwFwjcFkHcjsGaLMyOlpcTAudSUGrx3h9onHUsflTaNmXLTS5+iuFhJYQh jbakuAzXV7++ZdTfbPSACV0atTJlsewytDA174RBausJ8JPHpCQ+cR7+ROACYwS7J7tD+WlP sPg6WQTnsjIj2OxXRMOwHJ3BqMWW5m8yUAKH9J2TvjquTBRaiyt+VSt5ZlkN0CMi/jERa7oB UKZf5NXIZFDNyej4SXHbWJsBfyJwrtPg2k08iOK0Y7S8nIrg3MKLiUjZCueut+fjXLqZfdWK Gqz8mY8cfK8LKIHbsOb6/kqhHbZcVFKPi55IOP1/s/G430387UbYRwXu2CHP6z7X1mPhD/3h vTSU4qz3idC3++EHUlT/9SLf2VNjxamMOC8PUOfzf97A5wicHSM3M/T1Tz8G6EkkmFRLOnKG wJX0p/Jaxe8FVSUcMuxf8KpWLHDQ+4XcGWtbvO978JMncC6ymezF9xIf+Oy19Dqn6JUyhoN/ Fj/9dMUveKWQYf9CgfN2AjO7gNV5Oe0LhVeocBUSdvrl2+DmLdSDnWM4+OmgCh6o+Pvbv1Dg zNdvr/uRhw5rNQW+wbhUBY5B0scuEUUuR68nFjjFL4jcCuxfLHBFa/IfGz72wSpwH6Ufe3jy bmNlT2cVOMVf9RGPxEsY9leBqxxb2qyege09z/RvuEu37/piR1MYDl7fy34tFf959i8QuH4G 73NnjeD68HruXVeveKb4/QPi5b6nAlfOmbY4hQHqjNUpnfjgQxS//Y4idbacMpAKHMWQ/q4M KAPTMqACN63ptOPKgDJAMaACRzGkvysDysC0DKjATWs67bgyoAxQDKjAUQzp78qAMjAtAypw 05pOO64MKAMUAypwFEP6uzKgDEzLgArctKbTjisDygDFgAocxZD+rgwoA9MyoAJnTLf66zD9 vNecxr/p50T78at3phhYXuDsZ2ukr4NQJC/9u/luYN8Pmy7NroInGFhb4OJiKB3d5fEoqf3Q sSONb83BRddkaNypD9+Ow8mHu9j18SPhX1rg0oFXVvwi5yVhrYq4GA//s+5dvbDi5tW4TpxI +LBWt/Ua+BcWOKhegNzo6SfbgWpjzcsG8od17ZUyXCN+ump1W6+Bf12B41S2P6qPsxfprNP4 xaT9CmVhZfu2RXf2qPBuy+gdHxMsKWpNyZ4UF1SgiHpm79+jAT6NrVvxsgb+dQXOFs1JhMsz OrP4re9ucMGdTL3YTNGe7X6xoOT+73j6UfP0LWpNvvm/374FrrjEZKthWn+fUWxdj0DWcg38 ywocPGgPo+dqsh5CAhV+bl342hc5SPB894bSjfj/kL5bsc1Gfm1wtY1YZUP7PYnYDyrmbP1S d6C4dBtOWqCovwfh60dEu/tFGAvMg/+LBe7P89df/z7/y3iAFbj0+IInAknVsPALq6lA5tY0 cGfAs980MoPhQBsX/nORvkd1DXrhgvmuH57ylpit97u/hD9O93vYWo6o7A4Y/sifkiI58+C/ //7n+ffv+/NSRs4MV+ML23gEZ7NEE9UEBaGjKCopeAKJjOWpdLZLI7NLsK4HcU8JHNV3756d cI0qcG6CAZYLtsIwpmarW9eEBA6q5yqx9dljyhOpGD+wfBMuMfTw9U74rT8bI6vAOX79mSly 1mRTIjZy61mtYYpK9v3tXL0iuHFTVGwSsvNTTuCgegGSaL3TAM/eFvH1pE1vX++IfVWBc7M2 tsng9M6uTe0zNRjR+bN46eydmwUPoYWihtzOaJrKugjkiEDJvh8DeY9agjPJbXANvckQ29of b6DAteGk47Bm3DqakH1fD1pDWCfCv6zAcY6JOI3bhYIRBcFprw0CbBXv8JgIlBYxvDJzye6s V2+zwE+vGX1/3zgVXjku4JhIsLEBpXsMNkR1UdOIO5gUjsdnniHmZAr8+Q2YafAvK3Bubazk rBhnHQuLysIB2zZly6XHxzM5ffckzoh6WoSZJ0IwLsP11atvGS9au8FeYov3ckJ5O4ZwkhHc 8fxKTmbATx6TEvj6mfjXFTgbWV2fN/YromFYjs5g1MHg5m8yUAKH9J2TvroM1kShtbjIV7X4 g8WtmO0R8Y+JWNMNgEIBoy5HokQRJ8FzB8NPitvW+SnwryxwdlPhxlc4m7CaNxX2NwWCHdZg yjeRIVawtsyZqfG3/U4JnB/xpGf4Xim0w5aLSqhCxHlc1ETinp/lM2XgYc6uuXlJlKLymMWf Uc9JGCSOhT/0h+PNmPymSn7e4/l6V/uvLXB2jNyMPOiffgwgk8jrMCkv1Uv6eIbA9SNmF2hs UiEervjpCH51gXPRT0H00NPfv+/ezHXOqjW4kyK4M4yi+CvWYJn2V4E7w4P1GTgDvFTm6yK4 FyDFf80ujSCew4lgVeBUfD7PgA7wbgP888Zl9KCj/VXgGPzrJW0ZiFOy2l1lzgzetudt7qb4 w5S0p/1V4Nr4rN6ljIFwpw46A7fvWGNHU2YVOLd8tB/+djvXij/d6GtkfxW4soGpV5/LwOoV zxS/d0C8xvVU4GpY0zb9GaDOmPXvwWefoPjx86RM63y1wL0+4vg+rGjfCaUO5DOp08uUAWVg IAa2T1wBf7/zc0kDMa9dUQaUgY8y8D9ejc65fkHe2AAAAABJRU5ErkJggg==</item> <item item-id="239">iVBORw0KGgoAAAANSUhEUgAAAKQAAABCCAYAAADZqH3eAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZLSURBVHhe7Z3ZlaQ6DIZJYPKYGCqL ToI8bgZEU0+dSQXDxbjYvKBfC1QNaM7pl2lbtqUPSbgt0/T+zzXwRRpovmgu503l2fZN0/bP 80a8wUivvns0/aN7qdZ6MyCj0prWUVRRs9P51T1UD/uNgAwwPnrlA3yUHS8m99m3wgh0GyCf bdPbO8bocWm5b8/cDN55+KmHNVQeh190bEQmQ9ar6x+PrucG8HsAGXJGmhrEIqs2i3H2Radp QvAeJShReZxpomMjMvmyQvjm5pQ3ADIo0vYFJuZJg7cb5LaUhwyeoklShfCArLwHSx7CztQG GBsWJ5LFD93XBzIo0tg7vrru/YYOhNgEvhGA0bjLQ8KSBxM0NATGhsUJZYWHjaP+ywPJVQhs oEgWmUOO3i/NpUreBpTHmR9v7H3JYllMh3BxIO3D9dZsDmSWjmRc82xwcSCHHIb5phfexsf8 sPSTxR4aSF7YBORxXKQwzBaHUMh6tvh227WBZIYLjq1jWwCgJF8cu5WMi8rjTJI1NiFYIYuT NjmQHAMXwxG1D8nZLgEAZ82XMzYlWC7LgZx0OzzV7aF/mikDFML+dv8N3VC2BnLx4lMKwt0X LOXMXFkO5GlAUl7Ffz8+Eoytn8uH7GM9pAOHaMCBdA+JcHJaGwdyUvXvT//35/c0xftAZQ38 /vzp//6HacdDNqYnb6XQgHtID9kKfOy7OpAOpD1VCokOpAOpwMe+qwPpQNpTpZDoQDqQCnzs uzqQDqQ9VQqJDqQDqcDHvqsD6UDaU6WQ6EA6kAp87LvqgazWfOxPNq993jt2FSrS8JPEIjWZ HT9Dj4/NT0K8IWOnDnt7Mj3Rw6j/5NQ68+T7oi/u3BFN847JfQTIsQhoc8QfONApLCZHVDa2 MQESWMdmQnT77LxketeQWR05PRdYl3NDfv34B4As1N+Cdbz5YVa+iqo9LIAE17HYi6jDBqKP 2S0b3LkTqpfWj58OZO4dh5WhRUHV+hIDMC2ARNcxTZdqT643eKDhxodVyM/KaFHVUHNB5bzb SevHTwYyuvD0aDxex3tgLmkAJL6OaDWq/fT753T7xZgrrm/WKFy1IkxtqLkweVw1/+ocMiow rRDFlUEvjleautabvqYGXwcDyPRuH/K+yrKOKaC4c6fkpS9K6I0Uxh4y5ofd/ESnb8YVDweH i7KHxZWz0xLwkCTs8Dre8yDaFyEhy2nph7aoBe7cYaXz5iMCcvNysUmG49M55zHZ01x5euE6 XnpxJDQ1RQJAkjaA1zEnWpt7e8b/XYNRzCFXOih6S2Faw507qYypAW2ztSgRkJsnd6O0FLiY dC/VpTUPh245CJWNKM8CyLf3Wra0atfpbY1Vb18w5gbCyu9F+5CoDRBlbhAj7zRSAzndwhA3 c9fA5cCk2xLFt+yY4pMbxPVbHLhKKrQ3AZJeB78Oe6uX/L7zd1SaNsdFMCYPCHlZKkffJ3jI +nRSIFMPOcYk8V9dvn4fkmMnb1vUgChk7wO5uii+so9W95I7VhJuZ8B2N/OQ8IjesBio8Dsi garD6P3a4QarPJzL8wqNV4Wt7kDCqjqy4QEe8uBDEEdpw4E8SrMsuQ7knM/rN8ZZmvfGZ+SQ /7CW3UN+hfGMPeRXrEk2CQdSpjfjXg6kh2xjpHTiHEgHUkeQcW8H0oE0RkonzoGc9OfX8elI Murt1/G5hzRCyUaMe0gH0oYkIykOpANphJKNGAfyY0ACx+1sbCyQwjsyVh5Atj4HcgWk9Zdg 6yQcdRhWwF7WhV9LnY8qX58D+QkgjWugLTAMMqS11DnT9He/a3N2IGfN8D++KQbhsIIq8YzG jtJa6mxUxfr845uzNkOYWdc864y71/u4klOrOetySPn6eDYADuhaKeQzcjjhQjNDucE0o3L6 fgjIkMqgBdzDci4PZLhwiqMQjok3bRUhTTwmq6MOSPhqnGROXIdwfSDHyscTwvZhNdAs6nYa K4EUrY+v+xsAOdjI7Hq73SwylvzO4Ymq37YCDZWjBJJdnx7f8LmfQ74HkCOT1IfWUcMCUJrW QFvMa3zfZhX3l0dlbIwLK0pvA2Q0yD9arGbF5GlyCveFgmPfCMjJSziUIBvCZnIYw4A3A3IJ Xfn1JUL9e7e3BqZwrnuBvCGQTtA3a+B/gZVCYL8WINoAAAAASUVORK5CYII=</item> <item item-id="240">iVBORw0KGgoAAAANSUhEUgAAAJ0AAABLCAYAAABqQYXkAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAbbSURBVHhe7Z3bteMqDIbTwPQxNaSL 3YT7mA5STZ52JynGw8Uk3GQJGxR7+T9rzcPZxkYSXwTC4c9txn+IgHIEbsr9obstEXhO8+02 zc8t96rf85of99t8f7zIngGd+qC0dOgH8DadA7fYs9fjTn5QAF0LA6ptLXD3eSVhqFoTOnu9 6AxWGvScp0qGBnRfGTq+0+d0m8UJbtD0m9qQT5sWKMGH4vWY7/fHHKMK6Pjx129hIRITZ8wb AJ2bHhMbKmu1ClC1YNlnxWs8QKePFNOjHVyuaLBZxqz13D+TbR55oZFdf5ps01SI5NPisrYM fUYw2my4VjR4Z9PnAbqjQWezx2qWq01zFr4AKnedd7jMcvYeoiq1WTabPqlsF9wCdPwYqLaw A77KXG0qjf9WuU5WkhbwIgNSWx7U3xvWdotjgE4VKa4zfmp1AOWZJYKHu/62wMEZZ8hwxU/N JfjrMPJL0I9vgI7jQPW6GXBmquKg4q67FZZZh7m1YHWtR2Wu1gxY2UCZfLUL6FSh4moIbj1H VKrM9EpWt9XpdVSmM6vCZekA6M4G3bKg/2xnhEo1LSTo65HDmms6W4oAuiPRtthiIJhEryDi LYzalkm6xTFNxLvbKnQejto+oS9IstdywurV1b+A7szQNdpObR4T0Pl9NcHbhmV9yO/TeXsB XeO4qTQXZ7pGa5qho7Nd0rPwjUS4B9A1jptK8wNBFzaD6a0QeTYEdCr0bOzk92f++/O78ebj 3/b782f++w9bJscaqVGZ7iBeYno9yEDkayRZ9XpE43mbAB0fI/0WyHT6Mb98j4Du8gjoBwDQ 6cf88j0CussjoB8AQKcf88v3COguj4B+AACdfswv3yOguzwC+gEAdPoxv3yPgO7yCOgH4ATQ tclKpCH82muwPUbrU7DeY3dftkI34IS/9byLrEQUQhl0O53pbXQX6Ny3ZWXfio37U/HlQND1 lJUIcRwO3QijvwWdmi9i6M4mK+FHjoCOcsYf9Hh/i9Rli8//l2cte2thdMEteN6Y6RR9EUHH yUZw1/lYjpCVIKBbNzYxxEy7d6OdFg5k5CIqfY32HwTp4Q82pI3Ta19fGOsk0PWQlViShj/h n5/mbz1ULf/aepnpJM4sp8/dzfZYm0t9WRakhFbIv8uNZoGSNGiCbtwAVE0VQMed4OeuFye9 ingoHraWGesP9D6tPICVJHAQ5tPPOKO9HALxjxfT2DC9jvPla9BVtO/SImmcrESR6Xjoghxp EEJZYCuOoY0zWpLI2DbJJ9v78AiHiIuqtrMv2Vq4sFWQ6aoSEVtlJZwBuY/jPmjt02uoPh4h wy0QGkG+dL01zuitmS5ZcxbQmcwZRGuKJcY4X7ZmurCc6SIrUV3yjFtSVKrXXMk718hw86qb 3j4FhCkm4qrWF8aEpPtOfTM2hdENkiyeyCDkUOXi0sq+SDJdFGNaiVMiK0EXaMqyEpxGRjpI XtuilCrta3SP6jXz6626XE6fucB0X186VK9bPnx5Buem+XPKSsgrUplm7ZZIS+7J7cwzXW3N Qz93ty/iTCfxLWoTQ8cCF+qtuohO0nOxnl+3S/ZGotG3uDmVIfYYvcMc4tZlCREqX0KBSM0X Bej87FTuAFDKmyeTlcj37/Jxl2fD/rCFJ3obJrMF9F4fVX+bQ8mXUdCNC2DTk4dnuiZrvtb4 COBHzgO6r5Gg2DGgUww29Ok0gy3uC5lOHCo07BUBQNcrkniOOAKAThwqNOwVAUDXK5J4jjgC gE4cKjTsFQFA1yuSeI44AoBOHCo07BUBQNcrkniOOAKAThwqNOwVAUDXK5J4jjgCJ/gdiT2q BvgdCTEJig23ZrqdSgyUh71VDfAtE0WWxF0dCLoRqgaATkyCYkMxdJQSQ7A1u179Bes1v8ao GgA6RZbEXYmg42QjuOu8NaNUDQAdH3v9FvbMAXdoXKLEkB2WKg5QLaf6/Lel84NV407AATp9 pPgeBdBxh+K56+ablEZA6ANamdXGnfUFdDwCX2hhBjwc/CZ656DirhePzSCkf9W6NQOWDjg5 EnMG5faFyKJLMgJBsmMlRBum16oUxdKFXqb7+AboDvYRCFMQbRanxMBdf9PmNAZvhX5La0YT njOJlg6A7mDQuTUXV0ws0h37ZCXi7ZVUDneEqkH8YQJ0R4POAVVKdewyk3ljkUtp0Ou62jpN IliZ+gTodo3moJsrGnK7esqlxJJipT499lQ1sM+Klb0A3a7RHHdzmX129JVlulRaglKa76Rq UNE7AXQ7xnLsrTUxn7E99n96/jrN9wDo+ke64xPPDF4dOEDXEY9xjwraep2Li2EG8/Yi0w0L Ph5MReA/Z1CncyH41NsAAAAASUVORK5CYII=</item> <item item-id="241">iVBORw0KGgoAAAANSUhEUgAAAH4AAABCCAYAAACRm2JeAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAT0SURBVHhe7Z3RcaQwDIZp4Pq4Gugi TdDHdUA1+5ROthjOMngXjLAsWRvhiTKTlyzYkj5LttnfZFj851dGYPiVXrc6/ZiWYZiWR2s7 ovufyzwOyzg/RXenmxw8K3xr0IfJBvne1Oc8Ng0+B18NHqCPS2OiVfdWd+FjmYSVx8HXRXh5 TMMiT/StUgyhWoRfskw/52XcroXr4+84L2hxh2uvPiv45uBrwMOcLqaeTw+QpQR8Zn9Q9snB lPnp4EnwAK5hIRezN5siAGwhS/nVhV/yHTwFHsCJsz00jkGOg+FqMK1riREWkVSZ39kOWc8x 08ET4LkBzZuLq+88u7Eq8LoRmQpq5nHmAHXwRfCNZT60zQePGbQOhnJG82x18EXwIeDEihnm 41dJzlfiQIpd6jGD1gUiVcofU/1208GXwDPLJ9oUNp+XFnfoU0HIeBoqZ1py8J8GH3bfx6d9 1HYOyW5iF5BccPDUSr3285Ctk8qjuvIDHJgujvvwdXBwVvXgkoOvBUtdpwae6kjncwevE0dI IaWM1zKo3I6D14qzg9eKZGftfH8tf7++uzH6++vP8vdfnbm+qidW9TqLuzoYrVd5qW+N4Ht/ 5HO8Viy7asfn+K5w6Rnr4PVi2VVLDr4rXHrGOni9WHbVkoPvCpeesQ5eL5ZdteTgu8KlZ+yv Bd94VOisFmXqy18IMQVKnTihaRSIwTP95OjoCw7pPblrAB+1ZgetEFeQ8Hp8tgoZMM1ZjQix hbwIvMBPpo7+yqUG8HsBQJD6zOlwYJZx2whNXM+CQkTnLdCXr+fD4BTJFLRvuObsLGJoIZ3d KwEv8JOvo8d9FILPT2GmQbDqvw8ZHEboCNrvTZ2SB/+c7aEBgejwOc/bidSC2LBSliQaDhLw bD9lOnrMHxl4rKzv/7ZzKHYwpWNFORT8GG+bzLikMv3gXC8Az/dTqKNHyIvAXxucTny8y3eU 8T7SYb28rOMacH5A9p6VwNPSY1ICfT1psr+da/MzGVKjoz8b/SHw6ZhwEu5vwE8LrIsMZJdA HnjuocGq0i/IeMmUhiCs0tHn94nAR4Pz81zZ32LDYd5dj+VuAyEsADGF6En8z9WXH7zqJ+NB p3c6F/chHb0O+Av992EwxIHwlgJDyYfDfUfIV6/qEGxzivv4fVmkDxtUZfg5kuxSH5bBP6aj VwIPzewfPOy3c/jcc/U6DnRVH5vg6suPe3n0CNHdVvUiP2U6ekXworxAbvrgSjvr7Xb7eK0Q CtqRzfGCjkq3XGe9Yke3fHKn6B+zqVuAT2WdOuHJ9G13+Q9UFcmqXu5Q8503Ad/sh30DDt6e gYkFDt4k7PadOnh7BiYWOHiTsNt36uDtGZhY4OBNwm7fqYO3Z2BigR+TNgm7faee8fYMTCxw 8CZht+/UwdszMLFADL53Xb1JtG/UKXz7x/6WiSvECP7a6+pvFPQ7mCIB35+u/g6RvpsN9EuM TxazRaV6unp/ibHa+OG9Chy65curtXT1PFv9dWfEIOGIG2TgMQMEunrmtOTgqerADKiVrp47 QB08BT4qgxn/jMhEV8+0Mfjs4Enw3O0WdzuHHBZhSsYh27kniRx8DfjInv7XIO+muOcHGnT1 QqWxg68Ev6qGP3Rip9qG/EL+/5tLLTh4VtDvBF8OHVx28CzwccO2vZqFseBj91G6Qad/B68K pZ/G/gMHstaC2FqB2AAAAABJRU5ErkJggg==</item> <item item-id="242">iVBORw0KGgoAAAANSUhEUgAAAHsAAABCCAYAAAB3sqkaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAS6SURBVHhe7Z3RlasgEIZtYPvYGuwi TdjH7cBq8pROUowXRE2EQZgZMLj57zn7cDeCM/MxA5gft5vw72si0H2Np1pH78PUdcN01/Yj av+cxr6b+vEpar02Auxk+Fygu+EzmN/Ne469asAB9iFsC7qflAmVHE68C+7TIKwwgH0Q6fvQ TfKEXipCZ6qC+UmW4Oc49cu19vr5px8nsnDba2OfHfgD2LHg2DlaTNov/TYbE8CZ97MlPTmA PN8Am4RtYSkWY3OWeuXfwjzIRn4V4ZdzwKZgW1jirDYdUmDnARAbQG5t0NuFYKqEv9lrs5tj JmATsLlB9LuYV81+FlPZvjUkynzOvMwclIAdwFaWcNMfHzZVXtwAOM5cnq2AHcTZBDmx0rXz 61Zu/RW0pcMu4+RcMu/vU2X6PuRvDQE7rMG6+dr2R83PRws08umczew0SM6UA9g1YJvd8f6p W2rr5a7fZXFi9b6aDdi8R1L7q01WDkUemR0/VLFTwX6f7AYEZzXuikj+ihyZTWR2GdiaEZff FrDzYxVeWSyzNUbktwXs/FgBtiZWl2/7uE2/t8dl3Hjcfqbff3nmYs7GnJ03Uv7kVZiz/yRW 2inABuxWI4DVuIYMMlsTvYu1BeyLAdOYC9ia6F2sLWBfDJjGXMDWRO9ibQE7H1iokmTqp7db Ed/xmsM3OV/o51tLXCmGzfSToxM/cOhjW69Ze7X7Bp77Jf7q1StwgSwnR4inoS2CLfCTqROP uSSCPeuqvMhSv4vHkdAxC/TT7jyTPQ0xGC0YrcEKv/jX0PXaSmAL/OTrxGMP/CTihUAHlaNu fBkQZrX5TCC8e47jclKSKuPL/TIlO6IhIIHN9lOmE6f8EWW2IbOXrvrw5/+vshlf7E4fKdVJ ag9g15y7BbD5fgp14uQSQ5LZcyK+SvmuhHtqyTCL6SrAD8K7N0ewjz5zfSTlvvFJkK1B0/m5 GsKrpNvqRqxB27I5ceNAKhtZJbPLGw8292BbVlkXZLZkugptSQ/ggmV8zgdXys28GT+XtJx4 2Ote6dMLXP30zpvrZPaZOnEfuHDOdt1sq2HqKMK2N/TF67HXQAi2JJs315mzTdRO04kXhe1G aerYSVi2ydW4Gz4uEJFD6fFt1IVW4yI/ZTrxsrCzJja3ANon/wlPtxbbmttnZ8asxmWqMk4a FCy0aLDx7C7oZpNP0Ar6x+yqPOz3uXwux7EDZ7IVZb5/J1QPyWo834HiV1aBXdzKVjsE7FbJ VLALsCsEtdUuAbtVMhXsAuwKQW21S8BulUwFuwC7QlBb7RKwWyVTwS4c2a0Q1Fa7RGa3SqaC XYBdIaitdgnYrZKpYJcY9pfpxiuE/vwu7bdqqXdIBlZxxQumg0/qxs+PaqN3lMC+nG680dif b1b6RbWBTWxhZTndOF5UqxohvNc621vxpcSldOM8W/FqLGJgcAQBMtjUaBToxplTDmBTcWcG 8VO6ce6gBGyy5PPK42d040wbjZ+AHZvfWVsj7tZL/n7x1Vz8qSfVwixszDtWy9XHK3TjQoUt MvtwgLgtUpF3zRcbiPy/57XeGrCTEFoCLgdt3QTsJOx5c7UcYVL8Fb+s+8QuKnN/wFZBuFbj /390+a52gF/2AAAAAElFTkSuQmCC</item> <item item-id="243" content-encoding="gzip">H4sIAAAAAAAA/+zcd3Ac1R0H8CeMM7TAhExmMhlmkn+SwIShzYTBA6GbYvuPUAIYbGqIDTa4 yJYLrnLBkmVbvffem9Vtq8vqsmRLLrJlUZwYCMQGo9gBQvJ796TV3rb39rT33p1uNV+L094h 3fvs6u1bSff1Q9ciNOOlGARvjzrez4R/1181ceuGqzb/YuAGfM9jN/0G9cCWfrQB34nwdvzf W+HfBsd2hPzQLx33PXyHH1K+HWzvsmPHB9Jpx44dO3amQQ54be4LyBf+HHwttjmfhC5CictR 1hpUtAGBeWUgqt6Gqrah8i1I+HMzkcNeky0LUOhibJ6tZZ67Dgl/htMsK55BYB5mm/M13+ow T9IzX2ubu8F8ocN8hbZ5jm3OlA79aJgHTh9zg4G7N/MXvqr4ULFFHmIe/s64efFGbF6lNBc2 Fi+KhGwMDincgI9toC7ZhEo3obLN2Byo928dN4cdIXw43hJCrQDPDMCGcOjmrUP561HBB8jA vMIRmGcgcORXOY58OP7Z97gPRj12S8wVsdkVo3bHca6ZKhU+f/Y67tnzNwSX8HA2rJuYxsl2 MJQek8Vmvl9tvo1uDvtF/nykJzAts+tNtPuvSDIfB2/rkILZHTfcbj7xFdXPgQdFG48Evop2 vI6I+V7pONd6JEhCeJpL76dTNr+C2M0lefCs2Y7qd6GWENQRirrDUE846o1AfZGoP8pvINoP HjMY63cs1q8/2q830q873K8j1K9tL2rejQ5+6Lvma19AG+YjYr7T2TzC0Bx4gXQoDp1OnnEu +5ovi356ofTGi2U3flN+0zcHbrnUetul3nvhAd+OPnPp7J8vHn/iq777v2i7+/yh35+rvOWT optHM68ZTsK7A3ZE6x6nXSA3l1NPD3b/55Cu+WKK+We5P7lQfB2oXqm66XLlDWP7rxur/tlY wy1j7beOdd8x1nX7WNcf4N5/d952ue+OK8fv+2700e/Pz/vh4gs/Xnntx/++/f3Yy5fPz704 dN/nLb/7tOznZ5IR7D74HgH/up0Uc5jH3I/T7o7Apfqk+QInc5hV0lbhK0c4/Nr2YAoAAZZP 0tHfM9FnOX5fFVz9VcGML/PQF7mITO/nMtGnGfgBkI8haeijNHwXfAjb/5GFPs9B/8xD/ypA XxehS+Uzxw7cdLnlV//p+e0PQ3f9ODLr8pHbv2769RcVN5/LnjmciHojQbUdkMknJyFb4D2c PnLXITexuDUK820O87DFKMUfn/4aglB3OBqMRaeT0GgqOudwO5+NzT/JwJ6KgAl1iyKwm2BH XChAl0r8xsquvlLxk++qrv2h5nqFszrEPGuNl7EDOGSVzDzoLZSyEpVsxMd2Z6jTgU0OYDlX /Ps4GavxWgXOpGQdokCmmiseLOXb0hlj5TMNnvy4eQD+ZhQu6bI5HN6gV7cDte9DR2PwsQ2T A1B/rHKWBy5Fi2TmcEPuzGIuOcs3wnfThUIjTLl54nLvYCfgxBzAo5bgRXXTbljgoZMJeCb5 ON2I2sAcNCRDPXP5IW2wO6an+bMYPPY9fP0CqwU4vEdSMLg06o0v49WLWXMSBSmjMwt7fzSq D8K/5nOrea3VIeYwqyQsx4uTw3vRsVgMrhgymIe5ai6xm3XWDHzfkTUPLJPgzHs8Hk+Dkjms aS0nqm21OMQcrnoAHCZwWJzA6VI90k008yxivnXcvHyLknrq2vLAwgnYYYEKJ5qBaPxjBGIO K1vLidxhDgsVOEqbQ3TBsfkrrOZyZPlxLs0qVrHDkvXLfLzChDkQLoRhVvQiczhvwpEJFzuw RNEbIFycwnD0wOXO8uNcYS7N5/LPLFyAf2Amz1mLfzAFE6PBQaU2lzvj49zxi+YK57lF01zB LlyAfwCzejs6EqU7q4ybLxg3lzvLk23GXH7RVNt6eCLtstvuiMtKFj8TuMaH8z5caRqAKw5p jSwzZy4/2t3s7IkJfgtf4J/Qmljk640tC1DEu/rnUJl5NbM5+RLkaShWOPJnqLddfpd6XJob PST7FuFfNMAlp/EiYauheYLafDOTuXSc67mp/am3Pd8c0hjMYL4QRdLMS2TmZRaZs4/CYO94 YEo2UeZzSCDVfK3F5mbR3Gde44ZsexX/wJZuvkTffDlecLpmTp4DPEDxrNRblGmZfCSJuf+d PS1uSVUgOpWoC47/4PNVfOmkZ55IzDfRzSsrKzs6OoaGhkZGRkZHR4eHh8kTwETOT0m9RZ1J ba273GRlYXoijMy3mTQv1TKPj4+30FxP24vMIf3R1plv0jBPSEioqqrq7Ow8fvw41ZzqNpV7 PSoDWuxgvv01FM1iHkgxr66uNmWu2C7/UHGvdNtgwvHMwOLkWKyO+VIj81yHeaWheWJiosL8 1KlTBuYKQ835x+Aux402K1jaOEQxt4P5DkPzpBVK8xId85qamq6uLmdzHiPylkg/2iXmMcbm 6/CxPW4eiBSfynHUOW7b5rS0hEyYv26NeW1trcK8sbExfTX+JPLvC3Wkb7qzqfjXtcJl3B0w 3wnm71lmfuLECWJ+8uTJhoaGDAZzOGWMpuI/KBWuwdM8Vt88mdm8rq6uu7ubmJ89exbM6+vr WcwTlvmKtmT+4RsU8zxnc/LH+VLAHN5rmh88eBDMjcEhce8LM69uFhBiHqf3w3MwX+lkjt83 txFt8hnAnNw4cOCAwhxmm8wAujnscSFjFxUw38VivtnJnLCrzXt6eiRzuAErdhZzWKkKd+Bt /qaReYqOucSuMIfDWzKvqKhgMY9a4lvmK5/F5nrg4+br8c8S1eaEXTKH2ZuYn3W8gTlgZjGY R7zjc+ZBNPN8Q3NpklGbR7OZCxVo5R//5/BfpBuZ+6vNWxVLFwd766FDh3p7e53Ml+K/jWEw FzBwgQHzYEPzVC1zzSjM4YLUNtfMKqvN4ZJfMo9Zin9/bZsrzZ9Huy0yh6vOvr4+J/P3bHON rH4ev4CO3bzCjHmsbe6SeZo/fr35pPlWVPiBEi0oKCg7O7uhoUFuPjQ05EXmVU38vlbAX1CI sfkqpXmBvvmRI0cU5jlrPdocqPmH0bycZp6Tk6MwHxwchMtbFnMhAxeYNWD+NoP5Fop5bm5u Y2Ojbc5k/gLaY2iebtJ8eHhYMo+3zbWyltm8St88ODg4Ly+vqampv7+fmI+MjBw7dix+mW3u onmhs7kaTWE+Ojoqmed6unkL/6x7ETeKGJmvZjLPz89XmB89ejRhGf69HoO5gIELDNWcFCxI 5vu1zHfv3g3mzc3NAwMDtjk16y0yLygosM1ZzV9C+6wwLywsbGlpkZvD7cTl481pBsnzPfMP wHwRxVx6sb+eeUhIiGR++vRpc+brfM98vjXmRUVFYA7ziVnzXKHmlY0CsmE+LmEwMJeXWlSr Si3k5q2trZL5mTNnYA2DzWmTOZgLGbjAWGK+Z8+e4uJitXnScvoJFBbwwhE4h7UwZyvdvK2t TW5+5MiRpBV08xyfNGcqzDE037t3b0lJCZjDtadtTo1rhTmK7Nu3r7S0VGHe19fHYp69Rqx5 M/+wF+YYmIeGhmqaJ7OaCxi4wBgX5sTTyltIwsLCysrKDh8+DOagDeYg39vbm7xS44eQimT5 oPkCC8zDw8OJ+eDgoGTe09Njm2tmi7G5qrxF8SJokoiIiPLycrV5Cot5gM+Z4yKRKZtHRkaC eXt7u9y8u7ubxTzTB80Xspa3GJhHRUXt379fYd7V1QXm6j/M8CzzButTQXsAS3kL1Tw6OlrT PNWfbp6xGrlj4Ow+/MNS3iI3L9Uyj4mJqaioUJh3dnZi8w10cyEDFxiKuePF/vJiKE3z2NhY MCelFpI5fMhinu5j5qylFht1Sy0kc3WRCKv5Ktvc0DxQ2zwuLk5tDlNNmj++hjU2T/M98+1W mMfHx5PyFrk5LNfBk27uL9a8iXNYylty5YU5gcpSC8mcFInIzdva2sA8nvYi6FRsznvgAsNe 3mJsri7MOXXqVGtra7ptrmVOL29Z52y+UcNNs7ylpaWFxRyum4Q78DZnKBKZLIYyY97U1MRi nux75jvNmFcG4rW62i0pKcnl8pbkFT5pzlzewm7OXt6SJNR8fz3vmC0S0TNPTk6eSnkL/4EL jFvNSXkL1RweINyBv3mcgbmqvEXTPCUlRbu8haEwB/a4cAfO5sZFImpzzetKYi4vbwFzxiIR OIMLd/Aoc1IkQjVPTU1VF+Ywmke+K9a8kXPAnFokgs03U8zT0tLURSJ5eXks5qGLEP+BCwxj eQvVPD09XdOcpbxFOIIAc+PyFlVhjp65dnmLba6K/7Omi0Q0fweRkZHhcnmLcATe5ubLW9Tm QUFBmZmZLpe3CEfgHBcKczTNs7KyXC5vEYxwiHfAnFreIi+1wOZaLzzXNGcsEuE/annKucds eYue+VTKW/iPWmxcKMwxKG9RmDOWWghH4JyA58WXtwhH4G3uAeUtwhE4x/LCHBfKW0QjNHCO VYU5euUtLEUi/EctNuzlLZX6RSIKc6fyFoaCBeEIAsyNy1sYzKdY3iIcgXPYC3Oo5s3Nzba5 JeaKIhE986mUtwhGOMg7618UX97Cf9Ris56hvKWQFCywmbtQ3iJWoIx7WApzJPMqWnmLhjlt YoHJh/+oxeYDWpGI0twN5S3CETjHRHmLvrlueQvDi/3hokk4ggBz5iIRvReea5qzF4mIRqjn HFPlLXrmUnmLq+a8Ry02lphL5S1yc/YiEeEInGNJYY5BeUuBba42p5a3OMyNX3guL28h5qbK W4QjcA5LYQ7VXCpvkRfmsJa3BIg2P8A7lMKcZcrCHOPyFoU5Y5EI/1GLzRYryluIucvlLWIF SrkHm7MXiQTqFubolbdQzeE6l/+oxcZceUugdqmFXmEOS3lLuu+Z08tbGMyjo6N1y1uo5qts c2fz5c6FOToFC8S8o6NDbs5YJJIm3vwQzzAWiVDNY2JiXC5vcZhzHbXYmDWv1DHXLMwh5S1U c9gvwh04m7OXtxBzzVKLuLg4l8tbfNGcVt4iL8wxZU7KW6jmsJ4U7sDZ3LhIZLy8hWauLswh 5S0shTm+aP66ifIWPfOEhASXy1uSfc+ctUhEMtd64bmmeXNzM4s5fAnBDnVc44K55ov9ExMT XS5vweZ8R61ICd8wlre4YM5e3gKnDM6jFhvGIhGqeVJSksvlLba5pnkprRhqSuUty2xzV8w1 y1tgL7CYx70v3Pwgz+AikTdo5S0MRSKa5S2wYmcptYCrYM6jFhumwhxXy1sqKyuZikQW+6K5 Hni8VCRCM9csbyktLWUxD3nb58yZylto5prlLcXFxSxFIsIRPNTcpfKWgoIC21ydlbTyFoV5 hRvKW4QjlNRyDdVcUSSiaW5Q3sJkznfIwmO2MAeuRi0vbxGOUMw3/oblLR+lKYPNrS5v4Txk 4VEX5qid1VGbT6W8RTgC55DyFhZnA3aD8pZshhf7C0corj3AMy5oq+WnWN7CecjCM0Vzwq5X 3hJvm7vHnLBPpbxFOIKXygNdU1OTZG6qvEX48L2Xnci7UN4ifOzTgF0yZyy1ED7w6cFuqkhE +KiLa8THEnZszlBqgc1Fj7fIM2IJe/56pvIW4YP1nFBVH96DHg1Dj0eh2XHoyUT0VDJ6Og3N yUBzM9HcbDQvZzwU83W2ORP7/YHowV2s5hD4EDZqmufa5jT5P65C923QMU+hmD+djveL0nyt bW7Efte7FpjDg+XmOR5hXueZweZLVObhWuZZFPNHQhXm4kfnmblzkcN8tcN8m2Xm2WtscyPz uzXNo82b75s0z7LNGcxnEfMg9PDeg4+GNz8e3T47rufJxP6nUgafTjs+J+PU3KzTc7NH5uWc nZcz6oiheYBtbmi+1GG+ET2wreTBoCot8xNa5mfhwzmZp8fNY7G5dN2U6Qnm1R6aCfPEWRuz J8wPmTNPO0HMH947ufjE5qKH5rFxmIdqmj9hwvzowl4nc4jwoRV6ahb2/g+bB6jNO9jNn0w+ Oju2C06+cnPhQ/PY3LkoyGGeNGtjzgPbJfMWbB7PbJ6EzWH32eCs5u+F3TtpXj0Vc+HD8Yo4 m5c6m/fKzId1zIcl84dCxA/HKzJpvmkq5gOzYzzQvNYzA+b3qM0jJsyT5OZnVOZnZOadD+0W PxyviMM8/N41yePmwdWPOJkP2OZuMA++531injthXm/S/Dg87HEwD64RPhyviIb5vvrHFObp 3mle5aG5c7HMfEfZg8E1YA6rPuOMm2c5mcO5QPhwvCIO8whiTqVWx5PNCzw1xNwFbXkc5h1w DSt8OF4RMJ8iOAnM/w/uqhQ+HK+IJeAktjl/8z99WCF8OF4RC80hwofjnBrPjKXg4ofjLbHN vZRd+BC8NEAHV/fTR7vSm7LQ6er+9Jz0k4T3iYS+2bFdj0W2YWrRT9KOHTuQfDt27NhxQ2Yg /PZ/AAAA//8DAFAoq9+wLgEA</item> <item item-id="244">iVBORw0KGgoAAAANSUhEUgAAAH4AAADSCAYAAACM/XQdAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABrTSURBVHhe7Z15kB1Hfcd7y0ARkuAK +S/lqvyVgwpFgKpQdkG47YDNH8E2Bt8QbOwgwJaNJR+SD/nU6tbqPla3dnXfq9WuVtdqdWsl y7qvJYTE4EBsEBs74Ljz+/a8ntdv3hzd8/rt63lvXNXl1e7s257+9PfXPd093x/j+X8N2QIM d925ZWVeGqgNwDwH30DApcBz8A0IHfAV8Kso1OelUdogB9+gnb3hwPOjd/OBtq/zy1QuLruJ X1h6Iz+7+EaO76P0z72BH5p1Pe+b9mXx73qNAEXwHRTm67QA4KXlN/lwJWTT/9dT+9Q1eFOw utfXQweoW/C6ENNel3X4dQk+LUyT36sb8NtofK+XYgKwkmuz3F6+4rN8E8G6VwJT93c3v/yP mRZKDr7wGKcLXF635ZXP5eBdixbND/59xY9ucR3hwIyv8By8g3MDgG/58aeqAv/V+f/ED8z8 Cu8YWzeKX02hqz6KBN868tO8/enrrHSA87TCd3rR1zjAHyTwWwX47LaXMsZn9yaCAAB+Kile gt/w4md5Z/Pn+I5JXzTqBOrSbv2C30rg66Q0P1AKfv0Ln+VbC+B7W77MMUYfnXODUO/JBV/l ZxZ/jZ9fcqNYu8fSLtbxAd0HT98Lgu9s/nym26uo+DqBjs4bCX7iF3lvy5fKwVMIz8HXQQcY C8X/yAv1bTTGS8X3VAj+jD/GX8+3jcsV71zIA/gpBH7+CAU8TcZ6Jn6hRPHHZajXVHxdgu8i pddL8cB/Mhz81GKoPz6vMMYXwF+IGOMx7mOMl+APzbyed43/fKbbyx/j6wU67qME/OhCqJeK rxD8CYoSOKiRg3cwUgTBr8OsPgD+CM3qVcWfo1l9nOJxUgeKl+CxspdlsdSt4if/EKH+H3gb KR7gsdImxviC4m2AZ4t+ymXJWieoS/BQI8DPI/DLAf75Ivg9EvzslIpv9UI9m/AFH3oW4Svg 11Doqo/CaHInwD8WDn4/LeAcSQ3+q5xRx2IUPVTF4+sstV/dgmeJ4K9PNcazVgIPxQfBj1ia UfCdpPY6KVA8wDNSPFNC/XaChVDvKd4cPKOlXR88rfv7in9yJWcAn6H2Kyo+Q5VOamABflgB /KjrOHv+M5zR5C4KPHbdomb1jNbsGT3Hs6VUJHjqNAzgAVyWEcty8Elgqv3zUvDXeuDpxIyY kJHiGSmeAR4t4DDapGEEntHjHKMFHAEZsNWiA35kDr7mPd8D/wkv1I8KAT/dAvjJAcWPXF7z +zYRVH2GejxfA/xPCuDHBBRfDfCPt2UTfDeN8fVQ/AnXDyLAT6FQHwUe47huqFfHd3xN4LPU fr7is1TpqLoGn6tDFW8DfBC6AN+egx/qTlQGXFlKFT9TQ30QPJ7L5eQuSfFhwOX3nsjBD2nP T4SudgLM6k3Bx8FWf/bEiiG970rFlelQbwQ9GAXi/u2reEXps3psJ8gs+LXUY7NTqgn9xIkT nD08lzNScckiTYL6s9R+RcVvI+gZKFUDjghAYC9dusQF+IcAvt0MfAbaTzLOFPhqQx8YGBDg X3vttRy8K1Gg2tDPnz/PS8HPyRVfa/hVg06hfffu3fzYsWMc4C9fvqwonsDTs7nRGJ+Hejvz haoBL4zn7e3tfNeuXSXgAf/kyZOc/Rjg23LwtVB91cCT0seOHctV8OfOnROKz8E7ELaqAr7w SAbwbW1tfOfOnULx5eBnN4bitxNo1wq79THO7htXdrYtVYcIPIMD/PLlywX4/v7+EvCnTp2i UA/wy41CvWvtF1cf/3HOxUqzW37igcd4qxaTVbjCeB6cpCWC/9EszmiP3WRy52IbRtXJcfCP hoPX7QjPbebsqdWh8AB+2bJlfMeOHWWKP336NGeNA34dhXq3CruFwH+vuVzxQfD496MLPcDP bKDduC103GorZwA/Ki34mSkU71b7xfFUFO9epdnNj1QGfkw8+KVLl/Kenh5+9OjRkjFeKP6H AL/MMNS714ZR8Ivgu6jSjhUj8I8sKCh+fVHxMeARHZYsWeKDP3v2rP8454GfYQ7esfaL4+k2 +G8M5+xfxuqF+lDwFPJHrYlU7eLFi0PBnzlzhq9atYrOyhsqPgdvJ3qwNOCfVhWfDH779u38 yJEjXFU8wK9duzYHX6shwAP/ipniDcAvWrSIR4Ffv546EL0dY/I4x+4f79xwGcUuA6Ee4Gkx JWwmr37vkVaCRAcnDMAvXLiQd3d3C8VD5diSxZItvt6yhaKFKfgHJ+fgbUQJofjvVg/8ggUL QsEj7G/dSo+DpuCHTc8e+B6amLhWPPAve4spSYofTorHUSmheHqMw3M8nudH01gdcWRKgj98 +HCJ4gG+q6uL3sRZ4v1d3QOXFJlca8Oo+vih3sUKVxt8a2urABwGHmO/MfiH5uTgbXSkdODX eSt2GoqfP39+JHgs5RqDf3heDt4a+O+8RKGeVtESQ/1876jU0/rg582bx7dt28YPHTrEsWiD yR2OXyHUY9euQcCvp97qVhGKB3gsnw4heOzN42QOe2yx2Rg/fL5zbRjFtDjGdxN0x4od8BQB IiZnc+fO5Z2dnWWKB/g9e/bQ27YpwDvWhlFMMwD+RW/dPK3iEfpTgO/t7TUHT2sJroknu+Dv 1QRPEytxKnZ0YIyPAT9nzhzxvH7w4EGOUzdyjIfi9+7dS+AXmYV62i/IwVsIeSLU3/sCmRxo KF6Ap1OxBuBnz57NOzo6ysDjqHVfX58HPmaTpyyS5ODtzBcE+HsAfnpyqC8D3+Et4MQoPg78 vn37zMHTYZBc8bYUf8/zhuBppU48x0vwtJIXMcbPmjVLrMkfOHCgJNRD8fv376dTPVB8+Ame 0M/MwdtUfCXgCT6WcCPAz5w5MxI8OoM4zmUCnoaGzCl+BynUxcLuHsPZD6ZphHp6uxXHobE2 7ys+HvyMGTP45s2bheLx9szFixfFAs6FCxfE99KAd7ENw+rkP865WmFt8HitGcehg+CfiVa8 BI+wHgSPmb4AH3FKNzSK0HO/q+0YrFcGwD+np/gU4KdPn843bdokxvMgeCzjGoOnlb4cvKWh g931LIFvSQ71keDpuHXEGD9t2rR48DjH9xSdvdPdlqVt3AyC30CVdq8I8P+qA572zYOhHjN7 nLOPANfS0sI3btwYqnhs1TJT8HRww8U2DKuTEurdg44Ks7ueIfBTNRQP8HQqVh3jNcHjmR0u GOrkDsexGgP8dgLvYGF3aoLHWj7AY6VNzuoTwE+dOpVv2LCBR4OnUz0moZ6OY7vYhmF1Kire QeioMLvzaT3FAzzOwRuAnzJlSgl4PMbJxzm8XcNwgNMEPHW8HLyljsTuIPAPTkkO9SXgN3kr dyjPbowc4ydPnsxxjBrr8gj1EjxCPl6dZjjH96TB5I7mGDl4a+BHG4Cnc/BC8XrgJ02a5IOH xVk4eCUZQdLsPgdvb77A7qge+IkTJ/J169YJxQfBwyWD0Yka7Ue5goN15hS/kxTqYmG3jyLF T9YM9WaKnzBhgnhVCnvvtsC72IZhdfInd65WWIB/wBD8sxTqx8gxnr6OCNFx4I8fP55C8e1O iiej4J/SB48XILCbpgl+/PjxfM2aNaGKF+Cxx4/XspLGdsW63FUBBevlvuK/DfCT9EJ9GHhM 9CLASfA4X/fqq6/6kzscwcK/GwT8RgpT7hX27ScrAA87lGjw48aN46tXr+ax4E0crOlaF9sw rE6K4t2DjgqzbxH475sqnn5PjPFm4FU/W1/xJuBpWMge+B4C72Bh33qCwE80DPUqeDqGFRHq m5ubhfMFztADtAo+rXW5i20YVqei4h2EjgqbgacXIHBwAqt1qvNVDPiVK1cK8JjM5eAd6gTs tsdJ8RP0FI83X1KAh4N1Dt4h6ELxAH9/dcDD5HDFihXCujwI3ktWYO5Zn4d6Sx2I3TbSEDxt qgRDfcQOWxj4Sj3rMwd+F4FysbBvAvx4zVBP5+AB2QC8bc96F9swrE7+5M7VCrNvjhgy8Das y11tx2C93Ad/K4G/z1DxzwRm9TGh3rZnfQ7e0tDhe9YnvSYtjIwLoT5oZBwDPtmz3iw9SQ7e FfB4no+xLo8Fn8K6PIPgN9Hkzr0Smawgyroc6lYVnwDetme9i20YVqfiGL+DoDtYBPhKPOsB fgg9611sw7A6ZQB8hckKEsAne9abpSfJwVuKHuzm6oGvhmd9Dt4aeGSpMPWsV9KTCMWn86wX pkuGnvU5eJvgq5ysIMq6HOv4OXhLIE0VYZ6sgGDhnXi5LZug+DjPeg+8oWc9HQw1vcdaXO9P 7nYTWBdLMVmBjmc98tLY86yHW4YxeHLvcLEdg3WqM/CqdXkhBVmC4uM861OBJ/vVHLyFKFJ0 sNZRfAT4lJ71MDhmjxmGelrty8FbBW+arEBRfAx46571tKKYg884+FSe9WTJki3wOzfz3Q4W 38HayLM+MKuPUTySFVj1rKcXLV1sx2CdipM7B6GjsqmtyzXz0kSBT+9Z35qDt9HzPfBwsDZM VuCDpxcrYGwcccQaWSqiPOtxCNPYs55cNGzcd7U/IxuK17Uux/vsZelJ0oNP51m/IAdvo9f6 1uU6yQqkZ31JXhrYmsYnK5Ce9WpemqJnvWGWCnLDtHHf1f6MjCjexLM+mJAoHnxUsoISz3qT 3HNZA7+HJlIulso865F0MN7IGOCjkhWk86xf5GQ7Btn6incROurkgTe1LlfTk8SDR7KCZM/6 6G3dskkjWZe72pZqveofPCzPYjzr45IVpLMuX5yDt9Xzta3LH4ZnPfLSSM96CvXC3TI+S4X0 rEdCooo968nB2tZ9V/NznFe8CPe6yQrgYB1MVpAAHlkqAD7Ws94kSwXZsVQTmK3PVsBvoQoP ZcFkUu/vsbsr8KxP8LNFsgK7nvUAr3dftbyuCH4XVdbR4oHXsS4PyVKRAD4xWYGwLjdISEQn dlxtR7Ve2QB/F4Gvkmc9khXY9qzPwVuKIF6yAl3P+kBeGgPP+mB6knSe9ctyxdvq+drJCqRn fTBZQYyDtepZHw7e3Lrc1n1X83OyEepNkxUYgA961quPc2k966sJzNZnZwR8rT3rzazLbcGp 5uf44HtpPHa1VDNZgepZH56swNC6nDzrXW1HtV4ZAV+JZz2t3sHUOOIghupZHwSf1rM+B28p injJCgyty/0sFfHgpXW5zWQFOXhb4NN61ou8NHrgw5IVeNblhqH+8fY81Nvq+amTFWiAr4Zn va37rubnFMf43R2819HCbjf1rKf9c4zrErymZ72anqTEs97EwZrO/Lnajmq9sgHeOFmBGXjb nvU5eEsRRCQryJBnfQ7eFniRrKASz/r4LBW2Petz8NbAV5qsIB689Ky3lawgB18T8KpnvUxP Ep+lAuBtetZnCvxeguRqSe9Zrwc+0bOens21U5DRCqGr7ajWy5/Vu1xZc/DSulwBH+Fni7w0 QfDlnvVmfrYut6WsW0bAVzdZgW3P+hy8peFjKJMV2PCsz8FbA58tz/psgd+zle+VBcDUf9f4 a5GlwjhZgeJu+RzN6jU867ENqyoeL1gwWJfjJQ3d/LKY3NW4vXT+fnGMd7iydpIVhB+RRkIi 2571Og1f62vqEPxCT50lnvWbE1UIo6P+/v4SxeN9eaF4OlWTK74GkYHdCs/6cXqZqOj99HLw WyoATxYsOXhlHjCEHcBGsoKk0NrT08NxqlYd44Xi4b2Tg68V+Mo963XBnz17lmMBB8UDT9bl I5floT6pAavxc3YLwGt61j8KI+PgGO+F+nvuvj204GdS8Sr4M2fO1D/4Prp5Vwu7mZIVGHvW lyYrCN6b7ATy+1Ge9WyYebICV9tRrZc/q3e5sh74V/Qmd3i7FdblgUxUYeBXjrjW7+zR4Kcb JyvAC54utyfqlg3w8MER4HUcrAk8zsgFkhWoIKB2/FsF393dzfGSJEI9ztthjEeoT2VdPmx6 Dt5Gz/esy3XBF6zLI8BL6FHgAVsFDw8842QFNCG0cd/V/IzsKP67L2sqPtyzHo0YHNeDij98 +LBQuQQP9QvPetP0JLToU01oNj67CL63k/c5WorJCtJ61neEzuYBXkQAuu+uri4eBh5jPyNf G5OVOwxJrralrFd2wH/nJW/5NCm58HAoHu6WqnV5RygIofhCZ48Cn9azPgdvIYpU7lmfDF56 1stQPzAwICZ6O3fu9BRvYmsKT92FA5yN2+Os8p1WPBvfy9minxY8602ty80UH5asILVnPeos y8LLnM084VwHcBY8m3+h2HiY1QvrchPPejPwUZ71rofstPVzDjxrOVIELlXjg6dVtMQxnt5u xalYWJXLpIPC1rTcuhxjPJQZl6wgbcO6/ns++H00FteyMErUx2a9Vg5dhvp7ybrc1LO+BHy5 rakKPsqzXrYJrk1qH1yjlrDrda/B76LzJP3NtD93B/yMV8Ohq+Cxbp6keJGsgI5KCcXTkSu8 Hx9hZCzBz507l4eBh2e9DngJMwgh2FnCrlOvSeo0aSGH/Z4T4NkMMiBQJ0TBr9NYl6tZKjTA S896NUuFCXgdKDpRA5+je53O34y6pubgQ8f0aoAPcbCWikeygijP+iTFm0CKigxJkaISwE6C F9kj5p2LV7sM9feM4Yw2P4xCPU7XylCP3brASVkJHtFmKMBLNSd1AJPOlLZTFBW/lyYSQ1hE 1onJB5OhS/XDunwYTQATx3jpWa9kqYiwNVXBRw01sk0EjJD2ifp+aFtislb4jJLxPPC5Rp+Z kpkCfhtVauiKmHzNpnPrcWO7+jNjz3pb4L028WCUt0/U93XbMuz3K/1Mnb9dO/DNuzibe9YA vKln/dCAj+sUOgAaCjx7YBJnr+wwAw/r8lSe9TI9ycbYMT461McrXoLXARi8plpRRKfD1UTx 7HvNnL1M251z6DBjRKhXx0BxDazLtcDP8Y5DB/PShDhYJ43xKpjgwksU6NKxO3xo8Cd3EUNr 3YZ6hi3WF7u0x/hgo8dO8B4Kgsc78lQMwctOoaOeLF7jK34/9b6hKgw25C9QCJ5+jLPWi3rj /F30O4VkBSXRIGyWX6J4Q/DUSdRIoEJF+9QSsk0+tQF/2+Pesiq2XefQSws6M/sIz/rQaIAX IDQ868NCffB7Nhvbpc+qDXgswWIxBiG45Sgv2YKN6gSayQrKOoJwt9QL9WEdwSVYNutSO/AI 3TjEOH4P7cqdTA75d6ZLVlDWEZTVOwlaXqMVeXSiU9Q1S37O2cpfcdb2S++EzlTagsYRMWws 0TBmE2zSZ9UOPFT/AFmRY9I1aX8y/DvSgff8bIuKD5udVx04OsKy/+Rs1X9ztoLAL/l3zrAb iW1jykVbW/B9NLkboiLO0KFgrEdaUMCfuM/bj19wKXzMF571U5KXbDHZQyQZpfrZAny5yWFZ NKhEzVG/u/jfCPZ/edDb3+BsKake8xo81YyguYgPvmXI2h+ci4rv66I/PDTFB38zwYcXPU7P IuRN2CvOpwn4CIVqY6ZJVuA7WJeDDwvvtjpCXDuKLeixtHiFU0IK+KFqe/l3agseqr+FTA8A H5M9zMTH7abHPGocLOcCPhSjdoCkTZoExavAdRZwyhaSEqKCDkCxS4gj4I0GHo3jqx7gEfIB H6EcCXwRBjHuQ/3i0CXBx7iI/+t0gohQHwSdBD449sd2guWvc7b6Ta2omYOXipfgMdPHe/B4 43U0bbJgWRdbt9jFw0LP4p/RGPkfXifA10H1yWiAc/DoQEqo13lmN5nkBYeFq9b/jr9/42Aq 8DpRwvY1NQn18iaE6mF6oILHPj2WdKF+mBzgAMVYeqlh6mFv5o8IgCEAj0aYKUNpojOEdIRC x4hStpHiMSnDY9iqN3nTuiv8fRsG+Qc2v8P/qOP3/I873y05ZInPjR3nZainhSbbQHU/z0Hw dOAC4PFa9H1keIRlWsx8MfNHBJjQ5y36BKJAU9sv+PtW/ZpfRUU8MtEM2h/PAU1GCUQKMW/w hg0BH9/Dz9GRAFfOwtf8hlR8hV/dPcj/ovdt/ldH/pd/4tS7/LpL7/GPHXub/+Xu3/CPbH6D v385ff6885xNOypA4n28YESQ3xfDXAG8LqRqXOeDP0AVqkUpUTxW53DESgWPBAVIPUZmAzr1 +0D7L/iH1r4pGv7qjnf4n2x5m39o0yD/s62D/Jqdg/xv9w/yjx8e5B87NMj/jgqu++jB/+Ef 73+bX3v6Hf6lgd/zr7/+B37bW+/ye995j9//f+/xOwb/wG96nX5+6i3+172/5H++gToJhh50 PnRCPI28REDpKJmsI+Cr9VX/DbNFnXup5jU1B4+b80N9FHgs9GiCx2qYUDFBuar1Av8gqfFP 1/yKf3j9m/zDG97iV2/8Lb+m+7f8o3uv8E8fvSKu/cbA7/g/X77Cbzj9Fv9M/6/5J/ve4H/T 8zq/ZsvP+UfW/Ix/cOkAb5p/njfROkMThhyARvQR5/lkoUdGTfDVBKr72U6Al5UVu3ZC8fS6 lAz1ULwAP1VLJQI6JnUvdHqHPbARNPkAZ1MIGJZIodBp/byJHhmbaPUM1zfR3EFApWfsJgrX gNuE35lIwwq9+FgOWQUeDh73JFUeVL8unGpe5xR4of6U4P3xHM/G2JbF7p9MGwYfW8zysZqH tQKc98OCEU0c/Y6CFGU4lYuCpVTxFk5huVemMStReBB+qeKzA34fjfEOlaLiJ/iKl44WQSUA nh81HAMfqnYH2rmoeAcqE9bx2PeL4PFzH36hvgK6UnexGlZLxQfaUYB3sG0V8N1UwWwUrzG7 vTE0UGexQWMMnh4Vw0I9Xvjww33YuF46uQtrv7A6utDOmQQfBR3fH2rwcRBdhY46ZxJ8rRRv olSXoWcSvNqgxfE+eYiKn9UXQr08sEFDhQnkLF6bKcWHqUgXvtgXwGtYWAIeTq4ZhZO44nFO jOWFFy+wNEyPglmEaVJnH/xBivuuF50bi7oHHzw2fyR4eq73wOOZvRS8621Raf0yBb6Sm/XA 02tYOXgh8MYCj/fvAP7hQqiPVHy789GvEhE0IHh6/06Ap+PMGOOjwNOxqEob1vXfbxjFA4R4 8RJbvDl4JdTvp8ldAxSx0yfA09JuhOIboR2Kim8A6GFAMatvBNDBe8zB5+C3U8/PS6O0gaL4 HHqjQMd95uAbNMrl4Bsd/CFqgLw0Thv4is+hNw50sPbBi6/y/xqqBf4fjcUrHvLon/IAAAAA SUVORK5CYII=</item> <item item-id="245">iVBORw0KGgoAAAANSUhEUgAAAIwAAAAVCAYAAACUqQa1AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKfSURBVGhD7VjtlYQgDLQuC7Ieq7EZ i+EkEAmQgHDKrvty790PFzBfk8nIZPRPM9CQgalhr27VDBgFjIKgKQMKmKZ06eZ3AmZfzTzN Zt1pATezTJOZ8H/ZKtWt7U/Wp8WIb2T9MWZbiD/N/u5mnUvxxOtznIwj9mfWXwgYTAQFjP/t BIl7zpOIGKrtd2Ch5/d1PsDIgYbzx4Elsr8t5HzNvgebGE96PvX3ufUAGOyS1QbmkW0dhkDJ 84dZ2RZuXpaEYVzCKKlAgUWWqeyPiosB2zMpqx19zPkjME5IXcU+cx7imdeDNyx5MAxrfR6w ngDmAAYmGYGCz9UkSEjKu7Ubc9YHm5TMl3rHxjZb9wtFkvyhxWODbbWfMCb3fsiJZ8AH1zPA hKZMuyDvCsgFdbQbCVcO2qT5Dr+gGaoS5jBJNUZ5f1pgCFz0B9lggzGGOiQfZ3X7RIcge0DK CducUzawzpPr+Ug6hWRKwQxgznFVEIQEC7EIpIKQMJuAHaB+FHYZYHIWA1uVkUQ1hryfA4sf RYI/Tu+UNEyrv4DuUwM9CQgbUun93YBxxT86fiNUeIUoevYg9TPdBD+JFJxrjqb9AExGPFf8 YRPuv1oAw63+OioHIV8+P3wk0QRfYJjGkdTLMNixgd4DO3UV4ErBoKN5wHX5c6ng3p4ouj1g OBmQid6E9W9a72aYkyiGaRhCTVdHEpn7MbEJI6H0lVFiRkGERxMxAkHFPgUX2o1A/txnszMn v38AYG78SpJGkpsz8cVdApbsXqSwv8ogKXhYEZ5cvGV3OGV/04u385M5dGp0sfeei7tPMEyP DtIzt2Tg/ze9CphbCvGWlyhg3lKpL/Hz/4D5kkDUjTEZUMCMyfPPWFHA/EwpxwSigBmT55+x 8gfx4m+rtVPMnwAAAABJRU5ErkJggg==</item> <item item-id="246">iVBORw0KGgoAAAANSUhEUgAAAJMAAAAdCAYAAACuX169AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMASURBVHhe7Vrbsa0gDKUuCqIeq7EZ i+EIiPIIJNlw7+AYZ86cDyAmK4u83MrKIwhMQkBNkiNiBAErZBISTENAyDQNShEkZBIOjCFw bFYrY/dTipBpDMqPn96tUcoqIdPHeTBo/rHpk0TKamMkMg1i+fnjx77bw6Egae7zXJgHgJBp HpaflyRk+jwF5gEgZJqH5ecloWTyG7TdfIW16hPbUteaPu1pW9vDbjruPbuQyjhsPUoO+4wb rLSeLn6t8wx7pvqnpQ8Rj/eTKQCfEiK0qmF4Vj8XMDcDyvPYek4kR942maIToMv4OCg/z7Gn J5978Vv6UPGgdHNTmc81kLB/NwBxnEMa0RSyx8nQW9LeFmfTdY9ZmKsobazpRCa3L8xecnnd 8wx7WvIJqGVbuvpgeDVeBk/A/ymZ6lvIBQIOPp3UXBDDn0/Cs8XW/fbtinqdNOdkOoIC+JHO p4ZBPujI52LY1YeAB/S+cTKlTimdxLXw5/1lWM4F+VsYo9CdsR7yYeuFtEbN5HS4otFPNVPG pFDfZbmQKp8LYn05eHg87xsjkw/PRfFbkqtj226egjjISf66FS4G/P8nk08/sagfIhN8Mejy FyaTc3gEyTP2cnIgwnkT9+ersT0TQfjwR+muuEYD+73ToM6s2IuFbWw9rzbqyBTTDxD1aq2R NAnZw5IfUzjScd6KAfqw8AAiU0qaUE/EAtIRxHVJ8X8Bz0CaG4pMPioSxxdQtKwK8KIThAAN xVZFpruYLaMr2PU1yNSxhyefe0kBfTC8Gq+401yWJxudTD2bibcgcQQjzXHNfi4Tdw6GtbrY ep1Wp86ZuA0Pd38XaIjcHDzAmikdUhU3vqc8OzKNd3OUm5pF2iSixLpspaElxZ4803IvU49N g0PLRDTpx3HOMeacneTdxSWFTaaf45EcXBwBnEx38Ze0plnUTwtwIO0tDoCoNw8BhExFCCRV +TFdtj5tzFNeJK2FAB6Z1tJXtFkYASHTws55m2pCprd5bGF9hUwLO+dtqv0B2OTUdBPXw0IA AAAASUVORK5CYII=</item> <item item-id="247">iVBORw0KGgoAAAANSUhEUgAAAKoAAAAdCAYAAAA6ufdPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOuSURBVHhe7VqLkYQgDLUuC6Ieq7EZ i/EAQQMkJKC3q2t25ubm5JuXZz5vb1j1owg8AIHhAXfUKyoCqxJVSfAIBJSoj3CTXlKJqhy4 IQLLOo3DOgzbzzgtmvpv6KXXX2k2lqDjtC4OiWVax2FUor6eFbcDYF6NJaYNoslHU//tHPXy C/kIatY5g0GJ+nJe3M782fi0P0823Yca1VjWKlFv56mXX8gRNTRQHgn/t9aoL2fFp8xPu/gY Kf1vFy7hJ0TUo0QNaz91VT1HERAhUNSoNaIGSSDvvEQHPWVSq43V+RuYeXCwect2sIceWESP HStkfUiBSfQBNdu2lNufG+91FmVvqX/2nODkKaedHqnfpn90o1Yn9tzmq2sioKUMgl+rNv9w TkrU8Hx/uP29OyAjqSNkSfQ8KwJ90aqMXhQn9+fGex0gtXd7SUp7JeemhKebqR8n6mI7ytEY LyRLsgY13z33EW80qyki6uYoSD4/Hzyor88c6iMslG24/blxCWHSOdX7Ypwp6s32M+OKm0TU M29fo/EOUPeth/RlrMxfJiuj+OOxVMhHtPp6aBcWjbn9ufFG3JyVNXsxUhKaaPvJlDwldSJ1 Yn7BCy/cY+SxxjkvRFGRjdL5VM3m1JWjRqVTO70e1mm5CO6rVGZ/brwPz/K+PtrGrz3jpiKM ZTe4PqLuTQBIUw1EhcAWjQRXxDE2+xQec70ARPl8jGhllvC2oTbUiErVttz+3LiMILWavShr vklU2IHFGss9O2r4kEr3t9tGrBl+DQY7z/KrsTNwwbUswWMKl77tTfOJrl3suApRqReKTLUh Y3DjOfD+HL6h25a12HuNz/eImkgCCTiOaO6w+NszMpEPis7uROpnCdfJ7L0RgHJRIfeAIgF8 hZdH9jIotjgOa+AqRKUaEo6I3HgnjiRRsaz5H81UUmNkB0QnH4S0pA3RYjYI8CeIegq/lsWC 1J9s16yjEqk3j7JUhAqH0+UCtz833gJWEX4R3Thv3q5tkEGNCrWrjHyFk2KTcRC2dGpLjXqt USIXIMRLsgqaGik5i4qImeCOkpRIpYCotBbJ7c+Ni5BCJlH2pvpnn4aK30n0Tym+JrW6Y64B umfoZZ4QUXt9pOu+ggBP1L2pAFKNDwLbf16jgrkS9SvO/OVDGaJmIT6pXd0Y0dEVhXVMCdd0 gL/sELXtROpHlzoyntQ11SmKgBQBPvVjpbSXbmTfk0svovMUgRoCXURVSBWBTyOgRP004npe FwJ/hZTGcdOEb7gAAAAASUVORK5CYII=</item> <item item-id="248">iVBORw0KGgoAAAANSUhEUgAAAJMAAAAdCAYAAACuX169AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAM9SURBVHhe7VpbYoQgDORcHojzeBou 42GovMMzZMWurfGn3VXzGIZJQis0X4zAIgTEIjtshhHQTCYmwTIEmEzLoGRDTCbmwDUEjl1v Qmp1WmEyXYPy5W8rLYXQgsn0ch5cTP/Yt5NEQm9SsjJdxPL1rx9K6cOgwGXu9VxYBwCTaR2W r7fEZHo9BdYBwGRah+XrLaFksg9sercd1lOvMJaa0TSNp/1oD71v4dlzCqmSK+xJc3LSuUp8 lPQxJPsuJqGTGcw+8b4fx6+vjsOlThfDy3v++2RywENCuFHVHZ7VlwcmIla+X953n2vC2fHF k3K82ZQ8ybTtbuIJ70T/bX+iuJ/8U/OdpVgiTE4mDC9g/8+TySpBSRwDeGeBW0prbMTFdosF AbXkbKiT+d6drQzIVMbXijeLCfFPzXeCS+GcSGxSy1KZULzaDton4LeWuXqXTeSOPzKKOSNO Lc895aiUyfgwBBziU6uaXbhI3JAKJBBFGWH8n7cix757FW+UORSvu8gEZM4pevpbDc6AVU+U i5HbbS5mgxC2NFW9TrBlfPjFw4hbqmZXmXI1HPuHOY3zpaFak2kWr9LPNWWKjScoOQQyQfDC IsafowY4ywIHFgenVksbG4jBlrfQtHfJ1Ou1fHMN7IXc3Ve4/5Qynu9jyWSSTn2hl3mTvt3F 505VUIngRNJrhmmpDp+2i9prlMGbmGx37wMlgmWqR6Zh+cunNamAImD+ozhO5utxmduPN5Q5 Q47mzjsTjd/D37MEv6BMVhUne4aWWsIFRBYzNqu+BEIVzRasZae3G2BMM2Si5Evarw0yYXh1 7Mcyl5WCctLxu1LJxuJ9o2ciDwjYqNspM1XTPG5+y9IYMa/iLcsh4p+cL4VNrXMmDC+0AYeH VJA0ofE8E26BSybT9WluRikypXWTAe3QskekOGTUG6v2WZRaoGzooSnwP5MvhT7FeHLt0BIY m/rnOJOMNGcrrSNxMpk+T5vffDYCU2Ry4/7oQPCznunZ0HB0VATmyGRLRGc6q5q1UE5+YZqj ZsvP34rAHJkMYebmzFuDZePPRgAlk2v+JkfwZ+fK0d2MAEqmm/2z+X+EAJPpHy3mt1P5AZ1p i7M9zHruAAAAAElFTkSuQmCC</item> <item item-id="249">iVBORw0KGgoAAAANSUhEUgAAAKIAAAAdCAYAAAApbre7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOASURBVHhe7ZqLsaUgDECti4Kox2ps xmJYvhpCIKDuXlbjzJs3VxBCckhCdDFyiQYm0MAygQwigmjACIgCwRQaEBCnMIMIISAKA7/T wL4atWizWQkExN+Z4eMzb0Yvi1kExI9z8MPl76uyAC5GaS0e8Yd2+PzU+7aZ3WlBQvPnWZhD AQLiHHb4vBQC4ucReFgBu1mVO3gQf9qdiSuXgPiwHWS4axpgQfQdlFl9RvkfXV5utCvVGhJj 8kolhPhMsXsH22MpAk61aSgP0ikrLzc/8kQt7zNkxjBuOVw+n7oLyGtB3LRZuo0RlXr0H/0d IIHGCGWJUKB1l4MwM5aTD8LalJeWB47nIUfy34bDbtsUZnNVYnnK9Q+x7jq/FURnmG4OMRSH YqLXutJuEdQpknRElba8wdBwPR70dIMY37c3I0AblVTfW5Q2GntEaj1ORzfmg9LQb1Y6lDhM f/OBB3aX38nKKJg0N5REG+00PtdOLgfqjTUSJy/vEXMZQv87HnFf1+jNidBMrQd4tLs8/B0Q sYAPClxfMAGzm7cGY9XjRS/EtReC5OAkkLf4FiGcKM+wbQN3Edp9qELywhyT9vYgb3vIO9mY WeSI5MZ80GE9D6I3IFL6AIh5co8OHt1xN1FShreTn3gQAGOmucMtrh2SiL2XS3/iayyY0FNw Z0BDeUtQ85yQ2JLs+L1+a0IQYcKdcpQClmjMcN/mWNv5VcVh0MIj9CrlTr/a6S8HNdW/9Ib7 56fWsj0l3GVIpEM7Jw9or4bCVjWjMX48offt5R+G5uyEl7lcZwwXUtJ/7AkIxdwIzZc9IukN wOGhh2fOc+N2P2cFDDJHRKAV5R4gLwdidb0DB7aqTggQKd2weXCP0kOfIzRnOxhNQIYZ7wzs 4YCqJd0AsV903LNzF6fHivwGJfvD7Z3yHPBx8lZC85EHcs9f1ySVI6Z7Z7noiQPmKSPIEWGx kiq8EvdqyfEwiE8tChWAicS/rOudeWixqY58N/Qpa4b0a60z/OFXX/CwAvLQVIQv9NlezwFH 9fmrMP6jgjYQr+vDWF/vst+O5cXTRq4yDOJVhclzb9EAD+JRUgh1LxeJqyE5C3tg93O511u0 Keu4rAEGROSife5o80LiK4ssrBXgpRCFQ9NlueXBl2mA94gvW7AsZ04NCIhz2uVzUgmInzP5 nAsWEOe0y+ek+gNei/l1G4+CmAAAAABJRU5ErkJggg==</item> <item item-id="250">iVBORw0KGgoAAAANSUhEUgAAAKIAAAAdCAYAAAApbre7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOpSURBVHhe7VrhdYYgDHQuB2Iep3EZ h6FCAJMABqz61C99rz9aJMDlyCXRweqPIvAABIYH7EG3oAhYJaKS4BEIKBEf4QbdhBJROXA/ Astkx2GwQ/wdJ5Xm+72gK9rZ2MHMBAiNiMqL2xGYzWDHaVEi3o68LogQWOw0jpbxUKVZOXI3 ArM1w2jHMeaIQEqV5rv98Ovr+UIFR0RHzDVn/HVc9PxnIODkFlXBuCJmRUm+GkRIJeIZflAb /0Bgj4hZ+PzHOrdOdYdCN1O8jfQm80rOWsmeNC7Zxzk8lyw3xuyvEkabHh32u/wAdnP4TljP tW7wORzXqn3EVxIxgJTQg79zckWP8OfB6dvzZXtb/6t3nNvHzIgO5rkT3f8yrRKWnCjtv4t5 rKqFy0yJeN56cI4YMOBylaX5lUQER2Pw/IFrUbF0Rndb19vpO1z85rr/4TnSuGSfBMO1ijSG JvEl+z5CBrJ22G+lZCLIaKzhEfGC9fC+HkLEvWjRDCMkzK0REZMuBUknj3BDvVMiKdMWNrJL 457IfL53JpPXIE1Ly+XnF6HFfit8/sxTkP6CNLeep2O964nIAS854OCGpWmuax/D/l6KWCRS U8QLUbcaEWFctO8Pgpq7IhGpNLbZl9CqjedEvHa9K6TZO8iRAd38DiJiIm15RCDXbvGRR1Vv qzJHBjYUCmh+3Bv8a39ctg9kTTnpLhF5ftZK9A8R0YG/qR1UOBOKOp4s4QFw1JrDzFiCcOXH q76jQBXmVaUjf53kZzdJDa1azcwjxc64ZD9KMkkLCnsNX6pkRZdkn0MU7IiNhBSpWbHSu16n a1OOSF5EM4lKIKyboYCU3xtCUn9zROwlYilKl2xgQKXIjscF+7RypM3gRBavLpWLdGT/zeQo 5IiXroekmUgJcch660NSPBsKCpGWPYdJDmwGaO/BijRnBUcKQay4YfMzqWTtIGnc5384NRAK Mm6vM2eMqUK9XdUDcqmP2HmenuXWZ1HVjJuVmHAx6m2EhOgNMk0/5gmrd0fEM6pmlLehDy7x /vLPj4QGbcp3IWIV5RE10HMSdDSAGfGaImYke9jDOSSMRdRFDe0KQZte8TlQjOtzpW93KpJM 8p1j0tx5kfTxjyDQRETSyPXBEFV7JSC6I+JH0NRjHEagjYheAmKE4+8/C7KV5YRRoi6smg9D oBOfgEAbER2x2ur+J5xJ9/BCBEQiQtJcaSG88MC65WciIBLxmdvWXX0NASXi1zz60vP8AdJO 4C5tiGvBAAAAAElFTkSuQmCC</item> <item item-id="251">iVBORw0KGgoAAAANSUhEUgAAAHAAAAAVCAYAAACe2WqiAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJiSURBVGhD7ViLbcQgDM1cDMQ8TJNl MgwN3/gHJrnoLqmoVKl3xmDes59NFz9/Xo3A8uroZ/B+EvjyJJgE/ksCN+fNYrzb3nC7zTuz eLtqsaZ1y5J/mYNmB/tL+MTvwP7hb+N8hHC1x7lkDQxjtdCf4y/Z5Qp8DYEH6BqB8fJ1UfIz IEM1+0FfOZMAHEjSggA5EM8rBEeOcTyJdOtLXrbsryVwcyZltbHeahUoJGT0LwBqdlR8xhtr mUIFgIf5I+R4rWA69h8QuHq7Aw+zXxM/yb45l7NzVELhLrwC8RkNewAykM4ADet3YqFEg+pS 9w6ENtdnCW7YPycwXuYo9ZRN4PMVdk75nCEQ9DkRkJ49kRRVlxEoJGUhm96FVl/cLqnBWlQl 9skDw579MwJrc75GIG7KZAAY1qMzBKImhEBiOUOADiBW1dAkL26WSMXXkCu7tAOkSuD8nl0l kIGcI0rf7xm5wopLQadJ71tVeJHAfT7sT6/ATqtpiEBh/4Yf6sc1kw7/nr0SiKYc8SAgIaid XJfQr1WgIFuoQhR7HZjoM6FUWNNfmFQl6RZ7IEiAjr0SiFgWHJCE3ETgqVbXXKxVUnAU1qA7 anZyuDjEELkUMMRPFT5UIblFSdGIb1c5IKHwIUsyp9WQIzZnK/CeKZS+y2jLZO+mTGJ9yLNK IA/53lQoKhRsH/iNV2LlMXESa3ysBZH4sn3gX2kN6SxnnybwnrqbuyQEVAKb0jkJfEQOKQQS WchNHI277N1XSv1bU+gjcPxZEGoF/iyyefAQApPAIZieu2gS+FxuhiKbBA7B9NxFf0tnr9qG +CZFAAAAAElFTkSuQmCC</item> <item item-id="252">iVBORw0KGgoAAAANSUhEUgAAALwAAABLCAYAAADK3u0KAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAaXSURBVHhe7V3RsaQgEDSBy+NiMIuX hHlcBhvNfr1MNhhPdFVEwIFBYLBf1VXd3UPt6WnHAbXtRvyAgQcx0DUR63sYu24Y300EgyDi GfiMr74b+9fHuQvhgl8C7AZIPV4k7W35efXOAihY8Ers/eg5mdvLJCIKYOA9DparvljBv4du jC7sn9fYd4JPFqn4c+NWx+tfo97gyBS86tmj1T4VidzEB9Ql0lCp+AvgVu2N3tMLFLxqZZgT 1ALEk4RMHSQVfxHcx9ZGnuAVaZzqrkRVhHiqmgnjpOIvhFtV+VUy4gSvgydIwz4khPh5rHZF Mf8dDYKxYQh+22FKxVQKt1YkhQk+QTsTUuHn9f1p2bMlwZeMiSN4Fu5dN8IEP/Vjxqw7qk5q xKvVnnVSM6/ffq996v87tZLz1iu86gfV/xsnQRSI40bL8Rx/zBbuAv9hBUtbqbgjptS4Dxwk zMV7WFblZAme0b/rwj728Oukxr5uu4wt39IE4Z+q4bYyof99PccyxhSEe6sBjnssDNxrK/wY wc/Ve706qMujdqVY7sw5bkkzSE5Q+HcJBOHfr4RrZTtgyRhTDO/mUqJGQnTxESv4IfrW6vcx hLltMG46+XrLjOLwnyAh+NcK6WgBs8YUgvu7guZqWxm4Hyh4t5zmnndw3MxikJyywvv2ZcM/ J3iKyfogVSUxnXFfPC7CwA3B6/3sXFHS941ZBL9NSg38tV+1LLidrUyCuQcEP5O4XG63RRCj t1+GGJPW7zZ1PI7sw+9Zwi0ekw339AiAZZXqcIVi4JYp+N+f8e/Pb5bCKf4gjBUt8bFbAvj9 +TP+/SdwWTJ+0tpiGu0xLatOgp8GvSFVMiv8VLUg+BvU8IBdQvAPSDJC3BmA4KGGRzEAwT8q 3QgWgocGHsUABP+odCNYCB4aeBQDEPyj0o1gIXho4FEMQPCPSjeCheChgUcxAME/Kt0IFoJX GuC8RV9CQ9LwmhwVxO8XfEFgXh2lfnis1jhdJEjDC8EzyyIEDxPYSAmhwqOliZQOY7OCV6gC gl9MjHxfZ7iksrYKz3ip+DJW24AQweTGRgkoBL8z/jiPoDjBn94p1FD5fkchgzKmJsGzrN8o wVrGUAVTAhslJCp+276YMYUL3nbAFZjvdxbwQfZs+vYEwQftW0uAzXIvp2UdRS/6qlIt2Dh8 by/Pfx0MXqbdYEKrvSDB2z0JlxT5fkdKYsggguCvdhdk/VaBZZ0TbwXYrrhe9bG1sXqF9+JP b5lyErxbCMS2JaClCaoKgRX+Kglh1m/lLevceMtju+J6WRdwWRy68Wex2vMJYQusiR4+xPqt Bss6F94asJEkv3xp8WRx6MC/GTS55jDJJq0eIazHZgm+wlUag1NplnUS7PR8p8QZf21WeyzB U6rBxZgEPbzzCFtlEWRZ51v1qHFZ0iTfwF+f1V6zgpdsWef4wNspV+sVnPlBuAR1a9+Fbgeo f2xi/zBEWau9ZgXvyaKKmfsRtaQiMRYRasVGiTkjt3hakpCQmi3rasZGoHZZvcloBwjBU7KC Mc0wAME3k0oEQmEAgqewhDHNMADBN5NKBEJhAIKnsIQxzTAAwTeTSgRCYQCCp7CEMc0wAME3 k0oEQmEAgqewhDHNMADBN5NKBEJhAIKnsIQxzTAgU/D4TmszAswdCL7TqhjnvEWfO2P68aTh rgCvzAqf+gWQChIRdd5Iw10BXggeFT7qXIvaCIKPom1uQZJ+ibuCREQxIQ13BXjFVvikbx9x E1HqvVFpuEPw3sQpBM9taZjWb1GVfd0oREDmgUrgpuK9EZtMwY+7eY9LMEEmT1oiXFZ7i5/K 909C67ezDrXj6MdUfzffWzVw57SsizpRDby5ONWxvod+fH3GsYsKoNhG+lvucSCCrPa2Q6S3 fgtFH2e5Vw73tZNdTmy7boQJfrFu47yoH2a1t8jyDuu3UMHXYllHxX3lZJeVU80dQZzg55tF HMWPIVZ735tT/WvayvJz0wTLLqpAyz2FrSjuC54zYtOLpDzBz4K9x0zobLV3n/UbtVJSxuW0 rKPg8Y/JzelRLwIFP9GpZvOsKu+o1nPV2RNyp/UbXzjaHjJa1nFx5+bUPJ5Mwc+a71i9/DFx Nqu9fvqA2HnlJJX1G1c4Z/zrVe9eyzoe7szYLG2dWMFPU8mptVmWmh7/w57XtMigOrnOra9g wc/rJ48XfW7LOhmnhl3sCrtwwa+iV63HPRNZGQkGyoWBa4fkBgSPZIMBOgP/AS2abYiTIXHD AAAAAElFTkSuQmCC</item> <item item-id="253">iVBORw0KGgoAAAANSUhEUgAAAWYAAABaCAYAAACL6fx0AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA5/SURBVHhe7Z3tlayqEoY7gZPHjqGz mCTM42bQ0fSvyWSC8TaoLZ9VlBYK+p61Zp21G4TiKXiFAvUx4j8QAAEQAIGmCDyaskZqzHsY H49hfEuvQ34QAAEQqELgb3w9H+Pz9ber9E6FeWr8Y4Ak7/I+LgYBEKhC4O/13DVp7FCYjSg/ x503pCrOQKEgAAIgsBJ4j8PGFX13wvweHiMmyuj81yQwrwQfn9Xg52/vcviajDpr1d9rfD5f ozSw0Zcwm5gyVLmznglzSwmYScdjGcRmQD+wMixl13I+E9aQ3mQ7EmYzm8BGX8sdELbtIWCW vRDiPQTbvVYe0uhHmM0MArPldvseLNtHwM6QMfHYB7Hdq82sWSJf3QiztGHtugiWgUCCgAnT fcIYb7ubP8WYJQMZTBsnIJxYdiLMCGM03u1g3l4C9ky+s+Fn/43Qxl6s7Vwv07BOhPkTo9mw s9mOU2DJPQn4pyyWmbD9fzgdnmfM6+79dC1mzdfpOe+h/EbbhzALlwHXcSVachsCUYwZwnw1 30vCsRBm0vtmN3WK901/4eaM9Nxpaf6CQdnTcSqprWT+HJvAV1Wmmrm6S/1KS405Lvc9VnWp 1w0I+Vj/u+POOUZoEXK+5tLPkfxLCvNw+KN+k3Pd84f+Y5bhY+Fxft/9pfnXTpzXliVP+dLo nK5oapXaSuXPsQnZ6ryvIOm/aFOu1K8lHvAFrMq9pcQM1Twb+JDPK6R9vYaGuHTVxokKgzCL cGUyJ2cszlnT1KwuihM6ZRfkn4TfzA6GT0w9H1+0B9aHoYsHEKS25vLTbKaboitkNr+SspF1 F/hVozt2W8YGPuTTvalx6dbBpZ8IEsJcC37YAcINSeosakq0g/x/r89xKWs7EcpYHvGUhgdq MaHKldpK5KfZSGbMqcP+9AMAZN0Ffj0DfTN1ivlM78J5mpeULeEMZ5zZm2R0EGC9MXPpZ3KB MFeh7w/+ZAcgxFKWn4plzuGL5oV5GmA2AlVka2n+/E3LPtJcdAbYFWLJU1lx3TK/VumYTRcq 55MICbrvm8jOiOcVE5d+Iq3rCfPvz/jv5/dMpNFrRqUdTpY/LT7eM/dFYnceMqmt5flTbOLB bEWaDGUsG0SSp+0gzNIeJev3udLdUNXsN8e3yw15+olLl7ZAL//vz3/jv/+VldfNqYzjN/9m gPMOcfQSEukSTZQ/IT7hW6paFmapraL8CTZZttTmqI4wjyK/lg3KnnK5qxTvnPZyVluFT+hz /9TF8Jamn0P4ejPmz8A9RZipp69S8WR28y+YnWXzZ2Zm4RGiomX78Z3wu1mWsDc1iZXl1xBm vVDGFKYp9evxvji9RikfbtM91SBqb8du2bTxHhIIs0ZvZGek0mNAkvzE5t/SNtY+DQhKZUht JfMLQhnJp0Xlm38rhVTdEr8q8eyqGCkf5sYb9Y3gaCSXfiI7CLMC/LJZnH/uNAx3eA8MWJvo /LQABI2Sip0Ck81FJGyN2Tili4XZiS0mdvI32x1dSG3KrhuP0nfv6tnXaknScRI8IBLeYOf3 iiyhk2SY0VmtteIPCHOr/RN2gQAI3JYAhPm2rkfDQQAEWiUAYW7VM7ALBEDgtgQgzLd1PRoO AiDQKgEIc6uegV0gAAK3JQBhvq3r0XAQAIFWCUCYW/UM7AIBELgtAQjzbV2PhoMACLRKAMLc qmdgFwiAwG0JQJhv63o0HARAoFUCEOZWPQO7QAAEbksAwnxb16PhIAACrRKAMLfqGdgFAiBw WwIQ5tu6Hg0HARBolQCEuVXPNGlX6atImzQeRoHAOQTmLxulPhibMwjCfI6ruqzVfhpoed9t T+947pI2jL4MAfNOaPKbknFLIcyX8X7thpgXklPfxatdP8oHgT4JkB96yDQJwtynr4+3upFv oR3fcNQIAnsImPCffEKzX5hbW9Ke9THWPb7r4dr5Y7Dv13NcYmXC1VkPrYSNIKBMYFppPp/L 58TKRBrCrOyGyxY3fzvt+0006qvgl4WAhoGAkEA0cU194LdGjBkzZqGnWsrun7L47hqbj1OG 0+F5xvz3Nb/g69wtNRW2gIAaAcG4ieos26vBjFnNWRcvKIoxQ5gv7nE0rwqBs4WZ2iyquZG0 JcYsnfWT+XOCFXxmvUqANle3zvljb3fZhjKG8V2l8+4tNGAd2SnlIfBdsm8Irt/b9OrXS9vC sebK49I1Glxx3ITjxPSP5cgpYXqdGfMcj0wOXCrNMdSemTVL6tQfJWpiYV46TllQfhyp/Gsn 9E2cf//+OP37G6/V6Ftfux4jXffU0bfV7Q+yKveW3Szi9plOvvbF0BccD4nvUn1Dcv3uxlcu QNoWjnW6vDWMxqVrNLd0zHL9JG/L1P8WLSubzKgL8ySoH5F7f+4MwUyFStNAbMsQCrMB8ByG j61lwpzL/4X/HMbhI7q+aE1OdX+z+ZWUjaw7NYOL4sVq9M8vKDmTd5aPYh7lvkv3jfLrz4fH WSBsC8c65Sv3Gi6dM5dJb3ncbBJmb0mbW9bvDGUcMmNelhWloQwi/9/rNS/rU8siyUwjtWtL 7+SSdadEuGYoaedgqXJ5ONjDpSTJo9B32b5ReH2VhmsXKmwL0/esMEbL+lX8uXS/ddcaN5uE 2QOWm33tFObNXap4xuwc/C4S5tL8+U0x92ZDT5bdTlZ2vGbiFded7NxF7d3sgcYu9MVkKw/a d3zfKPd9Y/gS5pS2hWWdnRHPq0suPbLtOuNmkzCvcdY5bLGeoVpRNS7Mdtn5mg0vEKry/Clh juNTtnOT6rxsepTFpCDMKUELZ3gm0pWYpZH+531H9w3++valeLFQ1hae9dzHnXGwiP70E5ee IneNcbNRmAu6UsvCHO6McsIsyp8Q5uySjopr63Sw8a6hDOvTxCanlAfnO65vcNcXDKWjsrDh Q2lbilj7py6Gdzh+uPSQzjXGzS2F2d8l9U9+pCaxsvwawqy3JDOboeEmbFKsjxr9R9RDPZUo 5cGIEds3pGJ2BJ+tdUjbImVto3GJ/uraS6ZfZ9zcUpijfsnNmMMLyPyCUEbyPKN8E8OJH9lj ePWOy20d0Qdex/qSO8KVnoG5xwu915+yfSOz/C84y3ogtcKqpG1hWEe+Co6Rcume1dcaN/WE udDV6tmKN/+cmhODmXxVn1iYnXjZcp6xysDMbTz654+3nWFW91SVAtkZrK2V5hH73l9OxycJ 6L70jZVW9X0VnIlCaRYxO6bvfZ9rmFauUd/k0lWa3d64gTCrOBaFgAAIgIAeAQizHkuUBAIg AAIqBCDMKhhRCAiAAAjoEYAw67FESSAAAiCgQgDCrIIRhYAACICAHgEIsx5LlAQCIAACKgQg zCoYUQgIgAAI6BGAMOuxREkgAAIgoEIAwqyCEYWAAAiAgB4BCLMeS5QEAiAAAioEIMwqGFEI CIAACOgRgDDrsURJIAACIKBCAMKsghGFgAAIgIAeAQizHkuUBAIgAAIqBCDMKhhRCAicTGD+ Yot5dab9q/Ja2ZPbeKPqIcw3cjaaemEC5r3F9Bd+L9z46zUNwnw9n6JFNyRAftjhhjx6bzKE uXcPwn4QsF9koT7sC0S9EbieMP/+jP9+fnvzA+wFgR0EzOeenuPz873HKcYMkd4Bs4lLf3/+ G//9r8yUR1m2k3Nt+ebfySajehDYRSD6BmXqw6S7asDFBxO43owZwnxwF0J1dQj4HzH9nrYw M2J2k2+aQb/+6liGUusTgDDXZ4waQOBgAhDmg4GrVwdhVkeaK5D5jHt4WXguNTqbGnxGPppF cemHNXxDRVLbObZceVz6hiZEl0w2xpNdzvaCus1Ruccwvpespu90d445xycaGJbjdwURAQ1W GmE6O64KeB+Q5ZLC/GSXegeQ9aqYO8vXrkkIntRakzyXGpYn/ffR7ZfUl25LnhXHVsomzC+x nb8p+12Ts728bjOQ13CHI9LlRZyYcxVTbuiaY4FrKGe6zu0bXPrYyXlvCPMR3THanPlUajoI MasxHSzbScMZkmmDWweXfkSbN9cx3bTctlvRycHg2HIsuPTN7Zgu/ArmcxiHcMbM2b6z7h4u J/kkV5F+7Nxev4yjBE8v3Q47Ylw1BOx6wvxZ0A2tLeNSImw7UW5mM51LXY8/+Y/Yhp1t6k+r oHHpDfW/hCnCGTPDlmPBpfsGpk470Ccg/l6vOcSQWKqL+0XbnttiHcmHLTCeMfuXhOn0uGKr OzDDeyjfvO3juJw9bN/WUi45+FOzpa/jE6EON26YneXNswEu/cAOtrUquySd3/tALW9ZthwL Lj1qgCvEkmNpsTCztm+F1+V1pTFmuw5Z48zJSVgunRlXzXCTaVgnwjwtH7lY1ZE+0BmA7hJ/ 3qxyGrkI2fQTl35k66V1xYPHjxsGcyJ3KbskeTc9jgWXnrJ/2SyUTAAgzHRPkAizU1LqxupW xKU7K01pT62W3/RfgYB1I8w23ipo2F7A7uzOO2+6nDlVWbKGHdc/STC8pel7W73t+u2sMku7 IrbarHSEObnPQIa4tjHv46qNwjzPnvPDnSuXSz+ennRi2Y8wtxbOSA02avMveZdnzqZyA5pL P77/pWvMCm1GmKVs7UqYiu9z6XqhjKQdzKZwK27St6NAILPjggjhuTPiLeNKv6FMibIwhims I2E2q/mWXoMoPRbFbBRF8elgk4NLP7yzSSrMhDKyG7oMW44Fl+6ZLt/8Wy9PCY+0X0g49pa3 QJhTs2PvRsZtsHLp5zMzs2XyGG3CxL6E2WpzS0djnA2JxBnm+LWNwUMPoTDZu/+6QRY5k0s/ vw8SFtBtj1nRbO1N+nRWOeFhbG/aT5rGpflwvo6PnPo843RmXGk2SVrWxgeDuhPmafe2/NiJ lCPygwAIgIAOAckJH7/GDoXZBhQhzjo9B6WAAAhUIbBdlPuLMXsAl+WN5HhTFQ+gUBAAARCY CejoUqczZvQCEAABELgugf8DgjIwfJw0zqAAAAAASUVORK5CYII=</item> <item item-id="254">iVBORw0KGgoAAAANSUhEUgAAALsAAAAdCAYAAADy1R2ZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALkSURBVHhe7Zrpta0gDIWpy4Ksx2ps xmI4DA4MCYLKdMhb6/3xHsW98xFChHH6Rw4M4gAbRCfJJAc4wU4QDOMAwT5MqEkowU4M9O/A tvCJMc7A/xNfNi2RYO8/1KTAdECBP/MVcIVgJ1T+ywGC/b/iSWoCDhDshMcwDhDsw4SahBLs xMAwDtSEfdv2vs8wbmuho+rOGeYoT5NhVzdc/clYAevM+Hz2fDa+TIxPR5NTNIPmB8+MHdv+ nR4b7LtOC/96+hXX/TA+z7w87urE0xKwb8vE2UW6zG0O7PKSmEQZYPODqMe2XkfnW/+d3hEg JFXQXRH25j3ND7vM2mYj38kChkMyC17Z/iVp6O0Y7OKGdebsswlXSXdTsPfjKfxRKdFMP7sF sugtbBKgtxOiDOzf6k6Y+InxSXhyqIGNrJbfwp7T0zTYwSUCKw2w6yVqdwx2fyLZ9TYS69Z0 Y7AHlnBVQiKf0eMmQ/+exsMuM7I6aOOeO9AAxddygazruC5BhA/3iOv+gMbdgc2Uc98t7BV0 38IHwY6+5555wdjdjvRXnkbBrqET3ZkVyg5Ypk7N+CnG3/3Wn1Bag39ASME+HxPZnrRFde8n 94Jz+GyM2N2y0HuGNZgs65OD+PgdeupgcsJubRyTlsl2M7sbOAh4de3YsGJLPXg9n25oKj+P z/60TGVMT56esKuNwRF0bBPZWu2a3I3RgJolkFvGgGVNA7qfxycv7KK91Y2nRhlj1rnIByUk O8A7aNlWFxPIgeu+9VegG2O80zrbWuNh3/UB6/4z3XGlmd7DpMVHf2LItUE19gS7F616mnae HTUsvsNSps9+B871d+jrp8dvL7qzdmP69/Qj2PEsZ1lU7AtqWmDOsiapZtdjYKtaFd0Nwd6i p5/BfnyKx3fz8dk/HtX3v7S7MQ/Kg/0IQhO6G4L96nC142ka7O/ZoieQA9UcINirWU8Dl3aA YC/tOI1XzQGCvZr1NHBpB37O3CBqgPdbrQAAAABJRU5ErkJggg==</item> <item item-id="255">iVBORw0KGgoAAAANSUhEUgAAAWQAAABaCAYAAACPHCxJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA7XSURBVHhe7V3tteOqDk0Dt4+pIV2c JtzH6yDV5Nfp5BTjZ7Cd8CGQRMAQe9+1Zt01w5e0JTZC4HCb8R8QAAJAAAgMgcBtCCmOFuI5 zbfbND+PHhfjAQEgcFIE/ubH/TbfH38f6XcxQl5Bu02g4o+8Bo2BABAgEfh73D8K9i5EyIaM 7/OHCxjcEAgAASDAIPCcp8Id+GUI+TndZgTGmEnnQGDb6d2W3d7y59Nt8jkwGUyLv8d8vz9m bQLjGoRscsZg48E8FuKUImCCi9s+2c3Ev2HnV4ply3YmfaFdLC9AyCaawAFeS8dD30ciYLbD IOAjES8fS5+6OD8hmwgC0XG5T6HlWAjYiBgBxlhGSUtjomQN/ZyekLWAfIuhIedFETDptyVd 8bSn+WsOWTPhL4paP7WVAeHJCRnpin6eiJGbIGDv0DsHefbvSGE0wbpKpzoOOjkhLzmcgpPO KnZAJ0BAjIB/a2KPfO3/w/B3i5Dfp/drW0TJYrAPr/ic5AvmuQlZuV043FIYEAhoEYhyyCBk LYRH19ekTUHITaxjTlfX/N76JzyE0d4jldYXTM6Rr0lpZcvWT2ER2KZJaJkaW2rHvFOaa2+v 61RD/wyAUl9rT3feONf7LCSc7bjyJpOd7RSEvEO0GHg6/NO81Snc+4f+55Th59txfd/C0vpv 509zzF5HvoViva1aBa1sufopLEIs6/z+AGmv6LBNakcJoD7RNVlTJGJk6xTom/1egLbdO6XD lX+sUHEHIOSehExGLM7dUSqqi/KCju0F9VfCN9HEtOTM0/lEe1F9mob8kEArW6p+Hot18XMJ zNavxGjZsQV2LJ7xIzYs0Df7NS01r9wxuPKOGIGQexIyZfjQccKDxtzdUoqsg/p/j+UalB03 k7LYP+XUpgWOcGStbJn6eSw0ETJ1qT9/0T87tsCOR0B92BhqfdffmrmbH//a0xbOPLGLXXRA /15gufLD9CYGAiEPRcg+CZCOkyFJXf1c7nJLUwxHyOtEtJklkWzS+unFyX56LLrD6xKw5qur eGydHXvSR52x9foSqTv39yCSEfC24+HK66hV1AsIeYft92f+9/NbBGKdRmFEZjiHWOkbE7L3 Tb2I9OpoL+lFK5u8PkXI8aS35JxNWewHRZqv40DIWj+nfcVNMW12cGy1L6zrP3HlEm9sU+f3 57/53/9kfZ/+lsXxh3ob8NuJcfTjItqtnKo+QULhr06NRMha2VT1CSySWOYOOesQ8qyyo2zy Dl2rir6hDf1bFNNTW94HMUTIvVMWua+nqHwxe6gXRGfJ+onILLxKJNqut3fe1yEYIR8VtOrq 1yDkeimLNR0jtWN77JuPoNWXOwynBM6dvZj6XHlzENYBQMg9CZmNQLXXgTT1M4d6DibD/lwj i10wg7L1FSkL8mtO/aHeWzpqbI0dD2KKpsNo9WUW0MjWwZVFrryprvnOQcgdCVkWxfn3SMO0 hnfxf11j16en2B8kPx8hx1g4zq8mZNM2+Higyaf1ucNViR07skfVobV+zthm+x2P5Dzgyqvq Ju8MhNyRkOVmQk0gAASugAAIGYR8BT+HjkDgKxAAIYOQv8JRISQQuAICIGQQ8hX8HDoCga9A AIQMQv4KR4WQQOAKCICQQchX8HPoCAS+AgEQMgj5KxwVQgKBKyAAQgYhX8HPoSMQ+AoEQMgg 5K9wVAgJBK6AAAgZhHwFP4eOQOArEAAhg5C/wlEhJBC4AgIgZBDyFfwcOgKBr0AAhAxC/gpH hZBA4AoIgJBByFfwc+gIBL4CARAyCPkAR5X+JOgBomAIIHAUAttLQNRDrCkRQMgg5Obuad8z 239LWPvD8s2lwwBAoBEC5jeXs28wxuOCkEHIjbxx79b8kHjuHbrGw6N7INAJgeyDCQmZQMgg 5LbuOshbZW2VRO9AIETApOn0gcjnhFy4BTWrhx/N5/KMB0RZix7dXp0+szdvj6w+H/fXs1LK XdyZ0YFup0Vg5az76zk1GTl3IWT7lpw3KwWPHIbPutc2JAi5NqJrf9vbZa+3AHOvbLeRAL0C geMRiAJV6iHcFjlkdYRMCEb1QTxfX5KTEVsChCyGKnxI9XWKbB5WDcPfyI6Cx1UVkqAqEDgO AX8Xn/X7SCjZLv/wCDmOjrcoKnzRl8o9EiRdzRgg5GpQeh1FdgQhtwEavY6NQG9CJg9z1skY PmVvSZok5DDvIlOqyDAlhKzdHdR4ir5JArbtU/TezsamLKb5WWSk2o2Cp+QjubT3p4P+crYi fUHRvjYUbH9a2TjsuP64clZgQYWGfh/6uTDl2iZC3vKG8cRbQQ79VE7IfHRl77yarTP1h5kg ukO93eFkyfr3Np+q/3Ze8qDz9Y/0gibwvEwV6dir7cLFVDa2PzmbrCkyQZxasT7WD1+kLDjX 8LcCNth4p2xytqJ8Jxyvha3VIG0NtLJx2NH9hdil/16qh9uuvd+v/rRzkSwIqU7IKyEupPN8 zPco4khEuFQqQhFh1zDPrIyQDXD3aVp0lBFyqv7LaPdpnpYJ7ZNVvICRKZ9CALJjC/P6hUP3 b0ZG6o5/qvWX24r2BXn748FTysZhR2HvtuHKPwRgZL8vImRvC5rahpOESkfIhgwj8ibzxYNE yPv2Q5qyyNT/ezy27TulmyYyoU5x8ye72bHFi+SHs2Ok5iEpSM41XvILbZX0BWH7LngpZWN8 h9wRL7Ng3z1z5T4E5/L7IkL2AEsdtKkiXG6Ls5tghByykXWLikWELK2fXmzcNEx+u+86p+ya zYpsPLY8jdSFIRoM6vtgqf55W/G+ILd1AwiYLqWysdglI+Bth8iVR3Kex++LCNm/9pTYspOE vLSM7iDv6HKHAEu9AW5Z2O3m42/jMRPZ51MW8voUIcd5Tjspsqy8H4bIclYg5PeC5OLKkgpJ Cn6OPbRV3hdKbH0UKetk47HbfNTx453s13/iyim9z+H3hYQscIQEIa9gy/Ku4Sjd7yGHJ6Vc hKyqTxBycuuXw6+OY5KLX9KmAn8YtYrViTis1KZsOFtxvsC174mfVjYRdv4tiukZ+j9XHrGD TXnobvBo5pwmwCk3VgdCzkXJGUWE10aKoRAc6vmnpv5NDipo1dXXOEeKkOtt3eR5/WLE+zfM fTUoPtfY1GBIi/UFLekdiZ5WNi12dpNCXQJwlMyWn8fvuxAylbPM+1d5VC32WwEhR31xEXLY IFtfkbIID5vsOPrDjbd4kgPFeNsqxnbEiqztpOcau3KJbT1pq52A3IVV2f5QTLWyMdhF2AdX /LhyT/dz+X07Qj7UYSoMVomQs2kVNSHvROtE46kJ/hEEqQNFQV7/o3H7NWYjVitaXv/Y1v42 O/rYyVWX9AVF+8Ohy8sWY8H4zutbhdW3o/vtXHkV/cfzexDybtgSQq7iFOgECAABILAiAEIG IWMuAAEgMAgCIGQQ8iCuCDGAABAAIYOQMQuAABAYBAEQMgh5EFeEGEAACICQQciYBUAACAyC AAgZhDyIK0IMIAAEQMggZMwCIAAEBkEAhAxCHsQVIQYQAAIgZBAyZgEQAAKDIABCBiEP4ooQ AwgAARAyCBmzAAgAgUEQACGDkAdxRYgBBIAACBmEjFkABIDAIAiAkEHIg7gixGiCwPYiyus5 +iY/39pE8kt2CkIGIV/S8S+jtPld4fzLuJeB4hsUBSGDkL/BTyFjIQJN36EslAnN0giAkEHI mB+nRcC8iFH2oPBpIRlcMRDybqDfn/nfz+/g5oJ4QECDwPoW5f2+PwEGctag16Pu789/87// yUa+yap9aS084fSlhoPYSQSid/uoB0GB30gIIEJGymIkf4QsLAL+46Gv2xPLQ6H84d0Br7ez 8qNCDgEQMggZM+QyCICQRzc1CHk4QmaeTw89KrxnaiIl765p8Hx7dAWKKx/JhbWyclhy/XHl NbBp+BS9ufJ2m+an4+P34e8hp/CIHH85sNxz49TuINhJhH7PzpsattX3AUJ2nbX7fc3NiV5y rIRwf/ylLZu9Zxr2p/273qHataBlT2PDYanFIqxfQ9M3afiux8kuH9tM8HdawyFneRcH1kzh EYtgrvO9UzRrO9cXuPJ50PvZIOSRCDk6hFmEM46TiWqM4yXXkTBCMrq6Y3DlB05Ffqh1cXJ1 tWSTUp7DktOdK+cFztZ4EeV9mqeFTDw1ONk/HHvE5lk8yF2hf2PEtt/nCYGfV26nVWbedAQI hPwCf5nwvbdzFPla50pFNus90/e1Jj9dETrhquqb2Ljyjn5JDK2MkBksOd25cl9A6vZC/kbD 3+OxpRKILbraD8ayVIk0WTzYDuMI2W8SlufnDTtcwwrPSX418dzX3mZjpL5bOpIEqGjJXUTC lIapvy8syShviw648oaOV9q13YqaPHkQLcdBlBMxubug5V6uzQBxunPlkQIuAWuul8WErPeD UjRHbCfNIRvZnTwxGUylyolUoDtvusGi46CTE7LZzd/T2/8DjFRnIrpb++1QytkP74S2/hNX foDS4iHiSeTnCYOYyN3CUoTM6l6CzX4IqFnYQchUNKs+zqEWULdjrtzZOYpdsnZFsygoFD89 Idv8qgKQ2vYg88XZlAUlQTjB/ZsC01NbXl3Lsg6T2/jEFk+07a+NTR1CruMHZTD3b6WJkF1p uXaflrdHRhsQnp+Qe6ctKPLNHeqRqz5z15QjeK68vV/SI2gJWYul3QHn8vVceb2UBSkHc7jb yyz1x+WI02zsgut8VghnZ1hcLs/fttFbs7Oa5wsQ8mbsblGy9roTcyAU5Z+Dww2uvL7XfdBj ImWRPIhlsOR058o9TfSHeu/mFAFp/eADWIdrKiDkLXfsTVNvweIOSrny40Ex0XH2eish0jUI 2XJyzysxzkEEcQc5/jnF4OOFkKBstPA+CIuMzpUf75uZEfO6xtjksVwjrd7YpAiIkX0ou9QU hsaDs218NdTHLy5n5k1Nlbi+Cg8UL0PI6+ltz+0LZ0GUAwEgcA4ENDdyfI0vRMg2oQhSPofH QwsgMCgC5WRsFLoYIe+kbLa0umT7oNaHWEAACAyBwJ5O+YxXLkjIQ1gPQgABIAAEIgT+D2J/ PjJ/4XrBAAAAAElFTkSuQmCC</item> <item item-id="256" content-encoding="gzip">H4sIAAAAAAAA/+ydd5QUx53HS/a7P+7dvXf3ly37lCzZSpYfObOwwALLkjaxgbDAJSQEkiws JCQkEUTOWUSRc1gWdheWJeckMpIlneyT7yynsyWULcNeVfdMT890qq7urqru/ul9hJbZ0c5s 1fezXd+a3um70N8j9N13K+5CCB1T/vw7/O8/fAclPvrH7xz83r33kM90+acH0AV8ywfon8nd ELmd/PdR/C+55QP837vQ3eQmlH1Q+QJp/+w5dAQAAAAAAAAAACAcHAQAgJYqAAAAAAAAAAAA AAg3h0U/ATk5DAAAAAAAAAAAAABA1KgHAAAAAP/ZDQAAAAAAAAAhp90EpCL8mQDBcwhgRjNF JWcRQfizAgCpyNAkwxdQBgB2W2ti9AWUAeKMoylGX0AZIG5QamLlCygTQQ4AmbjVxMYXoozo b4crkKjYwKyJvS+xUybSVAJ+mGLvi4rwb5MbkKtI4pcmlL7EShkgMviuCb0voIzpdGRNQd2W oZwlMDgSEZwmrnwBZYzTofkShsE5GBPk8UVJhfgBkWcWsianfInz4EiFVL7ELRX245bhS9wG R05k8yUmqaAZN82XAWfRoLfR4KsxGh9pkdCXCKfC1bhpvgy5liLCgxMKpPUlSqlgGzdTX0CZ ME4lH1/CngqP42bli2aN8G8whkjuS0hT4cu42fsilzJ1cUF+X0gqRI+SkMF09CWhjOjvGrMr NoTCF4zwgeI/hjS+qMoIH4H4EBZfJExF0ONG6Yu2AyB8QOJAiHyRJxUcBs2VL6BMlKbeX18E poKPJmy+iFamPiaE0RclFZEaIl980dUZ8bmKKiH1hU8qRJnixRdQJuyRCMiX4FIhVhPvvoAy wRFqX/xNhXBBTH3pyuQLKBMQYffFeyqEexGQL7odAPExiwwR8IU5FcKNCNoXfsrsjwuR8YWk QppvWR5fUsqITlo0iJIv9qkQnn9RvqTqTGAp2hkbIuYLhv83GBDtJ/npi6qM8LyFnej5oqVC eOBl8wWUAV+sEJ52OX0JTJkDMQF8kZaAfNF2AIRnL4yAL9KS8OVN/30BZcAX8AWUAV/Al+B8 0dUZ8TkMC+CLtATuy3U09AYaehOUAV/Ep11eX66jIYomKvhjWJiBL8LTLp0vqiaaKTeUW66h wVdQxSUyYllTPCizLy6AL9Limy/XzTS5SjQZdBENPI8GnEn6wpqiHbEBfJEWr76YaYKpuEze vZxochb1P4XKjqGSQ6hfHfFFeBrlB3yRFkZftHryTqKepNZdWJMLiianUflxVHoY9TuAivah gj2o707wBXwJN+58uW6x7lLqyaALaOA5su4qP4FKj6CSelS8HxVWo/xK1Hsb6rkR9ViDsqaC L+BLiKH1xaqeXE7Vk/4nUdlRVHIQFdehwhqUvxv12Y56bUJ5a1H3leQtAjrNBV/Al3Dj4ItR k+vW9QSvu2pRQRXquwP12ozy1qHcVeQrd56POs4gD4QfroMnX+piAvgiLea+ONaTc7p6Uk/q SeFe1HcX6r0V9dyAcleTr9llIcqeRQqL/uEUX8QHUnLAF2nJ9MV+W1irJ+q6K1lP+iTrSfcV ZFg6zSFemD4c+KKiTxH4EiI0X6jqibLuwvWkqAYVGOpJ53mo43TU/g27h4u5LzmLTlllCXwJ BXpfUuuujHqibQvXJraFe29BeetR7luo61KlnsxM1BNH4ulLo2HTsCmNhjknCnyRHHw40NZj +m1hUk+UbWFcT4rT60kPXE+WK/VkdmY9CdaX2pCBNUmCaGThmSvwxaMvqXqibQub1pPFSj2Z xvhwxBfRMeZrCu2RBXwJBZov2rZwop5UoT4Z28LzlG1h23oSqC/bpUevCfPBBXyRGc0Xq3rS ZQHKnknepsyXh8O+CE81L01SsoAv0fMl37SeWGwLs/syLTq+2GrCfnABX2RG86WHui28mJy1 QurJxEAeLhq+0JnCeHABX2RG88WXeuJIqH2h1kTny5Oo8XAZcwW+sEF8WUp84fNwOl/2u0/s fiG412RaoydnNB4+q8nTqMkI1PQZGXMFvrAhwhcxsedhCtbkqZmNn57dZMTcps/Mb/osavZz SXMFvrABvvihyXSiyXBFk5Hzmj67oNlzi5r9fEnzUajFC5LmCnxhA3xh12QY1kRZd42Y0wRr 8oyqyeLmz7/Z4hfLWoxe0fIl1GqMpLkCX9gIky81geChnmBN1HXXQlWT5liTF1a0fHFVq5dW t3oZtR6L2rwqaa7AFzYE+BJM7HmYoq67UvVkIT6gNH8er7uWtnhhecvRK1sSTda2fmV9m1c3 tnkNtR2H2o2XNFfgCxsJX5ZyejgvvmzzCQ/1ZE56PVna4hfLWxBN3mo1Zk3rV9a1Hos12dx2 3NZ247erY9t+kos4fa9xdxUOEwG+sMHfF79iz8OUp7R1l1k9eVHR5GWsyYY2r21q+/qWtkST ne3fqGw/aXfWZHLyD/5+wRfwhZkO08PgS6Ke6NZdaj0Zpa8na1uPxesuRZNx29pN2NF+4i5F kz1ZU6s7TKvpOH1fx5nkN7JdyNIk9/tNeny/aR6HiQBf2MC+dI2HL+7qyUjHeqKsu1RN3qjM mlyVNWVvQpMZddmzDmTPPthpDjlrgjJLWBNCs553N+/DYSLAFzZi4ovTtvBMw7awaT3ZkKon E5V1l6rJ1JoO02s7ztifPVPV5HDneUc7zz/WZQE5bZUyS3c37/2Dlvk/bFX4wzb9OEwE+MJG qHzZx4zTtrCiSXLd1ULbFh6zppVaT9R11/htSj1R1l1T9nQg6y6iSUesyaz6TnMOdZp7RNHk eJeFJ3MWnc5ZTDYe8dg6BukHRJPif2lbek/78nuyBnCYCPCFDc6+dCS+0OfckyOWshBN0reF LevJxjZ29aSOaDJb0YQcUIgmXRadyll8puuSs13fPN9tGfnNCPU9c+y5p10Z1uTeDoPuyx58 X6ehHCYCfGGj/USZffEHi3qirLvS6gled6XXk+S6y7yezD2c0GTBCUWT0zmqJksvdFv+dvcV l7qvJL+amvuWc5Du7VhxX6ch93f+t/tz/uOBrsM4TIQoX1qP3io8816Igy8W9eTNRD15Mb2e vK6rJ5PUelKdUU86zVPXXScS6y6iybmuWJNlF7stv9R9xeXcVVdz37reYzV504O8tc5Bur/L vz/Q9T8f6Pbkj7oPfzB3BIeJAF/YCJMv1YwomsxvZjxrZcxqQz3Zkagnk/X1pE5fTzon6omy 7iKanFc0wQeUy91XYk2u5a6+0WPNzR5r381bR36tu+cGqiz9KPfpB3uMfDDv2Yd6PcdhIsAX NgT4whp7NpRt4cXJbWGiSdq2sLGeaOuuVD1JrrsWnkivJxeSmlzJXXWNHFCIJu/krftl3vr3 em54v+fG/+q1ibxnCE2WHur53EO9nv9xn1E/7vsCh4kAX9iIvC/qtnDL1Lbw+jZjLeoJ2Rbe R9ZdszK2hfG6S6sn6rpLrSdXkusufEB5J48cUN7ruR5r8kGvTR/22vyr3lv+u/dWci2PPtud s4Q1+Un+6J/kv/RwwRgOEwG+sMHblxnsvmxlIr2ebDLUk9S6K1lPtG1hrZ6cyagn3VOa3FQ0 wQeU93tu+EA5oPyq1+Zf997yUe9tv+mz/X+wKX13kLfcccwS1uThwpcfLnrlkeJXOUwE+MIG f1/YYs+MVT3JUjXR1l2qJvPS68kSQz1ZpdUTbd2lavKhogk+oPymzzasyf/23fFx352/67uL vOFh/m7nLD1SPPaRfq890u/1R0vGcZiIkPpiOsXgi4+k15OMbeF6s23hM4Zt4WQ9WW2sJ9q6 6yNVkz47fqto8vv8yj/k7/5jQRV558OCPc5Z2rhq/qOl4x8rm/BY2UTwhV4WzspE3pf0elJr UU9OpteTi3b1ZEOinvTa8musibLuUjX5uO+u3xFNKv+Yv/tPBVX/V7Dnz4V7PymsJldbK6px yFLVlhWPlb/xWP9Jj/efDL5I60u7qPuSdtbKbNOzVvTbwlo9udYjtS1srCfKugvXE6xJYt31 +3RN/lJY/Wlhza2ims+Kasn1pIr3O8fp8QFTHh849acDp4Mv4ItK1hQvvtQykF5Pjqr1JLUt nFZPrpjVk/fT68lH6fVEW3cRTQqwJuSA8qmiyedF+74o3v8lNqW4jrzdrmOczhyq/OmgGU9U zAyRLzj/3HwpH1RhRJ3lqPqiHF9YYs8MxVkrunqC113r3nWqJx/rNFEPKJomt4pqP0tq8mVx 3Vf9Dnzdr/6bfvXkegclh5wT9cTgWU8MmR30LAy55udRg14Zj77g2dQ7ogd88QvLs1ZM6skv eybWXR+SdZdpPdllrCfKuoto8nnxPp0miiklB/9acuhbbErpYXIxHcdEXTuz/2dD5waniR7+ ynj3RVUGfAmUzHqy0lhP3jOpJ+SA8tv0dZe+nnySrCdYky9MNFFMKT38t9IjGHJJnbJjVNn7 2b/OD1QTgcr44oupMuCLCXsZSa8npmet0NWTPWb1BGuSXHeVJA8opYdVU26XHb1TdgzTUHac XE66/ATtuiVoU4Qo49UX3ZwSZXR/jbIvrLFnJrnuupnaFt6QcdZKxroroUnygGJbTw58k1p3 JTUpPXo7qUlD+QmFk+SCuf1P8fCFRhMhyvjrC/5S0fdlpgBfDPUkue7amjxrJVVPLLaFa63X XaSe6DQ5mtRENeVkQ3/MqYb+pzHkcoeYgHxxq0lA1uAYW1nj0ZctSU1U1O6Pb9wCvpixhRWK s1bS6kmBWk+qDfVEW3dl1pPkukvTRDXlVMKUAWcUzqIB58hFQv31RZ/57ivIb3QSlGuU5Cwm byDQeT655Gj2TPLmTmIPNB59UTUxnWLOvnTj6Atz7JkxqycZZ638Kb2e3NK9evJVMUU9MddE NeUsYeA5DLlEO+GCP76kNFF+61nF3hdy2ffx5I1qhSjD5ot2QLGZYvDFR8zric228H6rbWGz ddcJ47orQ5OGgecJgy5gyHWoMV580ccbS4HVYPCl5YsClHHli6aJdosUvkxI+OJ2GRAiXzBE k53W9YRyW9imnqStu9I0GXhBMeWiwtsIU3GJ4NYXY7CxC158afYcb2VofDFqIqMvy0LhSw0z zmet+FBPkqaYaNJQgbmkgiouo8GXaX2xijRWwLsvjYdzVcbeFytNpCJjfLj4wh57Zgqq/kxx 1oq3emLUJMOUyw2DMVcQ4SrB3hf7bu6XL42G8VPG1BebA4o8WI1P0I+bLcgXDMVZK5Tbwub1 xPKAclkx5UqSqw2qLPaBdNz+5eBLEPvMmhfh1YSnMgJ9oThrxXs9sdeEMOSaijLg19mV4eaL j8qERRMaU/gszDz5sscTZmet+FZPBmVoctlKE4XrGKRiHzBJfPFFGc0UmWWh14SPMsQXb7Fn 98Vw1kpZ8qyVcrNtYcOrJzpNLA4oRk3STLme5EbDUAJSYVMm6L7vlzKaIzm6/iKbMmyacFAm e5YwXzAu6olv6y6jJkluIg02ZYLbT/aujF6TjPWYmgQZlPGuiXF85PFls2c41hNrTYgpGrTK WFkTxOuVHpWhP38sQxk+PzMDMiUgZbAv3mPPDOO2sL6eWKy7DPWEYK2JiTI0P7St5sitL94j QXlAsfcl4698MhCcKUEoI9YXjEM9OU9XT9gPKEEpkxBnBXHHyhffU0GpiY0v7XQvU0bGFx+V Ee+LmHUXlS++KMMHV5rY+6JZo06QfhtNu9H4KdPbre6s/yy3IdK+ZXG+VPvCQJqzVug1oV13 OSmj7JUNuSG7Mmr2MlLh3Rfl+EJmRwl25pQlA592i/H+VvfRw3OsvCuj+OJP7Nl9Ma0nttvC pvXEsN/FivK/Y1MoX5QRooz2U9oqFUH7Qjm5jspwHjePysjgC4ZvPXE0Rfvi7kLIeeodUxGQ L/Sy0PzvosYn1L7wrSeOmiQea7B2noybEPo4ranttaW67YJ5ZLugo9N2gXBfdD3FTiKBP1J4 +1LlJ3zriYUmmilXE8+E+HupQT/IHJTR9qLtfekwlVwduO04dmsC8sXGFHl8YVOG+OJr7Jmh PmvFVpN3vB1QriZMUQ9z2BRSpi6SesVHmcTLnS59af0KajmaRRkHX5R5IdlOnynjLRmftb9D xhcR6AuDMtmzZfGFKCNq3WXQJGHKBWXL7pzyqtBp12szhrnz4kvTZ10rw+aLvTI0ssjjyxCX OwBS+cJPk+uJepKx7kodUDRNzpCXU8tPkPOlS4/cdqXMyGGD6WcNW+Ddl8ZPuVPG3pdNVdWb lGCrH+hRDyIZt5h+Svt4c/qX0j4W7osrZbz4YhxG7wRST0wPKFfM110pTU43lJ+8U3b8TunR OyWHbver+7qo5la7CSbjbOPLxLGjOPtC8+uZpjl35YteDVN3TG/Xfyo146JlcaUM9iWI2HuB 57orpcn5hgHnNE0ayo/fKTt6p/Tw7X71fy2q/Txj0CiVUX2hUab9JB6+qM9WHeTyQRVGHUx9 CRrhpmSMT/h8EVJP0tddJQe/Ld73ReHev1iNG40ymi+O1nDzBaONs6qM0RfjPePji6MyEvri Whn/6gledxXXfVVY/Sll+7NXJsMXe2X4+6Iq47g0ClHUOSjjzZe9wRFUPTmvrycNiXqC110H vimq+YxSE0pljL7YKBN039flPzXISV8Sf6VRLA6+2Cij+BJg7APxhameDEzWk/5O9YRZGaM1 F4/vpVcmuP1kU1/Utwen8SWemO4ASOuLiTKOmlyhryd/K97/ZeHeTzya4qgM9iVDGeP99QTx eqWNL/hP8IVGmTavoRb4J9JI1EliXxLK+FZP7iTryS2/NHFURvUFY3//DBh8oc8A+MKgDG6F Kp582c0D19vChnpSqtaTWpZ64lEZU1NolNGssfeFIQDqqBJZlA9aK9dtSQy16HBKi/YDEI88 n9h7UsZqWzijnihnrZADSqqefFu074uCPZbbwsEpw2YZB8AXNkLki0rmusuxnlR/wk0THw9M QaPKojmi10d4JiXHoy8buWN51kqqnnxdWBNIPYmMMjbDKzyQ8oN94R97j5ictULqyef5lX9Q 7yA8/DIrA74EN4AygzUpqU+ctZLxKeHJl1kZ8CWIoQs1wmMvszLgizhN9siJ8MxLrgxAg/AY gy9gTSgQHmDwBXyRH+G5BV9AE/nhl8xKSRGeedBEfoSnVB6Ehx80kRnh+ZQN4RaAKRIiPJbS ItwF0EQehKdRY4OsCJcCNBGO8BCGCOF2gCZgSogQrgmYApqECNAkPggPmxuq5AQ0iQPCYxYZ QJMIIzxd0QNMiR7CQ+UDuyQFNIkMwrMUB0CTCJCzCGQJmS/CMxND9O8OKjxIMQFMCR2mFzgQ HqSYAJqEBfsLtAkPkr+slxXQRH4cr/6JER6kmACmSAuNJuCLbL4Ij00McWVKRH3ZLSegibS4 9EV8luIAaCIz4ItsgCmSE1NfdkqK8DwAjlD5IjpIMUF4GAAawBd5EB6GeNJ1KcpZQqLeeQHV /cEXeRAenjiQdl3aZWm+dJqLsmehDtNR1mRGZYRHKIYIT1RUwYJkXsfZ2pd2E8klud1aIzw8 /rIuJAiPVsTouoRcr5nBl1ZjUPNRLpQRnpzYIjxjkaHLAq++NBlBq4zw2MQZ4UmLBtiXHM++ NHqSShnhmYk5wsMmJ/SDkz0zcF/0yggPjN9Uhg7h4ZQKt+PDxxdNGeFpAdaBMmaaUI4PN19U ZYRHBdAQHlrZNKEZHD6+CM9GUOwIN8IDzM8U/wbHF1/8epIAZ4QnWTZNaAbHoy9gSqgRnmrZ NKEZHGZfQJMIIDzhsmlCOTiufAFNooTwtEtoiqvxsfIFNNFYGy2Ex94tYRkf4TMLBIdwC2SO X1ieJ8AT4UbIHL+wPE8p2RVVhNuRnkDxA0IzOMKfGCAQ0IRycIQ/GUASQBPAT7ZHH36aiP5O AcAXwBQAcAtoAgCuAE0AwBVgCgC4AjQB2FgTV2g0Ef4kAUAeQBMAcAWYArhkJwAAAAD4zzYA AAAAAAAAAAAAAAAAiC+rAQAAAAAAAMHsAAAAAAD/2QoAAC3fReSf/wcAAP//AwDeTv07sL0C AA==</item> <item item-id="257">iVBORw0KGgoAAAANSUhEUgAAARIAAADeCAYAAADxao9YAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACUhSURBVHhe7Z2H+y5Fdcfnr9Bo7BoL mkc6XKSDdBARLr2lWQlElFgQCxZEQIqCCAIi/XK598Kld5DeQcSo0SQaW4yaaGwok3PmfWff efe3uzOzM7M7u+/X55nn4m93592dPeez53zn7KyQ+B9GACOAEQgcAcHHr7ziAjSMAWwANtDK BpghE5CsIJCgYQxgA7CBFjYAkLQYNAAXDx3YwLwNFCC5ihwKDWMAG4ANtLEBgAQAxQMENhBs AwAJjCjYiNo8wXDMuCIfAyRfJYNCwxjABmAD/jYAkACeeIDABoJtACCBEQUbEZ7g/k/wsY0Z QAKQACSwgWAbAEhgRMFGNLanK67HP8ICSAASgAQ2EGwDM5BcSRRCwxjABmADLWwAIGkxaAAu HjqwgXkbKECyihwKLe4YiKcOk+WGMY47xhjPPMYTIEkE0CqImH+DA+ThALgPce4DQJIAJDaI IEqJY7yAQD7jaIDkQkpt0ELHwBciS6GCexB6D3B89zYEkESEZyhEAJXuHQDQiTPmAEkkkMSG yLyeEudmw2kwjqlsACCJAJKUEEGUAudP5fwx+wVIAkDSJUCqp5LhZDGdAX21tyeApCVI+oYI Up/2Rg9gxB+7GUhWUudoTmOQE0SWpD64h073ELYe198BEk/HyxkiY4fK2K9vyHADSDxAMiSI jM3pbGM/ZCccw7kXIFlNDoVWPwY2Qx7K9iHeY5+xHeL1jeGcARIHgPoY8pD2HYIBh4znEK5v LOcIkDSAJMSIh3ZsjgYdcwxzvL4xnZMBkq9RaoOmxyCmEQ+trxzswGvMztlBii9TO/vNUpy1 vRRfpHbGtlKcuo0UJ289t5RDDtc2xnMASCrg6WXEFWuOjOX4PgzeaezO3VEKs9lAcuKWUnx6 CymOfxOgkihYAEhKA+tkyCOGR931dwEV69ifTVEHQyMEJMctk+KDmyxZcKqL6xvzbwAkBkis hryAAKkakxQOYR17TlliguToDZfARJ9Diusbe58AyRQkVkMGRCodL4aDWMf+jO0m2kdskLxn vVqY8DnFuLZF6WMGkqtIaF3QZjVkQKTR4ZTTtbQd69ifRGJpSpC8443Wawu5vrbjMrTjFhok ViMGQJycrDyOrk7gNP6ZgKQ4V5oRcr2+RdpvYUHiZMQASSuQmGNb50zO458TSHhaGSCpBGkB kjUUmi5KczZigCQYJHqstW15j30uIJlChEGyKH7ic50LBxJvQwZMosGk9dj3rZEYEAFIqgOO hQJJa0MGTPqFiQIJVa12PGuj7KUEEYBkwUECiCz96t+gxiQFSGwPiAqIACRWkFxEud8426Ac xmbci749RmWryxjWQGQCknH6Sch1GanN+AYHABl4FNLk8G3etQkEiE5zQhxurMeOFiSAyIgh UgeE8tu/LuAw92mIQkytZKwwCLmuUYIEEFlAiPhCo7y/I0SQ2lRnLgBJqAHi+H5ndGKMvwdE ABIbSFbRDiNp4hO07oRuMQwNfQwfFnX30BMiCiQj8ZOY1zGLSEY0OHMgAVDGC4FQwLeACEBS HXAsDkgQpQAoLYTVyoK0ET10Y0UlBUiupsEZS6uMSEyQACqLC5WWUYgJlLH4SczrAEgAlcWE SgBQYjrgWPoCSKoildDcG8cPC06eUBmL88e8DgMkF1NqM47mldrUpTwQaYcFgxjwdgTKWPwk 5nUAJDaQIPVZPKDUvPWrdZKYDjiWvgASH5AgSgFUKGoZi/PHvA6ApA1IEKUsJlCmkUpMBxxL XwBJKEgAlYWEylgAEOs6ZiBZTULrSFpUsbUtaGKIf+hjEJAai9+EXAdA0hYUrscBBoOAQaw3 xkOcccjHAiSuQIixH6ACqIwk6i9DrwDJNXSBY2lZpDY28AAqCwOVsfhV03UAJDaH72I7oAKo DPxBDpB0AQrX3wBQFgYorMmMKVIBSFydvOv9AJWFgcoYgGKA5BIi5DjaIDQSHzABKgsElWH6 IEDi49A57AuoACoZPvABkhzg0OYcAJSFAcpET8k7UgFI2jhxbscAKgsDlVyBMgPJGiLeSNro NBIfcAEqiwOVjPwVIPFx0qHtC6gAKh3BBiAZGhx8zhcgWRiQmO8K9ZFZACQ+jjmUfQGQhQRI +cXDLoFSgGQthUBjadBI+vv2r4sNxXrTFv2432eX+xKyz+BA8ufb95XP3rJc/t8Ne8tfrt2r En4LC5IMIhEXYwQA3AGQYqxc7pHvPoMBibz/QCnvO0DKe/aXz91N7c79JEPlDzfvI39z/dvk z1bvWUBlIUGSAUTY6F0MMIVzoE9/OLncK9d9sgeJfPRgKR+h9vBBUj5I7QECyhQqzzFU7tpP PnfHvvLPty2Xv79pb/m/1+01+4D4UDSN0PPMBCIAib8z9wbAz2/jBP0WILmUOs6ryScOlfLx Q6R8bNoYKg9Te6gElXsPkM99fQKVPxNU/nTrcvnbG/eWv7p2AaCSEUQmILlUHnLw/qqV7Un/ rTfnyWysehsH/n6PAkk8fzciknidhp6gpBuu2pMEEm4aKBoqjxJYdJRiQuU+ilYYKkbq8+wt +5Ce8jb5y2vemlekYhp124gkQ8fQ994EyRXHbDoHlt4cKMPx6nws9EfAxg4S+TQB5BtGs0LF SH0YKkbqM9FTKPW5k1KfqZ7ya9JTetdQygY9vblr737E7dxcHeLcHaXgds4Ok3Y2tS+9WYoz 6Yn0he2kOG1b9WQSJ20lxQlbRpkyBUgyTm/MLwkmA8nVFJH03OQ3D5fyad1KQGG4KKgYUUpV 6sORSkPqo/WU37Ge0kfqUwMR/oobg0S3Wti5QEQDxBckn9xcio9tJsWHN20NFdOGVFRCNsUR ifn3zp/CLmM25n00QN7+Ril0O4VSm4j+PkttInba5gQVRMqtDipVUcoTlO6E6Ck0lZw8UmmA iAmSo489XpqtOC+bsXO08WWKOmKA5JiNW8EEIMksItEQ4fT5uGVSHLORFEesL8UYQVIJkRCo MFAKPaWU+vDMTzGVPK+n/JH0FJ5KTgIUC0Q0SMoQ0f/f+hRng4kNkiPJ4GzwKm0vg4SjEkQk PcHFhEhZhztl6/FFJE4g0WAxo5QmPYXTniUiraueslzVp/z6ukhQMZ2t5ov3h779iLkoZC4i sTkzax2pQPLOdb1gUo5G24DkWoqOm5ov3BZyf7aHJhE/FUhsNy/Vdi+IuEYpkfQUnkrm+hTW U/6nrZ7iABGGQB1InJwgNUg4r7bBbLq9bCcaJObfm/pysTPXc1nY/WwQYcAQSFzG2nWfQiNx PSDmfkEQcYWKbdaHa1Qc61OepfoUXZpvTX8cUhkVRUxbFUicHOFTJJBmChKGCNsLpzZzINFP SmOMYtpVSF9OY+4I1V76coHI6EBSpCkVQmuV+Or6Nx+RtlFPmVXRlkvzG/UUT4iUIxIvA8wJ JGTE2ok1RBpBYoTeIc4f81ivsc8NKK4QGRNIVK2ICRL9366wcNkvlp5SVZqv61NUaf4+VJo/ 1VNaQMQESStDziEiMaKrsmObEUldJKePKUcvVZDgfcxW9XtN2zXc9D6uaVere9MFbJpE1Tqd JF1qcxk9Tbppqh7ELDpj0bRLqJi/HVFPWWJoNcKqmdKYqU1rQ00NEpszNF0nGTI7rC0VdAFJ leOXI56qfebhdNmSVGsOdLZrzW17G4gUEUk8fzc0knid2oCkyt61dpETVNrqKVSaHwIRBZNQ A001a2M7LxssnUEysb+JU1fbYtM2fYzLPuX+zWOC74NtvGJubwuRMYBETcnqd2j0vz5QaUpp nmmhtUTQU+aMz+ZYVdtjGVfsOhLbeblcaySQuAJiFpG4PxgHCRIfPaQqvVGpjfsY2fbtPCJR hWK6xqMMlTqgdK2nVKY+05cIzfoUmvHJBiKm04dWttoAwttdIDI1dqfU5hoyamrKqaf/bf5b 9/e6fQugVPTV1O8gIpJQiDBYTk4FEsuAV90w379JfmtXLwmgZ0t8odKnnlKA7tDwVCZGOuPi 8K4v7bn05QMQI+zuGiTaLucE1xr7LgMqe5DEgIgGSUSfn0UkETutA4x69Z8b120sgcq0ElWD xUx/fFIfTlVcZnRc96lIfQRFLEGRiKvT5rafaxRi7uea2kSMSMr25xPlZA2SWBAZMkjUG7m8 yhkvTDQHFAtU6oDiItK6wsJlvylQBEVECiS6+TpXbnCg8zGf3LWO5HudkSOSprTHFhlXgaQO LlmCJERUrZv+5dQmYvDQWUQiH5iuasZAqYVKhNQnoZ4iCDiCgDJpHjqBNoQMIVJ2HA2VoIgr QUSiQWKDQnm7bf+yM2UHkhQQSRmRXEd0StXUos38xi03XniIC7y4pYZKRD1FQcRsvk/oAUDE dKK5KMX3Wj1Bwr+lbc/8Xf3fZbss79O03XZs+TeyAkkqiExBEtPfi4gkZqflvuQ9BBJaAlEB hZdD1ECphMp0XdbM9JROIKKE0emKZryuiLma2el6NbOtw2tOXKE2NeQgqDRoJEX0Q/uktD+f vrMBSUw9pCq9odTGZ1xs+yYHiaT1UyUtzKwaLX2ogNIElcYohSCjZ334XzXzY4i0znqKuRLb 9L8bdJKkEGFwmNO1elnEJpB8lpZF5HdsPk7TeK5Q8NmvIQLxhkoNSMozOTZD7Wp7kvH0GXs9 M9Z2HV/X44YGEv7+jKTV3SW9m1JAhYGioxQNlUxTn6CUpsmAdPFYKEiOpfLzf263mlml03ik MUVE0XRMBUiqpoOvu+ZyekL235xXo/OFg+v+qSMRDZp0IElzE/9Eiy6rdT1oAWYrVFTqk4+e 0hoiNqPhhZdjg+SoDcKjEw+ImAVpjVFKCSQuNSW293I63W67lzG3dwWRQiOJ5/NGahOvU/1k +QMtXfhHWsPjWXpD9tnbl8sZVGhld45SVKRSSn1c9RQ9lbxkOrk881OT+ji87zOboSGh1dXJ bIbFq7anAsm7/FYzizYzY4zNEqgYIBkcRMppgu3ett2eUlRtmP6NGQEmBcnv6PX639OShQyU P9D3ejVUGCh/4iiFGkcpCipm6lOlp5ipjxZpXfUUXUXroae0qhVxMaTUIPFYzawAiSskPfcr z650Gkm4agVt93O51y779AERvuaTWGyNFzzMQLKWOo3ceDUx/uIdL1XIQNFQYaDUQSUXPaVw Mi48c3EgF6PhfXIDicu1hewzjUjMGZpRAYWd0vXel/frCyIaJBH9PSlI+Du8/EGq39CX7n7b ABWV+lBrradwhBKxPkVQ2qOa67slPoaUE0hCAOFw7FyaM33yV/1tNGDxsYMu9ZCqqIsjkiGA 5BdXv1V9JvNX9L0YXjiZVxBjqPDnMzlKMSOVSepj6imU+kxF2iL1qdJT2k4lN7zvI+hdH9U0 TGwOo2+SqxHlABLbNUXYrvSQqbPUaSMLC5W+ITKkiORnq/eU/7VmT/nfBJRfEFB+uXYGFf7M A38/RkOFUx9TT2lKfdLoKTOBVvDSAKSpCNJTnFIaX0EuNUhsQIsACdu4FBCxgMSMRBYm9ekz nTFtlT7TmiQiuZ7CnJjtx1e9Rf6E2k9XEVAIKj+fg4qOUij1KaDioae4TCW3qE8R9FayagwT bi5O1yTW1Tl1qlmb3CDiARINFZcoxcVOs0uXzp5+BTGHaERFJFtF9fdCI3G5Oa77/McVu8sf rNhd/ueVe8gfrdxDMlR+uuotUkUpJajMUh9DTymlPqZIa9VTzCrauankaX1KrZ5CAKGpZEFp j2ouEPExirKTx64jyREiLUBSFaWUUyMXO8wSJPwRdx+baTuj5HLcEEDyvUt3k/922W7y3y/f XTJUfrhijylUdJQyhQpFKT/XqU9JT5lLfYyZn/JU8rM8lRxBTxH0EqGg6WTVqEYlOkjMm2s6 fYzK1lwhEgiSOqgMDiTHUwTAEQmDxMXJu9hnCCD59kW7yO9evKv810t2lSZUfmBA5ccr56Ey n/qQnsICLbWq1CeFniIoUhEPcvOASOjTpQwAczUz27s2Nnjo7a6RVcB+c5pIuZ+Gl/baOpVO f5qA0rbvJMctFkiuoJwpTnvmqzvLb124i/yXr+0iv3PRrgVUvj+NVHTq80Mj9fkJpT5WPYWn kpVIW6+nWFMfXUlrvu9DZfmCGxW9qebjVLGeHq5g8NnP5zpa7Nv2XZtQZ2WA6E+B6nPg/89N wyX0N6IeX4CEopJY9hLaj4pI4vg792NoJPE6ffK8neQ3zt9JfvOCnaWGyrcZKhSlfHcapXzf SH1q9RROfaYirfNU8rSStro0nyppi9J8qqad6imCoCJITxEk0HpBJDQiqTMGH1hU7dsCCr7X 3RiFmL+fICIpO4CGivn3bByW7zFA0g4uj9Kr8I9TmP7EV3aUTzFULiCoUJTyzIU7qyiFUx+G Sjn1MfWUcuozN5Vs6Cm2qWSzNL9OTxFUni8oUhEEFl+HSm6wvlDJCSIRNRJznKtAUv5b8vvi ExHkCJLPpYpIriVoRGoP0ozEQyQuPUJ5/mNTqDzJUKEo5WmKUhgq3zKgovUUnfqwSKv1lB9R +tOsp+w10VO4irbFVLKg930Eve8jKFLxhcjpf/PX3YWqLkDJDSKpQGLYqUpnKuwWIKFIqAl2 DJJI/s79zFKbSJ1+/Yzt5D1UJ3EfGdEDZ20vGSoPG1DhKEWnPgyVKj3le5T+KKhcvpua9Smn Pqyn/KyiPqVyKtmipwgqzRc066OA4uGIN97/lDz18A5BUjfrk4uoWjd2KVKbqa3WQYQNGyAZ OEhuP3UbeSd9i/ZuWhqQoXLvFwkqZ06g8pCCyg6SU5/HzNTH1FMqUh9TT5lNJZfqU6ZTyVxJ 66ynUFm+4EYvESqgeIDk5EPfIE857A39G6zr+0Ae11Y1Ds6aSAezNgyKQlyteQACJAMHyU2k Bt9Cqy/dRqXgd2ionLGtilIYKvcrqMxSn7Ke8nRsPaWhNF9QfYqg8nxBAq0PRFbfdr/83MGv lycdkgFIOFIJhITt+NYQSZTaaIhU/avDdYCkJ5DcQGSP0a49YUt5Pa0peiPlYDczVOgboxoq d1GUcreR+jBUKvWU86r1lO8Y9SlL9BQ9lWzUp9hK8wVNJQt6iVABxcMZP3PgOvKEg9aRJx70 +v4jkg5A4jM2S/ZNkNq42ClAYgHJZ7aI4u/6XhQaicvNcdln9Sc3l1d/egu5lk70OobKiVOo UJRyK0HldopUOPVhqBR6yjT1mdNTpqlPlZ6ippKn9Slc8MapT6OeUlOaL0ikFSTSChJpXZ3l 3Muvlp/c/3XyUwe8Tn76gHUAEhuAAZI8p3/pQe/iz677RAfJio9tJleS8aw6fnO5hlY6L6BC UcoNJ24lb6IL4NRHQaVCT5mkPg56Ss1Ucp2eMnmBcFaaL0hLUY2mkl0hwvudft4l8uP7vlZ+ Yr/XyeOpZfHkszlzn9sBEgIJrfivSuQzKkjLHSQX06rml35kmbz8o5vJFR+fQoWiFIbKNRSp XHvCFir1UVAp6Sl3sUhb6CnbKz3lwQo9RU0lU31KlZ7iWpovCCqCIhVBIq0PSI7d+zXyuH1e Iz9K7WPLXwuQ2CCVACQM76YnZRZwN2fZABJ/3eR8+jTCVz+4ifzahzeVCirHLZNXEFSupG+w XEWFOSr1YahQ6jOvp0yiFFNPMaeS76+YSuaitydJT+Eq2ll9ii7Nn73vU5Tmc30KvZXMpfmC G+kpgiIVH5B88K2vlh/a69Xyw297tfwIQSULo7U5c5/bE4Eki3F3LUpbLJCsIMqHt7OP3lCe 876N5FeO2Vie/4EJVC4iqFxy7DJ5GUOFUp85qBh6yg0WPeVerk8p6SmPctGbi55SKs0XVJ8i CCoKKB6O9v63vEoes+dfyQ9QY6hkYdAe5+9zrVH2BUgyTm3C/V0zw9BI4nT6hSPXl2fSN1bO eu+GkqFy7vs3kudRlHIBQeXCD02holKfZbKsp3Dqo0Tacupzyjbzekp5KpnrUwgoS0rzuT6l pjRfkEgrSKT1dZajdn2lfO9ur5RH7/EqyVABSLZvHkOAJE+QkLQQI3BIBhLu+LQj1pOn/+P6 8gtHbiDP/KcN5JcIKl9+nwEVTn0IKnY9ZTaVvERPUVPJuj5lqqcYpfkaKrPS/AlUuDRf0KyP oKlkQe/7+ILk3Tu9XB6x8yvkkbu8Qh5FQAFIABKrDeSY2iQDyXUUkURqJ71zXXkyfazp8+9Z T0HlDILKFzlKYagUqc9GsqynqNSnQk/hKEXpKTr1oRWw9VTyHadtMz+VXFOaP9FTJm8lCyrN FwQVQUsd+IDk77Z7qfyHN79MvmOHl8l37fhy+Z6dXgGQ2NIqRCT5RiSR/J25MUttInb6WfpI E7cT3/FGyVA55d3rylMJKqcfsb48g1IfBZX3bqBSn3Mo9dF6yoVaT6HUp1FPMaaSb26YSq4r zRc06yMIKoKhYnMEY/shW71YHrbNS+TfbvtS+ffbv1S+naBifRq5CnIh+3lcg8/1RtkXIAFI 2kYoGiTmv59jqFCUUkBFpT6kp+jUZ05P2WSip9CszyUNegpPJVfpKUVpPqU/S0rzi7VSadk7 XpHMwwn3e9OL5IFbvEgevOWL5aFbv0QeTlABSOypTRZjFALq0GNzTW0iBg9JIhIGUBVM9N8Y Kir1efcs9ZnXUzYqRFo1lVyhp1zFRW+6PmXJVPL8+z7l0nxBMz/qI95cIOQBkr02eYHce9kL 5b6b/aXcf/MJVLJwEo9r8LneKPuGOuEYjic7za4gjTWSliC5seK4AiS8MWZrAkmR+lD606Sn zKaSSU+ZTiXr+pTq1GfzpaX5hp6iS/MFve+jPuTdwgF33/Av5J4bv0DutckL5T4EFYAEEYnV BrIECb26EtHnk4GET9IFJk16Cqc+Ez1lMpWs9ZTyVLKGii7Nn3vfp0JPUd/fpSraNiDZZf3n S267bvB8uQdBxWpEXTxRWwCxzbW3OqaL68/9NwCS8CjFBybl1OcUSn2USOuopxSl+aX3fXRp vtZT+ONAgkTaNo6x47rPkzut9zy583oToAAkiEisNgCQ9AOSOZH2nUv1FI5SZvUppKccY0wl f2hWms/v+1xJ7/uwnsJRCr/vI6joTdBUsqBIpQ1I+BiGiW5WI+riaYmIJA+g191rBRIS93N6 aY9LKYaS2pgn2iYyMY8pppKL+hRjKplmfur0lEto5sfUU5Tj841lqLR0QIDEEoWY49oFSHP/ jRxBwmsGpQHJldRxNy0aVHR9yjT1cdFTBBW9CUp9BL1E2BYkc8flYMQtgRjl+m2/ncP49H0O 2YIknr8bYmu8Tl2BFAoUPt6cSj61KM036lPM0vwPbCIFTSULilIE1adEcaS+jZR/3+bMfW7P YXz6PgcNEi456Ptc9O+riCSez89Acj112mMLhcqJDJWa0vyyniJoKllQfUoUB8zBMPoEhe23 cxifvs8hV5BE9PdsQGJCLBgqujSf9BSe9TnNLM0nPUXQVLKg0nyAxEPrsAGjbnvfTpzD7wMk /UYpDJdQqKjSfPN9H9JTBNWnCAZKW+fITUyMcR2p+sjBkfs+B4Ckf5DoSCUUKKaeIqg+RVCk IhgqoQ7Ut5FCI8lHd7BN/+amkaRIbW6iTofSQqEiSE8RFKkISn0AksTpTQ6g7fscMo1ItL/z wzrU9wuNJLSjvo5vAxUFEt0QkYTDtGkM+3biHH6fQUIr+KkXRfnVDFrBXdUy9XluNGsT02cH DxI9GL5AAUgSRyIaLn06Sy6/bYKEV+jj9XD4DXT6HIuqsKZF0TuHCkBiD8NcoBItKsnBWEOj qpTH5zA+fZ+DCZJV9PkTXnicl/nklfroO9jqTXT6goKg9XU6AwpAYgeJGbI1QSVKVNK3kUJs 7c752t5rEyT8nWn+VCx/mI0/hUKfSFHrB/NqffwuDi9xQUtfqHfC2v6ey3H0vlmi1GYldTzu VobKvfwkZq0k5InsctNS7xNy/qmPTX3tQ+jfBMm9B0hx135S3LZ88gF7/lwsf/FxJX0Whb9q wAuT8zKgqfUUBZJ4/m5oJPE6jXmCKfoygRIcleRgyKlhENJ/DuPT9zmYIHnkYCkePEiK+w+U 4p79pbiToHIrQYU/ZM/fouavP64gqNB3mNQC5bwcKOspvIYO6ymxriUZSG4gkCxgY6i0iUz0 WEW7sSEGEuLoqY8Nua6xHGuC5KnDpHjiUCkeO0SKh6dQuY+ilK8TVO7YV4pbKPW5gaCylqDC n5Wt01NoedEg22OQRPT3WUQSsdOYJ9hlXwoollY+n6CbGctRHM7bdl3Jtse6xiH3w0tW6Onf pw+X4mmCyTeoMVQeJ6g8SkB5iKKUByhK4dTnbopSbieo2PQUWtxcLdLF/fuOD0DSTeRUdqw6 oHnfQN8b7rI/QOLvSC7jGmufMki+STDhxlDRQHmSgPI4RSmc+jBUVOpToaesIT2FPzPLX4rk 7zLxVDJ9F1vVp9CCzs71KQBJNyBxjYQAEiy1aLUBEyQchXBjgDBI6qDCqY+pp3DqcydFKTY9 hR8qrKfwKoBNIARIAJIlBoKIZDgRiQbJHFAIKgyUZ3SkYqQ+rKc8ynoKRSkPUpTCesrdBBVO fZSeQrM+S/QUmvXhVIrrU3ht4io9JRVIbiaNBM1/DKxPo1jhcVM/AMlwQWKCpS5KKfQUAkpZ T9FTyVpPUVPJJNKWp5JZT+HSfK2nEEhi+nshtsbsdJH6AkiQ2lhtoCq1KUcmlZFKQ+pTpafo qWRVn0KzPmtoKrlKT+HSfKqijemnAElgJGY1IkQkeUcLXdyfNiAxU58mPaU8lcwibTGVXK5P oSpaXZ8CkPinHzHJW+4LIEFEYrWBEJAsSX0c9RSeSjb1FE59WE/Rpfmkm8T0C0QkiEistTNB NSZdPPFz/41YIHHRU/Q+nPrU6Sk3EVTSgeQqIhSa7xhYn0ZdGDnE1rzTpxQgcYUK16foqWRd n8L2okASz99nEcmN1Cma9xgAJEhtrDaQGiTlqeS6+hStp2iQRPR3gCRwMK1GhIgk72ihi/vT FUjq9JSi6I30lWn0GjtoAEgAEmgkqWHSB0jqUh8CSWyIcH8ACUACkIwdJBoqiSACkARChAcQ qQ00EqsN9B2RJEpnzMgGEUkgTKxGlPppx/1j1iYPoNfd6z5B0gFEEJEEQgQRiX39lixA2wXM m35Dg+QsWpPVVhofc3tHEJkDyS3kVGj+Y5CFoyAiGUZE0iVIyCa69OcitenyR8f0WwBJfVSi 73MWY9RnVNJ1RNIxRPg+AySBkVgWTpJhRFL1sMhirPoASpcg6QEiJZCsolAIzXcMsnCOzEDi MoZZjFtXUOFv1PBCQ6lTGwWRfnzYiEj6OYG+LjzW72bhEBmBpM24ZjGGKaGSGiTT+99m7GMd MwPJTQQSNO8xyMIJMgFJDPvJYjxjQyUlSDREevZdgCTwBmRh+D2DJAZAyn1kMa6xgJIKJJlA hO8dQAKQBBW0pYDI6KCSAiSshwTabszjAZLAm5HFk7OniCSmIbr2lcV4+0YqBUhoqjxGwVlm EEFEEggRHsAsDLsHkLg6fsr9shh7F6jEBEmGEAFIAJJWaU1KOLTpO3ugxAJJphCZA8mt5FRo /mOQhRF3GJHkbiNZ3I9ylBIKkun9zXnsC40k55PM+dyyMNyOQJLzfag6tyzuDUMlBCQDgAiP PUASGIllYayJQTI0gJTPt/d71BYkA4EIQBIIER7A3o008XokQ4dIFlBpAxKCyJDG3ohIVtOJ o/mOwZhB4jsWQ9u/s3vnCxIFkWH54gwkN9OJo3mPQWfG2PFHxBfNFpLeRx+QMEQG6IcASeBN S2qALjUKCVKbIRpyrHNOcj9dQTJQiPDYAyQAyVwtSSyHHEM/0aBiA4kWVQNtsc8xB0gCb140 Y3ONPqr2izRr06ch5v7bQfe5CSQjgAgikkCI8AAGGVgIPMxjA0GSuxPndn7e99wEyQMHTj7u zd/kHQlEABKAZJDCXi5gcQaKCRID+rlcR4zzQGoTCBNnY4oVfURMbWIYEPqYzHY22kEFSMY2 bgVIbqPBQPMfg6GCBPfa/167jtkSm/iMXrN1suK+az9D2g8giQjQ3qDiqZEMyUCHfq7KJgyQ DP166s4fIIkIEnOQO4WKB0jGasi4rnQRlsvYAiSJQNIpVBxB4mIQ2KfKIdeMMh2Jea8NkPBg oaUcg2RRigUkKa8JfcNn2AYAkp7gGRUqDSCBowc4+i0Bx/ZkV33d7xlIeNDQehmDYKjUgAT3 EzbdlQ0AJJnBsxVUKkDSlQHhdwArtgGAJDOQaMf0AkoJJHBuOHfXNgCQZAoS0xCsUDFA0rUB 4fcALUQkA4BI2VEroTIFCZwaTt2XDRQRye3kVGjDGQMTKLhvw7lvY71XAAkAigcIbCDYBgAS GFGwEY31KYvrco/0ABKABCCBDQTbgAGSq6kzNIwBbAA24G8DAAngiQcIbCDYBmYguZUohIYx gA3ABlrYAEDSYtAAXDx0YAPzNgCQACR4AsMGgm0AIIERBRsRns6I0AASgAQggQ0E20ABkjto MNEwBmOwAY6QxnAdQ7oGgARGB6eDDQTbAEACIwo2oiE9OXGuaaI1gAQgAUhgA8E2AJDAiIKN CE/5NE/5IY2rAZJryKDQMAawAdiAvw3MQHIbHYyGMYANwAZa2ABA0mLQAFw8dGAD8zYAkAAk eALDBoJtACCBEQUbEZ7OiNAKkKgv3OB/GAGMAEag5Qj8P2i243rIRDP+AAAAAElFTkSuQmCC</item> <item item-id="258">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAdCAYAAACTzT/bAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAM8SURBVHhe7VrblesgDKQuF0Q9rsbN uBjWvIwQwgIl2WMfKz+7uSAYhmEk2GucfpQBIQNGGKdhyoBT8agIxAyoeMTUaaCKRzUwx8C+ usVYtx1RKp456l7ee3PWGGdUPC/XweTy93U5RGPcYq06zyR3r+++b5vbPQuatl6vBTkBKh45 d6+PVPG8XgJyAlQ8cu5eH/l48YQFLG4NFVzvk6+V/mpZrpelN2q3/uUCfrh20JfEw8Xvbl0y tuMWQyxms6XdsOsdlXWct1nuUQ5zeMIMzxZPXuSVeOLGwQ2JV834uHUwEIk6GYzfS3+6vfSH G0Xh4eJxe4vXC6cS1GYB/lGh4H5FILV4eDznSKR48ulZPcikeD9DAA2+S3F/Kc6LIL41XIiH JNpvUI6JmwUJDOLK/0DFd9yOxMPFU2P5mGUF12HOWecIze80ZrHOYufh8HSmKi/MYQBwGrNo MqFDqYKapT1Vc8tG6cETLMFSxVw7TyA6b+Q5fSu4YOEEHjYeCiWPD050OLDN/GLWUrZZK9et nIfDMyqeMigmC33PYkuu1ObQzxbbRvsNT6dxWjxYLHF0WFM0ZJ4pLiFJ6y39LvB0nSe6HSku sKbcvqVXXbpmk/Lb1jwcnt5MyHmgVUKbD1QDq0dtg5tZF4CwGIT1Bw01pIdcVA7OF0eihEPX GKWmScUuUFTGXoz4Cs91PLdZ558CYBH9lZqn8NGkbOx0AxzLxOMXgqzGk/sz98npobL4gZog uUVzk+naND48ReB2Ayd2CE9926rimTRBp73eLcmfj1hyjPFPjPOdtDXqPNgdsEvR7iF1nrPY y4U7+NklLJzUjsCGxIPWAGoSER5Y08Df8zQQE1nzXIhnKoMR43B4xmoeiXjwNXdqJbLOnKVy 7SkFQ0cKwu7edpg14vma+bmnAJxGO+6A6zARe5QIJ67qYE5Z2joHGLlJjfSZZIEQB3wXGXMG 9IiHcz58okBvRg3a3lUXOGT7CMg9ytXt5Y1qkqsW7GePhKR4ZjFN5dnZwbX/ExiQ/U9CFc4T 9vbnGEXi6aWFsWr/52vSCf6JAZF4/gmbTnNzBlQ8N9+gO8NT8dx5d26OTcVz8w26M7w/Sheg pAtxsSwAAAAASUVORK5CYII=</item> <item item-id="259">iVBORw0KGgoAAAANSUhEUgAAAJ0AAAAdCAYAAACwlm4OAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAM6SURBVHhe7VqJka0gEDQuAiIeozEZ g2HlUIZhYATesr51rPr1a4ujsek5fYuRRxiYzMAyGU/ghAEjohMRTGdARDedcgEU0YkG5jCw r0Yt2mwHmohuDuUvR9mMXhaziOheroNJr7+v6hDbYpTW4ukmcf56mH3bzG5ZkPD6ei3MJ0BE N5/z1yOK6F4vgQECdrMqWxQQ/7StTQuPiG6Ac1naxwArOjdBmdVlgE99zjI8WFzNytwrIAuF 8zdNW+5hzXEag+c4Q9avVp9Ec/hhxqbh+px/brzvpjwvOX0pX2pUDN8vukDIxRT+O6ffXRia XyPSzb9EcwPPCrcifA7fjifncYbgm6n24cZHBGdDZXp0/L7e4IaE9/WiQxfiHUnFOxNjrn+U eCJwbXj/G3hWFEXNcfhcZOHGOxR39s8WpY3Gno7CsxyU+GrEp79I/MJLxnONWw0tGL8vG2VB qKMt11s5HOPx7BplFEywqxeEMLgL5cYbL93b6Bq8KBFeKTzgqTrgkiX9okM5TIxc8Rvb6OGK 64uehxMdyFPuejkf25JQFz3riUcYkuUnw6DxT1FvoXvvK8MYWrnxMZ5z0ZFG9kFH1Ck6SzJI dOGBGiwiTYxREl51WSGpB3POve55uoKQQrGRe8AePMbzAiFfn4pgst4w/u9EBxNYR469VSJp 9jkNrPCipY6RUlqdVpN6K1VhpfXE/Ko1t+Jx54njdPi+P569YYhC9wzwD8NrUh0l5FuyrYDO /6lLBJ5viqcjzlDDpcKjex8UjltyJ4hX3D9EAw6fxAVi4MaHrLpkfMhptHDDnOcKr4m1IQDS /V8bo6S4QXTdXGUeKU/+073vWXPa1gA7sHjc/p3jV15XWA/yvm4uQ0rx6y0TcECQ08FmIGpM FsNOIYGukjFevbrzo4YuzsOyvhZuDhOFRL4GMMXgHQcKvxkLuWmtiLCFAjeecYg/P30qfZnU HKZFV7YVl68dv4dKmp+lvGGGp+s3a1n5AAb4Xw5fpb/vRbkCq5aoiugecK3PPgIjOuR6Q66X 9pNiq8PnBWcY+JT7fzaBcrp2BnhP176nrBAGqgyI6EQg0xkQ0U2nXABFdKKB6Qz8ALRE5yn4 yqP7AAAAAElFTkSuQmCC</item> <item item-id="260">iVBORw0KGgoAAAANSUhEUgAAAHUAAAAVCAYAAAB48KHmAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHgSURBVGhD7ZkLkoMgDIY5FwfiPJ7G y3iYrAF5Iz/t2K2xdKbTThNZycefh6tovh4XAfW4Hc0N0YT6wEMwof4M1G0hrTQtm7Qdb7Ro RUq5t4YbQP4y7W2lioR6ADDrcRJXMl2wyF+u/TlQWwdxNaT0Qs2Eg/wF228CFalqoAy0AFow hrx2s1WQv2D7tVBtEGNNC5mwF9wBXiMu26JrVXbKCPKXbL8QKqstaa7SgL4AdTXxUPiGJ3yG U1JjRhDKK5C/ZDuEykH2XaTd6B5Y/i1TIdctTldF0J2fS60OzEkqHJEi8kHpsrwe+Qu2B6gp PMrSFkNhGP5zj86+4TAupN/zohWV+w9KdfdcHBrYKHX80Xo3tgeoWbopgmFt2XiwAz66ytW0 5lk3DgTwL0BFgjy3oxGkSsBupj0dgdB697Un6TcdtAtQVcPBvuwT4caQNTpZCPWC7tfeQP9h QZaNBvzRene1Dz0mtLXR5DWT1cu/ZU9tju636mcg1Pf1Oa+sI4ChMhCbar06j0VK9Z4BtQLq zIuTyuURAFBdOotlJ31Cw7bYaPi6W44h7lqfFj/Y/V4eGrkLYqWe7Y3V15kb5YZE/p2/BdWp UuJ/ceQDG9nBW1BHFp4+34vAhPq92H/sL/8BeX3FzSvG2vMAAAAASUVORK5CYII=</item> <item item-id="261">iVBORw0KGgoAAAANSUhEUgAAAHAAAAAVCAYAAACe2WqiAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKASURBVGhD7ZkLcsQgCIZzLg/keXKa XCaHseITEZRkd7a1m850ZruJAfngB9PNPT9LR2Bb2vvHefcAXDwJHoD/EuC5O7MZt58r7O50 u9mcPS74Svd3WLdtG/tbn3s429xjXWsy+lGe0zlE1tPrwSfig9ldRcDb5ytwGYA1aHqAec04 QQ/rg1kCGINnUEafu/GwKsRwf3Ei2qj3J5vidZ98kETiJmT7ywKMAYQgW2cvVCCsM9aOFSZU JKow+ncodghqSgIm4YN/JAEwn3AdfQEJIPMj/iD7vwCwz6YL4lduPfc9SdgFCYVAQ1CHCkOr R/Du0jNmFQjXfWJhCW7kk/Eh2b8PkGh2VQfQctof7iDSrtECjEEKKjgKPltt1BcKJF9HfZAB EGQ29bm22pikzsnGhqHavwkQyQcYwAEJn3UA8Ya6IULd1HQAg3TmHiYC1FSfBI9EukmEHlDb MzlKcU0fhtb+FGCjzTkrmIYb78OTkg6its7k+xQAaTZLAGfDW1IdPMyo/IJ40Yqc2fLzZzdd M/YLQADAZqg3Xr7HnxvPaUPXwftUBZaBhzkqNBnOBTrvM1SUMLmKQ06qoBnA2ZAUZibefgHY TE2NQQ8nZc9huQ0Q2bkgoa9XX9Dv18+ByRFR1u5UC40hOYa0xxRmD3j9wD6SUHwQxaBy868g a+CF5jvsge+ZQqsPPMBGUboZhH9RIa3RVTA5yHdDDDmIX7g+sq96lQYPsHB2wq9mkh53Tfbj FfieOl71KSqA3dgtwSsTqa4Hrhq0v+S3DmDoMxWKVNKxGrOUPBA/AVoHECpOfS77hNuPjRyB KcBYbav8Z+L7wE4Bfl9I1trxA3AtXp23PziLn9AWME3EAAAAAElFTkSuQmCC</item> <item item-id="262">iVBORw0KGgoAAAANSUhEUgAAAKIAAAAdCAYAAAApbre7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOUSURBVHhe7VoLjoQwCPVcHsjzeJq5 jIfpln4UKJU6Wz8ZmWSzyVaBwuPxmR2cfcwDD/DA8AAbzATzgDMgGgge4QED4iPCYEYYEA0D 13tgmd04DG5IP9PHWWm+Pgpv1/hxkwcggC98PpMH5GhAfDssLr8/AG+c3bIqXtw8ena83BBT aB4gHogMaUA0WNzqgWX2ZdkzpAHx1jC8W3kA4TA5aBcNiO/GQqfbpz4PTcJ5Ih7WqYSqiiAc 3ZyaRQNip1CYmHYPYCbMb8lADHueDa3tKu5+MjW+a2ZG2q9+2D4rZLE00WV5RXYzfUfPVf2a fHSzrjGLDFeSGWW+MdPZkbBX7PwhIMagYedImUcHNr9KqJSOuOLywFzPYxA2+Sko7Jw/X38/ 7dCq+jX5+CYZID3IYwMbNY3bU/q7BY/Bp1IJF1/uml0t5nV4JixGOQOCs+rBAafUcVBWhTzh hbZG0kf8xha3/pXwPlK4q1+Vv/kM5I7T9O8qFhMXqsLkJs6IEiaKneD3cXwII36XXeq1dxMK MtwHEJapOUNJWebSKSMSUK6PYvDJjEYZta5fl5+Uwh3B7g7kscxzamWE0iyBLuhU2h81SPGB vkAUvkMMWjoa3HgvUBo39lXKE8Cfg0qUoL4IA7XKWJRlcSmipij6m+THZAqtWgcgIo4tekQx MTrq7AhEVgaxkQeAWO0hgLV2+jkKUA2ENTiX5ZQ8ScCRBglWaoFd459KoNGeU7IB69fkx1K/ MmxHUOQkxu6+HYjgvHzZ3OMUYAGLIUgMKLEHwpNfHxrfZcXEyl9NdIlF63jnJYtOtdMHnVdL 2d5AcUA+Z28NiMkvbbl8Y2nGgKM0D84GAOXfGAaoNBToQAx5FSOm/+Ro2ipow031XBtwUrJp QNT0S9mG/LgOFsIE2ga2vXQWgCjF8IxhpZgIUT+UL81ZhpQGoa+iZeNkNtQYofC7lvXKeaGP r3cqpXn163/lswsdvv9BIBY9d98BE/WIeFnJyod0SbGxl3sjfVj5/6VaGIKwfogDWxgXUzP7 6oqfB1bbpu6yHdDkK+eqfASm04EYps44AKY7f9f+yAnQ9BVf6PX8noouZ4Vep9aHHCjN7VOx PflLHtCBuDLf1g+KJXmvGTYg/hJmTrmLAkTWx4Tm1K8MpK9oKn+LjXOm9JP7xFNcZEKv8IDO iFdYYTpe7wED4ush8AwHGBCfEYfXW2FAfD0EnuGAP0C72M8GI3EEAAAAAElFTkSuQmCC</item> <item item-id="263">iVBORw0KGgoAAAANSUhEUgAAAHUAAAAVCAYAAAB48KHmAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHJSURBVGhD7ZkLDoMgDIY5FwfiPJyG y3iYTp4WBVoTXayyZNmyFpV+/KVlCubrdRFQr5vRnBBMqC9cBBPqZ6AuFrTSYBdpM17AagVK xbcmJ0D5y7S3lSoSagJgXFqJDswQLOUv1/4eqK2F6AwobaGZcCh/wfaHQKVUxdgGWgADGANZ u9VVKH/B9muhhiBue1rJhKPgMnhxXBarj6ocbCOUv2T7hVC92lBxhQN6Aqoz26LIBU/5LKvk iJmCsB9B+Uu2k1B9kCvFrXuU3QfeO/h0tQt6HBtTawTTSYUcKVI+VLrcj6f8BdsLVA+gtABY Zevkyu/4ewiSrxB7rQ9S7h+UCq17kIXSbpFhf+p6D7YXqFW6qYKxwkkVpDM1QD+m3QvGdqBe JDeqtCywNRvMlgYfE+JGG8PLatzgxhiuRVGzXWhUsqRSL6h+MdjO4UOVjRj+MRONDjOeaWcd E3pFGoPScC/tpur3UM+QUKkNc9rPRIAFNe5Xm3qbabcHNKv6ziLpzIw/4MuDGpSZ90RczQ7a j5QCo2pzmrp7X/0AMcYUeVC9Cgc9IuM+0+WPESChhqpY5D82f4ziw25FQn3Y887HYURgQmUE SZrLDzPvwdyQvgxpAAAAAElFTkSuQmCC</item> <item item-id="264">iVBORw0KGgoAAAANSUhEUgAAAHAAAAAVCAYAAACe2WqiAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJuSURBVGhD7ViLbcUgDGSuDMQ8TMMy GYYWCGAbG5OPGqWiUqW+Aoe5sw/zTFg/n2bAfDr6FXxYAn48CZaA/1LA3YXNbMHtXzjdHtxm gvVarD5YY4KpvzbgJRmnjjOA3sL1gB9vAS6cg+MS16fQSXxw/wE+X4GfEbCRPhYwk7OBjNzd 9kt6EzGRW0EyLpwfx+HnkEilSdCSKOFtLpQaGK8/zkH2b/H0yVnwPytgFiCSZIPVKpAlO4p6 VBGTsAm/CHA2oel+2nouvtEaMP8FAftq0MyPG9+dOyxw1kIJypBUUoGRMFBN43j76k3VOliP kqWCZ556Z8H41wVMBDS/b9Uf/y9byxWxZgjT70CIQi2rjIF7EBBeCPal6tO5hTMy1aSuFyuQ EZDMvSggsJ94dpjN6e85AfGlji//kf9jQc9WoCQeSRNAVLFr/Q5kqi/Rk+1eXn80MCALCzc4 MXt8VcCO5IgYD0dSPs6zHnZScyLer8gTAh6ugYgUA2i4vMUx+wq2PLced6HWz+FXAVGXxAYS AaWnBW0I5sT70wpMFSXELzY5h4WxdxhDsHTXza5HLs84GYNTBURZwkyM43zmkrI+YaH3qy/5 t/4O1LpADgNxIIhFrgr8FOnvXGRaMGm6+Hgr5vCBhcKHLMnUuAHbRTEdpSrgM11oo4cXEDpK fXKgh3y+cxup5CHfnZeMM/d899ZDGaqsJ491rlg4/Imv0gTrPO6TrvtTBXym7hZKZkAVkLVO Sbzakc7dgUuE+wwoAtLvD0mrTywpV2OxiiXifXl0BLUCdYg1400GloBvsv/A3kvAB0h8E2IJ +Cb7D+z9Aw88lMKZwfHlAAAAAElFTkSuQmCC</item> <item item-id="265">iVBORw0KGgoAAAANSUhEUgAAALwAAABLCAYAAADK3u0KAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAcGSURBVHhe7V3RlaQgEDSBy+NimCw2 CfO4DCaa+dpMJhhPQBxkGmwaBBp737u393ZQq6vLpkWnnBb5EQZuxMA0RKyveZmmeXkNEYwE QWfgvTwf0/J4voO7YC54E+A0i9TpIhlvy/fzESyAjAWvxP5YIifzeJmUiBIYeC0zMOuzFfxr nhZyYX8/l8fE+GThir82bnW8x3NxGxyeglc9O1nta5GoTXxCXUIN5Yq/AW7V3rg9PUPBq1Ym 8wK1AfEoIWMHccXfBPexteEneEVaTnVXompCPFbNiHFc8TfCraq8lQw7wbvgEdKAh2CI12PW FaDt336O6b9nzjBk4NuGGPzQMVrH1Aq3UySZCb5AO4Oq8GoadC5q3USxFXwHMZEEXwL3RzfM BL8G7111k4qlQ7xa7bEXNXr9VpVy4KLYrAop8m3VL1vl1f7tbPL122/hTvAfVrDsSsVFMZXG fYi9YC5esylgvASf0b+7wj728PaiBl63NSeUU2UaVfgk/Ku495UJ9/+H6lAnpiTcO77YPRYa btsK30bwunrb2UFVO2emMHfmQrekvdvVjQSfhv8zE9rKdpwJ68WUhtug9JcSP9jpuNkKfibf Wt0eQ9AtiXfTKdhbmhbm8GxGI8GvMjCPUaDw2woJtYC1Y0rBva2ggW1rHu4bCj7c7eued/Zu Zm0rGl8roM0En4ZfJ3iN6ftkBe5QN4rpm/dAK1MgFyJ4qx97Uacr6Fb5QwTvKzxlL1hJF94x /NBKVG8xAbyDrUwh3CJ40y3qNmGv4ltv/9p6en+1xIyzU3QPoofxm2dHjku49jqlj5gg3Osj AM59j+CK1eG+CD4XPAX/+7P8/fnNKoi32ThjRWtEjn5//ix//zFclqRftI6YRjgmU80ZPw16 Qap4Vvi1aongL1DDDXYpgr9BkiVEZwV/e4CM3Y0nqfAiYwoDUuEprMk2bBkQwbNNnQCnMCCC p7Am27BlQATPNnUCnMKACJ7CmmzDlgERPNvUCXAKAyJ4CmuyDVsGRPBsUyfAKQyI4CmsyTZs GRDBq9SRvkXfMOfc8PpUNcQfF3xDYFE5lX54rNc4QyRwwyuCz6yOIngxgSVKSCq8tDRE6WRs 1nCGaiB44Fvnqdz1UuG371lWt+HDCKYVNkwuMfih/RSIKU3woQPuVRLwYMQQkDqmC8GXsH5L DXwbfyqYhtgwIZ3ih3ZSJqYEwUcO6DpyJbQISfZsLgcIwSft20kAZLlX07IOoxd3VakXbDl8 HwxqVy+ap283WNBqDy/4oCfhmqLYZ6gMJg5CCP5sj0nWbx1Y1gXxdoDtjGv1OQ1/Bau9sBD8 sLyKf/g49tlnYFJVSKzwZ0lIs35rb1kXxtse2xnXZtIPWRyG8Vex2osJ4RNY7LWA568MxBAU HVOgwvOzrAtZ1fVkpxfLWiL+3aAJKrR020OgpYl4AOpjx1ZZMCswmDEnp0QRwYePAVnu9WxZ 1zM2THH7xt+L1d6p3VnGG/UwzNgxVwoesH7Th/VXFk65qOhI1jM2TF49/H1Y7Z0muJLYN/Fd 41rA2bLuc4L1ZaeHUrzzgjr3ZRORl0NcbbUXIzFOMCbgxDFXVvgQFHXC575ELTFM9PCesWGC qIhfnpZEJMSc0H1a1vWMDUGtWb2pyK0IHpMVGTMMAyL4YVIpgWAYEMFjWJIxwzAggh8mlRII hgERPIYlGTMMAyL4YVIpgWAYEMFjWJIxwzAggh8mlRIIhgERPIYlGTMMAyL4YVIpgWAYEMFj WJIxwzDAU/DyntZhBFg7EHlPq2Kc9C362qkCjscNdwd4eVb40o8Hd5AI0unDDXcHeEXwUuFJ 5xppIxE8iTbdghT9xlMHiSAxwQ13B3jZVvii3z6iJmL72mN1qz17dnDDjcF7MacieHJLU8b6 jVTZswTfEPep4K/HxlPwyipktWR7R9SSZPLkJCJktWeruP5d0PrNDyEHd03LOtKJ6vFci1MX 62s2X9WcSAE020i5C+TZYCRZ7e1xlrd+S6WwF8s6LO5zJ7uanH50w0zwxrotx0Qg5rBmXRge qhQ4P6Bfiv7cc1vTlSzvhAwJKoy7rmUdVvAxnk03+Vh8ns2+L+DUcUdgJ3h9syhH8RuhZlr1 HAmgXlP9DWyjACe1CwUftggMWO41xx1xsquMzS2S/ASvBXtNFf222rvO+g1bKTHjdELn2amY PeOuje2oF4aCXyUA2HRjhBEds1edT0LAaXdbPgMnmUsrfAS9NzP1jLs2Nv94PAWvNV/S4g+y 2lt7zM3W7bCqEPibOQHsNH7NDBSWvFvFrrWsyysslbEBrRNbwRtx9ekKlicKwtbZ1zWEY3a/ iTq5vgsPY8Hbinpv0de2rOte5xogLHb1CXPBt2wjeKT+XijPW8oBBH+vlEq0eQz8B6SHfkPr qAj5AAAAAElFTkSuQmCC</item> <item item-id="266">iVBORw0KGgoAAAANSUhEUgAAANYAAABCCAYAAAArFCh7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfoSURBVHhe7V3ZsdswDHQD6SM1uIvX hPpIB67GX68TF6OY1GHeAEhIFqXNzJvJjHgACywBUiZ0G/EPCAABdQRu6iPuOeBzGG+3YXzu OSfmOjkCr/Fxv433x6tJz06JNSl/G0CpJuujcxaB1+PetGh3SCxDqvvYuKDApYAAA4HnOFRm RN0R6zncRn6gmiPb7R3d3n90eDdATm3tXzSRP178nOrPsKV6EykG6gIwBpTKSLUP7BCS4/UY 766dzf/vjzGZ/Jm2uWcFzfoiltlTsVkVposT2Hlyhe3jdNOQ+jN/mIun+9NkZvhddRMpBtUT NXSUyki1j+0cpXUiPxpH019qx46IZQAVHFTYVSlIGQ2gudUndRDijpEYzxpsHW8yqMt7+5y9 EDT4Zq6rFIMNRCCHlMpItU8eaBnbfHxBlvUYDeQpYT/EMoBKnDRFImuUNDl9kizuEJPl4ygd RCwhBiQJtmgglVHa3sjskXHao9/N4deSDjJSPeMfEvfrhlhSxZJESa12K4cSR/dzLu4D6uT3 CYPYdHE2mMQQW/isGIMthCDGlMoobf9mVXCCnNgScPZRwoW9E2IJ00C7SLlp2mzdErFsuPcP LBaSZAnipR2xwfw92f5eK8fg+DLKdOK+lillJgsmMh/shFhvxRnh2nOLmpRhIdcacSbD5COP 8zw73xdfDVRhoEsuN4KvqZd76iqVkdt+zjZ4hw6UnSdMngPfln0QSxiGLQqp/VTp8CLlT+4Y 2U3xTLwjEksDA12exaNJZeS0t7bKkIBxuJE/C+Lvs85LLE5u7SIYpYnpwwkvenlkyqSC0kir 6siM/YXqfDWDSWUk2hfTfbvixlkIc8GV7PO7IdZQ9VOL8otEk6Z4qYJdzT6HD3EaEbwgjkgT vJj8KqncvUFJpxoyaPcR2mlZNBMv/qd3Vs6Jn/P/z6JYZycQS9vuGA8IzAdi3JPek0cs+AMQ 0EMAEUsPS4wEBFYEzkes35/x788vTAwEvorA78+f8e8/nghIBXk4oRUQsD86wB4LjgAElBEA sZQBxXBAwL4BQ8SCIwABfQRALH1MMSIQQMSCDwCBLRBAxNoCVYx5eQRArMu7AADYAgEQawtU MeblEQCxLu8CAGALBNqJRd5p2ULswphveequjdTKSdWtqx1Xox/vtqs3U2jP4HqMe80ie7Wi snClhsafMb5rFxCryZrSi3dNkwk7fxyL+9OatZhK7kbtLIG9Qh+UcnPvo7WWXBYqmmj+fbuA WC1WpOrWtYzd0He9wPeurTgU63D4k9hik8MQ11h0m4XX1RuurzeoWO56ALuAWC3W5RYraZmj ou/r8Zi/qiJIBZeyXsXUPixBkBHu29uDA9hFn1hzxZtkvbzSswoHSnbZcY8lK6+lpaBkHC6x psKUtqKBtJ5iJA63jJhED1nbI9hFmVh+eV7fSKVnMXBkKawc1iCWgwyPWDYFXOqEZInFiVbf J5VR/nzEShSQX2tfl57JFiQyv97tVPAAKQcBBlHrcI5QbiGbHLGo9E5Um0/T4ImxDmCXqojl VSwiK8bmChcGESzAp4eIpVKPcFMfoyMWr1LRW0jyIxH8ApWbqjyFrLjuPrNsmZZsVcTyQm1W 4FLqwEkrKlXcMRVk1fquVEOnG02seIuU+PKK5VXmq5hUJNNRRDhKt8ft7su31EpV+r4U9e0p IYZh812JZZfHqZA++4N1jfqJuqeJFdVIdMfMECXXhx3xRHJrNP6uXaoiVlHtOddOvpQsPdPA ck4DdttjacmMcU6HgC6xvk0qEOt0DtqrQqrEyqUFJnqVnqmCt3sqqCo9BjsJAqrEOgQmINYh zHB1IUCsq3sA9N8EARBrE1gx6NURALGu7gHQfxMEQKxNYMWgV0cAxLq6B0D/TRAAsTaBFYNe HYHzEQuf8bm6Tx9Cf3zG5xBmgBBnQ+B8EQsviM/mo13qA2J1aTYIfXQEQKyshaTXDqj203WZ T12+YS74MgsQ1AOx7dybvbt4EqXDLkJkJuHeLSNwDq753NxrGKwaijwMTkmsO7+QXtGIH9Cp O2TUxbq4//SjZIdcidIFPBNqtaJ00JqnZhxujUQaZ//CJn3h1q+hyJcdxEphJa1LR7Vn1N5b a4PwbafbktJBdzb2aOutCE6NRArnhI7JwjOLdMnxeKKfj1jvBGtoTaGkxUik7Y1tPCNP5cfu zk3k3dPAGh14PtbUqqpGojtjdZ1EOpqVFHsO/BogtyaEdutsAAn2L8K5peWzpO1ZtTKWAppC 2Wuby3Wonam2H3eP5bFqKpsQbQ2cvWRuEW6IVpN9+T7YCbFkH1ZOZ4Lv/U8IeGHlkzklt/be tF9o3i4y/VimA3NQ1WZSYjFxThKoLVrZbERguG6IRSlGllaTpkXc9qLae1JHavRirg6N09R3 F+DRinNj5SnJ/srg0Q+xhKE4Mra0Lh2nvV0ZM3k3temu90Z+T44O/NE2aMkkVhXOQWbQVINQ lgZ2Rqy3uE3H19KjZ6I9uQImnKbJuDV+LdW5Zo6WPgxiKeGcraHIEN9EK/eTRowuPUWsSZ22 I+zyy9K4zl6+Pa/2XvBis/Vkk2PROFR3XSORh7Nvp9Tpa7HuYgnXygOnjlLBRfvpGHup91/l a+gEBFgImIWRfxLoDtkhsYz4IBfLL9CoAYF6UvW3x/JgWsJ/3YrSgDi6nhoBHb/qNGKd2rJQ 7gQI/AcPVxJjBTLCuQAAAABJRU5ErkJggg==</item> <item item-id="267">iVBORw0KGgoAAAANSUhEUgAAALsAAAAdCAYAAADy1R2ZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAL1SURBVHhe7ZvrlYQgDIWpy4Ksx2ps xmIYkBmFAAn44DFkz9k/rgr35iOG6ArJP+zAIA6IQXSyTHZAMuwMwTAOMOzDhJqFMuzMQP8O bIuchJAi+DvJZTMSGfb+Q80KbAd28Ge5Blxh2BmV/3KAYf+veLIaxAGGnfEYxgGGfZhQs1CG nRkYxoGasG/bt+8zjNtG6Ki63wxzkqfZsO8XnP3JVAHrLOR89Hw2uUxCTr8mp2oGzRfumTq2 e54ZO9h3nRb59PIrrvtifK55+buqE09LwL4tkxQn6Tq3Adj1IbWIXoDND6IZ25mOybf+nO4R oCRV0F0R9uY9fR92nbXtRj7IApZDOgue2f4madHLY7CrC9ZZiscWXCXdTcHej6fhl0qZZvrZ DcmiJGwaoLsLogzsz+rOWPiZ8cm4M9bAjjwtn4X9TU/TYAffHriPslhpEDteonaPwe4vJLfe BrFuVTeEHZsnqiFnGfTvaQLsAE4vqxiA0ms5JOsC7zWI4Y971HF/QOtqZDMFrovDXk83iaAT A2yelAZypL/ylIZdlx0oILFMnZvxc4ynzvUXlFk4/gdCO+yz0vj9Yu6QWlr3NwOja/hojFjd MmyepAabZfPlYHz8Dj0FmBywOxtHtCaEcLeb2WHgQsDvx34bVmQnr3a2oHX6nu7QUr4eH/tu d0rI8BO5J08P2PeNwS/o0U1kKFvnZvA7hlMZ3e0J+1nKAGo/qWAZEy5r6uu+Hh/Xk+udMLxm 78FTq4yx69zQC6V4lyS8g9ZtdbWAAFx0669AN8aa0zq7Wn3YS+mmFvL1+Jin0ssdrg48Tfue nawn07N1mT47Bc7599Dbz+OJ0ItubJ6khnSvUs9s1VMa9kSzYtndMajYG9TUsOh3TFZZY9fs vehuDHTtfKuekrAfpQj4/75YqzG+m0/P/umo3j/T7cacJU0vurF5pmu476OzDXY6XO14SsL+ rA18N3agngMMez3veeTCDjDshQ3n4eo5wLDX855HLuzABzSNtE+xWGjYAAAAAElFTkSuQmCC</item> <item item-id="268">iVBORw0KGgoAAAANSUhEUgAAANQAAABCCAYAAAAv4fhGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfZSURBVHhe7V3bkaQwDJwELo+LgSw2 CfK4DCaa+dpMJhgO87SNbbWMAIN1VVt1VSuMJHcj2aybV6f/NAOaAbEMvMRGutNAn7Z7vdru cyef1deDM/Dt3s2ra97fXfepjFBj0l6tUmkXah588ffd7HrYVkQoQ6am2/kAejCUNLQ1A5+u zexgqiHUp3118cI0Va5XX736H7rsm4SPtsPPZmB3vO3vqes54Ob6Ttl7vvnA+r67xo7d/L95 d/saJU68xpaKgTtewN7EmRFXHYQya6Yom/w2cARUnFS+/baNNORd7+f35uHraRKHQLLXdz/W beybFiiZSwEgk0NwYyYHjBqY2LnzUgGhzAQkNiCGJ67XChrQxJ5OoQ0Ne4zAeAMol/FG0Nr8 Hn6fs67j+k7ZBzdrjL9rftKVPh+88JVUDPBAiCG/9Xs+ocwEpMAaIs8waWESuuSYJ2VLknW6 DqxQTN87rv3QXdkPnHEd2piNnbnty2iLEChHbXJi2HFDM9+cZ93jCUUlJEiQ0FNw4U5gy31a V7iJt/r8AOiGtnACJWfCbGxwfefaL2uVxcFAO5y51sjFOD+G3DtN11EPZG/4hxOKaPeGB7Dd jllJ9NvAJXHTot1iwUyOKDGcVmoLSnfNhQOA6zvPHn3FkKrOeCyoJS8GdNSUHY0h++qHE6qf bKolyWoh3J2w9jOCj9pFHH4fvV/Glj7Xd9R+qrjYgpyKXQLU1hhoDIK3/bT43DybUEi5Dq2X UpsSoYmyx4gu7CfCSRKK6ztiP/gfARCwaSGI4/BQSAzCTlDLhnoqFEKo+Z1Gap3gLly8XcHw poNTrRwSRVo+qpIGQcLdQibsU2vH4f6BasR9+OwGOzfm3TcclgXoOvfxFaqF/jQi/aLQrHGc 9md4Uq+bCtvWyHuxuyGL9/I0i0wzUJi+J16Kju+crB086/8roCR9zwX7CS92LdeUUAvW3h1G qNyJ1etqyIASSglVA85Pi1EJpYQ6DWw13EgJNc/y70/39+e3hjnXGA/MwO/Pn+7vP+wGuimB 5UmtKs6AViht+SqGv3zoSigllDyqKh5RCaWEqhj+8qEroZRQ8qiqeEQllBKqYvjLh66EUkLJ o6riEZVQSqiK4S8fuhJKCSWPqopHVEIpoSqGv3zo+wlFnosJO71VxEn9mb2rpiOfhn7EPg7s r825xwEo+yu07dCTs4Rv3vEOR43JO7ZiH/VAzwvJzDOVf5m7rM/lveehMgi1lcICDoIdLfAB EQrw05kfyv4KbbsVYGlg076lNQW3QB3sd53n4oKfyj93PNr+ggoV0C8D9dM2h/fo+HALhFCg n8tNKXvgmLiktt1yKLDXHmyTuhZ9BJRvpKagl/orPrpA5R9HB2x5OqG21WmaPP/JdbYeAEIo rugH195M24Hadt/3e/qKCNryeThKdiP+8X772tTvYKzyDXPyz7+L25PsPgLvJ3lSwQnryIUT i8s9HbiWAgiF+znmmGt/nrZdDqFiUmFpTcEhEVdUp6z872TTdE90jRg+vuEQygP85okW1mXD gUcDwRaF3GgepCK9nFBnatvReXShBfoWJM5F1ekRhAqIw7trgEiFgUvzgZMDEIotT4zGdbq2 HYNQe33L2LTaXyemEdD8i91w7ErYFcrZHEgmzCdQRDkUXi/RQDiyQo3rG0/HPCWNhdhfom1H 53Ft1bi6e56I5+nSYRY7kPwLkmlu89mEclq0aMJC1SRWYdDtzWvXUNAax12iel9B9Laiyad3 APgiAAUIJeRbrnS0DM5RXMncLZtQ7kesQk+w+HeTgrt84xJ+BF/qQ2YiYIokD2n5AD+3W/vx uK7TtgsTyvYd882NLfSO6dBXHRAPAFxB42BGWS1fcuip546Xvfwqc+jkwITCEqtWdWZAllAk mcYkx6tUYhLM2Ee+ZVdC1ckA4ahFCRVrE7bVCujhnUDzqxqcLyUUnCo1jGdAlFC3TrQS6tbT V4rzSqh5JpRQpWDy1n4ooZRQtwZwac4roZRQpWHy1v4ooZRQtwZwac4roZRQpWHy1v4ooZRQ twZwac4roeYZ0c/ZlIbNW/qjn7PRCnVL4JbqtFYoJVSp2LylX0ooJdQtgVuq00qo0wh17jEC WcCV5Dv370D7TPhnuyDNQEqTMJxhJZRFqAY9aslG6/kH3dguRi8oyfeV2PhUzddETh5Pcbua gbQmYSxdSqgzCHWBPpwYoQrxnaUpaAVvrmvatpcuSBDKF5ehNAkTyVVCLcnpn0pHnbe6QCxE jFCF+J6lKTifocvWE3SYmSblUunSldCel2d/BX44gu8JsAihEpdJE7qh4DDl+Y6uoYzdBO4U oSDNQFBGjYmhhxOKJwHFwWx5oMS9L893jFBDq/f+joFGCYXI0qFkmu6DL+66xxNqSDwjITAs C2mbYH9tw+J8BwjlyyXECEUpO7E0CfkP5OcTilmyYYBeoA8H+0YZFuc7TShMsakPPKWildJL DOaMv2SogFBTksWrVElbzxSD/N+X5jtNqE2EkUoU1QykKlcghU6LCaa4DkINnPLUT8EEpc1K ejnKDagk32lNQQ6hlnWWs6HXLPqQvj5+8FmbqchVDaFG0U18+5MLT7V/UgYC3zsDw6uIUMPW kJIKBEa9ZvlkMjmrjFAzqYw89DHvp+oF4t0jn1vgfbiokFB3n3j1v+QM/Aex3smVG1/0igAA AABJRU5ErkJggg==</item> <item item-id="269" content-encoding="gzip">H4sIAAAAAAAA/+zdeXhVZWLH8Tcz7R992ufpf3365/zZv1o703amnZnOTBmrqOAo44aA4LTi VhmtggsuCCJbWAaCbAIBBAKEEAJkD0lIyM6+CG5gtW4dRx13hfSce5KTc/f33POe855z7tfn Y0hCcnNz7suPbwCxRPyZEN+9etR3hBDfTzz9U+PfPzefSTz3F9+Z91cn/tb8nlF/+T3Rb7zm vOgsMb/XfL357d8Y/5qvOW98WyL+2nyV+N7cPxGp/xzsHQAAeGfsaT8AwDv2FADUYE8BQA3R 0tsPAPCOPQUANdhTAFCDPQUANURLTz8io1f3HQCQHXsKAGqwpwCgBnsKAGoYe9oHAPCOPQUA NdhTAFCDPQUANURzTx8AwDv2FADUYE8BQA32FADUEM3dfQAA79hTAFCDPQUANdjT2OvVfQeA YiESP94AAF6xpwCgBnsKAGqIpu5eAAiDny2s/8XSVu13o2DsKQDNjBm1sacA4I5zQ1P2NLqT yp4CCE62GU3Z04hOqmjq6gUA/+Td0Ix7ak6q7nvuFnsKwC+uljR9TyM3qewpAL9439NoTSp7 CsAvSvY0QpNq7GkPAPhE3aQO3eCPpu/Q/kllw54C8JGqPbUnlT0FUKQU7qk1qewpgCJVXHva 2NUDAD5Ru6cGY0+1f1LZsKcAfMSeAoAafuyp8VT755WRaDzcA2TWpfsOIPp82lNzUnV/aunY UwA+kp/RyScHLZJ7GsJJZU8ByBozetT111z55IwHDJLvIj+jTpJ7GrZJZU8B5GJsqGHc2Ktv v/n6qXeOf/iBu+T31HhH+Q2VnNSUPQ3VpLKnkNet+w4gUGOvufLmG6+dMuGmB+6ePOPBu23G mJ7pa8o7qcsWPH2mr9HtjBpzGcikdmdX+BUTOW8XQNGZ/8StBitFnTPq3NPKLauGKzXzjXQ2 VhpjapDZULeTmmlP3X2Ot02clM77pWNPAZiMDV305Pjlsye9uOg/d61+IOOS2nt6w3VXWXua PqnG1/jvvjZgjalPk5q+pwVPqtpryJ4CxctK0aXPTHhh7pSXlt9bs/G/61+aYcm9pynsG5w3 a8Yrx9qcY3rfXZPePNvlZU/TJzXjnhY2qWqvJ3sKFJ3kFJ1mb6iTqz0dmtTqLc4lNVRsXKEk UVMmNdueap9U9hQoCikpus+Rokr29J1XB1LG9NyRVoVf9TsnNcee6p1U0XC4G0Bc2Sm63kjR NZlT1OOePvXotLfO9Tqn85Zx172bNq8KfyE1954a5K+PcVMGY1KVXG32FIgbtynqZU8rt6xK Gc21y+elL6naSc27p3kn1ZpRa0ltDZ3dJg9XXgzdBICIc5uig1/vs3npU+dcHu2szTGmqiZV Zk/NSU2+PvaGGnx6CNhTIMIKSFHnjHrf04H2GmtSbxxz9XuvH8k7pkomVXJPrUn1e0Od2FMg ekZStNR1ikruaY5JTdlTw6LnnpBcUsvxrjovk5p3TwNI0YzYUyAaRlL0eU8pqnxPOxt3uxpT +zMqeFKtpzlmNMdX/b4y9rQLQGg5U7RSRYqq3dP33zjqckyTPrvCJtUO1ZQUzf5Vf0APFnsK hE5aij7s04x631MvY2opbE/zbqiWSWVPgbAIJkXV7qnkpOb4rAtbUufrwzOp7CmgU/ApqnxP 805q3osgOaMZv+SX39MAJpU9BTTQmKJ+7GmOSZW8IJIpmv67UqGaVPYUCEhIUtSnPU2f1JVL 5ri6PhlTNO8fnEqZVL0Psajv7ALgn+EUvWN96V1hSNEk3x4YvFQ7eLlOyZ46J9V6Ueb65E7R 3HuaPqkjt9yh4bEW5kcFoJQzRbeuuHdfeYhSdPCb/eaMXq4bHKw3n/lq3+Dne9Xuqf1ijktk b2jK693uqfNF7Y87ewooE4kUHbxUZ07qlzWDn1Vf/nj31+9XfP7WFlV7miLl+jhTNMdllNlT 48bTJzXjB0r5WHlfX8AdtrGngCeRS9HBT/d8++HOL9/Z9umFTR+ff/H3J1e92bPM1z11NUkW mT1Nn1T73TN+rIxzmf72Ms9nw54ChYhCitabKfp1aop+8tqGP5xd++7Rslc7So/VP9ex+6ls 91l5n7piD+XOTStPdtcbjOeNj16+erG9p85JldlTyQ+d7S3z3oKxp4eBYOlfw4I3NAYpeqZl fu++WS0Vj1v38O+mCks497Sheos1ptaeHqjcaDzj3NOMk5o+fFmmMPNpZE8Bv0Q+RY9kSFF7 Rg1X3CP+/j6f9tTTle8+WG2PqaGrucp6xtg142n6pNrvmBi+pJtKf01Gjl+ayPxdud+dPQUy sFN0VRxT1HS3uOJe8f0HxD8+LH74uPiXp13sqfykenkIzg60OMf0VG+j/by1p85J9b6nHpfU wp4CI+wU3RDrFP3Bg+KfZoh/flL8+Fnx03ni56Xi35aFa0/fOtfrHNOLZ7udL9p7ak+qxz2V WUyZSWVPUeySU/S+/UWQoj95TvxsgfjFEjFqhbhylbhqnRi9MUR7mjKmKS+m7Kk1qXn3NNsr 836XqzdjT1GkklJ0bWhTtFYiRZ90m6K/XCn+fa24er0YvUlcu1WMqRBjK0Oxp2Ov+eXb50fW c8zoUc4Xs+2p9VtVMnua8nr7xZTvcr4+49tnI+o6DgNFIk4p2iyTos9kTtFrtojrtouxO8X1 VeKGveLG/WJcXYF7ajxfVvrsQ/f/h7F96Xvq6tG5YcxVrxxrsydy3NirnS/K7OltEydZN2W8 QbaP4vwj+l5en5GoO3QYiLcIpOhgnhR9JZGihwpL0TWpKfqrPeLGfWJcrfh1vbipSdxyUNza VvieGio2rjCVl1VtXb15zZI5Tz5867gx5p5KP0bTp0117uO0e6akLGbKxtnP22Nq0H7S2FPE UwxS9GIiRXt8SNGbGsXNzeKWVnHrITG+U9zeLSb0etrTkUlNtrdi3c5NK8sWz35k2lQjP7M9 WKVzZzqnc96sGelNar2lWaCHEns6/L7O/0RK+6ljTxErIym6+K7dEU3RQ6VHlaTojqwpeluH GH9Y3N4jJvSVTBwoueNoyeTjJR73NNukptizbe1L65YZATv+puvHjB5lPGRb1i117uba5fMy fo1vP8TGpBawp843y/ZXo3o/fuwpIi8eKXraSNGagFJ0Yn/JpCMldxwrmXyiZMqpkimnS+48 q2BPU8jMqxGwztGs2ro645g697SuoD5N+RsA2FMgSXKK/jZEGyqXou+4T9F/VZSik0+aM3rn GXNGTS8bZL/enzn9v+Y+Pd35m047ysuqt69dv3KhUZ233/yrAhbWWsz2utTfZcq2p85Elfwr UwPb004gKqKRopfDnqLDG2rOqC33ns56/MGFcx4vWzzb2M1tG5YbM9rXutee1NTq3L7OeFpW OvvRh+65YcxVMgt7pONAjjFN7OnQGTDGdHhPzRcL29OMk+r9fLKniAArRVcUYYr+zpcUzT2j tpmPmCm6bP7Ta373/Oa1S3ZtfqFmx4sNeza31VYYG/rszIey7Wk6I2DLV5cumP3Y1DvHjxk9 KmVVXznenntMU/bUeOp9T9Mn1ftBZU8RUqRokCmaomHrjMN7nrZStGrrmgOVG5v3be1o2NV7 sPpoZ+3JnobTvY0pf9RU5ldLbZVbVu3YVLZq6XPPPPbb9P/8KbA9TZlU74eWPUW4kKJaUtTS uvOJvv2zz7YuuNC19L2jZR+fXWukaFdzVX/7vhPd9ad6Gs/0Nb080Gw8Td9Tt5Oa8ounkntq jWldYk/t51VNqvfTy55CP2eKbotWil40U/T/3KToj+wUXRiiFD3eMPfVjtK3+pYbWf3p+Re/ vLjp0rvbBn+/00rRs/3NhtN9jad6Go511g6011gCm1T7qNgbmvK8kkn1fpLZU2gT6RT90EzR FYpTtFpnin7++sZv3npp8IOKwY8qjZ8wzJ85vjlgpeiJrrojHfvtGXUKYFLtA2P9TpTzCKmd VO9HWtS2dwKBcaTondvKIp6i2x+LfIq+MpKig59UDX6x1/zJw/4DswkZZzT3pBa2qhnHdOTw HMrCcbo8Tqr3482eIghDKTonmil6RnGKXi+RopP8SNHuXCk6dBEslxP/D9ThS1TYpBqcZ6CA SXV7zNhTxNZIis6LXop+FMcU/Spfig5eOpDtihU2qTmOx/qVC3JPamGnLvgNdWJPoVjRpejs 0Kfo2y5SNAe1e5rOOaleTmDwM2pjT6EAKRqnFFU4qboOZJAb6mTsaQdQGDtFN0Y6RetIUfWT 2t1SldhTbYfTMaPBfVD2FO7EIUW7l2pI0ePqUrQxkaL90in6bSEp6nFS+9r2Dieq/kMbGPYU UhwpOjXsKfpFzFP0E6kUrfWeooXtqT2pUybcxJ4CQ4orRZ8If4quDz5FPU4qe4piF/EUXROD FH15KEVXak9R75Oq/TwHiT2FyU7R1VaKbgpnitaRosGnqNtJ7W+v6WjYuX/XBu2nOnjsaVGL RYou8jdF20lRqUntbq46eGC79iOtlzjQ1oGikpaij4RoRospRd+OVIqm+qrGGP0vL5Sbh2rX Bu2nOiTY02IxkqJLIp6ilT6naFdyip5IpOhpdSl6LKopavp0z6X3K7Qf5tBiT+MsJUUPRDRF mxWl6K60FG0xU/Q2UjQ3Z4oiJ/Y0hpJSdF3sUvRuR4o+Sor6hhR1jz2NieQUvb+IUnQpKaoO KeqNsaeHEF3OFK0iRSVT9JiyFO1PTtEvop2i+s9z1LGn0eNM0e1hTNFauRSdpzxFfx18ip5K pOibm3OmaF24U1T/kY4N9jQyopSiGf4ypzXvDMQoRV8mRZEBexpqkUnRbzL8P+hTUrRJLkV/ OjdcKXqCFIU09jSMYpOi7RFO0YWkKNxiT8MiBil6IZGi3RFO0eetFP3w1OosKVpLiiIHsb/1 EDSKR4oeIUX1SqSo9sMM9lSDkRSdH+EUPSWToo+Qor4ZTlHt5xk29jQ4doqWRzNF/3dgxXkz RefkTtF/sFL0KVLUH6RoiLGn/kpK0ZWkKClaEFI0IthTX8QhRdsjn6IXh1J0XZRTdLv2wwx5 xp62Q4lop+g5R4ruDTBFj5KiyUZSVP+RhlvsqVdWipbFPkUfIkX9NJSi+s8zvGBPCzGcohPX zP9NJFP0hJ2iz5Ci2pCiscOeulBsKfqTTCl6jVyKTiBFsyFF44s9zaNYUnRaNFL0M1IUIcae ZkaKukrRiX6n6Bv5UvQSKQr9xP6D7bAMpeis+KboPWFO0Ufzp+g3kUpR3ecZwRP7DrYXuZEU XWqk6IMh2tCvSdGIpaj2wwy9inRPY5Wi26KboovjkaLazzNCorj2NEYpOjNrit6fnKLzxc8X Z0nR3YGn6IHZL7eZKfo+KYo4iv+eRjxF16lK0WvDnKKXSFHEQWz3dChFnyNFpVP0CCmahhSF G8aetsWGlaLLhlO0djMpmpaibaRoPl/aKar/SCNa4rCnwyk6uXzp3RFO0VpfUvRmbSm6I5op qv88I7qiuqdRTtHyRIq+cKHLTYrOKjRFD/uYoq+RooBDxPbUmaJ7Yp2iP3Sbog1aUrScFAVs EdhTUjQUKdpJigJ5hHdPSVErRa8LYYp+tifpIhR5irbo/8GCkBA1LW3hMZKiC35TEaUU3UqK hshwimo/zyg2odjTqKbo/2z55FXNKTpFdYr+MeIpqv0wo5hp21M7RdeSomFI0VeHU/RDUhQo UNB7aqfoJiNFX4xiii4fStFd3lJ0m9YU7VlGigLKBbGnMUnRJitFHw0iRQcUp+hJUhTwn7Gn rT4xNrSUFNWaoufik6J+nVJAIaH25sKeopdcpGijxxSt0JSiTWaKGj8ZxCJF9f8IAeQJJbcS mxRty5ai90YkRY+TooA2ouD3TEvR6SGaUbkUfSORol0xSNHTpCign3D7DiFO0f35U/T0mrf7 zRQdiGeKVpvXgRQFNBGSbzeSoi9ENEWXnJRM0Znix9lS9KWsKXprUCn6B1IUCCtR09wqI6Ip es5Vis4hRX1gpajcMQMiTextbpURihmVSNEPCkvRRSFM0RUxSFHJ0wXEg5B8O31LWnwpei7a Kar9TAO6CMm3C3pPiyFFq12m6GVSFAg1Ifl2geypfIoulErRx9ynaHNaivar/3tFSVEgloTk 2/m4pyFP0ZOk6DBSVKWDuu8A1BOJxzW/bLVV6A9O6RRt85yim7Wl6ECsUlTqnADFzOueuptU VylaHUyKlvCrohmMpKj+MwpEhYI9zTepxZaiL5CiQHGS3dO9mSbV3tMMkxpsio4JY4rWRClF 3yBFAa+U7WliUosoRd8kRQEkE3ubDkrKv6c5UvS4laLP50/R6ZFI0Q3RTlHpBx2APJV7agg6 RVtJUekU1X3UgNgT1U0HJcnsaVxSdF5sUlT+8QXgkeI99T1FO31L0dqhFP0g+imq/VQBxUnx nqak6BUyKVounaJ9vqboGlIUgBee9tQ5qX6k6O2kaO4UfY8UBULE2NMWSRnnKSlF7xM/cKbo 8yFK0a4cKfrHKjPxIpaiso8agMB43dPQp+icGKWo/uMCIAeve0qKkqIALF73NDQpOpMUBaCX 1z3VnaLPkKIAQkJUN7ZIyjhqpKjXFJW+/oD5g1b7fUB2XveUFC0wRXU/8ACUE3saWyRlXDpS VD5F5S81kEO17juAbLzuqTNFJ6tL0VNN816PS4pqf4wBBMPrnipL0V1yKXqZFAUQUl73lBQl RQFYjD1tlpRxEwtI0ba4pajsBQQQb9731E2KNpsp+k5MUlT/gwcgVLzuqVSKtpOiAOJP/Z6O pOhhM0U/IkUBFAdlezqcoove7F32wQlSFEDR8bSnSSl6ZMVHZ0hRAMWrkD0lRQEgndjT0Cwp bikq/YkDgAxR1dAsKQYpKv/JAoBbLvbUENEU1X6VARQDl3tKigJAFi73lBQFgCyMPW1yRf90 ZkhRd58CAPjB9Z5WaZ/UkRTVf/kAwFbInlZpmVRSFEC4FbinVcFMKikKIDoK39Mq/yaVFAUQ QZ72tErhpJKiACJOVNU3eaQgRT3fBwDQTsGeVrmdVDtFdX/yAKCQ2F3f5J18iir5cAAQQmr2 dHe2SR1OUe2fJwD4Tdme7nZOKikKoPgYe9qoUCJFVd4gAESF4j0FgKLFngKAGuwpAKjBngKA GuwpAKjBngKAGmJ3XSMAwDtRWdcIAPCOPQUANdhTAFCDPQUANdhTAFDD2NMGAIB37CkAqMGe AoAa7CkAqMGeAoAaorK2AQDgHXsKAGqIXbUNAADv2FMAUIM9BQA1xHeF+c//AwAA//8DANim +peQhgQA</item> <item item-id="270">iVBORw0KGgoAAAANSUhEUgAAAccAAADcCAYAAAAFmmpeAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACaVSURBVHhe7Z2H2xTV2YfP+xdFTdPE 2HuCNRoVNUq+T2yR6KeCBZFgASmCFBEQaYL0Xl96710QSyzRYIlECSoWfL5zdnd2Z2dnd2dm Z2an3FzXuYAts7vP/M65z+88pyjhDxEgAkSACBABIlAVAWX+t2LpLAoxQANoAA2gATSgNWD+ AEcqA5UBDaABNIAGbBoAjlQIKgQaQANoAA04NGCD42wdHAoxQANoAA2gATQAHOkQ0ClCA2gA DaABhwYqcFymewoUYoAG0AAaQANowDYhh2BQIdAAGkADaAANFDSAc0QINAZoAA2gATTg0ABw pFJQKdAAGkADaAA4klslt4wG0AAaQAONNVB2jp2amhRigAbQABpAA2jAlnMkGFQINIAG0AAa QANFDeAcccyMGKABNIAG0IBDA8CRSkGlQANoAA2gAeDIsAnDJmgADaABNNBYAzbnOEf3HCjE AA2gATSABtBABY7LdTAoxAANoAE0gAbQgG1CDsGgQqABNIAG0AAaKGgA54gQaAzQABpAA2jA oQHgSKWgUqABNIAG0ABwJLdKbhkNoAE0gAYaawDnSI+RHiMaQANoAA202zlOfO8kN4GKiAbQ ABpAA4nWQNk5rtQ3Kuqy6HsRq8w7IfL6p6ci/8yofxPXj143xJgYowE0ELcGYoOjHYzOfy88 KTL7SxHjKuMOAJ9HpUMDaAANoAGnBmKBYyMwuj2Hq0SoNFZoAA2ggXZqwAbHudq1RVP8wtH+ +mpXGc33i+p3c13uFxpAA2ggnRqIHI6tgLGxq0xnwKko3Dc0gAbQQPI1UIHjCv1lQy5hg7Fh rjLk7x52LLhe+PoipsQUDaCBqDQQGRyjBmNDVwkoQ+/oRCVArkvjhgbQQBI1EAkc2wFGXCUV LIkVjO+ELtFAOjUQOhyTAEZcZTrFSCPCfUMDaCApGggVjkkFI66SCpeUCsf3QItoIB0aCA2O aQEjrjIdwqQB4T6hATTQTg2U4bhKT2IJWpbrqyz7SWTJj5Xt4dIKS/u6yqDx4H3BtUTsiB0a QANJ0EAocDRQXKrhaCBplaWnRBb/kH5YWrv1JOFm8R1oNNAAGkAD8WggFDjOPCYy978ixnUZ IBowGidpgRJXGc/NpNIQZzSABtBAOBpoGY4v7f9cxh35r940/Ft57eMfZMbnxU3E539ddI24 ynBuFIInjmgADaCB+DRgg+M8nXP0X56av0X6rzooQzb/Q0bsPipjDn0pr77ztUz+8DuZ9skp yaer9B/HILHnPcQZDaABNBCNBipw7NQfEKD0fG25WOWJWevk6aW7ZND6IzJs+4eCqzwVKKZB 7gPvCaZf4kbc0AAacNNAqHC0g7LX1BWCqywOLVfNgA3QAaHyUnnRABpAA/FqIDI42kFp/o2r rMzcLc+ABZQ4azSABtBAIjUQGxwbuspdOlf5BrlKeobx9gyJN/FGA2igngbaAsd6rnKgyVVu 07nKfcyApdJSadEAGkAD7dNApHBUb3YTU5wwbPT/qlzlJj0DtuAq/8MMWIZeEjn0QuPVvsaL 2BP7KDUQKRw7SnC0IBkEllaucuA6XCW5ShqDKBsDro2+0EBFA2U4rtbOJEhp5AI73rhDOg53 KxYNSjdYBnKVK/W6yoKr/Beu8r2Tge5bkHvNe4LVEeJG3NBA+jQQLRz3/lk69t8uHQd0MaA8 VAJlCZZOR+l3CPaJWWsL6ypxlSKWq6QSpq8Scs+4Z2ggeRqIFI5qa1fp2HGLdOy6VTr23CYd +zQkDSwPalDiKgtrIKMo9nWVVLrkVTruCfcEDSRfA9HCce2fRK2/UdSmm0Rt6SpqmwblTg3K 3RqUUbvKmQFcpd4wPcsni1Ahk18huUdx3aP5pCMCptLyolEbHI1Y/JdGOUO1+FpRy/4oqvN6 UatvELVOg3KDBuXmm6XWVZaGYCN1lQd0rvJdcpV6Y/iJhVyl//vNe4gZGkADedBAtHCc0UXU nKtEzb9a1CINyqXXiVqhYblKgxJXGcmQqt9h2kqukgqfhwqf+9+4Ep3nXgMeTUEFjkY0AUpD 5zjuUlETLxf12u9FTdegnHWlqLkalguuEVxlNPlGv3C0v74qVxlAC0H0w3uC1TviRtzQQLQa iBaOQ84T9eIFokZdJGrMJaLGXyZq8hWipv1BFK4yEc6xEUzLrhJQBuo40nhF23gRX+IbpQai heMTZ4rq+1tRz/1O1KBzRQ09X9SIC0WNvlhUSlxlH3Ne5UpylbhKGqIoGyKujb6SpoFo4XjP aaLuO13Ug78Q9eivRT15lqinzxY14BxRKXSVjzMDtux2cZU0ZklrzPg+aDJMDUQLx+4/E2WV uzUo79Wlx89FPfJLUbhKWfaTyJIfk5d79Ju3xFXSKIXZKHEt9JQEDZThuEbnlYKURhNyjNOy ShmSBpZ36ZJBV9nP7249GV9XGURPvCdYPSRuxA0NhKuByOBoB6P93wamVaA0sDSu0sCyxxnV rvLZNOcqNzfPVR4XWfityOIfRJZqUBonaW1CkEVXSeUNt/IST+KJBqLTQOxwNHuhmpM27I4z flepNyGIcbce0znAVRaHjwu5ys9OBRqloCGIriEgtsQWDVRrIHY4jjvyZeEw4xe2vCfP6Vmg T+nZoL2mdZZhWesqS0OwXl3lhIDrKrfb94CNdreePvOrXeXLbudV4ioBaMBUB40coEMDrWvA BscFujHyX+rlHOsNq8756ieZ/tn3MuWf3+gDjI/rI6eOyfCdHxdO1mi7q9xo9oBtg6tcYj9Z 5DMZd+S/enu3b+W1j3+QGZ+LzNbbvc3/uui8zAQeMwSb2T1gC67Svw55DzFDA2ggTA3ECsdC Hk3n1xZ9J7Lgm+IQ28xjP8rUoydl4vsnNBRwlcZVGkdt7QGLqzwJLOksoAE0ELsGKnBcpXsd AYof57jY4XyMAzKPmaUAxhkl0lWuKZ0sgqts644+5VxlAI0G0TXvCdYeEDfilhUNxAZHt7Vz 9lmanlzl/mKu0uxY4ytX+bBtXWW9GbApyVU6XeX4d76WyR9+J9M+OaVduMjcvOUqgWWgTm1W GjB+BzCOSgMtwdHrGkcvi8pxld2qZvA2iq15rjADtpyr/EBPciJXGVUl4bo0wGggfxqIHI5e wJgeV6k3TPdzskjMM2C9uMoFeVlX+b7OVeIqiQEaQAMBNRApHIOC0fk+XGVrrnIUrpIGImAD QQcjf46Je16852U4rtX/8VsaDf2FBcbQXeUCH+sqfeUq/blK5XSVB26XjoN3SMcbuhzuVixv FotylGZDrvbne01dIW4zYN1ylXlylX61zuv9tw9hxsw0VmFej2sRz2YaSCUc7cAM7CrXR7Su cpKH8yrbPgN2Z2Fd6bBtHwiu8hSNLuBBA2igRgOph2PNEKxtn1LfM2CT6ir34yqjHIkw1y6f LKJzlc16lDyP60AD2ddA5uAYhqscFMRV9vJwXmUzV7nyBlFurnLHrdKx+zbp2Fva1u5Aafj1 UGn4tTQE6xx+Nf/3MwRbnAGLq7TvAUsjmP1GkHvMPXbTQGRwtBrlqHv8fq7f0rrKPLrKebW7 9fjKVWp1Zeq8Slwlrprhx9xowAbHhfpH+ysPvDLPlzPxA7KoXxs0V4mrtOUq38z3HrB+6wuv 99e+EC/i1U4NVOC4Wt8In+XGxwfIrX2HyV+eHyv3vTRdHpm8NL2w9J2r/Hdlt55WXOXAc0UN PV/UiAtFjb5Y1LhLRZV362lxBmyUuUqbqxy+619i9oDNvav0WX/81jde77+NImbELKgGWoKj /UMNKG/uPVhuf2ak3DV0kuTTVb7l/2QRK1fZ72xRA84RNeQ8US9eIGrURaLGXCJq/GWi0pir zLurBJS+O9tBGzHeBwCj0EBocHSCsspVjsqfqxxa2AP2oDzl11U+fqaovr8RZfaArecqp/xe 1PRmrlJvmL5BH8G1WR/BtbWr1KyrjNVVHsNVAktgiQZSpYFI4OikeJZcpfNMxaYnixzS51Xq YcdB642r3C1PzFpXNfRcdbjzXaWDne87XdSDvxCVI1c5L0fnVUbRy+WauCc0EK4GYoFjM1f5 cM5ylUO3vF9ylVul17TOMiyrQNldg/LuEix7nCHK7NaTRVd5EFdJoxZuo0Y8iWcYGogdjrjK 72XKP7+RV985LmNqXOX6xq7y7tNEZdlV7tUni7jkKnGVNHZhNHZcAx350UAZjuv0eHi7ixl+ deYqU+8qfxQxO/V4263n31LtKleG7ypfT3iusvOADNn0rgzf+bG8jKtse51sd5vA57e/Xc7r PUgUHJ03oZirHJSJGbCt5yrz6irfLO4Bi6sElAnowOcVFHn83YmGo/2G4CpLrnKVmQG7VR6d lhBXuVNvbbdHb223r7S1XVQni5h1lZ37cZUnRWZ/KTJR79aTxwaL34yTjEsDqYFjY1c5UR4Y l97deoK4yhH2GbCzI3CVU/Xw64wuouZcJWr+1aIWXStq6XWiVvxRVGL2gH1Thm7FVb7+2SlA iatEAyFrILVwrO8qx8h9el1lLnOVuMpKrvLtr2Xyh9/JtE9OycwvROYeF6l7XmUG94CNq3fN 5+DksqqBChzXLJJ1GSnVucqcuMqP9AzYd4szYNPhKvUxXOZg58hOFrG7yuMy8b1v5bWPf5AZ nxeHJfM0A7at9Xp1dtqVtsYxI21zmmKYSTjab0BVrnKAcZWvZ95VTjt6UuekTsi4I1/KS/vJ VdbkKvPuKmloM2ME0gSbtH3XzMPReUNwlbbdeiLJVeqt7VrOVbbZVZ4QWfSdPm6rtBn9cl1L rFLYEUk/HvWpMVFff57+jYVcJaAkBmjAVQO5gyOuEldpzhrtNXWF9LFmwG60ravEVQILYIEG tAZyDcfmrnJuao/g8jwDNpRc5a9EPXmWqGYni0yt4yqX+5kBG6+rnODMVeIqaTiBZy40ABzr CD2vucpJpVzlaJOr3Kr3gA06A/YpDyeLeN2tZ5PtZJG411VufIcZsNa6SqCQCygw1F6cRFaG 43r9H0r9GFi5yj/r8yq7DzUzYHPqKpfpk0V85SrDcJXXi1qjj+Baf6OojfoYri0alttukY4d egOC3XoDgr2lDQgOtMdVTrdmwObIVdJW0F5mXQPAMUCnoOIqh8pfrBmwk5akdgjWTDBZ2mQP WDMDNlGucm3pvEpcZdsmBy3Uk5as3Xqy3lDy+/LXGQCOAeDorChlV/k0rjJRrnIXrjLqWa/2 61szYAFJ/kCSxXsOHEOAo10YeXaVr+h1ldHnKq8Q1SxXmSZXWXLs1lKRZVnZrQdXSZoq5LY1 bgADx4hvIK6ytK5S5yp7e8lV3nu6qAd/IaqXLVfZ/xxRg88T9eIFokZdJGrMJaLGXyZqkgal NQN2tmMP2MIM2Aa5yrhc5eKdMnCttVvPp/q8yuNizYAlV4nDirvB5/O8a84Gx8W6p0OJMga4 SscM2Nd9nizSdAZsOlzlYK8zYHPhKmlzomxzuHZwfVXguFZfhBJrDKpc5QsT5W85ngGLq8RV 0v7QBidJA8AxIR2Csqt8Kn8zYF1zlY1c5V0/E3XPaaJ6nCHq4V+KevxMUSl2lT1tu/V4cpXf V2YXZzpXmZC6maQGm+8SXwcCOCa0AuIqk5ir1Gsr25mr/EfxZBFPucqfsrUHLFCIDwrEuhhr 4JhQONoFiqv0kau0XOX9WXeVJ9zPq8RVxpoaASTZhTZwTAEcnRUQV9mqq/ytqLozYC8PMAO2 q96tB1cZ55pK81nldZUprMNANflQBY4pr1iWq7xF5yq7DXi5eF5lTnbrKeQqD1RcZd8FW+VR L7lKXGX5CK5MrqtMeZ0GnMkAZxmOG7SgKOmPQcVVjpDuzICt2tJPddcTeaxihl/v1pN6zLrK B+zrKnGVWTqvkjYt/W1au+4hcMxwpyDXrvIth6tcmDBXaTZM31faMP3gHdLxhi6HuxXLm8Wi HMWcQ+m51J0Bm+9cZbsaWj43fZAGjhmGo7NC4ip1rnLDW/K0n916Mukq35dRez+VsWa3npzO gJ3+2SlGynLU9gXpnADHnAqkxlWOzFGuElcpfeZtluc690v1ukpcZZBGlPekzxV6uWfAMadw bOwqJ+Rwt56j2lW+Lc/4cpU/L+4B2/ssUf2ykqvEVeIqswk7L0C0v6YCx3VLZAOFGGgNVLnK /noGbG5d5RvS10+u8qEYdushVxnb+ZX28yppG/PHB+BIh6Bph6A6V5lnV7nH+8kiD+Aqra3t lmZot56Cq6TNyEUMgCNC9yV0XKVZV/mB9F9lXOU27+sqM+Qqn7XlKkcf/ELGv10/V7kkByeL AMtsukrgCBx9wdHZEOAqrVylcZUbPK6rzJarfL5wXiW5SlxltiAJHIFjS3C0wzLzrlK7oEX6 hPsF3xS3Lpt57EeZdvSkTPrghLxSngFrd5WryrCs2oDAbERg3wPW7iqfOVvUwHNFDT1f1IgL RY2+WNS4S0VN0NvaTWnhvMqYcpXPdu4rz4DFVZ4MrW7hTuMHL3AEjpFV4Fy4ym9F5n8tMuer n2T6Z9/LlI++kVffPS5jDh2TEbtxlVWu8nDO11XS1kTW1kTReSjDcaO+cRRiEJUGal3ltNTv AWvl05bpCSfm315c5YByrjIuV3mdqM7rRa2+QdTaP4nacJOoTTeL2tpV1Ha9WfrOW6WjHa7y QDFXOemD72TaJ6dk5hcic49rV647G4v1puLOXKWZ3FOIsX4uzcU+AzaqusZ1w2nHgSOdgrZ0 impd5RzvW6PpbdSS1kCahnvpKSls6G3+Ng38wrS6yj2lbe0O3F7c1u5QaVu70tZ2zm3tzP89 b2un793jM9dKv8U7pNZVfpPL8ypNrhKghQO0MOMIHIFj2yum01XeOxJXacHGd67yBT+5Slxl kjpZuMpkARI4Ase2w9HZ26txlWNxlXVhWT5ZRM+A7RnDbj24ythGLcykL1xl+4AJHIFj4uBo h6W7q1zsaxgvSe7AHAcVKFe52lpX2UKuspGrnHmlqLlXiVpwjajF14paVnKVq6xc5Y3kKtuY 73S6yldntQ8aYQ5dJvlaFTiuXyobKcQg4RqocpVD9G49eXaVcxqsqzTLRaJ2lZv1xJ5tXaVj h57Ys0sfwWVc5T6dpzS5SnMMV9S5yj36ZJHCDNh85SoXrt8lVpm7aqu8vmQN7VYE7RZwjCCo dDLi6Wi5ucqHJuEqzRBsqLnKVLjKj2R0DmbA2sFY+++dMnPFRnl11mJgGUK7DhxDCCIwjAeG zeKMqzwqgwsni+jdetrlKtfp4deNerkIrjL03GRjMFbcpHnd/T17F0qzOsPz9dsu4AgcM1mB ql3laDEzYB+amA1XudzPukpylTJ8Z/pdZRAwAsfWOu3AEThmEo7OHnGeXeXY0m49uMrDhT1g R6YsVxkEjNffcgfOscW2HTi2GECGJVrrnbUjfrjK4skiA4K4ysfOFPXUb0RZe8CmfgZs0VW+ kuDderzC0RpKXbBuB8OqIbTrwDGEILajgeczw4Oy3VXemdUZsCfd94DFVVq79dhd5Ve+ZsCa 7QPNEp0olgz5BaMB5NzVW1PjGkXPbLZK0tq0Mhw3aUhQiEHeNYCr/LcM25ZgV7m3tLWdWSpi trYzW9qVtrXr0NvYObe287OtXc+pK6TPvM3y7IrSySI7ArpKvX1gGKAMAkbLPZq/k16X7WB0 /jsJ3x040ilIfCVqZ0WpdpWvZnNdpRdXuTzPM2Djd5WtgrFVOI6YMF2ssnzrgdDbiEZgdHuu HW0AcASOoQu/HUKO4zNxlbjKOFylVzDal2zYHaP1by914vlR48sQtAPRDkYDxzAB6ReM7XKV wBE4AseAGsBVltZVBnWVf/+tqP7niBp8nqgXLxA16iJRYy4RNf4yUZP04c5Tfy9qRhdRs/W2 dvOvFrVIb2u3VG9rt/yPolbqY7jW6CO42r6u0sVVfvSDTP9cZPaXxUOxzVFmS3RO0jq1xZzc YopbrjIsMLo5Rzf4NXrMgqL9by/AbfSaVsEYp6sEjgEbxlZFwvuzld+tcpXP5W1d5Vd6xieu 0t1VnvR8XmVYYPQLwWaO0QnJqrZrg67HjYqjfU0nHDcs0z+SQgzQQBgaKLvKfiPkziE5y1Ue PiYjdsflKvWG6b5cpT7cObY9YLWr3GKtqyzNgK3jKlfuOCSd29+QZVv2y+KNu8t7p7oB020I 1TwWBhTNNdwcYw0gbay47dabxBRnvXE+FgUY1w49PzJuVZwjYIwsyGE0tlwjvdC2u8o7jKsc kafdempd5WPTfZwsEse6ynbMgH3rhEz6oOIqV2w7UIDjqp2HC6VzxxuyYttBWbppbxUokwDG cg7SAUh7GxUXGIEj4AbcGdJAvl3lf2RknK5ynp9cZftc5fSl62Tuqi2yaP1O7dz2S6cGo3GT q3a9WfjbgDNJYHQC0g7DGY+cWeUko3KMBozAMUMNIw4wvQ4wintX6yqn5mMP2PdPyCtvGVf5 RdW6Sn+u8teV3XqeP1dUFLv1xOAqB+oZo8NfnSZjps6VCbOXyNRFq2SWPl1j/prt2jnu0Q6y 6Crd4NjKUOroKbNl5KQZ8szQ0fK3R5+S7Uc+8jSkWjVBx8U9GjhadSVqMAJH4IhzzIkGcJUx 5ioT4ir/+vAT8kifZ6XPgGHy3Itj5IWxk+WlybPklRkLZfK8FWJcpQHjg0/8vQqQfsA49vX5 MvjlifJov+fl5m7d5cLLu8hdD/SsKev3ve0LkG5DqVHC0XKL9r+j6LSaa5JzzEmjG5WAuG50 ThhXmQ9X6YTUA4/1lceeHij9howUy1UaOC5YW9kztd4EnHGvLyhMzOk3eKTc/WAvubTLNa4Q dH6mHbRL9IQgL5NyCmsfXSbmRAVHNzDG4hw36x9JIQZoILkaqLjK4TmcARtyrnJYo3WVegZs BK6y3lZ2bg7OeuyvjxRdpXNIdeTEGWLcoIHnQ72flqtv6Oobgo2WcMxYtt4TIJ3thck9Gjha j4c1rFoPjObxqNqssnOM6gO4bnIbW+5Neu9Npl2lbpWW/FhcPL/gm+JC+pnHfpRpR0/KpBTn KoPA0YKkHY6NYGo952fI1bx23PQFNTB8WedAmzlIZxtiB6N5zglHL22OG1CBI+41sl6QF1Hy mnTD8ubeg+TP/YqussfYOeJn0+0wNsoO8xoGjtaOMubvxd+LLKy3B+xh4yo/kcJ5lS3t1vO7 4m49EbnKqODoF4Rjp82TYeNeKzjOq66/uZB/NHV/6LgpNTDsP3xsQ0Da2wynawwLjo3AiHME mkATDXjWAK7SylUekr6LtklSZsBGAcdGYDRucNSkmYXcZfceDxfyj806wE88O7gGhj379q8L SOt6Bozm32E4x2bfMa7nGVal0W1aYeISI58TjXOtylUONq5ydv5c5UbjKvdK7zkbqn676v4z qSp3nybq3tNFPfBzUT1/Jar3WaIKe8A2cZXTzR6wjXOVYcPRAuPIidPFDIG+MGZywQ12ue7G Qo4yaH3q3uORGhjecXcPV0Bu3qg1aysFONr+b4Zl7cOkQb9TO95XgaPjRzp/NP+vFgHxIB5p 1ACu0rjKD2XAauMqt8fqKsOE49/1bNT/ue/BwpBovc0BWtGncZnr9lYv67jsyutqHnPmJA0c 3fKUFiALDrPEGidI3b6veY29uMG4lecbxcgGx+X6S1OIARrIkwYy6yp/KuYsPeUqN75TcpUb w3GVYx0ni5RcZVhwrAdD5+Ot6viiK66U7W99XAU7A2PnY3YYNoOj/TsV4eje3ljAcz5vf4/b a5zPN3p/s/gARzoEdIrQQEEDuEqnq1xdhmXN8Otdejj2Hj0Ee/8Zoh76pajH9G49fX4j6pmz RdXZrSdtcLTg4bZzTr3ddNzgaKBtOUc/cGwGr0ZwbQTdZte1ngeONIzAEQ24aqDGVY7JSK5S u8plPl3lk3Nad5VphaOBhRsMtx7+oGYI1QlHy836gaNX6NVzl2GA0VwDONIwAkc00FQDTld5 zwizB+yi1E7sWawPHzbLRcyBw6YZ9Lau0p6r9O8q0wxHA4vVuw7XwLBz+8Gqx+xwtA/zRgFH 852q843+hmibOUjgSMPYtGFsJiKez1+ettpVjpceuMr6Q7ClGbBB4eg1xxh2ztGtXs9fs7UG kOY0ESvvaMHR+V2igqP1HaOAJHAEjsAxJA1s0dfJY6l2lS8JrtLdVcYNx7C1aAFuyvwVVYA0 j5vTRAwgDaTqgdG8zjxvfS/7v+3ftd7j5jUGho1+V6P3mvc1e95+7TIcww4k18tnQ8l9577n 3lXu0bv1lGbAOnOVboBsth1cUOcYdl20r1c0mwtYbtE8bn7DEH3qhxOO9vc4wdQIVH4g5hWs wDGnvfewKwLXA3JhaABXWZwB22grv6jhaB9yDHpPvW4gboej8z1+4egGyEbOs9n1/QIX5whM czkUGLSR4H2tdRqy6irNxJ7CDFg90cdtD9h2wtHprPzC0isYrWFT+9IN673mM82/G32XejBs 9H29PucXjOZ7AkfgCBzRQFs0kCdXGTUcO3ccElPsQ7BeOnLNQOkHjBYc3Ryj9ZiX75SU11Tg uEn3CCnEAA2ggTZpIMuuMi442gHptz23g9Jyeq3C0Xkdc4pG1fcyHdM26a3Z59rguEJ/SQox QANooP0aqHGVw/URSxPSu64ySjhartH+99MvjGqpPbdcoAVMr5C0w9ANjEU4tl9fXr4DcEzJ jfJyM3lNOiod98n/fbJc5W36vMr/HZy+dZVRwdENjPbHgmjNDYReXaUFxHpgbHY2o/P5IN8/ rPcAR+CYmp5cWKLnOv7hlKSYpdFVRgHHZmC0nvdz7/w4RDdX6faYXyBar/fzvaN4LXAEjsAR DaRaA2lwlWHD0SsY/QDSKxjdJtzYnaXz+SBwjAJ2fq8JHGkYU90w+hU8r0+3a2x2/5LqKsOE o18weh1mDQpH+3IN5/BrWsFodAYcgSNwRAOZ1UBSXGWYcNzz3meFZRtBi1sHo1Uw2ifwWNcy YPQLy2adnzifL8Nxq24gKMQADaCBrGrAzVX+X0wzYMOE48L1u2RO56bAcDRQtd/jsMBoX+dY zzHaYel8TdJ0BxzpFNApQgO51ECtq5wV2RFcYcPRAPLxZwa1BMhlW/aVDyFuBZDO5Rteh1Kd rhI40hDlsiFKmvD5PjhkuwaqXOWz+mQRva4yTFcZ9EQOs++qc+NxA0bzmHGAl3W5Vnb/49NA kGwFiM5t4ez/9wpH++vMvbDDMgn1E+cIrIE1GkADDg1UucpBZl1la64yTDhaYLTnHJdu2uML kFGA0cox+oWjGwiT4CorcNyse5IUYoAG0AAaqNJAGK4yTDiOnjLbFYT9h4/1BMiowBgEjl6Z Y4flbbfeJPZShmvIugWOIQfU683mdXTG0EA6NdCqq7SDstlxVW7DqsY59uj1pGw/8lENDP9w 3Z9k1zuf1IVklGD0C8eg+rdAaQAZ9Bpe3meDY6f+IAoxQANoAA141UCrrjIoHK085K53jrqC cO3uIzWPRwFGc037MKoBl5dhVa/xrfe6Ihij1SlwjDjAUd9Arh9tBSG+xNePBqpd5SvS4+XG ucpW4Wi+25T5na6AHDFhevnxOMDo1Tn6iafba+MAo/lc4AgcI++BtVoZeD+ASqMG3F3lwqrl Iq3A0R6Tnn37y7q9b9dA8rY775Uthz9secmG2xFWbg6xmXNs9T7GBUbgCBgBIxpAAzFpwOkq 79eu0iscL/3DNVVLOtwgc+HlXWTXu7X5xihcY6NF/vWeCwOMwDEmsbZ6s3g/jgYNoIEgGrBc 5c3dusud9z/UEJImv2hmqFp5xmafN9u2e06cYGw0rNrsOzd73jlDtWq2akS8KA+rbtMfQCEG WdaAqYBZ/n38tnTe34uvuFJ+f+0Ncv0td8jtd91fA0oDxZV6wb/52+s97vP8sMIQ6/KB51YV v7D0ey5jvWFVr9+73uuawTOKug0caTA9V7hWBc7709l4c9/iuW9mWNSUy668Tq66oatYrtJy jH7vg7mWE472//sFZbNZqFGB0e/vDuv1wBE4Akc0gAYSqAEDt4uvuKo8nBqk0W8ERz+ushkY 6w2pBvnOSXkPcExgpUiKOPge8TgG4kyco9KAHzjWc5VewOgGx6h+U1zXBY7AMZuuYQsNblyN CJ+TXK0FhaP9fUHgmAVNVOBoGhMKMUADaAANZEYD7YBjVjgCHGkIMtMQZKVS8jvoqIelgbjh GNb3TsJ1gCNwBI5oAA1kVAPAMXhHywbHlbqCUIgBGkADaCArGogLjiZeZilHVuJmfgdwpEOQ KUFnqXLyW4B0qxoAjsE1BByBI3BEA2ggoxqIA44WwHGOGRVRqz003h+8h0bsiB0aiEYDUcPR ft8yC8ftGnoUYoAG0AAayIYGogZj1nVSHlbN+g/l92WjwnMfuY9owJsGooRjHu4BcMQxM2KA BtBABjUQFRzzAEbzG4FjBitFXsTL7/TmIIhTvuPUCiSdW8flSUsVOG7VAqIQAzSABtBApjXg B5Z2OOaND8CRhiDTDUHeKjS/l06+Hw00A6UFRz/XzMprgSNwBI5oAA2ggYIGnLA0cMwK7Pz+ DuBIpcit+P1WFl6PK8uTBgwogaNG5PatqyjEAA2gATSABtCA1oDNOQJHOghoAA2gATSABowG gCO9RHqJaAANoAE04NBAGY479BMUYtAuDZieWrs+m88l9mgADTg1ABxplIESGkADaAANODQA HKkUVAo0gAbQABoAjgwfMISEBtAAGkADjTVQcY7b9AspxAANoAE0gAbQQGW2KmCkc4AG0AAa QANooKgBnCM9JHrJaAANoAE04NAAcKRSUCnQABpAA2igPhxX6+BQiAEaQANoAA2gAZtzJBhU CDSABtAAGkADRgPAEbfMiAEaQANoAA04NAAcqRRUCjSABtAAGqgHx536CQoxQANoAA2gATRg G1YlGFQINIAG0AAaQANFDZSHVQkIlQINoAE0gAbQAHBkGDmsofTtNCg0KGgADWRLAxXnaBo4 CjFAA2gADaABNGAbViUYVAg0gAbQABpAAwUN4BwRAo0BGkADaAANODQAHKkUVAo0gAbQABqo D8c1OjgUYoAG0AAaQANowOYcCQYVAg2gATSABtCA0QBwxC0zYoAG0AAaQAMODZThuEs/QSEG aAANoAE0gAZszrHgIflDBIgAESACRIAIFCLw/5Jn8SvEsJVVAAAAAElFTkSuQmCC</item> <item item-id="271">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAdCAYAAACTzT/bAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMCSURBVHhe7VpbsoMgDGVdLIj1uBo3 42JoEdAQEiGUzugYZ/rRGkJyOOR1r/H6KAKDCJjBdbpMEfBKHiXBMAJKnmHodKGSRzkgQ2Bb vDXOr99VSh4ZdC+XXr0zxhslz8t5IHR/W+yXNMZb5zTyCLF7vfi2rn4LKGjaej0XxgFQ8oxj 9/qVSp7XU2AcACXPOHavX/lI8uxGhzYRfOwSizjyyW1lkndhMgEf9D61n4WEg/tZv5CbbX6x xlfqD0X8+3WKfimdOXvi7xlfSzv70IJ5dd7wJ4QQTEAc8vh7JA4EKLaicfgVnnCwBYBh/4pg J+C0afz7OfrHiBMIUtrbxue8C9SQcL/Z39u1BJDAbd1B426v1Phx+QB2N3eog87+hehBEiEQ KkUXKMuYnOcexjrviMhz+X6CfimSYnsCRpeRHU6Yc1rIJ5RJk793OHyVPtgw2IVCuBnWWxBW rxzbgaocj9GGJSAmVwO4bVlSlKLTwOX7joNp6e+CDQiJ7QG1DbfX+eeJRJ4TXAw2+g4jElEv SJ27lq/TzD6s4g6YjTwcecqwncm3pqlqjLxnSittldc8c/VLka7tJS9bR7BA5IFFIQjjsQo4 by5i5b55R04pC0RU/HaspwpeelkqhsHLvHctj/N9qAnTKB4WjWSqCxYNkgfVXHQq7dH/NPJg eztCnNTFtnzr0Mpuyq2EfIq2OKXSae+6S5F0W3P1B/7GTrTv/hF+UGm040zHIg862b9HnlaB 22Za0WLGQBoaAab9JmuSeeTZ965S7qj+HuehDHeJUFruqMt+I88xe+FmIFLHOPnO25KXV/k6 rj8iTDOfM/uRdU8rAlLvZ+qXYszbc5YeRI1JbPMbeQ6FuD6CO/UZ0oYADfXQzaXnJvTQ62hb 8dCxCP3l0GxmwRx9naW/jVwp8eOQECib9s9gojmM1F+VvyUCY+Sp8uFV5Lml32rUBATGyLMX +LGdjZ9/1zwTPFUV0xEYJs90S1Th4xBQ8jzuyO5jsJLnPmfxOEuUPI87svsY/AEJ6BAgguwb ogAAAABJRU5ErkJggg==</item> <item item-id="272">iVBORw0KGgoAAAANSUhEUgAAAJMAAAAdCAYAAACuX169AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMgSURBVHhe7VrtsaUgDKUuCqIeq7EZ i2EFBJMABoT13dH4Z2cWCORwOPl4V1n5BIFJCKhJdsSMIGCFTEKCaQgImaZBKYaETMKBMQS2 xWpl7LpbETKNQfnx1as1SlklZPo4Dwbd3xa9k0hZbYwo0yCWn1++ravdHAoS5j7PhXkACJnm Yfl5S0Kmz1NgHgBCpnlYft4SSyY/QdvFZ1i/+sWy1JWmZ3laPa33Kc49/tVLSCL9t9lFg3Hj Oifww+OagjNsn/iT7Y/PWR3uvq7gV26P8Tcdh+sz/TyZAvDwQkOpGppnxW81Vl3cwGp2IqXx AORp/wA2jef726n26f454eeQ6SQMttfg72vI5C4uI4674LqaOrLUH3uuxJ6cUblKj8udASjb kP39CbjHAc/n9wf/Efs6ShtrikrSJ0mX9hr8Le1W7oD/V2UqvOo+HMqzL8/sXpq2GoYxFOKo SaIMhDghKp7yHkLkgP0YYqvK6LZbDtWthaU+EC/tsf6W97pPJq8OhXwFgdzn4P3ZVJappQKB 3TkzQoE8AYwhlULyHpVwzH406UPtgWk9jM0h04lQbo/3dyaZCGGQJHeQCYJ3EvMAtDkp4IhU TaKy0IJmglB6D9w8dNXs2yPMwRwQ53B5IdAMD/tCHySTcyo6SeN4OmciEKxILpJh1sHGCUcF lVVWTcu5Fw7Gb8n+DPulHJCzG0PwRY6I8CnYu+Uv+NUAJE3IB6CEO2I4opQJ8ifK5JWjsX3B JezV8eNCSmoLAR+1X728m2Rqeky4QkRKx/lbsZ9yJiTlxLn0F+JqbwU43RHmunxGSt/bB+Ne X9v4WV3RHKltPbowhHGec/kwVywSGpSpC9iSvY7WANgLJOCwSUVeBFvdgbKcJdN4NZfKWtqE BOU1UlrvMGkKXiXfzi4znofWUfvc+gsl6SIPnTzYtCyTqX4i30PZf7fCNf38y2PJNOS5LP5h BPhfWqYSOvRSfKTLYnyPMv0wGnK0IQQYMhEJBCTCoQaGxRguH6jmhlyXxbMR4JVp9o5i77UI CJlee7XPOyZkeh7z1+4oZHrt1T7v2D8sBaTyBnr5lAAAAABJRU5ErkJggg==</item> <item item-id="273">iVBORw0KGgoAAAANSUhEUgAAAHUAAAAVCAYAAAB48KHmAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHWSURBVGhD7ZmJkcMgDEWpi4Koh2rc jIthLS5zmY89zsZy2JlMEiSI0UMXK8z8e50FxOt2NDdkJtQXHoIJ9WegrtpIIY1eue14NVoK I4R7SbgBpM9T3vZUllA9ALX4k7gY1QWL9PnK3wO1dRAXZYTUphlwkD5j+UOgIq8aSAMtgBaM MsF3s1WQPmP5vVDJED6fidSYPeMO8BpRWbWsvbKTRpA+Z/l9UAtw1ighv52Auqi90NkPiB+L +bLGjCCUM5A+ZzmESkYOVWQARWPRvgSslbciSBdaHaCDUDjiikgHhctyPtJnLI9QU3gmC1sE hWCE980624Zju5B+Tgz3357qnrk4NLBQ6uij9R4sj1CzcFMYw8qy9mAD7L1zUUU/azdLXpmM nwi/yCGP5agFqQKw62kPWyC03nPlSfhNG+0WqHSMdOn7Drc2Nnm2nwOh3lD92gfoXxZk0WhA H633VPnQNaHNoWqrbJNChbyXxnq3NjH3QqjX/XPOrC2AocZCKHinX6RsF6r8dcZTJ5o7LQCg unC2p530hoZkeaERcq+rdMtw/eHq906rMF8Le+rRBslTO30jc7uwfvxLUJ1HcvwvDmtWww9/ Cerw6lPxKxaYUL9i9s/+6B8j9czGpKdRvgAAAABJRU5ErkJggg==</item> <item item-id="274">iVBORw0KGgoAAAANSUhEUgAAAJMAAAAdCAYAAACuX169AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANNSURBVHhe7VpbYoQwCPRcOVDO42ly GQ+T5qmQF6jZba340+5GESbDBGgXK5cgMAmBZZIdMSMIWCGTkGAaAkKmaVCKISGTcOAeAttq 1aKtcVaETPegfPnTxuplsYuQ6eU8uBn+tipHosUqrUWZbmL5+sc3Y+zmUZBj7vVcmAeAkGke lq+3JGR6PQXmASBkmofl6y2RZAo3KLuGCuuvXrkt9a3p0Z6OvDU63+t/lvFtdlXHuuoGH+/T frCCLsofYj1gDv1zv6s1FrnhKp6vHbi4Ub14mHg8n0wRWLjhsVWNw7PW5YmECGI0uD8Bt29Q bT/aPADGe0n5Q617rjh/ugQp/Ss/X+RRNx4uHh4Samj515UJEQFmbkdNqXha6/4dQBnyXGVR 2upSmSh/qPXApZbaZVGCxE/fUTER/BrGw8CjZb49Ab/p6DiOXtZfzS4GuAUxqje11kHGBU1a 16R6vWOhsEphiNa9TWUVOGYrIqMj7zj2rp52w3gYeMwlU8i2Rr1SbMJNijAfH8t+yEK3GSZN bcsaK6+jErFLBg6ZqGOIcYz492cCtZQt1VhXyXQAW8dzDo/D0jVlqrLWbVaO6gSZcEFcFJ9s lKiN86qSRv+wqAYbdA48ikyUP9Q6PLbz0ZeKb4BJxo4NUzctv0gmdJbDbIHO7QSCHUe/GGbK DX1bys5+55XK5qRMuDkFIJ6S9QGZKH+odRRx+R7czWlD+8EjWsPOKTwayoS6HSjxzvC+WfB3 EHjI7G8rU1AW5viiWTMBEFtq2q2zOptI+TNaZxToVWadOAHGWdmI5xQeDTIhqUdAuoxIZ7fR xebtsxHw/bQgBxBQxW2NfD0bujQaCKV4bYvyh1pv2YR7UD0ffaAUmZb2Tjx5ZECOSvAbQM0E h1SQNLHTWLeDVLWTXoLTMySZ7ndze1tbDvnc5xx/NVcCM5X2kJM5pGtsPOUPtR7xLIaSZfeG Gp5ZROqR6fg+N1kc4rL+Oc6Dof3/rQxG4nttRZKJly9y1/MQYJEpTjmBWlX1xBlleh5I4jEP AR6ZgrTj7gxLd3ks8v5WxnNR7noKAjwyeWXi9ZlPiVv8/AACJJmiAjFb8A84KCafgwBJpueE Ip7+NgJCpt/egX/0/h9LMZMYL0SGpAAAAABJRU5ErkJggg==</item> <item item-id="275">iVBORw0KGgoAAAANSUhEUgAAAKIAAAAdCAYAAAApbre7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANnSURBVHhe7VqLka0gDLUuCqIeq7EZ i2EFREMIJN7LXn9xZmdnnmRJTk6+vsHpowhcAIHhAjqoCoqAUyIqCS6BgBLxEm5QJZSIyoHz EJhHZwbrpkUDJeJ5bnj5zZOzw+AGJeLLeXCi+fNoFgIOzlirGfFEP7z+6nma3OxR0NL8ei5c AwAl4jX88HotlIivp0BnAGY3Gj94ED/Wz8SVR4nY2Q/65z5DgCViOGDcGDrKOz4xQlvBGK1C kUwITBZGeQOTCmZtee7+tOJIOsSdW3gmS2egJSvxdnM+reGX62u+JcizibiDxTkkkGQ7FOUg uP59BnZwPiDD5s90Z05UTr59fyQhvD+uPaj7EzcXe8wYJ9KPnxp+679veJX6Hb7yqURM+6nB WGe5jEhksCCfHHmgKni5uBMDROTkuftJ0nvnV7JyNUjk9GjiR9nj7/ya+FE/+ssKB6LcNuHJ DtHlC+04rqVLWpqheigjSkH2WHlnYMyk8iirNstd1S9lNhcCnx1r4kfZAzLaJ/dBmb5EzPoW UEI6Kiwz+AgRQd8Dojtlx2n9ChAnQlwWveyaoRBJZPKoT21mF1waARIdsmGOa4lfVi3S4Y4J qx8REdmC4qmfOEDEvLlH6wCu6UPZRXw8yQGHbp+hYEOOHB5KcnpPERH1eHHAqPd49fcNEq4D 19eDQ54bi2HvdCLChjuRqyAL5fGNfHDyazhBluqEp45kxLI8e3NI4FenB3NTSa5kB1aetITQ O+CIhqZMZeGGY/07suAk9PhVac4mvCy6PZE8gdJv7Di6eb58RqwOA+v6g+zxdgdtjT2xxA3O ZuTp7BeDdh9MfQZl1miHe1FJLNcCAiWSjndvpTmLYHQBWaZCUgClKcsMvqTiCfJX2XDvu9rR z0V95X2ttBb9EifP3C/sv/IVkIRkkjNURfmH9Q1QBfSIcFmJopACBZemwj6wamB7xD5T864C XZqLvR5eaBfDAlo4t/o7kjicPHqPhyXqkxlaWJc2SYjGnfnRQpsmYl05b6xd9mT58pf/8hLk Uj/VciKHi75/PAL8/9DeMt++qiBLctEvHMmIj8dZDWQQYIiIUnQg29IXEiXDrw/yBh5mzFSC ftknqu/vhACfEe9kjep6WwSUiLd13bMUVyI+y5+3tUaJeFvXPUvxP97UQ8o2BH2NAAAAAElF TkSuQmCC</item> <item item-id="276">iVBORw0KGgoAAAANSUhEUgAAAHUAAAAVCAYAAAB48KHmAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHQSURBVGhD7ZmLbcQgDIaZi4GYh2my TIZxwyPEPIJ9Fa0wR6VK1dlBhz/+3yZVsH+Wq4Babkd7Q7ChLngINtSvgXpa0EqDPaXt+ASr FSgVfjW5ASpfZrytVJFQIwBzxJN4gOmCpfLlxteB2jqIhwGlLTQNh8oXHJ8EKqUqRhtoAfRg DNzazVah8gXHx0J1hYj9TOFi9orL4MVJOa2uVdlpI1S+5Pg4qAU4X5S7v30A9TDPoPMckPhZ 6pc1ZgpC+QSVLzlOQnVFTrV0cK4eZcvCt4qdQAZrDYBerJAjRSqHssvyeSpfcDxBdfDSFQDb 1rW59Dn+2xfJTYjtq89/KxVabkAOSsUhw/nUehPHE9TMbrJiXEqLE+RhcoDumeou6DfrVIly P7BfSpDvceoKUhlwuNO+XoGo9eaNI/vFF20M71bjAzeINFjx+/sJZ7txHRLqgOk3Ocf7y4fM jRj5wYl6LzPmjLNeEzpFGoNsuGO7WA+pH5NQf6/P/WRdARbU0K8e9TZtt+pfnyh1oxlZAR5U r8x7qMDTbG5Nvi+nSbe08D+efkdWRfhaPKhOqZ07ovAaLPf1SahBfRL/Y7McK/aGSKjslXbi NBXYUKdBMe6L/ACJmMki81d3HwAAAABJRU5ErkJggg==</item> <item item-id="277">iVBORw0KGgoAAAANSUhEUgAAAHAAAAAVCAYAAACe2WqiAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAI3SURBVGhD7VjRkcQgCLUuC7Ieq0kz KcZbRQ0IitnJ7J173szNfqCIPN4DY8L+WzoDZunod/BhA7h4EWwAvxLA0wdrbPDnCrc7g7cm uEOLFdYZA/+WXW5gP1zdV/aXX35uLx7q37CNmr3cj/qXGbgMgNelxwDmdXXRERwBUbPz4jjc qxCsD7TG+/Gk9fV8WIeLSLNDBNz/sgCe3gIrrAtOY6BUkJFVBQDN3uKXGOkCJv0wHsF/Wj84 n9gjdJ37/gKAbfVr0ifbT+9zAickFINVlSi2iQyCZichcPYkbtyJJzOJyziVSWzv+X8fQNIX UDWmaqPV+R5Es7t0ANtqBjW6+rxmJ5EI7KORjuJBfY7JL5VILs9P9sAGpJSAou83AEy6n4cK 9qtPJflGnwRQZt88gGilVghd+80hhiVZSmwFDeQRwPgUC3UAgyaRmp3IrjadT8SDBpJ+nY6n 2bKvSmgEqmquOIVGh3Lwf52BIJdNQbEhZmAvAEpAM6UXEi+yCYo9AaHZhR7MACR9QAg02lnT TYmJbEPA3pDQ2S43XjdT8dozQbNDBHTU70UlxdMBtfZBzY7P6koofkg2TIugiE23luarmvIe FcBnptDrSjKARFGQZL31kM+HcZ8SiJMP+cEbEp5H7RvzzhDDKKvpPlRnorUK4DO8214gA+q3 UFE6mcRGVs0ycKf+yQwoAOKpkn5HrF8G2h5YP/d8agp9Mh3r+VIZuN6V/lfEG8DF8d4AbgAX z8Di4f8A9IjaDfxg5tYAAAAASUVORK5CYII=</item> <item item-id="278">iVBORw0KGgoAAAANSUhEUgAAALwAAABLCAYAAADK3u0KAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAbkSURBVHhe7Z3h0aQgDIZt4Pq4GraL rwn7uA62mv31dbLFeAKLIgsYAkKCuZmbublFfRMeY2T13WmRP5KBG2VgGiLW17xM07y8hghG gsBn4L08H9PyeL6ju2AOvAlwmgV1PCTjbfl+PqIFkDHwCvbHkjiZx5tJiSgjA69lDlz12QL/ mqcFXdjfz+UxMT5ZuOpvrVsd7/Fc3AaHJ/CqZ0fTvhaJ1onPqEugoVz1d9Ct2hu3p2cIvGpl Cm9QOyQeBDJ0EFf9XXQfWxt+wKuklVR3BVWXxENpBozjqr+TblXlLTLsgHfFA9AID4EkXi91 ritA+q9zRdHbFl5h0MI/G0L0h47RO6Zeup0iyQz4Cu0MpMJ7UOtlLlsiuAJPISYM8FV079ww A37tx7y7blSxdBKvVnvsTc0BbHfHW9JVPxio+igRx42Ujv2K4v3bb+FO9B9WsAIrFfrIlWKq rfuQg1DritT9ms2qHC/gC/p3F+xjD29vasLrtoaN/hU+S//aumwrE+6/nXOsVUxZujd98e9Y sLptK3wb4HWi7NVB9bLOlcJ8Mxf4SlpXE1VtnTX7Ti1Nnv79Smgr285S25jydBuV/lLifkXC zwVb4Gf0V6ufxxB8gCE9/fqUzmyh7wT8ioF5jAKk31bIVAvYKqYc3Z9WK9m24nTfEPh4o617 3jn9ZdbWF3cDPk+/nuA1ptSDVL1j+s477HERjG4B3vKz3dQ5yfZanoVEhY8AH9IfumpRiymg O9jKVNItwJvGULcJ22KAk1zb13+3EPYS3Xkt/kS/ie2okU5MobyvjwBsK2D7KpW6QtXQzRP4 35/l789vhUXAG+yiYEVrxOz8/vxZ/v5juCyJv2kdcRrDMZmKyPhp0AumimeFX6uWAH8BDTfY pQB/g0mWEPcMCPBCw60yIMDfarolWAFeGLhVBgT4W023BCvACwO3yoAAf6vplmAFeGHgVhkQ 4G813RKsAC8M3CoDAvytpluCFeAVA5i36Huyw02vn6uO+tPAdxSW5Kn2w2NU44wlgZteAb6w PArwYgKLREgqvLQ0SHQKNut4heoAvDExSr1UfJpKKhW+l2UdBJhe2k4nr+CeqUJMecDHDqiC TH0GSULOGArAV7F+ywnaGXsGfE9tkJDO9If2USkmOPAZB9SvlgGcfbPs2dwkAIDP2rczASHL vZaWdRBe3FUlKtpK8r2h8nEwePp2gxWt9uDAB++0I2/sX+3ZAgD+DJws6zcClnVRvQS0neXa NABOG+tW+KT+BlZ7cRCOYaWqOIUKfzYJWiPYcq+/ZV1cb39tZ7k26wKxfMf1B/1p9MlS0Wov BYIOLHRAG3HqM0hWoGMqVHh+lnUxqzpKdnqpCczUvxk0xfZZzWov4QF4OLZzwC9NZ58RW6Xx 9Ics93TvR9SyjrI2SA371k/Uai/1C3pFv653lqUqFT5ykK2yeEn3VxYqWb+dhQr6nLI2SACe /mArUynf8GdpUgdMfQYJOHfMZcDHLffoW9ZRtdODTK5rB+j+2ERnqz3d32++f0dHq9RnkJCz xlwGfEKFqkKApdasOGoNpqwNEmND/fAKDxHeakxj4M3JTNOyjrI2CA6t9QvwkFmRMcNkQIAf ZiolEEgGBHhIlmTMMBkQ4IeZSgkEkgEBHpIlGTNMBgT4YaZSAoFkQICHZEnGDJMBAX6YqZRA IBkQ4CFZkjHDZECAH2YqJRBIBgR4SJZkzDAZ4Am8/E7rMAC2DkR+p1VlHPMWfeuZCh2Pm24C enlW+NpPSxKYCNT5w003Ab0CvFR41LmG2kiAR6VNtyBVf4mbwESgMsFNNwG9bCt81bePsBNR wfoNBbrdiJtuiN6LcyrAY1saPXn7e6T6zR37CqD3WRHUqY0hAPnb99R9preBNp7AL7t5T4yH Eus3a/RqIf7aV0XrN19/ie6WlnWok9gBvmVOXa2v2byqOaEC6LaR+5Y7TkSW1d52iPrWb7nq qVjWQXWfO9m1zOnODTPgjXVbiYlAymHNOjD4lt5BvxRdtfDWb1Bw9radhmUdVHcqz6abfHxb p1+VU8cdgR3w+suiEuKXhMNaqNdU/2e9KIOzjbN+g4Kzj6NhWQfXfZLnhjl1iyQ/4DWwEfdi +GyE0V2dbpWt3m75fZ31W6HUw+Z6Qg92gJR1t9Z25IUh8OtcqyWsoiofwG2r5PuEBC+7lazf agLvPyJBWXdrbf7xeAKvmV+r8asWNiGrvbXH3NzW6lu/1VJu9tPOsq5M97V2el/aAu0oW+DN JNN0BSuDArF18X0N4pjkN1En13fryxh4W9nuDX1ryzrynGuBYdjVJ8yBt9CrluOaG1keEywq 99YuzcIAwMtkSwbgGfgP7f7MeJxzc7IAAAAASUVORK5CYII=</item> <item item-id="279">iVBORw0KGgoAAAANSUhEUgAAAN4AAABCCAYAAAA4w2iPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAhVSURBVHhe7V3r0eMqDE0Dt4+tIV18 TbiP7SDV5NfXSYrxGts4vCUhsEPu2ZmdnR2DHgcdEDjItxl/gAAQOB2B2+kaWyp8TvPtNs3P ljIhCwgUEXjNj/ttvj9eKpwGJd7m/G0C5VSjj87VCLwed9WkPyDxDOnus3LCqQYcHYHAG4Hn PFVmXMMR7znd5vxCZ4BYVsLjb5CGvh7z3Xu+tL0/5nzSsK+stk+k2H8epR9ifWcENWHzGSaI ddTavPWL44Ua13k2cfaOo8JEb8a4GENpZ8cintnTZVm3kc4N/igdKPaPAVrBP/SFuX2Y7sb6 l9H7sHSYYbOYFL071Nr8JlcYMuVx3UjnTaLEWYKJM+mebyDiGSALBylJcAwZ3rNVebUMAmhd rfyZbiWynd0Sz1eiObOfSF/v+DXyGTafYYZIR4XN24RrsplpnsIVr2ZcSYPlKec4xDOASQ9T PJC3veHdHMrY1FGUIgQrXkCydWxWfXZy0OojR1vegLRZLrJ7jwqbX4/HftKdSzVdqxnjynDS kF0SnsMQT+rYwoLg5DORCrLyc2c/4BDVW/3swHhEr9XHGOXKJrTNlYI7dtPZXCJeeVyfdtVc J2nGKyvhwjAI8Yg0Mxp47uuGjRzsmcpJZ+sCQqivcUDX2dzYCKE4nc2cFW8xKBzX4KzAfZ43 XxajgxBvCVhuWrifJPI2u8yBOdB22lekQHYVZhNdGKRk8yqbSamqBv7poXuSuB9sqWzmju+7 XZLoe/ZEjdtz4r/mGoN43GV8nbkyzjMOX7wIyrbfV0hvP7f3dINEqk8VvszOlM1MMac2U9mc IB41rimiM4kn2Q59D/FSp19ehGQGIbuSUu2pPSTV/9Tw3ZVRNl9hE6VTY3NqxaPGhUvW2O6v JN5E/FTlOEIOX5B7e7jgBXtAuuj9jT2gyZ6COhv0cF+wjktZHxVyfZ5TNvfRqpNatjkeN6st l2r68uIfUQTPOYcri8r/JfF0A4veQECPAIinxxASgIAYARBPDBk6AAE9At9HvN+f+c/Prx4Z SAACHRH4/flv/vOXp2CYU03qcIXnLloBgX4IfN+Kt7wqAPH6BQwkt0EAxGuDI6QAARECIJ4I LjQGAm0QAPHa4AgpQECEAIgngguNgUAbBEC8NjhCChAQIQDiieBCYyDQBgEQrw2OkAIERAiA eCK40BgItEFATzzyblsbQ9lSTn+B/olXZ4iaoQuY7FqQK/BcH3NXa2h72OPbrCHXp2YKPUEg ngpXzcVLleJCZ7pmqKwWJNfHdyD7ZQ9oe3ohkZfL9amfZSCeBtuKOo4aday+VBkJaYbC8LFY m5Kyh+VU40YMnxprjMSBeBqEVcV1NIqFfd1AS9YJKS2gfuHdLfN0a4Ka/0pqU9r+/GI/Qm/p 5h8wbu2Jt85wtgJUUGOw9IyGi9fixD2erpwczx19Kz+tsjZza0HKfORU6grTPL2HUgkyn6TS ee3bEi+aCZfy2DbhLz1L2EqWcsv5B+I5yMRBbtNCbr1/WZBSxLuedNuC7ZTXt2hJU3Aev7Kt 2hIvVJMqt+Y5yqi6K3XwROKF3z9IpWFS85u1z9QMFdeCFKVlBeKJapg2QyEtSORTH1uqiOed ihVminWQM5U9S8+MqyOseOFeZx0i6R6qx7hSNUOjMoUUYRJbhmSpw4yckj09/KdkqupvUsJ5 z6uI582a2dnD7PMSG+h95ssWk+XZnW915orH+eaC1h9pfzJlktaClBy9J2ST9kgdbNFe4lML fbGMKuL5L1RLp1P+p6989aVnCmdPJZ6x89oXsXF2v392qlgztFwLkqoZmi95HxPveNVQtEcx 3tVdrx23SuLxvS19963LN+FOJx4fC7QEAhaBtsSL0k5nVSs9azkeIF5LNCGrEwJtiWcSL+9b YYmvpB4pR6cXqCBep1CB2JYINCdeS+OqZIF4VbCh07kIgHjn4g1tQGBFAMRDIACBCxAA8S4A HSqBAIiHGAACFyAA4l0AOlQCARAPMQAELkDg+4iHz3RdEEZQKUUAn+mSIob2QKABAt+34uEF eoOwgIjeCIB4vRGGfCCQQADEy4ZF7bWR3KXS4CpO4oKwrNblGfFci8EZtoU6qLITtj3lU+G5 VzPI1hXa/s3c985H1/KbZm6fYT7FfOd6RJHukBPXhkx3zdWW3G/UH/K2du69NlmtyzMC+/rL onwv87j7MiifqOexRetkmbyNX7b+K1c8NfEq6i4etzLu0zwtpPK4n5Dn3eL/xFvaFRjwidKu ZRH3aFE0ZQmDWzHudTWpz8maoTzfvo9487I6VcxAHlwVxXBktSWDFe8T6rSE8VKBAS/k2rYS 4U75RD33TI+zFolnz4l/LW6MVHMtxaCrXqYr/1baazj7B2dysPq4tS4lA1zbVodBrVZNP3qP R/lEPY8m51ttnMlidBDiya5cpIZaNACRADoA1i5OmmLTJW6tS014cvvqMOBqadmOxp3yiXr+ tla32q3V6QTnEMMQj3KMLB0oSjmijcR6cELj+g6U5IDvRZRoOS2D15GlwqCTTUWxNPHIOqhc n5V7csn+zrg8DvG06aaq7mIiALIf7tgJmtzjMQKpZ3yrMOhpWE42Ay/KJ+q5Va3ak8vSzMGI t6dy1cuF/Fg5TEN81RkyHvs8LlnPDGgNBmfaaXUxiEfWQeX5vGZMlbFlVrt8ecQ0bgOteJsD uvKB5Retce1JKgB8efG7n+B59ca9ZdCXMWipSS8rTTx5jVDa5/zYE16YFbXixH044m3FZvnH tvrBhwQgkEPA/Aij7hR0QOIZEEA+kOFqBOpJN94ez8Papg91M87Vwwb9oyLQJu4GXfFGHTTY DQQ2BP4BwV/tk4kJCPUAAAAASUVORK5CYII=</item> <item item-id="280">iVBORw0KGgoAAAANSUhEUgAAALsAAAAdCAYAAADy1R2ZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAL8SURBVHhe7ZrrlYQgDIWpy4Ksx2ps xmIYgVF5JQRHeQzZc/aPq8K9+ciGiJD8ww4M4oAYRCfLZAckw84QDOMAwz5MqFkow84M9O/A tshJCCmiv5NcNiORYe8/1KzAdkCDP8s14grDzqj8lwMM+3/Fk9UgDjDsjMcwDjDsw4SahTLs zMAwDtSEfdu+fZ9h3DZCR9X9ZphJnmbDrh+4+pNUAess5Hz2fDa5TEJOR5NzbwbNN95JHdu9 z4wd7btOi3x6+RXXfTM+97w8nurE0xKwb8skxUW6ym0e7OrSvohegC0MohnbmY7Jt+GcfiNg l1RBd0XYm/f0fdhV1rYb+V4WsBxSWfDK9j+SBj4Owb4/sM5SPLbgKuluCvZ+PI1/VMo0M8xu SBZNwqYA+nVBlIH9Wd0ZCz8zPhlvxhrYwH/LZ2F/01Ma7ArQ89yB/ykWKg2g6yVqdwj2cCG5 9bYX61Z1+7Bj80Q15CyD/j1Nw+7VQOHKMwDRazkk6wasQYd79uvhgNbTyGbKew6EvaLuJII2 7Ng8kxqSI/2Vp2nYfT+CDQCUqXMzfo7xqXvDBaWgFpEDQhr2+frPBa6ht3V/T+6ha/hsjCDd MmSDphsEwCEp87dY0nK7Mfb8mvfUw+SE3dk4IjVhT5ndBycWHH3t2LAiMJTUHVvK9+NzvS1e D6cSBwy7+ktPnp6wayOOoMc2keeZYb//npvB69fsdgnklzFBWdOI7vvxUR3X47x3/rcTa6kA G1RTxvbgqVXG2HUuZkoIK5Qx9HXPiHTrr0A3xprTOrta4Q3r27pTGfZ+fK43/5JoEh2uDjy9 dZ49BIJuYpk+ewocK/yRr75Q3dyLbqzDhHaf6Lahd8a+KLfgaRr2oKSJg02qB4t9QaVHTdec RyTsmr0X3dg8iRrobtHubNXTNOy65PuWI7rXDpU4qZYiPfvTLH3mLrcb42rrRTc2T5qGZ7w8 3tKqpyTYn7WC38YO1HGAYa/jO49awQGGvYLpPGQdBxj2Or7zqBUc+ACJBdcsEe6BMAAAAABJ RU5ErkJggg==</item> <item item-id="281">iVBORw0KGgoAAAANSUhEUgAAAOQAAABCCAYAAABHEnp+AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAhgSURBVHhe7V3bsZwwDN0G0kdq2C5u E/SRDraa/bqd3GIINrD4rQc2+MLJTGYywQ/pWMeSzFo8RvwBAkCgGwQe3UhypCDvYXw8hvF9 5JyY6+II/Iyv52N8vn526XkzQs6gPQZQcZfVoHMWgZ/Xc9dmfyNCGjI+x50bGEwRCDAQeI+D MgK7DSHfw2PMO0YD4OQ5P3+DcPbnNT6951Pb52vMByeLJ177RBP7z6MwRzxfyUaIufJ7vY0m Yswo3cbRYL1h2cMmqMWAwb1cE7OGRRtJd7wHIU3OmGXjTEaXFFHYUewfA2sN8jNfmFuEYXM8 /2TRlcJqxlxJu9gMOIStrNtMRm+DOT1f12Kwg4xLV2NH0pzyBoQ0C1I4wEkajCHJtrOXvWuw cNa7+V7BEnzdLRPPLQGd3VQ0X9E5xrKEc4Xd583IRADDOIQeUqPbfrveNwID730TlHrLQ9fr E9IsiPQQx1vEOfd8msOgNQQVhSKBhwzIZ5fTzrduGnvncwyEnCs2pp/Xazl9nuUuQ8fQrZ21 80ZWYMAbmNfKbHAS87s8IaWATOwITmITISUrP3DyFofAnrdc19TbALTzpcjleObkXHTumTam sm7v1cvaDezc10s03jxiqVsJHcLFCUmEqxHK3NciM2nYO58TFusMRDifk8NEh0+pEK6QR5I6 hroF+bgNkU8kpQ5vNf0SHWU2eHFCTobMDS+Xk01eEs4J59y1cdqrQijpfMvcqrk+rpQRstp4 +9MuafzO85pmzh5rFwbsWYoN3wP/pPnahOSGC3YXz4DGOPTxViPbfvGoXr6YII50vmLU6eam BZJyPSSlW8r4zyYkhXcdzhVHkaRNICQZwiW8U9LwCp7Fa0/lqNL56DxwewWTyE+z3VNemZIt 8/zEkJV1JtCYlCCkc4AxED/N+Rzzhy/+vRwx+OFAEAZH797Wg6HsqSz1oro8n8x+ynPFslMh a/DDgCglCJ6fSkZfl/WUnJeWyFAuByr8k9bLe0iKkPVgx0hAII0APKTAQ8KIgEBrBEBIELK1 jWF8AQIg5ArW99f49+tbAB2aAoH6CHx//Rn//uONixyShxNaAQE1AvCQCFnVxoOO9REAIUHI +laFEdUIgJAgpNp40LE+AiAkCFnfqjCiGgEQEoRUGw861kcAhAQh61sVRlQjAEKCkGrjQcf6 CICQIGR9q8KIagRASBBSbTzoWB+B/YQk7wimhY6rpZWu/viV3erDMI046aG77UFdj8pJm7vZ H1xJStTFaF/LlFt1gNK98NxeYHZrsm7/JkuBNDGAz84810laZPt9168UhLT3Cj3UqYu4M2E0 xWTZa6ciJEPupACbofZXyzQvm68KpTv1PAbGbjTcMirshZU0lMssGZ3T9gQPmag/yayHmb8g y1GVaKMhJFNud+aea5kWZQvho3SnnofjnVzgyoojlbmC2cWw7r2gLPSQsXecROIWFyqWw9iJ joaQXLkd0XquZSqSjdKdeu4t1+yZjg4PI4sRybzT3jLd63tILzcI62ymgeeX32uYSyoIyZc7 hX4pT3Nyr0Sd1va1TOkcktKdeu4h0oN3tA5yT23aOgStS8igalfsDdM1Q/lA0IbiH3gEhwal 04KuCOks7im1TGmcqTWjnm8aduIdL0nIZJ7hesmMh2OHCg0XT0FIdqhdONihTxQ3ciSNvEnp RJqQpO7cNRWmPHX8UGYUrswNhVB5SO9wpQAo10P636tYtFXW7TzSQ/LlZoas3dQyZRCSqmFK PV8haXkuICUOV2bpuIL2KkJ6O3V2VzHhYlhQOOfhuMfNfeWQ++p4pow+8X+JOq2eV22SfzEI SX7XhLem/ifrBJbbpClP5iZTL4OqCPkxRPvytFT6PCZQ8pTVCkO9ZM6cxtZCRxOyMuT+nbVM 04SkasrGp6T0mjZ9laWyDVpm1bDMTkpCMke3HAo/NKP3ck0XT01IPhZoCQQoBOoSMgpf0+TL e8mCuF3+UoeCF8+BgAyBuoQ0gaf3vb9cOMvJUVxF9F6VDQc8JBsqNGyHQHVCthO18cggZGOA MTwHARByRQmE5NgL2jRGAIQEIRubGIaXIABCgpASe0HbxgiAkCBkYxPD8BIEQEgQUmIvaNsY ARAShGxsYhheggAIuaKFz9FJ7AZtGyGAz9HBQzYyLQyrQQAeEoTU2A36NEIAhAQhG5kWhtUg AEKeRshzr/lojCXfpwdd5vIwW63XsJ7TfPNoe166Nmg05eqU+102LU8KTxDSIeSTrqdRyY7P vwhbSZHNcD/YzYZ4bAW5eM75ksNGyujqXvFiN3d9NtL6pkPLk8MfhDyDkB3U/6xGyB50yZY+ WbygtG4PQ6fPrabnMA5TCUu6igPvxhII+bHMCbCjqmZ3UEypGiF71cUllbRuD0MnUQ1bGwFP lfeL1TXmFXkPVCi9rdyj2iJ2OZAJP+K8o4Wo/BKJLWavO2afuvgh5yojt56tTCfO3d4wBM4G rCIbvDgh58vVR6SRsgWvS6Dao/WnS2z8a3jp5bWFHFKmE0VILhkXLyowwMsT0oYVAkDUxs0I idRjH92xJ11sWBgfKCUJVqpnK9KpQMiMPDUOdMwY1yekXaQDwtYO6n9W420vuliPl8m/pDV+ RTplCFmSJwm+3PZuQEibVQefyqtmus5A3GP1FnPXHrMDXcgDk0y9W+e1iI+KRKfE2KQ88RoY Ly59VXQPQlpOhqUraxuxGY/74rnF3LXHPFcXv7Ca/z2XLQPxZXTfURo05DVnVwxjQvLkcfdn 3bdPb0PImSz84+fa5o3x7oRA4nupTPVvRMjVg4GUTNtAMxUCejLe5FAnRHUNcw446FEtKDr9 TgTq2NXNPOTvXGpIfR8E/gMm0tYTZ8YmzQAAAABJRU5ErkJggg==</item> <item item-id="282">iVBORw0KGgoAAAANSUhEUgAAAE0AAABCCAYAAAASX1tlAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMwSURBVHhe7ZzbdcMgDIZZoHt0Bm+R JbxHN/A0fsomHoYiYxogAoRwmkRRz+lLaxH7y68LCGys/nQTMN0W72iwztaY2a6ke9/sMhk7 LVvxauHQPAAz03DFlLZlKoIWDA2ATbYiGILuVjsjChULbZ2NLQvsUKBxKnS/NVe022KnabGx s8qEBjGsSCx3WVBTHRy4agxWIDSAUgn6oByTuS1AztSU+m7qpvKgAZRa4McA7SDr2RXUFoYV By1+OCzS71kxVxWmvtw4+jKEQWu4pgPBhuZSQXB7YdBc7KnGJkeN6Z4gvHX2sVAWtFY8gyfH 4lczEXhfDa7/edB2N4tnCe2SI4Q3sdBm0hSgo7iNEsKHQyPMoJBLFBqDm0JTaAeB68V+X64M HDST6+XLfv8ILDloiYAG6X5S4KdS4koOhdYrCFe4KjSF1kuAcb0qTaExCDBMVGkKjUGAYfLu Stu2coeagYNm8hRoe/ue0AvMHiHtMeZtfVivGm3a0pjBAiOtTjtxaQgevreFv6+5J90fZC8E 0nAlYui7jATtxEXIHdihMvpmkbxtn36DMUwYv9rJ7sODX02Bxup7+o9Dl4Z6lXavsn1ofNdN cx2evuxc5EuBNtBY6YTmQaQ92NKWpNLf/yG2EaDxW3idSvPbjnJoXhn3zew6TMqupzRUxGGj EXNfBtoexGfXT8SgYVmxV4FnBLNjDAK0kb4n0T3DHi/MPd9Taaf3PfNEcNtiJCemhUR1y+z0 BNRWWlJbYdCOfRFIkAoxMKnfXiV7+uLBN4w7C/lmN+rvwf9qN2ymQM+IL1OnDYTQJrR0bFxp oeBrziJeakbAp3YatCD1cilBVyP/cTqy58CHdEIb+KT/NKWUHAP3o9AY8BSaQtOYxtCAQlNo fAIMS82eDGi61YoBTZWm0BgEGCaqtEdCe9DSEOOWn29CObGihy+y74kC7ey+5/OlMnoHeqCM QVCPLjKg3Rq6JWN2s1juIVmHqhXXmNsSRB/H9svvrYP/2f+bnbJ0TFmHL4JP6ismWKHN7T7Q l5kwyOlrcxjQwGQEHP6eIRhVZkxLEId5Zt+rwGq7QT8AGlOkFbNfVFrzv+d+mWUAAAAASUVO RK5CYII=</item> <item item-id="283">iVBORw0KGgoAAAANSUhEUgAAAFEAAABCCAYAAAAvzToDAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANLSURBVHhe7ZztcYMwDIa9QPfoDGyR JdijGzANv7IJw7gWjovtyrZsKxzB6l3veg2I8PDqAySstPx0E1DdFj7RwDprpWa9kr77ppdJ 6WnZklsPBtECUTMNn09tW6Yk+IEgAsBJZwRF0OWqZ0TBw0BcZ6XTAnwpVBmVmt+c6+pt0dO0 aN+5x4AIMTBJMHZxUFseJLi2D3oAiAApk0RAWSpyc4AeqS309dCt7w8RIOUSCQZsB5vP3qBG Z/b2EP2TxTLHnnVj1WHqjHf2Ls7NIRZc2YBphmhSiwsTN4doYlc2thmKje4MwlxnG0vvDbEU D4EEFv+KicX6tgsVAnF3S/8uplziuPA4DMSZdItSUWx7CUYgEm7ySpsIxBIhwucCkQCptMkY EJ8P/f14llg0f/58fOnvnwFKHFpiaeM4hhJNDSgQ2wRy7CUQewnauxFRYi9HgdhLUJTIQFAg CkQeAgxW7hYTty09QcCACzfxyRDDHm88hgHP63qb6ETsZIgXexS29yyC7hoyy4I0wIlY6jYj QWR9KPtSyArtQjsJoKoVE49ZhFfYhwtqzU4a1OFqd+emvrM9HHLvbB+L+9NScKL5Jnb43f+r cD8UPlVV7GPQH9MneVOU2NGoSkIMPDE5gmbBhD3x1Aha6v8nxEYCxPaWaUaJFIh2zCyGaJXz f9ggD5cy5bZ7xF+Iif7OGbgsxD0pzKafi0HEsm6tQjmC4csGAWJP37nRnd2MH+bOn6lE5r4z AiGKicdI2X1iokt8R+VAT2j1SgxqOwzia64FiVEuhgb141Wysy1WbAOfMuTpRZvq9sAfiCjA h7UePeNepk7sCMHVEKOKEClxjgK0OFh+qTuWdopvg+hcI1150NXafnoV2bnjIJ0QO4585q6U Eqfj+wjEDnhuV4EoEIkExJ2JoHKbCUSByECAwYQokQGijNYxQBQlCkQGAgwmRIlnQjzpURjD KZ1vgvJGlbwMVLguFIi8fefzhfL+I8oLkgyM5VVdBohHgz1lrLl5P85L4wZdKS42jpEMtXyB bVeUFtKIPi92IkOb937f2fmwLOnCEhrNtIgsLsRAUpa5YoAIJnpA4uuEgdUxYmJwCdx9ct3S f7mlAgeEyCRqz8wv/3n852ld7EAAAAAASUVORK5CYII=</item> <item item-id="284">iVBORw0KGgoAAAANSUhEUgAAAFIAAAASCAYAAADIdIn3AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAH4SURBVFhH7VgNzsMgCO25PJDn8TRe podx/iEItLR+Tb6k6ZIl2xCUx+NJt6Xv9QgC2yNRviDpA/IhEnxAvgfImPy2pQ3ePhqpWev3 FBzGc2EX8aIn+20u8SWn9j0kR89bPrvw363dkx7g8e8cA309gsXtDXQKZgFpAjf6XESfoHyW PZX1SrFZa9Nq50qFeZOHugDDsCSqoVZcsqQ5tfPRPPbgMDHNt+yRGVN5eRr7gr2cIBdCaxoC JKveoDBWawZSVvsu0BUESHI4S7AwrsFICho41Tx6DpqdHtqy53IE55Ij0gHnRyCVIDVRQvu7 QJnrDxmpVx3iUQ0T7OSFISyEwsWaF+gkEsWyQ0dM0lDiU42cWgRPfAnIWZypkOfPp5dHlxKy BmLpbrrmwR4qwzmQTDOr5nWyNOKca6gkR88BO4BozU0gTeadLphvYR9b+6pAHrZu11SjtXUp wf0su55GlxuUJiLK/cerrb3OSOVoVNO42QJS86U+qgaSwl2xC6krRMgk5EKO/Q9MObps/sbD 6i1u0ZaUNvu13Q5ae+iiNf4obJ90etEu50hl/BG36uh7MaMtQVsTOR6gxVzXwRw+4nzWQD7b 5WVq2dkDQd///BHRHAeWoHul0zz+TIOw1WavxGM5qYmRcP1D2xxr1fJ+r3X8/v15qLQ/8+aF YYaHXt8AAAAASUVORK5CYII=</item> <item item-id="285">iVBORw0KGgoAAAANSUhEUgAAAEQAAABCCAYAAADuSnCvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMQSURBVHhe7VzbdYMwDPUC3aMzsEWW YI9uwDR8ZZMM41o2JLbxS0KkSo96Tn7a8vD1vZLQRTFWfxIEjHg81tkaM9uV5UYfdpmMnZZH 9WyCAQk3b2YeKGIEHstUBVkoIADGZBsbycCX1c4F5okEZJ2NHSfGxiTj2OQ+LTkcUHwsdpoW GwtIHiAQM4bRyGUFu44DBeQTgygMEFggIoDCDptMWgBotuttfaXSkQUILHCYHW6ZpcV7kBCg utMAS/bLigIkvrGRqOmzRc6GEmt6J4s2QhAgSLlsO8sCiAuru1QFAeK0jNI+n2SAQOscYpEc QLDxA1ZRihfooBr0tMv1swHxVI+rWXza3cOLSEBmUml6ojCLgu0/AqSXQsb+roBkOCkg4gG5 3+z37T7G7wv+6377st8/wtIuLajyoKOSES8ZV2QpQ9K+ngKSsFYZchCxMkQZ0sqQKhmVTLuC kswQ8EXA43h9rjaNQrOHVodc+vgfGiwHX8T7qxjziFBOkwC5uEHkmVGxAYodbsK6q4dQAGHx ZaotRGAHVRr01t0TIAogTL5MuadKMHg4CUKJIWy+TLHJXALE/w4XXI8BOTq+5coRGHItIO6V lKZkKI4YhkIEQLiszKoN0QqqwQPpx5h3MuQNvsyWdot+KVC/DwiGFOefZS5Ou7FpkxZmvRrk j7KMv+FLCzPy/p4/kBJDzl81yvrhlQhRViatdOdBRZvM2mTuPWyrZLIkp4AoIO0OpjJEGaIM QZQo8uoQfR1CbYheZUTsuiN00fhXeZLRhzuVTFcyqEkIHqXIfvznAWTr+vnmuOvwLWNDjPJi CDS5sS//H1iSde6erkF/fkbey//RiAZZDQXjqjWB+bqOyPGQdLKJAopffO79jMz9yhwggn5x e8SsZ3FQARE7YhY66H29V9lDkkx6TTlN5n2VqDHVHJp8lH3POHWQhY+phgXiBplzUAppt5a9 PmKQ2a+PcdS9OnL2QaPuYc8JoPiMEtuttW+DKIMBV5UXQxIF7DbleKANdcfrFYz0uwD65xMO CKUaOXfML94WGQyaEEc5AAAAAElFTkSuQmCC</item> <item item-id="286">iVBORw0KGgoAAAANSUhEUgAAAGcAAABCCAYAAABKIMh8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQCSURBVHhe7VzblaMwDKWB7WNqoIs0 QR/bAdXwlU5SjNePsAFjsIQtWZ5ozslPxi90dWUZ32gw+ifWAoPYlS2TGYbJLGIXeLWwl5nH wYzzq2j1AsEJDzZMfcKyReM1j0UOJgwcB8xoCh2uyFvrd17MdDMCiAJnmQZDT5g3MwfLTvsp DT0gMF+zGcfZYIOcHHDcHkOOTBwynVfzAORCHNYRhIDjjMaw+TsPHqKw6ZzihleDGLNrhA9v MsBxRiNnjbVUCggPGINj2OkdezCPKQIc7KLxXht6+OwpZkmKTXcnyPVDOqEAcJhCmgRwbEqA Cd8CwLGxmCXmtw9rjljLBD8qtAcHSfVc5Lj8f2p/YUsIPqEVuu98Fzg+rGzfPvCl0qvTYPZX EeBMrK8EGhxCN3RWcIpiH21nBYfWvkWjKzhF5qPt3Bc4z4f5eTxpLSJo9Ofjj/n5C1vQFyYE MMNQteqLOfbswZutUZkdNq6CA7NTk1YKThOzwyZVcGB2atJKwWlidtikCg7MTk1aKThNzA6b VMGB2alJKwWnidlhkxaD4/RjTtP1+cBv72BL3L1DZz6EdntlEC6fDvoxr1smEvyxviHo+LLN M+bkDjWpXEHTJNGBE5ymurXw7DfDmmMNYfg6A5ITnMa6tfvgMIrrdjgxgtNct3abOSlw/Hew xOCYRGz6XclNFJzTzWFzn5MJa1TKSEZwWstx74c12/MqIbA72VEEvsG8B+aEZ4h00f3o1t6p dFJP7MIUQcLAyZzfoFsLP5fbH0ShKkV0ds0Kjg8sQVjI+eOp3Zkb/ksD1RCgvamsw81zTtmk t3uzM+f2Sqt0VHCqmJFmEAWHxq5VRlVwqpiRZhAFh8auVUZVcKqYkWYQBYfGrlVGVXCqmJFm EAWHxq5VRu0LHP0JCOTKoIpj4AfRNwQKDt5raHr0FdaUOd/AnPdd1HrVkb3jyLW/uFp4S8Xi axWIfKw75pRXjIr1aLlSlOn2n3poeH2bvwkGlIn5PnBSxVovr9UDa7bk8heM6xdYfRuiWGxf 4Nj6t6WFidKCxyMAn+CeYQ5K34arhNtXYSJkmavk7nnKnGsJ8VaUcmARtC4bgjXhihxeeK/9 NbW1Nobq6dTmqPFeDZ/OC44FibbKI7j4EMcar/7JJiqfJxQBTm7RMNnVPvualmC4pC1Ow9Zb XQQNa0gtH9YJZYCDpDvoeHglL86BA9W3oTRvuJDmnlEIOHYlJaWLDx6cCzcnYe3/PgNLpS9F mJEHOdZ0Wro4PElR0e/oYBgbwo29/y46hB7OKHl923HME0475wGcgeLecpjjV6bl8rcACQPn twGEL/QtHJwVICeZhZ8JQEkCW6M1JJatXyBz2CwofqJ/N+9ITV0IpMgAAAAASUVORK5C YII=</item> <item item-id="287">iVBORw0KGgoAAAANSUhEUgAAANoAAAAVCAYAAAAgo/C6AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANYSURBVHhe7VqJcYQwDKQuCqIeqrlm KMY5v9jyg/zjizKTydwFbD27WsmwMfqhCFAEukdg674DbUARoAgwIhqBgCIwIALdiHZd1wDz aYtfjcCK+EnZ7BLtc7Bt28TvfuKJ8jk2dnx0yi927vb9H3ZsO8tYbmns8FjoGMq//8f30sRN xc8gzDtEEyC5GYOK23Xu4B5ItO8y18n2/WR46qK2ftlFvKAE4qcSmRnWl/nWz5zZ+BmFeUM0 txIfzAhUMsYcXPa1kmSmolvo4uvnqGRRajmhuYKctzKLwmFVrdxCgrUjlTABppaFZqKfomiq rkfnubyIzMXPSMxXKZpfjTgsA4rGv+ZgT4JNKkIVGTUIdOY1wfRnDdDm0jq4PZ7qpz0m8LTy wootzG7Zaosfa+1v3rHkz1W0UpvTRLOVwAtmhFAxon01svuspgB4B1mSN/o56R9Wy1RrXAi2 jF3uS2f5GTJWxFARTdhlkW4WfpoQTeLbJWw55uNEA0HzmQxBHDsMcb/HVBr/QCHcjnp59xQL ktuy+dG/DApAgAlhhy1Ww0ORWX6akKh51LSQAaI9xrcffnj3hMGZbLTC5xIC706RFleDwo3H PL519MAUU6hc1mcA+unSHADCtUJkMXGUpIkn70GtEy1rUVGZ6ic4lTaKZpMv0Ep2xk9RHGNE E4d3X7J6ilaOeTTRfk7RANHCvfcTs+//J3v91rNhBdGq/AzN2anW0QrfSPzUKRoXCt59hFrH nopmWiDY+uQq16gZzbYz0ToCtap/3qUqOjzwicYPT+KqFrmlnzapnPZYxTzZQg/ET0XryAuC PJAbNaN52fWJEquOur91jtKHnTpmEs2ZO+rnKOO7dQSOnRfQ1KtQNDlnlPvpH4nH517Xn974 sXYrJZrzvDdEND56w+fGct8nzGe9guU+wdfDIS5pQ56joZEavtD3r3LBl97ezc/UnKvmIbfo 4Ek/Aj+hIum/JVVmc5xongKFN0D1/G98MwTp30u5gjdrpJ820ZD7vhc/YUUz6vXUpgDMJxXN ZXhMueIGSTTgKwAePW2uxPnXZq+Zq4zzU78ZJE8dcfu+FT8pu/JtzmodZ4KF9qYIrBwBItrK 2SPbl4kAEW2ZVJGhK0eAiLZy9sj2ZSLwB4HkQppik+7dAAAAAElFTkSuQmCC</item> <item item-id="288">iVBORw0KGgoAAAANSUhEUgAAAIwAAABCCAYAAACFIj76AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZhSURBVHhe7V3tseMoEFQCl8fG4Cxe EsrjMnA0/vUycTCcACHzMTDTCO9ZeLbqVW0VIMHQ6hnwNCxG/6kFAAssQN3rV32sZllW87j+ SDpG8DT322Ju92dH21eTLwGMN9ayfidUYoQ877dTH80XAMaC5WZOflinvsrPa/wwayfTTg+Y x7oYnFg8I5XtrKE3pgp/cQXn7qKy6P+t99v+vdo1gP28m9tSK6/1twFV+7zb3aAOam7A2EmE 0bK7r23C06a5W+NjAgeGxqTY8iSmqMZYoU8UYGr95XnNuic0ppkYMNaQWIDr/bud5NWsBcN4 dolB5OrXAMkF2E3GSCfbTey6FgzT7i8PGLOF/6hrmhcwdkJAdnne7/sKiqJ4hGF49jEWUBKX EFwHAbB2fyWAMcaCDjHTtIBBDZF905UYZvsmo5ijamiOXbaXOXbYAPMIrOZinpwRo4B9dAwT Bgx+WJMCBndHPGC8S4p9vgNPgRoBuwTAZM9zrBOBJokx3gWYLexFXPekgNkmV0L3VdYmXBLl QqhJFMYmgWHSVUr03nwV8zbAWNaUbzvMCRiQZkvcnACMNDYh673eewS0xFK9dIUdy+po0Ij7 VsCQLENNQMUlZUxGuynqJRVQ1jbU3sgwCpjNuOuprV3hxh3h9oq9lQgrZdlrD8Vv3jW2ARQw smVfV63TgOl662UbKcMoYCDwKmAUMAoYyAK/P+bPzy/U5Jsr//78Y/78K7PAtKukc0GvzHiz 1FKXpC4JwrICRgGjgAEtcHIfBnrb5SsrwyjDQCBWwChgFDCgBdQlAQZThlGGAeCCZd3pPgxk 2jkrK8Mow0DI7gdMpK1B5Ael9if92T59ls0rkWd4QSMPlYcBJtMhFekHDZ2S7YtLSci0Sq1M QK4+V34YC0uo6gaMPPnnNY2l1CLPri8Tj5whT6VQMjAaApiy36nMlFYRJDm+qC6Kq8+VO7Pg OqUuwKQKPKmeh9C1UIk+RDpiK9Goi1XiRiMAQ2b+R+xIlWdjR1WXXH2uvFen1AUYa2+UYUgh VzVZOgOhNPe1Bz0jAEO9NwIEncQdi928RORmDwEIbqnJqlx9rtx6wJauqm7IcYBJ9MKUZqY8 PoI0JJle+MZY5i2AyVxQlWGCOhJ1xVx9rjyh2Kquiv4O5GK2ZFmdMIyb5BdISjYppaM+zvMC rUQ+QQKGD8xSN5kFjy253nDA5PGK42MvzI/6Efpb7xpts/q3z9WvlfO2TT34CMDko8gA5A1G rHakLmkPzpDVmNg7CQAjBuO+MqH7ma6S1gc3UVx5YXSGKWrPw94zziVF/ZcyjF9KSuIVflDi SSXAPSSByrkdYAsgHjsXNOd95upz5cnzeNu+j2GOtX9uuJokVLCsdr398BimKetwvjc7TSG3 h1AMd8wcV58r/79jmIL/ywkmV0muXWvjbn/wh6+SRMrD7BCh0m1lG3uE6K3c1GytqtrPe03Z X2IYLkYo9wH6WeLj92E4Y0xU3h3DJDYoGIAGR51lGha9xE7vRIhghjIGMGGJfPwWMup8tX5W Ek+hYJUkftYXVBwGmMvaSgEDTZ0CRgGjgAEtoCmagMGUYZRhALhoiqbbVBuy0wuZ/bqVlWEU MBB6FTAKGAUMZAE97gM0lx73oTEMABl1SeqSALjoKklXSRBcFDADAdPQHXH3I3Hl3KRS+Tis LonRSVXeqS7JGha5ooM0JK07aqWUSu5HEt1gcuQTZT/4NnVJAp2UAqZqgQGAKROsm6kc3A0m XHk0FPse6n6kpi5JoJOqkZoyjE3/PK2sRBimlq4apogrT9DiVaFkCmhd58TrpOo+UC+nAK90 aYUTQ+5HErOLF6u5U+8LwDC6JFYnVeUXvf7GmgahWdqUlcso4PuR5OziXFG4I4FLQnedjt1m j05qByYQ7815PoxHTDOOYSUso+5HEk383t/YjYra5cneqE4K/7DmBcxZtyQFDKd+4Mp3emNV CpAu6XhoqRFL6NQCTnrwgm84MWAsY/dcQxwsWnFJ4P1I6AEHx3xWdE+J94jByOqkSsebuMBW IBeVzQ0Yh5mei85T0LROX+DkMtj9SdlqqVBdMrokVidFrMaEQAnVpgeMF9UBclfQgNesTpzr IxzIFwDGRcAKmgMQ/WCZP4YpAjzmmjzhV3bNakG+jAW5+Vi/hGGuOcWf2Ov/ABB8mJGSZI+q AAAAAElFTkSuQmCC</item> <item item-id="289" content-encoding="gzip">H4sIAAAAAAAA/+zdCZwU1aHv8QKDS/I0iSQ+jShBRQniKIsbOigKosIQVgUFRBRERBBccIug XuON0RsTNb4xNy/6yfvkvSQmuXrNYq4i7ntAEBg2gdkXFsHpntGbZN6pPj01NbV1dXd1d9Wp X32+tqerq+vU6Zr+c+pUd3UP7RBNO+Dgq76kadr+WfptL/HfV3pq6dL/6HnTqbUD9Ucu/Oq3 tQ/EnPd7/KKH/qg+X///APGfPud98V8P7Uh9lvb0ywdr1qnyG9rDvQFANWL6/RHa08fqnjk2 XcjHM57yXf8x+clj5d7teib/p3u/qsd4yXOnZOZZe77b5r2G/LY8zH/MhX2n5LlteezTfP/Y 8t7jv0wVfnZ0Ot9WH6VtGnzw5jGHbp/ytU2XfLlq5Jc8bBuhedtaXkgjvGwrzyCfqjOv3Hvb Cvm65bnyfJ+en8LulDz+nDL+ReX5x1zKlRey4XnulPz/nNacqb00SE85c77VTTp8z4Ijtk09 uPm7B3nYd7EGAKElIm7lKfpBkznfZLhVNe0CgOiSEeeRb6u3bV+zbftHn+xY2+kjJ2v0xXZK q7ftsPjbJ87kox94en+r1XtbtwOA8E6nd7fo3tuy/e0t297a9Mmbm7b5ybf3Nm3x9m6Vs7eq Nnt40+SNjVavbdCZy91tWgUgZl7dsNngutj6TSs7+cm3zo7W9tWffCKl7xpSMz/clpmfNJYh /M5Wq7e3WGwDEDdvbvnE8MaWbZL57uubdc+/+XZHR4effNtQUydsrE1bL9V02WDycXWtxTqT tdU1Fh9V1+p21uj0uzVrdtYKq6UdNWnd53y4E0AM1Qrv76jpsr1W13n33U7/6TvftjY1CZ80 NQuyvKWxWbKUhc0N3VS529DQ6Gh9ne7jugbDOpuPagHE0draRnG7JnUrC8Jqk7/V6F54612f +Vbd3GLY0SLt6qTfNb77sL25ZVsnY+bWphZBFraY5m9qapGMOTL3NjY0i/KGRn2+TDxjgfUN TYIsrKtvFkRZFgxySfNd83zzo5aHHOdYZrpVCqCE1tTpPmrQyfIf33rPZ77V7LKqbtm9c9cu STzFUt6+a7cofGJKP1E2bkX0bW3eJYiyjDtxuylFlDen4s7IPXm7QRwjC43psrz9uLHl49Qc WbDclQXLXe+HZKa5PQtAOK1rbFnb0EWm3J9851vdrt1uzKFnzjpZMHXzuuWbKAhGN09knYi4 LabcE1m3OVWQt+aeXlfiNbakEy9VMDNm2gtG2eMhjzUDCAlxECfDzUKm3B/fft9nvjXu2dO4 a3enPfWd7Fknni7LWvdJ9PeMW/Nk9Otk1pn7dUbXLtt888grY9qQKd8INyD8ZMTpGnTmfPvV X1/ym29793YRWSfs3duwd2/dnjQjN8xzanfvkfRkM93u2L3H6OPJI1lxK3t05sTbauq/iVth U/Nu2bWTdcltMwqWu7JgedTxIfMyHg8BCJUNJutNZOL9duWrgeSbOdYMMtbSnbfde4x822Ga L2JNMnfnZL5pqYNWI9mMBUTEyXyzpJyZJf0sZftD9nyzPBFACHnn2x9efbOg+Waw5JvRfzPy zei/mXtx8lh1s0kq3HZv6jwZ4ecV8Mgo4guINO98e+51v59/859vRpl8A1BQ3vnm//sLOYy/ 5ZNvkvn4NOd8A6Cq7PLt2Nzzzc/xqZRVvuXffwOgKu98s34/i3wDEB3e+Wb9fpZ7vrV8utes 2Rx3Jg02MutqbMxZZ2ZOPGlryx6zzZ02AYif7l2dtA3dfdy8S7B+P8uj/7arpaGlua6pUapt bKxt6tTYWNNpp8kOk+0p20y2Sg26LfW6zQ1dNtU3CBvrGx3Jb9+nvoAPIEbW1TaYrTWrqRdW 19SvqU2zfj/LPd+219Zs3v7Jpq1bpI2bN23YVCV8LFRVravauE6/1QtrqqosVhs2Vn3Y3Qcm 723Y+P76De+tr9Jt0L2zXvf2+o0Wb3288U0AcfXGug2vf7zR7I31Va99vFF4fX3VGxs3Sdbv Z7nn29r169794P033n5LevWNN155/bWVr72qe3WV2UuGVa8If121yvBiyl9eWfUnTy+sNLwi /OfKlc+vfMXRf7wMIHb+0N3vX1qZJu6+8upzr70h/fGtd1/62xo/+fbE//nVIz/73w89+ZT0 r088+f3HfvrAY08AQEiIUBLR9ND/ekr60c9/IYLLT74BQESRbwBU5ZFvZUOGAkB0kW8AVEW+ AVCVQ74NOYh8A6AAPd9GaM8cQ74BUA35BkBV5BsAVZFvAFRFvgFQFfmmKq2jw6zk2wMUH/kG QFU551uHpiGjPPeOufdl74xZCt69NfNM+nWICfpvYWYEV5ktzRwLjnf9LwMohnwLM3uyefTf LM9yXJX3MoBiyLcwMx94Wma6FdyCy+PwFlAV+RZalkSyj5i5DaP57L8x/gblkW9hllv++Mk3 IA4c8o3rI0VTxvOn9NkQN1z/DYCqyDcAqiLfAKiKfFOV9/dPGYVDHJBvsUXEQXk551v33gGc 5bl3zL0ve2fMUsh4/jTjHEAx9N/CzAiuskxfW7A/y3FVljlEHNRGvoWZPdk8+m+WZzmuym3N gJLItzAzH3haZroV3CLLcvTqlo2ASsi30LInkj3oHAfcMvbf3MqAYsi3MMstfHyOvwHKI9+U kfH8qcejgJLINwCqsudb1WCujwRABTLfniHflGP5qHHJtwcoPvINgKpyzrfS//ZeFOS5dwr0 /Sw+H4KYoP8WZoX7fhbfX0AckG9hVrjvZ7ktBqiEfAuzQn8/i4iD2si30OL7WUCeyLcw4/tZ QD7IN2Xw/SzAgnwDoCryDYCqyDcAqiLfAKjKnm9cHwmAGkS+bRuhPX0M+YbI8/MZP3uZM8sK I9+gjBzyjVhTG/kGZeSWbyXfbBQO+QZl5Nx/oyOnKvINyvDTT/Pov5Fv6iHfoAw/5xHKbMNu dN4URr5BGWQULMg3RJ19GI3+GCTyDYCqyDcAqiLfAKiKfAOgKqd84/ohAFQg86379UPINwAq iGG+efyKqMfHPnP41IH/iryfmE9dWbUxh4rK3D9J6/ZrXxFtlNs2BNIo+ytWoEZ5VBT4n3oh GpWtuOWb5bXNON8yx//uyKoit3XmWZdlAe8/swAr8t7ywOsq0J5yq8jnxmRbl8cfSbCNcnzd CrSnPNacQ6NyENt881m2v/7Z7vTcKg2kLstM+z/lBarIe52FqKtojfI/J4e6HP91KESjfG5/ gerKuVE5IN88ysa/nsXPN3u9OdRlmVnkfCtOowq3pzxmOlYd6T1VhEblv6dyQL55lN3+PQ28 opxr8fnE8ORb4I0q3J7yOVONPZXbS1fkPZWDuOVbmelPyPHdp3UfGcj4rEAqsjxUlv0e96jL 3iJjTrCNcqzIsXXB1lXQPeWxHsc25lOX/Q+gQHvK7RUrxJ7yWHMOjcpWPPPNLVvs7xrzH1i2 O8JnRcZdx5l51mU86l11/o3yrqigjSrcnvKoKOfqsv2rCHxPef+dB7unAn9PZSuG+QYgJsg3 AKoi3wCoinwDoCryDYCq4plvHYU8ZVOqumhUVOqiUUUj8m3rCO1p8q1gHnr8p4pVRKOiUpGq jfKPfFOmLhoVlbpoVNGQb8rURaOiUheNKhryTZm6aFRU6qJRRUO+FZqSAyA0KhIVqdoo/8i3 ED4r5JtHo6KyeeF/KQqNfAvhs0K+eTQqKpsX/pei0Mi3ED4r5JtHo6KyeeF/KQqNfAvhs0K+ eTQqKptXzGcx/hYeIf9TCfnm0aiobF74X4pCi22+MTExBTuV/H1dwnzzf2FS+wI+n0h8MTGV cCp5mpU837zDyr6Az3jMakuKvNMfevynilVUzLpoVFTqitX4m+O1980x5ZZgjpnm54k55FvJ X3wABaVfH6m8BP23MvINQIGRbwBUVYR8czxfYBlw81jAvB7vJ/pU5HxT8guANCoSFanaKP+K 3H8ry/78qdv8nH88kf4bEBNFy7fwIN+AmCDfAKiKfCs0JQdAaFQkKlK1Uf6RbwBURb4BUBX5 BkBV5FuhKTkAQqMiUZGqjfKPfAOgKvINgKrS+XaM4vnmeEWXkm8VgIKKSb6ZMf4WobpoVFTq CvX4G/kGQDkxzTdNA5Czkr+LyTevfKP/BuSKfAszxt8iVBeNCmFdjvnG+FtI0H8D8hSVLhz5 BiBb5FtokW9Ansi30GL8LUJ10ahw1mXPN8bfQoL+G5An+m+hRb4BeSLfQot8A/JEvoUW428R qotGhbYuS8SFdvxta7n2DNdHApCNSHThyDcAOSDf3Jh/ej7j79f7/+H7rlfe3yQXNverKVOm 7LMs8s1tmfAofr5ZoswoGHFnmeO4pNtifjD+FqG6aFRo62L8zeDYH3Msez9qX5vlIV/7heNT IG8cnzoi3wAFkG9ujGNM8g2IrvBHXMn7b+azDOYF7ANrlvlui2XeKYy/RacuGhXmusz5Fufx N4uszp+6zfc4f5php9B/A4JA/y2EyDcgEORbCJFvQCDItxBi/C1CddGoMNfF+FsI0X8DghLy LpxTvh1MvgHwg3wLG/INCAr5FjaMv0WoLhoV8rqMfIvO+Bv5BsAX+m9hQ74BQSHfwsDj+m8A cka+hQ3jbxGqi0aFvy4ZcYy/hQT9NyBAYe7CkW8A8kG+hQr5BgSIfAsVxt8iVBeNCn9djL+F Cv03IED030KFfAMCRL6FCvkGBCu0EUe+FRqjOpGoiEblw/Jbz+Eh8m3bCO2ZY8g3ADkKc/+N fAOQD/ItPMg3IFjkW3gw/hahumhUJOpi/C086L8BwaL/Fh7kGxC4cEZcSfLN+2fo7b9T7zbf 7ffrHa/2Zp/kwuZ+NWXKlHMrk2+SJaAsZcdH7fPdFvOD8bcI1UWjolJXnPPNoz9mXsb8qHfZ 7SFfO4LjUyBocc43M/INUA/5JpkPMMk3AIVTqvMLlrL9ANY+sGaZ77ZYRoy/RaguGhWVuvj8 myGr86du8z3On3qj/wbEhH79kBFcPwSAgsg3AKoi3wpNyQEQGhWJilRtlH/kGwBVkW8AVEW+ AVAV+VZoSg6A0KhIVKRqo/wj3wCoinwDoKqY5JvH9d8AqCom+WbG+FuE6qJRUamL8beQoP8G xAT5BkBV5BsAVZFvhabkAAiNikRFqjbKP/INgKrINwCqIt8AqIp8KzQlB0BoVCQqUrVR/pFv AFRFvgFQVT75ZvyCVc4/ZVUS5BsQE7nlW4TSzI7xtwjVRaOiUpdi42/RjTj6b0BM5Dn+FsWU I9+AmAjk/EIOKef/9+vdlvQY9HO82pt9kgub+9WUKVPOvxwe+edbbicX5PKWsHKcY17eXl0O VTP+FqG6aFRU6lIv3/xnizm+3E65WvLNu+z2kB8cnwIxkc/5hdxqNOcY+QagcPL5fEjOH3uz H42WkW8AghbI+dNsg85++sB7juN8t8UyYvwtQnXRqKjUpeT4W1muOeP//Knb/Jx7j/TfgJgI Kt/Ksj9OLBXyDYgJ8g2AqgL8/gL55kjJARAaFYmKVG2Uf1wfCYCqAvx+Fv03AKGS//hbmW0g LuTINyAmyLdCU3IAhEZFoiJVG+Uf1+8FUKa/L+xvaFcl31qfOL8ASFm9wdWT1QtV8p3lE/mG TC9X6d96YXuDx1yEXquY5Jvt2palfzdFhePrqeSoDo3yz/6Hod74Wxmf7wViKSpdOL6fBSBb 8cm3Mj4fAsRM3PItKuFWxuffIlUXjQpnXTEZf4si+m9AnmLSfzMreVt87xryDchLHPLNIioR R74B+YtExJFvhcaoTiQqolHZsuSb8uNv5BsQH8r33+wfdi95c/ztF/INyJfy+RZR5BuQP+Xz jf6bH4zqRKIiGpWtOIy/RSXTuu8X+m9AvuLQfyv59ue0X8g3IADhj7hArh8SoYPTMvINCIja +Wb+Wr3PiLPnoT0e7Qu4zXer1Ha1N+dJLmweN4h0WRTUq8t8q0xd5pcx0nWZ80298bfcro9k iTKjYF+bx5L5fLWf/hsQiPj038o8880jrNzW5l12e8jfTiHfgAConW9leVy/1y3NyDcgKpTP t5zFJ9/4VFUkKqJROVB7/C03jke19n6gfWDNMj+r8xrddwr9NyAYIe/ClSTfsjp/6v+JvvcI +QYEg3wLG/INCAr5FjaMv0WoLhoV8rqMfGP8LSTovwFBiVz/rYp8A+AP+RY25BsQFPItbBh/ i1BdNCr8dcmIi8r4G/kGwL8wd+HINwD5IN9ChXwDAkS+lZzH9d8KjVGdSFREo3LG+Fuo0H8D AkT/LVTINyBA5FuokG9AsEIbceRboTGqE4mKaFQ+RL4x/hYS9N+AYNF/Cw/yDQhWhPJt05CD yDcA/oU638q1p8m3gmFUJxIV0ah8hHr8jXwDkAf6b+FBvgGBC2fEkW8A8ke+hQTjbxGqi0ZF pS7yLSTovwGBI99CgnwDAke+hQT5BsRECPPN/jv1bvPdfr/e8Wpv9kkubB6giHRZFNSry3yr TF3ml1GluoxyeIQt3yzx5TbfbTE/6L8BMRHafPMuuz3kB/kGxAT5BkBV5Fuh8amqSFREo6JS UVbs+Vby6yPJvLIPrFnmuy2WEf03ICbCmW+OqeX//Kk38g0InBaRz7+VPN8KjXwDAke+hQTj bxGqi0ZFpS7yLSTovwGBI99CgnwDghXOcCsj3wDkjXwLD8bfIlQXjYpEXVp0fn+BfAOQFfpv 4UG+AcEi38KDfAMCFNpwK4tNvnlc/63QGNWJREU0Kmcy3xh/Cwn6b0CA6L+FCvkGBCha+Vby 65MXGvkGBCXM4VaWyrdt5FshMaoTiYpoVG6MfAvt+Bv5BiA39N/ChnwDgkK+hQ35BgSFfAsb xt8iVBeNCnNd5nBj/C0k6L8BgQh5562MfAOQK/IthMg3IBDkWwgx/hahumhUmOti/C2E6L8B +Qt/560srvkmdk3RlLy9QCFE4m87nvlWzP5bMbOU+EXRROKPp8j5ZvzovMfP0NsXcJvv9vv1 jld7s09yYfO4QaTLopDDc4uWn7m1y3xb6NewaHWZd1l069K6/+ZCZMbfCnx9JEuUGQVZts9x XNJtMT8Yfysmup2qisRecLg+UuGv/2bvmxllx0yzl90e8oN8UwBRWfLXv+Tb4EdJ8q3MPc3I NxQZ8Zjbi1bybfCDfCs0PlUViYpyrivk8VigF9C+5aEdfytyvtnH2cq6R5Z9juN8t8Uyov+G 8AhzNnpvdslfOj9Kkm9ZnT/1/0SfyDeooYTBSL6FFvmGmMszGKMSbmXkW+ExVBWJimiUHx49 QMbfQoL+GxAT5BsAVZFvAFRFvhUaozqRqIhGRaWirJBvAFRlz7cq8g2AEtL5dgz5BkA1Mck3 j+u/FZqSAyA0KhIVqdoo/2KSb2b034CYIN8AqIp8A6Aq8q3QlBwAoVGRqEjVRvlHvgFQFfkG QFXkGwBVkW+FpuQACI2KREWqNso/8g2Aqsg3AKoi3wCoyinfDiLfAqTkAAiNikRFqjbKP5Fv 28q1Z44l3wCohnwDoCryDYCqyLdCU3IAhEZFoiJVG+VfqfJN64wXUZDMD5nnuC1pf6LBfilL ++S4XyhTppx/OTxKm2+WsHKcY16+zCXlSv4yAgihIuebkU6O3bYyU455l90eAgBD8ftv5hwj 3wAUTkmOT+1Ho2XkG4CglTbfykyx5jHHcb7bYgAghf/8qdt8j/OnAFAWy8+/AYgJ8g2Aqpzy TfHrIwGICf36SCO0Z+J0/TcAMUG+AVAV+QZAVeQbAFWRbwBURb4BUBX5hkjjCyzwQL4h0sg3 eCDfEGnkGzyQb5DcgsJxvts15O0LZLwGgseSbqstc7mMjMdVs4jBeCLfIPnPN7frxvtZm2UZ nyu31+VWzvhcxAr5BslnvrklUm755j3TY50Zc5V8Q5lzvnH9kDgqcr75qc6+Tnt8kW/woOdb ufY010eKvTzzrcwzmnKrLoehP/INZuQbJI9Bfj/Hifay9/mFnAfoLE/3GItzLCNWyDdI9nQy z7efnfSfexmr817GsWrHZfzMR6yQb5ACOaBzOzz0U2NBm4N4It8gefSRclhJIJ8PCao5iC3y DVLGETOfK8l2bYHU67EliDPyDcEKSbCEZDNQWuQbAFWRbwBURb4BUBX5BkBV5BsAVXnkW1XT LgCILvINgKrINwCqIt8AqIp8A6Aq8g2Aqoqcb5X/79mOjo6St1oBvJJARuRbRPFKAhmRbxHF KwlkRL5FFK8kkFEk8k2zTSV/3Uout1cSiJVs863S9+T89CzflTLNVq1aJW5XrNAZd2OScqcO XyTk/0oCMZRVvs3LZnKMuEr3d+UKW16JOR2paYU+aSYr5HyPdlUO1XwK8MV0y6KcN0ys7fhJ PyHfgNz4zzcRWe+s3+iTW8RVZt9/c8s37/5b5dB0Norp+TffrtS0oUOHdtR+sOeDSrMA880j i9w2zHvyXqH3KyletpL/aQEll22+aSIpKrV0OXXHMfdkuIlby0oqnd6VsufmdmuMuRnHp34O Toucbz7Drcp3vhkrFGXHjXR8JSURblKV09Alw5iID3u+bRp8sHe+zetIZ9qX+rwr5J9vGa0w 55oedCsyPsUeI3oWV1ZaIi6QfPMfbo4b9sILLww1TTLcrvzNn2W4ZZtvpmSTKecap+QblJfO t2P85pv/49Ns881x/C3jHDfWGKnUHCMu/3wzsii3DRMvkcw0YxJ3zeGWQ76ZyzLeVnSfyDfE RFb5lu35haD6bznoFiOVmlGwRJz/fBO9LHPrxN2q7MPNsmFiJRdccIF8QSwR1y2bszw+NTMi jv4bYigu/TdTysmI859vRrJZ+l1i2tHYkFW4WTZM5lhV93CzR1x++abJiFu1apW580a+IQ78 51uVKeIsb3bLG998CtWyhsrS9t86ug5U/eebd2Pz2bDi5Fsqyhx6ceQblJdVvlWZjlI93vLm yfL0yuzPn7rdenM+TWkOutQhasZ8k503I4WMUwBGY+WBqn/2fLNMRkUB5lvqE9HWLhz5BuVl m2+SfMvbx9w6MnVpKkvSf7MkW0eHSDaf+WZJcku+ZWyv94YVLd8cJ/INyssn3xynnPOt4ONv tnDLKt+G2qb88804v2APN/FQUPnG598QW3Hpv5mSLavPhxQ03+TTLREn7lr++SDfgNzEpP9m T7Zs882ccv7bm3HDOmyf7zX33HLLN+9MI98QH4H03zq69+U8nlhZxP6bvcdln/yfX7DkW1Xq QDLP8ws+pxzyzXiuJdDMqyXfoLyg+m/GnBzybUVhzp8Gdf2Qwn0+pHD5Rv8NqAo630Tfxru6 yghe1cfj873Zdt6qfHcsM3Yyo/hKAkWWc745ThmrqyzW+FvgHL+flQP/HUvvTqbHKwlAsufb 5mGHhO365Coh34CiId8iilcSyIh8iyheSSAj8i2ieCWBjMi3iOKVBDLyyLdsP6bFxMTEFKqp yP03ACga8g2Aqsg3AKoi3wCoKqt8K8QXtMPzpe8wbAOAANF/A6CqbPtvjnOM+Tn3f8xP8Vib Wzmr9Ztnmtfvtg1uW2WZU/JdCcDCKd8Oyi3fcg4fx+d6p022Vbhtuf8a3ZYh2YDQEvm2+Rzt 1/0Czres2DuBPuvyXyP5BsRQsPmW2xC9W75Z1haGfLNsWFbbAKDIss23jJljLOl/GzL23xwX yKoWty23rN871rw3G0DYBNh/q8rp/IJ3jmWbOX5qMc+0r9/Se6zqnnuOz8q2yQCKI898857v R869vpxricqaAeQpwOPT3Hj03wJk3/IA11zynQjAUVb55ob3OIAQCiTfACCEyDcAqiLfAKiK fAOgKvINgKrINwCqsubbt7Qd56SM1VZfKPVYMypldE9Xo9LLiIXl8kYBhda5m1A4PVBghdp3 Isq2lmmvDtF+8k1rvn1Qri9gJFvVpZq0taKHtGOCVlOhVU9I2zm5qyyJR4Go23ERCmmsVjPW +aGtF2pbz08pT9s8ovPu+WlyjrjdNFxXdVbq9nS9IG5FlDWfpefbD039t5axqT07RaufpmuZ pu2aoe2Zre2/Sts39wCpdX6XL4QFPSz+MVf7/NoeutkaCufvKLCS72LFzUi9yDO09ula4grt s2la8nKtbZpOFFqnaq0TO29lodOnE7W94/Rb+ehn43R7x1g55tueadr+K9O3+2YfICSvTkfZ 5wsOlP6+MO2/bzjA7p8LegpfyPRDwYh/R4Cg/Pe8Xq0/m5ftzyj/fXedeJZ4bp4r2V85r+3q XjL02mb22v9E9ivZVffpT+btG99LZl3zRdZ8qzblW2J2DxFrn8/tKchkE2n2j8UH6Zam/XPJ gYaOpQekLUqTKZen+4/8shDIqgB4SPx83r7Na16/bMCfzjv05VFf/6/Rh784+hsvjjr8pdG9 X76o98rRX1s1+tBXR3/59VEHrxp54KrzDnj9vB4rz9FeHN93d9Vq8dz8VyKCUSSk6NG1Vs5b s2HPgFF/PPTkX339tGcPH/zbbwz59eGn/br3kGd7D/nd1wb//tDTnvty2fMHn/LCgQOfO2DA cz1OekE74fd9z3129cfNIuJkj87efzPyTYSbzDfZT7Ak2z9vsXGJuHylJpFvga1QLSV/R0Al ohO1fdaA7d/tvX3q0dVX9Ns5o/+OmSfunHFC9azjq2f1q551bN1VR9fNOqJ+Zu+6Kw+rn3ZI /ZQvVY/vsW609pfxfcX7NJCVyHwTKxlwyYe9z/rg6BEf9Bu1uv+Y1SeOWX3CRauPH7Om30Uf HTt67dGj1x9xwfre5284rHz9IWdv+NLp63uc9pE28LW+5/5WrMRPvsnOmwg3cbz5xWI932SI OeSbe7jl+YIb+VbyXQ8oT7zXdk84bO+VfT69ZsCn80/dd8PQfQuH7V84eP+Ng/cvLtt/08DP bur/2eK+rTce1bqgd+u8Qz+bfdCnV/SsrtBeHK4Z+ZbnSuSwpygcdmZVnwu3DBi37dRJnwyd un3Y5TsGT90x+LIdZZftHDi1uv/k2r4Tao8aV9f74rpDL6w7aERtz7N2aKd+pB3/G/FcYzhO 5ps8f7q2r+n49Co94kS+rVixQss0pfNNBtrCHjrTiyYPMA2W+d5LGvnm/fSMDzku4LYBJf8z Q3iUfEysmPRkuOwbrXP6t94wuHXJ2YlbypO3lCduPSdx29mJZWcmbx/SdvugtmX9227r27b0 qPZFX2+b/5XW2b3qJ/dcWd5Ddr3yX4k83SAK3zh3W/+xOwZP2Xn2lTXls2rLr6o9Z1bt2bPq zpxVN2Rm/aArG/pf3th3StNRE5q+fmnTV0Y19iqv7Tl0Q48T/yDzzRh/e2twOt82HK+fX2gY q58zlfkmunAi38TyWipnHG9lABpdNeP86T9Sp1AtA4AyQIz5sizZl/T5dMuq5F37Oi3Ptcy0 PBGQSn4Ct5j0ZJh+ZOv8stYlwxPLLuhwmtrvHth+5wnty45pv/mb7QsPa73mkIbLer1yXk9z 1yvjSrqtsPtK5LlUUTjy/E/KJu4cPqPmgjm1L7zaKuZcOLd+5Nz68mvrz5rTMGR248AZTSdM bxbzn/lL8rCLmw45v67XGRt7nvQfYo48edo4Us+3dwZ1yzcRei0T9XyTEafHV2oz3G71BVIR p5+DSJ2MSP9tzNbSidF5LrgriLqXPR4KvOxnYSCe9GiaeWzrojMSt12QuOsSxzhq+94p7Xf2 b192bPvN/7Ptxq+LA8yG6V9ZNfJA451uX0nbPZcm77k4uXx0csXI5PJz2pafbqxEf7T7Sj6b pn/kQxSOHb39jGnVItwuua7OqH30/PqR1zWcc23D6XMaT5nVbMwXXbhDR9V/5ZyNB578nMw3 kWMi38QBqfn4VORbrejUTdU/8yYjzui/uR2orkhNoiCSTfT3JBGMRmLIUxWWOZZH3R4KvOxn 4Si5QgOCoseLOK68uTxx18XJFeOd8+3uU9rvOLFt2bfbbj6qbfERrdf3bpz5tVdG6e8st5Uk 7x2fXDE2uXxMcvkFyeXnti0/w1iJvsLuK9k3VduXyjdxcFo+q+bi6+rGL6yfcGO9sQEXzG84 d27DGXMajTniEPWIcY29x9R+7byqL5+i55tINhluW8u0Pw/syret5Xq+1U1Nf6xX5pvRT1u1 apWIOsttZ7xpRrIZzZSJsf9KTTLPsTxq3DVHkMdTci77WRgwiO5EfIi3QOu8kxO3j0ouH5+8 b1Ly/snJ+ya23VuRXC56Xxcm7ylP3n16252ntC07se2Wfm1Ljm5bdGTrgiMbrjpi1ZivdqS6 XvaV6PnmvhI937qvZF/qs7uicPJ3d466pnb8DfWTFjdMXtwwcVFXxJXPbZCFfa3/6Del8egJ jUdWNBx5ae0RF2z86uDnZb7tPD/9/Swj3975tv69Bj3fJnZ9bcHcf7OHm7g1+m/yk8Dyr2LP tK7EEGXjrpjMd+Wj8raj+2SeGWDZz8JAPOnRdMOQxPfGJu+f0vYvl7XdP1VPuRUVye9dnLz7 guSd5yZvH5a87ZS2m09sW9IvubhP8sY+rQv61F/d55WLDze/tc0rSeWb60r0R7uvpGWiPj4m CkOmVI+9vm7KTQ2XLWmYelOjSLmKhV0RJ6cTpzb0m9TQZ3x9n4r6PuNq+ly04fCh+vhbdep7 plWn62NuIt/k50PM+dbc2YXz33/bNfOAtBn6c43EaEl9ycvCHDjGMub+m2WxnOdblsn4RMet DS2xm4Cg6NG06MzkvRPbHri87fvTxW3y3knJeyqSd41J3jEyseycxC3DkksHJRefmLzxuOQN xyYX9P1sQb/6Of1WXnKEeK7jSvQEc1+J/mj3lYhwq0vl25nTaybe2HD50sbpNzdevqRh0qL6 igX1Y0xjcYMurztxct1xE+qOrajrW1HXb3x1v0s2HHH6H8RD4jhUfhF1zXe0Z09M59tL39LW nqF/X7V6gv7N08bpWtOMLPpv5nBrnN6VGG6vpDG5zbHMzDg/h3VaZrptLRAHejQtPTf54PS2 h2a2/WCmSKfkvZOT94xP3DkmcfvIxC3DE0uHJRYPSiw8Kbng+OT1307MP27/9f3r5/RfOfao bvlmWkkq31xXIh61rERe1kAUzp1ZM/2WxpnLGmfe1jh9qThErR9/Q11H9+mkibXHf7f22+Nq jquo6f/dnf0vXX/UmXq+ye/XizQT+Sb6b987rFu+bb1Uj9C6qXpMZdt/E5EonmXON0GsSrLc zZmxcp/zc14hEB962txxUdvDs9sfmdP2w9ltD17Zdt+U5N3jk7ePSdwyMrFkeOuiYYkbTklc PyBx3QmJecclruu/f/53aq/5zstjjxbPdVyJuOuxEn3h7ivRLycyVl/JRXPrZt/ZOOfuRnF7 5S2NUxY1GLE2fEaNUT6hovq4sdX9K6q/M2HHd8Z9fPTZvzfyTYSbOCYV/Td7vtVM0TdV5luH v/5b08yeMtkEee0Rc8QZx4NB7QiPfAtwhUB8yGhq/8n89scWtP9obtsPZrXdf3nyngnJOy5N 3HphYkm5/qmPG05NXH9y4roBiXknJeYP3H/9oNo5A18e18eSb8ZKOjJNlpXo16TqzLf59zYt uL957j1Ns5Z1nS298Ora8pm1Z0zririTxlcPnFA9aOKOgRXr+pz9O5lvsvNmybf3z9TWnqPn 287J+qY2XKHJbpvsp61ymoz+m1hYkuFmNNY8BbgjAlxbIVYIRUyMEfEWSN5T0f7kovbKm/R0 enhO2/evbFsxJXlXRXLZmMTS8xOLh7feOKz1htNarxcdsEGJ60/Zf31Z3TWDXhp3jP72cVpJ 5nzrvhIj3yoW1C96sOWmh1pExBkLV8yvG3Nt7flX1Q6/smbYZdXG/FMmVZdN2j6oYt0xw/V8 E+EmvDNIz7dfnZDOt98eqX+XYe15+nUs9ctXTknnm3zzd3bhHCYZcI75BiAqOlLnOtt/cUf7 M3e3Vy5p//F1+lHqA6lRuLsqEssuStw8slVE3KKzWhcOa104pPWGwfuuP612Tme+Oa0kY75Z VmLk26TFDXf8eNfdj+1a8lDLax8kxRx9FO7GBhFxF11bOzIVcWdN13txz/71s8FTq0+bvH3Q eId8M/pvjvkmTzGYP83r9i1U8g2IND2avj/t89/84PPfPdL+y+V6xD22oO3frm17aJZ+ruG+ KckVExN3j03cfWni9lGJW89rXTp8/8JhNVcP/K+Lj+yWb3msxMi3abc0/uDnex55Zu/yJ3Yv SfXirv1e06zbG6ff3DBlccPEG+vHzq+7dH7dqGtqz5tdO3yG6M7tGDhu7ZFnPOuRb68O0a9M vnGMtnmytv0KrVbk1SytaZbWfHUPQ8vVB8hC08ye+m1qAd2MbvlGxBWB+DcIBbVzcoyIZGh7 dO7nLzz5xZ+fEgHV/vSd7U8tbX/ixvafzG/70dy2f5vT9sjVbQ/NTD44PXn/pOQ94xLLLty/ 6Myaqwa8eNE3xXMDWYnoWcl8m7u86clff/rUs/tEyt35411Lf9hy4wPN8+9tmntP45y7m66+ q2nmssbptzROWlw/bkHdhdfUnjl954BL135zqH79kPfP1Ifa7MenMt/WjO4p8s0ccXqOzUnf tsztIaQjTs40hZs530r+xwnkqeSZU+R8a//32z7/w6OfP/94+/99oP3fb21/clGbyKVH5+m5 9PBVbT+clfzX6ckHLkveNyFx9yWi97X/hiE1M45/c8Zp/72rLpCV6Pk2QV/JbY/sevSXex// 1acPPLXn1kdaFj0owq153vImEW5X3dE4647G6bc2Xra0YcKi+kvm14ku3JCpO46/aM1pY//0 eXOdCDdxKCry7cXjuvJNFES+vTdSWzOuhyXfRI4ZyWYm58uIa5A4SqX/ppCSZ04xNT427x91 W9ufurnt4dnJf5mavKcicefF+tfkxYHkzSN0S84RWhcO1S04rfXaAXtn9t1x3bD9W9aK5way kupUvtU/Om/rzi9u/mHL7Luapi5pqFhQf/G8uguurhVHoyOu0p0zo0YYelm1cNrk6gEVO/qO 3jps8pq1VXs/eXCeCDdBpJk538Rde75td8m33ddpBiPrug5XbceqAEKubnqv5ifmiU5UxpMC lkk8Szw335U8Pq/6sl7i3xQRcdsn9RIR90VL1isR4fbB8F6y/ybS7M8D9fG3p7+Zzretl2of jtVkuDnmm5Fp+6/vYsm6PbM1adcMFFYTEHHGEZ/50E8em8gOoTxiTf8y6aWaVGWycYxu3YW6 tefpI2ySSDnZZ5P5VtvSIjpvIt9krJnDTSbbvoU9pcSiA9yIR82/Hmj8pCAAZLTrGp08idk0 s6dgH+yyjB50BaAp7kRBxJ2IuN8eqSebkW+icyh6bpaDUJlpXyw+4J+3HPSPmzX5OwuyLH+C Qc6UhfTM1C81dP0oAxBB6evtozDkKyzTQ0aH9MUC/ccRZAcpMbuHfq3dK1JXpLwy/dNXomw+ TpQ/0Nw8NX3dCXl0IwJQRJx+zbfOfBPWjNNjs/W6A0WmiZjquLO37r5v6X7QT/fISR2Pntzl 8cFp5pkAkJEIE8l894Hj00RZZo5BzDTflblkkGF1Z2/5Y3+fTdO/jSVjzcg3GXGCiDi9A2aE m6zu4VSU/Xi47oly3ZPnuZILoHA8XnwEouS7WHn2F1xmi3HrRmSRhUzFO3v/feGBa8/TTzEY mWbON+nDsZoMOuN4VhKHuuKYV35upOvTcbPSX3aQJ0+lkl8eTXklvyKi8oxLRqAQLH/M1r/w 1LUu61K3DWPTX5LVfwBrov4zf6JQM1a/XqVQk7qrPzRW/+UFEW6WNBP5dkDqa1b/HwAA//8D AE+0Sf4QvggA</item> <item item-id="290">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEvlSURBVHhe7Z0JvB1Fne8PICTqB58a zSPDJrKICEgARcGA7EsIsgVEdpSIkUUWN9SRGcdxZOCNG+PDefMGPvM+vqeijg7jjDMIQQQV ccKWDRISkntzbxaCQDaccf6vqvvUvX369lK9na7u8735VM45vVRX/+tX/2//q6q7O8IfFsAC WAALYIGaLNDRx123bmhC6sz8rWxz6qNe6py4yE+nLB5Pp6+QzlnPSucDQ9K5aGTsc5tL16rf a9RvtewC9am/60+T3r9OOqQW2mCDOidS62xw3qh0SO2ywQT/q9tthF8+Qy3z0rD/OVP5dO+7 St53vay7fOYq6ZygWKCT/q7Xe0mtP0Ex4ajHIzmj+TMBQgY8O3x4o0y67g8y5UaRP/pTP+35 RZG33Coy/RaVviFy+Ff9NOM2Px31zfRktuVz3G5tsIVN3bNNevtwzUZt0CbnMNHXROlM28n4 8+Cn8fNxnx4PIpLmhU6aITtc+Z8eiDrTH+qB0QQIaQBte+Ea0QDa9soXZNIN/+VlEATRHl8W 0UnD6G1f6U0aTCaF1/F7or2wCTZBA2ig3xrQvtskc2zz24DDBBzG3wc/9brwchOoBD8NO/Tn pGv+4KXO+1+SzhHjUVEPhDpHPyyd01eqLranZJvL13mp8+HnxpKG0nZXb5Ltrvm9B6fO9X+Q 7a4TL5nf+jO4znzX2+rvO1yr1qvoyuzHp28/EjZwVQPbXPlfQmqXDbTWdJ0aH64/g2mbub+X bS9/Wba7YqNsd/kLss0lm6Rz8YtqiKX7ef6L3rKx5Zeo7jyTLljvf9fbz1bdcKabTy/X6WzV VXfsE9KZsdSLiCZCSI0DdT6wvDfp8Z7L1oxBScPIJA9KKcmDlz6ZYFInpk+OhA3QABpAA45o 4IPrZTudLlVBiBrb171iOnnj++9f7afZajzIJA0Uk/T8AJ30XAGVtpm1VM0f0EnNIwjOKdAA Ouw30tnpe70Q6hx8v7+DhpCKhMaSAVIXREEYjUVJH1HEC6ZA9KS38SKqMCkNFfn0rw5akUIT UIKTUfjeOzkHe2CPujWgwRKVDGg0XCLAMg6XAGSCE9YMcDRsdNLjQDMeGU8aQJo3Or3xjvFI aGyh6pLzZsMZEMVAyHTXhbvsDHS85Tp6MjPlzAw5c9KGqnyOX2FgC2yBBlqlge3PG5Y5t62V 4fX/UXjys85H52ciklLz/obK+xw1FKPBo4Zktj9zucz5ymoZXvf74uX+0jOy/eEKQho+alKC x5r9/lk6+9wVgtBe3/ZXRkKoOwVbQcVEQkEIjY0fmfVj4FGk9aZuB1JUSBcM7/jeG+42yR7B 0Jzv490UTbeFuRrmczwysLTFnK+PytLhP8j139oql9yyRWb/2WaZ9ceb5aQbN8kxn9gkx31q kxx5vZ+OuNZPh1y50UsHzd0o+35oo+x+4fNy6IdXyONPvyg6PxOdVJK3nhOgutI0gH7/rBqz +cvrZc1nLpGRa2fL6rmzZHjOSTJ06TEy9MHjZOjiI7206oIjvLTynEP8dNZBsmLWvrL0+N3l 0bMOlecXPy5zFIg8ABkIvfmn0tHMec3nApGQ6p/zIKTCpm2PD0dCPoS8qMZEN90xIg9AannP unDUE+xP1BBqeqOk/NThIGnA0uGOdd2w/RgotIf9xP/aKl/54cvyjR+/LF/8v1vl4+r31d/c Kld8bYty9lvksv+xRS5WgLroL7fIeX+xWc754mY5/U83y8mf3SRHfXyTHPzRF2XPC1bJQRc8 6EVUxs6V5N0dz9F5r7/1E/L8339Ffvftb8iGb31R1t36cVn7patl7Z9cIWs+P0fWfPYyGf30 xSpdJKMfP09GrjtHVl99ugxfcbIMXXKUrJh9sDx6wp7yk5kHyfDal8cjof1/JZ00CHmDSLo7 zuuK60ZBCiwGNubTDF6ZAayerrek7rcmXd1TVvvIbJAc8yCdK1DJHAEFQXG5As03735ZvvXP v5cvf/dlufGOrXKdioyuuk2DaKtc/lc+iC69dYtceLMC0Zc2y5lf2Cynqojp2E9uksOuflH2 vXiVvPGEn/pRQ7c+9PfS89YQmrnCO86az18uv/vON+WFu74lG/72y7L+qzeqyOg6WfvFq2SN AtHoH1/ugWjNZy6V0U9eKKM3nCerrzlThueeqiKlY+XZ8w6Tx0/ZV757yBv9cuvuOJ00hN6k UmQkpEMlPYikB5l0YXRD6z714KabbpJOpzOWwr+D68a+0w1n78CBHbZCA63TgHa+7//zzR58 bv3+y/L5v98q196+VeZ+fat8SIHnIg2dP98iZ6vI54ybNstMFf2copLuptNR0OHXbZRDr3xR 9rt0lex00r/5zryrk0rynqWfdOBDaPSG93vwef7OW+W52z4v626+VtZ+Ya6s+dyHZPRTF8nI 9Sr6ueZsWX3VGSr6manSKX43nYqCVl1wuKw451B5/NT95K537uSX+52KLToZCOkxoQndcTEQ 0sDpPljB+/R/x/+NAQoIta5R9UzPxGlSv2ggUQPaS56pAPPpv9sqn73TB9CHv6rGh3TX2xe3 yFl/osaIPrNZTlARz9FqXOjwazbKu67W4NkoB6s0/aNqbOgjL8j+lw3JrqfeMwFC4bwTHXNo ZWTeAQiNqKhm/Vc/Leu//lkPQJsf+bmXw8h1Cj5XnaWgM0uGPnSCGhc6Wladf7isOu9d3vqX /vUuWTl7uixXY0NPnLa/fP/wXS0h9Ef3+KGSupPVm6qtQz4tMAUSDZV58+Z5KfjdLAt+egAy UVMChKKMVbWDM8es+jg6/34eqx/nwzEC90YMmuM1zwrjc/y5aZa20H5AT0TQY0Af60ZAl92y Vc7X0c9NWzwAnfjJzfLe6zSANsmhVynoKPAc8JGNsv9HNqnPTXKguv1l/w8Oj0Ooe+yovLNA KDLvAIT0RIR1agxo3c0f8yKg4J8PoBMVgN7rAWilinqCfyvPPECWn3mgPDErAUITuuM0hHSo 9N7u3G/dFacbm3pw4Xjk40dB+mFzGjxRn3q9iYS8m5yCDz7szowzhX3VTl8Qk/rhtIPHjXKq ZZYh7Vg49QF26oMGsQE+X+0HTvj0Jm/sR3fBXf5XW+WiL2+Rc7+wRU5XcDrl02rcR3W7zVCz 4t6pIqC3f3STvE2BZ98Pb5K3zNkk+12xScFIdcepSGiXU382IRIK550FQpF5ByA0fPkJ3tiP 1wWnxn9GP3lRT/ZDlx4rQxfOkFXvf2cvgE57i6w8fT9Zccb+CkL7yfffvYtf7nepYR7NmLeq iW96TGhCd1wYQpq2PRDynnM6FgnFgSgYCW13obrzViXv6dldGIUBFHTGBkhVOeg0MKStz1Ku MvPKcly2BW5owB0NGAjp6dmX3ep3w53/JT0GtEVO+6yKgj61WY6+QUVBCkKHKggdoCC0r4LQ XgpCb1YQ2lt9vvWKF+WtHxySnWdGQyiYtz6eTd56u8i8vadf+2NCGkKjN14io3oWnP684XwZ ufrsHuDosZ/g38pZe8nKmW+WlbP2lhWnv1WePPWt8oN37zwOoXcoEFlBSM8V11GLBocCSN5I aBxCCkT6+UEqv17nrKZ862cLRaQw0c02ccv1+qi/YN5J68s4XtSxNFjjzpHl8fWPbbBNGzSg /cp71OQCPeNNz3y7UEVBeiKCHgs6TUVCJ6r7hY5WkxAOVyA6VHXJ7a+65N5y5SbZc+5medNH NsubVSS0t4qE9r5stUybea/vzLv+Mipvvcwmb71dZN46ElJJ/6268D3ejDdv5tsnLvTGglZf o8aCPnpapK8dOuMtMvS+PWXVqW+SVbPeLM++b29ZcMre8sPDpvVCyERD+obVnokJOjzS4ZJ+ F4QXBXUfPKceJxOcmGDGhLJEQn405IOoB0IJ7xQKbqe/e868u/2ELrzu8uA+ehvzZ/bLuz7q eFnyGph3J8VcULTBmXAOQDGPBrSfOExFOGco6JyrJiJoAOnPM/WEBA0hNSZ0tOqSO0JNTDhU gWj/6zbLPtco+Fy1WXb76GbZXcFoj7kvyR4KQlNPngihcN76eDZ56+0i8+6+O8iDkJpiPaJm vo1ed66M6plw156r7gM6079p9cMn9oBo+Nz9ZfisfWT49DfL8KzdVNpdVp62hyw8eQ/54Tum +hBSDyztHL5EOiYa0t1xU/7SX+f9F4aQduzdp6HmjoQuUQ/lU6mjnrjqJfXCs14I+S9AC/6Z F4KFt/Mh1LtteJt+/s56rNa96IyX1/ECPzSQqgHtJw5WEw1mfm6TnK3u/Tnnz9RTE9R4kJ7V NktNyT7pc5vlGNUt954bN8uhqmvugE8oCF2/Rfa4dovsomC0i4LRLurJCbtculpef9J9vsPu 2j0qbw9CFnnr7SLz7r7ETq9fefbBMvyRmTLysbMVgM6R0Y/NVlOyFYSunNXjs82Pkdn7yMiZ e8jq03aR1bN2URHRLrLwhF3kHw55vV/uI1QP2xHq1h8NoT0X+o/u6YHQ7vohc4pUOhLSY0EG Qupx3LkjoUs3q6exbvYf960fAa5Sj/M2cFKf4eVR2wWXBSMdD1AWeaQdI8v6LNuOQThwvizr Xphgk/GLNFdtod//QsplA+0n3jZno3ffz2mfVzehKkCcpWB0hgbFn2yRk9SyY1WaoaKidygY HXDjFtnnkwpCN2yRnRWIdrpaJQWhqRePyH87cV4XQn59ROWtl9nkrbeLzHu2ChrO+J2X97Pv e5t3389q1f2m4TOiuuJWX31GD4BGLp8x9vsPG1+Q0bP3kNHTd5aRWTvJ0Ck7yaJjpsqPp/83 v9xHq+Gd96pZ1xpEByrWaAi98Wv+Ou8/DSG90oOQCr11FKTfBzEGIX/TtJtUe2bH6fdRdEFk YBR03uZ9FPozvDxqu7Rt+rk+67GC59rW7+ZCg8/xiy5sMdi20H5i78tekhnXb5STPqNApKKf pL8DPqsg9Omt8iYFomkqIpp6zRaZoqZrv/bCUXnVcff5DjtwQR+V92mqq2+mOs6JCm7HqPQe ld75+S0SzFvnE5m3hpBK+m/FzL1l1UUzVNfbSSr6OU3dlHp6T9FHrjhGRi5X40aX9c6OW3P6 NBk9daoMnThFFh/1WvnRAa8ah5AGkY6IIiGkwyMPQgpAOiTrAkg7zPDNqn5J/Nly4U8fQv6T Fba7wn8xkk7bfMhPnUteHjsR/d2koFMPbuNFOd3t0rbp5/qsxwqeK9/H6x1bYIs2a0D7id0u fMmbfq0fWHqyAlEihD63Rfa+cavs9smt8t+v3yqvu2qL7KgiqVefNyI7HN2NhAL+MCrvU/5Y RVgqsjpewedoBaMj1Oc7NIQCeesyROatI97ZG70iLj9+N1mppl8PXXaMAtHJPcVefcXxMvLh o2XkQ0coCL1D1l50QM/6Nae8TlYft6MsOuLV8qO37eCT4sTnfb4YEHmvcghGQgZCM/XLi3wI aQDpCCY4JpQEoGCktN3VItvO/S8v6bf06dS5XL29TyUNo6g/MwEguF4vMwBL2i9PnkGQmGOY ZeHfwW1NmcLnECx/sDzB8vN9/IIEWzTDFp1L/lNdCJLy2ED7iJ3Oe0kOVC/0PPxaBSI1ASHp b7/PbpW9FIR2VRB6o4LQa67cKq/84Eb1moUR2fao+3xn3q2LrHmHjxuZ9wXqoui8rd6mz7x3 J3n2jAO9R/BoEG28/25v+erLj1XpaFn9oRkyctm7ZPSSg2XNBfvJ2vP28tZv/pc7Zc1Jr5Hh 975SFr1ze/mHt2w7DiENIg2hdykY6cf3TOyOU2HSTAUgPfDVhZCOYtK64MLPjdOv8NZJg0gn 82pgAyXzGbxZ1XwPbhO1TK+P2y8MCps8s2yTtG1aWcPnzm//AoXkvg3MxSOf/kV0lqR90hvO eUl1yfmP4Hm3AtEMNQtuxg0qQlE3qb5bRUeHKTAdrCYl7P8pFQWpbrjdP6G64q7bIq+7equ8 +ootsv0lG2Xbs1bLNjO6s+O6Zagkbw04BSL9t+w9b/C65J49e7p6KsK7ZUh1zQ1drNJFR8jw Re9W6TBZfeHBMnL+/jJ67t6y5uzdRXfF6Sho9LhXy9CM7WXhIdvKD/fZxofQqSrKMtGQhpB+ TFwPhP5ovt9X14WQiYL894z/Xrb76H/IDtf8XiZd8wcPMDpNuu4PMukG9RlKYxBS7zHX7zL3 UhdI5rMK5xOEUBX5k6f7DpM6oo5c0oD2Sa85/TnZ5fznZd8P/k7efsXv5JCPvqCeDfeCTFcP Jp1+1Yty4DXqiQgfU/cCfewl2f2al2SaenTPFDUZQXfDTbrkJdn2A79T9+4o33y4/xRtc35V 5B2MshYf9hp5+thdZNmp+8ozZ75dls8+RFace6h6RcN09XDS6fLsOQeqZ8TtJ0Nn7S1Dp+8u w6dOk+GTpsjwsTvK0JGTZMW7tpXH3t6R7+7pD914EDIg0hCa0B0XASEDIg9CKu1w5X96EPKS BlAMhDSUbEAUBlPR30EIFc2L/SdeOKTZxKXGT1mAkQsaGH7uP2Xfi5bLlPctl51nL5c9PrBS 9r7gWdnnwhWyl/rc86KVsodKu6m088XDMvWiYZly4Wp5zfnD8kr1wIBXnK0ioNMUgI5/QnY/ 7V96IFRF3l6Up6IhnfdvT95XHnnXFHnkyJ1l/nF7yPwT91ZpH5l/wl7y6Il7ymMn7CGPq3Gj BcfvLAvULLiF750iC2a8Rha++5Wy4B2vkMcO2kZ+vl9Hvvee3X0InbFxIoR6pmiHIKSnEAej IRMR7TD35WgYKSAZ8KQBqEpxxHWLVXlM8sbhoQE0EKWBOX+7SR596gXZ95wHZMejfiKvO+5n 8vrj/03ecPxP5fXH/VSmHH+PTDnhZ/La4++VHY+fJ686/n6ZfNwD3iSE7Y6aJ9sc9YDqobpX AeinMn/xc6LzM8cpPe+/UZDoQmjO7Rtlw8JH5Z+O21e+/bYd5a6DXiffm/56+c7Bb5DvHPR6 uevgKfJ9lX4wXc1+O2hH+fGBr5K7D5gsP9pvB/nRvtvJ3W/ZRn6wV0fuUgBa++R8mfM1Fc3Z QUi/0Kg7JtS9uVTDSN9w6iU93VoNsHlRkYaRSSpC0lGSTrrbLi4Z45nIik8/wmxLytJXzrbZ xhawVzPttf2c/5A5yrkX/dORic5H52e0UGret78o21+6xZ+JrMaEtr9QvfX1tvH7N/OWf3i9 KrcC0Panqanf4TEh3R03MRLqQkg/P0g/Rbv71OuxG1cv8ScsbHe5ApJJHpSCyZ8JF5XMzDgz VbvNUzMH89yYQZVnBpX7+zCNvHXtWc+C605C0LPhvHuP9PTsczerTwUjnfR3NV3bi2DMp/mu f5ukbm7tnKpmvelPs11w/EdPRggnMyYUCSF9r5B6impnxiPSOXa+bHPco7Lt8X7y3rjaTdvM WiomeW9h1eDSDz41Sb+PKPjbfO8+IM/bnoQN0ID7GjhB3z9IapUNtI/XT8xOqtdj1VMN9Kt9 dNJP0zHpyKfGl5n1+tMs15/6GXE66eeRmufF6e/6kT2aMVYQUgDyINQFURBGBkpRn3q7sRTc P5RXz3bBffg+br+G2ULrhdQ+G3g+gNQ6G9TWVs1jeybMjps2XyYd+pRMnbtBJs9eJuvXLCZh AzSABtAAGihVA52T1PjQESpa2uM7akzoFn/mnPcfECrV0ECcixg0gAbQwEQNACGuaoAtGkAD aKA2DQAhxFeb+LgqJDJAA2gACAEhIIQG0AAaqE0DQAjx1SY+roK5CkYDaKByCOknaiM0hIYG 0AAaQANRGigMofBrGwx0wp9lCTAMtaqOk1beuPNO26/oeqBOQy6qIfZHQy5poBQIJZ1Q2U4z DkL9NmrZ52Vb/rqOa1s+tsPBoQE0kEUDlUEoKkIJRg9ZChnc1iYSijpOcL+471nKlASDpOMH 7WK208cNfjfliMsnatssZWdbnAQaQAOuaKAUCIW7poxTjfoMOti8RogDXPB44eNUAaGk8446 vk0Z4uBWV7dj3jpiP5wcGkADNhooBUJRB4oaG4py2jaFDG+TBqEsUMzbvZUGiyQIhmGZBKdw NJS3vHnszD44ETSABqrWQF8hVNbJpEHIFopRkZNtGauGkE23o21Z2Q5HggbQgKsaqA1CRa/o bZ100vhPkTIAIRq1q42acqHNJmkgEUKvtHiKdpozDkOgrEH1OAiZ6CZuoD9YOVVAKO74aeWN GiuL674sy4ZNEiplxbGigXZqwIOQfjfRrndMfIq2DYQQRjuFQb1Sr2gADfRDA4UhFL5ar/oq vd/HK6sSypqUUVZ5yAcHgwbQgAsaKAwhF06CMtCY0AAaQAPN1AAQ4gGmPNsPDaABNFCbBoAQ 4qtNfFy5NvPKlXqj3srUABACQkAIDaABNFCbBqwhJPxhASyABbAAFijZAtYQKjP8ssnrrv93 u3eqNtuyjTvdA9SbO3VBu6AumqABIEQYXirogRCOrwmOjzK6o1MgBISAEBooVQM4eHccfBPq AgjhgEp1QERCOKAmOD7K6I5OgdCAQahzyO1SRoprxEDIncaNo6UumqCBRAhNnr5Eps7dIJNn L7O6Wp4zZ44kpSwGsXFmnc5NkeXKujxLuare9u67755gQ72srOOWASCdBxDCwZWlSfIZbC2V DqGo2XsaTPrvkEMOsXamNhBqk3iD8Anb0IC9DBhpgOh6KJKA0GA7jTa1O86lfi33FULauWqH alPxSRAykU7RT5ty6G3yRg+2+evtDKiTpuDb2i7puPpciv4VhVDcQ2jTlmexJ9vW71yoA+rA RgOVQCjYJWfAE1xmUzCXIqE80UOSow6fv4mCgnAwkYq5V8rYsWg05AqEgucaBZ8wKIu8+8lG b2yDw0QD9WigEgiVcTVvA6GsYz9x26eJL8px3/7IBnlkSLykv4dTFghFRUFBCAXtWTQaioOQ hlu4i04vi/ojEqqnsabplPXUSxM1UAmE4iYnlNUd129DJ0UPcTDKC6G4sRoDgyogpPM85phj JvBGL4sCZFEIhesvrRuu6ndU9VtPHA9YoIFxDVQCoUGIhMLnaGBkIqKmQEhHO1EA0o3ETCYJ R0RACCeKE0UDZWmgEggNQiTUiRjfD4IoL4QM3PrVHaePE/cXBFHPGE7JU7R1pJP2x5gQTq8s p0c+bmmpFAiFJyKkRUJhSEWJwrXZcXHnFIaRGSPKAqHgxISg4w8DQtut7IkJLkFo3rx5IgpI +vOmm27ykvkDQm45Dhw59VGWBgpDSDvGRQt+5SXbacbB7ePGOGwmJpRlhLR8wmNCYfCY3x31 JU93XJ1TtA2EDPyiYBsGVRXdcd5xdUQUExUBIZxeWjtlfTM1UghCQQAZsNh+6n1vv/322PuG bCBU5+w4z2cGuuQ8AKnzyQshm5tVR0ZXyNWHv93qPqu4BhkGqjMQ6gIoKgry+dQpdN44qGY6 KOqt/fVWGEJpj+pJWl8UQv0SaFIkpEFkABScrp2lOy54HkmP7dEA+ufvnl8IROFzCU5MiIqG orrryo6EkiIguuPa74T61Y45jptaKgwh28gnvF3TI6GeLjgVAYXvF8oLobSGUhREUdPNdV1E wUYvM9Ara2KCBk7wHIMAMuNAwU8g5KbjSNMp66k3Ww2UAqHO7R1RHWte15qGza93eYWXkrrr yoCQzUlqhxa+D0Uvs9nXbBN3n1BUBJS3Oy5LeTSIvnbmnrkioiw3q2oABKE3BoQCs+MMdLyo q9sFx+w4HFYW/bNtu/SSCKFJ0xcnPkXbQEZDSCfz+3blXHSqCkL2z4xT5VLl8JKGUQhItmIO O+5fPvhjrwtORwplPDHBthzB7fKCKM9je4LH8sZnCkAoCB8TFXGzarucSh49s8/gamAMQrvd IZ0pt/hzlLz/ps0XWwjl6ZIzY0V6XChKgDYTE5KEa66uvUgolMzUX9vBbhchpM89D4jyQMhE RDbRl229hbvlcEKD64So+8Gu+0IQ0uIpOjEhToA2zixpdpzpOkqCkN7GpgFox50n2eRddBsN oiwz5vKch4l8bKBnU29Fz5n9B9tpUf/tqv/CENKC8KYm50hJYirqzEwXj57yG+6OG1vGtF8r CIe7AZOgV7TecDDtcjDUJ/WZpoFSIJR2kDzry3JmceMNecrEPukNqqx6w9bptsZG2KgNGmg9 hNpQSU06ByCEY2ySXilr/XoFQqo7ESGWZwMgVJ4t0SW2HAQNACEgVCqEgRCOcxAcJ+dYns6B EBACQmigVA3goMtz0INgS2chNAjG5xxprGgADQy6BoAQV8FcBaMBNIAGatMAEEJ8tYlv0K8A OX+iIDSwWIAQEAJCaAANoIHaNACEEF9t4uMqkEgADaABIASEgBAaQANooDYNWEPokIMPFBI2 QANoAA2ggTI1AISAKxcXaAANoIHaNACEEF9t4ivzaoq8uDpHA83UABACQkAIDaABNFCbBoAQ 4qtNfFy5NvPKlXqj3srUABACQkAoRgP6TfdlNrZ+5NXEMvfDLhzDXXACISDUOEdrHIp2uOFU lrMJOvO8x8m7X5FzAELuOtsi9drmfYEQEGo0hIKN0zj9MhpsGEJZ8kwqR9WQqDr/LHZgW4Bo owEgBIRaAyEt+LKccFEI2TS+KrYp6/yrKBt5AqUoDQAhINQaCIUjEOOQoyKTYFdZuGGEHXkW x55l2yA0k8oYjvbMfnH7JK0HBIDANQ0AISDUaAilwSQKCmmQiVpvO/aUB0Jp+0SNT4XHxWx/ u+aAKA9QBEJAqNEQSnJiNgAKOu+o71m7+LIAJS3vKMCmnVPaepw+Tt81DQAhIASEAmNJRZ14 GRCK61aMg1ba+FVamVxzSpRnsECZCKHJ0xfL1LkbZPLsZY11VAi6vYJOc65ZgBIcP0obI0rT VFK50roCo0CTBTJZzjntPFjf3rbjUt16EDpyqXR2vVM6U25Rk4v8yzDpTJsvQAgRuiTWrHCI g0ESCMpw4lETBrJ09WUdA4qauJC2zOV6pWyD5XeAEN1xjY1y80RC4QH8tCgjPNMsCTBRkEyb 0JAEymB0Fo7UosaLbLrrcPCD5eCbUN9ACAg1FkJNaGBllzENvGUfj/yAVtUaAEJACAg1SANA CChUDYV+5w+EGuSA+i0OjueewwNC7tUJ7aRYnQAhIEQkhAbQABqoTQNACPHVJj6uIItdQWI/ 7NcGDQAhIASE0AAaQAO1aQAIIb7axNeGqzjOgWgEDRTTABACQkAIDaABNFCbBoAQ4qtNfFxB FruCxH7Yrw0aAEJACAihATSABmrTQCKEJvEA09oqpg1XOJwDV+poAA2kacB/ivYy6ewW8QBT IISA0gTEejSCBtBAEQ00AkJRTxWOehJy2tOLo97TkuWBlEUMzb40VDSABtDARA04D6EocOiK tF1uKt3micQIBCeBBtAAGuivBhoFobj3wKS9KCwuagqKjWdy9Vd4NHTsjQbQgNaA0xCKeodK FDiAEGLGoaEBNNBMDTgLofDLwKLGbsKQCne9Jf1OAxeCbqagqTfqDQ00SwPOQigt4glCKel1 yGb8KAikuAkKiLdZ4qW+qC800HwNNApCwQkJNrPj0mbVxb0iuReAag5Ehr/gvn/9jZt77jPi N/ZAH+NOk/ZQbntoKpAbAaEmGDfIKVfKG27kdZbLpbJoO7hUHpfKgm2SIwuX6sqlshTxLUCo pMd1uAihIsJg3+Z3c1CH1GETNACEgBCPJipJA01o8JQRMLmmASBUkgMiEqJxu9a4KQ+abIIG gFCLIeRSn7FLZWHcg3GPvM7ZJR27VJa89tT7JUJoMk/Rtu6qIhLiqrNIQ2Rf9DOoGvAhtFQ6 u94hnSm3eK604/03bb4AIfuGAYTsbTWojY3zRiNoIO4BpkDIOuKJExEQwsHgYNAAGsiuASIh xoQKA9im4bnWf+1SeVwqC+NljJfZtOcytwFCLYZQmUIhr+xXeNgMm6GBdA0AISDUl0iIxpje GLERNhpEDQAhIASEStLAIDoQzhlwFtUAECrJAbk4McGlsQaXysK4B+MeeR2nSzp2qSx57Tl+ nxCz4wpHAy5CqIgw2JcrXDSABvqhASKhFkdC/RAQx8BRoQE0UEQDQAgIFY4CiwiQfXFgaGCw NQCEckIo6T13rjQql/qMXSoLY0KMCeVtoy7p2KWy5LUnY0I5ARRlcMaEBvtqrkgjZF+0M8ga IBIqCURACEcyyI6Ec0f/eTWQAqElMnXuBpk8exnjBimwAkI0wryNkP3QziBrYAxCu0U+RRsI 2YrDRQi51GfsUlkYE2JMyLZdh7dzScculSWvPXvGhIBQsasxFyFURBjsW0wP2A/7oQE7DRAJ MSZEV2tJGsDp2Dkd7ISdghoAQiU5ICIhGhbOFQ2ggewaAEIthpBLfcYulYUxIcaE8sKiXzru qBdcm39xZe1XWfLaynY/INRiCNmKgO2yX71hM2wW1kAQHEW/m7x1Pm3XmtMQElUBJpmKiFqm 18UtT9ovbZ8slU93HE4pi17Y1g29FIWFTcRStK7bDiLnIWQAE4RJEDppy5PWawhF5ZVHNEDI DaeSp+7Ypzl1VyY0muLcm1LOvO3IaQhFASR4okGIRC0P7x+OipL2yWpQFyHkUp+xS2XRdetS eVwqS5m2KRsYLjjjOuoq7rzrKEtWv2izPRDqjgkZoNkYLWobFyGU91zYrzmRQVl11UZglGWb uvNxAb5V2sB5CAXhEAYFkdDgOcsqG4OreVcBiHCerp475TrQmyXXZjs4DaE46ITHccKgstkv bZ+slU4kNBhA7AcQAMRgaCmLj2kziBIhNOng+p4dF5y5FgWMKNBEzaQLjwPZ5NU7VpT05qDo dWb/cJ/tIP/W517G+dcBgbgZUGWcT3AMpqz8iurPlMOF8gTLMMjl0RpMO/8sUHNpWx9Cy6QT 9ey4OiHkkpFsyuJiJFS3w67i+DZ1wTZEEm3TQPsjISBUuM9VQ6gKp1skz7Y1RM4HuAyqBoAQ 7xNKhZSLkdCgNljOG1i1TQNACAg1EkIu3UfgUlmC4zAuOCtsEw9NbDNumzCIXLNN3rbEmBDP jksFbF5xsR8RCRooTwNtjYaAEBACQiVpAIdbnsPFlhNtCYRoqInOmjEhHBCOEw1UqQEgBIQa ByGX+oxdKgtjQrxPKC8s6tQxY0JAqHEQytvQ2I8rejTgpgbaGA0xJlQSXOmOc7PR4kyplzZp AAiV5LDbJApzLkAIZ9dGXXNObukaCAGh2C45FyFUZ/912Hm5VBbGhBgTygvXunUchFDdZclr w/B+dMeVBFYXIVSWSMjHrath6mNw62PgIqHJ0xfL1LkbZDJPTEi9lwYIDa5jAArUfT810DYQ pbxPCAjZigsI4YhstcJ2aKWIBoBQSd1XRSrBhX2T3jLkQvkY92DcI68OXRprcKksrrQpAyHX bJNXb0RCJUGVSIir27yNkP3QThYNEAmV5LSzGL0J2wIhHEkTdEoZ26HTNoGISKgkqAKhdjRu nDT12AQNAKGSHHcTKtu2jC5CyKU+Y5fK4krfvtEWtuF9QrZ+xmynIeSabrKew9i5nPSCdGYs lc5ud0hnyi2eK+14/02bL0zRtr8qdBFCeUXBfvb1jq2wVR0aIBIiEppw3xAQwhnV4Yw45mDq DggBISCEBlJvYAYQgwmIftV7W0DExISSnKmLkZBLfcYulYUxIe6hygsKl3QMhEpy3nnF4Np+ LkLINRtRHiIDNFCeBoCQYxDy51P4KUroUevT9snSYIBQeY0ri93ZFrsPqgaAkIMQ0mKMA5GB U3B91LK8ggZCOMO82mE/tDPIGkgcE5p08JJGPEU7HP3Y/E7bJqsoXISQS/3XLpWFMSHGhLK2 b7O9Szp2qSx57an3A0LdiC6uG8/WuC5CyLbsbMeVOBpAA3VpAAgBIaYaO9a1XJcz4LiAqA4N tA5CUWNCwSgnaYJCkQogEqIBF9EP+6KfQdVAKyAUnJAQBo6p2Lyz45LeGxS3Lq7/ONyHO0i/ 9bm6dL4ulcfYxRX7uFSeoE1csI9r5WkDuFoDoborg0iIK9m6Ncjx0WATNQCEShoPAEI4gCY6 AMrcXN3quyLbUH9ACAi1QshtaIycQ3OBUEfdAaGSnHcdlVfFMV2MhFy6j8Clsuj6d6k8LpUF 2zTnHiogBIR6IggXIVQFbMmTq3U04IYGgBAQAkJogK5MNFCbBoAQ4gNCaKA2B0Q04kY0Ulc9 tAVA2n5MTCjJkbrYHefSWINLZWHcoznjHugmuq40hFyzTV4gA6EWQyivKNhvsK+yqX/3639g IqHJ0xc34inaLjQaFyMhF+xCGdx3aNRR8+qodRA6cql0drtTOlNu8VypPj/pTJsvQMhenEDI 3lY4PWyFBoppAAiV1IXVJiG6CCGX+oxdKgtjQowJ5fU9rui4dWNCRELFrkq0oF2EUN6Gxn7F 9YANsWGVGiASIhKaMDUXCOF0qnQ65I2+jAbaBKCxKdpEQsUFDoSK2xBHiw3RQLoGgBBRkBcF Jf250pBc6b92bQzGtfK4VE/Yxv3xMgMh13ST1+959wkRCaVffaQZmEiouA3TbMx6bIwG1BMG WvIKh7HuRSBUTsMGQuXYESeDHdFAsgaAEN1xkc8LA0I4T5wnGuiHBoAQEGoMhFzqM3apLIx7 uD/uYZw5uplYV4wJAaHGQKgfV2Ucg6t/NNA/DbQtCmKKdolApTuufw0Rp4etB1UDAwihJTzA 1BJUQAjHOKiOkfPun/aBkKVDHkRRugghl/rTXSoLY0KMCeX1UXXrOAihusuS14bh/VLuEyIS sjW0ixCyLTvb9e9KFltj6yIaIBLqcyTkv1XCT6biopbpdXHLk/ZL2yeLWIAQziWLXtgWveTR ABCqAUIGMEGYBKGTtjxpvYFbGHR5xAGEcCp5dMM+6CaLBoBQnyEUBZBghQUhErU8vH84Kkra J4swfCiO/2Xdt6rtXeozdqks2t4ulcelsmAbd8fLwgByTTd5/VhlY0JR3Wh5C5kGm2B3XThy ivudtk/WsroIoaznwPZclaMBdzXQxihI660SCEVBI+z0o8Qe1S0WHg8iEnK3keDAqBs0UJ0G gFCGrri8EAoLOClaCQIrauJCXFdb0mSHIg2ISKi6xlekXtiXemmLBoBQAQjlGfgPwiLv7Li0 /WxmxyW+OChmpRF9uM92kH/rc3fp/F0qj7GLK/ZxqTxBm7hgnzrLw5hQBgiZcRgbJ9+WqxQi Ia6426JlzsNNLRMJZYCQzfhP24QOhNxsuG3TGeczuDoDQhkgFDUjre2NBwgNrnNou7Y5v/q1 3VYAVTo7Ljym0/boyEUIuXQfgUtl0cJ3qTwulQXbuHmfUBSEXNNN3ouVSqZo5y1Mk/dzEUJN tidlr//qmzpwpw6IhGYvi3yRW5xIo6IgIiF3BI1zoS7QQLM0AIQyQihK4ECoWaLHSVFfaMAd DQAhIJQaCbrYHedSn7FLZWHcw81xjyjooRu/rhgTAkKNhBBXsu5cyVIX1EURDRAJZYTQoM2M 86eku/cU7SKiZ1+cJhpwQwNtBlBlU7QHUbxAyI0GO4ja45zbrT0gNHeDTM4RCZmGkee5cU1s VC5CyKX+dJfKwpgQY0J5fUwdOo6DUB1lyWu3pP0quU8o6vULzI5r99VaFeIkTzSDBqInJbTJ LpVCKOldQG0yImNCOMu26ZnzcUfTdMfl6I7znbI2XWdsVhmRkDuixsFQF2igORoAQjkh1HaR R71KyMcuyRUbJGnQpf50l8rCeJl742WMCQGh1HuE6I5z86rSFRg2rRxtv4Bs0vm1PQpiinbG 11MkidfF2XFNamyU1R2QNw2aTShvXn0DoelLZGqOSIgHmLrjUPKKn/2oQzRQngaKgLLt9VDp 7DgzQSH42VaDuhgJuTTW4FJZGPdwb9wjzi+gm/i6cs02eX07ECqpS85FCOUVBfuVdwWMLbEl GkjWQCUQCho92DXX5soAQjibNuubc0PfVWmgcghVVXDX8gVCNFLXNEl50GQTNFAZhLhZtf4G 4FKfsUtlYUyIMaG8ztklHbtUlrz2rGyKtnk6Ak9MqB9ERcTBvtQfGkADVWugkkgICCHcqoVL /mgMDbRDA32BUNHXOYQjqqj80iZARK1P2yeLyBkTakeDyFLnbEudo4HiGqgEQrpiynq7atzY ku1yI5JgdBaO1IpC0j9f996s6lKfsUtlYUyIMaG88HBJxy6VJa89Sx8TKgs8UVO8DdjC65KW hwEU/B1+qnfRp3y7CKEiwmDf4ld42BAbooF0DZQeCRV15kmQiQNHGlCi1qftk1U8QChdbFlt yvbYFA20XwOlQyjYFZdVQMFuMZvnz0VNgLCNjIBQ+8WdVX9sjybQQP81UAmEwt1eRaOjuNl2 acujuuOSJigUEaCLkZBLfcYulYUxIcaE8rZ1l3TsUlny2rP0MaGogpQz6N/7hlbb2XFps+ps ZsdFvbwubZmxQ1gk/L65591M2AN7BH0GeiimhyIgqHPfyiKhMuBTp2GyHtvFSCjrObB9/7si sDk2H3QNlA6hQYPPeJefe1O0B13cnD8OHg24r4FSITSoAPInQ7gHIZf6jF0qC2NCjAnlhZNL OnapLHntWdmYkM3MtiKFdnFfFyHkop0ok/tXptQRddRPDZQaCfWz4K4dCwjRcF3TJOVBk03Q ABDizao9M9aaIFrKiHNFA+3RABBqMYRc6jN2qSyMCTEmlBdiLunYpbLktWdlY0JFCtTUfemO a8+VWVM1SLnRYBM1QCTU4kioiYKkzDhSNDBYGgBCQIgxoZI0gPMcLOdJfZdT30CoJAfkYnec S33GLpWFMSHGhPICxCUdu1SWvPZkTKgkAGlDugihIsJg33Ku8rAjdkQDyRogEioJREAIZ4Oz QQNoILsGgBAQYkyoJA3ggLI7IGyGzYBQSQ7IxUjIpT5jl8rCmBBjQnnh55KOXSpLXnsyJlQA QEnvFCpSIezLlSEaQAODpAEioQIgCgrFxUhokITMueK40UAzNQCEgBBjQiVpACfYTCdIvdVb b0CoJAfkYiTkUp+xS2VhTIgxobzgcUnHLpUlrz0ZEyoJQNwnVO+VVJEGwL7UHRqoVwNEQiWB yMVIiMZVb+PC/tgfDaRrAAgBIcaEStIADifd4WAjbBTWABAqyQG5GAm51GfsUlkYE2JMKC8M XdKxS2XJa0/GhEoCEGNCXN0VaYTsi34GWQNEQiWByMVIaJCFzbnj2NFAMzTgPIREOsq/d8bG Lczv4DI/EvG3Cy83Qoxan7ZPFhEDoWYIPkudsi11igaq10AjIBQUgoFMFJyCMAqLJ2q/uLzy CM9FCLnUZ+xSWRgTYkwoTxtHN9UAyYfQMunseqd0ptziuVIdTkhn2nyZPH2JTJ27QSbPXlbL DKpwpBIV/RjwRIEqGAWF18fllVecLkIo77mwXzWNDbtiVzQwUQPOQyjcnRYXFQEhGjgNHA0M kgY6Klxow/k6BaG4Lra4brZgdxoQwgG1oUFyDujYVgNAqKRZZUkGj5qQEBUZJW0X7q5LmqBg W/lR27nYHefSOIxLZaFvnzGhvG3dJR0DoT5AKCoCyjI7Lm1Wnc3suKT3BsWtMwIPC5bfN/d0 H2AP7BGEAXrIpgcg1CcI5b1i6fd+LkZC/bYBx6MrCQ30TwNACAj1XNUDof41Phwdth50DbQF QLoenZqY0GRhuQghl/qvXSoLY0KMCeX1Na7oWEPIlbLktaXZDwiVFNG5CKGi4mB/Ig404KYG iIRKctxtEjgQcrOxtkljnAsaG4seWnKPEN1xJcIUCOEggAQa6JcGiIRKdN79qrSqj+MihFzq M3apLIwJMSaU1x+4omPGhIDQhMdluAihvA2N/biiRwNua6B1kdCMpdLZzcEHmDapIQAhtxtt k7REWdFSkgbaBKCxMSEgVFz0QKi4DXG+2BANpGsACNEVF/nkWhch5Er/tWtjMK6Vx6V6wjbu j5cZCLmmm7wXEN59QkRC6VcfaQZ2EUJpZWZ98XrHhtiw3xogEiISakwk1O/GwfFwyGigeg0A ISAEhNBAK14mBjCqB0YVNgZCOKDGQMilPmOXysK4h/vjHsZ5o5uJdcWYEBDyIJT0V8XVD3k2 86qVeqPeytRA26IgpmiXCFQmJuBsynQ25IWeojQAhEp02m1rZEAIp9E2TXM+7mkaCAGh2AFp FyHkUn+6S2VhTIgxobyArVvHQQjVXZa8Ngzvx31CJYHVRQiVJRLyce+KmDoZzDohEirJYbex AQGhwXQKbdQy5+SulgcOQpOmL5GpczfI5NnLuC8iBcBAyN2Gi1OlbtqiASBEJMSYUE4NuNZ/ 7VJ5XCoL42XujpeFAeSabvKCPnFMiEjI/gqSSMjeVnnFyn7YeJA10MYoKPU+ISBk3+iBkL2t BtmRcO7oJK8GgFDObpi8Bjf7iXSUf/eTXhb+Hbdd+LhR+8XllafMQAjnkkc37INubDUAhGqA kAFPGDRBGAXXRS1PWh8Gm60YorZzEUIu9Rm7VBbGPdwd9wi3LXQzXleMCdUAoXDkEwUls01Q vHHbRcEsDKm8IHIRQnnPhf24OkcD7mmASKgGCNnABAi511hwYNQJGihXA20FkNaJU7PjgmM/ WeBiCysioXIbBo4Ge6KB/mgACNV0s2oSXMKTFWwBkzRBoUiDcrE7zqX+dJfKwpgQY0J523pd Oo6CUF1lyWu7uP2cioSiB/zzz44LQizv7LjEFwfFrDTnERYJv2/uudkXe2CPYJtHD/F60BBK s0/ZcOhXfs5DqF+GKHocFyOhoufE/v3pasHO2DlNA3TH1dQdl1YxLq0HQjgSl/RIWdqlRyAE hFIf4OoihFzqM3apLIwJMSaUF9J16ZgxISDUSAjlbWjs166raOqz2fXZ5ihofIr2Munseod0 ptziXc/rmQDSmTZfeHacvXhdjIRwPvb1h62wlasaAEK8Tyg1CtLiBUI4MVedGOVqtjaBEBBq LITq6r+OcnoulYUxIcaE8oK5Dh3HQaiOsuS1W9J+/hRtuuOsQJNkSCKhZl9tVtG4yBNNlKEB IiEiIStAASEcThkOhzzQUVgDQAgIAaEaHl6LM8YZowFfA0AICDUWQi71GbtUFsaEGBPKC7h+ 6zgJQP0uS16bpe3HmFBJV/l0x3HlntbYWI9Gsmqg7VEQ9wmVBCAzRVsLhoQN0AAaKFMDWcHV tO2JhEoCEZEQV7lNa/yUF826oAEg1GIIudRn7FJZGBNiTCiv83VJxy6VJa896Y4rAKCk9wwV qRD25eoUDaCBQdIAkVABEAWFQnccjmOQHAfnit7L0gAQAkJWU9DLEhz54LzQABoIamAMQrvx FO1CztjFSMilPmOXysKYEGNCeUHoko5dKktee/aMCQGhYlcnLkKoiDDYt5gesB/2QwN2GiAS ojuuUARIQ7NraNgJO6GBaA0AISAEhErSAE4G0KCB7BoAQiU5IBe741zqM3apLIwJMSaUFxYu 6dilsuS1J2NCJQFIG9JFCBURBvtmv6LDZtgMDWTXAJFQSSACQtnFR4PFZmgADTgHIfXow7Ex Cv3dJCPWqGV+JDJx26DAs+SVp2EAIRpTHt2wD7oZdA04A6E4SAQBY76HlyUtD8LLNq88onAR Qi71GbtUFsaEGBPK08bRTTUXDM5AKAoWUZFMeFkQQOE8kn4HI66oPLKK1EUIZT0Htq+mkWFX 7IoG4jUAhLpjQmEoZRUNEMLRZNUM26MZNKBeX37SC9KZsUw6/X5iQnish0iIBkmDRANoYPA0 UBuE4sRmIhLbCQrhrrQouGXJK28jSHq1Q13r9DiMK38ulUXbxKXyuFQWbJPcYlyqK9fGWfP6 Tg9CRy7tfySUBqHgJII0iCRtG4ywbGfa9Y47ueLGKQcWwAJYoNcCeR2/S/s5ByGXjJO1LDQQ LIAFsEA/LZDVR7m4PRAq6WZVPxqTUp7D5lI+LpXFNRtjm/jxC2yTPLZThn3KyMMFKAEhIJQI zrKE3sZ82nhOZYEe21QPIcaESnTeLtC4jDK0seG18ZxwtNU7SHTTHBuX4fuK5EEkVCJM29jw 2nhOQKg5DhL9Vd/lWQQgZewLhIAQ3XE5NYCDrN5BYuPqbVwGSIrkAYRyOqAoo5fVYIpUaHBf l/qMXSqLtpFL5XGpLNiG5+qV5X9s8wFCLYaQS1B0qSxldcfZNrK07bBNc672Xaorl8qSpvGk 9UAICJUyrTxNhK41GJfK41JZAHT142VpbcV2vWu6sS13eDsgBISAUIkayNMQXXMmLpXHpbIA 6GqeaweESnRArjUYl8YaXCoL4x6Me+S5WEA3QKgvV+x5xenaVZJr5XEN0C6Vx6WyoBu644r4 wDz7EgmVGAnlqQD2qebqCrtiVzTQDA34ENLvE7pTOlNu0ddk0vH+mzZfJk1fIlPnbpDJs5c5 H4UguGYIjnqintAAGghqAAgRCXGBgQbQABqoTQNACPHVJj6uiLkiRgNoAAgBISCEBtAAGqhN A0CoJPGZt7YG3wIbvMqLWx9enpaPzZVjWh5R64PL8ryBNqlcaeUx+6a9Qdc2n36UJVjmqFfK 29STPxNND8H6Ka3cSXqyzSftGEXLEty/aJnS9k/TcVl1ZFNPtu27rDLlsU3UeaTlY6vjItsB oRIhFKzkcKUYJxPl4MPOJSkfm8qOO1bY2Sc5nDAQbI4bt41NeeLsEnZq/bBNUlni6jWvffLY xtigDt1kgVQaWNNsZmObsC2i9knLJ60cwWPEnX/wGHH1ErXc5thR26SdU1p5sviCvGW03Q8I lQChcGPL8jvJ2edpxFmOHeXMkhycraiSGlvSOSU1nLTzsilbljyiymm7zKYsWe2cVPYs55V2 oRB2TkkOMG1dHv3GHb/Jusla12n6yVLfVesmraw264GQAxAyV1dZxJXXmaQdI87R2lwBpzml OOhFXZWFQZZWbhuxZ8nDFjhxdVd1eYLHzXJeeXVjcxUfVQ504088qNs2wTZWpr+x0XnaNkCo ZgiFxWHT2JMqNc0hZV1fdXmi8o9rsHWUxSYySINr1Y4/rU7TnEDWK/W4qCTr8iI6jqqXunWT 5/zzRIu29Z0WPdrmY6OfItsAoZIhFHXlF6zsuCvD8PIyriCzliWtQaStT4uE0s7J5B9lLxsb pjWELHmEt82Sd9q2cQ40zWnE2TfLedkA0baebC8KqtJNkhONutpPO68itskDoDIuXpL8SRrk y9CNrdaTtgNCJUDIiCkKJFFhcNZlWSs6rgGmHTfJyeVxJFmPZwufssuSFAkEbRnl9PI6tjbY JilKjNJgmTqOq5ck+FSlG5uypGm7ybbJWvbw9kCoJAgVrQj256Y9NIAGBlEDQAgI1XaT2iA2 OM4Z0KCBXg0kQmgyDzDFQQNpNIAG0ECFGhiD0K53THyKNhDiqo2rNjSABtBAlRoAQhUSvsqK I28cAxpAA23QABACQnQ1oAE0gAZq0wAQQny1ia8NV3F1nEN4SnDSNPI6yscxidCyaAAIASEg 1GANFLn3JYujYFvAUpUGgFCDHVBVoiDf5jicpKcGBG/CDd5UW9UNneimObpxqa6AEBAiEmqw BmwglPQIoqgnPhBdAZN+QgoINdgB9VMoHMtNx2QDoWDdJT16qIxH7aATN3Xicr0AISBEJNRg DZQFIZedFGVrN9iAUIMdEI2z3Y3Tpn7LghBdcGjJRm9VbAOEgBCRUIM1UAaEzAQGuuMAURWQ ScsTCDXYAaVVLutxKmgADbiugUQITZq+WKbO3SCTZy/jahlYoQE0gAbQQOka8CA0Y6l0drtz 4gNMgRBXUa5fRVE+NIoGmq0BIMSVTelXNjiFZjsF6o/666cGgBAQAkJoAA2ggdo0AIQQX1/E Z/uQTdvt+nmlxrGIDNBAdRoAQkDIGkJl3UuSlE9Zx8BpVOc0sC22LVMDQAgIWUEoKkKJu68k LZrJAqG0+2DKbAzkhXNFA/3XABACQlYQMjc0Bm9sDDbYuIdkhpenRTpxsAseH0fRf0eBzbF5 VRoAQkAoF4SMIONeCxBcHxZvlkgoKZ+qGgX54nDRQP80AISAUG4I2UY/RSFkjpMWReE4+uc4 sDW2LksDpUOoI/xzwQJlCSTc5RZ8/0zc2E8UnNLGieIiHsaEcHZVaJk83dFV6RCict2pXOqC ukADaMB1DQAhuuOsu+PKFnM4OqK7DYdZtsbIz31NASEgVBuEcBDuOwjqiDqqWgOJEJo8fQlP 0QZSQAoNoAE0UJkGxiF0x8SnaAMhroLKugrKMjGBl6uhu7J0Rz7uawkIcYVjfYVT1phNnvuE cCbuOxPqiDrKowEgBISsIMRje3AweRwM+6CbNA0AISBkBSEtpOBNo0n37yTdxJoWTSU9tidY hjRhsx7nhwaaoQEgBIRyQSh4c2nwBtYwKKKgk7U7jicmNMOZ4PSppzwaAEJAKDeE+vXYHgO2 tCgqTwNgHxwnGqhXA6VDqON12pDqtkEVDSs8a60fj+0JRlxVnBN51uuAsD/2Lx1CiApRVaEB oiB0VYWuyLN+XQEhuuOsu+PKbrC2j+0BQPU7irLrnvyoU6MBIASEaoMQjghHhAbQABACQkAI DaABNFCbBoAQ4qtNfFwFcxWMBtAAEAJCfYEQz47D2QAcNBClgUQITTqYp2jTcMYbTlkTBLLe rEod4LzQQHs14EHoyKXS2fXOiU/RBkLtrfisjbquZ8cFb1QtC4JZz53taQdooDoNACG646y7 4+p6dpwBEY6gOkeAbbFtXRoAQkAoF4SCTzLo17Pj6mokHBcHjQaq0wAQAkK5IdSvZ8fRDVed A8C5Ytu6NVA6hDrqoWmk+m1QhbDqeHac7ay6Ks6XPHHQaKB6DZQOISqt+krDxtgYDaCBtmgA CNEdZ90dV7bobZ8dV/ZxyQ8Hjgbc0QAQAkK1QQhH4I4joC6oi7o0AISAEBBCA2gADdSmASCE +GoTX11XXhyXq3404I4GgBAQAkJoAA2ggdo0AIQQX23i42rUnatR6oK6qEsDQAgIASE0gAbQ QG0aSITQ5Ok8RbuuqwOOy5UpGkADg6AB3ifEFVBtV0CD0MA4R0CCBpI1AISAEBBCA2gADdSm AWsIrV+zWEjYAA2gATSABsrUABACrlxcoAE0gAZq00BmCH37/9wm//tvbpVvffPmsfTN2/5C /vrrfy63ff2LJGyABtAAGkADYxrQbNCM+Nb/VMzopr/7278SzRIdUWWG0BMLHpffPPJreeiX vxhLv/jF/fLzB+6T+39+r5fm3R+V7lHL/XTfPD/Nm/evofRT9Vul+/5FpZ/YpXvvlnnddJ/6 1Onee/9Rff44Of3sH+Q+EjZAA2gADRTUwA/V/r3p3nt+ICbd97MfyP33/VB+8fMfjaVfP/RP 8ui/35MPQquGlsszy5+Sp5cuGUtLnloki5cs7KYnZfHiJ2XR4ifUp5/874/GpPlqeTctUp+L fhuRHlHLxtOihQ/LwgW/kcULHvaT+u2lBb/y0qIFv4xOTz4ki558kIQN0AAaQAMlaWDhE79Q tnxgQlq8QC//uZcWL3hAliz6xVj6zS//SfRfrkho3fpRWbtuREbXDI+n0SH1PZD079FVgfSs +h5MK9TvYFqufuu0LJSWqt8qjXTT6qdlVKeRp3rSyOolotPo6kXJaXiBjI6lJ9V3EjZAA2gA DeTRwMjQEzIxPa6WjafVqx4XP82X1UOPjqWHH/pJfgg9/7t1MiE9v1aef340IY2odRFpw7A8 76VVkWnDcyvFTysi03Prl0tU2rBuqUxMT6llJi1R30nYAA2gATRQRAPr1z4lOj23dklEWqiW 9ab1a59U2z8pD6vuuNyRUBg2GzaMik7+cgWaMbAYwEz83PDckIJKMBnY9EJn/fpnRacwaNav e0Yi09ql6gR18g0TNtA6ZSiTypxiSF5MWUUDaAANaA0sDKUF6vd4Wjf6pOj064fuBkIIBqeB BtAAGihbA3YQ+uWD/9gfCHU6HTEpGCHFRUJ622D3W55ISOdBJFS2sMgPZ4UG0ICNBmwh9OPq IaRhEARP8HfZEPLAo7voKuyO846RckObzTZpebDeRuhsg07QgJsaKAChXe+QzpRbPDh1vP+m zZfgU7TNCduOCYUhVGUkBIRokG42SOqFehk0DVhC6IEfTYyE+g2hYFedmQUX7I4Lrg9OTAgu N5MTzDIdCQW743ry6E5K0Mv05ISxfWKim/D6uN/B6Ce4TTgqituORjpojZTzRfNt1oAdhB68 /4fVQ0hHPnFjQj5sxmfHGfj0fq7wZsbppJdrEJnPIHz092AkZCAUhJGePhgHn6gutDAwvBuq ErrjzLqo/UyDs9mGxtnmxsm5oe9B0IAdhO6/93v5IaSnYz+nblg1aYP6vmH96rH03Pphta43 rV+/qgsQf3kQTub7c+tW+tt0P8PbBGGzbu0yFc0sGxsD8gHztJfMd+9zjZqS3U3mtw+DhWqa oJ+85d3vwc/w8qjfwTKG80raP+6YUeVg2XhdYQtsgQbc18CakQXeNGwvjXTT6BPqt0ojj3vp nn/9dn4IRUEmCjoaPOPJj2aCkY33fZ2KdgLJRDQ+SBRkuvcDGej40c3SMeCYiQgmytGz4oKR UBEIJUElDjDB5TYQo0G536CoI+oIDdhrYBxAXegY+IQgFPnYHtsxoV64jINGRzAGMqYLLeq3 6VbTgFmnAKRTED4m4omKdMYjHv+mUz+68cETF/GYqMdEQOORkE9qHxZdanc/g8vM96hlZr+0 bUzEFD5e1LHDZeF3b91gD+yBBpqigfHIx0RAa0ceE50iH9tjC6F1a1cqAARSFyTBiCYIlzEH vHa5F90Eo5qxdWtUdKOSDxM/0unp6gp1q5l1a0YWi05rRxaNdavpdaMjC70UzEMTWie9TH+u Xf2El/Rv8z34afYNLwvuF8w/Kr9gHsHjhPMOr0srW1R5WebXJwkboAGHNDD8qKzVqQsf77tK kY/tsYXQGgUJndauecZLY79Hn5a13eStD/32tlMPHp2YfJAkJQOV2M/uQ0lH1ANJe5N6wN5w RBp6TD1kj4QN0AAaQANFNTDqPbD0MRlVDyg1eenvfprfm1b9u4yqFPnYHlsIDa9aKF4aWhRI C9R3lVaFU3fb7j5DK5+U6PSEWj6eVq18XKLS0MrH1HaPyapnu0l/18uefbSb5qvP+bJqxXjS v00aW/7sb1UeJGyABtAAGiiigSHlR3VateI3PWlo+W9Ep97lv1a//RT52B5bCK145t9Fp+XL 5sszz4wns0wvN2ls/bLfyjMZ0vKlD0um9PSvZblOS38VnZ7+pVrfm5ap3yRsgAbQABoopoFn nn5QgmnZ079QvtVPZvnYsqcekGUq/fLBiMf22ELo6SUPi3Va/Gt5OiE9tfghsUsPqu0CSb0c 6amotPDn8pROZp35Hfpcon4vWTiPhA3QABpAAwU08NTC+5XPHU+pfnWB8rsL7h1LPS+1s4WQ H+U8qqKhx1R6PJD07+ikt382kFaoPCJTN8oy0daEz7H9HlH7W6Slv5EVESlTlJU1KmP7bFEs 9sJeaKClGgj0TJneqqcf9nqgnlnykCxb8mDvm1VtIcRdz4Nw1zPniM7RABrojwY6J70gnRlq dnQchF5/5rBMnbtBJs9eJpPet9YqeZmSsAEaQANoAA2kaUAD6IB74yG044lPyWvPXi6vOnmJ vOLoxVapc+QysU66AHWlI9WxbdIMdT7WqezzyXBsm3Pxtqmxfqo4dhV5Wtd3hvopXecVHNta Q1rntscvu0005Ni12tK2bvR2tvWTJU/bbdWxD3tUOvvfI53d/j70KoepP1AL1fsdvHRn4LtZ VtanztsmlXW8QD46/Cs7jdkspby2x7WyTdd+VeRpfT6qDLtaJNv8xnRno40M29iUMcs2Wc7H Nt8sdW69bQXtZ2CPXYEtrbVhe+wMbcK6HqvIU5+Pgo8uw85/E4LQG273FpCwARpAA2gADfRL A2MvtfMeccofFsACWAALYIE+W+D/A2mvTIZd5KbdAAAAAElFTkSuQmCC</item> <item item-id="291" content-encoding="gzip">H4sIAAAAAAAA/4xUW08TQRQ+s73sdiktlIvAVlopAsrFMrTcRFMNISbeEvwBZGkXqBGLZTE8 Nv4A33z2xZ9gfDe+G/+Qqd+cU5bqk7M5PZf5zvlmzsw0TUQK8grish3DrxO82w+Om623CTKj Akk1WnWJxTm2ZWCn9ZeHr4N6yBHa53wLv8nzk7PHrUsJP4PYCOxHwOeQMuTXDlEJ+L2H174Z iSFZlEVWjI1cRP4oDNvNw4swUIzchmSpf8S3Z/7yE1wgHraDwOOAhgyesZnUk9+JOglbf4au JR3Rdkq044pODWgLJO/RH0fZGu2o0AqtotIqUVp/ekr0waVBBn1NM2iTNvCtAFjlTlGGS3VS WW3WW8sgNMRmJ8NLGdbuDzhOjnVteETHf0PnRnXuJ/TIGFdvjGIrsSMUXiMa1x+xjc4o3eC5 L+NomOIOT0ixkUmeCCfMhMJap2SJkU/kMU0nlxca76bQ5PtopoUmTwWhmY5oikLj3RKaIpdF e2eEpnhNQyXhGZ4VntJt4Znt45kTnlmaF565iGdBeEp3hGeB6yLjrvAs9PHQovTZXpKjW1wW vbQiR7jMWNy1e+x/i3wqS+LSqhyQCWk5oDIXXhNnUR6EgJNVqV5ZF13dEJZ1bEvFytgXurEp TOsR05YkV7eFyVyP+1KcbwrtyP4rV/t/wE8q29AHx23/7OTgqNU+9UObsWPmZXJ41w99acFU 7+ZbOAB+zar33ObZNp7rXzbP97iOvOa8eaeqh5XRxUcq///Rq+J22Pbrgd6N8ZTXAxbUEClP AVhQSnkWdbsFZSkPKBgx5cW7xogzBkYCmE4N4CRjYNiMgeEYjAGnuA4iLjCcPgAMp6eB4fRB gzFZGcbAyBqMActysy8uToN2s+6/kYY4vOwnkAY18Rly8xfj9rr5z0j3O38AAAD//wMAahAn 904FAAA=</item> <item item-id="292">iVBORw0KGgoAAAANSUhEUgAAAfMAAAF2CAYAAAB6cnEgAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACTbSURBVHhe7d0LeuJKDgbQrIsFZT1Z TTaTxdBxXk0ID7uAvyzXmfnuN3c6lEs+UksxGHja+w8BAgQIECBQWuCpdPSCJ0CAAAECBPaG uSIgQIAAAQLFBQzz4gkUPgECBAgQMMzVAAECBAgQKC5gmBdPoPAJECBAgIBhrgYIECBAgEBx AcO8eAKFT4AAAQIEDHM1QIAAAQIEigsY5sUTKHwCBAgQIGCYqwECBAgQIFBcwDAvnkDhEyBA gAABw1wNECBAgACB4gKGefEECp8AAQIECBjmaoAAAQIECBQXMMyLJ1D4BAgQIEDAMH90Dby9 7HdPT/un7392L/u3nz3f9i+77589719/xXLpZ48O2vEJECBAoJKAYf7obL0+75+ef4/p7y1f n98H+dfPDv99+vmlnz06ZMcnQIAAgVoChvmD8zUN5d3L/2vx/9u97p+fdvufH31cwX9fnV/6 2YMDdngCBAgQKCdgmD80ZdNT5QcD+3CvX8P741r8/3C/9LOHxuvgBAgQIFBRwDB/aNY+B/Tu 53Xxc1fiy4f5z2vwh6/H+/f/9yawYKEG1MAKauChI+bg4Ib5I6U/rrAPr8yn4f71VPqNV+bT MPefxwtwfrzx9w6sM9acM87TLklrEyGX1/lPpc94mj1ZJFGilW3GOZcQ1hlrzhlnwzzn3GGn wxvbbrsBzl/ITPo4Z5zTjS93VuvbSU3ncpK0dmX+yLxOb0v7uUP9faPpivvgfea3vDUtWSSP JFr7sTnnMsQ6Y80545z+BdUwf3Be3152BzehHH8wzHR1fu5DYy79LPtazIOJVn14jS+XHtYZ a84ZZ8M851x6J38hS6dP8AQIDCCQ7NOuzIsWVLJIihIJmwABAl0Fkn3aMO+a6vbNk0XSHqWV BAgQGFcg2acN86J1liySokTCJkCAQFeBZJ82zLumun3zZJG0R2klAQIExhVI9mnDvGidJYuk KJGwCRAg0FUg2acN866pbt88WSTtUVpJgACBcQWSfdowL1pnySIpSiRsAgQIdBVI9mnDvGuq 2zdPFkl7lFYSIEBgXIFknzbMi9ZZskiKEgmbAAECXQWSfdow75rq9s2TRdIepZUECBAYVyDZ pw3zonWWLJKiRMImQIBAV4FknzbMu6a6ffNkkbRHaSUBAgTGFUj2acO8aJ0li6QokbAJECDQ VSDZpw3zrqlu3zxZJO1RWkmAAIFxBZJ92jAvWmfJIilKJGwCBAh0FUj2acO8a6rbN08WSXuU VhIgQGBcgWSfNsyL1lmySIoSCZsAAQJdBZJ92jDvmur2zZNF0h6llQQIEBhXINmnDfOidZYs kqJEwiZAgEBXgWSfNsy7prp982SRtEdpJQECBMYVSPZpw7xonSWLpCiRsAkQINBVINmnDfOu qW7fPFkk7VFaSYAAgXEFkn3aMC9aZ8kiKUokbAIECHQVSPZpw7xrqts3TxZJe5RWEiBAYFyB ZJ82zIvWWbJIihIJmwABAl0Fkn3aMO+a6vbNk0XSHqWVBAgQGFcg2acN86J1liySokTCJkCA QFeBZJ82zLumun3zZJG0R2klAQIExhVI9mnDvGidJYukKJGwCRAg0FUg2acN866pbt88WSTt UVpJgACBcQWSfdowL1pnySIpSiRsAgQIdBVI9mnDvGuq2zdPFkl7lFYSIEBgXIFknzbMi9ZZ skiKEgmbAAECXQWSfdow75rq9s2TRdIepZUECBAYVyDZpw3zonWWLJKiRMImQIBAV4FknzbM u6a6ffNkkbRHaSUBAgTGFUj2acO8aJ0li6QokbAJECDQVSDZpw3zrqlu3zxZJO1RWkmAAIFx BZJ92jAvWmfJIilKJGwCBAh0FUj2acO8a6rbN08WSXuUVhIgQGBcgWSfNsyL1lmySIoSCZsA AQJdBZJ92jDvmur2zZNF0h6llQQIEBhXINmnDfOidZYskqJEwiZAgEBXgWSfNsy7prp982SR tEdpJQECBMYVSPZpw7xonSWLpCiRsAkQINBVINmnDfOuqW7fPFkk7VFaSYAAgXEFkn3aMC9a Z8kiKUokbAIECDxM4Gk/479PuRGb2+lhpGMe2DAfM+/OmgCB2wRmjOA5Y3pWEMk+bZjPSsn6 HpQskvWdvYgIEBhNIDmE72Wb7NOG+b2yFj5OskjCp2Y7AgQ2JFBxCN+LP9mnDfN7ZS18nGSR hE/NdgQIrEBg5CF8L/5knzbM75W18HGSRRI+NdsRIHCDgCF8A96dlyb7tGF+5+SlDpcsktQ5 2YfAFgXuNVznHmeLhlXPKdmnDfOiVZIskqJEwiZwVmDuYLzH46RhXIFknzbMi9ZZskiKEgl7 gwL3GK7TMfyHQEIg2adVdSKjD9gjWSQPCN8hNyRwrwE75zgbYnMqAwgk+7RhXrSgkkVSlGiz Yc8ZesnHbBbaiRG4USDZpw3zG5PVa3mySJLnmBxCVfdK5sNeBAi0CyT7tGHenqeuK6sOomtx d0W1OQECBO4oYJjfEXOrh0oWyVYNnRcBAgQeKZDs067MH5nJBx47WSQPPA2HJkCAwGYFkn3a MC9aRskiKUokbAIECHQVSPZpw7xrqts3TxZJe5RWEiBAYFyBZJ82zIvWWbJIihIJmwABAl0F kn3aMO+a6vbNk0XSHqWVBAgQGFcg2acN86J1liySokTCJkCAQFeBZJ82zLumun3zZJG0R2kl AQIExhVI9mnDvGidJYukKJGwCRAg0FUg2acN866pbt88WSTtUVpJgACBcQWSfdowL1pnySIp SiRsAgQIdBVI9mnDvGuq2zdPFkl7lFYSIEBgXIFknzbMi9ZZskiKEgmbAAECXQWSfdow75rq 9s2TRdIepZUECBAYVyDZpw3zonWWLJKiRMImQIBAV4FknzbMu6a6ffNkkbRHaSUBAgTGFUj2 acO8aJ0li6QokbAJECDQVSDZpw3zrqlu3zxZJO1RWkmAAIFxBZJ92jAvWmfJIilKJGwCBAh0 FUj2acO8a6rbN08WSXuUVhIgQGBcgWSfNsyL1lmySIoSCZsAAQJdBZJ92jDvmur2zZNF0h6l lQQIEBhXINmnDfOidZYskqJEwiZAgEBXgWSfNsy7prp982SRtEdpJQECBMYVSPZpw7xonSWL pCiRsAkQINBVINmnDfOuqW7fPFkk7VFaSYAAgXEFkn3aMC9aZ8kiKUokbAIECHQVSPZpw7xr qts3TxZJe5RWEiBAYFyBZJ82zIvWWbJIihIJmwABAl0Fkn3aMO+a6vbNk0XSHqWVBAgQGFcg 2acN86J1liySokTCJkCAQFeBZJ82zLumun3zZJG0R2klAQIExhVI9mnDvGidJYukKJGwCRAg 0FUg2acN866pbt88WSTtUVpJgACBcQWSfdowX22dve1fdk/7qRienp73r0dxJotktUQCI0CA wIoFkn3aMF9pIbw+vw/x588Rfvjv3+Emi2SlRMIiQIDAqgWSfdowX2UpvO6fn3b7l7ev4N5e 9rujq/NkkaySSFAECBBYuUCyTxvmayyGP8P7aLi/x5wskjUSiYkAAQJrF0j2acN8jdUwc5h/ vp7++581no6YCBAgsGWBU734+89S522Yp6SX7DNzmC85pMcSIECAQFZgdVfmHzdgTVeAu5f9 98u410jeXnb73c+LvkePnobV181d144z5M8N8yHT7qQJENiWwMqG+d/Xa69zT2sO3k514gau 6RcE8/ycpBvgrteYRxAgQGDdAusa5icG8TW+P1flp47x+rzoSv/anlv7ubembS2jzocAgdEE 1jPMP4bw/xus5l1JTx92cvC2qvePO3n+Ocbxnx/+/9HSfO18D918aMw1LT8nQIDA2gTWM8wn meOr6umK+mc4/x0yfx5/6hgf4p+fcDbvF4S1pah/PMki6X+2IiBAgEA9gWSfvn43++EwPxrs 09Pp359S9sP8MeyPhvyZp+qnp5LP3iRXL2/RiJNFEj0xmxEgQGAjAsk+vWyYHwPPfS3cML97 aSaL5O7BOyABAgQGEEj26ZuG+ckr81OD2zC/e9kmi+TuwTsgAQIEBhBI9um2Yf5zY9yJG9jO DvPjx3rN/JZaThbJLXFaS4AAgVEFkn26bZj/f4H89xeCfPz5qSH9/+s8/9/w1vL+9VFL4u95 J4uEOgECBAgsF0j26evD/Er8pz785eKnv30f79L7zBve237yLvrl9mVWJIukDIpACRAgsCKB ZJ9eNsz/DOBzV9dHnwB3AvfsJ8D9vPXtxNveziWpZc2KEt4SSrJIWuKzhgABAqMLJPv0smE+ PYk+vR3t5IfA/E7b1c9mP/E575+fAf/+2vrr3+/vPj/Hl6/ZQoEli2QLXs6BAAECaYFkn148 zCMYnma/ypwskqvBeAABAgQI/BFI9mnDvGgBJoukKJGwCRAg0FUg2acN866pbt88WSTtUVpJ gACBcQWSfdowL1pnySIpSiRsAgQIdBVI9mnDvGuq2zdPFkl7lFYSIEBgXIFkny40zL++EvTc 16y13DRXuMaSRVKYSegECBDoJpDs0+sc5hfoX19fuyVmTRsni2RN5y0WAgQIVBFI9ulCw9xn uR8WcLJIqvzFEScBAgTWJJDs04WG+ZpS1D+WZJH0P1sRECBAoJ5Ask8b5vXq4yPiZJEUJRI2 AQIEugok+7Rh3jXV7Zsni6Q9SisJECAwrkCyTxvmRessWSRFiYRNgACBrgLJPm2Yd011++bJ ImmP0koCBAiMK5Ds04Z50TpLFklRImETIECgq0CyT58d5u9fLNrlv13lC22eLJJCLEIlQIDA agSSfdqV+WrSviyQZJEsi8yjCRAgQGASSPZpw7xozSWLpCiRsAkQINBVINmnDfOuqW7fPFkk 7VFaSYAAgXEFkn3aMC9aZ8kiKUokbAIECHQVSPZpw7xrqts3TxZJe5RWEiBAYFyBZJ82zIvW WbJIihIJmwABAl0Fkn3aMO+a6vbNk0XSHqWVBAgQGFcg2acN86J1liySokTCJkCAQFeBZJ+e Ncxfn98/QObp/Z/dy/5tJs3by26/eznz6LeX/e75deaRPOyUQLJIZIAAAQIElgsk+/SMYf66 f37a7c/N5dOnN6153v+M62l4H/7/90XTLwjm+fLi+F6RLJL2KK0kQIDAuALJPn19mJ8YxNdS 8+eq/NQxXp8XXelf23O0nyeLZDRb50uAAIF7CCT79OVh/jGEv55if//feVfSb/uX3eGV/HSV /n2M4z9fesV/D95tHCNZJNsQcxYECBDICiT79PIr8+mK+mc4HzyV/m106ir85NX9NPTn/oKQ TUCF3ZJFUsFDjAQIEFibQLJPLxvmR0N5ejr96fhy/WPYHw35M0/VT6+bn71Jbm1ZWVk8ySJZ 2akLhwABAiUEkn162TA/5pv7WrhhfvfCSxbJ3YN3QAIECAwgkOzTNw3zk1fms59m/7yj3ZV5 W0Uni6QtQqsIECAwtkCyT7cN858b407cwHZ2mB8/1mvmt5R5skhuidNaAgQIjCqQ7NNtw/wn M6feg35qSH/+2XRi/19ib3n/+qgl8fe8k0VCnQABAgSWCyT79PVhfiX+Ux/+cvHT376Pd+p9 5k1vhfs6YMP74ZenZj0rkkWynrMWCQECBOoIJPv0smH+ZwCfu7o++gS4E/Z/fwk4OtbHcJ75 PvSft8udeKtcnbwvijRZJIsC82ACBAgQ+BBI9ullw/w9uI+b3k5+CMzv7F39bPbjz3mfBvLR 29zmfOTr5+fGvw/9178fGbvlekoWyZYdnRsBAgQeJZDs04uH+aNO+u9xF76m7mn2XGrsRIAA AQJXBQzz9+9mm26YW/S2NcP8amF5AAECBAjkBAYf5p+f5b5okE+5McxzFWonAgQIELgqMO4w /7qbfd4Xuhw5GuZXC8sDCBAgQCAnMOYwv2WQuzLPVaedCBAgQGCWwJDD/Pdd8qe+dvXrq1TP Xba7Mp9VXB5EgAABAhmBIYf5XNrX19e5D93045JFsmlIJ0eAAIEHCST79Irfmnas67PcD0WS RfKgOndYAgQIbFog2acLDfNN53zxySWLZHFwFhAgQIDAuj8BTn7WIWCYryMPoiBAgMA5gWSf dmVetA6nxJ1K3r3+vCiLsAkQILAaAcN8NalYbyCPLpJ7/VLgOJ81NJrDev/miIxATuDRffrw TFyZ5/J6152SRXLXwB1sCIG1/fIyBLqTXJ1Ask8b5qtL/7yAkkUyLyKPIrBegbX9crG2eNab udqRJfv02WHeq9hqpy4XfbJIcmdlJwIEegj06vdV9m3NSbJPuzJvzVLndcki6XyqtidAgEBX gZZfOqaAk33aMO9aIu2bJ4ukPUorCRAgMK5Ask8b5kXrLFkkRYmETYAAga4CyT5tmHdNdfvm ySJpj9JKAgQIjCuQ7NOGedE6SxZJUSJhEyBAoKtAsk8b5l1T3b55skjao7SSAAEC4wok+7Rh XrTOkkVSlEjYBAgQ6CqQ7NOGeddUt2+eLJL2KK0kQIDAuALJPj1rmL8+P328X+5p97J/m5mX t5fdfvdy5tFvL/vd8+vMI3nYKYFkkcgAAQIECCwXSPbpGcP8df/8tNufm8unT29a87z/GdfT 8D78/++Lpl8QzPPlxfG9Ilkk7VFaSYAAgXEFkn36+jA/MYivpebPVfmpY7w+L7rSv7bnaD9P Fslots6XAAEC9xBI9unLw/xjCH89xf7+v/OupN/2L7vDK/npKv37GMd/vvSK/x682zhGski2 IeYsCBAgkBVI9unlV+bTFfXPcD54Kv3b6NRV+Mmr+2noz/0FIZuACrsli6SChxgJECCwNoFk n142zI+G8vR0+tPx5frHsD8a8meeqp9eNz97k9zasrKyeJJFsrJTFw4BAgRKCCT79LJhfsw3 97Vww/zuhZcskrsH74AECBAYQCDZp28a5ievzGc/zf55R7sr87aKThZJW4RWESBAYGyBZJ9u G+Y/N8aduIHt7DA/fqzXzG8p82SR3BKntQQIEBhVINmn24b5T2ZOvQf91JD+/LPpxP6/xN7y /vVRS+LveSeLhDoBAgQILBdI9unrw/xK/Kc+/OXip799H+/U+8yv3Sl/KZaG98MvT816ViSL ZD1nLRICBAjUEUj26WXD/M8APnd1ffQJcCfs//wSMOdO+XM5/Pkl4MRb5erkfVGkySJZFJgH EyBAgMCHQLJPLxvm78F93PR28kNgfmfv6mezX/uc95lX2p+fG//+evzr34+M3XI9JYtky47O jQABAo8SSPbpxcP8USd9fNyTd8pf2nzm8E/F/+h9kkXy6HNxfAIECGxRINmn1zfML90pb5j/ CCSLZIt/yZwTAQIEHi2Q7NPrG+Y/ugvvdndl/ui6dHwCBAgQWCBgmH9hLfqaVMN8QYl5KAEC BAg8WmDMYT77Tvkz/Ib5o+vS8QkQIEBggcCYw/wd6PKd8l9fpXrue1gN8wUl5qEECBAg8GiB YYf5HNjX19c5D9v8Y5JFsnlMJ0iAAIEHCCT79IpvgDuW9VnuhyLJInlAjTskAQIENi+Q7NOF hvnm877oBJNFsigwDyZAgACBD4FknzbMixZdskiKEgmbAAECXQWSfdow75rq9s2TRdIepZUE CBAYVyDZpw3zonWWLJKiRMImQIBAV4FknzbMu6a6ffNkkbRHaSUBAgTGFUj2acP80XX281nz 07e7vf/z69viPu/Q//wWuuOvb730s+yNFY8mcnwCBAhsUWAVw/x9vrwPmNv+uZScU8feYjL3 0yfbnfmgm4+vb/362eG/Tw6Xfjb9PFkkm8yLkyJAgMCDBZJ92pX5g5M5DeXdy9uJXY6+SObX J9hd+tnnoZJF8mAihydAgMAmBZJ92jB/aAlNT5Xv9idn+Z+Pnz0Y4Jd+9hVvskgeSuTgBAgQ 2KhAsk8b5g8tos8Bvft5XfxgsN9hmH++1v77n4eejoMTIECAwB+BU734+89SXIb5I6U/Bvbh lfk03L9udLvDMH9k6I5NgAABArcJuDK/ze/Bqw/vMj+6Mj73jW4/Ec18Kt3T7A/OocMTIEDg 8QKG+eONO+1weGObG+A6JcG2BAgQiAgY5hHmwCbT29IO3z8+XXEfvM/cW9MCObAFAQIEOgkY 5p3gH7Ht28vu4Ca14w+Gma7Oz31ozKWfeWvaI3LlmAQIELingGF+T82NHitZJBsldFoECBB4 qECyT7ub/aGpfNzBk0XyuLNwZAIECGxXINmnDfOidZQskqJEwiZAgEBXgWSfNsy7prp982SR tEdpJQECBMYVSPZpw7xonSWLpCiRsAkQINBVINmnDfOuqW7fPFkk7VFaSYAAgXEFkn3aMC9a Z8kiKUokbAIECHQVSPZpw7xrqts3TxZJe5RWEiBAYFyBZJ82zIvWWbJIihIJmwABAl0Fkn3a MO+a6vbNk0XSHqWVBAgQGFcg2acN86J1liySokTCJkCAQFeBZJ82zLumun3zZJG0R2klAQIE xhVI9mnDvGidJYukKJGwCRAg0FUg2acN866pbt88WSTtUVpJgACBcQWSfdowL1pnySIpSiRs AgQIdBVI9mnDvGuq2zdPFkl7lFYSIEBgXIFknzbMi9ZZskiKEgmbAAECXQWSfdow75rq9s2T RdIepZUECBAYVyDZpw3zonWWLJKiRMImQIBAV4FknzbMu6a6ffNkkbRHaSUBAgTGFUj2acO8 aJ0li6QokbAJECDQVSDZpw3zrqlu3zxZJO1RWkmAAIFxBZJ92jAvWmfJIilKJGwCBAh0FUj2 acO8a6rbN08WSXuUVhIgQGBcgWSfNsyL1lmySIoSCZsAAQJdBZJ92jDvmur2zZNF0h6llQQI EBhXINmnDfOidZYskqJEwiZAgEBXgWSfNsy7prp982SRtEdpJQECBMYVSPZpw7xonSWLpCiR sAkQINBVINmnDfOuqW7fPFkk7VFaSYAAgXEFkn3aMC9aZ8kiKUokbAIECHQVSPZpw7xrqts3 TxZJe5RWEiBAYFyBZJ82zIvWWbJIihIJmwABAl0Fkn3aMO+a6vbNk0XSHqWVBAgQGFcg2acN 86J1liySokTCJkCAQFeBZJ82zLumun3zZJG0R2klAQIExhVI9mnDvGidJYukKJGwCRAg0FUg 2acN866pbt88WSTtUVpJgACBcQWSfdowL1pnySIpSiRsAgQIdBVI9mnDvGuq2zdPFkl7lFYS IEBgXIFknzbMi9ZZskiKEgmbAAECXQWSfdow75rq9s2TRdIepZUECBAYVyDZpw3zonWWLJKi RMImQIBAV4FknzbMu6a6ffNkkbRHaSUBAgTGFUj2acO8aJ0li6QokbAJECDQVSDZpw3zrqlu 3zxZJO1RWkmAAIFxBZJ92jAvWmfJIilKJGwCBAh0FUj2acO8a6rbN08WSXuUVhIgQGBcgWSf NsyL1lmySIoSCZsAAQJdBZJ92jDvmur2zZNF0h6llQQIEBhXINmnDfOidZYskqJEwiZAgEBX gWSfNsy7prp982SRtEdpJQECBMYVSPZpw7xonSWLpCiRsAkQINBVINmnDfOuqW7fPFkk7VFa SYAAgXEFkn3aMC9aZ8kiKUokbAIECHQVSPZpw7xrqts3TxZJe5RWEiBAYFyBZJ82zIvWWbJI ihIJmwABAl0Fkn3aMO+a6vbNk0XSHqWVBAgQGFcg2acN86J1liySokTCJkCAQFeBZJ82zLum un3zZJG0R2klAQIExhVI9mnDvGidJYukKJGwCRAg0FUg2acN866pbt88WSTtUVpJgACBcQWS fdowL1pnySIpSiRsAgQIdBVI9mnDvGuq2zdPFkl7lFYSIEBgXIFknzbMi9ZZskiKEgmbAAEC XQWSfdow75rq9s2TRdIepZUECBAYVyDZpw3zonWWLJKiRMImQIBAV4FknzbMu6a6ffNkkbRH aSUBAgTGFUj2acO8aJ0li6QokbAJECDQVSDZpw3zrqlu3zxZJO1RWkmAAIFxBZJ92jAvWmfJ IilKJGwCBAh0FUj2acO8a6rbN08WSXuUVhIgQGBcgWSfNsyL1lmySIoSCZsAAQJdBZJ92jDv mur2zZ/eM3frP5d2v/XY03rHv5wjPnxu+XumftZdP1N+DPP2GTfMymSRDIPqRAkQIHBHgWSf dmV+x8QlD5UskuR52YsAAQJbEUj2acO8aNUki6QokbAJECDQVSDZpw3zrqlu3zxZJO1RWkmA AIFxBZJ92jAvWmfJIilKJGwCBAh0FUj2acO8a6rbN08WSXuUVhIgQGBcgWSfNsyL1lmySIoS CZsAAQJdBZJ92jDvmur2zZNF0h6llQQIEBhXINmnDfOidZYskqJEwiZAgEBXgWSfNsy7prp9 82SRtEdpJQECBMYVSPZpw7xonSWLpCiRsAkQINBVINmnDfOuqW7fPFkk7VFaSYAAgXEFkn3a MC9aZ8kiKUokbAIECHQVSPZpw7xrqi9s/vr88Y07n/8871+PHposkrUSiYsAAQJrFkj2acN8 jZXw9rLfHQzwt5fd/un59zhPFskaicREgACBtQsk+7RhvvZqmOI7Gu7THyWLpAKRGAkQILA2 gWSfNszXlv0T8bgyL5AkIRIgQKDjy6GG+ZrL7+OKfHrNfLd/efsdaPI3vjUTiY0AAQJrFUj2 acN8rVXwK67X/fPRQE8WSQmiBwXJ+UGwJw7LOmPNOeOcfjnUMM/l9aadXp+f9of3wPkLeRPn 7MWcZ1Pd/EDWNxPOOgDnWUx3eVDS2jBfmrITN6PNOsTJdW/7l92Jt59Nb0vbvez/P7PuynyW 8QMelPzL+IDwSx2SdSZdnDPOrsxzzg07TUP19Pu+Lx/s9Lrpavv7LWeH/z4d6+Omt5/3mXvN vCFZd1mi8d2FcdZBWM9iuvlBnG8mnH2ApLUr85lp+R6uu+fnX+8Bv7b8/Lqjq+2FV/zJIrl2 jlv+OedcdllnrDlnnF2Z55wX7fT2+vr5tPfCoXt23Z/j/H0q/VKA/kIuSl/zgzk30y1eyHox WdMCzk1sTYuS1q7Ml6bo1xCeBvDRR61OP//1evfXBsfD+w7D/P/T8N+vu/tfJmpADaiBNdXA 0hHT+njDfKncySH8NdDPDfJTV/Q3DvOlYXs8AQIECGxXYOBhfngn+dFvskefg/4r/SefZv+6 we3UFfn34jtfmW+3JJ0ZAQIECCwVGHiYL6U683T5xx83DPOPNQd3qS98Lb4xessIECBAYIMC hvnSpN7rafbpV4ALb01bGpbHEyBAgMC4Aob50tzf6wa4wyv6pveuLw3c4wkQIEBgqwKGeenM nvkEudLnlA5+ieGFx/58Kc7X/ReX7p9In+Jq91ti/3USXo6akc07uarpGdbHD1lgf+R76Vat OYEY5nOUVvoYT9PfnpglhhcfO30E761/G28/nVJHWGL/eWKtn8BYiuXmYO/mqqYX52K+/Wct /7SMyfrEt2MuCcAwX6K1qse6ge72dCwxvPzY6S/x7vh7am8PcMNHWGL//+ONl34C44YBz5za /VzV9NLqWWD/5/s3Pq/ob7keMMyX5mstj/c+9dszscTw4mOnv4h/Pz//9gA3fIQl9u8MrZ/A uGHB06d2N1c1vbh2Ftr/Pv7Rlfrizfd7w7wBbRVLbiqcVZxB/yCWGF587Odv5Lufb8Az2K8m d4n94cG8Zn6Z9m6uavpqDR8/oNV++mV1+mKtG++zMcwXZ2wlC24onJWcQf8wlhheeuzHzw4H +ImP+e1/tuuKYIm9YT4/d/dyVdPzzb8f2Wj/+WVcRx8Lvnx3V+YNZutY0lg46wh+JVEsMVzy 2OMPBFrJ6a4qjEWeB5G7Mg9dmR9vs+yLoFZVa6lgGmr6c5Df55k8V+apRN99nwU3W9x9760c cInhDY/dCtddz2OJp2E+n/5Rrob59Rwss7/XFfl3XIb59Qyt9hHz3wax2lPoHtgSw7OP/Xhb ycHTZNNv6De+/tUdJhDAEvufcFyZX83MXVzV9FXnUw+Ybf/nZYym7X4tMsxvN+x4hO/33U4f VHL7ay4dT6Tj1ucN/7415/xjP3/L/v7CHrmYl9Al9l9HNMxn0N7HVU3PoP7zkHn2H0P/p1/8 /3dvTWsxt4YAAQIECGxEwJX5RhLpNAgQIEBgXAHDfNzcO3MCBAgQ2IiAYb6RRDoNAgQIEBhX wDAfN/fOnAABAgQ2ImCYbySRToMAAQIExhUwzMfNvTMnQIAAgY0IGOYbSaTTIECAAIFxBQzz cXPvzAkQIEBgIwKG+UYS6TQIECBAYFwBw3zc3DtzAgQIENiIgGG+kUQ6DQIECBAYV8AwHzf3 zpwAAQIENiJgmG8kkU6DQHkB34hWPoVOoJ+AYd7P3s4ECBwKGObqgUCzgGHeTGchAQL3Ezj8 Hujd/uXtfkd2JAIjCBjmI2TZORKoIODKvEKWxLhSAcN8pYkRFoHhBAzz4VLuhO8nYJjfz9KR CBC4RcAwv0XP2sEFDPPBC8DpE1iNgGG+mlQIpJ6AYV4vZyImsE2Bj2Hu5rdtJtdZPVrAMH+0 sOMTIDBT4G3/snvaPz097Z9fZy7xMAIEPgQMc4VAgAABAgSKCxjmxRMofAIECBAgYJirAQIE CBAgUFzAMC+eQOETIECAAIF/p2vCIHSynZIAAAAASUVORK5CYII=</item> <item item-id="293">iVBORw0KGgoAAAANSUhEUgAAASoAAAAVCAYAAADxYaPjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAS1SURBVHhe7VzNcbQwDKUuekgbVJES cuCcBtIBtz3nmmuGCva2HTiW+YkxlmWztpFZM7Mz3zfLgt6T9CwJk0bUozJQGagMMGegYW5f cvO6phGN5dMNyW9db3AxBoa+F+PFMKWHM4q+n5Jt6Oy52MhkrELV1uBKH4zXv8PYt6Iubgf9 PHSi7RGJH3vR5haqceS33nQZhYojfiy0SrKVSo/kWGQydViiUcYFfJ8cR4AtIaf62D32nbBS uBeqQUAbtFM2OLHpRGgnBGXc/wojy7tWvzbcq7UbFsJAhHNJoVL4w20tBf9ScpfgKx93n8E7 mmRg8AvEj+6Xw/xjYo8JVWMm5QGhgjIY+sr/wxSq2YEZqxksyFMIVUn4S7KVEqpzsEBsOxby A0J1Dg6KXfr75+yWxYtND+xCJSsHWYJtRCZYqKBa0h03idQ6sNYEDNQX7U1pXqKcEV+oSsJf kq2Uu0/CAvnhWnCDheokHBS95PfP2g06YelcUKGSc6TNDwKFaq+qqv41Wr8ZtRyiNc6qCmlH SdL8T4gtVHHx0zi+v783Ty0/Pz/pH81nJLNV+tV3sPz7+yvu97vV5q+vLwH4fI54WMyEU82x sfhqFkEMu8AGClU8HD6sCcGJ/23buAapOUzX5kaziqlTTaECx6yP882SFxEkTKhUAITPf/xc 4HdWsFAxwg9J/Pb2tiY6JPxGqM6yNUCoPj4+xOPxsDoLsEGsqSMrFl2YHCKl0sMccxhQTKHK ioPOAU78WzssvKJa4mIehutCZYjW3klTBbRfYNwC5rP6onssQDR9LoD4LEioTsRvMx9ECatG zAUmp69AVHxdAlWTfvz8/Gz+r4TqFN6nWG6IB0nAq3N8oQvVKTjcYsWJfyuXlFCp4IC2zNX6 7b7DKqTQSoteCXzPoAQuSKjMm6bGr65vE/7JECjbIZHf39/Vx0zyjbmJbaV4xvylV4Bg/1pB zT8wE8la5aOV+TNx5y9Uh1u/xD6ZBB6PH+CSE//HhEpV2xKk3G2LbU/IuUofTQRK0GxCtSlB HTOGnPixigraP0hm+GAtFPw2q60BFRW0HsthChXgAQHerw9muxW7kn+u9SslfoBXTvwfav3m BtBe/s5KvdvKgM6isJWN54xKJfUy5LcN/Jngh+rDFKddVXWGrQFCBUIEq/oybwNMyxAd/n27 3f51KguW54fppcQPEMuJ//BhuraEKdLRPn0vNNhwcbqOMU9i+9RP31LhGvanxu+uB5fWb3m4 4W7/MtoaIFQgtIv9sLrrmPAnmBmxUCW5dXtCGfED0Pjw7709gfKI/fu9CvpXSUXsoyJoKQl/ SbZS0cgHC7Hh80Lxo0OJz7/ksbO8d7sfplOhoYZWxr4nuyiRj2ynoYl7o5yHOTFOIYfpW++U g/9KvmKOxfkKTanxk9tuqQfW9yUPCdUylF33UWFt0VT64o+o/auuGGLkukaQUBWGf223lb/K 9hVvLIN8o8PvhXveOPBMSW13wEvJqSWB5/VDhYonimrV2QyM8ul46Iv7Z9vM5/4OoT9aUfEB F8eSKlRxeKxXQV6qrcQQDHi81J3771Fx9Fn9C58cvVJtekUG6l/4fEWvV8yVgQsx8Ac25lnJ Lc//HQAAAABJRU5ErkJggg==</item> <item item-id="294">iVBORw0KGgoAAAANSUhEUgAAAZYAAAAVCAYAAABlq8hUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAXDSURBVHhe7Vzh1aQgDLSuLch6LODq sBmL8UBECQQIGgT9cu/dn29dl8nATBLQYZV/EgGJgERAIiARYIzAwHgvuZVEgBSBeZrWhXSl XFQ/Ass6TXP9n5Ff+FMREGP5U3S3B7tMv3UUHWtPhDuCeVx/k1h9X6S8ezSPGcuyfG/ifgXT YziWaR07EbDHMHegDxSsyzSunVATRIwy/g7CzDKEN2FNjbWKsczj4GSlqtT+DU5GNK/j8Ot2 EsdmRztMOl5u/PYRKpH+DeNamvy3w7GurcSrJWYWtSm4yWWs3KavqqBBzVv9v6Qaujz+ghj1 cmkTrA/xwm4sutUxgF6HbyyKVi2Kv/f02dtiMsYy+GZ8wVja4tDzoNwI74pAW8x3R1/2/XtY 1TxjXJNaNKEO5LHcG3/+/j1d0QrrU7w4xrJXErPOhE2mEYhZlhl9D1c8jKnYzMWdaBpgSSaT /Wn0gi9g2jGoVgVYqMXG0pgbNJnA+OE0n8aYVT25VedgTXHiAxslN9eeXqs8nYRNvA4NoeIV rmrr5JO8eMaiJ8Q5EbaBFGQxoQvriY9ULPrPuiRL3jvSAipyGJvt94LJGbzCT9vEtq1Db+EX GgsvNxdwaL4DwCE/2zgvtPiwadEc82YscE1x4nMxc2CFrZmUaW0L2DMyyEBpZswx/iJpCC5+ F1dm+BgHffASGAtY+1s/zsk4nP5cuPgjBhIzFpvNVd3TN5MliemYYGb8UPsqYio2lr2FaAfo G0srbog4cOFA+NnF+OBhw3lmwCGX9jM/M+6FO39OOZgLOIyLfiJ5K1x76S6CK1hp8TJ5o9cK azU/yW6TmYudcXXCuslLJf2jG4sX2FAoMGLyk56StcMSzi2zc31curGYTDIhAmCCpkWLgklX bKTrPAM+BMbloyE3VBw6vmHr01ZjIPd2Dnt4n28493bNCzCbjNJvLzlzp4DDtLHwrD2cI79y gRVYTLeBsbTkqshY3sOVVx8GlTGJF+cibv2jG4s/0qAVgy2ivLHU3WchGsvW/1dCH1QsvJiu GSQirrqFmGqFVebmCo54xZJYzEj7LCqwHWJOG8u/XQwiQu3h2XCP50krmJTwzNNqxvKwdlyZ n2/jitVYKujfZWP5TsVi9y6wVhhPJohmDxcrFttmGNXT67Hjxk9yU1KxxPZYQpH0K0cbwZiA 6oOG/mnEXrgraIX5GaQTGLDfiZooFrOyyrpqKyyBzYj6/fGTixN8QSJjSLQtG3PF1wqro3/l xnL0vBOZJqltFBeJexMkLN1TeyxnlvaCPZYDWrjRuH3UghuqQRI37+MHRiIi2TNmZPM+bRBx Dv1KLf0MhJ0oMWPB1171zfsWXJHFJFxTPXNlYN3fvK+lf+XGAsQNmgve7tizSb0B6yr8g6fC osYCjsBixoJlwiYAtidZhsmZ5VRBjhxySJ8uCoWDl5sLOKLHjWGLBz8paBZ9um3aIWabiTst LIAvebIP4plHuNZ8E7jPL99xY1tVx59jeZCrQmNx2439ckUGFVwY7H0dJ3N59e/WA5JhhkOv Qp55jiVNwGEOzqmj8Enhd2GyiPvjBntAMtYCAX2G7VQY5aBDf5gz+DJHxl08WIVC22cJ1wC+ 9hQ/43MPLQtXtGeGaupkTf2jG0tQYeCCG8ucYHesxyfvccc+qpOcsrV8m8BLuAlf6UIR3oip vAIzBd9+TDqDJ3XK6mh8BftMSGIVm6fq79Xe4yZcBa9e6k8nefWPbixu+yf5VH58gGdfkObW 1wu+K99Mjbt/TDD7iMW3NY5ZvaLdfXApLbyxjOp8lMccEU+/JaIl5lxFZt9MYcwlxSE8FcbP b+33uPU/P9/D1RV1y3+HV/+KjCU/OLlCIpBrP07FL86UmNaOgG/4tX9P7v/1CIixfJ3h7vCp zLDgNUHdDf9zA2rzctDPhVEAgQiIsciEkAhIBCQCEgHWCIixsIZTbiYRkAhIBCQC/wGoRYL0 upqccgAAAABJRU5ErkJggg==</item> <item item-id="295">iVBORw0KGgoAAAANSUhEUgAAAJAAAABCCAYAAAC4sF+cAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAY9SURBVHhe7Z3duZswDIZZoHucGdji LMEe3YBpuMomGYZiA8E/kiVZQJJafZ5etBiw5deSTPRBN9sfs4DCAp3i3O8/dRrmrhvm6ftH UjGC5zz23dyPz4pzj1MaBWg1Xje0iU5IzHPsVYuoQYAcPP2sXHiqVft5J0/zUOmJmwNoGrq5 2vE8x7nvFs8V/u3HOQwC7vrHcQzU1QPS/XATG14vDbfEcUZ/XzC7tslYOKC3BZDLeehZw+1G nO/giXIKMMfawucCRrkrKxzh9eJwQx1fhiEcr7u+NCdqCCA3cbqEuei9/Govh8YVgMWjLP0Y KA8Ewueg2e5BHff8UJCma0UeytoByE2wxvssgcrlTr1LvvewErp8N6FECHiO47bj44awZIIp SKPjRH8RP+sgl5ipGYCkhsntm4eMOcgbvHdZAJp2L+MhwzxeDUDUzjE9Xu4vGqeFC60RgPTh Czb4Okluxe7hic6B3JWkAEnhwfA4+osnejJbNQLQYjgivMS7p2Snhfr0A4TdA8WP5TBQBABt Oyk0uaWOR6Tw7jsN/MccbQAkdMvg6qSSVjAHUgLk71mYzNJxqr+FPbok3BtAnIcdvg0AQwQN chzMgxieQJQwQ4Og+lsIYoJEuhmAhlMePScP7rKweDzjWXdqsiQ6fI702vKnDy6TnCt6qLm1 PSIu1V8YIvNAqV2W1XwOQGx39dUNDSADSAWwAWQAGUAqC6QnP37nn9/HqZf8ny/2+P0z//zl jdCSaJ6dmmplIcxCmAp4A8gAMoBUFjCAVOYzD2QAGUAqCxhAKvOZBzKADCCVBQwglfnMAxlA BpDKAgaQynxv90C5GiAuc4ir6wKlgWrYhZNv+zWe0nGlfdTqupLzJdXwRXPxC+tP/ynD17FE Azmp2FsD1y0AMXRa0RgY7Yu6rtSuVN0034CVHmjzBFOovuTXxq7dA3RFUGUdUP6ZifL446Vb 3gGQtISU0b6o64LOp6oYaUv5FgqA4io6X2gukLvm3scxBeil/ECTaj2Groo5/rzZHQBBnZNO qEDXBRfxc1QXtBVVAEXRJ6Xc/3tXLKTlmvDrQsCBgoa9MBd6C0DSkCIM9agHkqpRofVWlQMB 9IadTLxG7m1g+vkA0YXmddIb75NvLmnVwoN5idDGWwIdrPjdPtpc+joPFI4rC0OIB+GGsE31 IBX30w75HIDY8Ip0Wmvf3Bs/eONOF1m8CxsmehFy7HULQFwPtBqIk+/Qg2dP4rueA1E6rmwX X9B9MZLsDAbI1hxikjbXAvR650y6Q4NzoF1PdWztAc32awcn3fUxrXNHCFMlzGAGnr9DKPTm 2f0w+zNtFDS7FqDXjfKQBe7C1o3h+kq5LQEH3fWX78IoHZezgkT3tZqZ0HVFmxpuGKSBqgSI vnDugdOMv34n9fXPgeTm+9gzrgEo8xAwLLgXKtgreE3KJVa9I4Rd0vH3XPQagPyGYXvDlg9F 2vf/7cap91ps8xpAbFP5hMO08dm24ubnQKL5+rjGBlA6JeaBRJAaQAaQCJjcXFU/Zaju+dkn mwcSzY95IPNAImDMA1HmMg9EWSg6bh7IPJAIGPNAlLns9S6UhaLj9noX80AiYMwDUeayHIiy kOVARQsZQAaQyAKXhTCB7gut+w7egk/WnlJlMFR/6nRjtgsDANJ9qcddkKHjet13n/jwB2dY x4WXslJF9lR/6nVjBtAVAAlKTN0E9MOQfD8sFx0US18oPR3VH4VuzADK4h39sZWqEAlN8l7b hJScHqW9RAkqW4wQ9Dy4p0Y3Zh9byWiQfcKIBxMk3XH/t4UtpEY6FAaUUiC+HGrvbdKfat2Y zFana+N5xr+/lcQt072DdV8+dO3f5MgAynMWDxNCkQwgqD+VujHXbzK5PyzUDEBeXlQwDFsy hOm40rLcFCA0JCGVndwQVtSVyXVj0oXWDkBeGaL76K7X+SOlvKQqQwoQR08n1aGRujG5jRoC yO3EFZ/9Vuu+kBCGvryC2MZT/anQjUUhmI7jvkVbAHmG6l4+QHoY6NFB5q3KOq9c2oQ/SGT1 R6Ibq1TGNAfQKnK8SAHLXLWf1wx4rxOzkw0C5CxjEB181MPTZAg7DLeHB2VizVypn9fsnPE3 6oE+bzq/tUf/AKE6q3CfzY2FAAAAAElFTkSuQmCC</item> <item item-id="296" content-encoding="gzip">H4sIAAAAAAAA/+zdCZwU1aHv8QKDS/I0iSQ+jShBRQniKIsbOigKosIQVgUFRBRERBA04hbB eE1uSLxZ3N6Ymxf95H3yXhKT3OSaxVxF3PeAIDDAIDD7wiI43TN6k8w71aenpqa6qrq6u7qr 6tSvPl/b09VVdaqqp/+cOtVV3Us7QtMOOfy6z2iadnCO/thH/Pe53lq69D9633Zm3WD9lUs/ /1XtXTHmnV4/66W/qo/X/z9I/KePeUf810s7Vh+lPfXC4Zp1qPyS9v2+AKAaMfz2GO2pE3VP n5guFOJpV4Uu/4TCFLBw9+16uvDZ3ffqCW4KfFOyc6290HVzX0Jhax7mP+biflIKXLcC3tNC /9gKfsd/nir85Ph0vq07Tts69PBt447cOe0LW6/4bNXoz7jYMUpzV11eTKPc7CjPopCqsy/c fd2Kud8KXHihsxemuG9KAX9OWf+iCvxjDnLhxdzwAt+Uwv+c1p+rPT9ETzlzvtVPOXrfomN2 TD+85euHuThwuQYAoSUibs0Z+kGTOd9kuFU17wGA6JIR55Jv63bsXL9j5/sf7trQ5X076/XJ dkvrduyy+NuH9uSr77p6p9rq7eqdACC82eWt7bq3t+98Y/uO17d++NrWHV7y7e2t2929VWXv 9aptLl4zeXWL1cubdeZyT1vXAoiZlzZvMzhOtmnrmi5e8q2robVz3YcfSumnhtTI93Zk5yWN ZQi/WW31xnaLHQDi5rXtHxpe3b5DMj99ZZvuD6+90dnZ6SXfNtfWC1vq0jZJtd02m3xQU2ex 0WRDTa3F+zV1ut21Ov1p7frddcI6aVdtWs8x7+0GEEN1wju7arvtrNN1PX2ry396zrfq5mbh w+YWQZa3N7VIlrKwrbGHKmebG5tsbarXfVDfaNiY4f06AHG0oa5JPK5PPcqCsM7kb7W6Z19/ y2O+1bS0Gna1Snu66E+Nax92trTu6GKMrG5uFWRhu2n81uZWyRgjc29LY4sob27Sx8vEMybY 1NgsyMLGhhZBlGXBIKc0PzWPN79qecl2jGWkU6UAArS+Xvd+o06W//j62x7zrXaPVU3r3t17 9khiFkt55569ovChKf1E2XgU0VfdskcQZRl34nFriihvS8WdkXvycbM4Rhaa0mX5+EFT6wep MbJgeSoLlqfuL8lMc5oLQDhtbGrd0NhNptyfPOdb/Z69TsyhZ846WTA183rkmygIRjNPZJ2I uO2m3BNZty1VkI/mll534jW1phMvVTAzRmYWjLLLSy5LBhAS4iBOhpuFTLk/vvGOx3xr2rev ac/eLvsaumRmnZhdlrWeg2jvGY/mwWjXyawzt+uMpl2u+eaSV8awOVu+EW5A+MmI0zXqzPn2 i78+7zXf9u/vJrJO2L+/cf/++n1pRm6Yx9Tt3SfpyWZ63LV3n9HGk0ey4lG26MyJV21qv4lH YWvLXtm0k3XJdTMKlqeyYHnV9iXzNC4vAQiVzSabTGTi/XrNS77kmznWDDLW0o23vfuMfNtl Gi9iTTI352S+aamDViPZjAlExMl8s6ScmSX9LOXMlzLzzTIjgBByz7ffvfRaUfPNYMk3o/1m 5JvRfjO34uSx6jaTVLjt3dp1MsLLHnDJKOILiDT3fPv9K16//+Y934wy+QagqNzzzfv1C3n0 vxWSb5L5+DTvfAOgqtzy7cT8883L8amUU74V3n4DoCr3fLNen0W+AYgO93yzXp/lnG+tH+03 azHHnUljBpl1tRnMWWdmTjypunWf2bYuWwHET8+mTtrmnj5o2SNYr89yab/taW1sbalvbpLq mprqmrs0NdV22W2yy2Rnyg6TaqlRt71Bt62x29aGRmFLQ5MtefV96gJ8ADGysa7RbINZbYOw rrZhfV2a9fos53zbWVe7beeHW6u3S1u2bd28tUr4QKiq2li1ZaP+qBfWV1VZrDNsqXqvp3dN 3t685Z1Nm9/eVKXbrHtzk+6NTVssXv9gy2sA4urVjZtf+WCL2aubql7+YIvwyqaqV7dslazX Zznn24ZNG996951X33hdeunVV1985eU1L7+ke2mt2fOGtS8Kf1271vBcyl9eXPsnV8+uMbwo /OeaNX9Y86Kt/3gBQOz8rqffPr8mTTx98aXfv/yq9MfX33r+b+u95Ntj/+cXD//kf69+4knp Xx974tuPPP7QI48BQEiIUBLRtPp/PSn94Kc/E8HlJd8AIKLINwCqcsm3smHDASC6yDcAqiLf AKjKJt+GHUa+AVCAnm+jtKdPIN8AqIZ8A6Aq8g2Aqsg3AKoi3wCoinxTldbZaRb4+gClR74B UFXe+dapaciqwHfH3PrKbIxZCi6tNdv2W9a5gKij/RZmRgSVZaSZbcH2qWXKrLMDyiDfwiwz 2bwElHu+2S428C0FioF8CzPzIaRlpFPBKawyk812mYBKyLfQsvSMZfaSOXWdOfW2OcUg/W9Q FfkWZvllTtZ8y3vJQLTY5Bv3R4om9zOhXtp4gGK4/xsAVZFvAFRFvgFQFfmmKu/Xn9IXB1WR bygj4qCovPOtZ+sA9gp8d8ytr8zGmKXg0lrLekaVfIOSaL+FmWZ3uYFLwfapZUrbubIewwJR RL6FWWayubTfLHPZjnEJTPIN6iHfwsx84GkZ6VRwiqnMZMuak0DUkW+hZelPy+xbc+pwc+pt 83KUGvhWAz4i38Isv8DJmm95LxmIFvJNGS7nT8u4/hSxRL4BUFVmvlUN5f5IAFQg8+1p8k05 lq8aB74+QOmRbwBUlXe+Bf/be1FQ4LtTguuzOKkKhdF+C7PSXJ/F9QtQFfkWZqW5Pst2FkAB 5FuYlfL6LCIO6iHfQovrs4ACkW9hxvVZQCHIN2VwfRZgQb4BUBX5BkBV5BsAVZFvAFSVmW/c HwmAGkS+7RilPXUC+Yaocjo17PR9mKyX60IZ5BuiLo98I9ZignxD1OWXb4GvNkqAfEPU5d1+ oyGnPPINUeeSb05Zx6VqMUG+Ierc229ONyig8RYH5BuijoyCE/INEZXZjcaN7GBBvgFQFfkG QFXkGwBVkW8AVGWXb9w/BIAKZL71vH8I+QZABcrnm+3PTjmNL/D7nznV5T5jHtW5f42/wO+1 eqkr84qnUm6Xv2+Ze9nHumwvEyvebsz8Lk3J6vJru3Kidr5Z9mTW8Zkjve//XOuyXaz39zrr Ghp/Y+bJ8tgu73W5rH8x6nLf0mLUVchb5lKXxwD36y3zslF+vWUuC89vu3IVk3zzWLbd4bn+ AXuvy+mjWkh1lpGZrYLi1eVxAh/rctnSotaVx6Zl/ZNzKhfjLfMxt3Otq8DtyhX5lvnnFEi+ ZdabX3WWkaXPt9JsV+bCS59vOW2a97pi8paRb4XLI988vmWF1+VSYyHVWUaG4cNSjO3KdT/7 sl2FvGXRyrcSvGXkmy+Mj7ntG+ry9+M0o191Zb7q46aZR1omy2O78qjLdpf6W1fmwv19y1yW k99blvXPw2lK398yc3XFfstcFp7fduUkDvlmuwNtx5tHuv+FF1iXMaYY1Rmv2k6WR0V511XU 7fJl0/KoK++3LI8/j2K8ZVkXXpq//Ly3KyfK5xuA2CLfAKiKfAOgKvINgKrINwCqikm+dRbz HA11Rb066opWXd6JfKsepT1Fvvln9aOPU1e0qqOuaNXlHflGXSGsS+FNo65SIt+oK4R1Kbxp 1FVK5Bt1hbAuhTeNukqJfPOdqp0e9L9RV0jq8o58Y64QzhWJlWSuwucqNvKNuUI4VyRWkrkK n6vYyDfmCuFckVhJ5ip8rmIj35grhHNFYiWZy4z+twCF/8+DuSK3ksxV+FzFFp98Y2BgKOoQ +Mc8kHzL9Q6iud54Nuh3lYGBQR8CT7NA8q0s4z7PLvGV62RelPhdXv3o49QVreqoy5e6Ak+z UuabS15lncb7ZDnlW+B7G0Ap6fdHKi9F/xv5BqDESpZvZQ4/Fka+ASiSUuZbWc+IM/9MWJld x5rHybIqcb6petEf159SV0jq8q4E+Zb1hyPz/qFGj2i/AfFU4vZbIMg3IJ7INwCqIt98p2qn B/1v1BWSurwj3wCoinwDoCryDYCqyDffqdrpQf9bnOvSOjWzYLfLOyXzzekS4MBXDIgKl0Cz zbdwUjLfLMg3wJ0lzdwTLHr5dgL5BsRFTmlmO3vgm+AR+ea7iHawhKouhTet9HUVmGa2MhcS 6v438g1QQjHSzLaWwLfUC/INiK7SpJltvYFvuxfkGxAJmVEWYMiQb+FB/1vk6lJ40zzW5UuU FW+76H8LD9pvCLNQNcy8r3Pg6+AF+QaUTBSjzGlDAl8HL8g3wHe2ORaVTPC4gYGvgxfkm+9C 2JkTuboitGm55lhUtivrVge4Xd6Rb4AXyjfJ8tghga9DVuQbYEaOed9Rga9DVqXJt8wfMHX5 YSyX8ba/n+V0txDzIBrPRr6ZG9KU41l2CjHzZzYM6xnmstO+CpUS5JsluNzjy3Yul8m8oP8t cnX5Up2XEFN7Nxa1LstuDGfEiXyrLteeLsL9kSy/y1yWkW9lzpnmfTIvOD5VmPcQg+97PvB1 yKp4+WbaD+Qb8ueSYJH4iKkqEju/NPlm271WRr4hW3xF4kMUT5F4a0qQb2UZiWQ05MwtusyO NY+TZUX/W1B1Zc0ul89IyDeNumLe/9ZzV+Rw/jTXybKi/eY7L8EViX/fUYjwv8WlybdgkW9e eIwsgguG8P8lkG9KyimsiCzkJ/x/NuSb74r6xa0Awypy33+jrmLXFf6v+JJvHhWeOTSloJjw /63GJN/IHMB34f9cxCTf4tb/BpQA+RYGket/oy6FN02luuh/C4TTXUQCXzFAJdFsvx0e9Xyz IN+AIgl5xJFvAPJGvgWO/rfI1aXwpilWl5Fv0el/I98AeEL7LXDkG1Ak5FvgyDegSMi3wNH/ Frm6FN40xeqi/y1wtN+AIqH9FjjyDSieMEcc+QagEORbsOh/i1xdCm+aenXJfKP/LSi034Di of0WLPINKJ6Y51vm7165/zCWy3jb389yuluIeRCNZyPfzA1pypQpF1gW+RbOg9Oy0rbfLL9f bxtflomzTuYF/W+Rq0vhTVOvrpD3v+0YpT19gv/55vJ7zU7T8Pv1QOSE/Pi0SPnWcw90t8HI N0Al5FsewUW+AVER2ogrfb6VmQ5UzS06l+NZ98myov8tcnUpvGlK1hXaUwylPz7N+tTjXN7R fgOKKubtt2CRb0BRkW8BIt+AoiLfAkT/W+TqUnjTlKwr5v1vwaL9BhQV7bcAkW9AUZFvASLf gGILZ8SRb75TsoOlxHUpvGmq1kW+lYzTXUQCXzFAVaHNt+pR3P8NQEHIt6CQb0CxkW9Bof8t cnUpvGmq1kW+BYX2G1Bs5FtQyDcgnsg3AKoi33ynagcL/W/UFZK6vCPfAKiKfAOgKvINgKrI N9+p2ulB/xt1haQu78g3AKoi3wCoqmT5lvl7pi4/p+VlMoPT3ULMg2g8G/lmbkhTpkzZ33Ko lD7f3OPLdnqXybyg/y1ydSm8adRVSsXLNyOXzMr4/XoApVKC9psl1sg3AKVRmuNT2+61MvIN QDGVPt/KTC06c9Mus2PN42RZ0f8WuboU3jTqKqUQnj/NdbKsaL8B8cT33wCoqpB8sz09GkLk GxBP+eVbmNMsE/1vkatL4U2jrlLKu/0WoYij/QbEU4H9b5FIOfINiCdfzi+EPOXINyCeCs+3 kJ9cKKP/LYJ1Kbxp1FVKhZ8/DXwTMjndRSTwFQNQSoWcXwh85T0i34B4KuT7IeE/MpXINyCe fDl/GvKgo/8tcnUpvGnUVUoF9r+VFXDZe8nQfgPiya98Kwtxjxz5BsQT+QZAVT5ev0C+Sap2 etD/Rl0hqcs77o8EQFU+Xp9F+w1AqBTe/1aW0REXNuQbEE/km+9U7fSg/426QlKXd9y/F4Cq OL8AQFXkGwBVleb3691/6S/zqZfJDE53QzIPqx993Mg3c0cB5dCWjafUFa26QqWU3+/NvN4h M74sE2edzAvab0A8Fe/6LJffo3eaxqXs9JIX5BsQT6X5fohTM498A1A8fuWbl8yJSftN1S8d 8f036gpJXd6V8vxpZnvP/Q5yHifLivYbEE8+fr/Xy2SWMbZPM2d0nywr8g2IJx/bb1y/ACBU yDffqdrpQf8bdYWkLu/INwCq4vp6AKri+lMAqqL95jtVOz3of6OukNTlXeHXnwa+CVnRfgPi yZfrF8LG5gYimgZbgb9ZQPH4cv+QMB+cltF+c985QQcsYYvi8ev+IWGOOPrfolJXUHGq2G5U vi7v+P16xBbtUuWRb0CxEaFBKeX9e4NCvkF5gRzXhx/f7/Wdqp0efP+NuiTbiFOv/y0qaL8B PopQE458A5AT8i1UyDfAR+RbqND/Frm6FN40Beqi/y1UaL8B/opKEy4z36rINwCuyLfwIN8A f5Fvku0F+Fl/TsvLZN272sOw+tHHjXwzdxRQDm3ZeEpdIaxL5JtTXaFSgvab7a+aljnEV66T eUH7DfAX7TenS7eU//16QHnkm4VT1pFvQOSQbxbxyTcFvuAUeF0Kb5oadWXmW8z73zIDykgt pztkepws+3tB+w3wFe03Q67nT3OdLPt7Qb4BfotExPH9NwB5IN9Cgv63yNWl8KYpU5cl32Lb /xY42m+A72i/hQT5Bvguovm2ddhh5BsAd5HJt3LtKfLNP8p0sARYl8Kbpkxdkel/I98A5Ij2 W2B73mEIfMUAZZBvIUG+Ab4j30KC/rfI1aXwpqlUlzni6H8LCu03oBjC34Qj3wDkh3wLA/IN KAbyLQzof4tcXQpvmkp10f8WBrTfgGKg/RYG5BtQDORbGJBvQDGQb2FA/1vk6lJ401SqK4r9 b9wfCYBHIW/CkW8A8ka+BY58A4qEfJO8/36Wy3jb389yuluIeVj96ONGvpk7CiiHtmw8pa4w 1yXzzVxXqJQ+39zjy3Z6l8m8oP0GFEls228ueZV1Gu+TeXoLyDegOGKbbxbkG6Ae8k2KT76p 9AWnoOpSeNMUq8vIt9j2v2WeF5BlY6Tlaa6TZX8LaL8BxUH7TfJ+/jTXybK/BeQbUBzkW+DI N6B4whxx5JvvFOtgCaQuhTdNvbqMr8CVbLu8I98AFIL2W8D7n3wDiiZa+cb9kQB4F/J820G+ +Uq9DpbS16XwpqlXV8j738g3ALa6vpNlo3sa2m+lflPsh8BXDAinrCFmO0u6QL4F/N6Rb4Cn xlg+CyTfAkX/W+TqUnjTilqXS4LlHWKeKtU0+t+CQvsNyggkwbKvlRZk7S7INyA83OMrnBlS FuIuOPINKJmIxlf27SLfAtz59L9Fra6IbpqX+IridmXfcPrfgkP7DYXLml3RbX35sHNovwW4 88k3OPCSWjHPLk+7kXwLcOeTbzFDapV6h5NvAe58+t+iVpelOu95lV9qqbob6X+zyTfuj4Ri vRG5xRStrKgIc/vNen8k8g1Z9icxBatwRhz5pra8s4iYQk7INyfGJ8d46jTe/LR7x3oYVj/6 uJFv5o6CUpaLETVesiio7S2wbDylrkjURb7ZssSX03inybxIJVwA2UKzB/FBvtmyzbTMstNL nvZ8jI9PgdIg32yRb4ACyDdb6uWbkl9wKnFdCm+aqnWRb05kXmV2rFnGO02Wfc/TfgNiKST5 ZptaHs+fZkW+AfEUhnwrNvINiCfyzXeqdrDQ/0ZdIanLO/INgKoy862KfAOghHS+nUC+AVAN +eY7VTs96H+jrpDU5R35BkBVSuab011EAl8xAKWkZL5ZkG9APJFvvlO104P+N+oKSV3ekW8A VEW+AVAV+QZAVeSb71Tt9KD/jbpCUpd35BsAVZFvAFRFvgFQlV2+HUa+FULVTg/636grJHV5 J/JtR7n29InkGwDVkG8AVEW+AVAV+eY7VTs96H+jrpDU5V3J8i3z95qdfvjPZbzt7wM63Q3J PJh3PmXKlItXDpXS55t7fNlO7zIZADgJMN/KnDPN+2QA4IR8A6Aq8g2AqkqQb5nnBWTZGGl5 mutkAGArhOdPc50MAGzF4ftvAOKJfAOgKrt8U+3+SADiSb8/0ijtaaXv/wYgnsg3AKoi3wCo inwDoCryDYCqyDcAqiLfEGlczwIX5BsijXyDC/INkUa+wQX5BskpKGzHO91SPnOCrLdEcJnS abFlDneVcbmJFjEYT+QbJO/55nQbeS9Ls0zjceGZdTmVs86LWCHfIHnMN6dEyi/f3Ee6LDNr rpJvKLPPN+4fEkclzjcv1WUuMzO+yDe40POtXHuK+yPFXoH5VuYaTflVl0fXH/kGM/INkksn v5fjxMyy+/mFvDvoLLO79MXZlhEr5BukzHQyj888O+k997JW5z6NbdW203gZj1gh3yD5ckDn dHjopcaibg7iiXyD5NJGymMhvnw/xK/NQWyRb5Cy9ph5XEiuS/OlXpc1QZyRb/BXSIIlJKuB YJFvAFRFvgFQFfkGQFXkGwBVkW8AVOWSb1XNewAgusg3AKoi3wCoinwDoCryDYCqyDcAqipx vlX+v2c6OzsD32oFsCeBrMi3iGJPAlmRbxHFngSyIt8iij0JZBWJfNMyhsD3W+Dy25NArOSa b5WeB/vZc/xUyjRbu3ateFy1Smc8jUnKnTlyiVD4ngRiKKd8W5DLYBtxlc6fylUZeSXGdKaG VfqgmayS4122q3K45pGPO9Mpi/JeMbG0k6f8mHwD8uM930Rkvblpi0dOEVeZe/vNKd/c22+V w9PZKIY/vPZGpaYNHz68s+7dfe9WmvmYby5Z5LRi7oP7At33pNhtgf9pAYHLNd80kRSVWrqc emKbezLcxKNlIZV2n0rZcnN6NPrcjONTLwenJc43j+FW5TnfjAWKsu1K2u5JSYSbVGXXdUk3 JuIjM9+2Dj3cPd8WdKYz7TP93hIKz7esVplzTQ+6VVlnyYwRPYsrKy0R50u+eQ832xV79tln h5sGGW7X/urPMtxyzTdTssmUc4xT8g3KS+fbCV7zzfvxaa75Ztv/lnWME2uMVGq2EVd4vhlZ lN+KiV0kM80YxFNzuOWRb+ayjLdVPQfyDTGRU77len7Br/ZbHnrESKVmFCwR5z3fRCvLvHXi aVXu4WZZMbGQSy65RO4QS8T1yOYcj0/NjIij/YYYikv7zZRyMuK855uRbJZ2lxh2NTXmFG6W FZM5VtUz3DIjrrB802TErV271tx4I98QB97zrcoUcZYPu+WDbz6FallCZbDtt87uA1Xv+ea+ sYWsWGnyLRVlNq048g3KyynfqkxHqS4fefNgmb0y9/OnTo/u7E9TmoMudYiaNd9k481IIeMU gLGx8kDVu8x8swxGRT7mW+ob0dYmHPkG5eWab5L8yGf2uXVma9JUBtJ+syRbZ6dINo/5Zkly S75l3V73FStZvtkO5BuUV0i+2Q5551vR+98ywi2nfBueMRSeb8b5hcxwEy/5lW98/w2xFZf2 mynZcvp+SFHzTc5uiTjx1PLPB/kG5Ccm7bfMZMs138wp5317s65YZ8b3e80tt/zyzT3TyDfE hy/tt86ebTmXGStL2H7LbHFlDt7PL1jyrSp1IFng+QWPQx75ZsxrCTTzYsk3KM+v9psxJo98 W1Wc86d+3T+keN8PKV6+0X4DqvzON9G2ca+uMoJ39XH5fm+ujbcqzw3LrI3MKO5JoMTyzjfb IWt1laXqf/Od7fVZefDesHRvZLrsSQBSZr5tG3FE2O5PrhLyDSgZ8i2i2JNAVuRbRLEngazI t4hiTwJZkW8RxZ4EsnLJt1y/psXAwMAQqqHE7TcAKBnyDYCqyDcAqiLfAKgqp3wrxgXa4bno OwzrAMBHtN8AqCrX9pvtGGN83u0f8ywuS3Mq57R880jz8p3WwWmtLGMCfysBWNjl22H55Vve 4WM7r3va5FqF05p7r9FpGpINCC2Rb9su0H45wOd8y0lmI9BjXd5rJN+AGPI33/LronfKN8vS wpBvlhXLaR0AlFiu+ZY1c4wpva9D1vab7QQ51eK05pblu8ea+2oDCBsf229VeZ1fcM+xXDPH Sy3mkZnLt7Qeq3rmnu1cuW4ygNIoMN/cx3uRd6sv71qismQABfLx+DQ/Lu03H2WuuY9LDvxN BGArp3xzwmccQAj5km8AEELkGwBVkW8AVEW+AVAV+QZAVeQbAFVZ8+0r2q4LUsZr6y6Veq0f kzK2t6Mx6WnExHJ6o4Bi63qbUDy9UGTFeu9ElFWXaS8N0378ZWu+vVuuT2AkW9WVmlRd0Uva NUmrrdBqJqXtntpdlsSrQNTtugzFNF6rHW//UvWlWvXFKeVp20Z1Pb04TY4Rj1tH6qrOSz2e rRfEo4iylvP0fPueqf3WOj71zk7TGmboWmdoe2Zp++ZqB6/TDsw/RGpb2O1TYVEvi3/M1z65 sZdurobi+TuKLPC3WHGzUjt5ltYxU0tco308Q0terbXP0IlC23StbXLXoyx0+Wiytn+C/ihf /XiCbv84K9t82zdDO3ht+vHA3EOE5PXpKPtk0aHS3xen/fcth2T656Lewqcy/VA04t8RwC// vaBP208W5Pozyn/fWy/mEvMWuJCDlQvar+8jQ699dp+Dj+W+kD31H/14wYGJfWTWtVxmzbca U74l5vYSsfbJ/N6CTDaRZv9Yephuedo/lx1q6Fx+SNqSNJlyBXrw2M8KviwKgIvETxcc2Lb+ lasG/emiI18Y88X/Gnv0c2O/9NyYo58f2/eFy/quGfuFtWOPfGnsZ18Zc/ja0YeuveiQVy7q teYC7bmJ/fdWrRPzFr4QEYwiIUWLrq1ywfrN+waN+eORp//ii2c9c/TQX39p2C+PPuuXfYc9 03fYb74w9LdHnvX7z5b94fAznj108O8PGfT7Xqc9q53y2/4XPrPugxYRcbJFl9l+M/JNhJvM N9lOsCTbP+/I4BBxhUoNIt98W6BaAv9EQCWiEbVzzqCdX++7c/rxNdcM2D1r4K7Zp+6edUrN nJNr5gyomXNi/XXH1885pmF23/prj2qYcUTDtM/UTOy1caz2l4n9xefUl4XIfBMLGXTFe33P e/f4Ue8OGLNu4Lh1p45bd8pl604et37AZe+fOHbD8WM3HXPJpr4Xbz6qfNMR52/+zNmbep31 vjb45f4X/losxEu+ycabCDdxvPnpUj3fZIjZ5JtzuBW4w418C/ytB5QnPmt7Jx21/9p+H90w 6KOFZx64ZfiBxSMOLh568NahB5eWHbxt8Me3Dfx4af+2W49rW9S3bcGRH8897KNretdUaM+N 1Ix8K3AhsttTFI46t6rfpdsHTdhx5pQPh0/fOeLqXUOn7xp61a6yq3YPnl4zcGpd/0l1x02o 73t5/ZGX1h82qq73ebu0M9/XTv6VmNfojpP5Js+fbuhvOj69To84kW+rVq3Ssg3pfJOBtriX zrTT5AGmwTLefUoj39xnz/qS7QROKxD4nxnCI/A+sVLSk+GqL7XNG9h2y9C2Zecn7ihP3lGe +MYFiTvPT6w4N3nXsPa7hrSvGNh+Z//25cd1LPli+8LPtc3t0zC195ryXrLpVfhC5OkGUfjS hTsGjt81dNru86+tLZ9TV35d3QVz6s6fU3/unPphsxuGXNs48Oqm/tOaj5vU/MUrmz83pqlP eV3v4Zt7nfo7mW9G/9vrQ9P5tvlk/fxC43j9nKnMN9GEE/kmptdSOWP7KAPQaKoZ50//kTqF aukAlAFijJdlKXNKj7NbFiWfZi7TMq9lpGVGQAr8BG4p6ckw89i2hWVty0YmVlzSaTd03De4 455TOlac0HH7lzsWH9V2wxGNV/V58aLe5qZX1oX0WGDPhchzqaJw7MUflk3ePXJW7SXz6p59 qU2MuXR+w+j5DeU3Npw3r3HY3KbBs5pPmdkixj/9l+RRlzcfcXF9n3O29D7tP8QYefK0abSe b28O6ZFvIvRaJ+v5JiNOj6/Uajg96hOkIk4/B5E6GZH+25irpROj61xwdxD1LLu85HvZy8RA POnRNPvEtiXnJO68JHHvFbZx1P7NMzruGdix4sSO2/9n+61fFAeYjTM/t3b0ocYnPXMh7fdf mbz/8uTKsclVo5MrL2hfebaxEP3Vngv5eIb+lQ9ROHHsznNm1Ihwu+KmeqP2sQsbRt/UeMGN jWfPazpjTosxXjThjhzT8LkLthx6+u9lvokcE/kmDkjNx6ci3+pEo266/p03GXFG+83pQHVV ahAFkWyivSeJYDQSQ56qsIyxvOr0ku9lLxNHyTUa4Bc9XsRx5e3liXsvT66aaJ9v953Rcfep 7Su+2n77ce1Lj2m7uW/T7C+8OEb/ZDktJPnAxOSq8cmV45IrL0muvLB95TnGQvQF9lzIgena gVS+iYPT8jm1l99UP3Fxw6RbG4wVuGRh44XzG8+Z12SMEYeox0xo6juu7gsXVX32DD3fRLLJ cKsu0/48uDvfqsv1fKufnv5ar8w3o522du1aEXWWx65404xkMzZTJsbBazXJPMbyqvHUHEEu s+Rd9jIxYBDNifgQH4G2Bacn7hqTXDkx+a0pyQenJr81uf2BiuRK0fq6NHl/efK+s9vvOaN9 xantdwxoX3Z8+5Jj2xYd23jdMWvHfb4z1fTKXIieb84L0fOt50IOpL67Kwqnf333mBvqJt7S MGVp49SljZOXdEdc+fxGWTjQ9o8B05qOn9R0bEXjsVfWHXPJls8P/YPMt90Xp6/PMvLtza/q 1zXo+Ta5+7IFc/stM9zEo9F+k98Eln8V+2Z0J4YoG0/FYH4qX5WPnT0H80gfy14mBuJJj6Zb hiW+OT754LT2f7mq/cHpesqtqkh+8/LkfZck77kwedeI5J1ntN9+avuyAcml/ZK39mtb1K/h +n4vXn60+aNtXkgq3xwXor/acyGtk/X+MVEYNq1m/M31025rvGpZ4/TbmkTKVSzujjg5nDq9 ccCUxn4TG/pVNPSbUNvvss1HD9f732pS15lWna33uYl8k98PMedbS1cTznv7bc/sQ9Jm6fMa idGausjLwhw4xjTm9ptlsrzHW6bJOqPt2oaWeJsAv+jRtOTc5AOT2x+6uv3bM8Vj8oEpyfsr kveOS949OrHigsQdI5LLhySXnpq89aTkLScmF/X/eNGAhnkD1lxxjJjXdiF6gjkvRH+150JE uNWn8u3cmbWTb228ennTzNubrl7WOGVJQ8WihnGmvrghV9efOrX+pEn1J1bU96+oHzCxZsAV m485+3fiJXEcKi9EXf817ZlT0/n2/Fe0Defo16vWTNKvPG2aqTXPyqH9Zg63ppndieG0J43B aYxlZNbxeSzTMtJpbYE40KNp+YXJ78xsXz27/buzRTolH5iavH9i4p5xibtGJ+4YmVg+IrF0 SGLxaclFJydv/mpi4UkHbx7YMG/gmvHH9cg300JS+ea4EPGqZSHytgaicOHs2pl3NM1e0TT7 zqaZy8UhasPEW+o7ew6nTa47+et1X51Qe1JF7cCv7x545abjztXzTV5fL9JM5Jtov33zqB75 Vn2lHqH10/WYyrX9JiJRzGXON0EsSrI8zZuxcI/j814gEB962tx9Wfv353Y8PK/9e3Pbv3Nt +7emJe+bmLxrXOKO0YllI9uWjEjcckbi5kGJm05JLDgpcdPAgwu/VnfD114Yf7yY13Yh4qnL QvSJey5Ev53IeH0hl82vn3tP07z7msTjtXc0TVvSaMTayFm1RvmUipqTxtcMrKj52qRdX5vw wfHn/9bINxFu4phUtN8y8612mr6qMt86vbXfmmf3lskmyHuPmCPOOB70641wyTcfFwjEh4ym jh8v7HhkUccP5rd/d077g1cn75+UvPvKxDcuTSwr17/1ccuZiZtPT9w0KLHgtMTCwQdvHlI3 b/ALE/pZ8s1YSGe2wbIQ/Z5UXfm28IHmRQ+2zL+/ec6K7rOll15fVz677pwZ3RF32sSawZNq hkzeNbhiY7/zfyPzTTbeLPn2zrnahgv0fNs9VV/Vxms02WyT7bS1doPRfhMTSzLcjI01Dz6+ ET4urRgLhCImx4j4CCTvr+h4YklH5W16On1/Xvu3r21fNS15b0VyxbjE8osTS0e23Tqi7Zaz 2m4WDbAhiZvPOHhzWf0NQ56fcIL+8bFbSPZ867kQI98qFjUs+U7rbatbRcQZE1csrB93Y93F 19WNvLZ2xFU1xvgzptSUTdk5pGLjCSP1fBPhJrw5RM+3X5ySzrdfH6tfy7DhIv0+lvrtK6el 801++LuacDaDDDjbfAMQFZ2pc50dP7u74+n7OiqXdfzoJv0o9aFUL9y9FYkVlyVuH90mIm7J eW2LR7QtHtZ2y9ADN59VN68r3+wWkjXfLAsx8m3K0sa7f7Tnvkf2LFvd+vK7STFG74W7tVFE 3GU31o1ORdx5M/VW3DN//Xjo9Jqzpu4cMtEm34z2m22+yVMM5m/zOl2FSr4BkaZH07dnfPKr 737ym4c7fr5Sj7hHFrX/243tq+fo5xq+NS25anLivvGJ+65M3DUm8Y2L2paPPLh4RO31g//r 8mN75FsBCzHybcYdTd/96b6Hn96/8rG9y1KtuBu/2TznrqaZtzdOW9o4+daG8Qvrr1xYP+aG uovm1o2cJZpzuwZP2HDsOc+45NtLw/Q7k28Zp22bqu28RqsTeTVHa56jtVzfy9B6/SGy0Dy7 t/6YmkA3q0e+EXElIP4NQlHtnhojIhnafzj/k2ef+PTPT4qA6njqno4nl3c8dmvHjxe2/2B+ +7/Na3/4+vbVs5PfmZl8cEry/gmJFZceXHJu7XWDnrvsy2JeXxYiWlYy3+avbH7ilx89+cwB kXL3/GjP8u+13vpQy8IHmuff3zTvvubr722evaJp5h1NU5Y2TFhUf+kNdefO3D3oyg1fHq7f P+Sdc/WutszjU5lv68f2Fvlmjjg9x+alH1vn9xLSESdHmsLNnG+B/3ECBQo8c0qcbx3/fucn v/vhJ394tOP/PtTx79/oeGJJu8ilHy7Qc+n717V/b07yX2cmH7oq+a1JifuuEK2vg7cMq511 8muzzvrvPfW+LETPt0n6Qu58eM8Pf77/0V989NCT+77xcOuS74hwa1mwslmE23V3N825u2nm N5quWt44aUnDFQvrRRNu2PRdJ1+2/qzxf/qkpV6EmzgUFfn23End+SYKIt/eHq2tn9DLkm8i x4xkM5PjZcQ1Shyl0n5TSOCZU0pNjyz4R311x5O3t39/bvJfpifvr0jcc7l+mbw4kLx9lG7Z BULb4uG6RWe13Tho/+z+u24acXD7BjGvLwupSeVbww8XVO/+9Pbvtc69t3n6ssaKRQ2XL6i/ 5Po6cTQ66jrdBbNqheFX1QhnTa0ZVLGr/9jqEVPXb6ja/+F3FohwE0SamfNNPM3Mt50O+bb3 Js1gZF334WrGsSqAkKuf2aflsQWiEZX1pIBlEHOJeQtdyKMLaq7qI/5NERG3c0ofEXGftua8 EBFu747sI9tvIs3+PFjvf3vqy+l8q75Se2+8JsPNNt+MTDt4czdL1u2bq0l7ZqG4moGIM474 zId+8thENgjlEWv6l0mv1KQqky3jdBsv1W24SO9hk0TKyTabzLe61lbReBP5JmPNHG4y2Q4s 7i0llhziRLxq/vVA4ycFASCrPTfo5EnM5tm9hczOLkvvQXcAmuJOFETciYj79bF6shn5JhqH ouVmOQiVmfbp0kP+ecdh/7hdk7+zIMvyJxjkSFlIj0z9UkP3jzIAEZS+3z6KQ+5hmR4yOqRP F+k/jiAbSIm5vfR77V6TuiPltemfvhJl83Gi/IHmlunp+07IoxsRgCLi9Hu+deWbsH6CHptt Nx0qMk3EVOc9fXXf+oruuwN0D5/W+cPTuz06NM08EgCyEmEimZ8+dHKaKMvMMYiR5qcylwwy rO7pK3/s7+MZ+tVYMtaMfJMRJ4iI0xtgRrjJ6r6firIfjdQ9Vq574iJHcgIUj8vOhy8Cf4uV l7nDZbYYj05EFlnIVLyn798XH7rhIv0Ug5Fp5nyT3huvyaAzjmclcagrjnnl90a6vx03J32x gzx5KgV+ezTlBX5HROUZt4xAMVj+mK1/4al7XdanHhvHpy+S1X8Aa7L+M3+iUDtev1+lUJt6 qr80Xv/lBRFuljQT+XZI6jKr/w8AAP//AwDvJAiVEL4IAA==</item> <item item-id="297">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEwuSURBVHhe7Z0JvB1Fne9PQEjUDz41 mgfDJrKICEgARcGA7EsIsgVECJsSMbLI4oY6MuM4jgy8cWN8OG/ewGfex/dU1NFhnHEGWURQ ESds2SAhIbk392YhCGTDGef/qvqcurdP3+6u6j7dp6v7fG8+lXNOn+7q6n/96v/tf1V1nZbw hwWwABbAAligIgu09HnXrRuakFozfyuTTn00SK0TF7XTKYvH0+krpHXWs9L6wJC0LhwZe510 yVr1eY36rLZdoF71e/1q0vvXSYvUQBtsUNdEapwNzhuVFqlZNpjgf3W7jfHLZ6htQRpuv85U Pj14r1LwXm/rbJ+5SlonKBbopN/r74Okvj9BMeGox2M5o/kzAUIGPNt/eKNMvvYPMvUGkT/6 03ba84sib7lFZPrNKn1D5PCvttOMW9vpqG/ak9mX13G7NcEWLnXPPvb24ZuNmqBNrmGir4nT mbaT8efhV+Pnk14DHsQkzQudNEO2v+I/AxC1pj/UBaMJENIA2mbOGtEA2uaKF2Ty9f8VZBAG 0R5fFtFJw+htX+lOGkwmRb/j80R7YRNsggbQQL81oH23Sebc5rMBhwk4jL8Pv+rvottNoBJ+ NezQr5Ov/kOQWu9/SVpHjEdFXRBqHf2wtE5fqbrYnpJJl60LUuvDz40lDaVtr9ok2179+wBO rev+INteK0Eyn/Vr+DvzXu+r329/jfpeRVfmOF7b9iNhA181MOmK/xJSs2ygtabr1Phw/RpO k+b9Xra57GXZ9vKNsu1lL8ikizdJ66IX1RBL5/X8F4NtY9svVt15Jl2wvv1e7z9bdcOZbj69 XaezVVfdsU9Ia8bSICKaCCE1DtT6wPLupMd7Ll0zBiUNI5MCKFlSAC99MeGkLkxfHAkboAE0 gAY80cAH18u2Ol2ighA1tq97xXQKxvffv7qdZqvxIJM0UEzS8wN00nMFVJo0a6maP6CTmkcQ nlOgAXTYb6S14/e6IdQ6+P72ARpCKhIaSwZIHRCFYTQWJX1EES+cQtGT3ieIqKKkNFTktX13 0IgUmYASnozC++7JOdgDe1StAQ2WuGRAo+ESA5ZxuIQgE56wZoCjYaOTHgea8ch40gDSvNHp jbePR0JjG1WXXDAbzoAoAUKmuy7aZWegE2zX0ZOZKWdmyJmLNlTldfwOA1tgCzTQKA1sd96w zL11rQyv/4+eJz/rfHR+JiIpNO9vqLzPUUMxGjxqSGa7M5fL3K+sluF1v++93F96RrY7XEFI w0dNSghYs98/S2ufOyMQ2uvb7S9jIdSZgq2gYiKhMITGxo/M92PgUaQNpm6HUlxIFw7veN8d 7tbJHuHQnPfj3RR1t4W5G+Z1PDJwtMXcr4/K0uE/yHXf2ioX37xFZv/ZZpn1x5vlpBs2yTGf 2CTHfWqTHHldOx1xTTsdcsXGIB00b6Ps+6GNsvuc5+XQD6+Qx59+UXR+JjopJW89J0B1pWkA /f5ZNWbzl9fJms9cLCPXzJbV82bJ8NyTZOiSY2Tog8fJ0EVHBmnVBUcEaeU5h7TTWQfJiln7 ytLjd5dHzzpUnl/8uMxVIAoAZCD05p9KSzPnNZ8LRUKqfy6AkAqbtjk+Ggm1IRRENSa66YwR BQBS27u+i0Y94f5EDaG6N0rKTx0OkgYcHe5Y1w37j4FCe9hP/K+t8pUfvizf+PHL8sX/u1U+ rj5f9c2tcvnXtihnv0Uu/R9b5CIFqAv/couc9xeb5ZwvbpbT/3SznPzZTXLUxzfJwR99Ufa8 YJUcdMGDQURl7FxK3p3xHJ33+ls+Ic///Vfkd9/+hmz41hdl3S0fl7VfukrW/snlsubzc2XN Zy+V0U9fpNKFMvrx82Tk2nNk9VWny/DlJ8vQxUfJitkHy6Mn7Ck/mXmQDK99eTwS2v9X0rJB KBhE0t1xQVdcJwpSYDGwMa9m8MoMYHV1vaV1v9Xp7p6yukdmg+SYB+lagUrmCCgMissUaL55 18vyrX/+vXz5uy/LDbdvlWtVZHTlrRpEW+Wyv2qD6JJbtsicmxSIvrRZzvzCZjlVRUzHfnKT HHbVi7LvRavkjSf8tB01dOpDvy88bw2hmSuC86z5/GXyu+98U16481uy4W+/LOu/eoOKjK6V tV+8UtYoEI3+8WUBiNZ85hIZ/eQcGb3+PFl99ZkyPO9UFSkdK8+ed5g8fsq+8t1D3tgut+6O 00lD6E0qxUZCOlTSg0h6kEkXRje0zqoHN954o7RarbEU/Rz+buw93XDuDhzYYSs00DgNaOf7 /j/fHMDnlu+/LJ//+61yzW1bZd7Xt8qHFHgu1ND58y1ytop8zrhxs8xU0c8pKuluOh0FHX7t Rjn0ihdlv0tWyY4n/VvbmXd0Ukres/RKB20IjV7//gA+z99xizx36+dl3U3XyNovzJM1n/uQ jH7qQhm5TkU/V58tq688Q0U/M1U6pd1Np6KgVRccLivOOVQeP3U/ufOdO7bL/U7FFp0MhPSY 0ITuuAQIaeB0FlYIXtufk//GAAWEGteouqZn4jSpXzSQqgHtJc9UgPn0322Vz97RBtCHv6rG h3TX2xe3yFl/osaIPrNZTlARz9FqXOjwqzfKu67S4NkoB6s0/aNqbOgjL8j+lw7JrqfePQFC 0bxTHXPky9i8QxAaUVHN+q9+WtZ//bMBgDY/8vMgh5FrFXyuPEtBZ5YMfegENS50tKw6/3BZ dd67gu9f+tc7ZeXs6bJcjQ09cdr+8v3Dd3WE0B/d3Q6V1JOswVRtHfJpgSmQaKjcd999QQq/ N9vCrwGATNSUAqE4Y5Xt4Mw5yz6Pzr+f5+rH9XCO0LMRg+Z4zVphvI6vm+ZoC+0H9EQEPQb0 sU4EdOnNW+V8Hf3cuCUA0Imf3CzvvVYDaJMceqWCjgLPAR/ZKPt/ZJN63SQHqsdf9v/g8DiE OueOyzsLhGLzDkFIT0RYp8aA1t30sSACCv+1AXSiAtB7AwCtVFFP+G/lmQfI8jMPlCdmpUBo QnechpAOld7bmfutu+J0Y1MLF45HPu0oSC82p8ET96q/N5FQ8JBTeOHDzsw4U9hX7fgFMakf Tjt83jinWmQZbOfCqQ+wUx80iA3w9Wo/cMKnNwVjP7oL7rK/2ioXfnmLnPuFLXK6gtMpn1bj PqrbbYaaFfdOFQG9/aOb5G0KPPt+eJO8Ze4m2e/yTQpGqjtORUK7nPqzCZFQNO8sEIrNOwSh 4ctOCMZ+gi44Nf4z+skLu7IfuuRYGZozQ1a9/53dADrtLbLy9P1kxRn7KwjtJ99/9y7tcr9L DfNoxrxVTXzTY0ITuuOiENK07YJQsM7pWCSUBKJwJLTtHPXkrUrB6tkdGEUBFHbGBkhlOWgb GGzfZylXkXllOS/7Ajc04I8GDIT09OxLb2l3w53/JT0GtEVO+6yKgj61WY6+XkVBCkKHKggd oCC0r4LQXgpCb1YQ2lu9vvXyF+WtHxySnWfGQyictz6fS956v9i8g9Wv22NCGkKjN1wso3oW nH69/nwZuersLuDosZ/w38pZe8nKmW+WlbP2lhWnv1WePPWt8oN37zwOoXcoEDlBSM8V11GL BocCSN5IaBxCCkR6/SCVX7dzVlO+9dpCMSlKdLNP0nb9fdxfOO+074s4X9y5NFiTrpHtyfWP bbBNEzSg/cp71OQCPeNNz3ybo6IgPRFBjwWdpiKhE9XzQkerSQiHKxAdqrrk9lddcm+5YpPs OW+zvOkjm+XNKhLaW0VCe1+6WnaaeU/bmXf8ZVzeeptL3nq/2Lx1JKSS/ls15z3BjLdg5tsn 5gRjQauvVmNBHz0t1tcOnfEWGXrfnrLq1DfJqllvlmfft7csOGVv+eFhO3VDyERD+oHVrokJ OjzS4ZL+LYggCuosPKeWkwlPTDBjQlkioXY01AZRF4RSflMovJ9+Hzjzzv4TuvA628PH6H3M nzku7/dx58uS18D8dlLCDUUTnAnXABTzaED7icNUhHOGgs65aiKCBpB+PVNPSNAQUmNCR6su uSPUxIRDFYj2v3az7HO1gs+Vm2W3j26W3RWM9pj3kuyhIDTt5IkQiuatz+eSt94vNu/ObwcF EFJTrEfUzLfRa8+VUT0T7ppz1XNAZ7YfWv3wiV0gGj53fxk+ax8ZPv3NMjxrN5V2l5Wn7SEL T95DfviOaW0IqQVLW4cvkZaJhnR33NS/bH8X/BeFkHbsndVQc0dCF6tF+VRqqRVXg6R+8Kwb Qu0fQAv/mR8Ei+7XhlD3vtF9+vk567ka90Nn/HgdP+CHBqwa0H7iYDXRYObnNsnZ6tmfc/5M rZqgxoP0rLZZakr2SZ/bLMeobrn33LBZDlVdcwd8QkHoui2yxzVbZBcFo10UjHZRKyfscslq ef1J97YddsfucXkHEHLIW+8Xm3fnR+z09yvPPliGPzJTRj52tgLQOTL6sdlqSraC0BWzuny2 +TAyex8ZOXMPWX3aLrJ61i4qItpFFp6wi/zDIa9vl/sI1cN2hHr0R0Noz4XtpXu6ILS7XmRO kUpHQnosyEBILcedOxK6ZLNajXVze7lvvQS4Sl3O28BJvUa3x+0X3haOdAJAOeRhO0eW77Ps Owbh0PWyrXNjgk3Gb9J8tYX+/RdSLhtoP/G2uRuD535O+7x6CFUB4iwFozM0KP5ki5ykth2r 0gwVFb1DweiAG7bIPp9UELp+i+ysQLTjVSopCE27aET+24n3dSDUro+4vPU2l7z1frF5z1ZB wxm/C/J+9n1vC577Wa263zR8RlRX3OqrzugC0MhlM8Y+/2HjCzJ69h4yevrOMjJrRxk6ZUdZ dMw0+fH0/9Yu99FqeOe9ata1BtGBijUaQm/8Wvu74D8NIf1lACEVeusoSP8exBiE2rvaHlLt mh2nf4+iAyIDo7DzNr9HoV+j2+P2s+3Tz++znit8rU19b240eB2/6cIWg20L7Sf2vvQlmXHd RjnpMwpEKvpJ+zvgswpCn94qb1Ig2klFRNOu3iJT1XTt184ZlVcdd2/bYYdu6OPyPk119c1U 5zlRwe0Yld6j0js/v0XCeet8YvPWEFJJ/62YubesunCG6no7SUU/p6mHUk/vKvrI5cfIyGVq 3OjS7tlxa07fSUZPnSZDJ06VxUe9Vn50wKvGIaRBpCOiWAjp8CiAkAKQDsk6ANIOM/qwarsk 7dly0dc2hNorK2x7efuHkXSa9KF2al388tiF6PcmhZ16eJ8gyunsZ9unn99nPVf4Wnk/Xu/Y Als0WQPaT+w256Vg+rVesPRkBaJUCH1ui+x9w1bZ7ZNb5b9ft1Ved+UW2UFFUq8+b0S2P7oT CYX8YVzep/yxirBUZHW8gs/RCkZHqNd3aAiF8tZliM1bR7yzNwZFXH78brJSTb8euvQYBaKT u4q9+vLjZeTDR8vIh45QEHqHrL3wgK7v15zyOll93A6y6IhXy4/etn2bFCc+3+aLAVHwUw7h SMhAaKb+8aI2hDSAdAQTHhNKA1A4Utr2KpFt5v1XkPSv9OnUukz9ep9KGkZxf2YCQPh7vc0A LO24PHmGQWLOYbZFP4f3NWWKXkO4/OHyhMvP+/EbEmxRD1u0Lv5PdSNIymMD7SN2PO8lOVD9 oOfh1ygQqQkIaX/7fXar7KUgtKuC0BsVhF5zxVZ55Qc3qp9ZGJFtjrq37cw7dZE17+h5Y/O+ QN0Unbc12PWZ9+4oz55xYLAEjwbRxvvvCravvuxYlY6W1R+aISOXvktGLz5Y1lywn6w9b6/g +83/coesOek1MvzeV8qid24n//CWbcYhpEGkIfQuBSO9fM/E7jgVJs1UANIDXx0I6SjG1gUX XTdO/4S3ThpEOpmfBjZQMq/hh1XN+/A+cdv090nHRUHhkmeWfdL2tZU1eu18bt+gkPy3gbl5 5LV9E50laZ/0hnNeUl1y7SV43q1ANEPNgptxvYpQ1EOq71bR0WEKTAerSQn7f0pFQaobbvdP qK64a7fI667aKq++fItsd/FG2eas1TJpRmd2XKcMpeStAadApP+WvecNQZfcs2dPV6sivFuG VNfc0EUqXXiEDF/4bpUOk9VzDpaR8/eX0XP3ljVn7y66K05HQaPHvVqGZmwnCw/ZRn64z6Q2 hE5VUZaJhjSE9DJxXRD6o/ntvroOhEwU1P6d8d/Lth/9D9n+6t/L5Kv/EABGp8nX/kEmX69e I2kMQup3zPVvmQepAyTzWobzCUOojPzJ03+HSR1RRz5pQPuk15z+nOxy/vOy7wd/J2+//Hdy yEdfUGvDvSDT1cKk0698UQ68Wq2I8DH1LNDHXpLdr35JdlJL90xVkxF0N9zki1+SbT7wO/Xs jvLNh7dX0TbXV0be4Shr8WGvkaeP3UWWnbqvPHPm22X57ENkxbmHqp9omK4WJ50uz55zoFoj bj8ZOmtvGTp9dxk+dScZPmmqDB+7gwwdOVlWvGsbeeztLfnunu2hmwBCBkQaQhO642IgZEAU QEil7a/4zwBCQdIASoCQhpILiKJg6vVzGEK95sXxE28cbDbxqfFTFmDkgwaGn/tP2ffC5TL1 fctl59nLZY8PrJS9L3hW9pmzQvZSr3teuFL2UGk3lXa+aFimXTgsU+esltecPyyvVAsGvOJs FQGdpgB0/BOy+2n/0gWhMvIOojwVDem8f3vyvvLIu6bKI0fuLPOP20Pmn7i3SvvI/BP2kkdP 3FMeO2EPeVyNGy04fmdZoGbBLXzvVFkw4zWy8N2vlAXveIU8dtAk+fl+Lfnee3ZvQ+iMjRMh 1DVFOwIhPYU4HA2ZiGj7eS/Hw0gByYDHBqAyxZHULVbmOckbh4cG0ECcBub+7SZ59KkXZN9z HpAdjvqJvO64n8nrj/83ecPxP5XXH/dTmXr83TL1hJ/Ja4+/R3Y4/j551fH3y5TjHggmIWx7 1H0y6agHVA/VPQpAP5X5i58TnZ85T+F5/42CRAdCc2/bKBsWPir/dNy+8u237SB3HvQ6+d70 18t3Dn6DfOeg18udB0+V76v0g+lq9ttBO8iPD3yV3HXAFPnRftvLj/bdVu56yyT5wV4tuVMB aO2T82Xu11Q05wYh/YNGnTGhzsOlGkb6gdMg6enWaoAtiIo0jExSEZKOknTS3XZJyRjPRFa8 tiPMpqQsfeXsm21sAXvV017bzf0Pmauce69/OjLR+ej8jBYKzfu2F2W7S7a0ZyKrMaHt5qhf fb11/PnNvOUfXq/KrQC03Wlq6nd0TEh3x02MhDoQ0usH6VW0O6tejz24enF7wsK2lykgmRRA KZzaM+HikpkZZ6ZqN3lq5mBeGzOo8syg8v8YppE3rj3rWXCdSQh6Nlzw7JGenn3uZvWqYKST fq+mawcRjHk17/Vnk9TDra1T1aw3/Wr2C4//6MkI0WTGhGIhpJ8VUquotmY8Iq1j58uk4x6V bY5vp+AXVztp0qylYlLwK6waXHrhU5P07xGFP5v3nQXygv1J2AAN+K+BE/Tzg6RG2UD7eL1i dlq9HqtWNdA/7aOTXk3HpCOfGt9mvtevZrt+1WvE6aTXIzXrxen3eskezRgnCCkABRDqgCgM IwOluFe931gKHx/Jq2u/8DG8H7dfzWyh9UJqng0CH0BqnA0qa6tm2Z4Js+N2mi+TD31Kps3b IFNmL5P1axaTsAEaQANoAA0UqoHWSWp86AgVLe3xHTUmdHN75lzwHxAq1NBAnJsYNIAG0MBE DQAh7mqALRpAA2igMg0AIcRXmfi4KyQyQANoAAgBISCEBtAAGqhMA0AI8VUmPu6CuQtGA2ig dAjpFbURGkJDA2gADaCBOA30DKHozzYY6ERfixJgFGplncdW3qTrth3X6/dAnYbcq4Y4Hg35 pIFCIJR2QUU7zSQI9duoRV+Xa/mrOq9r+dgPB4cG0EAWDZQGobgIJRw9ZClkeF+XSCjuPOHj kt5nKVMaDNLOH7aL2U+fN/zelCMpn7h9s5SdfXESaAAN+KKBQiAU7ZoyTjXuNexg8xohCXDh 80XPUwaE0q477vwuZUiCW1XdjnnriONwcmgADbhooBAIxZ0obmwozmm7FDK6jw1CWaCYt3vL Bos0CEZhmQanaDSUt7x57MwxOBE0gAbK1kBfIVTUxdgg5ArFuMjJtYxlQ8il29G1rOyHI0ED aMBXDVQGoV7v6F2ddNr4Ty9lAEI0al8bNeVCm3XSQCqEXumwirbNGUchUNSgehKETHSTNNAf rpwyIJR0flt548bKkrovi7JhnYRKWXGsaKCZGgggpH+baNfbJ66i7QIhhNFMYVCv1CsaQAP9 0EDPEIrerZd9l97v8xVVCUVNyiiqPOSDg0EDaMAHDfQMIR8ugjLQmNAAGkAD9dQAEGIBU9b2 QwNoAA1UpgEghPgqEx93rvW8c6XeqLciNQCEgBAQQgNoAA1UpgFnCAl/WAALYAEsgAUKtoAz hIoMv1zyuvP/3RZcqsu+7ONP9wD15k9d0C6oizpoAAgRhhcKeiCE46uD46OM/ugUCAEhIIQG CtUADt4fB1+HugBCOKBCHRCREA6oDo6PMvqjUyA0YBBqHXKbFJGSGjEQ8qdx42ipizpoIBVC U6YvkWnzNsiU2cuc7pbnzp0raSmLQVycWat1Y2y5sm7PUq6y973rrrsm2FBvK+q8RQBI5wGE cHBFaZJ8BltLhUMobvaeBpP+O+SQQ5ydqQuEmiTeMHyiNjRgLwJGGiC6HnpJQGiwnUaT2h3X Ur2W+woh7Vy1Q3Wp+DQImUin11eXcuh98kYPrvnr/Qyo06bgu9ou7bz6Wnr96xVCSYvQ2rZn sSf7Vu9cqAPqwEUDpUAo3CVnwBPe5lIwnyKhPNFDmqOOXr+JgsJwMJGKeVbK2LHXaMgXCIWv NQ4+UVD28ttPLnpjHxwmGqhGA6VAqIi7eRcIZR37SdrfJr44x33bIxvkkSEJkn4fTVkgFBcF hSEUtmev0VAShDTcol10elvcH5FQNY3VplO+p17qqIFSIJQ0OaGo7rh+GzotekiCUV4IJY3V GBiUASGd5zHHHDOBN3pbHCB7hVC0/mzdcGX/RlW/9cT5gAUaGNdAKRAahEgoeo0GRiYiqguE dLQTByDdSMxkkmhEBIRwojhRNFCUBkqB0CBEQq2Y8f0wiPJCyMCtX91x+jxJf2EQdY3hFDxF W0c6tj/GhHB6RTk98vFLS4VAKDoRwRYJRSEVJwrfZsclXVMURmaMKAuEwhMTwo4/Cghtt6In JvgEofvuu09EAUm/3njjjUEyf0DIL8eBI6c+itJAzxDSjnHRgl8FyXWacXj/pDEOl4kJRRnB lk90TCgKHvO5pd7k6Y6rcoq2gZCBXxxso6AqozsuOK+OiBKiIiCE07O1U76vp0Z6glAYQAYs rq/62Ntuuy3xuSEXCFU5Oy7wmaEuuQBA6nryQsjlYdWR0RVy1eFvd3rOKqlBRoHqDYQ6AIqL gtp8avV03Tioejoo6q359dYzhGxL9aR93yuE+iXQtEhIg8gAKDxdO0t3XPg60pbt0QD65++e 3xOIotcSnpgQFw3FddcVHQmlRUB0xzXfCfWrHXMeP7XUM4RcI5/ofnWPhLq64FQEFH1eKC+E bA2lVxDFTTfXdREHG73NQK+oiQkaOOFrDAPIjAOFX4GQn47DplO+p95cNVAIhFq3tUR1rAVd axo2v97lFUFK664rAkIuF6kdWvQ5FL3N5VizT9JzQnERUN7uuCzl0SD62pl75oqIsjysqgEQ ht4YEHqYHWegE0RdnS44ZsfhsLLon32bpZdUCE2evjh1FW0DGQ0hnczn25Rz0aksCLmvGafK pcoRJA2jCJBcxRx13L988MdBF5yOFIpYMcG1HOH98oIoz7I94XMF4zM9QCgMHxMV8bBqs5xK Hj1zzOBqYAxCu90urak3t+coBf/tNF9cIZSnS86MFelxoTgBukxMSBOuubsOIqFIMlN/XQe7 fYSQvvY8IMoDIRMRuURfrvUW7ZbDCQ2uE6LuB7vue4KQFk+vExOSBOjizNJmx5muozQI6X1c GoB23HmSS9697qNBlGXGXJ7rMJGPC/Rc6q3Xa+b4wXZa1H+z6r9nCGlBBFOTc6Q0MfXqzEwX j57yG+2OG9vGtF8nCEe7AdOg12u94WCa5WCoT+rTpoFCIGQ7SZ7vi3JmSeMNecrEMfYGVVS9 YWu7rbERNmqCBhoPoSZUUp2uAQjhGOukV8pavV6BkOpORIjF2QAIFWdLdIktB0EDQAgIFQph IITjHATHyTUWp3MgBISAEBooVAM46OIc9CDY0lsIDYLxuUYaKxpAA4OuASDEXTB3wWgADaCB yjQAhBBfZeIb9DtArp8oCA0sFiAEhIAQGkADaKAyDQAhxFeZ+LgLJBJAA2gACAEhIIQG0AAa qEwDzhA65OADhYQN0AAaQANooEgNACHgys0FGkADaKAyDQAhxFeZ+Iq8myIv7s7RQD01AISA EBBCA2gADVSmASCE+CoTH3eu9bxzpd6otyI1AISAEBBK0ID+pfsiG1s/8qpjmfthF87hLziB EBCqnaM1DkU73GgqytmEnXne8+Q9rpdrAEL+Otte6rXJxwIhIFRrCIUbp3H6RTTYKISy5JlW jrIhUXb+WezAvgDRRQNACAg1BkJa8EU54V4h5NL4ytinqOsvo2zkCZTiNACEgFBjIBSNQIxD jotMwl1l0YYRdeRZHHuWfcPQTCtjNNozxyUdk/Y9IAAEvmkACAGhWkPIBpM4KNggE/e969hT HgjZjokbn4qOi7l+9s0BUR6gCISAUK0hlObEXAAUdt5x77N28WUBii3vOMDarsn2PU4fp++b BoAQEAJCobGkXp14ERBK6lZMgpZt/MpWJt+cEuUZLFCmQmjK9MUybd4GmTJ7WW0dFYJurqBt zjULUMLjR7YxIpum0spl6wqMA00WyGS5Ztt18H1z245PdRtA6Mil0tr1DmlNvVlNLmrfhklr p/kChBChT2LNCockGKSBoAgnHjdhIEtXX9YxoLiJC7ZtPtcrZRssvwOE6I6rbZSbJxKKDuDb oozoTLM0wMRB0jahIQ2U4egsGqnFjRe5dNfh4AfLwdehvoEQEKothOrQwIouow28RZ+P/IBW 2RoAQkAICNVIA0AIKJQNhX7nD4Rq5ID6LQ7O55/DA0L+1QntpLc6AUJAiEgIDaABNFCZBoAQ 4qtMfNxB9nYHif2wXxM0AISAEBBCA2gADVSmASCE+CoTXxPu4rgGohE00JsGgBAQAkJoAA2g gco0AIQQX2Xi4w6ytztI7If9mqABIASEgBAaQANooDINpEJoMguYVlYxTbjD4Rq4U0cDaMCm gfYq2suktVvMAqZACAHZBMT3aAQNoIFeNOAdhOJWOI77fRXbSsVZj+nFiBxLI0QDaAAN5NOA NxCyrQochkrc6sJhAbisPoxg8gkGu2E3NIAGitSANxAyF5W2tH5c9GP7kTCXY4o0KHnRQNEA GkAD7hoAQsyKYfIFGkADaKAyDQAhxFeZ+LhbdL9bxFbYqqkaqA2E4saMbF1trsc0tXK5LhwX GkADvmvAawhp46WBJGn8yPWY7skM6lQZ/v76Gzd1RRB8xh5hPaEH9NBPPfgOmrTyeQehOhgz zCpfyht1elWXi/LY78CxUbqNsE+97JPX5wChHGNCPkIorwA4zg4LbISN0EB5GgBCQIiJCTk0 gFMqzylh28GyLRDK4YCIhAarkeAUqW80UJ4GgFBDIET/ef36z6mzetUZ9VUOiFIhNIVVtGO7 qoiEyhEjd5vYFQ0MngbaEFoqrV1vl9bUmwP32gr+22m+AKF4QQChwWsoOEfqHA2UowEg1JDu OBpIOQ0Eu2JXNFCuBoBQQyBEf3W9xhe0Y6PO6lVn1Fc5MAJCDYEQd2vlNBDsil3RQLkaAEJA iOeEcmgAx1SuY8K+g2NfIJTDATExYXAaCM6QukYD5WoACDUEQvRX12t8gTEhu2ND0/XTdB5g A6GGQChP5XOM3RFiI2yEBsrVABCyQMj26w4ItFyBYl/siwaarQEgRCTExIQcGsAxNtsxUr/9 q18glMMB+Tgxgf7z+vWfU2f1qjPqqxwwAaGGQIg7t3IaCHbFrmigXA0AISBEd1wODeCYynVM 2Hdw7GuB0BKZNm+DTJm9DEcVclQ+dsfRaAen0VLX1HWTNDAGod1iV9EGQnGV7SOE6K+u1/gC zwnZQYKm66fpPHAEQjm6YnyEUJ7K5xi7I8RG2AgNlKuBWkKo/ZNH7RQfqUz83nZMFqEBoXJF maUu2Je6QAP11kBtIaSFlwQiA6fw93Hb8ooXCNVb9HnrneOodzRQvAZqB6Fo9OPy2bZPVmH5 CCH6z+vXf06d1avOfKuvlurwyeq7fNwfCDEm1Agh+9i4KFPxd83YdNymQCiH8y5CQLaoJu57 2zFZy+VjJJT1GtgfB4kG6q0BIOQBhOLGhMLAiZuMkDahwbVRagiNT32ox3vXa2O/ejsm6m9w 6g8IVQSh8ISEKHBMA0yDT/KMOtt62d3f6/5h/WfOGe0v9u2zz9DUNvTNXv0oT/gc/ThfGFBx 56M84wCrg32AUIUQqvpuj+64Yu82+w3IqvXD+YvVz6DaEwgBoa5IaFAbQh2vu0jo1fH6KXMz IAiEgBAQGmANGEcO0Jrh0OsG5qYASNs9dYr25INZOy5OnD52x/n2DAPlsTvnqI16BVqvjpQ6 q89zSxpCvtVXXv21IbRMWnELmAKheFH6CKG8AuA4OyzqYqO8EKvL9VHO5j0jNB4JAaFMD2wC oeY4bhyb6g7J+cgBtquuHTSvOw4IASHGdzJpAAecHV7YrDhoAaEBd1g+RkK+9Q9THrvDGTQb ZYm44p4dqxpiPtUXY0JAaIxDVTcMzm939tiofjbKCqxBq2MiISAEhAZcA4Pm9Hy+3kEEFhAa cAfkY3ecz06CstUvEmlqnbkCy/fr1xDS1+J7OV3KxxTtHED1EUI+9VfTn+8GHerM3+dyfIZV UDaeE3JrZC4UrOM+PkKojnakzIPdjppQ/y6wKuo6x87VkB+zM3YhErJEQra1tYsSGPngkNFA MzVgA5VLvYe73po0HsTDqjm64rTRiISa6SxcnAH7UPdFa8AGqejYDxDK6biLrrgq8/MRQowv +Du+kKRV6qxedeZLfRkI+VKeXn0x3XE5oOojhHoVAsdzh48G6qGBgYqEpkxfLNPmbZAps5c1 YipgUY0MCNWjsRZV3+RDffukgWZCaGn8KtpAiFW0fWp8lAUYoAG1Zl8jZ8cBoUyRno+RkG/9 w5THDgxsxJhQHqg2c0wICNUeQnnEzDF2UGAjbOSbBoiEcgzkZ6lEvRhFeP/24hTtZLbHbev1 mGxlHI+FshzHvjg0NIAGetFA0wCkbZH68979HBNKAouBTxhEcduiENKfsxyTRRg+dsdlKT/7 4gjRQD01AIRKjoIMOMIRT1yEEwecXo7J2iB9hBDjC/UaX9Cao87qVWc+1FcYQj6UJ6vvjNvf m0goDiJJXXNAqJ53cUUIljyo+0HWAJFQwZFQdKyHSAgHM8gOhmtH/zYNAKGCIRRn8OgEhHCE lDRBISkySpvUYKvstO997I7r5Xo4FueHBuqhASDUZwiFJxfYZse5fB8XeY1DzrZedvf3uj9W /5njo/2zfL6pa5Yj9phoj7BNfLAP5RkHUVx9+GCf8DNCjAn1AUi+3p0RCdXjrtFX/VAu9JNX A0RCAwye7i4/nhPK24g4DgeMBvJrAAgBoaCLiUgofyPCAWE7NJBfAwMHockHL2EV7Rjw+ggh 3/qHKY/d0WAjnhPKAuQogHzTT5ZrCe+b+pwQEGIV7bzC4jg7hLARNsqigSZGQfr6gVCOLkYf I6EsYmZfnB8aqJ8GgFAOZ91UoQOh+jXgpmqR6xocLQIhIBRaxdu/2XG+9Q9THrtzxEaMCWW5 iWBMCAh5DaEsYmZfOyCwETbyTQNEQkAICKGBTD9+6JsTozz1BisQwgEBITQAhNBAZRoAQojP awgxvlCv8QUdlVBn9aqzquuLMSEg5DWE6Gqpd1cL9Uf9pWmgqVEQzwk5gNW2tjbOA+eBBtBA 2RoAQrOXVdYPWnbl5smf54RwOnl0wzHoJq8GgBAQ6oKwjxCqur862rgoj93hYiPGhFyhFAch 3/Tjei3R/Vi2x6FLLmo0HyGUVwAcZ4cFNsJGVWtgYCOhKdMXs4p2TVbRrrqRcH4cNRooTwON h9CRS6W12x3SmnpzcI/fCv7bab4AIVbRxrGU51iwLbZ11QAQYkyIMaGM3Za+9Vf7Vh6eE7ID yLc6q7I8jR8TIhKyN4jwHQtjQtns5Xq3x37YFQ3Ea4BIqA+RULsXsJ26Hf7E7Un7muPivrcd k0X8QAhnmUUv7IteetUAEOoThHRFxUHIbDffhV+j+4fzCEPNdkwWkQAhnEoWvbAveulFA00G kLZLMEXbp+64MFSSoqJopGT7nAS2vMLwEUJV9lfH2ZHy2B0vNuI5IRcflAQh3/Tjci1x+wCh jAPu7UjLvx+1yysAjrPDAhthoyo1QCQ0b4NMKak7LjoGZItYksaMiIRwElU6Cc6N/srUABAq EUJp8IiOD6VNNkjKx/WYrAIiEsLpZNUM+6OZvBoAQn2AUBgWeWfHRceS4qKsuEjKCMO2Wnb0 e90fq//M8dH+WT7f1DXLEXtMtEfYJj7Yh/KMgzKuPqqyj4aQrTx5AefDcd6NCflgFFsZiIS4 q7VphO/RSFEaIBLqQyRUVGX1Kx8ghIPpl9Y4D1obcAgtYQFTFjDlt6RyzKAEHsCjKA0AISKh CU7Yx0jIt2cGKI/dCWMjnhOygSoNQL7px3YtSd9bxoSIhOIM5yOE8gqA4+ywwEbYqCoNND0K 0nYFQjm6WoAQTqkqp8R5B0t7QGg6kRCR0GA1epw89e2TBoAQEIodlPcxEvKtf5jy2J05NmJM yAY8xoR6gJBtSR6b8X3+3kcI+WwvymYHEjbyw0ba6fuUBkEXpYwJRX9yQRsy7icX6mpgIOSH w6irfih38g+3VQ0A6qb/bRsIMTGB54ByaKApzqpqpx8+f1NsynVkA1lfIJS2ZlsdK8zHSIjx Bf/HF3xy+KYs4faHhvzXkM/1ldeXlwIh0/1W5E9q573AMo7zEUJlXKePefroyF3L5KM9KVO2 u3bsVby9SoFQU8d/wvBxdTzsV+xAL06geCeATbFplRooBUJNm4gQrSAiIRptlY2Wc6O/Jmmg FAhFfx+IMaHyGw39+fXqz9dOhDqrV51RX+X4sVIg1CRKx10LkVA5Ymy6brg+dIMGJmqgFAgR CdHYaGxoAA2gARcNlAKh+Oih1ZjnUYiEaFwujYt90AkasGsACOV4UNFHCNFfXa/xBcaE7M4J TddP03mgC4QaAqE8lc8xdkeIjbARGihXA6VAKG5MyFaR0WPM/nEPvNoegs1zjK184e99jISy lJ99y21U2Bf7ogF3DZQCoV4rIPywa3gx1OjCqElTv/Mck6XMQMhdYFnsyr7YFQ0MngZKgVAU IllXUIhbhVuLMw460bzjPtv2ySp8HyFE/3n9+s+ps3rVGfVVDiD7AiEDEJuzt/0GERAqRwS2 euF77I4G0EBZGigVQnHdat1jK+oXpGTi1G0iIQRfluDJF22hAb80UAqE4rrOsnTJJf0oXlyk lNbVljZBoRch+tgd18v1cKxfjZL6oD4GSQOlQSirEXudHRc3DmXbljTjLQyZpPe6f1j/mTyi /cV8vqnr4WTsMdEeYZv4YB/KMw6/uPrw2T5Z/a1P+3sDIZ+MYisLkRB3qjaN8D0aQQNuGgBC PKzamOWUaPRujR47YSefNFAKhFjAFJH7JHLKgh7RgL8aKA1CptKTZrrVWRQ+dsfxDEO9njnR +qfO6lVn1Fc5IANCdMfRHZdDA3W+iaLs5ThT7JrPrqVAKO5ZoCxTtH2vTB8jId9tRvnyNVDs ht2aroHSIdREAwIhHEMTdc01oesqNFAahGxL8FRxsUWd00cI0V9dr/EFxoTsDh9N10/TeXxs KRBKWvEgTwF9PMZHCPloJ8pkd7TYCBsNugaAUI5BaSCE4xh0x8H10waK0kBfIJT0uz9FXUS/ 8wFCNMB+a47zobmmaqAUCGljxT2w2hQj+ggh+s/r139OndWrzqivcm4ECoVQk8HTPe18HENN ASvXUU4Dw67YFQ2ka6BQCJkIqOlG9zESarrNuT6cORpopgYKh1C4K64JorH9rEMTrpFraGbj pl6p1zpooBQImQuP+1G5OhjFVkYfIyH6q+s1vqA1Rp3Vq86or3KgXiqEmhYVjcOVMSEbqPm+ nAaLXbFr0zRQGoSaNi2biQk0/qY1fq4HTfuggcIh1GT4EAnRaH1otJQBHTZJA4VCaBAA1O5i 9K87jv7qeo0vMCZkBwmarp+m88CxUAjFTUho4uQEHyGUp/I5xu4IsRE2QgPlaqAUCDW90oBQ uaJsun64PvSDBsY14B2Eoj9+FxdJ2aKrPMdkEQUQwolk0Qv7ohc0kKwBryAUN6YU/lmI6E9E JI1B5Tkmi0h8hBD95/XrP6fO6lVn1Fc5NxNeQygpKuqeLt0S2+e4fLJAJ7qvjxDq5Xo4tpzG hV2xKxqwa8AbCLn8EF5apBSeFBGFEhCyC4HGgo3QABqoQgOVQihu1e0waIiEaBRVNArOie7Q QP80UCmE4io6DJ7o+2gkZIuM0iYo9CIyH7vj6K+u1/iC1h91Vq86o77KAZPXENIN1XWmmyuw otHVeDeebb3s7u+1IPWfOT4qUD7f1DVWhz2wR/jGDz0Uq4debqqrPtY7CFVtEJfz+xgJuZSb fcq5k8Ou2BUN5NcAEFLRVlYBAaHsNstqY/bHxmhgMDQAhBoCIfqr6zW+wJiQ3cGi6fppOs+N AxBqCITyVD7H2B0hNsJGaKBcDQAhIJS5O5JGWW6jxL7Yd5A0AISAEBDKoYFBchJcK1AsUwNA KIcD8nFiAv3n9es/p87qVWfUVzkwBkINgVCZdyrkXU7jw67YFQ0cKEAICNEdl0MDOA8AggaK 0QAQyuGAfOyOo0EU0yCwI3asiwZa0v0LAnUpd7ScQKghEKK/ul7jCzwnZIcdmk63ERDK4bzr SupouYmE7A6kKXXNdVDXvmoACAGhrgVMfRUq5cKJooFmagAIDQiEbGtr08Cb2cCpV+rVdw0A oQGBUJwQfeyOo/+cMaFenSYaqpeGmgWhZdLa9Q5pTb05cK+t4L+d5suU6Utk2rwNMmX2Mqbx hqDrI4R6dUAcz50/GqiXBoAQkRBjQgOsARx2vRx20+qrKQDS9dKeok0klCnSIxLCATXNqXE9 9dI0EBrwO2AfIUR/fr3683lOyO700XSyjTSEfLNP3hsZIqEcQPURQnkFwHF2Z4iNsJFvGiAS yuG4favEXsoDhHBKveiHY9FPrxoAQiVBqD0xr51MJbluC1dqnmOyiAII4USy6IV90UvRGgBC JUIoWlkGSGE4xW2LQkh/znJMFpH4CCHf+ocpj93xYqN6jeP5VF+MCfUJQuGIKAqVcKQUB6Bo JJW2TxYAtcsx/pf1WPa3O2dshI3QwGAsXqrr2auJCdFuNCCEM8IZoQE00K2BJnXFVQ6h6PhP NLoBQjggHBAaQANAqO/L9oTHfFwmKCR1taVNUOhF2D52x/nUX61tS3ns8MBGjAnl8UMmEvJN P3mupfJIKAqPuMjIdaZb7zPqbOtld3+vBaD/zDVEBcHnm7pWocAe2CPc3tFDfj00aVLCGIRm LJXWbixg6rx0j4+RUN67EI6zRyzYCBv5pIFGjgkBoWyNDAhls5dPDZiyUHd11wAQKml6dp2E 4SOEfOsfpjx2Z4+NGBPK4/caOSZEJGR3GN3jVzwnlKfxcEw2nWEv7BWnASIhIiEeVkUDzuOH gASQFK0BIIQDAkJoAAihgUo00DQAMTsuZ0NiTMh+d8t4BzbqNQJAQxM1FIaQb/bJW9/Bsj2M CdkdBmNC2WyUV5Ach53RQLIGiIRyRg5NE5WPkVDTbMz1ACM0kB4JNcU+REI5wAqEcJBNcQBc R720TCSUw2E3UeQ+Qsi3/mHKY3du2IjnhLL6R8aEgFAwI8ZHCGUVM/vbIYGNsJFvGiASAkJA CA1UMjXXN2dIeaoB9MBBaPL0JTJt3oa+/5SDTwK3ra3tU1kpSzWOAbtj935ooIkAsj4nBITi G5eP3XGML9RrfEE3PuqsXnVWdX1FIVR1eYoCb+rsOCBUHwgVJQjy4a4eDfipASIhxgLGxgJ0 JKQFUcY/HICfDoB6oV6q1gAQAkJdEDJdckULswyw9ZJn0ddHfjhzNJBPA0AICPUFQnkbaFn9 w70ALO3YvNeZ97iy7JO3PIwJ2R2xb3VWdXkYEwJCXkOoF2dYxbFFwK2KcnNOOzywUTk2IhIC QkDIMw30AjIcZTmOEruWZ1cg1AcHpIf7dQoL2WwLb4/b1usxWRqPj1O0s5SffQ/MNakEu5Xn YLGt3bZAqE8QiorRwCcMqLhtUQjpz1mOydIIfIRQ1f3VUfs1sTxZIy+bpppoI9s1Z/ke+4yD KQ5AvtknS92G9/XmOaGkiCcuwokDjtmWFEmlHZPVeD5CKOs1sL/9zrNXG2WBVq/n4vjy67NK Gzc1CtI29QpCUZDkAUqeY7KKCwg1u8Fn1UMR+7sCq4hzkUf99AuEZi8rZdHGuO4y040Wfg3D KQ4ytsjIdkzWRgmE6teIs9axr/u7wMrXslOu/O0GCJUEoSR4hMd8ogCKm6CQlk90skPc5Ies jcNHCPnWP0x57A6nLBvlBVVZ5cnavsz+lIcxIen32nG9zI6zzZ6zz6izrZfd/b1uIPovqcFE GxCfb+qKprFHtfbICirqq/r6CsPcN0DnvdEYHxNaJq1db5fW1JsDv6rnSUtrp/l9h1AvF9LP Y32MhPp5/ZzLHuU0wUY2UDXhGutyDc3vjgNCmca8gNBgOOG6OKiqygmk+tcOgFAfxoSqakh5 zusjhHwLzymP3UE13Ua9rh3YdPu4+p4kAPlmH9frie7XnqJNJEQk1IeHkfOKlOPsQKubjYii 3Ou0yVEQY0I5Ha+PkVDdnBDldXdCg2irXqOoJtkMCM3bIFPojousZzeOoSaJnWsBDHXQwKAB CggBoQlddT5GQr71D1MeO9CwUbqN8tgnCVBFwDVPeYo4L2NCQKgWECpC7ORhBwc2qqeN6hw9 EQkBISCUc+wMh11Phz1o9VZm9FSELYEQEAJCQCjT7MkiHA95VA9wX+AEhIBQLSBUVX91krOk PHYnio2KHxMqE96mvvoNJ8aEgFAtIFRm4yNvO1CwETYqA05Nj4J4TihnN5OPs+NwgjhBNOCn BnqBExCavkSmDXgkZFtbm4bvZ8OnXqgX3zUQB6domQcKQruxirbz4LOPkRDjC/UaX9DOhjqr V531o75cwGRA1Y/y9APkY2vHASH3O0cfIdQPsXAOd41gK2yFBtw0AIRyjAsBITdx0QixExpA AzYNACEg5NwNaRMT3+Nw0AAayKoBINQQCPnWP0x57M4IGzEmlNVhh/f3TT95rwUINQRCeQXA cXZYYCNshAbK0wAQAkJ0x+XQAE6pPKeEbQfLtt5ASKSlxvu7kxZjeJsRZ9y2sHDzHJNF+ExM GKxGkkUb7Is20EA2DXgDoWjFaZAYCIVhlLQtCqGsx2QRjo8Q8q1/mPLYGyI2Ykwoi9+J7uub fvJei5cQigIoGgHFASe8T1xUlHZMVuP5CKGs18D+dkhgI2yEBsrXgHcQMgAKRzxAqHwh0Niw MRpAA1VooFIImbGbpCglDKRo91pa5EMkRGOqojFxTnSHBrJroFIIJY0DxQEmbbJBGsSioIsD X1bh2BY1reJ73T/s0x/lsdcGNkq3Efax2yer7/Jx/wBCRy6VVtVrx0WjnmgXXLSbLg4uWY/p hpfdabAHFsACWMAnC/gIlaxl8gZCWQte9f4+CZGyYAEsMJgWqNoPFnF+IJTzQUUt+SIqgHzS +5Cbap/2GCcaSmtD2Kc/baMIP9ZLHkAICHXBlIbfv4aPrftj66bauVHPCfkwJtQLSas4tqnC 5rr64xiJhOyzqNBi/7RYhQ815yQSIhIiEsqggaIcIxACQr06/iK12GtZejkeCGVwQNHZdL0Y fnwmH+MCgzguAISAUK/+AwjldN69Gt6X430TgG/9w5TH7mSxEWvH9eLPfNNP3mshEsoJU98g RHnq139OndWrzqgv+41VHhABISBUyFTzqPhosPYGi42AUB6nXXRXfi9lKOJYIASEgFBODfTa AIEQEOpFQ77pJ++1AKGcDsg3AfjWP0x57JEQNmJMKK/j1sf5pp+81wKEGgIh36BIeewQwkZE Qnkdd5GzK3spQxHHAqGcECrC+ORhd9TYCBuhgWZroA2hZWoV7TukNfXmYDmrVvDfTvNl8vQl Mm3eBpkye1kp4waIq9nion6pXzSABmwaAEJEQtxgoAE0gAYq0wAQQnyVic92h8T33EWjgeZr AAgBISCEBtAAGqhMA0Aoo/jifmY8fLeW9n30O1teLneBtjySvg9vD/9KrS2/Iso0/rBda0z4 aT/fnvSruy5lac8i0sOc7ZR2jO3Xe7PkZTtP1vIkndv12souT5Easl2Ti6bDGnOxtU1LecqU pZy280e/z1OeOA3Z8slarjz7A6EcEApXZpw4kr6POkHzuZdGYsvD9n0UCDZH7SIy2zmTgBO1 my0fl7KYPG11Fq2D8LmjNxmu503az3Zdac4ri95cy5m3PGllcT133H4u5QnXa5yGo/XXSxtz 1VC0TFVrKM1GaTbrpe7yHAuEMkAoCSLRCnX5bMvLpTJtedi+jytnrxByPWe0YUcdfZZ80myV JZ+4a89yfBF1lgY8W1ny1J0tT1cAh/PJUw6XNpMEvSRnm+XaBlFDRdnHRfdp+wChPkMoy12u rXJtIrJ9n9Z48zoSl3PG3YXVCUK93FXnsU/YXuFzZ8krSUtZ8kjSRFweeW2UtzxJZXCFaL8h lNc+LtGN7UamSB9k81Eu3wOhPkIo6kx6bSC2Bmv7Pk7QSXekLmLK20B8dSBpIO4npJMiAJf6 tdVbljxcIdSLhlzLY9svzsmXXWdx+VepIdu5bTa0aaeo74FQTgjZRJ52pxP9Lu9dUVhEecpj E2kekdnKFAfeuGOy5ON6F2uzc/ScrvlmsVOW67I5/Sx5uURCWezjApo8Tt/lmmzO3lyHS14u deeSj61McefJY5/ojV5SndnyLsoHudjPtg8QygAhI4A0hx/XAJKOS9rXVmlRR563PHF32DZH 5FK2JCeQdEdfpn3S8k6LMNIcma2B22xUlH3S9GgrQxYNJQEnyfH2qiGXNpSk+STnWmadhctr zhO3raj6smk6y7mL8EFZtBa3LxDKCKFeDc7xzX/4jjqmjtGAuwaAEBCq7CE1Gqp7Q8VW2Kqp GkiF0BQWMMVBA2k0gAbQQIkaGIPQrrdPXEUbCHH31dS7L64LbaMBPzQAhEokPCL3Q+TUA/WA BvzVABACQnQ1oAE0gAYq0wAQQnyViY+7U/e70+i02+jU2l6nIFMX7nWBrYq1FRACQkCoZhoA OMU6QaBSrT2BUM0cEA2m2gbjg/1tT+dHH5gs+2FgH2xCGerbLoAQECISqpkGXCAU3ie6f9oK Gzjz+jrzutYdEKqZA6qr0Ch3cc7NBULRZXmin+PGmKij4uoIW7rbEggBISKhmmmgKAjhKN0d JbYqz1ZAqGYOiMZQXmOoi22LghATHNCSD5oHQkCISKhmGigCQtHJCgAJIFUFJCBUMwdUlVA4 L04KDaCBMjSQCqHJ0xfLtHkbZMrsZdwtAys0gAbQABooXAMBhGYsldZud0xcwBQIcedTxp0P eaIrNIAGjAaAEHc2hd/Z4GBwMGgADbhqAAgBISCEBtAAGqhMA0AI8fVFfEm/ex+9W7LN/HK9 u2I/7sTRQD00AISAkDOEiprGm5YPS8rUw3Hg4KmnojQAhICQE4TiIpnozwkYUdqiniwQikIp bh20ohoD+eBY0UD/NQCEgJAThMzDjeGHHMMNNmnBzOh2WzQVXgE6es4w5MLf4Tj67ziwOTYv SgNACAjlglBc1BOFRBIokkAUB7IolOLOUVRjIB8cKxrovwaAEBDKDSHX6Mdl8kEUWGndcElg woH034Fgc2zeqwYKh1BL+OeDBXoVRtzx0TGgpLGfpIgmaQzJJbohIsLZlaFp8qxeV4VDiEqt vlKpA+oADaCBumgACNEd59wdV7So+WE1HGXRmiK/+mkKCAGhyiCEw6ifw6DOqLOiNZAKoSnT l7CKNpACUmgADaCB0jQwDqHbJ66iDYS46ynqrsf2AGva5ATbs0VFlZF80Dsa6L8GgBB3OM53 OEXBIMuKCUnPGuEs+u8ssDk2L0MDQAgIOUGIZXtwQGU4IPJEV0AICDlBKByR2BYZTXuI1RZN ZVm2hygJBwbE6q8BIASEckEoPIbjsrpB2Fn0umwPKybU3/EAD+rQaAAIAaHcEKpq2R4TAdmi Khwdjg4N+K+BwiHUkrhHENnWb7uU0fh8WLYnbRZdGddMnv47Meqo3nVUOIQQRL0FUZf6IwpC Z3XRKuVM1yoQojvOuTuu6MaUd9keAASAitYi+VWnKSAEhCqDEA2/uoaP7bG9LxoAQkAICKEB NIAGKtMAEEJ8lYnPlzsxykFUgAaq0wAQAkJ9gRBrx1XXyHGw2N5nDaRCaPLBrKLtc+X1u2xF TQhg7TicYr+1y/n81VwAoSOXSmvXOyauog2E/K24fjcqX9aOCz+oWhQU+21Lzke7QgPjGgBC dMc5d8eFl8uJAsB19QQbOFzWjjMgoiHjzNFA/TUAhIBQLgiFVy6oau04HFD9HRB1SB0CISCU G0Ku0U/U0bguYOqSP04MJ4YG6q2BwiHUUoukkaq3QRkN04e141xn2ZVx/eRZb2dH/flZf4VD iIr2s6KpF+oFDaABHzUAhOiOc+6OK1rAedeOK7oc5IdzRgPVaQAIAaHKIETDr67hY3ts74sG gBAQAkJoAA2ggco0AIQQX2Xi8+VOjHIQFaCB6jQAhIAQEEIDaAANVKYBIIT4KhMfd5/V3X1i e2zviwaAEBACQmgADaCByjSQCqEp01lF25e7BcrBnSsaQANN1AC/J8QdUGV3QE1sUFwToEAD 2TQAhIAQEEIDaAANVKYBZwitX7NYSNgADaABNIAGitQAEAKu3FygATSABirTQGYIffv/3Cr/ +29ukW9986ax9M1b/0L++ut/Lrd+/YskbIAG0AAaQANjGtBs0Iz41v9UzOikv/vbvxLNEh1R ZYbQEwsel9888mt56Je/GEu/+MX98vMH7pX7f35PkO67Py7drba30733tdN99/1rJP1UfVbp 3n9R6Sdu6Z675L5Oule96nTPPf+oXn+cnn72D3IvCRugATSABnrUwA/V8d3pnrt/ICbd+7Mf yP33/lB+8fMfjaVfP/RP8ui/350PQquGlsszy5+Sp5cuGUtLnloki5cs7KQnZfHiJ2XR4ifU azu13z+akOar7Z20SL0u+m1MekRtG0+LFj4sCxf8RhYveLid1OcgLfhVkBYt+GV8evIhWfTk gyRsgAbQABooSAMLn/iFsuUDE9LiBXr7z4O0eMEDsmTRL8bSb375T6L/ckVC69aPytp1IzK6 Zng8jQ6p96GkP4+uCqVn1ftwWqE+h9Ny9VmnZZG0VH1WaaSTVj8tozqNPNWVRlYvEZ1GVy9K T8MLZHQsPanek7ABGkADaCCPBkaGnpCJ6XG1bTytXvW4tNN8WT306Fh6+KGf5IfQ879bJxPS 82vl+edHU9KI+i4mbRiW54O0KjZteG6ltNOK2PTc+uUSlzasWyoT01Nqm0lL1HsSNkADaAAN 9KKB9WufEp2eW7skJi1U27rT+rVPqv2flIdVd1zuSCgKmw0bRkWn9nYFmjGwGMBMfN3w3JCC SjgZ2HRDZ/36Z0WnKGjWr3tGYtPapeoCdWobJmqgdcpQJhU5xZC8mLKKBtAAGtAaWBhJC9Tn 8bRu9EnR6dcP3QWEEAxOAw2gATRQtAbcIPTLB/+xPxBqtVpiUjhCSoqE9L7h7rc8kZDOg0io aGGRH84KDaABFw24QujH5UNIwyAMnvDnoiEUgEd30ZXYHRecw/JAm8s+tjz43kXo7INO0ICf GugBQrveLq2pNwdwagX/7TRfwqtomwt2HROKQqjMSAgI0SD9bJDUC/UyaBpwhNADP5oYCfUb QuGuOjMLLtwdF/4+PDEhvN1MTjDbdCQU7o7ryqMzKUFv05MTxo5JiG6i3yd9Dkc/4X2iUVHS fjTSQWukXC+ab7IG3CD04P0/LB9COvJJGhNqw2Z8dpyBT/frimBmnE56uwaReQ3DR78PR0IG QmEY6emDSfCJ60KLAiN4oCqlO858F3ecaXAu+9A4m9w4uTb0PQgacIPQ/fd8Lz+E9HTs59QD qyZtUO83rF89lp5bP6y+607r16/qAKS9PQwn8/65dSvb+3Reo/uEYbNu7TIVzSwbGwNqA+bp IJn3wesaNSW7k8znNgwWqmmC7RRs77wPv0a3x30OlzGaV9rxSeeMKwfbxusKW2ALNOC/BtaM LAimYQdppJNGn1CfVRp5PEh3/+u380MoDjJx0NHgGU/taCYc2QTv16loJ5RMRNMGiYJM53kg A512dLN0DDhmIoKJcvSsuHAk1AuE0qCSBJjwdheI0aD8b1DUEXWEBtw1MA6gDnQMfCIQil22 x3VMqBsu46DREYyBjOlCi/tsutU0YNYpAOkUho+JeOIinfGIp/3QaTu6aYMnKeIxUY+JgMYj oTap27DoULvzGt5m3sdtM8fZ9jERU/R8ceeOloXP3XWDPbAHGqiLBsYjHxMBrR15THSKXbbH FULr1q5UAAilDkjCEU0YLmMOeO3yILoJRzVj361R0Y1KbZi0I52urq5It5r5bs3IYtFp7cii sW41/d3oyMIghfPQhNZJb9Ova1c/EST92bwPv5pjo9vCx4Xzj8svnEf4PNG8o9/ZyhZXXra1 65OEDdCARxoYflTW6tSBT/Bepdhle1whtEZBQqe1a54J0tjn0adlbScF30c+B/uphUcnpjZI 0pKBSuJrZ1HSEbUgaXdSC+wNx6Shx9QieyRsgAbQABroVQOjwYKlj8moWqDU5KXft9P87rTq 32VUpdhle1whNLxqoQRpaFEoLVDvVVoVTZ19O8cMrXxS4tMTavt4WrXycYlLQysfU/s9Jque 7ST9Xm979tFOmq9e58uqFeNJfzZpbPuzv1V5kLABGkADaKAXDQwpP6rTqhW/6UpDy38jOnVv /7X63E6xy/a4QmjFM/8uOi1fNl+eeWY8mW16u0lj3y/7rTyTIS1f+rBkSk//WpbrtPRX8enp X6rvu9My9ZmEDdAAGkADvWngmacflHBa9vQvlG9tJ7N9bNtTD8gylX75YMyyPa4QenrJw+Kc Fv9ank5JTy1+SNzSg2q/UFI/jvRUXFr4c3lKJ/Od+Rx5XaI+L1l4HwkboAE0gAZ60MBTC+9X Pnc8Wf3qAuV3F9wzlrp+1M4VQu0o51EVDT2m0uOhpD/HJ73/s6G0QuURmzpRlom2JryOHfeI Ot4hLf2NrIhJmaKsrFEZ+2eLYrEX9kIDDdVAqGfK9FY9/XDQA/XMkodk2ZIHu39Z1RVCPPU8 CE89c43oHA2ggf5ooHXSC9KaoWZHJ0Ho9WcOy7R5G2TK7GUy+X1rnVKQKQkboAE0gAbQgE0D GkAH3JMMoR1OfEpee/ZyedXJS+QVRy92Sq0jl4lz0gWoKh2pzu2SZqjrcU5FX0+Gc7tcS7BP hfVTxrnLyNO5vjPUT+E6L+HczhrSOnc9f9FtoibnrtSWrnWj93Otnyx5uu6rzn3Yo9La/25p 7fb3kZ9ymPYDtVH9vkOQ7gi9N9uKetV5u6SizhfKR4d/Racxm1nK63peJ9t07FdGns7Xo8qw q0NyzW9Mdy7ayLCPSxmz7JPlelzzzVLnzvuW0H4G9twl2NJZG67nztAmnOuxjDz19Sj46DLs /DcRCL3htmADCRugATSABtBAvzQw9qN2wRKn/GEBLIAFsAAW6LMF/j/tKmgdFo1Y1wAAAABJ RU5ErkJggg==</item> <item item-id="298" content-encoding="gzip">H4sIAAAAAAAA/2xU3U4TURCes91226W0pRQEttIKCCgF4fAnqLEYYkj8S/AByNKuUGNpLYvh sk/gndfe+AjGC++M976RqXPmK0s1ns3s/Jxv5pud09M0ESmW1yyu2DF+J4P3h8FJo3UWJ7M2 WFL1Vg0xW2I7BtasvTp+G9RCidCh5Fv8Tpyftp+0LhF+zuJw4DACvmBZZTl4TJRj/PfqtW9W IoemLLJiYuQj8r0w7DSOL8JACXKXJUuDy96d+cuPSwE77ASBJwHNMtwGj578QdSNO/oz62oi Ce2koJMudGpIW0wS8nxsFVvjVrnZtP70jHNdGpbNr2nZ3MYmUUZSu6msNv1VMxzKidnNCPWI dn+yk8yLro6Mavs363xB53+xHh2TqvUCV42d0QqtE43rj9x2t0A3ZO/LOA9IyUQnUGx0En1O mA21RjSF1iKfyBOabr4IGu8maIoDNNOgKVIJNNMRTRk03i3QlKUsj3MGNOVrGpoFz8gceGZv g2dugGcePHO0AJ75iGcRPLN3wLModTnjLngWB3hoCXN2KjiqpWXoyopgPywLlk/knvjfIp9W kVhZwwGZkMYByfnROpwlXACAE5uovrEFvbkNli05+1X+Lp7GfTBtRUw7SN7cBZO5OA9QfEeK P8T3b1x9/yO5Qtm6Pjrp+O3TozetTtMPHcGOmZso4X0/9DGCqf4v3eIDkNur+tdrQWzjuf5l 4/yp1MHtLZp7qfpYrB4/pIrpq2hyMPo/7FVxJ+z4tUDvx2TL6wNLKkfKUwwsKaU8i3q9krKU xyg2Ysqze8awBcNGnDHdKoMTgmHDEQwbSYMx4JTU4YjLGEkfYoykpxkj6cMGY7IygmEjazAG jHazLy+aQadR899hIPjOA5Y6Nfgx5OYvxe1P85+VHnT+AAAA//8DACIWeK0+BQAA</item> <item item-id="299">iVBORw0KGgoAAAANSUhEUgAAAeAAAAFyCAYAAAAtegndAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACaLSURBVHhe7d0NdrJKEIRh1+WCXI+r cTMuhog/ERERBEscn++enJsEmJ5+q+1yAMmq8g8BBBBAAAEE4gRW8YgCIoAAAggggEDFgBUB AggggAACHyDAgD8AXUgEEEAAAQQYsBpAAAEEEEDgAwQY8AegC4kAAggggAADVgMIIIAAAgh8 gAAD/gB0IRFAAAEEEGDAagABBBBAAIEPEGDAH4AuJAIIIIAAAgxYDSCAAAIIIPABAgz4A9CF RAABBBBAgAH31cB+W61Xm2p3s8++2q5X1WpVf43ZptgQQAABBBC4EmDAD6thV206THa3ORjv 5mTJze/bP7e3KToEEEAAAQSaBBhwRz3st+vjCne92bRWwLUpr6vt/nzQzQq5b5uiQwABBBBA 4JYAA+4y4N2uOnps+xT03Snphun2bVN1CCCAAAIItAgw4L6SmNmAT9eNfWGgBtSAGlhyDaTe KTDgsAGnhP3lOPUL278MAaxxzhDIRUnWtE7FgHOVHYqUfAGFUlpsGKwz0uCc4VxHSbJmwGMM +PCBpCk3YSWFzZXr8iLhnNME6wxrnDOcGXCO8/NIHZ8DnvIxJC+i58jn2APnOSgOGwPrYZym 7oXzVILDj0+ytgIetQKud758PrjrQRx927KnNoaXW3l7Jl9A5dEblxHW43i9ujfOr5Ibf1yS NQMer8/LRySFfXmSDkQAAQR+mECyTzPgYKElhQ2mJRQCCCBQDIFkn2bAwbJJChtMSygEEECg GALJPs2Ag2WTFDaYllAIIIBAMQSSfZoBB8smKWwwLaEQQACBYggk+zQDDpZNUthgWkIhgAAC xRBI9mkGHCybpLDBtIRCAAEEiiGQ7NMMOFg2SWGDaQmFAAIIFEMg2acZcLBsksIG0xIKAQQQ KIZAsk8z4GDZJIUNpiUUAgggUAyBZJ9mwMGySQobTEsoBBBAoBgCyT7NgINlkxQ2mJZQCCCA QDEEkn2aAQfLJilsMC2hEEAAgWIIJPs0Aw6WTVLYYFpCIYAAAsUQSPZpBhwsm6SwwbSEQgAB BIohkOzTDDhYNklhg2kJhQACCBRDINmnGXCwbJLCBtMSCgEEECiGQLJPM+Bg2SSFDaYlFAII IFAMgWSfZsDBskkKG0xLKAQQQKAYAsk+zYCDZZMUNpiWUAgggEAxBJJ9mgEHyyYpbDAtoRBA AIFiCCT7NAMOlk1S2GBaQiGAAALFEEj2aQYcLJuksMG0hEIAAQSKIZDs0ww4WDZJYYNpCYUA AggUQyDZpxlwsGySwgbTEgoBBBAohkCyTzPgYNkkhQ2mJRQCCCBQDIFkn2bAwbJJChtMSygE EECgGALJPs2Ag2WTFDaYllAIIIBAMQSSfZoBB8smKWwwLaEQQACBYggk+zQDnrVs9tV2vapq AVerTbVrjZ0Udta0DIYAAgj8CIFkn2bAMxbVbnMw3s3JdpvfX0IkhZ0xLUMhgAACP0Mg2acZ 8Gxltas2q3W13Z8H3G+rdWsVnBR2trQMhAACCPwQgWSfZsBzFdad4bYM+RAnKexcaRkHAQQQ +CUCyT7NgOeqrIEGfLo+fPs11xSMgwACCCAwjEBXL778btgI0/diwNMZnkYYYsD1KrgjXv27 En8/F1rjIIAAAikCVsAp0nPGGWLAh5XvL/1b2huLX2IvVwQQeI0AA36N24ePchPWhwV4Gt4b gqeI7IDAzxNgwF9aAj6G9KXCfWja735D8KG0hEXgqwkw4K+Vr14FexDH18pX2MTnMvjCsEgH gV4CDLjQAkkKWyhCaX2AACP/AHQhP0Yg2ad/666gj0l6CpwU9sOpCo/AHYGxRg4hAp8gkOzT DDiocFLYYFpCIfAWAgz7LVgN+oRAsk8z4GA5JoUNpiUUAosgwLAXIcPXTyLZpxlwsFySwgbT EgqBryTAsL9StrdPOtmnGfDb5bwGSAobTEsoBH6CAMP+CZmj9+ow4GBNMeAgbKEQ+DABhv1h AV4Mn+zTDPhFkV45LCnsK/NzDAIIfI4Aw/4c+2bkZJ9mwEHNk8IG0xIKAQQ+QIBhvwd6sk8z 4Pdo2DlqUthgWkIhgMAXEOgz7C+YfmyKyT7NgGOyehBHELVQCCAwgcAjs54w5NccyoC/Rqpx E00KO25m9kYAAQSeE/iF097JPm0F/LzmZtsjKexskzYQAggg8CKBb1xJJ/s0A36xsF45LCns K/NzDAIIIJAgsOSVdLJPM+BEtZ1jJIUNpiUUAggg8FYCyZV0sk8z4LeWze3gSWGDaQmFAAII fITAO4w52acZcLBsksIG0xIKAQQQWBSBKcac7NMMOFg2SWGDaQmFAAIIfAWBIcac7NMMOFg2 SWGDaQmFAAIIfDWBpjEn+zQDDpZNUthgWkIhgAACxRBI9mkGHCybpLDBtIRCAAEEiiGQ7NMM OFg2SWGDaQmFAAIIFEMg2acZcLBsksIG0xIKAQQQKIZAsk8z4GDZJIUNpiUUAgggUAyBZJ9m wMGySQobTEsoBBBAoBgCyT7NgINlkxQ2mJZQCCCAQDEEkn2aAQfLJilsMC2hEEAAgWIIJPs0 Aw6WTVLYYFpCIYAAAsUQSPZpBhwsm6SwwbSEQgABBIohkOzTDLivbPbbar3aVLubffbVdr2q apFWo7ZVx2P8QwABBBBYLoFkn+YID+tgV206THa3ORjv5mTJze/bP7e31duTwi63vM0MAQQQ WC6BZJ9mwB11sN+uj2a53mxaK+DalNfVdn8+6GaF3LfttH9S2OWWt5khgAACyyWQ7NMMuMuA d7vq6LHtU9B3p6Qbptu37RwjKexyy9vMEEAAgeUSSPZpBtxXB28w4NO149uv5ZaimSGAAAJl EujqxZffpTJmwGEDTgkrDgIIIIDAeAJWwOOZPTmieedyawV6vqGqc4A3rIBnT82ACCCAAAKz EWDAs6GcONCz67puwpoI2OEIIIDAsggw4KXo0fE5YB9DWoo45oEAAgjMT4ABz8/0tRE7H8Rx +Xxw14M4+rb5GNJrIjgKAQQQyBFgwDnW0UhJYaOJCYYAAggUQiDZp90FHSyapLDBtIRCAAEE iiGQ7NMMOFg2SWGDaQmFAAIIFEMg2acZcLBsksIG0xIKAQQQKIZAsk8z4GDZJIUNpiUUAggg UAyBZJ9mwMGySQobTEsoBBBAoBgCyT7NgINlkxQ2mJZQCCCAQDEEkn2aAQfLJilsMC2hEEAA gWIIJPs0Aw6WTVLYYFpCIYAAAsUQSPZpBhwsm6SwwbSEQgABBIohkOzTDDhYNklhg2kJhQAC CBRDINmnGXCwbJLCBtMSCgEEECiGQLJPM+Bg2SSFDaYlFAIIIFAMgWSfZsDBskkKG0xLKAQQ QKAYAsk+zYCDZZMUNpiWUAgggEAxBJJ9mgEHyyYpbDAtoRBAAIFiCCT7NAMOlk1S2GBaQiGA AALFEEj2aQYcLJuksMG0hEIAAQSKIZDs0ww4WDZJYYNpCYUAAggUQyDZpxlwsGySwgbTEgoB BBAohkCyTzPgYNkkhQ2mJRQCCCBQDIFkn2bAwbJJChtMSygEEECgGALJPh0x4P12Xa23+26B 9ttqvdkVI15fIklhfwKoJBFAAIGZCST7dMCAd9Vmtan+LbY23ObPB3i7zar6BQ9OCjtzTRoO AQQQ+AkCyT79dgO+W/12GPDBgavVels9WCMXI3pS2GKgSQQBBBAIEkj26ecGfDbM7eE0cj2x +uvh6eQ7SPtqu15X17PP9Wr4NMZq1f598+cg7WCopLDBtIRCAAEEiiGQ7NMDDbhhuvVqtXkK +fjzxVQbp5prObpWu12/O6x9t+vyT0MnhS3m1SARBBBAIEgg2acHGnBjddo00JaZ1qebV82L uW2zfmTK5+vAw1fWQTVmDJUUdsZpGwoBBBD4GQLJPj3QgPtvovpXpr267bq227kCPt2IxYB/ psYligACCCySwNca8N0KePAp6IUZ8HHel9Pq7VPjp9Plp9PurVPu51Pp3duq4zH+IYAAAggs l0CyTz93hLaJPjTV9o1VfdeA2zdcLeka8OlGsf8z6cfT6Nf51iv1y2n25vd1OfVtq7cnhV1u eZsZAgggsFwCyT49jwH/s6zNq2muXcZ6XUFeLxe3j/ugOHenzZs5tOZ582akb9spn6SwHyQo NAIIIPC1BJJ9+rkBj8TYfqhG71OwLmP3fQ74wTXj3mm9cszDARsr4rtxG6bbt+08dlLYkbLZ HQEEEEAgvFCaZsB3xtm1km09CatD4odPwvr/iFP7WmtPnbxyTM9wx+val4eEzGDA149sXa8x q3oEEEAAgSyBrl58+V1qJtMM+DDLo0F1PlzjmsLTZ0F3PAXreD21Pp29u3905SM4rxzTB/qU W98d4FbAqUIVBwEEEEgQSJ6pnGzAbwfyyunku2Oady5fV57HNw4PHkJ9Mt/WzWIzrIDfzksA BBBAAIGXCTDgJrpZDHicFncr3//D3YQ1jqS9EUAAge8iwIA/acBHw3/8XGofQ/quF5PZIoAA AmMIMOAPGvDpOvL91+1Hph49iKP5xybubxxLCjum4OyLAAIIIHAikOzTP3INeBmllRR2GRmb BQIIIPBdBJJ9+ksN+LzSfHADVedfYVpADSSFXUC6poAAAgh8HYFkn16+AffIt9vtvkrcpLBf BcZkEUAAgYUQSPbpLzXgJT07enjVJIUdPit7IoAAAmUQqP/eTd9XX5aXv5WT7NNfasDfWSxJ Yb+TkFkjgECJBJ4Z42X7M4N8Ns4c7JJ9mgHPodjAMZLCDpyS3RBAAIF/AlMM7tWV59LwJ/s0 Aw6qnxQ2mJZQCCAQIvAugxyyAg2l+PEwyT7NgINyJ4UNpiUUAj9B4Jn5Ddm+hFOsPyHWhCST fZoBTxBq7KFJYcfOzf4ILIHAMxObamBTxl8CH3N4P4Fkn2bA79ezcX0F7iBuoRZG4Jn5Xe5C Xdi0TefHCCzCgA8PW/zIfyVrnRS2ZI5yew+BIQb5bJ/3zMyoCOQIJPu0JVlO1+gzRoNpCTWC wBQDe3bskO0jpmpXBH6SAAMuVPaksJ9C+MwEPnkN79nchmyfOv9P6SIuAggMI5Ds01bAwzSZ Za8hDf7ZPlMN4N3jzwLKIAgggMCHCDDgD4F/d9iksO/OxfgIIIBAiQSSfdoKOFhBSWGDaQmF AAIIFEMg2acZcLBsksIG0xIKAQQQKIZAsk8z4GDZJIUNpiUUAgggUAyBZJ9mwMGySQobTEso BBBAoBgCyT4dMeD9dl2tt/tugfbbar3ZFSNeXyJJYX8CqCQRQACBmQkk+3TAgHfVZrWp/i22 Ntzmzwd4u82q+gUPTgo7c00aDgEEEPgJAsk+/XYDvlv9dhjwwYGr1XpbPVgjFyN6UthioEkE AQQQCBJI9unnBnw2zO3hNHI9sfrr4enkO0j7arteV9ezz/Vq+DTGatX+ffPnIO1gqKSwwbSE QgABBIohkOzTAw24Ybr1arV5Cvn488VUG6eaazm6Vrtdvzusfbfr8k9DJ4Ut5tUgEQQQQCBI INmnBxpwY3XaNNCWmdanm1fNi7lts35kyufrwMNX1kE1ZgyVFHbGaRsKAQQQ+BkCyT490ID7 b6L6V6a9uu26ttu5Aj7diMWAf6bGJYoAAggsksDXGvDdCnjwKWgGvMhKNCkEEEDgxwh8nwEf jbZ9Y1XfNeD2DVeuAf9YjUsXAQQQWCSB7zPgf4z1Xc5Nc+0y1tPv6iSvl4vbxy1Sl8mTSgo7 ebIGQAABBH6QQLJPP78GPFKA9kM1ep+CdRn74bXiy93VI++QfnCdeXAqN3d2d6/WT3d+t+76 Pt/N3b2tOr7p8A8BBBBAYLkEkn16miPcGWfXSrb1JKwO7vdPwmqNczTUgZ8T/jfPtjkOFLwd q3Undz3Xy53eze/r0fu21duTwg7M1m4IIIAAAg0CyT49zYAPkz7eeNX5cI1rRk+fBd1+ClZt eq1nUw55XOXRAGuj3t0/7vL1Cmu+Geh6Y3Ax+r5tp+hJYV/P15EIIIDA7xJI9unJBpyRaeQ1 4qmnoBtJHd9gXN4g3I3bmFfftvN4SWEzuoiCAAIIlEUg2ae/wIBPN22N+ozwHAbcdWf3DAZ8 PVtwvb5dVvnKBgEEEFg+ga5efPldavYLN+DTs6NHmW9Nbg4DvijQvAY8gwGnhBUHAQQQQGA8 ASvgfxMdeffzhfWdUV4/+nT3rufp30EceJrZKejxle4IBBBAYGEEGPD59O9Tb3wk3Jwr4MNf Mr5+ttlNWAt7rZgOAgggMCuBnzfg2zuruz4LfP6zho8ceooBt/+ARD1W4y5tH0OatdYNhgAC CCyKwM8b8FA1drvd0F1H7Xf7BqD9eeLm3zQes83HkEaJYGcEEEDgAwQY8FPo3/ns6KSwTxHa AQEEEEDgjkCyTy/8LuiyqiMpbFnkZIMAAghkCCT7NAPOaHqMkhQ2mJZQCCCAQDEEkn2aAQfL JilsMC2hEEAAgWIIJPs0Aw6WTVLYYFpCIYAAAsUQSPZpBhwsm6SwwbSEQgABBIohkOzTDDhY Nklhg2kJhQACCBRDINmnHxpwvaFr47t/X4yKHYkkhS2Zo9wQQACBdxFI9mkr4HepyICDZIVC AAEE5iHAgOfhuLhRksIuLnkTQgABBL6AQLJPWwEHCyIpbDAtoRBAAIFiCCT7NAMOlk1S2GBa QiGAAALFEEj2aQYcLJuksMG0hEIAAQSKIZDs0ww4WDZJYYNpCYUAAggUQyDZpxlwsGySwgbT EgoBBBAohkCyTzPgYNkkhQ2mJRQCCCBQDIFkn44YcP0H7tfbfbdA+2213uyKEa8vkaSwPwFU kggggMDMBJJ9OmDAu2qz2lT/FlsbbvPnA7zdZlX9ggcnhZ25Jg2HAAII/ASBZJ9+uwHfrX47 DPjgwNVqva0erJGLET0pbDHQJIIAAggECST79HMDPhvm9nAauZ5Y/fXwdPIdpH21Xa+r69nn ejV8GmO1av+++XOQdjBUUthgWkIhgAACxRBI9umBBtww3Xq12jyFfPz5YqqNU821HF2r3a7f Hda+23X5p6GTwhbzapAIAgggECSQ7NMDDbixOm0aaMtM69PNq+bF3LZZPzLl83Xg4SvroBoz hkoKO+O0DYUAAgj8DIFknx5owP03Uf0r017ddl3b7VwBn27EYsA/U+MSRQABBBZJ4GsN+G4F PPgUNANeZCWaFAIIIPBjBL7PgI9G276xqu8acPuGK9eAf6zGpYsAAggsksD3GfA/xvou56a5 dhnr6Xd1ktfLxe3jFqnL5EklhZ08WQMggAACP0gg2aefXwMeKUD7oRq9T8G6jN11rbjv7upn c3pwnfnZYe/enhT23bkYHwEEECiRQLJPTzPgO+PsWsm2noTVodjdk7Ce3V3dp/q/cbc+ErWA SkkKu4B0TQEBBBD4OgLJPj3NgA9ojzdedT5c48r96bOgnz0Fa+CKtjby4wM+dvePu1xCFSSF XUK+5oAAAgh8G4Fkn55swAm4d3dXPws60LCfDdP5IJHzQ0NObzraq+zr9e37bdXxjYp/CCCA AALLJZDs08t2hEd3Vz/TbiYDPq2ob032+Lvz3WPN7+sp9W2rtyeFfYbIdgQQQACBewLJPr1s A/5nM/Iu6TkM+Hh9+/BnFG8MuDWPmzh9206JJIX1wkIAAQQQGE8g2ae/xIBH/snCyQZcn0o+ rHzb49yN2zDdvm3nGkgKO77sHIEAAgggkOzTyzTgQXdX9xTKRAP+v2nsDQZ8vWHt8gcslimB lyECCCBQMoGuXnz5XSrvxXb//rurz3/WsPmHH5rEJhnwYezLXdlvMOCUsOIggAACCIwnYAU8 kNlutxu4Z/Pu5OvK8/hup2XiN59JZsAD+doNAQQQKIMAA36q47ueHX1eWf9/rvlq1iefdhPW U2nsgAACCHwxAQa8FPE6TmX7GNJSxDEPBBBAYH4CDHh+pq+N2HktublKbj+Io2+bjyG9JoKj EEAAgRwBBpxjHY2UFDaamGAIIIBAIQSSfXqxd0EXouVNGklhS+QnJwQQQODdBJJ9mgG/W83G +Elhg2kJhQACCBRDINmnGXCwbJLCBtMSCgEEECiGQLJPPzTg+g/3TP3qU6Rr7GIUfJBIUtjS WcoPAQQQeAeBZJ+2An6Hggw4SFUoBBBAYD4CDHg+losaKSnsohI3GQQQQOBLCCT7tBVwsCiS wgbTEgoBBBAohkCyTzPgYNkkhQ2mJRQCCCBQDIFkn2bAwbJJChtMSygEEECgGALJPs2Ag2WT FDaYllAIIIBAMQSSfZoBB8smKWwwLaEQQACBYggk+zQDDpZNUthgWkIhgAACxRBI9mkGHCyb pLDBtIRCAAEEiiGQ7NMMOFg2SWGDaQmFAAIIFEMg2acZcLBsksIG0xIKAQQQKIZAsk8z4GDZ JIUNpiUUAgggUAyBZJ9mwMGySQobTEsoBBBAoBgCyT7NgINlkxQ2mJZQCCCAQDEEkn2aAQfL JilsMC2hEEAAgWIIJPs0Aw6WTVLYYFpCIYAAAsUQSPZpBhwsm6SwwbSEQgABBIohkOzTDDhY Nklhg2kJhQACCBRDINmnGXCwbJLCBtMSCgEEECiGQLJPM+Bg2SSFDaYlFAIIIFAMgWSfZsDB skkKG0xLKAQQQKAYAsk+zYCDZZMUNpiWUAgggEAxBJJ9mgEHyyYpbDAtoRBAAIFiCCT7NAMO lk1S2GBaQiGAAALFEEj2aQbcVTb7bbVerapaiOPXelvt//fbV9v1Zdum2t0c37etOo7lHwII IIDAcgkk+zRH6KqD3aZabW6t9bLbbnMw3/O25vf19r5t9faksMstbzNDAAEElksg2acZcEcd 1Ea63l7XvNdddtVmta7+Nx1XypdVcN+20whJYZdb3maGAAIILJdAsk8z4Ls6qE8jN0y2uf3G cI9r3qsh9207j5EUdrnlbWYIIIDAcgkk+zQDvquDk6mu/6/zPlrxvmbA/9eVG9eYl1uKZoYA AgiUSaCrF19+l8qYAbdJH1eyzRVwbcjn08xWwKm6FAcBBBD4CAEr4NmxN+9ObtzdXK9CH9xs dZ3CwNPMTkHPrpoBEUAAgTQBBpwm3huveXOVm7AWJY3JIIAAAjMTYMAzAx01XP0RpP87mw9H 1ivbxueAfQxpFE07I4AAAl9FgAF/WK79dn19CEfTjI/zqlfBjx7E0bfNx5A+LKvwCCCAwFMC DPgpou/cISnsdxIyawQQQOCzBJJ92l3QQa2TwgbTEgoBBBAohkCyTzPgYNkkhQ2mJRQCCCBQ DIFkn2bAwbJJChtMSygEEECgGALJPs2Ag2WTFDaYllAIIIBAMQSSfZoBB8smKWwwLaEQQACB Yggk+zQDDpZNUthgWkIhgAACxRBI9mkGHCybpLDBtIRCAAEEiiGQ7NMMOFg2SWGDaQmFAAII FEMg2acZcLBsksIG0xIKAQQQKIZAsk8z4GDZJIUNpiUUAgggUAyBZJ9mwMGySQobTEsoBBBA oBgCyT7NgINlkxQ2mJZQCCCAQDEEkn2aAQfLJilsMC2hEEAAgWIIJPs0Aw6WTVLYYFpCIYAA AsUQSPZpBhwsm6SwwbSEQgABBIohkOzTDDhYNklhg2kJhQACCBRDINmnGXCwbJLCBtMSCgEE ECiGQLJPM+Bg2ayqcv8LYhQKAQQQeBsBBvw2tJ8dOClsOtPkW4t0buIhgMDvEEj2aSvgYF0l hQ2mFQ81l9nHJy4gAggsnkCyTzPgYDkkhQ2m9bWhphr51yZu4ggg8JBAsk8z4GAhJoUNpvWz ocYa+M+CkjgCX0Qg2acZcLAwksIG0xJqIAGGPRCU3RD4IIFkn2bAQaGTwgbTEupNBBj2m8Aa FoEeAsk+zYCDpZgUNpiWUAshwLAXIoRpfDWBZJ9mwMFSSQobTEuoLyXAsL9UONN+K4Fkn2bA b5XydvCksMG0hPoRAkMN+0dwSLNQAsk+zYCDRZQUNpiWUAjcEBhi1JAhsFQCyT7NgDurYF9t 14c2sjp9rbf7xl7NbZtqd3N837bqOJZ/CCBweC0M+A8nBD5BINmnOUKHwrvNoT2st9XRdvfb ar1aVxcPPm7bnGy3+X375/a2entS2E8UrpgIzEmASc9J01hDCST7NAO+U2VXbRqGe7u5te1o zpdVcN+20yhJYYcWm/0Q+GYCz0z6m3Mz988QSPZpBtzW+MZUWxvvtjVMt2/beZiksJ8pXVER WBaBPoNe1kzNZikEkn2aAbdV322Op5932/X/NeDzGefz6ejmdd/xBny5rtz8/1IKzzwQ+CUC Vs+/pPZ9rl29+PK7FBkG3GXAzRuvakO+nJK2Ak7VpTgIfJyA1fPHJfjIBKyAZ8d+e1fzzTuf /+XtOeh5BXy97/l07HE3Bjy7MgZE4BsJMOdvVG3YnBnwME7v2evOZBsGfPjQ0c0NWm7Ceo8G RkXgiwkw5y8W7zB1Bvxh/eqPEP1/9vd4Cvp63dfHkD4sjvAIfDEB152XLx4D/rhGt6esb89S 16vgy0M62g/i6NuWfWf1cYQmgAACowlYPY9GNvsBDHh2pMsYMCnsMjI2CwQQmIsAc56LZP84 yT7tLuiMpscoSWGDaQmFAAIfJuDU9nwCJPs0A55Pt6cjJYV9Ohk7IIDAzxB4ZNA/A2BEosk+ zYBHCDN116SwU+fqeAQQKJ9AlzGXn7VT0D+pMQP+SdkljcBXEfh1U072aSvg4EsjKWwwLaEQ QKBwAr90CjvZpxlw8IWTFDaYllAIIPCjBEpcLSf7NAMOvnCSwgbTEgoBBBD4J/Dtppzs0ww4 +MJJChtMSygEEECgl8A3mXKyTzPg4AsnKWwwLaEQQACB0QSWasrJPs2AR5fN6wckhX19lo5E AAEEPkNgCaac7NMMOFhnSWGDaQmFAAIIvI1A2pSTfZoBv61s7gdOChtMSygEEEAgSuCdH4tK 9mkGHCybpLDBtIRCAAEEFkFgjtVysk8z4GDZJIUNpiUUAgggsFgCY0052acZcLBsksIG0xIK AQQQ+CoCfaac7NMMOFg2SWGDaQmFAAIIfD2Bf1Ne5WwxF+nr5ZmeAAOeztAICCCAwDsJJPs0 A36nkq2xk8IG0xIKAQQQKIZAsk8z4GDZJIUNpiUUAgggUAyBZJ9mwMGySQobTEsoBBBAoBgC yT7NgINlkxQ2mJZQCCCAQDEEkn2aAQfLJilsMC2hEEAAgWIIJPs0Aw6WTVLYYFpCIYAAAsUQ SPZpBhwsm6SwwbSEQgABBIohkOzTDDhYNklhg2kJhQACCBRDINmnGXCwbJLCBtMSCgEEECiG QLJPM+Bg2SSFDaa1uFA45yTBOsMa5wznOkqSNQPO6RoVNpjW4kIlX0CLSz48IawzwHHOcGbA Oc7dkXabo1G2v9bb/Xn/fbVdX7Zvqt3NKH3bsu+sPo3xk/E1qxx9rDOscc5wZsA5zsMiHQ35 arS7zcF8NyfbbX7f/rm9LS3ssOTK3EuzyumKdYY1zhnO6T7tFHSvrrtqc1gNn/22ttzDz+vq uhjeVut/c+7bdgriRZR5EeGc4aymcc4RyEVK9g8G3KPrfruuVuttdTn5XO2bhntc814NuW/b OUZS2Fy5Li8SzjlNsM6wxjnDOf2mkgE/1PV0Pfe6+j3sOIMBd11f9rv7a+6YYKIG1MCnaiBl 9wz4Eek7s51uwClRxUEAAQQQWD6BHzHg5t3JrXeVN0vcq2DH08/tbRNXwMsvBzNEAAEEEEgR +BEDHo+zvov5+tGjy/HTbsIaPwtHIIAAAgiUSoABdyrbcf33vN+UjyGVWkTyQgABBBAYT4AB dzJrrXRv9jl9NOl0c0D7QRx928aL4wgEEEAAgXIJMOC4tv1Py4pP5ysDjmHYs+/xmn7jnoDm R86+kkti0mPYn+fTdUNjYqpfFWMmrmr6BdVHsG/xfXAL0eA5MODBqObZse8U9jwRyh9lDMPe feunnE19BZWP+/b8T8+T4LpRXM4Ktc8W/Ri4J+mOqenTUA+4qunRhTWcfevBTMenJDYezDQ6 8uHhTC8c45CXCTx/WtbLQ//MgWMY9u/bfaPdz4B8IdEx7OuPzR8+SXA4w7DebBpPjHshbPGH zMdVTY8tlhHsa8O9OUv2+F6hobNgwENJzbHfgKdlzRGm6DHGMOzdt37xTHv3WjTnruTGsD8c v9/tTk+Rcwq6v1Rm46qmR78mR7K/Hb/9qOLR0a2AxyObcMQksSfELenQMQx79z29813//2Ur Zvy0TMawbw7GgGc14P/BHuihpp9W8nWHV2v6+L6y9ajiEWEvu1oBvwDt5UMmiP1yzNIOHMPw 6YNTmqZbG7LrlL3lMoY9Ax7+ypuL63EcNT0cfNfZmb5PwDR9u768Mr1fMOBRak3c+dUX2sSw RR0+huGYfdt/6aooaDMlM4pnI6YVcGgF3A4zzExmqo7vHOaFmj7d2zDPGTMGHC2bERf8o/P6 pmBjGE7Y95uQxOY6hicDHi7Lu7gy4OcajGN/Mt/pK1+noJ8r85Y9ht/y/pbwRQw6huHDfY8f IWi8kOp3wj4H/LQ+xrD/H8wKOMNVTT/l3LXD4Jq+O8X/Uribg6yApzMcOYKnZY0E1rH7Y4b3 H8N4vO/lYzLdTzWbPssyRxjD/kyAAQ8ohXm4qukBqO92Gcb+aNTNB/ecv5/yKAEG/IpejkEA AQQQQGAiAQY8EaDDEUAAAQQQeIUAA36FmmMQQAABBBCYSIABTwTocAQQQAABBF4hwIBfoeYY BBBAAAEEJhJgwBMBOhwBBBBAAIFXCDDgV6g5BgEEEEAAgYkEGPBEgA5HAAEEEEDgFQIM+BVq jkEAAQQQQGAiAQY8EaDDEUAAAQQQeIUAA36FmmMQQAABBBCYSIABTwTocAQQQAABBF4hwIBf oeYYBBBAAAEEJhJgwBMBOhyBnybgLx39tPySn0aAAU/j52gEfpsAA/5t/WU/iQADnoTPwQj8 MoHm31FdV9v9L7OQOwLjCTDg8cwcgQACFwJWwGoBgZcJMOCX0TkQAQQqBqwIEHiZAAN+GZ0D EUCAAasBBF4nwIBfZ+dIBBCwAlYDCLxMgAG/jM6BCCBwWgG7AUslIPAKAQb8CjXHIIDAmcC+ 2q5X1Wq1qjY7UBBAYAwBBjyGln0RQAABBBCYiQADngmkYRBAAAEEEBhDgAGPoWVfBBBAAAEE ZiLAgGcCaRgEEEAAAQTGEPgDRgBxonrnJncAAAAASUVORK5CYII=</item> <item item-id="300">iVBORw0KGgoAAAANSUhEUgAAANoAAAAVCAYAAAAgo/C6AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANbSURBVHhe7VqLkesgDHRdLsj1uJo0 42J4BoMjxE/IGLg83czNTXKOkVa7+sWLkh9BQBB4HYHl9RPkAEFAEFAiNCGBINABgdeEdhxH B/PliF9F4C/yJ2ezL7TPppZlMb/rThfKZ1vU9nEhP9S+ws9/1LasquJ2f5o7GguH4fX3//Gd G7ih/OnEeU9ohiRfxZBwO/YVfQYL7bzNsat13RVduqSjJ7tIJ5QIfjaQlbBO5tt75ozmTy/O 30LzM/Gm7gKVxViTC157iezO6IBd+v41VZIVWi1oXUH2b2U2iQNkrdpEQrUjFzBDppaJZqCf JmnarsfFmZ9ExvKnJ+cfVbQwG2laRiqafluTPUu2qyI8EqMjgYu8E5h77QjavLR2bo+H+gnH BB1WnVipidlPW235A+59xp0q/tqKxrU5LzSUvXzjE4JKCe2ska/Patber52XeJOvs/5Ra5lt jZlkqzjle+koP2PGmmRmhWbsAqIbxZ8nQoPdTxBTPuczQkPCCKoBJnFqGeK/T8k04UIh3o4G cY/aCJcR0OaSfxUSwAQzhR23WA2XIqP8vCGx8+jdQsaEVsL3Pf7o7onCs6vRAnM1imNYvfg2 p4WmlY2s9bdDqQpVq/oKQpcurSFg0T9wWFBBsCGFap1pWVlJZaifaCt9VzQovlN4RXzb8oeF IxYaDmuQQPk2V8xo+BC+ukt64YJ2VRFcwVIVrVIsBaOzvX7r2XCUn7E5O9c6epj14w+7oqEY 96lo3qGxKlVbuXrNaByhpXwppQT4f5vR8cLnbiFHtY7Qxod+QlF57bH1LdZCm+M784fbOt5T jmv7ccz4nCdUtPQ2ML6B0ePJuc7G3yl12zrWCq3BttPrMq3vYAVOnRfIsmZVtDZ+hitx0NlE hdaLPwC9p0LzZlFfbFzO5x/BejqbeL4/XN2TWVhxYdG/invNfGkvPxNbx3SioXc5Xb6HjcTQ 30uY9Ql5ew5tTguNGJyUwv3Oc8InQ4j+zawfkm09/YRCI547FX+CrisuKo7NSaHd7V/xKYCr b22RtUjEaXQR3b9GBw66TV8/3ZNB2/l0TthC63Ei5Mlc/PHxSs3V9Ta/9vT+IF7JsYLAlAiI 0KYMixj1awiI0H4touLPlAiI0KYMixj1awj8A5TqKoVL0W6dAAAAAElFTkSuQmCC</item> <item item-id="301">iVBORw0KGgoAAAANSUhEUgAAAKIAAABKCAYAAAA45Y/0AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAczSURBVHhe7Z3rkeQqDEY7gc1jY3AW k4Tz2AwcTf+aTDoYb4PttgEJfbw8HqxbtVW3CsxDHCTBIPVj1v9UAheQwOMCYzhvCM9xfjzG +Xlejzfo6TVPw2MeplfRXG8C4iKsx6gIFtES+fg1DUWb/AYgGgiHuXDDtlq/ztp9zmOmxeke xOf4mNsqwkXbOn1YF+CtgYl/tp5UTuH5mubBb2+Y5qNBNHPd+/Q3n4HkUN5KKGac3riQ3dY3 iGbBWwncSnc1+e8FlrqxkEQWSCq38EY6Md87fprjD/uuSR2/jgPMmOlUn7FjEI2w2x1MFp/I wDXOo68R/RWSDklSuVWiEdittoy5H4s2PHJsxy/tHkSVkXXSTXS/IJrFaSboty6cpvX0TZhm Z3Ek7SOVb5r3rWXMgWszr0ftakCOmsNzNaId8Rv0FPF3C2KqILI3/2qeWaFL2k4qtwNbNJpj 7g6+mNVubxCfm5a2sIbW4OhDpkCSJZtERdApiG3NsrswMY0oaTupPIbAbm43N4H3EUOQLZRN aUxbg05BfAs+4+SWtfNjGlHy3aTy6ID2DbBpRPdK+bBBKNNd1DcmqeeIX5v1CWKiWcDEyp4R w+ubrarku0nlx3YCU2u03LrQZDs/D2KKe6QgllH4ucKhrJxk/qTyfWjMXeVH63N3mZufyJjm xlZDQXxrxPG0P6XwPmJwt+dBHysPy7wL6QCi/U5zOVn7hxXp++IdGTSgIJ4KYv0F7KVFBVFB vATLCqKCqCBeQgLfX/Pfr+9LDOXOg/j++jP//YdJoNtT83mHFUzQd6ylpllN8yW4VxAVRAXx IhI48R7xEjO+5CBUI6pGvASYCqKCqCBeRAJqmi+wEKoRVSNeAMO0V9p6j3iJJetzEKoRVSNe gmwF8UdA9J5ZSc+wjg8Yc+KcP6hhwVvBe0kgTrqUZgXxdBDDh6duCg46ik6KU45H5hlMpLjq SHnzmG/1EY0Ezj01k5F43lN+X0PGYkaAyD4prloqb58BQ0E8H0TKhh1Ao4ObwqD3pRkssk+K q46XL/mA2DjpUpu8fp9vmg++SkrKiHB3uc/W3bYOmqLShINmztaI4QDc7GOUhlt9tMB3A7Sh 212OjxiPk661LNkg4sE8+1DD1BW+P3TOpB3h/SiIVAq89SBzoG4LdndBxLRhOYgUapyGzscy C0Q3kxSaM4bIcUL5PkS4oxRYlD99Y93q+oiubLwsX25CGZuxi7Ym7ql6fBKaLCvWOEcjkr4E HxabuRhZIJq+UjUimciHDeb24EZjenOEUBlEaAjWpOIB5WazDP4BJksmGSBKhytownKleiB6 d02IGSEdc3KnN/QVzwZR0mRBOW2CUxXB8XDDZw+hQJXipGXIkBqVQPRACYRJ+xQ4iNJOXjU0 k/AymrflZBA/VyVcYs7F3DiJOynznRbnvKEgyZErbx/nXAdE4sLTPR0zGg01zeA1BbLzrndq zhp1dx/VATEQiw8ec8qCfR9pJ/8ejdgdQZUm1ABEyqfhrhqA6xs70Y58xEoL11szlUEk7gFX iZGnZlsWu9BeP846IYJLdbKPCI7qdtWyQaR8LXMvxp/I8rXab7pHvB1BlSZcB0TuT1DeIHmt GJmNabtlSjTViJVQKmumCojclUSoHeVDhzudfC0Ki0VBhEXVsmIVEFsOsHnbCmJzESMdKIgK IsJJ8zoKooLYHDKkAwVRQUQ4aV5HQVQQm0OGdKAgKogIJ83rKIgKYnPIkA4URAUR4SStjvOM DXsArCAqiGmQSbX9t6hggJeCqCBKaBWWY38dUxAVxELQ4p+Tr/CJTxRE/XmLNiB+YpgwH1F/ 3kI1YhsQt1bVRwTlqyCCgsqtpj4iJjkFEZNTdi0FERNddRDBN5deHLj9uVryATDXnvdTt/zT eEwOZC2sbyfc1TfF4MNmPawYQVVbRCkH4WG1oZyDfHtugH1OHhyJT65vOeDNfSiNpaRRECuB +BH+MM7jEIvdWQCQcg5G2yOyRaDXJBJ+pjy1b5sQoDCcQ0E0oaqFQlwWb3q3ZP8PSFAk5xxM by+W0In6hXpeU0X7hpMiIMjvdZ4jds1jvujzVwUsOJj5wESLgJiSfi/W3sFPjG6mYyY2Iisb O7Gwb1LzSvl8RMGlrUGnIKalzRVlCmlEqpV4VljRjRXv67b8NSmb7iQQE92jbkG0ad8iKw3n PIRNMwVi/IQqgihugDogkv4glTpG3rGfGin+YcemefPrUjRFTMqAaU7KOcikhWN+EoMGtp5p rpercZNhmlnuHER7jJ2j6evgHQ6ASGkv9uRJtcfASfqJlE+I+ol837us+DQziMiMNkzJwd4/ iMCVCiJY7tQcpk1Bcw5il8ql1yf03LC+U0E62OSsLB79+oi7ZOxPOUwvDDmtVSIBVCuHfdwA xM1fVBhLEJO/zYfwFqZ5F+B2P1frACMvzT1q1JHrTTTiPZD4zbP8D292RxWNbbWNAAAAAElF TkSuQmCC</item> <item item-id="302" content-encoding="gzip">H4sIAAAAAAAA/+zdCZwU1aHv8QKDS/I0iSQ+jShBRQnBjixu6KAoiApDWBUUEFEQEUHQiFsE 4zW5MXpjosY35uZFP3mfvJfEJNdcs5hrEPc1AUFg2ARmX1gEp3tGb5J5p/r01NTU1tXd1d1V p379+dqeru6uU6d6+s+pU11VvbQjNO2Qw6/5lKZpB+fo933Ef5/prWVK/6P3LV+rG6w/c/Fn v6y9K6a80+unvfRn9en6/weJ//Qp74j/emnH6pO0p/5yuGa9VX1Be6gvAKhG3H5zjPbUibqn T8wUCvG0p0Lnf0JhCpi5d7ueLvzt3mv1BC8FfijZedZe6LJ5z6GwJQ/zH3NxvykFLlsBn2mh f2wFf+I/Sxd+fHwm39Yep20ZevjWcUfunPa5LZd9unr0pzzsGKV5215RTKO87KjIopCqs8/c e9mKud4KnHmhby9McT+UAv6csv5FFfjHXM6ZF7PhBX4ohf85rTtbe2GInnLmfKufcvS+Rcfs mH54y9cP83DgUg0AQktE3OrT9Y0mc77JcKtu3gMA0SUjziPf1u7YuW7Hzvc+2LW+y3tO1ukv 2y2t3bHL4m8fOJPPvuvpne1Wb2/fCQDCm13e2qZ7e9vON7bteH3LB69t2eEn397ess3bW9XO Xq/e6uE1k1c3W728SWcu97RlDYCYeWnTVoPryzZuWd3FT751dbR2rv3gAynz0JCe+Ncd2flJ YxnCb263emObxQ4AcfPatg8Mr27bIZkfvrJV97vX3ujs7PSTb5tq64XNdRkbpdpum0zer6mz 2GCyvqbW4r2aOt3uWp3+sHbd7jphrbSrNqPnlL/uBhBDdcI7u2q77azTdT18q8t/+s637c3N wgfNLYIsb2tqkSxlYWtjD9XuNjU2OdpYr3u/vtGwwea9OgBxtL6uSdyvS9/LgrDW5G+1uude f8tnvtW0tBp2tUp7uugPjWMfdra07uhiTNze3CrIwjbT9C3NrZIxRebe5sYWUd7UpE+XiWe8 YGNjsyALGxpaBFGWBYN8pfmhebr5WctTjlMsE90qBVBG6+p17zXqZPn3r7/tM99q91jVtO7d vWePJN5iKe/cs1cUPjClnygb9yL6trfsEURZxp2435ImylvTcWfknrzfJLaRhaZMWd6/39T6 fnqKLFgeyoLlofdTMtPc3gUgnDY0ta5v7CZT7g++861+z1435tAzZ50smLp5PfJNFASjmyey TkTcNlPuiazbmi7Ie3NPrzvxmloziZcumBkT7QWj7PGUx5wBhITYiJPhZiFT7vdvvOMz35r2 7Wvas7fLvoYu9qwTb5dlredN9PeMe/PN6NfJrDP364yuXa755pFXxm1Ttnwj3IDwkxGna9SZ 8+3nf37Bb77t399NZJ2wf3/j/v31+zKM3DBPqdu7T9KTzXS/a+8+o48nt2TFvezRmRNvu6n/ Ju6FLS17ZddO1iWXzShYHsqC5VnHp8yv8XgKQKhsMtloIhPvV6tfCiTfzLFmkLGW6bzt3Wfk 2y7TdBFrkrk7J/NNS2+0GslmvEBEnMw3S8qZWdLPUrY/Zc83yxsBhJB3vv32pdeKmm8GS74Z /Tcj34z+m7kXJ7dVt5qkw23vlq6dEX7WgEdGEV9ApHnn27Ov+P39m/98M8rkG4Ci8s43/8cv 5DH+Vki+Sebt07zzDYCqcsu3E/PPNz/bp1JO+VZ4/w2AqrzzzXp8FvkGIDq88816fJZ7vrV+ uN+sxRx3Jo02MutqbcxZZ2ZOPGl76z6zrV22AIifnl2djE09vd+yR7Aen+XRf9vT2tjaUt/c JNU1NdU1d2lqqu2y22SXyc60HSbbpUbdtgbd1sZuWxoahc0NTY7k0ffpA/ABxMiGukaz9Wa1 DcLa2oZ1dRnW47Pc821nXe3WnR9s2b5N2rx1y6Yt1cL7QnX1hurNG/R7vbCuutpirWFz9V97 etfk7U2b39m46e2N1bpNujc36t7YuNni9fc3vwYgrl7dsOmV9zebvbqx+uX3NwuvbKx+dfMW yXp8lnu+rd+44a1333n1jdell1599cVXXl798ku6l9aYvWBY86Lw5zVrDM+n/enFNX/w9Nxq w4vCf65e/bvVLzr6j78AiJ3f9vSbF1ZniIcvvvTsy69Kv3/9rRf+ts5Pvj3+f37+8I//94NP PCn96+NPfPvRHz3w6OMAEBIilEQ0Pfi/npS+/5OfiuDyk28AEFHkGwBVeeRbYthwAIgu8g2A qsg3AKpyyLdhh5FvABSg59so7ekTyDcAqiHfAKiKfAOgKvINgKrINwCqIt9UpXV2mpV9eYDS I98AqCrvfOvUNGRV4Kdj7n3ZO2PmQtaumnk6/TrEBP23MDOSLdEzzRwL3mFleZZkQxyQb2Fm Tza3/pul4DYrt4eAksi3MDNvmVomOhYS7sHlsXkLqIp8Cy1LItlHzByH0fyMvznODVAP+RZm OeWP9ygcUYYYcsg3zo8UTVn3n9JnQ9xw/jcAqiLfAKiKfAOgKvJNVd4HNTAKhzgg32KLiIPy 8s63nr0DOCvw0zH3vuydMc12XIP3/tOsUwDF0H8LM830kzbHWLO/zHtWlilEHNRGvoWZPdnc +m+Wgtus3OYMKIl8CzPzlqllomMh4R5Zlg1YP5EIRB35Flr2RLIHneNEt7llLQOKId/CLKfw 8d7kJMcQQ+SbMrLuP/V+AaAe8g2Aquz5Vj2U8yMBUIHMt6fJN+X4+dEvoDbyDYCq8s638l97 LwoK/HSKdHwWvw9BTNB/C7PiHZ/F8QuIA/ItzIp3fJb3iwE1kG9hVuzjs4g4qI18Cy2OzwIK RL6FGcdnAYUg35TB8VmABfkGQFXkGwBVkW8AVEW+AVCVPd84PxIANYh82zFKe+oE8g2R5+c3 fvYye5YVRr5BGXnkG7GmNvINysgv38q+2Cge8g3KyLv/RkdOVeQblOGnn+bRfyPf1EO+QRl+ 9iMkbMNudN4URr5BGWQULMg3RJ19GI3+GCTyDYCqyDcAqiLfAKiKfAOgKqd84/whAFQg863n +UPINwAqiGG+eVxF1ONnn3n86sB/Rd5vLKSunNqYR0UJ91/Sul3tK6KNcluGQBplX2NFapRH RYH/qRejUbmKW75Z1m3W6ZYp/j+OnCpym2eBdVle4P1nFmBF3kseeF1F+qTcKvK5MLnW5fFH EmyjHNdbkT4pjznn0ag8xDbffJbt6z/XDz2/SgOpyzLR/k95kSrynmcx6ipZo/xPyaMux38d itEon8tfpLryblQeyDePsvGvZ+nzzV5vHnVZJpY430rTqOJ9Uh4THauO9CdVgkYV/knlgXzz KLv9exp4RXnX4vON4cm3wBtVvE/K50Q1Pqn8Vl2JP6k8xC3fEqY/Icdvn9ZzZCDruwKpyPJU IvdP3KMue4uMKcE2yrEix9YFW1dRPymP+Ti2sZC67H8ARfqk3NZYMT4pjznn0ahcxTPf3LLF /q0x/4Hl+kH4rMh46DixwLqMZ72rLrxR3hUVtVHF+6Q8Ksq7ulz/KgL/pLz/zoP9pAL/TuUq hvkGICbINwCqIt8AqIp8A6Aq8g2AquKZb53F3GVTrrpoVFTqolElI/Jt+yjtKfKtaB587EeK VUSjolKRqo3yj3xTpi4aFZW6aFTJkG/K1EWjolIXjSoZ8k2ZumhUVOqiUSVDvhWbkgMgNCoS FanaKP/ItxC+K+SLR6OisnjhXxXFRr6F8F0hXzwaFZXFC/+qKDbyLYTvCvni0aioLF74V0Wx kW8hfFfIF49GRWXxSvkuxt/CI+R/KiFfPBoVlcUL/6oottjmGzdu3IK9lf17XcZ8s5/D01z2 OHdoHmc0LffnzI1bHG9lT7Mw5JsloCxlx2ezplxOS1LiD/3Bx36kWEWlrItGRaWuWI2/OZ57 3yPfjOmOmWYvuz2VU76VfeUDKCr9/EgV5e+/Jcg3AEErS77Zt0YT5BuAoJUg3xz3IFjK9h0K blu4lmwsZPytNGtYyQMAaVQkKlK1Uf6Vvv+WyHH/qdv0vC+eSP8NiImS5Vt4kG9ATJBvAFQV 03zTNAB5s3+tYj7+Fh7034BCOOZbOMUk3xx/cV32pQKiiHwLM/INKAT5Fmb8/i1CddGocNZl jzjG30KC/htQoKh04cg3ALmKWL6dQL4B8It8Cy3G3yJUF40KZ10RG38j3wD4Rv8ttMg3oEDk W2iRb0CByLfQYvwtQnXRqNDWZYm4mI+/eVyOoVzXz7J/LpQpU/ZZFvnm9prwKG++lff6WWVf +UB0RWITtUj55n12cTP7CyxTHMtcfwEorzjnm5398goJpwRTL98Y1YlERTQqV4y/mTkGVBzy DVAS/TfJbQ+CUc46xXF6VK6fBSiJfDPLe/+p23SunwWUEfkWToy/RaguGhXmuswRF9rxt+0V 2tOcHwlAjsLfhSPfAOSHfAsh8g0IBPkWEh7HZxUbozqRqIhG5YHxtxCi/wYEgv5bCJFvQCDI txAi34BAkG8hxPhbhOqiUSGvy4g4xt9Cgv4bEJSQd+HINwB5I9/ChnwDgkK+hQ3jbxGqi0aF vC7G38KG/hsQlAj23w4n3wD4Qb6FDfkGBIV8k+zXlzGmc33AQMqioF5d5ntl6jKvRgXqkhEX nfG3IuZbwuWqClwfEIioMHfhipRvbldPsJS5vgwQdTHMNzvv6zt7THEsk29ASJBviRjnG7+q ikRFNCpvMR9/c9xfwPUBATXQf0vkshuU6wMCEUK+hQr5BgSIfAsVxt8iVBeNikRdIuJiO/4W NvTfgGCFtgtHvgEoEPlW5vXvfnwWgAKRb+HB+FuE6qJRkagrzONvO0ZpT59AvgHIU5j7b+Qb gEKQb+FBvgHBIt/Cg/G3CNVFo6JSVzgjjnwDUDjyLSTINyBw5FtIkG9A4Mi3kGD8LUJ10aio 1EW+hQT9NyBwMc+3vM//xvWzKFMOf5l8S2QLK/sLLG/3eKN/9N+AmChSvnmcXdztNVx/ISoV 0aioVKRqo/wrV/8tEZt8A1Au+vlDRpX0+vXmKeQbgOIpQb65XT/L7TJYXD8LQCBK3H9LxO/6 WUoOgNCoSFSkaqP8K1m+hQf9NyAmyDcAqiLfAKiKfCs2JQdAaFQkKlK1Uf6RbwBUFZN88zj+ FICqYpJvZuQbEBPkW7EpOQBCoyJRkaqN8o98A6Aq8g2Aqsg3AKoi34pNyQEQGhWJilRtlH/k GwBVkW8AVEW+AVAV+VZsSg6A0KhIVKRqo/wrS76ZT03J9QEpU1asHB6lzzePq/45TnF8JdcH BJBVIflmRE3WU4U79sccy1xfBkBQ8su3/C58YLzXo6xevik5AEKjIlGRqo3yL+/+W4ER5zjs llAx3wCUS4Hjb3mknGNScX1AAIELZP9CriGT0/5Tt+lRuT4ggHIpPN/yzplyYfwtQnXRqKjU pdj4W6KwIbgyov8GxEQh+xfKvvD5Id+AmCjk9yGR2zKVyDcgJgLZfxr+oPM4PqvYlBwAoVGR qEjVRvlX4PhbooDfaZQL/TcgJoLKt0R0RuTINyAmyDcAqgrw+AXyzZGSAyA0KhIVqdoo/zi/ JQBVBXh8Fv03AKFS+PhbwjYQF3LkGxAT5FuxKTkAQqMiUZGqjfKvNOfvDRX6b0BMsH8BgKrI NwCqKuP1Ac1lj/Nbur3SY6PY8WhTt+NPw3A9tUDKoqBeXeZ7Zeoyr0aV6jLK4VH63/daAspS dnzWPt3tZX7QfwNiojTHZ3n0x9zm5l3m+jIAsir970PINwClEVS++Q8Zy8VlLHNTL9+U/AES jYpERao2yr9y7V+wlO0bsPbMtEzP+7xz9N+AmAjw973+K81p/6nb9Lx/VEy+ATERYP+N4xcA hAr5VmxKDoDQqEhUpGqj/CPfAKiK4+sBqComx596HJ8FQFX034pNyQEQGhWJilRtlH+FH39a 9ibkiv4bEBOBHL8QLeQbEBOBnD8kQhunCfINiI2gzh8SoYhj/C1CddGoqNSl3vib//MjhQr9 NyAmyDcAqir9+XvLjnwDYiImv+81Y/wtQnXRqKjUpd74W0TRfwNiolz55v/8b95XlnHcKHY8 Gsvt+KyyX/eKMmXFyuFR3nyzn+Hc++oMCZeUy6lq+m9ATJQm38zx5XbIKtdfiEpFNCoqFana KP9K33+z/CrYcbp5imM5QvkGoFzs+VZdwuvXk28Aiqe8+Zbg+lkAiqYs+ZbIZf+p2/SoXD9L yQEQGhWJilRtlH/lyrcyov8GxAT5BkBV5BsAVZFvxabkAIiSjbL9NhOuyvtJ+ReTfPM4Pivk yv6XHB9l/6yjIkLrKib51vPT6Sz7V4kvHSItKn+Zcc23yPTfgBAi30KL8bcI1UWjwlmXPd8Y fwsJ+m9Agei/hRb5BhQouvm2Zdhh5BsAb5GIOD3fKrSnyLeiYVQnEhXRqFxZ8i2842/kG4Ac 0X8LJ/INKBz5Fk7kGxCI8Ecc+VZsjOpEoiIalQdzvjH+luh5fRnLFPtrjIdu0y1vNK12Xzf7 50KZMmX/ZfLNzhJlRkHj+oBApLB9KnmElWWi48vsZben/H0o5BsQAPLNjVuaqZdvjOpEoiIa lR8j4tg+NYtPvgEKC3kXrlzjb5ZNVPsOBfvAmmW628t8fCLkGxAM8s0i1/2n/t/o+xMh34Bg kG9hw/hbhOqiUSGvK3Ljb5wfCYB/Ye7CkW8ACkG+hQr5BgSIfCs7j+Ozio1RnUhURKPyJvON 8beQoP8GBIj+W6iQb0CwQhtx5BuAApFv4cH4W4TqolGRqEvkG+NvIUH/DQgW/bfwIN+AYJFv 4UG+AYELZ8SRb8XGqE4kKqJRBSLfQoL+GxA48i0kyDcgcFHJt7KfH4nrZ1GmHOlyeIh82xGm fFPv+lmM6kSiIhoVlYpyEtp88y5z/QUAWZFvAFRFvgFQVdjyLaHc9bOUHAChUZGoqJR1aWHd fxrCfOP6WUC0kG8hQb4BgSPfQoJ8A4IVznBLkG/Fx6hOJCqiUYXQQnz+N/INQCHov4UH+QYE KLThlohNvnkcfwqgEORbqDD+FqG6aFT469LCff1Ta75xfiQA/oS585ZwPD8S+QbAH/ItbMg3 ICjkW9gw/hahumhUmOsyh1tox9/INwB5CHnnLUG+AcgX+RZCnfpZR7QClb0VQNmF/4sQz3wr vP9WeEKGWdbmM1QViYqKWpfl74Txt5Bg+zSrkKcrwiASn1SJ8804KaXHaSq5PmDMy6WJ0PC0 N6Jlrec5Q+i/da0W16v+OU5xfGWErg+IEKLbWfgKLPsy+FGW7VN738woq3d9GUZ1IlFR4XWF MzCLtALti0f/ref6cU4z9fINyE/YotKybGVfP37Y862afAPUEmxORiXcEka+nVC6fLOPsyV6 RpZi1wcElBG5wcay5FtO+0/9v9Enxt8iVBeNikpdoR5/K2G+lR39NyAmyDcAqiLfAKiKfCs2 JQdAaFQkKlK1Uf7FJN88js8CoKqY5JsZ+QbEBPkGQFXkW7EpOQBCoyJRkaqN8o98A6Aq8g2A qsg3AKpyyrfDyLcAKTkAQqMiUZGqjfJP5NuOCu3pE8k3AKoh3wCoinwDoCryrdiUHAChUZGo SNVG+VeufCv79QEdPxfKlCkXXg6P8uZbWa4PCCAmSpxv5us7OyZYCa4vAyAmSt9/s1wdxnG6 eYpjmXwDkFVZtk/tW6MJ8g1A0Mqbb4lyXB8QQEyEf/+p2/S8rw8IICZi+Ps3ADFBvgFQlVO+ KX5+JAAxoZ8faZT2dJzO/wYgJsg3AKoi3wCoinwDoCryDYCqyDcAqiLfEGkcwAIP5BsijXyD B/INkUa+wQP5BsktKBynu51D3v6CrOdA8Hil22wTLqeR8ThrFjEYT+QbJP/55nbeeD9zs7zG 58ztdbmVs74XsUK+QfKZb26JlF++eU/0mGfWXCXfkHDON84fEkclzjc/1dnnaY8v8g0e9Hyr 0J7i/EixV2C+JTyjKb/q8hj6I99gRr5B8hjk97OdaC9771/Ie4DO8naPsTjHMmKFfINkTyfz dPveSf+5l7U679c4Vu34Gj/TESvkG6RANujcNg/91FjU5iCeyDdIHn2kPGYSyO9DgmoOYot8 g5R1xMznTHKdWyD1eiwJ4ox8Q7BCEiwhWQyUF/kGQFXkGwBVkW8AVEW+AVAV+QZAVR75Vt28 BwCii3wDoCryDYCqyDcAqiLfAKiKfAOgqhLnW9X/e6azs7PsrVYAaxLIinyLKNYkkBX5FlGs SSAr8i2iWJNAVpHIN812K/t6K7v81iQQK7nmW5Xvm/Pbc/xWyjRbs2aNuF+1Smc8jEnKfW3k EqHwNQnEUE75tiCXm2PEVbl/K1fZ8kpM6UzfVuk3zWSVnO7Rrqrhmk8Brky3LMp7wcTcTp7y Q/INyI//fBOR9ebGzT65RVxV7v03t3zz7r9VDc9ko7j97rU3qjRt+PDhnXXv7nu3yizAfPPI IrcF8755z9B7TYrVVvY/LaDscs03TSRFlZYppx845p4MN3FvmUmV07dS9tzc7o0xN2P71M/G aYnzzWe4VfvON2OGouy4kI5rUhLhJlU7DV0yjIn4sOfblqGHe+fbgs5Mpn2q31tC4fmW1Spz rulBtyrrW+wxomdxVZUl4gLJN//h5rhgzz333HDTTYbb1b/8owy3XPPNlGwy5VzjlHyD8jL5 doLffPO/fZprvjmOv2Wd4sYaI1WaY8QVnm9GFuW3YGIVyUwzbuKhOdzyyDdzWcbbqp438g0x kVO+5bp/Iaj+Wx56xEiVZhQsEec/30Qvy9w68bA693CzLJiYyUUXXSRXiCXiemRzjtunZkbE 0X9DDMWl/2ZKORlx/vPNSDZLv0vcdjU15hRulgWTOVbdM9zsEVdYvmky4tasWWPuvJFviAP/ +VZtijjLl93yxTfvQrXMoaq8/bfO7g1V//nm3dhCFqw0+ZaOModeHPkG5eWUb9WmrVSPr7z5 Znl7Ve77T93uvTnvpjQHXXoTNWu+yc6bkULGLgCjsXJD1T97vlluRkUB5lv6F9HWLhz5BuXl mm+S/Mrbx9w6s3VpqsrSf7MkW2enSDaf+WZJcku+ZW2v94KVLN8cb+QblFdIvjne8s63oo+/ 2cItp3wbbrsVnm/G/gV7uImngso3fv+G2IpL/82UbDn9PqSo+Sbfbok48dDyzwf5BuQnJv03 e7Llmm/mlPPf3qwL1mn7fa+555ZfvnlnGvmG+Aik/9bZsy/n8caqEvbf7D0u+83//gVLvlWn NyQL3L/g85ZHvhnvtQSaebbkG5QXVP/NmJJHvq0qzv7ToM4fUrzfhxQv3+i/AdVB55vo23hX VxXBs/p4/L43185bte+OZdZOZhTXJFBieeeb4y1rdVWlGn8LnOPxWXnw37H07mR6rEkAkj3f to44ImznJ1cJ+QaUDPkWUaxJICvyLaJYk0BW5FtEsSaBrMi3iGJNAll55FuuP9Pixo0bt1Dd Stx/A4CSId8AqIp8A6Aq8g2AqnLKt2IcoB2eg77DsAwAAkT/DYCqcu2/OU4xpufd/zG/xWNu buWc5m+eaJ6/2zK4LZVlStk/SgAWTvl2WH75lnf4OL7XO21yrcJtyf3X6PYakg0ILZFvW8/T fjEg4HzLib0T6LMu/zWSb0AMBZtv+Q3Ru+WbZW5hyDfLguW0DABKLNd8y5o5xiv9L0PW/pvj C3KqxW3JLfP3jjXvxQYQNgH236rz2r/gnWO5Zo6fWswT7fO39B6re+ae47tybTKA0igw37yn +5F3ry/vWqIyZwAFCnD7ND8e/bcA2Zc8wDmX/UME4CinfHPDdxxACAWSbwAQQuQbAFWRbwBU Rb4BUBX5BkBV5BsAVVnz7UvarvPSxmtrL5Z6rRuTNra3qzGZ14gXy9cbBRRb18eE4umFIivW ZyeibHtCe2mY9sMvWvPt3Qr9BUayVV+uSdsre0m7Jmm1lVrNpIzdU7vLkngWiLpdl6CYxmu1 452f2n6xtv3CtIqMraO6Hl6YIaeI+y0jddXnpO/P1AviXkRZyzl6vn3P1H9rHZ/+ZKdpDTN0 rTO0PbO0fXO1g9doB+YfIrUt7PaJsKiXxT/max9f30s3V0Px/B1FVvaPWHGz0it5ltYxU0te pX00Q0tdqbXP0IlC23StbXLXvSx0+XCytn+Cfi+f/WiCbv84K8d82zdDO3h15v7A3EOE1LWZ KPt40aHS3xdn/PdNh9j9c1Fv4ROZfiga8e8IEJT/XtCn7ccLcr2M8t/31ot3ifcWOJODVQva r+0jQ699dp+Dj+c+kz31H/5wwYGJfWTWtVxizbcaU74l5/YSsfbx/N6CTDaRZv9YephuecY/ lx1q6Fx+SMaSDJlyBbr/2E8LgcwKgIfkTxYc2LrulSsG/eGCI/8y5vP/Nfbo58d+4fkxR78w tu9fLum7euzn1ow98qWxn35lzOFrRh+65oJDXrmg1+rztOcn9t9bvVa8t/CZiGAUCSl6dG1V C9Zt2jdozO+P/OrPP3/GM0cP/dUXhv3i6DN+0XfYM32H/fpzQ39z5BnPfjrxu8NPf+7Qwc8e MujZXqc9p53ym/7nP7P2/RYRcbJHZ++/Gfkmwk3mm+wnWJLtn7fZuERcodI3kW+BzVAtZf9G QCWiE7VzzqCdX++7c/rxNVcN2D1r4K7Zp+6edUrNnJNr5gyomXNi/TXH1885pmF23/qrj2qY cUTDtE/VTOy1Yaz2p4n9xfc0kJnIfBMzGXTZX/ue8+7xo94dMGbtwHFrTx239pRL1p48bt2A S947cez648duPOaijX0v3HRUxcYjzt30qTM39jrjPW3wy/3P/5WYiZ98k503EW5ie/OTpXq+ yRBzyDf3cCtwhRv5VvaPHlCe+K7tnXTU/qv7fXjdoA8Xfu3ATcMPLB5xcPHQgzcPPbg0cfCW wR/dMvCjpf3bbj6ubVHftgVHfjT3sA+v6l1TqT0/UjPyrcCZyGFPUTjq7Op+F28bNGHH16Z8 MHz6zhFX7ho6fdfQK3Ylrtg9eHrNwKl1/SfVHTehvu+l9UdeXH/YqLre5+zSvvaedvIvxXuN 4TiZb3L/6fr+pu3Ta/SIE/m2atUqLdstk28y0Bb30plWmtzANFime7/SyDfvt2d9yvEFbgtQ 9j8zhEfZx8RKSU+GK77QNm9g201D25adm7ytInVbRfIb5yVvPze54uzUHcPa7xjSvmJg++39 25cf17Hk8+0LP9M2t0/D1N6rK3rJrlfhM5G7G0ThC+fvGDh+19Bpu8+9urZiTl3FNXXnzak7 d0792XPqh81uGHJ148Arm/pPaz5uUvPnL2/+zJimPhV1vYdv6nXqb2W+GeNvrw/N5Numk/X9 C43j9X2mMt9EF07km3i9ls4Zx3sZgEZXzdh/+o/0LlTLAKAMEGO6LEv2V/p8u2VW8qF9npb3 WiZa3ghIZd+BW0p6Msw8tm1hom3ZyOSKizqdbh33DO6465SOFSd03PrFjsVHtV13ROMVfV68 oLe565V1Jj1m2HMmcl+qKBx74QeJybtHzqq9aF7dcy+1iSkXz28YPb+h4vqGc+Y1DpvbNHhW 8ykzW8T0p/+UOurS5iMurO9z1ubep/2HmCJ3njaN1vPtzSE98k2EXutkPd9kxOnxlV4Mt3v9 BemI0/dBpHdGZP425mqZxOjaF9wdRD3LHk8FXvbzYiCe9GiafWLbkrOSt1+UvPsyxzhq/+bp HXcN7FhxYset/7P95s+LDczGmZ9ZM/pQ45tun0n7vZen7r00tXJsatXo1Mrz2leeacxEf7bn TD6aof/kQxROHLvzrBk1Itwuu6HeqH3swobRNzSed33jmfOaTp/TYkwXXbgjxzR85rzNh371 WZlvIsdEvokNUvP2qci3OtGpm67/5k1GnNF/c9tQXZW+iYJINtHfk0QwGokhd1VYpliedXsq 8LKfF0fJVRoQFD1exHblrRXJuy9NrZronG/3nN5x56ntK77cfutx7UuPabuxb9Psz704Rv9m uc0kdd/E1KrxqZXjUisvSq08v33lWcZM9Bn2nMmB6dqBdL6JjdOKObWX3lA/cXHDpJsbjAW4 aGHj+fMbz5rXZEwRm6jHTGjqO67ucxdUf/p0Pd9Esslw257Q/ji4O9+2V+j5Vj8987NemW9G P23NmjUi6iz3XfGmGclmNFMmxsGrNck8xfKs8dAcQR5vybvs58WAQXQn4kN8BdoWfDV5x5jU yompb01J3T819a3J7fdVplaK3tfFqXsrUvec2X7X6e0rTm2/bUD7suPblxzbtujYxmuOWTPu s53prpd9Jnq+uc9Ez7eeMzmQ/u2uKHz167vHXFc38aaGKUsbpy5tnLykO+Iq5jfKwoG2fwyY 1nT8pKZjKxuPvbzumIs2f3bo72S+7b4wc3yWkW9vflk/rkHPt8ndhy2Y+2/2cBP3Rv9N/hJY /lXsm9GdGKJsPBQ380P5rLzv7HkzTwyw7OfFQDzp0XTTsOQ3x6fun9b+L1e03z9dT7lVlalv Xpq656LUXeen7hiRuv309ltPbV82ILW0X+rmfm2L+jVc2+/FS482f7XNM0nnm+tM9Gd7zqR1 sj4+JgrDptWMv7F+2i2NVyxrnH5Lk0i5ysXdESdvp05vHDClsd/Ehn6VDf0m1Pa7ZNPRw/Xx t5r0cabVZ+pjbiLf5O9DzPnW0tWF899/2zP7kIxZ+nuNxGhNH+RlYQ4c4zXm/pvlZXlPt7wm 6xsdlza0xMcEBEWPpiVnp+6b3P7Ale3fninuU/dNSd1bmbp7XOrO0ckV5yVvG5FaPiS19NTU zSelbjoxtaj/R4sGNMwbsPqyY8R7HWeiJ5j7TPRne85EhFt9Ot/Onlk7+ebGK5c3zby16cpl jVOWNFQuahhnGosbcmX9qVPrT5pUf2Jlff/K+gETawZctumYM38rnhLbofJA1HVf0Z45NZNv L3xJW3+WfrxqzST9yNOmmVrzrBz6b+Zwa5rZnRhua9K4uU2xTMw6PY95Wia6LS0QB3o0LT8/ 9Z2Z7Q/Obv/ubJFOqfumpu6dmLxrXPKO0cnbRiaXj0guHZJcfFpq0cmpG7+cXHjSwRsHNswb uHr8cT3yzTSTdL65zkQ8a5mJPK2BKJw/u3bmbU2zVzTNvr1p5nKxidow8ab6zp630ybXnfz1 ui9PqD2psnbg13cPvHzjcWfr+SaPrxdpJvJN9N++eVSPfNt+uR6h9dP1mMq1/yYiUbzLnG+C mJVkeZg3Y+Y+p+c9QyA+9LS585L2h+Z2PDyv/Xtz279zdfu3pqXumZi6Y1zyttHJZSPbloxI 3nR68sZByRtOSS44KXnDwIMLv1J33Vf+Mv548V7HmYiHHjPRX9xzJvrpRMbrM7lkfv3cu5rm 3dMk7q++rWnakkYj1kbOqjXKp1TWnDS+ZmBlzVcm7frKhPePP/c3Rr6JcBPbpKL/Zs+32mn6 osp86/TXf2ue3VsmmyDPPWKOOGN7MKgPwiPfApwhEB8ymjp+uLDj0UUd35/f/t057fdfmbp3 UurOy5PfuDi5rEL/1cdNX0ve+NXkDYOSC05LLhx88MYhdfMG/2VCP0u+GTPpzHazzEQ/J1VX vi28r3nR/S3z722es6J7b+nF19ZVzK47a0Z3xJ02sWbwpJohk3cNrtzQ79xfy3yTnTdLvr1z trb+PD3fdk/VF7XxKk1222Q/bY3Tzei/iRdLMtyMxppvAX4QAc6tGDOEIibHiPgKpO6t7Hhi SUfVLXo6PTSv/dtXt6+alrq7MrViXHL5hcmlI9tuHtF20xltN4oO2JDkjacfvDFRf92QFyac oH99nGaSPd96zsTIt8pFDUu+03rLg60i4owXVy6sH3d93YXX1I28unbEFTXG9NOn1CSm7BxS ueGEkXq+iXAT3hyi59vPT8nk26+O1Y9lWH+Bfh5L/fSV0zL5Jr/8XV04h5sMOMd8AxAVnel9 nR0/vbPj6Xs6qpZ1/OAGfSv1gfQo3N2VyRWXJG8d3SYibsk5bYtHtC0e1nbT0AM3nlE3ryvf nGaSNd8sMzHybcrSxjt/sOeeR/cse7D15XdTYoo+Cndzo4i4S66vG52OuHNm6r24Z/780dDp NWdM3TlkokO+Gf03x3yTuxjMv+Z1OwqVfAMiTY+mb8/4+Jff/fjXD3f8bKUecY8uav+369sf nKPva/jWtNSqycl7xifvuTx5x5jkNy5oWz7y4OIRtdcO/q9Lj+2RbwXMxMi3Gbc1ffcn+x5+ ev/Kx/cuS/firv9m85w7mmbe2jhtaePkmxvGL6y/fGH9mOvqLphbN3KW6M7tGjxh/bFnPeOR by8N089MvnmctnWqtvMqrU7k1RyteY7Wcm0vQ+u1h8hC8+ze+n36BbpZPfKNiCsB8W8Qimr3 1BgRydD+yPyPn3vikz8+KQKq46m7Op5c3vH4zR0/XNj+/fnt/zav/eFr2x+cnfrOzNT9U1L3 TkiuuPjgkrNrrxn0/CVfFO8NZCaiZyXzbf7K5id+8eGTzxwQKXfXD/Ys/17rzQ+0LLyvef69 TfPuab727ubZK5pm3tY0ZWnDhEX1F19Xd/bM3YMuX//F4fr5Q945Wx9qs2+fynxbN7a3yDdz xOk5Ni9z3zq/l5CJODnRFG7mfCv7HydQoLJnTonzrePfb//4t498/LvHOv7vAx3//o2OJ5a0 i1x6ZIGeSw9d0/69Oal/nZl64IrUtyYl77lM9L4O3jSsdtbJr80647/31AcyEz3fJukzuf3h PY/8bP9jP//wgSf3fePh1iXfEeHWsmBlswi3a+5smnNn08xvNF2xvHHSkobLFtaLLtyw6btO vmTdGeP/8HFLvQg3sSkq8u35k7rzTRREvr09Wls3oZcl30SOGclmJqfLiGuU2Eql/6aQsmdO KTU9uuAf9ds7nry1/aG5qX+Znrq3MnnXpfph8mJD8tZRumXnCW2Lh+sWndF2/aD9s/vvumHE wW3rxXsDmUlNOt8aHlmwffcnt36vde7dzdOXNVYuarh0Qf1F19aJrdFR1+jOm1UrDL+iRjhj as2gyl39x24fMXXd+ur9H3xngQg3QaSZOd/EQ3u+7XTJt703aAYj67o3V23bqgBCrn5mn5bH F4hOVNadApabeJd4b6EzeWxBzRV9xL8pIuJ2TukjIu6T1pxnIsLt3ZF9ZP9NpNkfB+vjb099 MZNv2y/X/jpek+HmmG9Gph28sZsl6/bN1aQ9s1BczUDEGVt85k0/uW0iO4RyizVzZdLLNana ZPM43YaLdesv0EfYJJFyss8m862utVV03kS+yVgzh5tMtgOLe0vJJYe4Ec+arx5oXFIQALLa c51O7sRsnt1bsA92WUYPugPQFHeiIOJORNyvjtWTzcg30TkUPTfLRqjMtE+WHvLP2w77x62a vM6CLMtLMMiJspCZmL5SQ/dFGYAIypxvH8Uh17BMDxkd0ieL9IsjyA5Scm4v/Vy7V6XPSHl1 5tJXomzeTpQXaG6ZnjnvhNy6EQEoIk4/51tXvgnrJuix2XbDoSLTREx13tVX960v6b47QPfw aZ2PfLXbY0MzzBMBICsRJpL54QMnZ4iyzByDmGh+KHPJIMPqrr7yYn8fzdCPxpKxZuSbjDhB RJzeATPCTVb3UDrKfjBS93iF7okLXMkXoHg8Vj4CUfaPWHn2FS6zxbh3I7LIQqbiXX3/vvjQ 9RfouxiMTDPnm/TX8ZoMOmN7VhKbumKbV/5upPvXcXMyBzvInadS2U+PpryynxFRecYpI1AM lj9m6194+lyX9en7xvGZg2T1C2BN1i/zJwq14/XzVQq16Yf6U+P1Ky+IcLOkmci3Q9KHWf1/ AAAA//8DAO3rDtYQvggA</item> <item item-id="303">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAE1aSURBVHhe7Z0JvCVFfe8PEJhRP/jU 0XkQtiCiiIAOoCg4IDuyyTYoYRFQEEcWxX2LZDFGAi+u8WFeXuCT9/G9xC0aspgoi4pGxQzb DDMwwwwz9869szAIzIaJ+b+qPqfurdO3uru6T/fp6j7fO5+ac04v1dX/+tX/2/+q6u6O8IcF sAAWwAJYoCYLdPRxN2wYm5E6p/1Sdjj9vih1Tn64m05dOp3OWiWdcx+Xzu+OSeeSianPHS5b r36vU7/VsovUp/6uP0162wbpkFpog03qnEits8EFk9IhtcsGM/yvbrcOv3y2Whal8e7nacqn R99Vir7rZb3lp62RzkmKBTrp73p9lNT6kxQTjnnAyRnNnxkQMuDZ5V2bZdb1v5E5HxP57T/o pv0+LfKKm0Xm3aTSl0SO/Hw3zf9yNx3zlexktuVz2m5tsIVP3bNNdvsIzUZt0CbnMNPXuHSm 7WT8uf1p/HzSZ8QDR9K80EkzZJer/zMCUWfeT/pgNANCGkA7XrxONIB2vPopmfWB/4oysEG0 72dFdNIwetXn+pMGk0nxdfyeaS9sgk3QABoYtga07zbJHNv8NuAwAYfx9/anXhdfbgIV+9Ow Q3/Ouu43Ueq87RnpHDUdFfVBqHPsz6Vz1mrVxfaI7HDFhih13vXEVNJQ2unaLbLTdb+O4NR5 /29kp+slSua3/rTXme96W/19l/ep9Sq6Mvvx2bUfCRuEqoEdrv4vIbXLBlpruk6ND9efdtph 4a9lxyuelZ2u2iw7XfGU7HDpFum8/Wk1xNL7vPDpaNnU8ktVd55JF23sftfbL1DdcKabTy/X 6TzVVXf8g9KZvzyKiGZCSI0DdX53ZX/S4z2Xr5uCkoaRSRGUMlIEL30ydlInpk+OhA3QABpA A4Fo4B0bZSedLlNBiBrb171iOkXj+29b200L1HiQSRooJun5ATrpuQIq7XDGcjV/QCc1j8Ce U6ABdMQvpLPb1/sh1Dn07u4OGkIqEppKBkg9ENkwmoqS3q2IZycretLbRBFVnJSGinx2rw5a kWITUOzJKHzvn5yDPbBH3RrQYHElAxoNFwdYpuFiQcaesGaAo2Gjkx4Hmn/vdNIA0rzR6SW3 TkdCUwtVl1w0G86AKAFCprsu3mVnoBMt19GTmSlnZsiZkzZU5XP6CgNbYAs00CoN7HzBuFz5 5fUyvvE/Bp78rPPR+ZmIpNS8v6TyPl8NxWjwqCGZnc9ZKVd+bq2Mb/j14OX+zGOy85EKQho+ alJCxJoD/0k6L/9GDEIv+1p3pRNCvSnYCiomErIhNDV+ZNZPgUeRNpq6bSVXSGeHd3zvD3eb ZA87NOf7dDdF021hrob5nI4MPG1x5RcnZfn4b+T9X90ul960TRb80VY54/e2yikf2yLHfWiL nPCRLXL0+7vpqPd102FXb47SaxZulgPeuVn2ufhJOfxdq+SBR58WnZ+JTirJW88JUF1pGkC/ flyN2fzp+2Xdxy+VifctkLULz5DxK0+RscuOk7F3nCBjbz86SmsuOipKq88/rJvOfY2sOuMA WX7iPnLfuYfLk0sfkCsViCIAGQi99HvS0cx5/ietSEj1z0UQUmHTjifGI6EuhKKoxkQ3vTGi CEBqed+6eNRj9ydqCDW9UVJ+6nCUNODpcKe6bth+ChTaw37of22Xz337WfnSd5+VT//f7fJB 9fvar2yXq76wTTn7bXL5/9gmb1eAuuRPt8kFf7JVzv/0VjnrD7bKmz+xRY754BY59D1Py34X rZHXXHRPFFEZO1eSd288R+e98eYPyZN//Tn51de+JJu++mnZcPMHZf1nrpX1v3+VrPvUlbLu E5fL5EffrtIlMvnBC2Ti+vNl7bVnyfhVb5axS4+RVQsOlftO2k/+8bTXyPj6Z6cjoYP+TTpZ EIoGkXR3XNQV14uCFFgMbMynGbwyA1h9XW9p3W9NurqnrP6R2Sg55lE6V6CSOwKyQXGFAs1X bn9WvvpPv5bP/u2z8rFbt8v1KjK65ssaRNvlij/rguiym7fJxTcqEH1mq5zzh1vldBUxHf/h LXLEtU/LAW9fIy856XvdqKFXH/p76XlrCJ22KjrOuk9dIb/6m6/IU9/4qmz6y8/Kxs9/TEVG 18v6T18j6xSIJn/vighE6z5+mUx++GKZ/MAFsva6c2R84ekqUjpeHr/gCHng1APkbw97Sbfc ujtOJw2h31HJGQnpUEkPIulBJl0Y3dB6Tz244YYbpNPpTKX4b3vd1He64fwdOLDDVmigdRrQ zvdtf7w1gs/N33xWPvXX2+V9t2yXhV/cLu9U4LlEQ+ePt8l5KvI5+4atcpqKfk5VSXfT6Sjo yOs3y+FXPy0HXrZGdjvlX7vOvKeTSvI+Qz/poAuhyQ+8LYLPk7fdLE98+VOy4cb3yfo/XCjr PvlOmfzIJTLxfhX9XHeerL3mbBX9nKbSqd1uOhUFrbnoSFl1/uHywOkHyjdet1u33K9TbNHJ QEiPCc3ojkuAkAZO78EK0Wf3d/LfFKCAUOsaVd/0TJwm9YsGUjWgveQ5CjAf/avt8onbugB6 1+fV+JDuevv0Njn399UY0ce3ykkq4jlWjQsded1mef21Gjyb5VCV5r1HjQ29+yk56PIx2ev0 78+AUDzvVMccW+nM24LQhIpqNn7+o7Lxi5+IALT13h9GOUxcr+BzzbkKOmfI2DtPUuNCx8qa C4+UNRe8Plr/zL98Q1YvmCcr1djQg2ceJN88ci9PCP3297uhkrqTNZqqrUM+LTAFEg2Vu+66 K0r2d7PM/owAZKKmFAi5jFW1gzPHrPo4Ov9hHmsY58MxrHsjRs3xmmeF8Tn93DRPW2g/oCci 6DGg9/YioMtv2i4X6ujnhm0RgE7+8FZ50/UaQFvk8GsUdBR4Dn73Zjno3VvU5xY5RN3+ctA7 xqch1Du2K+88EHLmbUFIT0TYoMaANtz43igCsv+6ADpZAehNEYBWq6jH/lt9zsGy8pxD5MEz UiA0oztOQ0iHSm/qzf3WXXG6sakHF05HPt0oSD9sToPH9anXm0gousnJfvBhb2acKexzd/tD MWkYTts+rsupllmGrGPh1EfYqY8axEb4fLUfOOmjW6KxH90Fd8WfbZdLPrtN3vqH2+QsBadT P6rGfVS323w1K+51KgJ69Xu2yKsUeA541xZ5xZVb5MCrtigYqe44FQntefoPZkRC8bzzQMiZ twWh8StOisZ+oi44Nf4z+eFL+rIfu+x4Gbt4vqx52+v6AXTmK2T1WQfKqrMPUhA6UL75hj27 5X69GubRjHmlmvimx4RmdMfFIaRp2weh6DmnU5FQEojsSGini9WdtypFT8/uwSgOINsZGyBV 5aCzwJC1Pk+5yswrz3HZFrihgXA0YCCkp2dffnO3G+7Cz+gxoG1y5idUFPSRrXLsB1QUpCB0 uILQwQpCBygIvUxB6KUKQvurz1de9bS88h1jssdpbgjZeevj+eStt3PmHT39ujsmpCE0+bFL ZVLPgtOfH7hQJq49rw84euzH/lt9xstk9WkvldVn7C+rznqlPHT6K+Vbb9hjGkKvVSDygpCe K66jFg0OBZCikdA0hBSI9PODVH79zllN+dbPFnKkONHNNknL9XrXn5132voyjuc6lgZr0jmy PLn+sQ22aYMGtF95o5pcoGe86ZlvF6soSE9E0GNBZ6pI6GR1v9CxahLCkQpEh6suuYNUl9wr rt4i+y3cKr/z7q3yUhUJ7a8iof0vXyu7n3ZH15n3/KUrb73MJ2+9nTNvHQmppP/WXPzGaMZb NPPtQxdHY0Frr1NjQe850+lrx85+hYy9ZT9Zc/rvyJozXiqPv2V/WXzq/vLtI3bvh5CJhvQN q30TE3R4pMMl/S6IKArqPXhOPU7GnphgxoTyRELdaKgLoj4IpbxTyN5Of4+ceW/7GV14veX2 Pnob82f2K7redbw8eY3Mu5MSLija4Ew4B6BYRAPaTxyhIpyzFXTeqiYiaADpz3P0hAQNITUm dKzqkjtKTUw4XIHooOu3ysuvU/C5Zqvs/Z6tso+C0b4Ln5F9FYTmvnkmhOJ56+P55K23c+bd e3dQBCE1xXpCzXybvP6tMqlnwr3vreo+oHO6N62+6+Q+EI2/9SAZP/flMn7WS2X8jL1V2kdW n7mvLHnzvvLt187tQkg9sLRz5DLpmGhId8fN+dPuuui/OIS0Y+89DbVwJHSpeiifSh31xNUo qRee9UOo+wI0+8+8ECy+XRdC/dvGtxnm77zHat2Lznh5HS/wQwOZGtB+4lA10eC0T26R89S9 P+f/kXpqghoP0rPazlBTsk/55FY5TnXLvfFjW+Vw1TV38IcUhN6/TfZ93zbZU8FoTwWjPdWT E/a8bK286JQ7uw67Z3dX3hGEPPLW2znz7r3ETq9ffd6hMv7u02TivecpAJ0vk+9doKZkKwhd fUafzzY/Jha8XCbO2VfWnrmnrD1jTxUR7SlLTtpT/u6wF3XLfZTqYTtK3fqjIbTfku6je/og tI9+yJwilY6E9FiQgZB6HHfhSOiyrepprFu7j/vWjwBXqc95Gzipz/hy13b2MjvSiQDlkUfW MfKsz7PtFISt82VZ78IEm0xfpIVqC/3+F1IhG2g/8aorN0f3/Zz5KXUTqgLEuQpGZ2tQ/P42 OUUtO16l+Soqeq2C0cEf2yYv/7CC0Ae2yR4KRLtdq5KC0Ny3T8h/O/muHoS69eHKWy/zyVtv 58x7gQoazv5VlPfjb3lVdN/PWtX9puEzobri1l57dh+AJq6YP/X7N5ufksnz9pXJs/aQiTN2 k7FTd5OHj5sr353337rlPlYN77xJzbrWIDpEsUZD6CVf6K6L/tMQ0isjCKnQW0dB+n0QUxDq bpp1k2rf7Dj9PooeiAyMbOdt3kehP+PLXdtlbTPM9XmPZZ9rW7+bCw0+py+6sMVo20L7if0v f0bmv3+znPJxBSIV/aT9HfwJBaGPbpffUSDaXUVEc6/bJnPUdO0XXDwpzz3hzq7Dti7oXXmf qbr6TlPHOVnB7TiV3qjS6z61Tey8dT7OvDWEVNJ/q07bX9ZcMl91vZ2iop8z1U2pZ/UVfeKq 42TiCjVudHn/7Lh1Z+0uk6fPlbGT58jSY14g3zn4udMQ0iDSEZETQjo8iiCkAKRDsh6AtMOM 36zaLUl3tlz8swuh7pMVdrqq+2IknXZ4Zzd1Ln126kT0d5Nsp25vE0U5ve2ythnm+rzHss+V 79P1ji2wRZs1oP3E3hc/E02/1g8sfbMCUSqEPrlN9v/Ydtn7w9vlv79/u7zwmm2yq4qknnfB hOxybC8SsvyhK+9Tf09FWCqyOlHB51gFo6PU52s1hKy8dRmceeuId8HmqIgrT9xbVqvp12OX H6dA9Oa+Yq+96kSZeNexMvHOoxSEXivrLzm4b/26U18oa0/YVR4+6nnynVft0iXFyU92+WJA FL3KwY6EDIRO0y8v6kJIA0hHMPaYUBqA7Ehpp2tFdlz4X1HSb+nTqXOFenufShpGrj8zAcBe r5cZgKXtVyRPGyTmGGZZ/Le9rSlT/Bzs8tvlscvP9+kLEmzRDFt0Lv1PdSFIKmID7SN2u+AZ OUS90PPI9ykQqQkIaX8HfmK7vExBaC8FoZcoCD3/6u3ynHdsVq9ZmJAdj7mz68x7dZE37/hx nXlfpC6KLtgebfrYm3aTx88+JHoEjwbR5rtvj5avveJ4lY6Vte+cLxOXv14mLz1U1l10oKy/ 4GXR+q3/fJusO+X5Mv6m58jDr9tZ/u4VO05DSINIQ+j1Ckb68T0zu+NUmHSaApAe+OpBSEcx WV1w8efG6Vd466RBpJN5NbCBkvm0b1Y13+1tXMv0+qT94qDwyTPPNmnbZpU1fu787l6gkMK3 gbl45LN7EZ0naZ/04vOfUV1y3UfwvEGBaL6aBTf/AypCUTepvkFFR0coMB2qJiUc9BEVBalu uH0+pLrirt8mL7x2uzzvqm2y86WbZcdz18oO83uz43plqCRvDTgFIv234o0vjrrkHj9vnnoq whtkTHXNjb1dpUuOkvFL3qDSEbL24kNl4sKDZPKt+8u68/YR3RWno6DJE54nY/N3liWH7Sjf fvkOXQidrqIsEw1pCOnHxPVB6LcXdfvqehAyUVD3PeO/lp3e8x+yy3W/llnX/SYCjE6zrv+N zPqA+oylKQip95jrd5lHqQck81mF87EhVEX+5Bm+w6SOqKOQNKB90vPPekL2vPBJOeAdv5JX X/UrOew9T6lnwz0l89SDSedd87Qccp16IsJ71b1A731G9rnuGdldPbpnjpqMoLvhZl36jOz4 u79S9+4o33xk9yna5vyqyNuOspYe8Xx59Pg9ZcXpB8hj57xaVi44TFa99XD1ioZ56uGk8+Tx 8w9Rz4g7UMbO3V/GztpHxk/fXcZPmSPjx+8qY0fPklWv31Huf3VH/na/7tBNBCEDIg2hGd1x DggZEEUQUmmXq/8zglCUNIASIKSh5AOiOJgG/W1DaNC82H/mhUOWTUJq/JQFGIWggfEn/lMO uGSlzHnLStljwUrZ93dXy/4XPS4vv3iVvEx97nfJatlXpb1V2uPt4zL3knGZc/Faef6F4/Ic 9cCA3zpPRUBnKgCd+KDsc+Y/90GoiryjKE9FQzrvX775ALn39XPk3qP3kEUn7CuLTt5fpZfL opNeJvedvJ/cf9K+8oAaN1p84h6yWM2CW/KmObJ4/vNlyRueI4tf+1ty/2t2kB8e2JGvv3Gf LoTO3jwTQn1TtGMQ0lOI7WjIRES7LHzWDSMFJAOeLABVKY6kbrEqj0neODw0gAZcGrjyL7fI fY88JQec/yPZ9Zh/lBee8AN50Yn/Ki8+8XvyohO+J3NO/L7MOekH8oIT75BdT7xLnnvi3TL7 hB9FkxB2OuYu2eGYH6keqjsUgL4ni5Y+ITo/c5zS8/4LBYkehK68ZbNsWnKf/MMJB8jXXrWr fOM1L5Svz3uR/M2hL5a/ec2L5BuHzpFvqvSteWr222t2le8e8ly5/eDZ8p0Dd5HvHLCT3P6K HeRbL+vINxSA1j+0SK78gorm/CCkX2jUGxPq3VyqYaRvOI2Snm6tBtiiqEjDyCQVIekoSSfd bZeUjPFMZMVnN8JsS8rTV862+cYWsFcz7bXzlf8hVyrnPuifjkx0Pjo/o4VS877ladn5sm3d mchqTGjni9VbX788ff9m0fKPb1TlVgDa+Uw19Ts+JqS742ZGQj0I6ecH6ado9556PXXj6qXd CQs7XaGAZFIEJTt1Z8K5kpkZZ6Zqt3lq5mieGzOoisygCn8fppG3rj3rWXC9SQh6Nlx075Ge nv3WrepTwUgn/V1N144iGPNpvuvfJqmbWzunq1lv+tNsZ4//6MkI8WTGhJwQ0vcKqaeodubf K53jF8kOJ9wnO57YTdEbV3tphzOWi0nRW1g1uPSDT03S7yOyf5vvvQfkRduTsAEaCF8DJ+n7 B0mtsoH28fqJ2Wn1erx6qoF+tY9O+mk6Jh39yPQys15/muX6Uz8jTif9PFLzvDj9XT+yRzPG C0IKQBGEeiCyYWSg5PrU200le/9YXn3b2fvwfdp+DbOF1gupfTaIfACpdTaora2ax/bMmB23 +yKZdfgjMnfhJpm9YIVsXLeUhA3QABpAA2igVA10TlHjQ0epaGnfv1FjQjd1Z85F/wGhUg0N xLmIQQNoAA3M1AAQ4qoG2KIBNIAGatMAEEJ8tYmPq0IiAzSABoAQEAJCaAANoIHaNACEEF9t 4uMqmKtgNIAGKoeQfqI2QkNoaAANoAE04NLAwBCKv7bBQCf+WZYA41Cr6jhZ5U0676z9Bl0P 1GnIg2qI/dFQSBooBUJpJ1S200yC0LCNWvZ5+Za/ruP6lo/tcHBoAA3k0UBlEHJFKHb0kKeQ 9rY+kZDrOPZ+Sd/zlCkNBmnHt+1ittPHtb+bciTl49o2T9nZFieBBtBAKBooBULxrinjVF2f toMtaoQkwNnHix+nCgilnbfr+D5lSIJbXd2OReuI/XByaAAN+GigFAi5DuQaG3I5bZ9CxrfJ glAeKBbt3sqCRRoE47BMg1M8Gipa3iJ2Zh+cCBpAA1VrYKgQKutksiDkC0VX5ORbxqoh5NPt 6FtWtsORoAE0EKoGaoPQoFf0vk46bfxnkDIAIRp1qI2acqHNJmkgFULP8XiKdpYzjkOgrEH1 JAiZ6CZpoN+unCoglHT8rPK6xsqSui/LsmGThEpZcaxooJ0aiCCk3020160zn6LtAyGE0U5h UK/UKxpAA8PQwMAQil+tV32VPuzjlVUJZU3KKKs85IODQQNoIAQNDAyhEE6CMtCY0AAaQAPN 1AAQ4gGmPNsPDaABNFCbBoAQ4qtNfFy5NvPKlXqj3srUABACQkAIDaABNFCbBrwhJPxhASyA BbAAFijZAt4QKjP88snrG//vluhUfbZlm3C6B6i3cOqCdkFdNEEDQIgwvFTQAyEcXxMcH2UM R6dACAgBITRQqgZw8OE4+CbUBRDCAZXqgIiEcEBNcHyUMRydAqERg1DnsFukjJTUiIFQOI0b R0tdNEEDqRCaPW+ZzF24SWYvWOF1tXzllVdKWspjEB9n1unc4CxX3uV5ylX1trfffvsMG+pl ZR23DADpPIAQDq4sTZLPaGupdAi5Zu9pMOm/ww47zNuZ+kCoTeK14RO3oQF7GTDSANH1MEgC QqPtNNrU7jiX+rU8VAhp56odqk/Fp0HIRDqDfvqUQ29TNHrwzV9vZ0CdNgXf13Zpx9XnMujf oBBKeght1vI89mTb+p0LdUAd+GigEgjZXXIGPPYyn4KFFAkViR7SHHX8/E0UZMPBRCrmXilj x0GjoVAgZJ+rCz5xUA7y7icfvbENDhMN1KOBSiBUxtW8D4Tyjv0kbZ8lPpfjvuXeTXLvmERJ f4+nPBByRUE2hGx7DhoNJUFIwy3eRaeXuf6IhOpprFk6ZT310kQNVAKhpMkJZXXHDdvQadFD EoyKQihprMbAoAoI6TyPO+64GbzRy1yAHBRC8frL6oar+h1Vw9YTxwMWaGBaA5VAaBQiofg5 GhiZiKgpENLRjgtAupGYySTxiAgI4URxomigLA1UAqFRiIQ6jvF9G0RFIWTgNqzuOH2cpD8b RH1jOCVP0daRTtYfY0I4vbKcHvmEpaVSIBSfiJAVCcUh5RJFaLPjks4pDiMzRpQHQvbEBNvx xwGh7Vb2xISQIHTXXXeJKCDpzxtuuCFK5g8IheU4cOTUR1kaGBhC2jE+vPjfouQ7zdjePmmM w2diQllGyMonPiYUB4/53VFfinTH1TlF20DIwM8F2zioquiOi46rI6KEqAgI4fSy2inrm6mR gSBkA8iAxfdT73vLLbck3jfkA6E6Z8dFPtPqkosApM6nKIR8bladmFwl1x75aq/7rJIaZByo wUCoByBXFNTlU2eg88ZBNdNBUW/tr7eBIZT1qJ609YNCaFgCTYuENIgMgOzp2nm64+zzSHts jwbQP/3thQOBKH4u9sQEVzTk6q4rOxJKi4Dojmu/ExpWO+Y4YWppYAj5Rj7x7ZoeCfV1wakI KH6/UFEIZTWUQUHkmm6u68IFG73MQK+siQkaOPY52gAy40D2JxAK03Fk6ZT11JuvBkqBUOeW jqiOtahrTcPmZ3v+VpTSuuvKgJDPSWqHFr8PRS/z2ddsk3SfkCsCKtodl6c8GkRfOGe/QhFR nptVNQBs6E0BYYDZcQY6UdTV64JjdhwOK4/+2bZdekmF0Kx5S1Ofom0goyGkk/l9i3IuOlUF If9nxqlyqXJEScMoBiRfMccd90/v+W7UBacjhTKemOBbDnu7oiAq8tge+1jR+MwAELLhY6Ii blZtl1Mpomf2GV0NTEFo71ulM+em7hyl6L/dF4kvhIp0yZmxIj0u5BKgz8SENOGaq+soEool M/XXd7A7RAjpcy8CoiIQMhGRT/TlW2/xbjmc0Og6Iep+tOt+IAhp8Qw6MSFJgD7OLG12nOk6 SoOQ3sanAWjHXST55D3oNhpEeWbMFTkPE/n4QM+n3gY9Z/YfbadF/ber/geGkBZENDW5QEoT 06DOzHTx6Cm/8e64qWVM+/WCcLwbMA16g9YbDqZdDob6pD6zNFAKhLIOUmR9Wc4sabyhSJnY J7tBlVVv2Drb1tgIG7VBA62HUBsqqUnnAIRwjE3SK2WtX69ASHUnIsTybACEyrMlusSWo6AB IASESoUwEMJxjoLj5BzL0zkQAkJACA2UqgEcdHkOehRsGSyERsH4nCONFQ2ggVHXABDiKpir YDSABtBAbRoAQoivNvGN+hUg508UhAaWChACQkAIDaABNFCbBoAQ4qtNfFwFEgmgATQAhIAQ EEIDaAAN1KYBbwgddughQsIGaAANoAE0UKYGgBBw5eICDaABNFCbBoAQ4qtNfGVeTZEXV+do oJkaAEJACAihATSABmrTABBCfLWJjyvXZl65Um/UW5kaAEJACAglaEC/6b7MxjaMvJpY5mHY hWOEC04gBIQa52iNQ9EON57Kcja2My96nKL7DXIOQChcZztIvbZ5XyAEhBoNIbtxGqdfRoON QyhPnmnlqBoSVeefxw5sCxB9NACEgFBrIKQFX5YTHhRCPo2vim3KOv8qykaeQMmlASAEhFoD oXgEYhyyKzKxu8riDSPuyPM49jzb2tBMK2M82jP7Je2Tth4QAILQNACEgFCjIZQFExcUsiDj Wu879lQEQln7uMan4uNivr9Dc0CUBygCISDUaAilOTEfANnO2/U9bxdfHqBk5e0CbNY5Za3H 6eP0Q9MAEAJCQMgaSxrUiZcBoaRuxSRoZY1fZZUpNKdEeUYLlKkQmj1vqcxduElmL1jRWEeF oNsr6Cznmgco9vhR1hhRlqbSypXVFegCTR7I5DnnrPNgfXvbTkh1G0Ho6OXS2es26cy5SU0u 6l6GSWf3RQKEEGFIYs0LhyQYpIGgDCfumjCQp6sv7xiQa+JC1rKQ65WyjZbfAUJ0xzU2yi0S CcUH8LOijPhMszTAuCCZNaEhDZR2dBaP1FzjRT7ddTj40XLwTahvIASEGguhJjSwssuYBd6y j0d+QKtqDQAhIASEGqQBIAQUqobCsPMHQg1yQMMWB8cLz+EBofDqhHYyWJ0AISBEJIQG0AAa qE0DQAjx1SY+riAHu4LEftivDRoAQkAICKEBNIAGatMAEEJ8tYmvDVdxnAPRCBoYTANACAgB ITSABtBAbRoAQoivNvFxBTnYFST2w35t0AAQAkJACA2gATRQmwZSITSLB5jWVjFtuMLhHLhS RwNoIEsD3ador5DO3o4HmAIhBJQlINajETSABgbRQCMg5HqqsOtJyFlPL3a9pyXPAykHMTT7 0lDRABpAAzM1EDyEXODQFem73FS6zxOJEQhOAg2gATQwXA00CkJJ74HJelFYUtRki41ncg1X eDR07I0G0IDWQNAQcr1DxQUOIISYcWhoAA00UwPBQij+MjDX2E0cUvGut7TfWeBC0M0UNPVG vaGBZmkgWAhlRTw2lNJeh2zGj2wgJU1QQLzNEi/1RX2hgeZroFEQsick+MyOy5pVl/SK5H4A qjkQOf7sff/8Szf23WfEb+yBPqadJu2h3PbQVCA3AkJNMK7NqVDKG2/kdZYrpLJoO4RUnpDK gm3SI4uQ6iqksgziW4BQSY/rCBFCgwiDfZvfzUEdUodN0AAQAkI8mqgkDTShwVNGwBSaBoBQ SQ6ISIjGHVrjpjxosgkaAEIthlBIfcYhlYVxD8Y9ijrnkHQcUlmK2lPvlwqh2TxF27urikiI q85BGiL7op9R1UAXQsuls9et0plzU+RKO9F/uy8SIOTfMICQv61GtbFx3mgEDSQ9wBQIeUc8 SSICQjgYHAwaQAP5NUAkxJjQwAD2aXih9V+HVJ6QysJ4GeNlPu25zG2AUIshVKZQyCv/FR42 w2ZoIFsDQAgIDSUSojFmN0ZshI1GUQNAqCCE0h4nN4pC4pxxoGgADRTRABAqCKG4sUOcmBDS WENIZWHcg3GPIs4S3VQDWSDUYggVbWjsV01jw67YFQ0wRbuy8Y8QIyEEj9NDA2ggdA0QCREJ VQbm0MVP+XDQaKB+DQQNIddL55JeRJf1gro8eRURZoiRUEjjMCGVhb59xoSKtHF0Uw2wgoeQ rvj4G1LNMp/lRmxmW9drweOv+y4i0BAhVOQ82KeahoZdsWseDXTU09PMvzz7NXHboCHkAoht ZBssruXx/e3frteDD1KBQAgnM4h+2LdZ+rEhUcV3owedd9u1kQGhZTJ34SaZvWBFrYbIgk0W UFzrs/bJW/FAqFlOJG/9sn1z6rcKKMTzHKYe2g6iKQjt7XyKdv0QcnW5+UZIox4JhTQOE1JZ 6Nsf/pjQMMAwjO6rOnScBKE6ylIFfIOGUFq04hrbcY0VucaU4mNAjAk15yq3ikYwinkOEwpt v5KvWj9tt1+wELJns8WjIRc0kma/xceBfPLqH19Ke0CPe53ZP36lwu8b+7p1R9UewwaA63iu aHBU66MJ7VXXYVb9VA3DqvIPFkJVnXBV+TImVH80FYJz9ylDVRok3/o1WFUdtDkaAkINuFnV x7GxTb5ZRCH1p4dUFsbLhj9e5gMuF4RC043Pebi2AUIlQqgqEBStXPZr75UxdTt6ddvWaAgI lQgh0yWHgxg9B0GdU+dVawAIleSsq66ouvJnTAgnVJf2OO5oaA8IAaHUG3ZDhFBIfcYhlYVx jzDHPVwwRTfTdRWHUGi2KXoxRHdcSXANEUJFRcF+o3FlTT03r57bGA0BISBU6yOZcITNc4TU WX11BoRKcthtFDGRUH0Ns4164pzQk3M6cwsfaJoaCc06tP5nxzWlMYYIoZD6jEMqC2NCjAkV 9Ssh6NhEQyGUpagd7f26EFohHdcDTIFQcmNNe5hPGRVDHlwJowE0MArREBAqqYsxxEgIJ4YT QwPt00DbxoWAEBBiYkJJGsDht8/hh1qnbQIRECrJAYUYCYXUZxxSWRgTYkyoKFxC0bHrqdpF z6nu/YBQiyFUt7g4PpEBGqhGA0RCJTnuNgk0xEioTfblXKpxZti1uXZtC4haEwm5XmpnN7Ck l96V8VZVfRwg1NzGjCOm7pqoASAUWDRk3piaBBXX+qx98ggzRAiF0n8d2hhMaOUJqZ6wTXPG y4BQQBCyX9ndjUr6X3Dm+p21TR4AEQlxJZ1XL2yPZtBAVwOt6I7LAgoQosHT4NEAGghTA0Co F9HFQZVXsCF2x+U9B7YPs5FSL9RLmzXQOgi5xoRswKRNUBikokOEUEhjDSGVhXGP5ox7oJvk ugrNNkX9ZysgZMaB4gDyhU9aFJT2jLikdaYy4iLh9419T2fAHtjDdlzoYTA9FIVA3fulQmj2 vKUyd+Emmb1gBY92yZiIEWIkVLe4OD7dSGigOg10lNNpg30zXmoHhHwrGQhV19h864DtqINR 0gAQCmiKdgjCCxFCIfUZh1QWxoQYEyrqM0LSMRACQn2hcIgQKtrQ2I+IAg2ErwEgBISAEBpo RZ88wAkfOPE6aguApm9WXe5+syoTE/zFSSTkbyucHrZCA4NpAAhxBTzjCjhECIXUfx1SWRgT YkyoKARD0bGGUChlKWpLsx+z40oCaogQGlQc7D/Y1Sr2w35VaYBIqCTHXVUF1ZEvEMLh1KE7 jjmaugNCQKgR3XE4qNF0UNR7u+u9TQBiYsIAME17nE8oTiCkPuOQysKYEGNCRdtoCDo2EAqh LEXtaO/HmNAAILINSXdcu68+y2hs5IFGytAAkVBJTruMyggpDyCEgwlJj5SlvXoEQkDIeYMi EGpvo8ehU7chaWCkIDTr0GU8RdsTuiFCKKQ+45DKwpgQY0JFoVK3jm0A1V2WojaM75c6JlQ3 hNJeQJf0yu6kdwPlyauIcUOEUJHzYB+u+tFAuBpoWxSUOTsuBAjpQsZfTmeW+Sw3Dcpsa7/4 zrWsaAMEQuE23KJ1yn7UaWgaAEKeXVNlV5wNi/4ZaZ1ofMYVFbm2s4GUtU/ecwBCOKy8mmF7 NJNXA0AICCU+NTlECIXUZxxSWRgTYkwor/M329etY8aEKoaQ3VUW70ZLi3iyopqk8aO0aCmv SEOEUN5zYHuuzNFAuBpoYxTUmDGhJCC5uul8QBbfxrVP3sYIhMJtvHnrku2pyxA1AIQqjoLi lW7PZotPQEgCjQsu8XEgn7z6I6S0B/S41yWF7vFQnt839nVvYg/sYbc99NCvhziE6u4aLAvU QU/RLuskh5FPiJFQSCINqSyMCTEmVNQn1KljIDTkSKioSOraL0QI1WULjkt3FhooXwN0xwGh xJlx3UkT0380wPIbIDbFpqOsgbYCKPiJCU0SHRDCSTZJr5S1WXoFQgtWpEYBCDrMSKjO/uu4 JkIqC2NCjAkV9Vl16dgFobrKUtR2SfsxMaGkbkYioWZdWZbdkMiP+q9SAyMbCc2et5SnaHtC CgjhhKp0QuQ9uvpqM4CmxoSOXi6dvW+TzpybIleqz1k6uy8SIOQvfCDkbyscKrZCA/4aAEIL N8lsxoQyx8RChFBIfcYhlYUxIcaEikKwDh0nQaiOshS1W9p+0ZgQkZD/VUmSMUOEUBWCIc/B tYINsWEeDRAJEQllRkHmPiEtlranPI2HbXG2aGBwDQAhIOSEUNoT5drc8NoOWc5PvC662qzx kM6t7QBiYoLnzDcfUYbYHRdSn3FIZWFMKP3qHBCH1aOR5H9Ca1M+ftK1DWNCJYEoRAgVFQX7 Dd6Fgg2xIRrw0wAQAkJ0v5SkAZyOn9PBTtjJ1gAQKskBEQnRsHCuaAAN5NdAIyDk8yI6uxfX JQTX+qx98ggqRAiF1GccUlkYE+I+oTxt2942JB2HVJai9mzExISkt6X6LjfGsV8FHn8tOK/3 zn/1Mojo2Bd7owE0YDQQfCRkA8KOiPQJxGESB07a76S8ijaOECOhoufCfjgINIAGhqWBDAgt q/UBpq6IxTYMEKKhDKuhcBy0hgaq0UBQEIpHPa7Z+kDIXwgh9RmHVBbGhBgTKgqUkHQcUlmK 2tNjTKjeSMg1nmMvc0VCrvGdrIkNjAn5g20QsbEvdkYDaCCugaAioSSBZkHEjA8lTVZIW58F oLTH8yStM+cRv1Lh94199yRhD+xht3n0MJgemgr4RkCoCcZlYgJXeE3QKWVEp6FpAAi1+GbV kPqMQyoLY0KMCRV1xCHpOKSyFLVnpWNCaV1jgxQ41H2JhLjCDFWblAtthqyBSiKhpAkDIRti 0LIBIRr6oBpifzQ0ihoAQi3ujhtFQXPOOHI00CwNDAVCWTPQ2iCaECOhkPqMQyoLY0KMCRX1 OSHpOKSyFLXnUMaERgFA3Sng03+DVAj7NusqjvqivtDAYBqoNBIapcoBQoMJcZS0wrmiFTQw rYFKINSNDDoj9bI0IIRjwbGgATSQXwOVQCjpDe1trqAQIRRSn3FIZWFMiDGhor4oJB2HVJai 9qx0TGiQQjVh37TH+TSh/JQx/xUbNsNmaKB8DRAJMUV7pLpNcSLlOxFsik0H0UAlEHIVqO1j RCF2xw0iDPbFsaABNDAMDQChFkdCIfUZh1QWxoQYEyrqXEPScUhlKWrPoY4JEQlxVTWIUNkX /aCBdmqgkkgo642oecTkehBq0ovr0m6Mtctkju9alqds9rZ0x7WzgRTVA/uhBzTgp4FKIFSm 8eMRlP1w1PjL7vRxk0Dk2i8pryLlB0J+gitiW/bBtmigvRqoBEKuN6EWEVE8UkkDUn9U0n+j rGu/pLyKlLMLv/Ae2xNSn3FIZWFMiDGhou08JB2HVJai9qxsTCgpQslb0CyYuV4ZYaKhLCiN AoTy2pvt23u1Sd1St6FqoNJIyAWjNEOkvQgvaRzIFzpxKAEhGmWojZJyoc1R0kAlEHKNzRSZ HZcWCdlQ8o2Y7HJl7ZNXBCF2x+U9B7bH+aEBNDBsDVQGobJOZJDZcS7QZC2Llzvt8TxJ60we 8T7bUf6tzz2k8w+pPMYuodgnpPLYNgnBPqGVpyw/W2c+wUOoTuPkOTaREFeQefTCtugFDXQ1 AIRa/MQERI6jQwNoIHQNVAIhe2p1mTeEhmxMIiEae8j6pGzoM1QNVAYhc8JJ06hDNUjRcoUI oZDuIwipLLqOQypPSGXBNtxDVdQHFt0PCNEdx6scStJA0UbIfkQpo6yBSiBkG5TuOBrYKDcw zh39o4F0DVQOoVGpgBC740bF9pwnjh4NNFcDlUEo7ekHbRRMiBAKaawhpLIw7sG4R1EfFJKO QypLUXtWNkXbNRmhyBMTBjmxYe8bIoSGbQOO19yrUeqOuqtLA5VEQkAIQdclaI6L9tBAszQw FAglveOnTWIhEmqW8NukPc4F7TVZA5VASBvEdcNqkw0VL3vaM+VCOc+Q+oxDKgtjQowJFW2j Iek4pLIUtWfpY0JtB0+aoYmEuBodpCGyL/oZVQ2UHgm1fQJCklCAEE5kVJ0I5432B9FA6RCy u+IGKVjT9gVCNMSmaZbyotkQNFAJhMyJjcrTErrgnf4LoWIZ92Dco6gOQxprCKkstKlqoF0p hMqIiuIgSwJbFvBc67P2ydOIQ4RQnvKzbTUNDLtiVzRQ02N7ypiWHR9fir/SO/6W1DTo2fcu xe9jKqes4UVCiB8HiAbQQOgaKD0SKsOh20aLz7iLrzPgcS23uwVdeabtk7fiiIRo7Hk1w/Zo Bg2U/GbVKgDkAxdXxJS1X9Y+ecURIoRC6k8PqSz07TNelrd9m+1D0nFIZSlqT71f6ZGQ3SWW FsW4Cp310NMkcGQBJa1bLylaymvUECGU9xzYnitzNIAGhq2BSiBU1kmkwSU+PmTDxGe/+HjS oPc3ASEab1m6Jx+0NEoaCBpC8ajK9TsOH9dkhaT9fGbHpT2eJ2ldUugeD5/5fWPfW12xB/aw nS96yKeHpoIreAg1xbAhRkIh9RmHVBbGhBgTKupXQtJxSGUpas/KxoQGKVBT9w0RQk21JeWm OwoNjI4GiITU7IwyBA+EyrFjGXVBHtQFGmiOBoAQECoFwjT65jR66oq6CkkDQKjFEAqpzzik sjAmxJhQUSccko5DKktRezImVBKAurPveGzPIEJkX67O0cBoaoBIqCQQAaHRbEA4TuodDQym ASAEhBgTKkkDOKPBnBH2G037AaGSHFCIkVBIfcYhlYUxIcaEigIvJB2HVJai9mRMqCQAMSY0 mldwgzQ89kUzaKCrASKhgiBKe5wP4sLBoAE0gAb8NACECkIoLrAQu+NoBH6NADthJzRQnwaA UIshFFKfcUhlYUyIMaGi0AlJxyGVpag96Y4rCUCMCdV3FTWI+NmXekMD9WuASKgkENEdV7+Y cSjUARpongaAEBDiPqGSNIADbJ4DpM7qr7PgIOR642nWsm53WGcquYTlWp+1Tx6BhhgJhdRn HFJZGBNiTChP27a3DUnHIZWlqD2DGhNKgoQNGPM9vixtuTGOAZnrteD2sqLGDBFCRc+F/eq/ OqQOqINR0UCwkZAd/bigEwePXWGufePrs7bJKwAghNPIqxm2RzNoIMCbVe2IxRccWUDJA7Si ogBCOJSi2mE/tDPKGqgtEkrqAgNC5TXIkPqMQyoLY0KMCRV1+iHpOKSyFLXn9JjQCunsdZt0 5twUXc/rEX7p7L5IZs9bJnMXbpLZC1YMbQaVC0Jpkwrsbrmsbjt7vWuywyCGJBIqD56D1AP7 Ug9ooFka6EZCAUIoCxhJXWxxuNgTE+LRl8/suLRnxCWtM8eMX6nw+8a+ixnsgT1sYKCHfHro qHChDcANDkJNNSqRULOuvpqqM8qNzowGgBA3+PVdhYQIoZD6jEMqC2NCjAkVhXlIOgZCQCh4 CBVtaOzH1TYaCF8DQAgIASE00Io+eYATPnBcdQSEcEBACA0AITRQmwaAEOILHkIh9V+HVBbG hBgTKhr9haRjIASEgodQ0YbGfs3snqHeRqfe2gKgIG9WbWpDCnF2XFNtSblHx5lS18XqGggR Bc3oBwZCxRoTTgi7oYH8GgBCQKgREAqp/zqksjAmxJhQUfCFomMNoVDKUtSWUzfdhvbYnkFP aFj7pz3OZ1hl4Dj5ryCxGTZrgwZaFwnNXy6dvQN5gGlTBUJ3HM6tqdql3M3TLhCiO64R3XE4 l+Y5F+qMOvPRABACQo2AUEh9xiGVhTEhxoR8HL1rm1B03LoxIbrjBr/6ojtucBsWdQzsh+1H SQNtioKm7hMKCUKul81lLdMnkvVuoLQX48XfTVRE0EAIR1hEN+yDbvJqAAhV1BWXBAkDGFNR 9ptXXS+w83ltePztrUn75BEHEMKZ5NEL26KXohoAQhVBKA4Zu4Jcr/y24eR6y6prf/sYWfvk FUiIEAql/zq0MZjQyhNSPWGb8MfLDIRC001en2m2j96sGmp3nCv6yQOnJLC5Ip9Bu+RChFBR UbAfV+loIFwNEAmVFAlldZu5AJIUvWRFNa71WfvkbYRAKNxGm7cu2Z66DFkDQKgkCCVVsmuc JwlIrm66rCgnbYLCIMIDQjiuQfTDvujHVwNAaEgQsmFRdHZc1n5ZM+q64075/4yY4n22o/xb n3tI5x9SeYxdQrFPSOWxbRKCfUIoD2NCFUPI92ogtO2IhLiSDU2TlKd9mmxbFKQ1GtzEhKY2 HCDUvgbfVC1S7vZqceQgNGveMpm7cJPMXrCitveoN6VBAaH2NvymaJBytl+DQIiuuEQYhwih kO4jCKks2lmHVJ6QyoJtwr5PyIZQaLopehGU2h1HJOR/ZRUihIqKgv386x1bYathaoBIiEio UZHQMBsHx8IZo4HqNQCEgBAQQgOMj6KB2jQAhBBfoyAUUp9xSGVh3CPscQ87okI3/XXFmBAQ ahSE6B6pvnsEG2PjYWmgjVFQ5n1CTEzwb2BMTPC31bAaLcehTtqkASBEFJTaDwyEcHhtcnic S3h6BkJAqA9CaU+UC6UBh9SfHlJZGBNiTKhoG61Tx3EI1VmWovZz7cd9QiXBlUgovCvHMhsK eVG/dWuASKgkZ113RVZ1fCCEk6pKW+SLtqIB/I7UNjW8Sg0SCZUEVyCEo6iyoZI3+gJCJTnr tjamECEUUp9xSGVhTIgxoaJ+qE4dMyY0JAjFX7utxZL1cjqzTdIrw5PW+7zUzlesIULIt+xs x1U2GghbA22NgqbvE1ohnb1ulc6cmyJXqnoe1X+7L5Jh3ieUBIQ4WOxXerteBZ4EItd+SXkV aZBAKOxGXKRO2Yc6DUUDQGiI7xOKR0I2VFzr4pGS7++kvIqKDgjhsIpqh/3QTpYGgFBNELIj lTS4ZAElDWym8l3dgFnCsNeHCKE6+6/jtgupLIwJMSaUp23b29alYxeE6ipLUdsl7dedHVdD d5xvt5ndTUckxBVj2Q2A/NBUEzRAJFRTJBSPUlwTFJImLvRHKZ2p+fWusae0CQ2+Ag0xEvIt O9vhiNFA2BoAQoFAyADHBY0kuNggc01yyAJQ2uN5ktaZY8bDZX7f2HezHfbAHmldXehjWh8a Qln2aOqFRG3dcU01WFK5Q4yEQuozDqksjAkxJlTU/9SlY8aEhhgJFRVH3fuFCKG6bcLxw+7i oX6aUT9t7orTGiQSKukmXCDUjAaN46WemqYBILRwk8wmEsp8cCAQwrk1zblR3mZoFggBoUwA dSdMTP+F0rjr6r92nX9IZWFMiDGhom20Dh0nQaiOshS1W9p+dMfRHecF2SrER57NuBKnnuqt JyIhIiEvJx1iJITzqNd5YH/sX4YGgBAQAkIlRYtlNEjywLGPmgZGBkJ71/wU7aYLK8RIKKQ+ 45DKwpgQY0JF/U0dOh6ZMSEgNNgVZogQKtrQ2G8wLWA/7FeWBtoeBfXdJwSE8jWctMf5lCVA 8slXJ9gLe7VNA0Bo3jKZy5gQY0KMCXlpoG0OkPOpH+pACAh5O5/obbTqIYMkbIAG0ECZGki6 GKhjfKqKC5Op+4TojhvsqocxocHsV4W4yZM6QQPhawAIldTVBITCFzsOiTpCA+FpIDgIZb2K 2/XeIC2spOVGdGkvsxv01d7d44f32B4aXHgNjjqhTtBAvwaCgVAaXOxKM8BwvaDOhlG8ol37 JeVVRCQhQiikPuOQysJ9QtwnVKSNo5tqLiCCgZAdsSRFL64oyYDHBSpXnkmgGjQaChFCRRsa +1XT2LArdkUDMzUQPITiQEqKioAQDZwGjgbQQPM0UBuE4t1pSZEQEGqeqHAE1BkaQAO+GqgN QkkFtLvF4t+TfqdtF++uS5ug4Gs013ZpT1Coa50ehwnlL6SyaJuEVJ6QyoJt0ltMSHUV2jhr Uf8ZQejo5dIJ5T6hMmfHueCUtWzmhIZQ3DjlwAJYAAv0W6Co4w9pv+AgFJJx8paFBoIFsAAW GKYF8vqoELcHQiXdrNrt9hPvx/ykiSGkfEIqS2g2xjbJ4x7YJn1MqAz7lJFHCFACQkAoFZxl Cb2N+bTxnMoCPbapHkKMCZXovEOgcRllaGPDa+M54Wird5Dopjk2LsP3DZIHkVCJMG1jw2vj OQGh5jhI9Fd9l+cgACljXyAEhOiOK6gBHGT1DhIbV2/jMkAySB5AqKADSrpXaJDKKHvfkPqM QyqLtnNI5QmpLNiG5+qV7Yey8gNCLYZQWVeRWSLyWR9SWcrqjvM5b59tsE1zrvZDqquQyuKj 86RtgBAQKmVaeZYIQ2swIZUnpLIA6OrHy7Laiu/60HTjW+74dkAICAGhEjVQpCGG5kxCKk9I ZQHQ1TwPDwiV6IBCazAhjTWEVBbGPRj3KHKxgG6A0FCu2IuKM7SrpNDKExqgQypPSGVBN3TH DeIDi+xLJFRiJFSkAtinmqsr7Ipd0UAzNNCF0Ar1FO3bpDPnJn1NJp3ov90Xyax5y2Tuwk0y e8GK4KMQBNcMwVFP1BMaQAO2BoAQkRAXGGgADaCB2jQAhBBfbeLjipgrYjSABoAQEAJCaAAN oIHaNACEShKf67Xh9lVe0vr48qx8fK4cs/JIe8V51jqf48e3ySqP2T7rrbe++aSV0TePrLLY ZTZ5Dss23Rlseui2m1y/6ypLmWXKqitfrWbl42OrrDx82/ewdONbnqzz8rHNoNsAoRIhZDsD lyN2rXe9zjwtH58Kjzsm37LEoemCg8/x8x4vyZnE7ZB1Xj5ly8ojqyxJ5+ZzbNc2Rcpj7OKq r0GBmKVhn/ztcypqF/sck47pOo7Lnlk29iljVh5J55y13OfYRXWTppN42/ap16JlzdoPCJUA oSSQJDnx+FW2z3ZZFembR1ZZfYTrW5a8eaU1WJ9yZ5UrTx7xbV3nkrQsqxy+deWCjGvfPOeV VLY8ebhs41MuX7u0TTd5zyfLToPUVZLvGVTLWWVOWw+EAoBQWuict3KzBJp3vRFn0SulrOO5 HK1rnzz5VOVok8A0TNvYzn6YukkDYhpUh2mbUHWTBKFh2qYq3eT1T67tgVDNEIqLw6exp1V8 lrPOu77q8jQFQmlX/0WvIrPqwsf2LkeWVVaXfsoqi0/ePo7LtzxZV/a++QzSppIgnLW8at1k Raxl2ManLrO2AUIlQyjLKSRd/cSXl3GVlLcsWc4ra32WA8o6J5N/3LEMyzZJTt/nvH22idvH dZ6+UVzSxUuWjX3yz8rDda5ZDi/LERWxTZoTNeeQx8aD2Cbp/LN0kbW+aJvKyresNpW3XomE SgBOmlBdFesKg/Muy1vRSQ0w67hJgs9ySlnlyyqP64oxzYlkNbCsq9osONtXqHY5XE5vlG2T dqXvqr8snbhAlNSmkuqlDt34lCXrwqrJtslb9vj2REIVgmnQymF/buRDA2ig7RoAQkCotpvU 2t64OD8AggayNZAKodk8wBQHDaTRABpAAxVqYApCe9068ynaQCib4lzpYCM0gAbQQHENAKEK CY8wiwsT22E7NDAaGgBCQIiuBjSABtBAbRoAQoivNvFxpVvsSjc+JThtGjk2LmZj7DY8uwEh IASEGqyBQe6ZwtEOz9Fi62RbA6EGOyCEjRNJe2qA66ZbsyzpjnmghqaG7VeAEBAiEmqwBnwg FL9b33YyPk+PGLZT4nijBUIg1GAHRGMdrcbqqm8fCMWh44IQ40poqS5/AoSAEJFQgzVQFoTq ckAcF/gBoQY7IBowDbgsCDEWhJbq8idACAgRCTVYA2VAKD5ZASABpGECCQg12AENUygcC8eE BtBAFRpIhdCseUtl7sJNMnvBCq6WgRUaQANoAA2UroEIQvOXS2fv22Y+wBQIceVTxZUPeaIr NIAGjAaAEFc2pV/Z4GBwMGgADfhqAAgBISCEBtAAGqhNA0AI8Q1FfPbNkGlXSNw0yRW07xU0 27VDK0AICHlDaJCpu2bfrDyy1uN42uF4qEfqkTEh4OMNn6T7SJKim7RoJgsyee97wZnhzNBA szVAJASMvGFkRzNpsMh6YGbe7jjfKApn1GxnRP2NZv0BISBUCELGYbiioSQIZUVBJuJyOSOf fXFio+nEqPdm1zsQAkKFIeQDm7xRjAs2efPAKTXbKVF/o1V/pUOoI/wLwQJVNOR41JM09hOH U54Zb4wJjZYDqkKn5NksDZUOIQTQLAFQX9QXGkADdWoACNEd590dV7ZQ4xES4z44w7I1Rn7h awoIAaHaIISDCN9BUEfUUdUaSIXQ7HnLeIo2kAJSaAANoIHKNDANoVtnPkUbCHEVVNZVEI/t QUtlaYl82qUlIMQVjvcVziBjNr7TrAc5Bs6pXc6J+hyN+gRCQMgLQq5p1jy2ZzScBDCgnqvU ABACQl4Qsp9mYOBjC9PnxtW0JyK4nsDgip6IlHCIVTpE8h6+voAQECoEIRc07GVZ35MaO09M GL4TwPFi8zo1AISAUGEI+UQ/vmNBLmjFIy2iIJxlnc6SY1ejv9Ih1BHXLYgsG7ZdqmgwdTy2 JwtOVZwneVbjbLArdnVpoHQIITSEVoUGiILQVRW6Is/6dQWE6I7z7o4ru8H6PrYHANXvKMqu e/KjTo0GgBAQqg1COCIcERpAA0AICAEhNIAG0EBtGgBCiK828XEVzFUwGkADQAgIDQVCPDsO ZwNw0EDu2XGzDuUp2jSc6YYzyAQB3/uFBjkGdYWTQwPN00AUCR29XDp73TbzKdpAqHkVWlUj rOvZcfp8fKOoqs6dfGkHaKA6DQAhuuO8u+PsaCYesfg8PcEAJa1Bu2Dnsx9OojongW2xbZUa AEJAqBCEjChdUYovkFzCTnt2XJUNgbxxtGigHg0AISBUGEI+sPEdC7KhFncGjBPV4xxwyth9 GBooHUId9ZA0Uv02qEI8dTw7Lql7rorzI0+cLhoYvgZKhxCVOPxKxObYHA2ggaZqAAjRHefd HVe2yH2fHVf2cckPh40GwtEAEAJCtUEIRxCOI6AuqIu6NACEgBAQQgNoAA3UpgEghPhqE19d V14cl6t+NBCOBoAQEAJCaAANoIHaNACEEF9t4uNqNJyrUeqCuqhLA0AICAEhNIAG0EBtGkiF 0Ox5PEW7rqsDjsuVKRpAA6OgAd4nxBVQbVdAo9DAOEdAggbSNQCEgBAQQgNoAA3UpgFvCG1c t1RI2AANoAE0gAbK1AAQAq5cXKABNIAGatNAbgh97f98Wf73X9wsX/3KjVPpK1/+E/nzL/6x fPmLnyZhAzSABtAAGpjSgGaDZsRX/6diRi/91V/+mWiW6IgqN4QeXPyA/OLen8lPfvrjqfTj H98tP/zRnXL3D++I0l13u9L31fJuuvOubrrrrn+Jpe+p3yrd+c8q/aNfuuN2uauX7lSfOt1x x9+rz++mpx/8ndxJwgZoAA2ggQE18G21f3+64/vfEpPu/MG35O47vy0//uF3ptLPfvIPct+/ f78YhNaMrZTHVj4ijy5fNpWWPfKwLF22pJcekqVLH5KHlz6oPrup+/2+hLRILe+lh9Xnw790 pHvVsun08JKfy5LFv5Cli3/eTep3lBb/W5QeXvxTd3roJ/LwQ/eQsAEaQANooCQNLHnwx8qW P5qRli7Wy38YpaWLfyTLHv7xVPrFT/9B9F+hSGjDxklZv2FCJteNT6fJMfXdSvr35BorPa6+ 22mV+m2nleq3Titiabn6rdJEL619VCZ1mnikL02sXSY6Ta59OD2NL5bJqfSQ+k7CBmgADaCB IhqYGHtQZqYH1LLptHbNA9JNi2Tt2H1T6ec/+cfiEHryVxtkRnpyvTz55GRKmlDrHGnTuDwZ pTXOtOmJ1dJNq5zpiY0rxZU2bVguM9MjaplJy9R3EjZAA2gADQyigY3rHxGdnli/zJGWqGX9 aeP6h9T2D8nPVXdc4UgoDptNmyZFp+5yBZopsBjAzPzc9MSYgoqdDGz6obNx4+OiUxw0Gzc8 Js60frk6QZ26hokbaIMylEllTjEkL6asogE0gAa0BpbE0mL1ezptmHxIdPrZT24HQggGp4EG 0AAaKFsDfhD66T1/PxwIdTodMcmOkJIiIb2t3f1WJBLSeRAJlS0s8sNZoQE04KMBXwh9t3oI aRjY4LF/lw2hCDy6i67C7rjoGBk3tPlsk5UH632EzjboBA2EqYEBILTXrdKZc1MEp0703+6L xH6Ktjlh3zGhOISqjISAEA0yzAZJvVAvo6YBTwj96DszI6FhQ8juqjOz4OzuOHu9PTHBXm4m J5hlOhKyu+P68uhNStDL9OSEqX0Sopv4+qTfdvRjbxOPipK2o5GOWiPlfNF8mzXgB6F77v52 9RDSkU/SmFAXNtOz4wx8+j9XRTPjdNLLNYjMpw0f/d2OhAyEbBjp6YNJ8HF1ocWBEd1QldId Z9a59jMNzmcbGmebGyfnhr5HQQN+ELr7jq8Xh5Cejv2EumHVpE3q+6aNa6fSExvH1br+tHHj mh5AusttOJnvT2xY3d2m9xnfxobNhvUrVDSzYmoMqAuYR6Nkvkef69SU7F4yv7swWKKmCXZT tLz33f6ML3f9tssYzytt/6RjusrBsum6whbYAg2Er4F1E4ujadhRmuilyQfVb5UmHojS9//l a8Uh5IKMCzoaPNOpG83YkU30fYOKdqxkIpouSBRkevcDGeh0o5vlU8AxExFMlKNnxdmR0CAQ SoNKEmDs5T4Qo0GF36CoI+oIDfhrYBpAPegY+MQg5Hxsj++YUD9cpkGjIxgDGdOF5vptutU0 YDYoAOlkw8dEPK5IZzri6d502o1uuuBJinhM1GMioOlIqEvqLix61O592svMd9cys1/WNiZi ih/Pdex4WfjdXzfYA3uggaZoYDryMRHQ+on7RSfnY3t8IbRh/WoFACv1QGJHNDZcphzw+pVR dGNHNVPr1qnoRqUuTLqRTl9XV6xbzaxbN7FUdFo/8fBUt5peNzmxJEp2HprQOull+nP92gej pH+b7/an2Te+zN7Pzt+Vn52HfZx43vF1WWVzlZdl3fokYQM0EJAGxu+T9Tr14BN9V8n52B5f CK1TkNBp/brHojT1e/JRWd9L0frY72g79eDRmakLkrRkoJL42Xso6YR6IGl/Ug/YG3eksfvV Q/ZI2AANoAE0MKgGJqMHlt4vk+oBpSYv/b2bFvWnNf8ukyo5H9vjC6HxNUskSmMPW2mx+q7S mnjqbdvbZ2z1Q+JOD6rl02nN6gfElcZW36+2u1/WPN5L+rte9vh9vbRIfS6SNaumk/5t0tTy x3+p8iBhAzSABtDAIBoYU35UpzWrftGXxlb+QnTqX/4z9bubnI/t8YXQqsf+XXRauWKRPPbY dDLL9HKTptav+KU8liOtXP5zyZUe/Zms1Gn5v7nToz9V6/vTCvWbhA3QABpAA4Np4LFH7xE7 rXj0x8q3dpNZPrXskR/JCpV+eo/jsT2+EHp02c/FOy39mTyakh5Z+hPxS/eo7aykXo70iCst +aE8opNZZ37HPpep38uW3EXCBmgADaCBATTwyJK7lc+dTpl+dbHyu4vvmEp9L7XzhVA3yrlP RUP3q/SAlfRvd9LbP26lVSoPZ+pFWSbamvE5td+9an+PtPwXssqRckVZeaMyts8XxWIv7IUG WqoBq2fK9FY9+vOoB+qxZT+RFcvu6X+zqi+EuOt5FO565hzRORpAA8PRQOeUp6QzX82OToLQ i84Zl7kLN8nsBStk1lvWe6UoUxI2QANoAA2ggSwNaAAdfEcyhHY9+RF5wXkr5blvXia/dexS r9Q5eoV4J12AutLR6tg+ab46H+9U9vnkOLbPuUTb1Fg/VRy7ijy96ztH/ZSu8wqO7a0hrXPf 45fdJhpy7Fpt6Vs3ejvf+smTp++26thH3Cedg74vnb3/OvYqh7nfUgvV+x2idJv13Swr61Pn 7ZPKOp6Vjw7/yk5TNssor+9xvWzTs18VeXqfjyrDXh7JN78p3floI8c2PmXMs02e8/HNN0+d e29bQfsZ2WNXYEtvbfgeO0eb8K7HKvLU56Pgo8uwx1/EIPTiW6IFJGyABtAAGkADw9LA1Evt okec8ocFsAAWwAJYYMgW+P/MBB8JYQbkOwAAAABJRU5ErkJggg==</item> <item item-id="304" content-encoding="gzip">H4sIAAAAAAAA/4xUW28SURCesyzssuVSLq2tiwULtii0winQgprQ2hgTbwn+gGYL2xYjgnRr +sgv8M1nX/wJxmeN7/4jg3Nm6BZ98myGuZxv5ps9Z4cIAAiU1ygW2QH8Nd33Hfe0P3wXBLVq KOHesMsxnWJNBRt0Xx2/cbseRaBD+Rr+hs7PRgfDSw4/RzEw0PGBL1D2UL7vA+wivvH42lfr psFNaaAFyEj65PueN+4fX3iuIGQLJQ7zS2+t/+UHqYDujV3XpoBEiY7IDMnVHwCToCE/o26H TNZGmLVpsQ4vSA1JPDwfXQRqUMEHIvLTM8y1IEqbXyNIJfQqNHgbIEbJk3Bcqg7bMQwtkjmJ EXlCWj/RMZOk24mU1H+jTqZl8hfq1BLV7aWRNHAC26rvZfkRG5+k4QbtfVnGIxJ0pitcLLXK na6oDVHFk+TmfB/AJppJMsM09i2myczRrDFNBrJMs+bT5JjGvs00OSqLGetMk7umgTzzJArM k7/DPIU5ng3mKcAm82z4PEXmyd9lniLV3QG4xzzFOR4o8TkbZb6s0hbr8jZhP2wRFm/kPvnf fB8qnFiu8gWpkOQLovuDHXZKPAIMDtW5eq3Bur7LLA36NCr8XnvM1PCZmpxcbzGTGp0HXLxJ xR/y+9eu3v8RDVG8J49Ox87o7OhkOB44nkHYJTWLFD50PGc2L7NvXcMLoPlVn7wi3iRbeZZz 2T9/QnV4fjNqMsUMy2uKD4jM/0evihve2Om68jBAW/YMmBWLIGyBwKwQwtZgOs0KTdiIQiMg bH2qDJ0waAQRM2kjOEQYNAzCoGEqjAKHqQ5GLMRQ+gJiKD2CGEqPKozKihEGjbjCKDC3G395 MXDH/a7zlg/EpLafovSgj48iV38q1uw0/1mReecPAAAA//8DAOWx0axABQAA</item> <item item-id="305">iVBORw0KGgoAAAANSUhEUgAAAf8AAAF2CAYAAABgTpGuAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACW9SURBVHhe7d2BeeIwEgbQ1EVB1JNq aCbFsDGELDHG2CB+y9a7+/a7vQ2WNE+TGWwMfBz9hwABAgQIEGhK4KOpaAVLgAABAgQIHDV/ SUCAAAECBBoT0Pwb23DhEiBAgAABzV8OECBAgACBxgQ0/8Y2XLgECBAgQEDzlwMECBAgQKAx Ac2/sQ0XLgECBAgQ0PzlAAECBAgQaExA829sw4VLgAABAgQ0fzlAgAABAgQaE9D8G9tw4RIg QIAAAc1fDhAgQIAAgcYENP/GNly4BAgQIEBA85cDBAgQIECgMQHNv7ENFy4BAgQIEND85QAB AgQIEGhMQPNvbMOFS4AAAQIENH85QIAAAQIEGhPQ/BvbcOESIECAAAHNv5Ec+Pj4OPrDQA7I ATlQdw6kWpLmn5JeeJ7uF95/3i/A+f3GlxlYZ6w5Z5y7WZLWOkJuXxedKZlUiwa68OSccxvA OmPNOeOs+eecm5rJL3BmuzlnnNOFMhdVfTPJ6dyeJK2d+ef2ddGZkkm1aKALT845twGsM9ac M87pJ7Saf25fF53JL3CGn3PGOV0oc1HVN5Oczu1J0lrzz+3rojMlk2rRQE1OgACBlQok67Tm v9IkmbvsZFLNXZvHEyBAgIC7/eXAGwQ0/zegGpIAAQIFBZJ12pl/wY2reahkUtXsYG0ECBCo VSBZpzX/WrOg8LqSSVV46YYjQIBAEwLJOq35N5FS2deSGiEVJgECBIoKaP5FOQ3WCSSTijgB AgQIzBdI1mln/vP3Z5VHJJNqlUAWTYAAgYUFknVa8194s1PTJ5MqFZN5CBAgsCWBZJ3W/LeU OSOxJJOqEVJhEiBAoKhAsk5r/kW3rt7BkklVr4KVESBAoF6BZJ3W/OvNg6IrSyZV0YUbjAAB Ao0IJOu05i+pGhEQJgECBOoW0Pzr3p9Vri6ZVKsEsmgCBAgsLJCs0878F97s1PTJpErFZB4C BAhsSSBZpzX/LWXOSCzJpGqEVJgECBAoKpCs05p/0a2rd7BkUtWrYGUECBCoVyBZpzX/evOg 6MqSSVV04QYjQIBAIwLJOq35S6pGBIRJgACBugU0/7r3Z5WrSybVKoEsmgABAm8U+DhO+O9H 7nw8N9MbUQ39WEDzf2zkEQQIEOgLTGjZU9r6JNhkndb8J23J+h+UTKr1a4mAAIGaBUo15Cnj JB2SdVrzT+7sgnMlk2rBME1NgMBCAlMaaanHLBTi26dN1mnN/+3bWccEyaSqI2KrIEBgioCG PEUp85hkndb8M3u6+CzJpFo8WAsgsGKBUs146jgrptrc0pN1WvPfXPoMB5RMqkZIhbkRgalN MvW4jbAK4wmBZJ3W/J/YoDUekkyqNfpYc04g1USnzpOL3EwExgWSdVrzbyQbk0nVCOlqwpza BFOPWw2chRIICyTrtOYf3tylpksmVTLGVMNa8zzJ/TAXAQLPCyTrtOb//D6t6sg1N6+xta9q EyyWAAECIwKav/QoLpBMquKLNyABAgQaEEjWaWf+DSRUF2IyqRohFSYBAgSKCiTrtOZfdOvq HSyZVPUqWBkBAgTqFUjWac2/3jwourJkUhVduMEIECDQiECyTmv+kqoRAWESIECgbgHNv+79 WeXqkkm1SiCLJkCAwMICyTrtzH/hzU5Nn0yqVEzmIUCAwJYEknVa899S5ozEkkyqRkiFSYAA gaICyTqt+RfdunoHSyZVvQpWRoAAgXoFknVa8683D4quLJlURRduMAIECDQikKzTmr+kakRA mAQIEKhbQPOve39WubpkUq0SyKIJECCwsECyTjvzX3izU9MnkyoVk3kIECCwJYFkndb8t5Q5 I7Ekk6oRUmESIECgqECyTmv+Rbeu3sGSSVWvgpURIECgXoFkndb8682DoitLJlXRhRuMAAEC jQgk67TmL6kaERAmAQIE6hbQ/Oven1WuLplUqwSyaAIECCwskKzTzvwX3uzU9MmkSsVkHgIE CGxJIFmnNf8tZc5ILMmkaoRUmAQIECgqkKzTmn/Rrat3sGRS1atgZQQIEKhXIFmnNf9686Do ypJJVXThBiNAgEAjAsk6rflLqkYEhEmAAIG6BTT/uven0tV9HT93H8cueT4+9sdDb5XJpKoU yLIIECBQtUCyTjvzrzoVpi/usP9u+vtzy7/++2WEZFJNX7VHEiBAgMASdVrz30TeHY77j93x 8+snmK/P46539q/5b2KjBUGAwIYFknVa899CIt00+96Tge8Yk0m1BVIxECBAIC2QrNOaf3p3 3zHfxOZ/vh/g7593LMeYBAgQIHBfYKgWX/4t5ab5p6TfOc/E5v/OJRibAAECBF4TcOb/ml97 R2v+7e25iAkQ2JyA5r+5LX13QG74e7ew8QkQIPBuAc3/3cIbHN9b/Ta4qUIiQKApAc2/qe0u FWx39u9DfkppGocAAQJpAc0/Ld7AfMmkaoBTiAQIECgukKzT7vYvvn11DphMqjoFrIoAAQJ1 CyTrtOZfdy4UW10yqYot2kAECBBoSCBZpzX/RhIrmVSNkAqTAAECRQWSdVrzL7p19Q6WTKp6 FayMAAEC9Qok67TmX28eFF1ZMqmKLtxgBAgQaEQgWac1f0nViIAwCRAgULeA5l/3/qxydcmk WiWQRRMgQGBhgWSddua/8Ganpk8mVSom8xAgQGBLAsk6rflvKXNGYkkmVSOkwiRAgEBRgWSd 1vyLbl29gyWTql4FKyNAgEC9Ask6rfnXmwdFV5ZMqqILNxgBAgQaEUjWac1fUjUiIEwCBAjU LaD5170/q1xdMqlWCWTRBAgQWFggWaed+S+82anpk0mVisk8BAgQ2JJAsk5r/lvKnJFYkknV CKkwCRAgUFQgWac1/6JbV+9gyaSqV8HKCBAgUK9Ask5r/vXmQdGVJZOq6MINRoAAgUYEknVa 85dUjQgIkwABAnULaP51788qV5dMqlUCWTQBAgQWFkjWaWf+C292avpkUqViMg8BAgS2JJCs 05r/ljJnJJZkUjVCKkwCBAgUFUjWac2/6NbVO1gyqepVsDICBAjUK5Cs05p/vXlQdGXJpCq6 cIMRIECgEYFkndb8JVUjAsIkQIBA3QKaf937s8rVJZNqlUAWTYAAgYUFknXamf/Cm52aPplU qZjMQ4AAgS0JJOu05r+lzBmJJZlUjZAKkwABAkUFknVa8y+6dfUOlkyqehWsjAABAvUKJOu0 5l9vHhRdWTKpii7cYAQIEGhEIFmnNX9J1YiAMAkQIFC3gOZf9/6scnXJpFolkEUTIEBgYYFk nXbmv/Bmp6ZPJlUqJvMQIEBgSwLJOq35bylzRmJJJlUjpMIkQIBAUYFkndb8i25dvYMlk6pe BSsjQIBAvQLJOq3515sHRVeWTKqiCzcYAQIEGhFI1mnNX1I1IiBMAgQI1C1QXfM/7D+O3aI+ dp/Hr4l2X5+74+7zzqO/Po+7/WHiSB5WQiCZVCXWawwCBAi0JpCs0xPO/A/H/cfueK+PD29O d8z++Nveu2Z//f+/D+qeUOj/udROJlUuKjMRIEBgOwLJOv24+Q807kfUN2f9Q2Mc9rOuJDya 08/HBZJJZS8IECBAYL5Ask6PN/9T0/655P/9v9PO1L+On7vrKwXdVYDLGP1/n3tFYT6mI84C 3UYPbbZ/b9PH7wUBAvUJ1NP8O5v+WfujJwRDZ/mDVw+6JwlTn1DUt0lrW1EyqdZm0+J6Pelb 15O+FnO0xZiTdXrmZf/e6/+npt47e+8u5/de3795AvGzq93r/ndvCmxx598YczKp3hiGoQk0 KeDJ2viTta0kRbJOz2v+XWPvXfu/uXFv6LX8O/cNaP65lE0mVS4qMxEgQGAbL2ueXp79fok8 9Z/HM43e8DfwToDJl/3Pd/w7889sdTKpMhGZhQABAtsSSNbpF5r/+TX7m+Z9t/n3b+7zmn8y bZNJlYzLXAQIENiKQLJOP9n8z3fwD5+1DzX18791gf1/1eCZzw/Yyhbn40gmVT46MxIgQGD9 Ask6/bj59z1/7vYfe9vf6Kf7XcYbe5//E58tcO+mwvWnQ5kIkklVZsVGIUCAQFsCyTo9r/lP aPznrep9wt/A/t39hL/TuwW6qwRXnxD4aP+fOebRmBv7eTKpNkYnHAIECEQEknV6VvPvzujP jfnvn6GrAA8/23/gewLO3yHwfW/A4fbjgO/JP3NMZBcrmySZVJWFbjkECBBYhUCyTs9q/jE9 l/2LUyeTqvjiDUiAAIEGBJJ1WvNvIKG6EJNJ1QipMAkQIFBUIFmnNf+iW1fvYMmkqlfByggQ IFCvQLJOa/715kHRlSWTqujCDUaAAIFGBJJ1WvOXVI0ICJMAAQJ1C2j+gzf8/Xw18L0PGHjm JsG686Do6pJJVXThBiNAgEAjAsk6XeeZ/8hGHw6HRtKgbJjJpCq7cqMRIECgDYFknV5R8/dd AK+kfzKpXlmnYwkQINCqQLJOr6j5t5oOZeJOJlWZFRuFAAECbQkk67Tm30huJZOqEVJhEiBA oKhAsk5r/kW3rt7BkklVr4KVESBAoF6BZJ3W/OvNg6IrSyZV0YUbjAABAo0IJOu05i+pGhEQ JgECBOoW0Pzr3p9Vri6ZVKsEsmgCBAgsLJCs03fP/L+/XHeR/y5sv9npk0m1WUSBESBA4I0C yTrtsv8bN7KmoZNJVVPc1kKAAIG1CCTrtOa/lqx4cZ3JpHpxqQ4nQIBAkwLJOq35N5JiyaRq hFSYBAgQKCqQrNOaf9GtKzDY6QuKvu+3uPzZfR6/foc9f8Tx+Wf7499vORj72fF0jP8QIECA QL0CyTqtI9SWB4f98ePONxce9t9N/+dn13/vQhj7WffzZFLVRmo9BAgQWINAsk5r/pVlRNfE d5//z/X/L6/7SuPd8fdHf77CeOxn5xGSSVUZqeUQIEBgFQLJOq35V5US3aX7qwZ/vbY/zf50 rv//ycDYz37GSCZVVaQWQ4AAgZUIJOu05l9VUpwb+u73df17Z/rPNf/f+wiu7imoKnyLIUCA QAMCQ7X48m+p8Cc1/9PryV3D+HPz2fgSvz6/m9jg5evv47oz1Tuva6cCr3Ke0xn89Zl/92Tg 58Y+Z/5VbplFESBAoJRAZWf+vdeTJ0V51bS6x980rvMNam30/+u78K/u4u+eTD0EmHhp32X/ SVnpQQQIEKhZoK7mP9C4H+HdnPUPjdHd1T7jSsKjObf58+snXm742+Yei4oAAQJngXqaf+89 5w9PVE/L79+01jWtyxlv/5L2nZvbWs2E7gnR9fv3O/+rJ0je6tdqYoibAIEWBOpp/kOX7B89 IRg6yx+8enC+HD7tCUUL236Osbtq8v9mkP4H+Vw/kZrzs+wzynZ2S6QECBAoJ1Bx8x+69Nw7 e++fvQ49gfixuv+e9nKYRspfTmJOgAABAvMF6m3+A58+d3Pj3tBr+XfuG9D85yfHs0ckk+rZ NTqOAAECLQsk6/Tjt/qN3vA38E6AyZf9z3f83307YMsZ8IbYk0n1huUbkgABApsXSNbpF5r/ +TX7m+Z9t/n3b+7zmn8yk5NJlYzLXAQIENiKQLJOP9n8zzeeDZ+1DzX1/+91/3+D3zOfH7CV Lc7HkUyqfHRmJECAwPoFknX6cfPve/7c7T92l/7op/tdxrt7b8D/D8KZ9U6AJz6PYP2pMj2C ZFJNX5VHEiBAgMBFIFmn5zX/CY3/HETvE/4G9vb2E/4mvJPgXo6c3mEw9B33kmqJpKJOgAAB AvMFqm3+f9+DPn6G/vCz/fuf7jflnQR3nkR8dJ+Hf+g+F7//3vf5+Fs9IplUWzUUFwECBN4p kKzT88783xn1zdgz7wlw2X90d5JJFU0TkxEgQGAjAsk6XWnzv/NOgrEN1vw1/40UAGEQINCm QOPNf+ydBCMJoflr/m3WC1ETILARgXab/+QbCgd2WvPX/DdSAIRBgECbAm02/1caf5cnmr/m 32a9EDUBAhsRaLL5P34nwc832t1787/mr/lvpAAIgwCBNgWabP5Tt/pwOEx9qMddCSSTCjwB AgQIzBdI1ulK7/YfQvNdAPNT6f8RyaR6ZZ2OJUCAQKsCyTq9oubfajqUiTuZVGVWbBQCBAi0 JZCs05p/I7mVTKpGSIVJgACBogLJOq35F926egdLJlW9ClZGgACBegWSdVrzrzcPiq4smVRF F24wAgQINCKQrNOav6RqRECYBAgQqFtA8697f1a5umRSrRLIogkQILCwQLJO3z3z734w9MN3 //vC9pudPplUm0UUGAECBN4okKzTLvu/cSNrGjqZVDXFbS0ECBBYi0CyTmv+a8mKF9eZTKoX l+pwAgQINCmQrNOafyMplkyqRkiFSYAAgaICyTqt+RfdunoHSyZVvQpWRoAAgXoFknVa8683 D4quLJlURRduMAIECDQikKzTmr+kakRAmAQIEKhbQPOve39WubpkUq0SyKIJECCwsECyTjvz X3izU9MnkyoVk3kIECCwJYFknZ7U/A/7j2O3qI/d5/FrovTX5+64+7zz6K/P425/mDiSh5UQ SCZVifUagwABAq0JJOv0hOZ/OO4/dsd7fXx4c7pj9sff9t41++v//31Q94RC/8+ldjKpclGZ iQABAtsRSNbpx81/oHE/or456x8a47CfdSXh0Zx+Pi6QTCp7QYAAAQLzBZJ1erz5n5r2zyX/ 7/+ddqb+dfzcXV8p6K4CXMbo//vcKwrzMR1xFkgmFXMCBAgQmC+QrNPzz/wfPSEYOssfvHrQ PUmY+oRiPqIj/gokk4o9AQIECMwXSNbpmc2/9/r/qan3zt67y/m91/ePd1466F73v3tT4Hw3 R4wIJJPKRhAgQIDAfIFknZ7X/LvG3rv2f3Pj3tBr+Zr//CwofEQyqQov3XAECBBoQiBZp+c1 /xv+gXcCTL7sf77j35l/JqeTSZWJyCwECBDYlkCyTr/Q/M+v2d8077vNv39zn9f8k2mbTKpk XOYiQIDAVgSSdfrJ5n++g3/4rH2oqZ//rQvs/6sGz3x+wFa2OB9HMqny0ZmRAAEC6xdI1unH zb/v+XO3/9jb/kY/3e8y3tC9AaebBS9vC7z6kKApe/rE5xFMGXYrj0km1VbMxEGAAIGkQLJO z2v+Exr/Gar3CX8Dejc3Cvaad/cEon9z4d1N+H3SMPMJQ3JXF54rmVQLh2p6AgQIrFIgWadn Nf9TQ7760J/L34euAjz8bP9H3xMw8Uz+/L0D3/cTHG4/QniVu/+mRSeT6k0hGJYAAQKbFkjW 6VnNP6k+68y/W9jEJwvJGGqaK5lUNcVtLQQIEFiLQLJO19f8fz9BcOZH/2r+o/mdTKq1/KJZ JwECBGoSSNbp+pr/707MfDeA5q/51/RbbC0ECBCYKaD5/4DN+tpfzV/zn/mL5uEECBCoSaDN 5n/z1j9n/iWTMplUJddtLAIECLQikKzTVV32//tugv5r/j9fDXzvAwac+Tvzb6VCiJMAgU0K NNv8p+zm4XCY8jCP6Qkkkwo+AQIECMwXSNbpqs78x6l8F8D8VPp/RDKpXlmnYwkQINCqQLJO r6j5t5oOZeJOJlWZFRuFAAECbQkk67Tm30huJZOqEVJhEiBAoKhAsk5r/kW3rt7BkklVr4KV ESBAoF6BZJ3W/OvNg6IrSyZV0YUbjAABAo0IJOu05i+pGhEQJgECBOoW0Pzr3p9Vri6ZVKsE smgCBAgsLJCs03fP/L+/uff7q3Jf+zPmODT2wu6bnj6ZVJuGFBwBAgTeJJCs0y77v2kTaxs2 mVS1xW49BAgQWINAsk5r/mvIiAJrTCZVgeUaggABAs0JJOu05r+V9Oq+GOn7tZTzn/2x/yHI yaTaCqk4CBAgkBRI1mnNP7mz75qr96VGpy9I6n0BUjKp3hWmcQkQILBlgWSd1vy3mEkD33CY TKotkoqJAAEC7xZI1mnN/927ucD4zvwXQDclAQIEXhTQ/F8EbPbw0xl/95r/7vj59VchmVTN +gucAAECLwgk67Qz/xc2qt5DD8d97wlAMqnqdbEyAgQI1CuQrNOaf7158NLKDvuP4/U9f8mk emnhDiZAgECjAsk6rfm/O8kGbr6bNOXgcV/Hz93A2/m6t/ntPo//r/Q7859k7EEECBCoSEDz r2gzXltK14SH33c/Pu7wcd3Z/OUtfNd/78Y63eT3+z5/r/m/tm+OJkCAQF5A88+bF5/x0ox3 +/33TXi3H7pzb8L7x/XO5mdeUUgmVXFMAxIgQKABgWSddtn/TQn1dTicL8PPbNJ3j7sZ5/bS /lgoyaR6E6lhCRAgsGmBZJ3W/N+dSn+adtewe1cBup//eb3+Z0H9Zl+g+f9/WeBy34Dtf/f2 G58AAQJ9gaFafPm3lJbq/27pwab98wTgXuMfumJQoPm/O1TjEyBAgMDzAs78n7d745HXd9r/ P3M+PVvrfY7+n0UMXvb/uaFv6Iz/cvAbzvzfiGNoAgQIEHhRQPN/EbCqw0s1/+/v6fvzwT0z 7yVIJlVV/hZDgACBlQgk67TL/u9OilKX/b/XOfZWv0dhJJPq0Vr8nAABAgRuBZJ1WvN/dwaW uuHvtM7L+//nf3ZAMqneTWp8AgQIbFEgWac1/y1m0EBMyaRqhFSYBAgQKCqQrNOaf9Gtq3ew ZFLVq2BlBAgQqFcgWac1/3rzoOjKkklVdOEGI0CAQCMCyTqt+UuqRgSESYAAgboFNP+692eV q0sm1SqBLJoAAQILCyTrtDP/hTc7NX0yqVIxmYcAAQJbEkjWac1/S5kzEksyqRohFSYBAgSK CiTrtOZfdOvqHSyZVPUqWBkBAgTqFUjWac2/3jwourJkUhVduMEIECDQiECyTmv+kqoRAWES IECgbgHNv+79WeXqkkm1SiCLJkCAwMICyTrtzH/hzU5Nn0yqVEzmIUCAwJYEknVa899S5ozE kkyqRkiFSYAAgaICyTqt+RfdunoHSyZVvQpWRoAAgXoFknVa8683D4quLJlURRduMAIECDQi kKzTmr+kakRAmAQIEKhbQPOve39WubpkUq0SyKIJECCwsECyTjvzX3izU9MnkyoVk3kIECCw JYFkndb8t5Q5I7Ekk6oRUmESIECgqECyTmv+Rbeu3sGSSVWvgpURIECgXoFkndb8682DoitL JlXRhRuMAAECjQgk67TmL6kaERAmAQIE6hbQ/Oven1WuLplUqwSyaAIECCwskKzTzvwX3uzU 9MmkSsVkHgIECGxJIFmnNf8tZc5ILMmkaoRUmAQIECgqkKzTmn/Rrat3sGRS1atgZQQIEKhX IFmnNf9686DoypJJVXThBiNAgEAjAsk6rflLqkYEhEmAAIG6BTT/uvdnlatLJtUqgSyaAAEC Cwsk67Qz/4U3OzV9MqlSMZmHAAECWxJI1mnNf0uZMxJLMqkaIRUmAQIEigok67TmX3Tr6h0s mVT1KlgZAQIE6hVI1mnNv948KLqyZFIVXbjBCBAg0IhAsk5r/pKqEQFhEiBAoG4Bzb/u/Vnl 6pJJtUogiyZAgMDCAsk67cx/4c1OTZ9MqlRM5iFAgMCWBJJ1WvPfUuaMxJJMqkZIhUmAAIGi Ask6rfkX3bp6B0smVb0KVkaAAIF6BZJ1WvOvNw+KriyZVEUXbjACBAg0IpCs05q/pGpEQJgE CBCoW0Dzr3t/Vrm6ZFKtEsiiCRAgsLBAsk478194s1PTJ5MqFZN5CBAgsCWBZJ3W/LeUOSOx JJOqEVJhEiBAoKhAsk5r/kW3rt7BkklVr4KVESBAoF6BZJ3W/OvNg6IrSyZV0YUbjAABAo0I JOu05i+pGhEQJgECBOoW0Pzr3p9Vri6ZVKsEsmgCBAgsLJCs0878F97s1PTJpErFZB4CBAhs SSBZpzX/LWXOSCzJpGqEVJgECBAoKpCs05p/0a2rd7BkUtWrYGUECBCoVyBZpzX/evOg6MqS SVV04QYjQIBAIwLJOq35S6pGBIRJgACBugU0/7r3Z5WrSybVKoEsmgABAgsLJOu0M/+FNzs1 fTKpUjGZhwABAlsSSNZpzX9LmTMSSzKpGiEVJgECBIoKJOu05l906+odLJlU9SpYGQECBOoV SNZpzb/ePCi6smRSFV24wQgQINCIQLJOa/6SqhEBYRIgQKBuAc2/7v1Z5eqSSbVKIIsmQIDA wgLJOu3Mf+HNTk2fTKpUTOYhQIDAlgSSdVrz31LmjMSSTKpGSIVJgACBogLJOq35F926BQc7 7I9d4pz/7I+H3lKSSbWggqkJECCwWoFkndb8V5smVwv/+jzurhr+1+fu+LH/2/6TSbUFUjEQ IEAgLZCs05p/encT8/WeDHRTJpMqEaI5CBAgsDWBZJ3W/LeWPd/xOPPf4KYKiQCBzQto/pvf 4jcFeDrj717z3x0/v/7OkUyqN0VnWAIECGxaIFmnnflvMpUOx33vCUAyqTZJKigCBAi8WSBZ pzX/N2/mUsMf9h/H63v+kkm1VMzmJUCAwJoFknVa838mUwZuqLsZ5vcS/M/b73afx96V+PGZ B+f4On7uBt7O173N78/4zvyf2VbHECBAYEkBzX9J/Ydzd411+L30fw7tGnLv7XYPh/59wPAc 3dn8Zczrv3eHnW7y+32fv9f8p1t7JAECBOoQ0Pzr2IeBk/lzg93t93/eVz+03K457/p33U2I 69LEb+fonc1PufpwNV8yqSaE6SEECBAg0BNI1mmX/Wek39fhcL50/7Dxdpfnb8++p0x1d46b OW8v7Y+Nn0yqKXF6DAECBAj8FUjWac3/mex72PzPjXn3+/r85YlA9++9j97txhq6H6A/R4Hm //9lgct9A7b/me13DAECBF4RGKrFl397Zdw5x6r+c7Quj33U/E8/vz7zv276V3+/1/iHri68 3Py7T/l77c/4lYXXxu7WZvxxQz58Xvkdlj9150+3P878n2nITx1zfff8/7Ph0zOwsZv1HjX/ m7X0L9H/3NA39g6AN5z5P0XkIAIECBCICGj+EeYXJlmi+X9/T9+fD+6ZuYZkUr0g61ACBAg0 K5Cs0y77P5Nmjxrv6et1r17b/3N5/8nL/t/rHHur36Mwkkn1aC1+ToAAAQK3Ask6rfk/k4ED zb//1r6/77u/PBF44Ya/0zov7/+f8DkDvbiSSfUMqWMIECDQukCyTmv+jWRbMqkaIRUmAQIE igok67TmX3Tr6h0smVT1KlgZAQIE6hVI1mnNv948KLqyZFIVXbjBCBAg0IhAsk5r/pKqEYFM mMlf3kxE9c7COrM3nDPO3SxJa80/t6+LzpRMqkUDXXhyzrkNYJ2x5pxx1vxzzk3N5Bc4s92c M87pQpmLqr6Z5HRuT5LWzvxz+7roTMmkWjTQhSfnnNsA1hlrzhnn9BNazT+3r4vO5Bc4w885 45wulLmo6ptJTuf2JGmt+ef2ddGZkkm1aKALT845twGsM9acM87pJ7Saf25fF52p+wX2h4Ec kANyoO4cSDUKzT8lbR4CBAgQIFCJgOZfyUZYBgECBAgQSAlo/ilp8xAgQIAAgUoENP9KNsIy CBAgQIBASkDzT0mbhwABAgQIVCKg+VeyEZllfB0/d5c7XffHQ2bSjc0yx3DksV+fx931OzB2 n8evjUmVD2eO/c/sJ2e5Pr4XhVzl9BMpP8O+57t/sYBr/k9s11oPOey/G/9Pxlz/fa3xLLHu OYajjz3sf/diiTjWOOcc+3N8h+P+9ARL8x/b72Kucnr2r9V0+3Mu/zb8zvpjd/x84YxB85+9 XWs9oEueq2RxRvTERs4xHH9s90u/e+U394nVr/uQOfbH49fn7vS5Frv93pn/6MaXc5XTc3/D Zth3zf7P1cHzFYNXzv41/7n7tdbH3zT7XuKtNa7kuucYjj62+8V97Vl7Muwq5ppj/73gr8Ph /DKKJ7kPrvj3XxYZrwv3XeX07N+TmTn9d/zelYDZk39/ffATxzhkjQIvJdoaA37DmucYjj72 XGB3v/dfeCLwcLfm2F8PpvkXbf6/g93ZDzn9MJP/P+DZnD49p/2+svXifUKa/4y9WvVDX0i0 VcddcvFzDMcee/rZdcPvngx4XXp0q+bYa/7Ts76Uq5yebn555JP255e0Xq8Xmv/8LVvnEU8m 2jqDfdOq5xjOeezpxjRn/5r/m/J2bNhZeXo10MMrKnL64W4+YX9u/GVqheb/cIe28oAZN5ds JeTiccwxfOGxxde9hQHneM5pUluweSWGd7lq/o93ZZ59qTP+y7o0/8c7tJlHTH9byWZCLh7I HMO7jz29Tefqsl13BvDi63fFA61wwDn2v8t/eIZaYaDhJRVxldNP7dpk+5uXVZ6a7s9Bmv/r hisa4fK+Z+99fn7T7hvevtXp/mMvb0U7f73q66/fPR/Pmo6cY/8Tl+Y/YYPLuMrpCdQ3D5lm f3qSMPC17N7q94y5YwgQIECAQKMCzvwb3XhhEyBAgEC7App/u3svcgIECBBoVEDzb3TjhU2A AAEC7Qpo/u3uvcgJECBAoFEBzb/RjRc2AQIECLQroPm3u/ciJ0CAAIFGBTT/Rjde2AQIECDQ roDm3+7ei5wAAQIEGhXQ/BvdeGETIECAQLsCmn+7ey9yAgQIEGhUQPNvdOOFTYAAAQLtCmj+ 7e69yAkQIECgUQHNv9GNFzaB1Qv4xr7Vb6EAlhPQ/JezNzMBAq8IaP6v6Dm2cQHNv/EEED6B dQpcfw/67vj5tc4orJrAUgKa/1Ly5iVA4DUBZ/6v+Tm6aQHNv+ntFzyBFQto/ivePEtfWkDz X3oHzE+AwHMCmv9zbo4i8C2g+UsDAgTWKaD5r3PfrLoKAc2/im2wCAIEZgucmr+b/Wa7OYCA M385QIDAegW+jp+7j+PHx8dxf1hvFFZOYAkBZ/5LqJuTAAECBAgsKKD5L4hvagIECBAgsISA 5r+EujkJECBAgMCCApr/gvimJkCAAAECSwj8A7rQ0mGQAsO/AAAAAElFTkSuQmCC</item> <item item-id="306">iVBORw0KGgoAAAANSUhEUgAAARgAAAAVCAYAAACdZ/HmAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARgSURBVHhe7VvLseowDE1d9HDbSBWU wCJrGqADdqzZsmVSATs6yLWcGOSv4gQ7MjgzzLz7ArHOsXQsyXEz1KsyUBmoDCRioEn03PrY ykDRDJy7buiLRrCF8f3QdWdt4CowW8xDHZM1A323G1o9Tljby8q4czvsurc0ZxWYvv+eNaEk LCXZSgVLcix9N7QoQCh7lt5PjmOpYcTv5tjdd+2gKEQCcx7aptHUR44lCN817RAr6Oe2QauA SJ12+Nkw1u5lRCIu7MdKLPHjssTiIa0kW6l53wILDg7Lvh/wH4x5Mf9IpC2BacwAXCAwkGI2 Wo5pCswkXLvMde4CB2GLxRGdJdlKics2WMBPA4vpl/sPnpN1/IsEYoptQ2DE6i7SG00cogUG shM8SaO4NCI7kh8kPKCQuF6jnG71/WgHYYzFIqMkW6mZ3AgL+Edo0ftq/9Fyl5UxDDE/Vgq2 wIg+ibq5pESylU/WWUaJNIERDaEmmMV4yjbKP333Ix3ks1hoo6/X61uIhRgfj0f6R9M3ktkq 5mhuw/N+vw+Px8Np8+l0GgDfnOtzWEyhgtFd/4f8MQSWuf9w4l+VVw6BmcoXRbSZwci/3xmJ Ph8eIfEJjJzs+J7IHCd1fsd0EEZYIPj+/v5eAQqBqgnMVrZGCMzhcBiez6eTesAGGex70crl Q1hQAuIi3d4s7Q0ojP0HLOXEv6pO3AIDOq+atJrAGIJgKfqYcdiLQFh45qyQYM+rzEICZ5Zd QfHR7N0Oi8tGEBPf6j+uukiIM/IuHGF2BgNZCr5ut5v29ygwW2AZ/bIhNitAYIIlO2P/AaI5 8a+49AqM3D2C8gULDJQ0hhronWZfRhKb2SzOUcI/xA6SG8uUgfjEFNJbCMD9fi8/WnBmtnWp mOOMC+x/ZSzTrMgAyIxlHHq+wJj+rTkUY/8BOznxTwuMymLEG43+bWpTUPhlMFojOVhD58Pi y2CgTIIghI+v1HgHDC4t0/Eek8FAiq4uU2AADwinfaXmfV2JVIr/qBKJC/9kiUQrvysric1U 0vdgZF2tGsnepvL2WGC1N0XFLDHGOclsa0SJBAICq6jqJwEm1dyFf18uF0NfUmNZ3+QtxX+A WE78h5u8yA0kwVbt6t/d8TXKxufo29QyXU6+i4S3yV0N5VxYwtWbKpFUn8kqk1Cq7+oTfJZ3 ZGuEwIBAKvshm8GY7B0xHrxbJZDlj2X4D+Dgw79zmzocAK+7RC/BauIFHpv9PRjTlpKwlGQr 5UpssRAv2pXsP9j25PwLHtvxJdq4s0ikYVMST233yUyfeKmJctK190vCUpKt1LwwxxI8KhAV pExjIQf/Ygx1nitKYF5ljrFN7NuW9m8/p++90H4+lWwFYKm8u2YzlQ+dxdvs9KHcUuckh92e w45USNb7lYHfYKAXO6exh3t/g5k5KHWBjspg5jy+fqcyUD4DIjvKfRC3fNKg72EdFq0C8xUT W0FUBngyUAWG57xUqyoDX8HAP67j9EZJbXSQAAAAAElFTkSuQmCC</item> <item item-id="307">iVBORw0KGgoAAAANSUhEUgAAAHkAAABCCAYAAABzR3knAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAASqSURBVHhe7Z3tkaQgEIZN4PLYGCaL ScI8LgOj8ddmMsFwfOicQANvo8zK0lu1tbVlq8DD26B046Tk59e3wPTra1iq4DqraZrVWrL7 keMvtTwm9Vhep+4+MGTXgNN8T7xHqq/lcaojDgrZAH6okwI5pS7+yauaKz3OkJDXeVLXC3jz DJP2Dvr3rIslO8FrUY/HorjOezzIZgy+nHDo+o3q2oA2rpvbgQaDbGA0mGQZhU2B+zedqUJ1 ZTfOd9tjQTYwLlexxkIBteAbdCh9O6NmTjWGgsxtnLKqnIWd/YaqpdSNXrBkx+ysA0Fu5Kp/ ArKeenGGnYEg67GsyRj5eXdthL7O+CPgOJCZLq7kMb3j1PjbbOL1f4hAx2WBzKKZMv7cI9Re As78YijIc9NXXB94GXLoYwKZEpx2qW0hX+IS4IsIZIHstYC4a1g79zIUJVM8vp/q6/l9L1In SvP9/KO+/mIXECVj7XQ7K1GyjMkyJt9OlhUFEiWLkkXJFcK53SmiZFGyKPl2sqwokChZlCxK rhDO7U4RJYuSU0pOhJFWBqTFsc25pThzbzzSoUpWzVehulhqdJCnsLErINvANi9sAVhUrwwc h4E3hQzUDy4oZljprjc1LUHwORsyERcMxiUb9XMDx7Em0VYtIYP1g8sKGJ6D/AryhJiQYxXr EqNxyS3jolpCRusHwENNTkJ2vf4dhB5Ctv+7fB/z6weT0amWeFxyw7G5IWS8fijCst15yFZ8 G0APcgAhclNuXA+jCPFGcJ0kF4VoyrV3sOhv7kSBbHoOAdDEKR8hE8li/iw6oUTYnV2TdE3q oCFkeDgqCxS2uETJFrtR85LL6Qmh0kq27j/MCyLH3z6VjNcPZlg0vAyyU7dxj1TiFqW6lBLR R4w+x2Q9iQl2LWiXurrTvxDylswVQU5Xgpxd25IBLwt6nV2j9SvqEzeohAzeYJtdp+c49Wrs 9jkZbLorzdpBLgJ21UirOVPNrt94XYkPu1YzyG4XmvgRJlZ1eQLlV6Ve/ViTuGd/yaCAW6tT Q4HcKThOsQUyp7U6tRXInYLjFFsgc1qrU1uB3Ck4TrEFMqe1OrUVyJ2C4xRbUlc5rdWprSi5 U3CcYgtkTmt1aiuQOwXHKTYC2X6qgA4vyq+6Hc8J1973NfnNJrpQ6ThdyWYLFJw2vZ3tMTiR UTgbU5bcrjFeV3eLODvoMJggDKqgjyP7cQtkCmIN5NJHSMjjxxW1OBzKW4alzqdiuIn6CGRS qdwNVCuDCj1IeSWTUaxbyFVp30zZQJWEzNs+2EZgsjclp79Qcwwj9uAllVz6RgavLuNs8aTB 4y6uRsUU4HjMtsDfpLdJ14H83iGySmYOPUNB9jJDcpMvcFx8X2ILi4ryuJLx5scMTn92Pa/l qBq8s7oSjgUZ3fGdEzVqXW4i7RaCHPQ2KkbdM+G56gEh6yoDnwzyXWpG8kXFJ9z1/kgWnV8e JoyKuZmfgynZASt9/CsXGnw8lgps9BMBg5cd4TN38AImC7AyonVIyC7Qv/HOBowXLpgp/3tQ +3UHhWyq3xPoesBjjsnRJCaV64Xpq63Vnlp07iNiAyu5LZ47Xf0fYkwK3k2l6BIAAAAASUVO RK5CYII=</item> <item item-id="308">iVBORw0KGgoAAAANSUhEUgAAAZYAAAAVCAYAAABlq8hUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAW0SURBVHhe7Vzr1aQgDLWuKch6LGDr sBmLccHHSCBAwPCaL3vO/vmOg9zckJsEcNrln1hALCAWEAuIBRgtMDGOJUOJBUgWWJdl30hP ykPlLbDty7KWf4284U9ZQITlT9HdHuy2fPZZ4lh7IswZrPP+WUTq+yJl7NlUE5Zt+z3H/RVM 1XBsyz53EsCqYe4gPlCwbsu8d0KNYzHK/DswM8sURsIammsRYVnnychKVan9mYyMaN3n6dOt E/u8ox0mbS/TftcMVZD+TPOemvy3w7HvrYJXS8ws0SZhkGys3KKvqqBJ+a3+n1INZc8/wUa9 PNoEayVe2IVFtzom0OuwhUXRqoPiZ5w+e1tMp7BMthhnCEtbHNoP0oXwbRBoi/nt7NN+/w6r 8jPGNamDJowDcSzv5h8fv6cnWmGtxYshLFclsepM+Mw0nGAWZUaPYQaPU1TuzMV0NA0wJZOJ vhp94BcwXRhUqwIs1GRhacwNmkxg/HCKT2PMqp48qnOwpjjxgY2Sl2tPr1WeTsIRvL4xhIpX uCodJ2vyYgmLdojHEY6JJGQxrgprx0cqFv1nXZIFx/a0gJIU5s72e8GUNPnr4bt1aC38RGHh 5cbAoXgkbcZrvp0HXX6OeWa0+DDLNsd8CAtcU5z4TMwcWGFrJiRaxwK2hAwykJoZc8w/Z3U9 vxmLq3PeGAd98OIIC1j7Rz/OyDiOYPZkIzBOeATEJyx3Nld0T/90liAmo+foBrQeMBl7Utr+ NxhbWFpxQxQWPHAg/FzB2NEgTEg7x3wufMv/zL8lcOgP+oHkLXHthbsIZsAKB68zb7RaYa24 IqvNWFxBQbxjdAYvheJfgrBYm+6Ho5ilM0ZM3Okp2S4s4cwyO9bHjQiLtbDd4FcOE9nfLQH+ Bhgw93bc6MqTwqG2rdv6tOZ9GAUR86/zm22V/jGfwmK3lwx8CRyGhYXHT3GO7MoFVmA+P4bC 0pAr8kIbiyurPnQqYxIvBeMfXViQVgZ0doyYuLCU3WchVCywn2CdtOLFlCeQyKLULUTTKSpz k4PDX7EEAu+d+X73KQxhGQBzWFj+XcHgCtQRPMdam5+TVlDMefy0mLAIV2bv2HMqNrU7wiH4 lvw4XYF8v6ILiyOB9kt5siZMaXMC2dODjLTCjBeOULHcbYZZ3V73Hzeux01KxeLbY3GDpN0+ 0oVM7Hh1f5iTW2HA+SEesN+JBgDEZt5W2BnE7EqzaCssgA23UzwppVTK5IIltW3ZmCu2Vlih +JcpLJi6piquTw3prhB/klixfPu/4ez5eZ8PawlM2JgnLnyTuzI3xFbYcViDsHnvPTASFJZO MSOb92GBuD3MxWO3wsJ3IPzjPAmXewKszuZ9Za7iQeJ6wl1TPXP18Gifugvvs6CHKgrEvwxh OQnAWlh4u0Mnm/qkj7UfUvFUWHDzPphJXXNHUqM8TGQvj5bO+OmiWtyY06PtseB3ly7hN1o8 3pOCXmHpGPOdBfvwoZhwPOsMhcAWgfdrj++48V1V+xKJ8rEjd53BdiPwxa64ysF3SVHwfpGb xOb6VdoFyUvZ/CUoPWOvc48lnQA3axsEU/fcYBckfe1ThLfAqbB+/TGCz3MqDMODVSi0fRbX lvjaU/zMBS8td++fI3GVHteov+CKf3RhiTrGOXWfwgFg6GU5KnTG55yqCReR7jENwo37SZcX wjIE5oRgFcEDWhie6u2Vn6oxi33HTbhyPr30iiuuEFgw/pGF5dv6Me6x6PaWm13hG4Nws4nn hi+HfSEu37z6xjQON6v6RLt5cSlfWMbAHMN3f5lCfQDybhd71hc8FcbvpyW/4yZcYZGqj5hS Kv6RhYUjiMsYYoFNnWZL/XCmWK20BWzBL/0+Gf/XLSDC8usMd4dPZfEJnwnqbvo/N6E2Hwf9 OTMKIGABERZxCLGAWEAsIBZgtYAIC6s5ZTCxgFhALCAW+A/OxIDwlYLz1QAAAABJRU5ErkJg gg==</item> <item item-id="309">iVBORw0KGgoAAAANSUhEUgAAAJAAAABCCAYAAAC4sF+cAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZ9SURBVHhe7V3tseMqDE0Dr4+tIV3c JtzHdpBq8ut2kmK8BkwMQiAJ4ZcPtDN3ZmcMBsThSBAdc1ntn1lAYYGLou7nV70v6+WyrPfP H0nHCB7r7XpZr7dHR92jyqQACsa7LHNCJ0XM43ZVLaIJAeTAc12VC0+1at+v8n1dOpl4OgDd l8vaTzzO0BtzPf8a7u9xW6+XBKjeXaZ1j/+3+uP6e9RrAF/bnqt/va1ShzYXgNwkdqMngCeN Ger0v7vIFEAI7XhwNCbNPc9ilGrMNqY9Nx5pTDQRgJyRFQEzOnkOVCUr+IlYlpyBIICoAB4y SsPvDWnPv1/uyuYBkJuQbvapzB42ydEVNAHA2AE5gHFcyqj29iE6MErMNA2ApIahA11sJ5cE 6C0AUeyzNe7d4wagu98lxTgIMui49p7jFS60SQCkdF8FmvBjgCyGqAKIwT4RQCDmWgHwRrZ3 DFFmq0kAtPl2wh3kux2wW0o53QMDOYCDu5gagJixTWSgfFcUwOe7M7i9dI3cF/4xxxwAEtJy 1X15BsCNG3ZkjG06N7ZByx0AGt5eMmiJuzcA0cFOKMFkjiyWQMDmmY4VpSZsE1/aip0q/eO3 lzgxQSA9DYAW5dEze8XHeWhMaO2spTj32Y71/E8uPQeXez/Kd9IrxhgI2mibTC2AaLN/TwkD kAFIhWYDkAHIAKSyAKz8+7P++fkd+spvftnvz3/rn7+8EVoQzbPTVKXMhZkLUwHeAGQAMgCp LGAAUpnPGMgAZABSWcAApDKfMZAByACksoABSGU+YyADkAFIZQEDkMp8L2egUnuVpyXk6Qy4 skFlgeEAQnJzsjao51thKp+IpRsDujQkr4itI2sY+KUA8nkz2cBg/nCpryrSM4eiJ0xefzrH AX48D4x67gbD023BYee6MWjHMrearyNrG7gTQDsT3EPOb0hi4ufGhi4huiJs5SHpmj2JT2yc dQLomUS26cmWmIucNEo9j0VZuq0SPUCzHhZenp6dLFaK4djGCooQVtLk9s7kx9RIj4d0hFJO lp4Cso/DFKJv8oMFEhVurrDAEM+i3QDaZDX+JbiLetzaz0PVXTIsmmBMuUEw0ED7qQCUIQ/m 4O6KhJhimaMUl6ug6gLUmCfGQp0AOrBKxTi150zdFsk+R4E0xinYiNSR8VbfSQACE1yAoKTY sACDQC6Tp6AAoibJkRmuevCAbnHuiwDE020VPF75bk8ZO6YJ89Gd8rT0p8VA4MsVKQMhHybI d1sVBuG6sN1NSMX9rDX1CgBxdVtlHIBr6qt2DHEqqSNjGSoUOomBCp4FHxbAGShsXznxzncx kFjFEc1bi2UIAKGxZiV2o7D0PwCoHuSVDMLYxvsRfWMMlEwVM4iu67gqLuwZHgh1ZA0UnQwg 5Bxn70x5BhR72TpI3MsM3EUUtnmFC2O4Juzoon2cAQ4SC7m2QEc2HkAUse1bUnAWkdfqZ5F3 PAdiWOQri3QyEGGLfQtPHTDVWagJ+a7Pq7FnT81A7Ja+ouApAKoFhSWg6GB4FGuxZ8sAxDaV YhcmauOzChuARPN1CgOJevBuhQ1AohkxACE7oP5f40W2/4rCBiADkArIBiADkAFIZQEDkMp8 xkAGIAOQygKwsn3eRWRO+7yLMZAIMKW5ulJaVW2+d2U7BxLNj8VAxkAiwBgDUeYaxkDUfWEg nUKr2wI56D51N0vhOEcnZgyEMJD+ph76vrA8GWyAbqt5vxmu0khzw3t1YgagMwBE3ReGZBxm ecrMjMS0683bFbH+pG10tBfbNgAVLo2+bIXygujz5iQBBhJnXAZJ0DX9Un3ivvAk+iQvXdze MUK7bKWYbTcZitsKcfRUbn5O4iBkwtv3f2X8U1yxmUnAqwwUlDURYPz2nvwjstUcn/ndbCOh ZZqNYPxRqZFM8hjdVqp82QPoJFCPurkngIj7xqqsSqWdJhWnAZBfvQ3DsEWL+86Ip187sjPH 6LZgtme+C1vu+vakC20eAHmNlNKNNe4Lg7cJhkVKxSSN9F8qaMfoI9XgEfeN4Zwpt9FEAHLz qbj2m9zVVHRZ3bot4n1Ff+CxgVwnlkmxaT/uS8wFII8hIN9mGoqnNAUHiULdViltInRg4KNU VVEn974xzi3RwF7TASh8qkX63SMmyj62mPy++DjUCQHkhm4gSk59tuOC/thwUgBFELnPxfQb 72MJx3c8ulvd+CcG0GdP/7v0/h/QRIdS2TYdLgAAAABJRU5ErkJggg==</item> <item item-id="310" content-encoding="gzip">H4sIAAAAAAAA/+zdCZgU1aHo8QKCS/I0iSQ+jShBRQniKIsbOigKosIQVgUFRBREVgEVtwjq Nd4YvTFR4xtz8yJf3pf3kpjk6jWLuYq47wFBYIBhm31hEZzuGb1J5p3q01NTU11dXd1d1VV1 +t/fL5Oamu46Xd0zf09XL3TTjtS0Hkdc/yVN0w7N1L/2FP/7SnctufQ/ut96Vs0A/SeXffXb 2odizQfdftFN/6m+Xv///uJ/+poPxP+6acfpq7RnXzlCs57Kv6E92gsAVCNOvz9We/Yk3eqT kgv5WO0o3+2fmJ88Nu68X6vzv7jzrXqikzzvlMwcR8/3ujlvIb9rHuZfZn//UvK8bnncp/n+ suV9j/8ysfCzE5J9W3e8tnXQEdtGH7Vr8te2XvnlihFfcrBjuOasstRPw53sKM0gn6Ezb9z5 uvl5u+W58Xwvnh9/75Q8fp0y/kbl+csc5Mb93PE875T8f53Wn6e9PFCvnLlvtROP2T//2B1T jmj67uEODl6hAUBoicStOVN/0GTum4xbReNeAIgumTiHvq3bsWv9jl0f79y9ocPHdtbrZ9sj rdux2+JvO+3Jn37o6INKq/crdwGA8G6H97br3t++653tO97euvOtrTvc9O39rdudvVdh7+2K bQ7eMnlzi9Xrm3Xm5a62rgVQZF7bvM2Q9mybtq7p4KZvHROtXet27pSS3xoSKz/akZmbGssI v1tp9c52ix0Ais1b23ca3ty+QzJ/+8Y23QtvvdPe3u6mb5ura4UtNUmbpOpOm00+qaqx2Giy oara4uOqGt2eap3+bfX6PTXCOml3dVLXNR/tAVCEaoQPdld32lWj6/j2vQ7/6bpvlY2Nws7G JkEub29okizLwrb6LirS21zfYGtTre6T2nrDxhQf1wAoRhtqGsTX9YmvckFYZ/K3at2Lb7/n sm9VTc2G3c3S3g76t8Z7H3Y1Ne/oYKysbGwW5MJ20/qtjc2SsUZ2b0t9k1je3KCvl8UzzrCp vlGQCxvrmgSxLBcM8pzmb83rzT+1/Mh2jWVlukEBBGh9re7jep1c/uPb77vsW/Veq6rmfXv2 7pXERSzLu/buEws7TfUTy8ZXkb7Kpr2CWJa5E1+3JojlbYncGd2TXzeLx8hCQ3JZfv2kofmT xBq5YPlWLli+df6RbFq6SwEIp40NzRvqO8nK/cl132r37kvHHD1z6+SCaZrXpW9iQTCmeaJ1 InHbTd0TrduWWJBfzTO9zuI1NCeLl1gwM1amLhjLDj9y2DKAkBAP4mTcLGTl/vjOBy771rB/ f8PefR3213VIbZ24uFzWup7EfM/4aj4Z8zrZOvO8zpjaZds3h14Zp82Z+kbcgPCTidPV68x9 +9VfX3bbtwMHOonWCQcO1B84ULs/yeiGeU3Nvv2SXjbT19379htzPPlIVnyVMzpz8SpN8zfx VdjatE9O7eRY8roZC5Zv5YLlp7Y/Mp/H4UcAQmWzySYTWbzfrnnNk76Zs2aQWUtO3vbtN/q2 27ReZE0yT+dk37TEg1ajbMYZROJk3yyVM7PUz7Kc+qPUvlkuCCCEnPv2h9fe8rVvBkvfjPmb 0Tdj/maexcnHqttMEnHbt7XjyQg3t4BDo8gXEGnOfXv+Dbevf3PfN2OZvgHwlXPf3L9/IYfj b/n0TTI/Ps25bwBUlV3fTsq9b24en0pZ9S3/+RsAVTn3zfr+LPoGIDqc+2Z9f1b6vjV/esCs yZw7k/oUsnXVKcytMzMXT6ps3m+2rcNWAMWn61QnaXNXnzTtFazvz3KYv+1trm9uqm1skGoa GmoaOzQ0VHfYY7LbZFfCDpNKqV63vU63rb7T1rp6YUtdgy357vvEG/ABFJGNNfVmG8yq64R1 1XXra5Ks789K37ddNdXbdu3cWrld2rJt6+atFcInQkXFxootG/Wv+sL6igqLdYYtFR919aHJ +5u3fLBp8/ubKnSbde9u0r2zaYvF259seQtAsXpz4+Y3Ptli9uamitc/2SK8sanizS1bJev7 s9L3bcOmje99+MGb77wtvfbmm6++8fqa11/TvbbW7GXD2leFv65da3gp4S+vrv2ToxfXGF4V /nPNmhfWvGrrP14BUHT+0NXvX16TJL599bXnX39T+uPb7738t/Vu+vbU//nVYz/73488/Yz0 r089/f0nfvrQE08BQEiIKIk0PfK/npF+9PNfiHC56RsARBR9A6Aqh76VDB4CANFF3wCoir4B UJVN3wYfTt8AKEDv23Bt9Yn0DYBq6BsAVdE3AKqibwBURd8AqIq+qUprbzcL/PoAhUffAKgq 5761axoyyvPeMc++Uidj5gXnqZrDSuZ4UBjztzAzElTStWa2Cw6BspQw3XYAxdC3MEstm3Og 0pXKtoT0Dcqjb2FmfghpWWm7UJIpcbZ9c7gUEGn0LbQsR8ZSj5LZHjpz6Jvto1TbLQNqoG9h llVznI/CucwgoBKbvvH5SNHkPA2zrKdvKAZ8/hsAVdE3AKqibwBURd9U5f79pxyLg6roG0pI HBSVc9+6zg5gL897xzz7Sp2MWV7P5jBVy7iSvkFJzN/CTLN7u0G6BYdGaXav7NVSXuIb+P4C 3qJvYZZatnTzN8uC7XZKHINJ36Ae+hZm5kemlpW2CyWZEudyQgiogb6FluWQWurhNdtjbg59 c/MoNfC9BjxE38Isq+A4P8x0mUFAJfRNGQ7Pn5bw/lMUJfoGQFWpfasYxOcjAVCB7Ntq+qac jC/6BZRH3wCoKue+Bf9v70VBnvdOAd6fxZOqUBjztzArzPuzeP8CVEXfwqww789yuCAQafQt zAr5/iwSB/XQt9Di/VlAnuhbmPH+LCAf9E0ZvD8LsKBvAFRF3wCoir4BUBV9A6Cq1L7x+UgA 1CD6tmO49uyJ9A1Rle6p4XSvh0n3fl6oh74h6nLoG1krEvQNUZdb3wK/2igA+oaoy3n+xkRO efQNUefQt3St461qRYK+Ieqc52/pPqCAyVsxoG+IOhqFdOgbIir1MBofZAcL+gZAVfQNgKro GwBV0TcAqrLrG58fAkAFsm9dPz+EvgFQgfJ9S/cvTDn8c1TpLujtWM4XzGE455fx5/m6Vjdj pb7jqZD75e1d5rzs4Vi2bxPz72ZMfS1Nwcbyar+yonbfLLdkxvWpK93f/tmOZbtZ9/d1xmto /I6Zz5bDfrkfy+H6+zGW8576MVY+d5nDWC4D7tVd5manvLrLHDae235lq0j65nLZ9gbP9hfY /Vjp/lTzGc6yMnVW4N9YLs/g4VgOe+rrWDnsWsZfuXTLftxlHnY727Hy3K9s0bfUX6dA+pY6 bm7DWVYWvm+F2a/UjRe+b1ntmvuxiuQuo2/5y6FvLu+y/MdyGDGf4Swrw/DH4sd+ZXs7e7Jf +dxl0epbAe4y+uYJ48/c9g51+P1Jd0Gvxkr9qYe7Zl5pOVsO+5XDWLY3qbdjpW7c27vMYTu5 3WUZfz3SndPzu8w8nN93mcPGc9uvrBRD32xvQNv15pXOv+F5jmWs8WM446e2Z8thoJzH8nW/ PNm1HMbK+S7L4dfDj7ss48YL85uf835lRfm+ASha9A2AqugbAFXRNwCqom8AVFUkfWv38zka xor6cIwVrbHcE32rHK49S9+888iTP2WsaA3HWNEayz36xlghHEvhXWOsQqJvjBXCsRTeNcYq JPrGWCEcS+FdY6xCom+eU/WgB8ffGCskY7lH37hUCC8ViSvJpfK/lN/oG5cK4aUicSW5VP6X 8ht941IhvFQkriSXyv9SfqNvXCqEl4rEleRSZhx/C1D4fz24VOSuJJfK/1J+K56+ceLEyddT 4H/mgfTN8qmnJZk+QTTbD54N+l7lxKnoTpr+h2g9BV6zQPpmDl3GfFnOnPFsbhT4rn/kyZ8y VrSGY6xsT6l9K7bjb6khsvTNoWnuz5ZV3wK/tQE1iL4Ffh3c0D8fqdT3+Zvtw88S+gZEUFTi VlKovnXcLMzfgMijb2luli5TOPM/E1bi+HjW+WwZFbhvqr7pj/efMpZk27fQHn/zu2/ZPn+a ekHns2XE/A3Ik2iaIfAr414h529BoW+Ae+aURbFpZvQNKFoqpcwWffOcAgdYAh9L4V0Laiy/ U1a0x98Cx/wNxcO2Y4rNytyjb0AU0TE36BsQZnQsH/TNc8VwMEex4QIfK13E8uxY4PsVOPoG FIBDwZiM+Ye+AflzzhcFC0qybyfSNyAt8hVR9M1zqh70UPL4W8ZwRfp1YqqO5R59g3pcVot5 l/LoGyLBfbKoFgz0DQWWValIFvJB3zyn6kEPY6zcApVtqZS/GRmrAOibwvIMEVMpRB1985xP VSFEQLaKpG9UBShCRdI3jr9FayyFd42xCom+AVAVfQOgKiX71p56Cv5gv+8Cv9mBsFGybxZF cvzN72xy/I2xQjKWe6JvlaXaaj4fCeluPaaXiCz6hgLdC7QRBUffEH5UEbmhb55T9aBH5I6/ hTOJqt5lHH8LCvM3uBTCHiIf9A3IWTiniDDQN6CQ6GEh0TfPqXrQI3LH39QYK58ehnm/CoO+ ASphfmhG34BipvYhRPoGICsRShx985yqBz04/sZYkm3fOP4WFOZvgIciPn87gr4BSIe+hQp9 AzxE30KF42+RG0vhXVNgrIgff6NvANJi/hYq9A3wVlQSR98AZIu+hQfH3yI3lsK7psZYqX3j +FtQmL8B3mL+Fh70DfAWfQsP+gZ4i76FB8ffIjeWwrumxlgcfwsP5m+At5i/hQd9A7xF3yw0 U160rqkR30qWn6auN3/beVO7OInJs9E380SaZZZZzmFZ9C3deUIlkL6lfpu60rlyWQ3N8bfI jaXwrqkxVoSOv+0Yrq0+0fu+WUKUGiXnNZZl501luC94fAp4KkKPT33qm0XGmjlEjL4BoULf LJwfkLqpn/OmnO4L+gZ4ir4Z0j0vYPy0xLF+xmUt32ZxX3D8LWpjKbxraozF8TcL20ej5nal hsvl86eZ7wvmb4DXIjGFK1jfgrwj6BvgNfoWEvQN8Bx9CwmOv0VuLIV3TZmxLH0r8uNvAWL+ BniO+VtI0DfAc/QtJOgb4Dn6FhIcf4vcWArvmjJjcfwtJJi/AZ6Lyvytcjif/wYgO/QtJOgb 4Dn6FhIcf4vcWArvmjJjReX4G30DkC3mbyFB3wDP0beQoG+AH8KfOPrmOWUOsAQ4lsK7ptJY 5r5x/C0ozN8APzB/CwP6BviBvoUBfQP8QN/CgONvkRtL4V1TaSyOv4UB8zfAD8zfwoC+AX6g b8Hc7GlOgV8xQCX0LQw4/ha5sRTeNZXG4vhbGDB/A/zA/C0M6BvgB/oWBvQN8AN9CwOOv0Vu LIV3TaWxOP4WBszfAJ+EfApH3wDkTOG+ae3tFoHvjv1dQN8AfyjZtzDXzOYu4Phb1MZSeNcU G8vom2LH3yKUOOZvgE+UnL8ZIlE5+gb4RO2+SSGvHH0DfKJ830L+5EIJx98iOJbCu6bYWKoe fysJ/bSt8y5g/gb4Q9X5WyTKlrwL6BvgDyX7FomXvXXeBfQN8IeSfTNEInQcf4vcWArvmmJj qX38zfyVvgHFRuH5m7lvJSE+IkffAJ/Qt8DRN8AnCvetpOvDUvomKXaAJZCxFN419caSiVPv +FtUMH8D/BPmKZyH789i/gYUIVX7ZnlkSt+AIkTfAr79Of4WtbEU3jX1xlL1+Buf3wtA1flb VNA3wD/0LeDbn74BvqFvFpbHs6nfujlb583r4vTIkz81+mY+UMByaJeNbxkr5GOJvpnHCpVg X9+bmi/zj8zr053NDeZvgH9Unb9l9f4s2y6la1rqcrofubr96RvgG7X7VpLT60Nsn3Wlb0Dk FEPfsm2O7axPjb6p9wKnwo+l8K6pN5aqr3/LR2qvUiNpWZ/zB80xfwP8o/D8LecX95ovlW4L Lp8/zXz70zfAT6FNnIfzN96/ABQn+hbkjc/xt6iNpfCuKTmWfAlcwfbLPfoGIE+ib+3tYZzC 8f56AHlSsm9RQd8AXynZN+ZvtpQ8wFLgsRTeNSXHUrJvJSE+5tblxmf+BvhJyb5FIm4l9A3w mZJ9K0nzNtKwoW+Ar5TsW55vmyrcjc/xt6iNpfCuKTmW8n0rCfHDVeZvgK/oW5A3Pn0D/KTq +7Py/PzeAt349A3wk6p9iwSOv0VuLIV3Tcmx9GlOKBNH3wDkib4FeuPTN8BH9C3QG5++AT6i b4He+Bx/i9hYCu+akmPRtwAxfwN8FaG+VdA3ANmgb4He+PQN8BF9K+ytbX8qzOhKHmAp8FgK 75qSY9G3ADF/A/wj33lK34K7/ekb4Bf6FvTtT98Av4Tzk0Mk+uY5JQ+wFHgshXdNvbFk36Ly 75/SNwDuMX8L+vanb4Bf6FvQtz99A/xC34K+/Tn+FrGxFN419cbi+FuwmL8B/mH+FvTtT98A v0Srb1sHH07fALgU9r6Vas/SN++od4Cl8GMpvGuKjWXELbzH3+gbgJyEefJWQt8A5IG+BY6+ AT6hb4Hj+FvkxlJ41xQbi+NvgWP+BviE+Vvg6BvgE/oWOPoG+IS+BY7jb5EbS+FdU2wsjr8F jvkb4BPmb4Gjb4BP6Fvg6Bvgh5DHrYS++UCxAyyBjKXwrqk0lrlvUTn+xucjAXAjivM3+gbA DfoWBvQN8AN9s6V1TY34VrL8NHW9+VvTjZz59MiTPzX6Zj5QwHJol41vGSu0Y5lf/MbxN7PU TFlWOlcuq7GYvwF+YP7mIDVTtn0rSWkafQPCgL45SC0YfQMihL45Sz3mlvqjkqj1TaUXOAU1 lsK7ptJYvP4tIxkrh8NxRtws32ZzLzB/A7zH/M2W8WjU3K7UcLl8/tTFvUDfAI+FP24lIZi/ FeSOoG+Ax+hbSHD8LXJjKbxryoxl6RvH34LC/A3wHPO3kKBvgOci2jc+HwlARlHp2w765ill DrAEOJbCu6bMWFE5/kbfAGSL+VtI0DfAc/QtJOgb4Dn6FhIcf4vcWArvmjJjcfwtJJi/Ad6K xOSthL4ByB59Cw/6BniLvoVHom1awShzgCXAsRTeNTXGSu0bx9+CUuD5WyFbagj8RkZRicqv HH1TA7VEIUXll4S+we4Wo5BwEpW7mL55To0DLHmOlX8bQ7trjFUS6eNvfD4SAsWMMfyicoPb fD4SfUMEkcQC39qBXwc36BuKFjHM56YL/Dq4oWTf2tOcCjO6GgdYgh0rhLvm1eQwbPuVA9u9 C+3xN/X6lnJ3MH9DoSn8YDlC15a+AWEQoRKG4Tq4RN+AaAl8WkjfQoXjb5EbS+FdK/BYfsSQ 42+hwvwNcCNCj5Fdom8AVEXfAKiKvnlO4YM5BRtL4V1jrEKibwBUldq3CvoGQAnJvp1I3wCo hr55TtWDHhx/Y6yQjOUefQOgKvoGQFX0DYCq6JvnVD3owfE3xgrJWO7RNwCqom8AVEXfAKiK vnlO1YMeHH9jrJCM5R59A6Aq+gZAVfQNgKrs+nY4fcuHqgc9OP7GWCEZyz3Rtx2l2uqT6BsA 1dA3AKqibwBURd88p+pBD46/MVZIxnLP776Z/9HE1JXpvnVzNkO7i5P5xmeZZZb9Ww6VAszf LEVyzle2ZwOAdArz+NQ2XCXpm+b+bACQTsGOv6U+/CyhbwD8RN8AqKpgx99SA2VUy/JttmcD AFuF6VtWz59mezYAsFUMr38DUJzoGwBV2fVNtc9HAlCc9M9HGq6tVvrz3wAUJ/oGQFX0DYCq 6BsAVdE3AKqibwBURd8QabyfBQ7oGyKNvsEBfUOk0Tc4oG+Q0oXCdn26j5RPPUPGj0RwOGe6 zZak+VQZhw/RIoPFib5Bct+3dB8j72ZrlvO43HjqWOmWM14WRYW+QXLZt3RFyq1vzisdtpmx q/QNJfZ94/NDilGB++ZmuNRtpuaLvsGB3rdS7Vk+H6no5dm3Esc05TZcDof+6BvM6Bskh4P8 bh4npi47P7+Q8wE6y8UdjsXZLqOo0DdIqXUyr099dtJ99zIO53we26Ftz+NmPYoKfYPkyQO6 dA8P3Yzo6+6gONE3SA5zpBw24snrQ7zaHRQt+gYp4xEzlxvJdmuejOtwTVDM6Bu8FZKwhORq IFj0DYCq6BsAVdE3AKqibwBURd8AqMqhbxWNewEguugbAFXRNwCqom8AVEXfAKiKvgFQVYH7 Vv7/nmtvbw98rxXALQlkRN8iilsSyIi+RRS3JJARfYsobkkgo0j0TUs5BX67BS63WxIoKtn2 rdz1yf7iWf5VypqtXbtWfF21Smd8WySVO2vYYiH/WxIoQln1bW42J9vElaf/q1yV0iuxpj1x WqWfNJNVcr3DfpUP0Vzy8MZM16Kcr5jY2ikTf0LfgNy475tI1rubtriULnHl2c/f0vXNef5W PiTZRnF64a13yjVtyJAh7TUf7v+w3MzDvjm0KN0Vcz45b9D5lhQ3W+C/WkDgsu2bJkpRriWX E9/Ydk/GTXy1bKTc7q9SztzSfTWOuRmPT908OC1w31zGrcJ134wNimXbK2l7S0oiblKF3aFL DmOieKT2beugI5z7Nrc92bQv9X5PyL9vGa0yd00P3aqMF0nNiN7i8nJL4jzpm/u42V6xF198 cYjpJON23W/+LOOWbd9MZZOVS5tT+gblJft2otu+uX98mm3fbI+/ZVyTjjUj5Zpt4vLvm9Gi 3K6YuIlk04yT+NYctxz6Zl6WeVvV9UTfUCSy6lu2zy94NX/LQZeMlGvGgiVx7vsmZlnmvRPf VmQfN8sVExu59NJL5Q1iSVyXNmf5+NTMSBzzNxShYpm/mSonE+e+b0bZLPMucdrdUJ9V3CxX THasomvcUhOXX980mbi1a9eaJ2/0DcXAfd8qTImz/LFb/vDNT6FatlAe7PytvfOBqvu+Oe9s PlesMH1LpMxmFkffoLys+lZhepTq8CdvPlkuXp7986fpvjqzf5rSHLrEQ9SMfZOTN6NCxlMA xs7KB6rupfbNcjIG8rBviVdEW6dw9A3Ky7ZvkvyTTz3m1p5pSlMeyPzNUrb2dlE2l32zlNzS t4z763zFCtY32xN9g/Ly6ZvtKee++X78LSVuWfVtSMop/74Zzy+kxk38yKu+8fo3FK1imb+Z ypbV60N87Zu8uCVx4lvLfz7oG5CbIpm/pZYt276ZK+d+fzNesfaU1/eaZ2659c25afQNxcOT +Vt717mcwwXLCzh/S51xpZ7cP79g6VtF4oFkns8vuDzl0DfjspagmTdL36A8r+Zvxpoc+rbK n+dPvfr8EP9eH+Jf35i/ARVe903MbZyHK4/gp/o4vL4328lbheuJZcZJZhRvSaDAcu6b7Snj cOWFOv7mOdv3Z+XA/cTSeZLpcEsCkFL7tm3okWH7fHKV0DegYOhbRHFLAhnRt4jilgQyom8R xS0JZETfIopbEsjIoW/ZvkyLEydOnEJ1KvD8DQAKhr4BUBV9A6Aq+gZAVVn1zY83aIfnTd9h uA4APMT8DYCqsp2/2a4x1uc8/zFfxGFr6Zaz2r55pXn76a5DumtlWRP4XQnAwq5vh+fWt5zj Y3tZ59pkO0S6a+5+xHTnoWxAaIm+bbtQ+3Vfj/uWldRJoMux3I9I34Ai5G3fcjtEn65vlq2F oW+WK5bVdQBQYNn2LWNzjHO6vw4Z52+2Z8hqlHTX3LJ956w5X20AYePh/K0ip+cXnDuWbXPc jGJembp9y+yxomv3bC+V7S4DKIw8++a83o2cZ305jxKVLQPIk4ePT3PjMH/zUOo193DLgd+J AGxl1bd0+BsHEEKe9A0AQoi+AVAVfQOgKvoGQFX0DYCq6BsAVVn79i1t94UJY7R1l0nd1o9M GNU9rZHJ84gzy/MbC/Bbx90E/3SDz/y670TKKku01wZrP/mmtW8flupnMMpWcZUmVZZ1k3aP 16rLtKrxSXsmdS5L4qdA1O2+HH4ao1WPsf9R5WVa5SUJpUnbhnd8e0mSXCO+bh2mqzg/8fUc fUF8FSlrOl/v2w9N87fmMYl7drJWN1XXPFXbO13bP0s7dL12cE4PqWVepy+E+d0s/jFH+/ym brpZGvzzd/gs8LtYcdMTN/J0rW2aFrtW+2yqFr9Ga52qEwstU7SWCR1f5UKHTydoB8bqX+VP PxurOzDayrZv+6dqh65Lfj04q4cQvyGZss/nHyb9fWHSfy/okeqf87sLX8j6wTfivyOAV/57 bs+Wn83N9p9R/vu+WnEpcdk8N3KofG7rDT1l9Fpn9Dz0VPYb2Vv76U/mHhzXU7au6XJr36pM fYvN6iay9vmc7oIsm6jZP5YcrluW9M+lhxnal/VIWpwkK5enB4/7suDJpgA4iP187sFt69+4 uv+fLj7qlZFf/69Rx7w06hsvjTzm5VG9Xrm815pRX1s76qjXRn35jZFHrB1x2NqLe7xxcbc1 F2ovjeuzr2KduGz+GxFhFIUUM7qW8rnrN+/vP/KPR53xq6+f/dwxg377jcG/PubsX/ca/Fyv wb/72qDfH3X2818ueeGIM188bMDzPfo/3+30F7VTf9/noufWfdIkEidndKnzN6NvIm6yb3Ke YCnbP29LkSZx+UqcRN8826BaAv+LgErEJGrXzP67vttr15QTqq7tu2d6v90zTtsz/dSqmadU zexbNfOk2utPqJ15bN2MXrXXHV039ci6yV+qGtdt4yjtL+P6iL9TTzYi+yY20v/Kj3qd/+EJ wz/sO3Jdv9HrThu97tTL150yen3fyz8+adSGE0ZtOvbSTb0u2Xx06aYjL9j8pXM2dTv7Y23A 630u+q3YiJu+ycmbiJt4vPnFEr1vMmI2fUsftzxvcKNvgd/1gPLE39q+8UcfuK73pzf2/3Te WQcXDDm4cOihhYMOLRp0aEnJoVsHfHZrv8+W9GlZdHzL/F4tc4/6bNbhn17bvapMe2mYZvQt z43Iw55i4ejzKnpftr3/2B1nTdw5ZMquodfsHjRl96Crd5dcvWfAlKp+k2r6jK85fmxtrytq j7qs9vDhNd3P362d9bF2ym/EZY3DcbJv8vnTDX1Mj0+v1xMn+rZq1Sot0ynZNxm0hd10phtN PsA0WNY7n9Pom/PFM/7I9gzprkDgv2YIj8CPiRWSXoarv9Eyu1/LgkEtSy+I3VYav600dvuF sTsuiK04L37n4NY7B7au6Nd6R5/WZce3Lf5667yvtMzqWTep+5rSbnLqlf9G5NMNYuEbF+3o N2b3oMl7LriuunRmTen1NRfOrLlgZu15M2sHz6gbeF19v2sa+kxuPH5849evavzKyIaepTXd h2zudtofZN+M429vD0r2bfMp+vML9WP050xl38QUTvRNnF9LdMb2qwygMVUznj/9R+IpVMsB QBkQY71cllLP6fLilk3Jb1O3abmsZaXlgoAU+BO4haSXYdpxLfNKWpYOi624tN3u1HbvgLa7 T21bcWLb8m+2LTy65cYj66/u+erF3c1Tr4wb6bLBrhuRz6WKheMu2VkyYc+w6dWXzq558bUW seayOXUj5tSV3lR3/uz6wbMaBkxvPHVak1i/+i/xo69oPPKS2p7nbul++n+INfLJ04YRet/e HdilbyJ6zRP0vsnE6flKXI10X/UzJBKnPweReDIi+bsxS0sWo+O54M4QdV12+JHny27ODBQn PU0zTmpZfG7sjktj91xpm6PW753Zdne/thUntS3/n62Lvi4eYNZP+8raEYcZf+mpG2m976r4 fVfEV46KrxoRX3lh68pzjI3oP+26kc+m6i/5EAsnjdp17tQqEbcrb641Rh81r27EzfUX3lR/ zuyGM2c2GevFFO6okXVfuXDLYWc8L/smOib6Jh6Qmh+fir7ViEndFP01bzJxxvwt3QPVVYmT WBBlE/M9SYTRKIZ8qsKyxvLTdD/yfNnNmaPkWg3wip4X8bhyeWnsniviq8bZ9+3eM9vuOq11 xbdblx/fuuTYllt6Ncz42qsj9b+sdBuJ3z8uvmpMfOXo+MpL4ysval15rrERfYNdN3JwinYw 0Tfx4LR0ZvUVN9eOW1g3flGdcQUunVd/0Zz6c2c3GGvEQ9Rjxzb0Gl3ztYsrvnym3jdRNhm3 yhLtzwM6+1ZZqvetdkryZb2yb8Y8be3atSJ1lq8dedOMshm7KYtx6DpNMq+x/NT41pwgh4vk vOzmzIBBTCeKh/gTaJl7RuzOkfGV4+IPTIw/OCn+wITW+8viK8Xs67L4faXxe89pvfvM1hWn td7Wt3XpCa2Lj2uZf1z99ceuHf3V9sTUK3Ujet/Sb0TvW9eNHEy8dlcsnPHdPSNvrBm3oG7i kvpJS+onLO5MXOmcerlwsOUffSc3nDC+4biy+uOuqjn20i1fHfSC7NueS5LvzzL69u639fc1 6H2b0Pm2BfP8LTVu4qsxf5OvBJa/FfundhZDLBvfipP5W/lT+bW968m80sNlN2cGipOepgWD Y98bE39wcuu/XN364BS9cqvK4t+7In7vpfG7L4rfOTR+x5mty09rXdo3vqR3fFHvlvm9627o /eoVx5j/tM0bSfQt7Ub0n3bdSPME/fiYWBg8uWrMLbWTb62/emn9lFsbROXKFnYmTp5Om1Lf d2J973F1vcvqeo+t7n355mOG6MffqhLvM604Rz/mJvomXx9i7ltTxxTO/fxt74weSdP1yxrF aE68ycvCHBzjPOb5m+VsOa+3nCfjBW2vbWiJuwnwip6mxefF75/Q+tA1rd+fJr7G758Yv68s fs/o+F0jYisujN02NL5sYHzJafFFJ8cXnBSf3+ez+X3rZvddc+Wx4rK2G9ELln4j+k+7bkTE rTbRt/OmVU9YVH/NsoZpyxuuWVo/cXFd2fy60aZjcQOvqT1tUu3J42tPKqvtU1bbd1xV3ys3 H3vOH8SPxONQ+UbU9d/Rnjst2beXv6VtOFd/v2rVeP2dpw3TtMbpWczfzHFrmNZZjHS3pHFK t8ayMuP6HLZpWZnu2gLFQE/TsoviD09rfWRG6w9miDrF758Uv29c7O7RsTtHxG4bFls2NLZk YGzh6fH5p8Rv+XZs3smHbulXN7vfmjHHd+mbaSOJvqXdiPipZSPyYw3EwkUzqqfd1jBjRcOM OxqmLRMPUevGLaht73o6fULNKd+t+fbY6pPLqvt9d0+/qzYdf57eN/n+elEz0Tcxf/ve0V36 VnmVntDaKXqmsp2/iSSKS5n7JohNSZZvc2Zs3OX6nDcIFA+9Nndd3vrorLbHZrf+cFbrw9e1 PjA5fu+4+J2jY7eNiC0d1rJ4aGzBmbFb+sduPjU29+TYzf0OzftOzY3feWXMCeKythsR3zps RD9z143oHycyRt/I5XNqZ93dMPveBvH1utsaJi+uN7I2bHq1sXxqWdXJY6r6lVV9Z/zu74z9 5IQLfm/0TcRNPCYV87fUvlVP1q+q7Fu7u/lb44zusmyC/OwRc+KMx4Ne3REOffNwg0DxkGlq +8m8tifmt/1oTusPZrY+eE38vvHxu66K3X5ZbGmp/qqPBWfFbjkjdnP/2NzTY/MGHLplYM3s Aa+M7W3pm7GR9kwny0b0z6Tq6Nu8+xvnP9g0577GmSs6ny297Iaa0hk1507tTNzp46oGjK8a OGH3gLKNvS/4neybnLxZ+vbBedqGC/W+7ZmkX9X6azU5bZPztLV2J2P+Js4sybgZO2s+eXhH eLg1PzYIRUwoIuJPIH5fWdvTi9vKb9Xr9Ojs1u9f17pqcvyesviK0bFll8SWDGtZNLRlwdkt t4gJ2MDYLWceuqWk9saBL489Uf/zsdtI5r513YjRt7L5dYsfbr71kWaROOPMZfNqR99Uc8n1 NcOuqx56dZWx/syJVSUTdw0s23jiML1vIm7CuwP1vv3q1GTffnuc/l6GDRfrn2Opf3zl5GTf 5B9/xxTO5iQDZ9s3AFHRnnius+0Xd7WtvretfGnbj2/WH6U+lDgKd09ZbMXlseUjWkTiFp/f snBoy8LBLQsGHbzl7JrZHX2z20jGvlk2YvRt4pL6u368994n9i59pPn1D+NijX4UblG9SNzl N9WMSCTu/Gn6LO65v342aErV2ZN2DRxn0zdj/mbbN/kUg/nVvOnehUrfgEjT0/T9qZ//5gef /+6xtl+u1BP3xPzWf7up9ZGZ+nMND0yOr5oQu3dM7N6rYneOjN1+ccuyYYcWDq2+YcB/XXFc l77lsRGjb1Nva/jBz/c/tvrAyqf2LU3M4m76XuPMOxumLa+fvKR+wqK6MfNqr5pXO/LGmotn 1QybLqZzuweM3XDcuc859O21wfonk28ZrW2bpO26VqsRvZqpNc7Umm7oZmi+oYdcaJzRXf+a OINuepe+kbgCEP8Ngq/2TCoiogytj8/5/MWnv/jzMyJQbc/e3fbMsranFrX9ZF7rj+a0/tvs 1sduaH1kRvzhafEHJ8bvGxtbcdmhxedVX9//pcu/KS7ryUbEzEr2bc7Kxqd//ekzzx0Ulbv7 x3uX/bB50UNN8+5vnHNfw+x7G2+4p3HGioZptzVMXFI3dn7tZTfWnDdtT/+rNnxziP75IR+c px9qS318Kvu2flR30Tdz4vSOzU5+bZ7TTUgmTq40xc3ct8B/OYE8Bd6cAvet7d/v+PwPj3/+ wpNt//ehtn+/ve3pxa2iS4/P1bv06PWtP5wZ/9dp8Yeujj8wPnbvlWL2dWjB4Orpp7w1/ez/ 3lvryUb0vo3XN3LHY3sf/+WBJ3/16UPP7L/9sebFD4u4Nc1d2Sjidv1dDTPvaph2e8PVy+rH L667cl6tmMINnrL7lMvXnz3mT5831Yq4iYeiom8vndzZN7Eg+vb+CG392G6WvomOGWUzk+tl 4uolHqUyf1NI4M0ppIYn5v6jtrLtmeWtj86K/8uU+H1lsbuv0N8mLx5ILh+uW3qh0LJwiG7+ 2S039T8wo8/um4ce2r5BXNaTjVQl+lb3+NzKPV8s/2HzrHsapyytL5tfd8Xc2ktvqBGPRodf r7twerUw5Ooq4exJVf3LdvcZVTl00voNFQd2PjxXxE0QNTP3TXyb2rddafq272bNYLSu8+Fq ymNVACFXO61n01NzxSQq45MClpO4lLhsvht5cm7V1T3Ff1NE4nZN7CkS90Vz1hsRcftwWE85 fxM1+/MA/fjbs99M9q3yKu2jMZqMm23fjKYduqWTpXX7Z2nS3unwVyMQccYjPvNDP/nYRE4I 5SPW5L9MepUmVZhsGa3beJluw8X6ETZJVE7O2WTfapqbxeRN9E1mzRw3WbaDC7tLscU90hE/ Nf/rgcY/KQgAGe29USefxGyc0V1IPdhlOXrQGUBT7sSCyJ1I3G+P08tm9E1MDsXMzfIgVDbt iyU9/nnb4f9Yrsl/Z0Euy3+CQa6UC8mViX+pofMfZQAiKPl5+/CHvIVlPWQ6pC/m6/84gpwg xWZ10z9r99rEJ1Jel/ynr8Sy+XGi/Aeam6YkP3dCProRARSJ0z/zraNvwvqxejZbbj5MNE1k qv3uXroHvqX7QV/dY6e3P35GpycHJZlXAkBGIiaS+duHTkkSy7I5BrHS/K3skkHG6u5e8h/7 +2yq/m4smTWjbzJxgkicPgEz4iaHezSRsh8P0z1Vqnv64rTkGeAfhxsfngj8LlZe6g0u22J8 TUe0yEJW8e5ef1942IaL9acYjKaZ+yZ9NEaToTMez0rioa54zCtfN9L56riZyTc7yCdPpcA/ Hk15gX8iovKMj4yAHyy/zNbf8MRnXdYmvtaPSb5JVv8HsCbo/8yfWKgeo39epVCd+Fb/0Rj9 X14QcbPUTPStR+JtVv8fAAD//wMAUGUErhC+CAA=</item> <item item-id="311">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEoQSURBVHhe7Z0J2B1Fme9PQEjUB68a zSXDJrKICEgCioIB2ZcQZAuIEDYlYmSRxQ11ZMZxHBm448Z4ce7cgWfu470q6ugwzjiDEERQ ESdsWUlISL4v35eFIJANZ5z3VnWfOl+f/vp0V2+nq/v8vjyVc06f7urqt/71/vqtqq7TEv6w ABbAAlgAC1RkgZY+74YNQ+NSa+ZvZcLpj3mpdfJiP522ZCyduUpa5zwrrQ8MSevikc7rhMvW q8/r1Ge17SL1qt/rV5Pev0FapAbaYJO6JlLjbHDBqLRIzbLBOP+r222EXz5LbfPSsP86U/l0 771K3nu9rb195hppnaRYoJN+r7/3kvr+JMWEY56I5IzmzzgIGfDs/OHNMvH6P8jkm0T+6E/9 tM8XRd5ym8i0W1X6hsiRX/XTjNv9dMw3k5PZl9cxuzXBFjZ1zz7J7cM1GzVBm1zDeF8TpTNt J+PPg6/Gz/d69XgQkTQvdNIM2fmq//RA1Jr2cBeMxkFIA2iHOetEA2iHq16QiTf+l5dBEER7 f1lEJw2jt32lO2kwmRT+js/j7YVNsAkaQAP91oD23SaZc5vPBhwm4DD+PviqvwtvN4FK8NWw Q79OvPYPXmq9/yVpHTUWFXVBqHXsI9I6c7XqYlsmE67Y4KXWh5/rJA2lHa/ZIjte+3sPTq0b /iA7Xi9eMp/1a/A7817vq9/vfJ36XkVX5jheffuRsIGrGphw1X8JqVk20FrTdWp8uH4Npgnz fi87XPGy7HjlZtnxihdkwqVbpHXJi2qIpf164Yvets72S1V3nkkXbfTf6/1nq244082nt+t0 ruqqO/5Jac1Y7kVE4yGkxoFaH1jZnfR4z+XrOlDSMDLJg1JC8uClLyaY1IXpiyNhAzSABtCA Ixr44EbZUafLVBCixvZ1r5hO3vj++9f6abYaDzJJA8UkPT9AJz1XQKUJs5ar+QM6qXkEwTkF GkBH/EZau36vG0Kt6Q/4B2gIqUiokwyQ2iAKwqgTJX1EES+YAtGT3seLqMKkNFTk1b87aEQK TUAJTkbhfffkHOyBParWgAZLVDKg0XCJAMsYXAKQCU5YM8DRsNFJjwPNeHQsaQBp3uj0xjvH IqHORtUl582GMyDqASHTXRfusjPQ8bbr6MnMlDMz5MxFG6ryOnaHgS2wBRpolAZ2umBY5t6+ XoY3/kfuyc86H52fiUgKzfsbKu/z1FCMBo8aktnp7JUy9ytrZXjD7/OX+0vPyE5HKghp+KhJ CR5rDvxnae1/dwhC+37b/zISQu0p2AoqJhIKQqgzfmS+74BHkdabuh1IUSFdMLzjfXe4Wyd7 BENz3o91U9TdFuZumNexyMDSFnO/PirLh/8gN3xru1x66zaZ/WdbZdYfb5VTbtoix31ii5zw qS1y9A1+Ouo6Px121WYvHTpvsxzwoc2y15zn5fAPr5Innn5RdH4mOiklbz0nQHWlaQD9/lk1 ZvOXN8i6z1wqI9fNlrXzZsnw3FNk6LLjZOiDJ8jQJUd7ac1FR3lp9XmH+emcQ2XVrANk+Yl7 yWPnHC7PL3lC5ioQeQAyEHrzT6WlmfOazwUiIdU/50FIhU07nBiOhHwIeVGNiW7aY0QegNT2 ru/CUU+wP1FDqO6NkvJTh4OkAUuH2+m6Yf8OKLSH/cT/2i5f+eHL8o0fvyxf/L/b5ePq8zXf 3C5Xfm2bcvbb5PL/sU0uUYC6+C+3yQV/sVXO++JWOfNPt8qpn90ix3x8i0z/6Iuyz0Vr5NCL HvIiKmPnUvJuj+fovDfe9gl5/u+/Ir/79jdk07e+KBtu+7is/9I1sv5PrpR1n58r6z57uYx+ +hKVLpbRj18gI9efJ2uvOVOGrzxVhi49RlbNni6PnbSP/GTmoTK8/uWxSOigX0krCULeIJLu jvO64tpRkAKLgY15NYNXZgCrq+strvutTnf3lNU+MhskxzxI1wpUUkdAQVBcoUDzzXtelm/9 8+/ly999WW66c7tcryKjq2/XINouV/yVD6LLbtsmc25RIPrSVjn7C1vldBUxHf/JLXLENS/K AZeskTee9FM/amjXh35feN4aQjNXeedZ9/kr5Hff+aa8cPe3ZNPfflk2fvUmFRldL+u/eLWs UyAa/eMrPBCt+8xlMvrJOTJ64wWy9tqzZXje6SpSOl6eveAIeeK0A+S7h73RL7fujtNJQ+hN KkVGQjpU0oNIepBJF0Y3tPaqBzfffLO0Wq1OCn8Oftd5TzecvQMHdtgKDTROA9r5vv/Pt3rw ue37L8vn/367XHfHdpn39e3yIQWeizV0/nybnKsin7Nu3iozVfRzmkq6m05HQUdev1kOv+pF OfCyNbLrKf/mO/O2TkrJe5Ze6cCH0OiN7/fg8/xdt8lzt39eNtxynaz/wjxZ97kPyeinLpaR G1T0c+25svbqs1T0M1Ol0/xuOhUFrbnoSFl13uHyxOkHyt3v3NUv9zsVW3QyENJjQuO643pA SAOnvbCC9+p/7v3XARQQalyj6pqeidOkftFArAa0lzxbAebTf7ddPnuXD6APf1WND+muty9u k3P+RI0RfWarnKQinmPVuNCR126Wd12jwbNZpqs07aNqbOgjL8hBlw/JHqffOw5C4bxjHXPo y8i8AxAaUVHNxq9+WjZ+/bMegLY++nMvh5HrFXyuPkdBZ5YMfegkNS50rKy58EhZc8G7vO9f +te7ZfXsabJSjQ09ecZB8v0j97CE0B/d64dK6klWb6q2Dvm0wBRINFTmz5/vpeB7sy346gHI RE0xEIoyVtkOzpyz7PPo/Pt5rn5cD+cIPBsxaI7XrBXG69i6aZa20H5AT0TQY0Afa0dAl9+6 XS7U0c/N2zwAnfzJrfLe6zWAtsjhVyvoKPAc/JHNctBHtqjXLXKIevzloA8Oj0Gofe6ovNNA KDLvAIT0RIQNagxowy0f8yKg4J8PoJMVgN7rAWi1inqCf6vPPlhWnn2IPDkrBkLjuuM0hHSo 9N723G/dFacbm1q4cCzy8aMgvdicBk/Uq/7eRELeQ07BhQ/bM+NMYV+16xfEpH447eB5o5xq kWVIOhdOfYCd+qBBbICvV/uBkz69xRv70V1wV/zVdrn4y9vk/C9skzMVnE77tBr3Ud1uM9Ss uHeqCOjtH90ib1PgOeDDW+Qtc7fIgVduUTBS3XEqEtr99J+Ni4TCeaeBUGTeAQgNX3GSN/bj dcGp8Z/RT17clf3QZcfL0JwZsub97+wG0BlvkdVnHiirzjpIQehA+f67d/fL/S41zKMZ81Y1 8U2PCY3rjgtDSNO2C0LeOqedSKgXiIKR0I5z1JO3KnmrZ7dhFAZQ0BkbIJXloJPAkPR9mnIV mVea87IvcEMD7mjAQEhPz778Nr8b7sIv6TGgbXLGZ1UU9KmtcuyNKgpSEDpcQehgBaEDFIT2 VRB6s4LQfur1rVe+KG/94JDsNjMaQsG89fls8tb7RebtrX7tjwlpCI3edKmM6llw+vXGC2Xk mnO7gKPHfoJ/q2ftK6tnvllWz9pPVp35Vnnq9LfKD9692xiE3qFAZAUhPVdcRy0aHAogWSOh MQgpEOn1g1R+3c5ZTfnWawtFpDDRzT69tuvvo/6Cecd9X8T5os6lwdrrGtneu/6xDbZpgga0 X3mPmlygZ7zpmW9zVBSkJyLosaAzVCR0snpe6Fg1CeFIBaLDVZfcQapL7i1XbZF95m2VN31k q7xZRUL7qUhov8vXytSZ9/nOvO0vo/LW22zy1vtF5q0jIZX035o57/FmvHkz3z4xxxsLWnut Ggv66BmRvnborLfI0Pv2kTWnv0nWzHqzPPu+/WThafvJD4+Y2g0hEw3pB1a7Jibo8EiHS/q3 ILwoqL3wnFpOJjgxwYwJpYmE/GjIB1EXhGJ+Uyi4n37vOfP2/uO68Nrbg8fofcyfOS7r91Hn S5PXwPx2Uo8biiY4E64BKGbRgPYTR6gI5ywFnfPVRAQNIP16tp6QoCGkxoSOVV1yR6mJCYcr EB10/VbZ/1oFn6u3yp4f3Sp7KRjtPe8l2VtBaMqp4yEUzlufzyZvvV9k3u3fDvIgpKZYj6iZ b6PXny+jeibcdeer54DO9h9a/fDJXSAaPv8gGT5nfxk+880yPGtPlfaS1WfsLYtO3Vt++I4p PoTUgqWtI5dKy0RDujtu8l/633n/hSGkHXt7NdTMkdClalE+lVpqxVUvqR8864aQ/wNowT/z g2Dh/XwIde8b3qefn9Oeq3E/dMaP1/EDfmggUQPaT0xXEw1mfm6LnKue/Tnvz9SqCWo8SM9q m6WmZJ/yua1ynOqWe89NW+Vw1TV38CcUhG7YJntft012VzDaXcFod7Vywu6XrZXXn3K/77Db do/K24OQRd56v8i82z9ip79ffe50Gf7ITBn52LkKQOfJ6MdmqynZCkJXzery2ebDyOz9ZeTs vWXtGbvL2lm7q4hod1l00u7yD4e93i/3UaqH7Sj16I+G0D6L/KV7uiC0l15kTpFKR0J6LMhA SC3HnTkSumyrWo11q7/ct14CXKUu523gpF7D26P2C24LRjoeoCzySDpHmu/T7NuBcOB62da+ McEmYzdprtpC//4LKZMNtJ9429zN3nM/Z3xePYSqAHGOgtFZGhR/sk1OUduOV2mGioreoWB0 8E3bZP9PKgjduE12UyDa9RqVFISmXDIi/+3k+W0I+fURlbfeZpO33i8y79kqaDjrd17ez77v bd5zP2tV95uGz4jqilt7zVldABq5Ykbn8x82vyCj5+4to2fuJiOzdpWh03aVxcdNkR9P+29+ uY9VwzvvVbOuNYgOUazREHrj1/zvvP80hPSXHoRU6K2jIP17EB0I+bsmPaTaNTtO/x5FG0QG RkHnbX6PQr+Gt0ftl7RPP79Pe67gtTb1vbnR4HXspgtbDLYttJ/Y7/KXZMYNm+WUzygQqegn 7u/gzyoIfXq7vEmBaKqKiKZcu00mq+nar50zKq864X7fYQdu6KPyPkN19c1U5zlZwe04ld6j 0js/v02Ceet8IvPWEFJJ/62auZ+suXiG6no7RUU/Z6iHUs/sKvrIlcfJyBVq3Ojy7tlx686c KqOnT5GhkyfLkmNeKz86+FVjENIg0hFRJIR0eORBSAFIh2RtAGmHGX5Y1S+JP1su/OpDyF9Z Yccr/R9G0mnCh/zUuvTlzoXo9yYFnXpwHy/Kae+XtE8/v097ruC18n6s3rEFtmiyBrSf2HPO S970a71g6akKRLEQ+tw22e+m7bLnJ7fLf79hu7zu6m2yi4qkXn3BiOx8bDsSCvjDqLxP+2MV YanI6kQFn2MVjI5Sr+/QEArkrcsQmbeOeGdv9oq48sQ9ZbWafj10+XEKRKd2FXvtlSfKyIeP lZEPHaUg9A5Zf/HBXd+vO+11svaEXWTxUa+WH71tZ58UJz/v88WAyPsph2AkZCA0U/94kQ8h DSAdwQTHhOIAFIyUdrxGZId5/+Ul/St9OrWuUL/ep5KGUdSfmQAQ/F5vMwCLOy5LnkGQmHOY beHPwX1NmcLXECx/sDzB8vN+7IYEW9TDFq1L/1PdCJKy2ED7iF0veEkOUT/oeeR1CkRqAkLc 34Gf3S77KgjtoSD0RgWh11y1XV75wc3qZxZGZIdj7vedebsu0uYdPm9k3hepm6ILtnu7PvPe XeXZsw7xluDRINr8wD3e9rVXHK/SsbL2QzNk5PJ3yeil02XdRQfK+gv29b7f+i93ybpTXiPD 732lLH7nTvIPb9lhDEIaRBpC71Iw0sv3jO+OU2HSTAUgPfDVhpCOYpK64MLrxumf8NZJg0gn 89PABkrmNfiwqnkf3Cdqm/6+13FhUNjkmWafuH2Tyhq+dj77Nygk921gbh559W+i0yTtk95w 3kuqS85fgufdCkQz1Cy4GTeqCEU9pPpuFR0docA0XU1KOOhTKgpS3XB7fUJ1xV2/TV53zXZ5 9ZXbZKdLN8sO56yVCTPas+PaZSglbw04BSL9t+I9b/C65J49d5paFeHdMqS65oYuUenio2T4 4nerdISsnTNdRi48SEbP30/WnbuX6K44HQWNnvBqGZqxkyw6bAf54f4TfAidrqIsEw1pCOll 4rog9EcL/L66NoRMFOT/zvjvZceP/ofsfO3vZeK1f/AAo9PE6/8gE29Ur6HUgZD6HXP9W+Ze agPJvJbhfIIQKiN/8nTfYVJH1JFLGtA+6TVnPie7X/i8HPDB38nbr/ydHPbRF9TacC/INLUw 6bSrX5RDrlUrInxMPQv0sZdkr2tfkqlq6Z7JajKC7oabeOlLssMHfqee3VG++Uh/FW1zfWXk HYyylhzxGnn6+N1lxekHyDNnv11Wzj5MVp1/uPqJhmlqcdJp8ux5h6g14g6UoXP2k6Ez95Lh 06fK8CmTZfj4XWTo6Imy6l07yONvb8l39/GHbjwIGRBpCI3rjouAkAGRByGVdr7qPz0IeUkD qAeENJRsQBQGU97PQQjlzYvjx984JNnEpcZPWYCRCxoYfu4/5YCLV8rk962U3WavlL0/sFr2 u+hZ2X/OKtlXve5z8WrZW6U9VdrtkmGZcvGwTJ6zVl5z4bC8Ui0Y8IpzVQR0hgLQiU/KXmf8 SxeEysjbi/JUNKTz/u2pB8ij75osjx69myw4YW9ZcPJ+Ku0vC07aVx47eR95/KS95Qk1brTw xN1koZoFt+i9k2XhjNfIone/Uha+4xXy+KET5OcHtuR779nLh9BZm8dDqGuKdghCegpxMBoy EdHO816OhpECkgFPEoDKFEevbrEyz0neODw0gAaiNDD3b7fIY8tekAPOe1B2OeYn8roTfiav P/Hf5A0n/lRef8JPZfKJ98rkk34mrz3xPtnlxPnyqhMfkEknPOhNQtjxmPky4ZgHVQ/VfQpA P5UFS54TnZ85T+F5/42CRBtCc+/YLJsWPSb/dMIB8u237SJ3H/o6+d6018t3pr9BvnPo6+Xu 6ZPl+yr9YJqa/XboLvLjQ14l9xw8SX504M7yowN2lHveMkF+sG9L7lYAWv/UApn7NRXN2UFI /6BRe0yo/XCphpF+4NRLerq1GmDzoiINI5NUhKSjJJ10t12vZIxnIite/QizKSlNXzn7phtb wF71tNdOc/9D5irnnvdPRyY6H52f0UKhed/xoux02TZ/JrIaE9ppjvrV19vHnt/MWv7hjarc CkA7naGmfofHhHR33PhIqA0hvX6QXkW7vep158HVS/0JCzteoYBkkgelYPJnwkUlMzPOTNVu 8tTMwbw2ZlBlmUHl/jFMI29ce9az4NqTEPRsOO/ZIz09+/yt6lXBSCf9Xk3X9iIY82re688m qYdbW6erWW/61ewXHP/RkxHCyYwJRUJIPyukVlFtzXhUWscvkAknPCY7nOgn7xdX22nCrOVi kvcrrBpceuFTk/TvEQU/m/ftBfK8/UnYAA24r4GT9PODpEbZQPt4vWJ2XL0er1Y10D/to5Ne Tceko5eNbTPf61ezXb/qNeJ00uuRmvXi9Hu9ZI9mjBWEFIA8CLVBFISRgVLUq96vk4LHh/Lq 2i94DO/H7FczW2i9kJpnA88HkBpng8raqlm2Z9zsuKkLZOLhy2TKvE0yafYK2bhuCQkboAE0 gAbQQKEaaJ2ixoeOUtHS3t9RY0K3+jPnvP+AUKGGBuLcxKABNIAGxmsACHFXA2zRABpAA5Vp AAghvsrEx10hkQEaQANACAgBITSABtBAZRoAQoivMvFxF8xdMBpAA6VDSK+ojdAQGhpAA2gA DURpIDeEwj/bYKATfi1KgGGolXWepPL2uu6k4/J+D9RpyHk1xPFoyCUNFAKhuAsq2mn2glC/ jVr0ddmWv6rz2paP/XBwaAANpNFAaRCKilCC0UOaQgb3tYmEos4TPK7X+zRlioNB3PmDdjH7 6fMG35ty9Monat80ZWdfnAQaQAOuaKAQCIW7poxTjXoNOtisRugFuOD5wucpA0Jx1x11fpsy 9IJbVd2OWeuI43ByaAAN2GigEAhFnShqbCjKadsUMrxPEoTSQDFr91YSLOIgGIZlHJzC0VDW 8maxM8fgRNAAGihbA32FUFEXkwQhWyhGRU62ZSwbQjbdjrZlZT8cCRpAA65qoDII5b2jt3XS ceM/ecoAhGjUrjZqyoU266SBWAi90mIV7SRnHIZAUYPqvSBkopteA/3ByikDQr3On1TeqLGy Xt2XRdmwTkKlrDhWNNBMDXgQ0r9NtMed41fRtoEQwmimMKhX6hUNoIF+aCA3hMJ362Xfpff7 fEVVQlGTMooqD/ngYNAAGnBBA7kh5MJFUAYaExpAA2ignhoAQixgytp+aAANoIHKNACEEF9l 4uPOtZ53rtQb9VakBoAQEAJCaAANoIHKNGANIeEPC2ABLIAFsEDBFrCGUJHhl01ed/+/O7xL tdmXfdzpHqDe3KkL2gV1UQcNACHC8EJBD4RwfHVwfJTRHZ0CISAEhNBAoRrAwbvj4OtQF0AI B1SoAyISwgHVwfFRRnd0CoQGDEKtw+6QIlKvRgyE3GncOFrqog4aiIXQpGlLZcq8TTJp9gqr u+W5c+dKXEpjEBtn1mrdHFmutNvTlKvsfe+5555xNtTbijpvEQDSeQAhHFxRmiSfwdZS4RCK mr2nwaT/DjvsMGtnagOhJok3CJ+wDQ3Yi4CRBoiuhzwJCA2202hSu+NaqtdyXyGknat2qDYV HwchE+nkfbUph94na/Rgm7/ez4A6bgq+re3izquvJe9fXgj1WoQ2aXsae7Jv9c6FOqAObDRQ CoSCXXIGPMFtNgVzKRLKEj3EOerw9ZsoKAgHE6mYZ6WMHfNGQ65AKHitUfAJgzLPbz/Z6I19 cJhooBoNlAKhIu7mbSCUduyn1/5J4oty3Hc8ukkeHRIv6ffhlAZCUVFQEEJBe+aNhnpBSMMt 3EWnt0X9EQlV01iTdMr31EsdNVAKhHpNTiiqO67fho6LHnrBKCuEeo3VGBiUASGd53HHHTeO N3pbFCDzQihcf0ndcGX/RlW/9cT5gAUaGNNAKRAahEgofI0GRiYiqguEdLQTBSDdSMxkknBE BIRwojhRNFCUBkqB0CBEQq2I8f0giLJCyMCtX91x+jy9/oIg6hrDKXiKto50kv4YE8LpFeX0 yMctLRUCofBEhKRIKAypKFG4Njuu1zWFYWTGiNJAKDgxIej4w4DQdit6YoJLEJo/f76IApJ+ vfnmm71k/oCQW44DR059FKWB3BDSjnHxwl95yXaacXD/XmMcNhMTijJCUj7hMaEweMznlnqT pTuuyinaBkIGflGwDYOqjO4477w6IuoRFQEhnF5SO+X7emokF4SCADJgsX3Vx95xxx09nxuy gVCVs+M8nxnokvMApK4nK4RsHlYdGV0l1xz5dqvnrHo1yDBQnYFQG0BRUZDPp1au68ZB1dNB UW/Nr7fcEEpaqifu+7wQ6pdA4yIhDSIDoOB07TTdccHriFu2RwPon797YS4Qha8lODEhKhqK 6q4rOhKKi4Dojmu+E+pXO+Y8bmopN4RsI5/wfnWPhLq64FQEFH5eKCuEkhpKXhBFTTfXdREF G73NQK+oiQkaOMFrDALIjAMFX4GQm44jSad8T73ZaqAQCLXuaInqWPO61jRsfr37K7wU111X BIRsLlI7tPBzKHqbzbFmn17PCUVFQFm749KUR4Poa2fvkykiSvOwqgZAEHodIOSYHWeg40Vd 7S44ZsfhsNLon32bpZdYCE2ctiR2FW0DGQ0hncznO5Rz0aksCNmvGafKpcrhJQ2jEJBsxRx2 3L986MdeF5yOFIpYMcG2HMH9soIoy7I9wXN54zM5IBSEj4mKeFi1WU4li545ZnA10IHQnndK a/Kt/hwl77+pC8QWQlm65MxYkR4XihKgzcSEOOGau2svEgolM/XXdrDbRQjpa88CoiwQMhGR TfRlW2/hbjmc0OA6Iep+sOs+F4S0ePJOTOglQBtnFjc7znQdxUFI72PTALTjzpJs8s67jwZR mhlzWa7DRD420LOpt7zXzPGD7bSo/2bVf24IaUF4U5MzpDgx5XVmpotHT/kNd8d1tjHt1wrC 4W7AOOjlrTccTLMcDPVJfSZpoBAIJZ0ky/dFObNe4w1ZysQxyQ2qqHrD1sm2xkbYqAkaaDyE mlBJdboGIIRjrJNeKWv1egVCqjsRIRZnAyBUnC3RJbYcBA0AISBUKISBEI5zEBwn11iczoEQ EAJCaKBQDeCgi3PQg2BLZyE0CMbnGmmsaAANDLoGgBB3wdwFowE0gAYq0wAQQnyViW/Q7wC5 fqIgNLBEgBAQAkJoAA2ggco0AIQQX2Xi4y6QSAANoAEgBISAEBpAA2igMg1YQ+iw6YcICRug ATSABtBAkRoAQsCVmws0gAbQQGUaAEKIrzLxFXk3RV7cnaOBemoACAEhIIQG0AAaqEwDQAjx VSY+7lzreedKvVFvRWoACAEhINRDA/qX7otsbP3Iq45l7oddOIe74ARCQKh2jtY4FO1ww6ko ZxN05lnPk/W4PNcAhNx1tnnqtcnHAiEgVGsIBRuncfpFNNgwhNLkGVeOsiFRdv5p7MC+ANFG A0AICDUGQlrwRTnhvBCyaXxl7FPU9ZdRNvIESlEaAEJAqDEQCkcgxiFHRSbBrrJwwwg78jSO Pc2+QWjGlTEc7Znjeh0T9z0gAASuaQAIAaFaQygJJlFQSIJM1Pe2Y09ZIJR0TNT4VHhczPaz aw6I8gBFIASEag2hOCdmA6Cg8456n7aLLw1QkvKOAmzSNSV9j9PH6bumASAEhIBQYCwprxMv AkK9uhV7QStp/CqpTK45JcozWKCMhdCkaUtkyrxNMmn2ito6KgTdXEEnOdc0QAmOHyWNESVp Kq5cSV2BUaBJA5k015x0HXzf3LbjUt16EDp6ubT2uEtak29Vk4v82zBpTV0gQAgRuiTWtHDo BYM4EBThxKMmDKTp6ks7BhQ1cSFpm8v1StkGy+8AIbrjahvlZomEwgP4SVFGeKZZHGCiIJk0 oSEOlMHoLBypRY0X2XTX4eAHy8HXob6BEBCqLYTq0MCKLmMSeIs+H/kBrbI1AISAEBCqkQaA EFAoGwr9zh8I1cgB9VscnM89hweE3KsT2km+OgFCQIhICA2gATRQmQaAEOKrTHzcQea7g8R+ 2K8JGgBCQAgIoQE0gAYq0wAQQnyVia8Jd3FcA9EIGsinASAEhIAQGkADaKAyDQAhxFeZ+LiD zHcHif2wXxM0AISAEBBCA2gADVSmgVgITWQB08oqpgl3OFwDd+poAA0kacBfRXuFtPaMWMAU CCGgJAHxPRpBA2ggjwacgVDcgoxRv6+StFJx2mPyGJFjaYRoAA2ggWwacApCuhJ7LbMfhErU 6sJBAdisPoxgsgkGu2E3NIAGitSAMxAyFxW3tH5U9JP0I2E2xxRpUPKigaIBNIAG7DUAhJgV w+QLNIAG0EBlGnAKQkVENVF5JOXLXYv9XQu2wlZoAA0UqQFnIJT0s8pRExeSutpsjynSoORF A0UDaAAN2GvACQjF/QRyHEh6jR/ZHtM9mUHNiUjx99ffuKUrfOUz9gjqCT2gh37qoc7QcwJC dTNgkFWulD3s9KouF+VJvhPERvE2wj71sk9WnwOEMgxIugihrALguGRYYCNshAbK0wAQAkKV zYqhYZfXsLEttq2LBoAQEAJCGTRQlwZOOYGR6xoAQhkckIvdcfSf16//nDqrV51RX+UAPRZC k1hFOzJKcBFCrt/tUL5yGjB2xa5114APoeXS2uNOaU2+1XOvLe+/qQsECEULHAjR8Ove8Ck/ GnZFA0CoId1xrgiKcuDc0AAaSKMBINQQCNFfXa/xBd1IqbN61Rn1VQ5cgVBDIJTmzoN9y2lM 2BW7ooH0GgBCQIgp2hk0gLNJ72ywGTaL0gAQyuCAmJhAY8KhogE0UIwGgFBDIER/db3GFxgT SnZgaLp+ms4CZiDUEAhlqXyOSXaE2AgboYFyNQCEgBBjQhk0gGMq1zFh38GxLxDK4IAYExqc BoIzpK7RQLkaAEINgRD95/XrP6fO6lVn1Fc5MAJCDYEQd2vlNBDsil3RQLkaAEJAiDGhDBrA MZXrmLDv4Ng3AUJLZcq8TTJp9gocVcBRMSY0OA0EZ0hdo4FyNdCB0J6Rq2gDoSgBuggh+qvr Nb7Ac0LJjg1N10/TWYANhDJ0xbgIoSyVzzHJjhAbYSM0UK4GgBAQoqs1gwZwTOU6Juw7OPYF QhkcEJHQ4DQQnCF1XZQG9K+FZklFnd/VfIBQQyBE/3n9+s+ps3rVma6vLBAxx2SBgD6213Gu 6SfL9eljgFBDIJRVABzHnf6gaaDfIMlj3zgI5cnXpWOBEBBiTCiDBlxqxINalqwwqZO9gNA0 pmjXZYp2nRoWZSX68rphMo6R5Oneqpv2gBAQCs5BiHzviqhd6x+mPMmgqbuNyoZI3e1ThG9g TAgIRXZVMTsu2cEW0QDJo3w75wEJ9VN+/ZiIscm2Zkwow3gAEOpP42tywyvi2vIAZJC6tIqw dZV5NL1LDggBISYmZNBAHqdUBDya7pjy2Ldpxza9rmMhNHE6ExPqMjGB/vPynjkpChrh6IM6 K6/OygBRVfXVC0JVlado2/oQWiGtqAVMgVB0I6E7zs3uuKJhQZeVm/VctBN0Pb/BiISAUKou KSCUzjmVBYdwvq47E8qXTjfYy7cXEOL3hMYBykUI9cvRZzkPzgTniwayawAIAaFICGVxxmUe 41r/MOVJdjrYiDEhGzgzJgSEahEJ2YiZfZLBgI2wkWsaIBICQkCoz1OYXXMClAcwVakBIASE gBAQSjVxpUqHxbmbB0wgBIRqASHGF+o1vqBhQZ3Vq86qrK8oEFVZniJvdnhOKMNdvouz44oU BXk1726aOq13nTY5GgJCQIiupgwawKnX26nXrf6A0OwVOKqAoyISwgHVzYlR3nprFggBoS4I uwgh1/qHKU+y08NGjAnZ3hwwJgSEnIeQrZjZLxkO2AgbuaaBgY2EJk1bIlOYHVeL2XGuNRrK gyNHA8VpoPkQWh69ijYQYhVtHElxjgRbYsusGgBCdMc53x3H+EK9xhd4TigZSGh6zEbNHxMi Eko1+8/FiQlZ77A4LtkZYiNsVLUGiIQqjITE+zWN7qQFEdwWFkjUd3H7pxUYEMIppdUM+6OZ PBoAQhVCKAowBkK9KlUDJwiq4P4GRnkEAYRwKHn0w7HoJ4sGmgoif8WEmnTHGbjEQSi4TxhE puLD+6QVhIsQov+cMaG0Og7vj4bc1lAYQq7VV1b91QZCveAStT1ojKjIp4kQyioAjuOuHA3U QwNEQhWvr9ULHECoHg0IR0c9oYF8GgBCFUIoLnKJg1DcBIU8DcLF7rg818Ox+ZwD9sN+/dAA EKoIQlEA6gWX4JhPuBsuaXZcECw273V/rP4z5wz3z/L5lq5p79hjvD2CNnHBPpRnDKZR9VG1 fYIQ0mVhTKgiKPXjjiPpHERC3PkmaYTv0UjRGiASGmDohMUEhHAwRTsY8kNTSRoAQkCo070E hHAYSQ6D79FI0RoYSAhNnL6UVbQj4OsihFzrH6Y8yU4YG7n9XI5rz1EN5HNCQIhVtIu+myO/ ZDhhI2wUpQEiIbrj6I5DA6kWugUmwKRoDTQRRLErJhAJEQkV3YjID8eMBrJrAAhxJ9xeGHVs VMiVBsX4Qr3GF7RuqLN61ZkL9RV+VsgV/5OnHERCGcDq4sSEPCLg2Ox3ptgO2/VTA0RCGRx2 PyuoX+cCQjiefmmN86C1oAaAEBBytjsOZ4WzQgPN1wAQAkLOQsiF/uqgE6Q8yQ4RGzEmlPbG gTEhIOQshNKKmf2TIYGNsJFrGiASAkJACA3wrBAaqEwDQAjxASE0UJkDcu2unPL0P1IEQjgg ZyHE+EK9xhd4TijZgaPp8TZiTAgIOQsh7kqTnRo2wkZN0EDToqHYh1UnTVvCKto1WUW7CY2L awASaCBZA42E0NHLpbXnXdKafKv3GKa+RmlNXSBAiLXjcArJTgEbYaN+agAI0SUXXDDBmUFq +s8ZE8rrCNFQPTRkIORafWXVn9cdRySU7k6OZXvS2SurODkOO6OB+MkJTbAPEMoQ2QEhnGMT Gj/XUE8d0x2XwWk3TexAqJ6Nt2k65HoGU4dACAgxJmShAdf6q10rD88JJQPEtTpzpTyMCVk4 oKbfoREJJTuQpmuA60MDVWmASAgIORkJVdUgOC/OGA30VwMGQi31pgm2Z2JCBqgSCfW30TWh oXENaKYoDQChDE67KONXkU9X2BPxoYoyRZ3Tlf5qUzbKk+x0sVE9nstxUdMaRERCAwajoOMn Ekp2sK7AmXJQV03UABAaYABpQQMhHFsTHRvXVB9dDxCElrKAKQuYNmLwEwdbHwdLXSXXFRAi EuoEQ640GMYX6jW+wHNCyY4WTfe2ERACQs5ByBUYUo5k54qNsFFeDQAhIASEBlwDeZ0IxwOi PBoAQgPugJiYgAPJ40A4Fv3k1QAQAkLORUL0nzMmlNexoaH6aAgIWUDI/4HWVmdmVfB93sZS 9fFEQtzJVq1Bzj/YGmzKg6paxwnL9mSbom2AA4QGu6HgKKl/NFCOBoBQQiQEhMoRHg0au6IB NOBFD6qjqSmrafclEgp3zdW9IbnYHUd/fn36843+qbN61ZlL9QWEUowJNQ1ALNvDnWjdb6Io f/01DIQsu+OaKnYXI6Gm2prrqr/DpA6Lr0MgZBkJNVV8QKj4RtVUrXBdaKUMDQAhi0jIdMMF X8uojCrydBFCLvVX6zqhPMnOFxsxJpTVfwEhi0goq3HrcJyLEKqD3ShjMpiwETay0QAQIhJy bsUEG+GyDw4ODTRDA0AoQyTEignNED9OjHpEA9VrAAgBIeciIcYX6jW+wLhZsiNH071tpCHk mn2y3pyU8rBqVGGIhJIbXdZK5DhsiwYGSwMs25NhTChPIwnPsEuacRf1fdIxacrHxITBavBp tMG+aKMfGgBCGbrj8lRMOIoKrk0XFWFFfZ90TJryASEcTRq9sC96KVIDTQKQtksp3XHh1bPz dsXFrcbdC1Cm0qOWDcpfnjEMFSmuPHm51j9MeZIdLzaq1zieK/VlIORKefL4rb5BSJ8oj+MP P/gavGgglOzs8oqE47ExGnBHA0RCFl1xeX7KIW7BU5uoJgpKSaBK28DojnOnQaatO/an7uqu ASBkASET+RT9o3ZhCCVBKW6CQh4hAiEcWR79cCz6yaMBIGQJoTxGDne39YJPL8hlmR0XBIvN e90fq/9MWcP9s3y+pWMbbSPsMd4eQZu4YB/KMwbHqPpwxT7mGSHGhPoMo6KgVkQ+RELcyRah I/JAR1k0QCQ0wPAZm3Hn3uy4LGLmGJwgGqifBoCQBYTCs9niJhvUsREQCdWv4dZRZ5QZnUVp AAhZQmgsamh5YwN5pmi71hhdhJBr/cOUJ9mBYiOeE8ri23hOCAh1zVvIIiKOSXbQ2AgboYFo DRAJWUAoaXZb3cXlYiRUd5tSfqCDBuw0AIRSQqiJwgJCdo2liXXPNVH3VWsACFlCKOrZnqor r6jzuwghxhfqNb6gtUid1avOXKkvxoQsIJRn2Z6iQFFmPi5CqMzrJW/u/tGAGxpoWhSkdVXq KtpFL9vjSkMAQm40SFf0QDnQQ780AIQsoqDgdOwif8OnX5Vscx4ghNOx0Qn7oJOiNQCELCFk QBT3EwxFV04/83MRQq70V5t6oDzJDhgbMSaU1m8FIeSaftJei9m/0O64qJUSshbM5eNchJDL 9qJsyUDCRtjIRgNEQhaRUJNWRuglCiCEw7BxGOyDTorWABCygFCwK67oCnAlPyCEc3FFi5Rj sLQIhCwhZBpG1O/6NKHRuAgh1/qHKU+yc8RGjAml9YeMCaWEUFOjIhchlFbM7J8MCWyEjVzT AJFQCgg17ecbgmIEQjgn15wT5RkMTQIhCwg1GT5j3Yz8qB1ObzCcHvXsVj0DoQQIDQKA/C5G 9yDE+EK9xhe0jqizetWZC/XFmJBFJBQcB+JhVbfuorirpT7QQL01QCRkCaGmC93FSKjpNuf6 6u08qb9i6g8IAaH2T5W71x1HIy+mkWNH7OiyBoAQEHIWQi70VwcbL+VJdubYiDGhNMALA8g1 /aS5luC+ha4dl7UQdTuO7rhkB1u3OqW81KnrGmhiFKRtDoQyRHdACIflusOifM3TKBDK4Kyb 2hCAUPMaeFO1ynU1R6tACAh540E8J2TXqF3rr3atPDwnlKwj1+qs6vIwJjSgEOp6MjXiA3ea yc4EG2EjNJBfA0RCAwqhqMZDd1z+BoVTwoZoIJ0GgBAQcro7jgadrkFjL+xVNw0AISDkNISq 7q8ON2jKk+zksRHPCaUBIWNCQMhpCKURM/smAwIbYSPXNEAkBISAEBroaMA1B0V5mg9NIIQD AkJoAAihgco0AIQQn9MQYnyhXuMLPCeUHLmg6W4bMSYEhJyGEN0xyU4NG2GjOmuASAgIASE0 UFlXTJ2dJ2XPD/+mAogFTDM6VR5Wzd+ocEzYEA3YawAIzV7BHWAAWC5CiP5zxoTyOnU05K6G oiDkWn1l1R8/5ZAhGnIRQlkFwHH2d6PYCltVpQEiISKhrkgQCOGMqnJGnHcwtQeEgBAQyhAx 4jAH02FS78XXOxACQs5DyLX+YcqT7IiwkbtjMFEgrbK+mj8mtEJae9wlrcm3eh1NLe+/qQtk 0rSlMmXeJpkEhJyHEHefyU4fG2Gjumqg+ZEQEEo1+48xIZxZXZ0Z5a6ndoEQkRCREGNCqW5U cPb1dPau1hsQAkLOQ6jK/mrX+s/rUB7WjkuGFJoesxFjQkDIeQi5egdHuZKdLTbCRkkaIBIC QkCI7ji649BAZRoAQn2EkJ6cF7wr8CfrdSf9fXBb+C4i6ru4/ZPuQsbnPzY1Ie2x7M9dLxpA A2k1AIT6ACFbSBhIhWEVBlcQVOZ9eFtaIZj9XZwdR/95vZ45YUwoGURo2rdRLwC5Zp+s/tRf O86hKdo2cAlCJSoKioqkoiCV1WguQijrtXBcsjPERtioSg00OQryIFsXCMV108UBxkRYQAhH UqUj4dzoL6sGgFCJKyakAUSvCCkKTkRCNPisDZ7j0I5rGgBCJUIoqrKjYGPbRRfupouboJBH aC52x7nWP0x5kp05NqrXOF5V9cWYUMUQ6gWlcBQV3C/L7LggWGzea0HqPwOzsED5fEvXLEfs gT2CN37owV4PGkJJ9spzU131sd6Y0Izl0tqTBUytnwFwMRKqWkicPznywUbYKIsGBqI7Dgil axxAKJ29sjQ8jsHGaCB+inZT7EMklOEpcBchVFV/da+GQHmSIYKNGBOyAclAjAkRCSU7jO4Z d6yYYNN42CedrrAX9orSAN1xfZ6YUIeG6GIkVAe7UUacLBpIrwEgBITGTVgAQukbEs4Hm6GB bBoAQkCoFhBifKFe4wvaIVNn9aqzquqLMSEgVAsIcZeZ7S4Tu2E31zVAJASEgFCGGYSuN2zK B3zqogEgBISAEBCyfpC5Lo6NctYDwk0HkNYhzwllcLAuTkyoqr+a54SyOzPqjDGhpJuBOAi5 pp+ka+n1PRBqCISyCoDjskME22G7sjVAJDRtqUyhO47uuAygLrtxkj8AGAQNDDyEJgKhyLEA F7vjBqFBco2AZ9A0AISAUG0g5Fr/MOVJBgY2YkwoCaoDPyZEJBTdSIiEkh1sUuPie2yIBpI1 QCREJFSbSIgGndygsRE26qcGNEDypn6Wt6pzxc6OIxIiEqpKmJwXYFStAQDSHw0CoQwzv1zs jmN8oV7jC9rBUmfl1lnREKG+yoESEGoIhKq+a+T85TTQQbZr0RAZZFu6fO1ACAixJE0GDbjc qF0oW16ADMKAvAv15EIZgFAGB+Rid5wLYqIMzYmG8kIELTRHC2XXJRBqCITory53fKGMhlhW neUFiCtRSFn2yVqXlKccsAKhhkAoa8PiuHIaVha7FgEPVwCS5fo5xh0t9rMugBAQYkwogwZ0 Iy0KGiaffjZ8zjWYDt/FegdCGRwQY0L1aMBFQyKcn4sNmjLVQ5vU01g9AaGGQMj1/uqygRCV f7Chu2YfnhNKhoVrdUZ5kussC1yBUAKEglFP8H0VTrXO58wiTo4pp9FjV+zqkgZ8CK2Q1h53 SmvyrZ6bVSseqf+mLhCW7WHZHpfESllwnmigeRoAQg3pjqNxNq9xUqfU6SBoAAg1BEL0V/Oc UF6HhYbqpSHX6iur/oBQRgi1VK+lS/+yCoDjuNtGA2igSg0AoYwQMpMUqqy84LldAmKasrhi P8qBI0YD1WgACDUEQnVtQGmAVdS+dbUV5a7GSWL3cu0OhBoCIdf6h10uT1EwC+aTxVG5bKMs 11P0MdinXmNUWesfCDUEQlkFwHHF3OUVBTbqo5j6wI71sSMQAkKsHZdBA2U5uTwwK6tM5Fsf h17HugJCGRwQa8fRKF1s7FkB5uK1UKbBaWNAqCEQov+8fv3nrtRZFnj1AxKu2MdcK+UpB4xA qCEQ6odT4BzlNMI62jUNuOp4fZS5f1oHQkCIMaEMGsBJ2TspgGVvq0HUFRDK4IAYE6JRDaKz 6Mc12wKrH2XhHP1p5x0I7ckq2tYRgYsQor+aMaG8TrNOGrKBVV57hI+vk32KvvYy8wNCRELW 8C1TiOTdn7vOQbJzEqgGyRYuXysQAkJAKIMGXG7UlM0O6EDKzk5l6wkIZXBALnbHlS0U8nej wVIP/asHINUfWwOhhkCI/mrGhPICCg2l01AcpPLWhc3xrtWXTZmj9gFCDYFQVgFwXH/u9rDz YNm5akDVSW9ACAgxJpRBA3Vq5JTVLQACqO76cAZCon6nNJhMw7HdFmxoWY5J01AZE3KrUaep O/al7lzWQBhQLpe1qLI5A6EwRIIQ0u8NWMz78Lao49Mck8agLkLItf5hypPs7LFRujGYNG20 jH2rqC8NpV7XUkV5yrCr0xDSEImKcHoBKwiocCQVd0xaw7oIobTXwP7JkMBG2KhqDcRBqOqy FXV+pyAUjFyyAiULuNIaEwjhnNJqhv3RTBYNAKFpS2XKvE0yafaKUgavw9CJ6oIjEqLxZmm8 HINumqKBpoPIqUgoDkJxkw16dbXZHpNWrMFIyJX3un/YpT/Kk1wb2CjeRtjHt4+GUNRfo8aE jl4uraoXMM07Oy7YDZdldlyyy2APLIAFsED/LdALQrokaW+gXdzfi4RcgJCLxokrU/+lyBmx ABbAAt0WqJvfjCovEMr4oGJRdyHkEz920VT7+BNvirmTJZ/B1FBR9V41yIAQEApNg8cxJkXA RTXaopwI+QwmhBgTyui8i2rAVedDwx/Mhl9UvRMJJc/eK8rW5JNs6yr9KZFQRpgibCCUt+Gi ITSUR0NF6SdPGYo4FggBIbrjUmigyIZfVF7kA8yKgEFVeQChFA6o+3mkYsZOiqp41/qHKU9y Fwg2Yu24PO3fNf1kvRYg1BAIFXU3nFVI4eMoTzKEsFF/Ihg0nazFomyUJR8gBIRKeeANB5vc 8LEREMritM0xrukn67UAISAEhDJqIGujc9WJuObUKE+9IJ21PQChjA7ItQbiWv8w5UmOhLAR Y0JZHbc+zjX9ZL0WINQQCLkGRcqTDCFsVK87feorWdNZQASEMkIoi7E5phwRY1fsigbqqwEf QivUKtp3SWvyrd5yVt664a2pC2Riyb8nhHDqKxzqjrpDA2igCA0AISKhUiYmFCFO8sDJoYHm awAIASEghAbQABqoTANACPFVJj7ucpt/l0sdU8dJGgBCKSEU9autQSPHfR/+LimvpMrT3yfl 0ev78C/Zml+mTcqviDKNPSfT6gAwy6/h2pTFxka25UmTV1zZbG0c/LXgXue2zavs8phyFGGj pGuy0XSwToNls9VMeL8sZUpTzrTlylKeqLpJyidtubLsD4QyQChYmVFi7fV9lFOJy8umQsPw SFOeMDxNWWzOm+TUkmwUdgxR15F0bbblTMqnFwCj7BGuQ9sy9LJ1VH5xzitr/RZdX1H5Be2c xS7hm4Fe8Oh1nqo1FNZLUjmrtJGtrfOU0fZYIJQCQr0gEq5Qm89JedlUYFIeSd9HlTOvk7U9 Z7DB9rrjj3LcNnaJOy7u+noBoYhy2GiiF2Bsj81Sd1nqKw5AeW9kspYHDUV3+8XZM42t07a7 NPsDoT5DKM1dblJFJoko6fted/q97kCTypM2coi7U7Qpe1nlSYJYv+0ThFDw3EXYKE0evSDX CwD9hGLdIOSChtLUvU1by7oPEOojhMLOJO8ddpKIkr6Pu2vN4kCaBqG0UZNNI7Spk16RT3h7 mrx6lS1NHrYQSip/nJ1sy5O0X5STL1vTUflXqaGkcyfZ0EbPRewDhDJCKEnkcXc64e+y3hUF RZSlPEkizSKwpDJFgTfqmDT52Dq1JDuHz2mbbxo7pbmuJKefJi8bCKWxjw1osjh9m2tKcvbm Omzysqk7m3ySyhR1niz2Cd/o9aqzpLyL8kE29kvaBwilgJARQJzDj2oAvY7rtW9SpYUdedby hM9TRHnirjXqfOHoMAlIaWyTlHev8gTt4EJ5knSXBI8km8VpNuqmIQ5ARWjIpg310nwv55rk lLPYyOQZpZcqNZTm3EXUV5Ltkr4HQikhlGRQvue5CDSABtCAvQaAEBDiYVU0gAbQQGUaiIXQ JBYwraxiuJOyv5PCVtgKDdRXAx0I7XHn+FW0gVB9K5ZGSd2hATRQBw0AIcJwoj00gAbQQGUa AEKIrzLx1eEujTISTaCBcjUAhIAQEKqBBsLTbsNTa/NOQcbRlutosW9v+wKhGjggBIyDiHte B32gjzprAAgBISKhmmkg6en88EOUcQ8Q533Qtc7Oj7K7AW8gVDMHRMNxo+FUWQ82EAqv9BCO pMJ50J2HrqrSNBACQkRCNdOADYSSltuJGmOqyglx3sEGIBCqmQOiwQ52gzVda2EdJEU+SZEQ ukJXVWkACAEhIqGaaaDISKgqx8N5gZ7RABCqmQOi8dJ4i4BQeLICY0LoqirfAoSAEJEQGkAD aKAyDcRCaOK0JTJl3iaZNHtFZQWsis6clztDNIAG0ED5GvAgNGO5tPa8a/wCpkCo/ApA5NgY DaCBQdYAECIMJ8pFA2gADVSmASCE+CoT3yDf/XHtRD9owNcAEAJCfYGQ7W/ZJ838ouHivNFA szQAhICQNYTyTOMNrmcW50Si1jLLc14cVrMcFvXZvPoEQkDICkLhZV7Cz5lEPZGfBSjhY6I+ h8+FY2qeY6JOB6dOgRAQsoJQcLmYJLikWUKm1/Iz4cgpKk8ipMFxVECpuXUNhIBQJggZpxA1 1tMLQknQiAMNqz431wkBmMGuWyAEhDJDyAY2tmNBwUgr2NUXhF34fRLUcG6D7dyo/3rUf+EQ agn/XLBAGQ0wHPVEjRP1gonN7Lg4qPSCGSCqh6MpQ4/k2Yy6LxxCCKMZwqAeqUc0gAb6oQEg RHecdXdc0YIMR1JENTi9ojVGfu5rCggBocoghINw30FQR9RR2RqIhdCkaUtZRRtIASk0gAbQ QGkaGIPQneNX0QZC3AUVdRdkMzEhPKkhamZcUeUhH7SNBtzQABDiDsf6DifPmI3tVO2kB2Fx HG44DuqBeihKA0AICFlBiGV7cDpFOR3yQUtBDQAhIGQFoWBXWVK00q9le3p13+HkcHJooD4a AEJAKBOEguM1cYuMxgEp7Chsl+2x7drDEdXHEVFXg1tXQAgIZYZQVcv2mAgozxgVTm9wnR51 71bdFw6hlkQ9gsi2ftuljIbmwrI9zJhzy4GUoTPyHKw6LhxCCGiwBFRVfRMFobOqtMd5i9Ue EKI7zro7rujGl3XZHgBUrBMoul7Jj/pJowEgBIQqg1AaobIvjg0NNFMDQAgIASE0gAbQQGUa AEKIrzLxcWfbzDtb6pV6TaMBIASE+gIh1o7DMaVxTOw7OHqJhdDE6ayiTWMYawx5JgTYPmCa tBoD9TE4zom6Hoy69iB09HJp7XHX+FW0gdBgiMCmsbuydlzwQdU8ULS5ZvZB/2igfA0AIbrj rLvjgtFMGAA2qycYgMQ17HDE1CuCAkDlOwccMDbuhwaAEBDKBKHgygVVrR3XjwbCOXDEaKBc DQAhIJQZQjbRj+1YUDhKsgUbDqJcB4F9sW/ZGigcQi21SBqpehuUIRwX1o6LGpsq41rJE+eL BvqjgcIhRMX1p+KwM3ZGA2igCRoAQnTHWXfHFS34rGvHFV0O8sOZo4HqNACEgFBlEKLhV9fw sT22d0UDQAgIASE0gAbQQGUaAEKIrzLxuXInRjmICtBAdRoAQkAICKEBNIAGKtMAEEJ8lYmP u8/q7j6xPbZ3RQNACAgBITSABtBAZRqIhdCkaayi7crdAuXgzhUNoIEmaoDfE+IOqLI7oCY2 KK4JUKCBdBoAQkAICKEBNIAGKtOANYQ2rlsiJGyABtAAGkADRWoACAFXbi7QABpAA5VpIDWE vv1/bpf//Te3ybe+eUsnffP2v5C//vqfy+1f/yIJG6ABNIAG0EBHA5oNmhHf+p+KGe30d3/7 V6JZoiOq1BB6cuET8ptHfy0P//IXnfSLXzwgP3/wfnng5/d5af4DUeletd1P98/30/z5/xpK P1WfVbr/X1T6iV267x6Z3073q1ed7rvvH9Xrj+PTz/5B7idhAzSABtBATg38UB3fne679wdi 0v0/+4E8cP8P5Rc//1En/frhf5LH/v3ebBBaM7RSnlm5TJ5evrSTli5bLEuWLmqnp2TJkqdk 8ZIn1auf/PeP9UgL1PZ2WqxeF/82Ij2qto2lxYsekUULfyNLFj7iJ/XZSwt/5aXFC38ZnZ56 WBY/9RAJG6ABNIAGCtLAoid/oWz54Li0ZKHe/nMvLVn4oCxd/ItO+s0v/0n0X6ZIaMPGUVm/ YURG1w2PpdEh9T6Q9OfRNYH0rHofTKvU52BaqT7rtCKUlqvPKo2009qnZVSnkWVdaWTtUtFp dO3i+DS8UEY76Sn1noQN0AAaQANZNDAy9KSMT0+obWNp7ZonxE8LZO3QY530yMM/yQ6h53+3 Qcal59fL88+PxqQR9V1E2jQsz3tpTWTa9Nxq8dOqyPTcxpUSlTZtWC7j0zK1zaSl6j0JG6AB NIAG8mhg4/plotNz65dGpEVqW3fauP4ptf9T8ojqjsscCYVhs2nTqOjkb1eg6YDFAGb866bn hhRUgsnAphs6Gzc+KzqFQbNxwzMSmdYvVxeok2+YsIE2KEOZVOQUQ/JiyioaQANoQGtgUSgt VJ/H0obRp0SnXz98DxBCMDgNNIAG0EDRGrCD0C8f+sf+QKjVaolJwQipVySk9w12v2WJhHQe REJFC4v8cFZoAA3YaMAWQj8uH0IaBkHwBD8XDSEPPLqLrsTuOO8cCQ+02eyTlAff2widfdAJ GnBTAzkgtMed0pp8qwenlvff1AUSXEXbXLDtmFAYQmVGQkCIBulmg6ReqJdB04AlhB780fhI qN8QCnbVmVlwwe644PfBiQnB7WZygtmmI6Fgd1xXHu1JCXqbnpzQOaZHdBP+vtfnYPQT3Ccc FfXaj0Y6aI2U60XzTdaAHYQeeuCH5UNIRz69xoR82IzNjjPw6X5d5c2M00lv1yAyr0H46PfB SMhAKAgjPX2wF3yiutDCwPAeqIrpjjPfRR1nGpzNPjTOJjdOrg19D4IG7CD0wH3fyw4hPR37 OfXAqkmb1PtNG9d20nMbh9V33WnjxjVtgPjbg3Ay75/bsNrfp/0a3icImw3rV6hoZkVnDMgH zNNeMu+913VqSnY7mc8+DBapaYJ+8ra33wdfw9ujPgfLGM4r7vhe54wqB9vG6gpbYAs04L4G 1o0s9KZhe2mknUafVJ9VGnnCS/f+67ezQygKMlHQ0eAZS340E4xsvPcbVLQTSCai8UGiINN+ HshAx49ulneAYyYimChHz4oLRkJ5IBQHlV6ACW63gRgNyv0GRR1RR2jAXgNjAGpDx8AnBKHI ZXtsx4S64TIGGh3BGMiYLrSoz6ZbTQNmgwKQTkH4mIgnKtIZi3j8h0796MYHT6+Ix0Q9JgIa i4R8UvuwaFO7/RrcZt5HbTPHJe1jIqbw+aLOHS4Ln7vrBntgDzRQFw2MRT4mAlo/8rjoFLls jy2ENqxfrQAQSG2QBCOaIFw6Dnj9Si+6CUY1ne/WqehGJR8mfqTT1dUV6lYz360bWSI6rR9Z 3OlW09+NjizyUjAPTWid9Db9un7tk17Sn8374Ks5NrwteFww/6j8gnkEzxPOO/xdUtmiyss2 vz5J2AANOKSB4cdkvU5t+HjvVYpctscWQusUJHRav+4ZL3U+jz4t69vJ+z702dtPLTw6Pvkg iUsGKj1f24uSjqgFSbuTWmBvOCINPa4W2SNhAzSABtBAXg2MeguWPi6jaoFSk5d+76cF3WnN v8uoSpHL9thCaHjNIvHS0OJAWqjeq7QmnNr7to8ZWv2URKcn1faxtGb1ExKVhlY/rvZ7XNY8 2076vd727GPttEC9LpA1q8aS/mxSZ/uzv1V5kLABGkADaCCPBoaUH9VpzarfdKWhlb8Rnbq3 /1p99lPksj22EFr1zL+LTitXLJBnnhlLZpveblLn+xW/lWdSpJXLH5FU6elfy0qdlv8qOj39 S/V9d1qhPpOwARpAA2ggnwaeefohCaYVT/9C+VY/me2dbcselBUq/fKhiGV7bCH09NJHxDot +bU8HZOWLXlY7NJDar9AUj+OtCwqLfq5LNPJfGc+h16Xqs9LF80nYQM0gAbQQA4NLFv0gPK5 YynRry5UfnfhfZ3U9aN2thDyo5zHVDT0uEpPBJL+HJ30/s8G0iqVR2RqR1km2hr32jnuUXW8 RVr+G1kVkVJFWWmjMvZPF8ViL+yFBhqqgUDPlOmtevoRrwfqmaUPy4qlD3X/sqothHjqeRCe euYa0TkaQAP90UDrlBekNUPNju4FodefPSxT5m2SSbNXyMT3rbdKXqYkbIAG0AAaQANJGtAA Ovi+3hDa5eRl8tpzV8qrTl0qrzh2iVVqHb1CrJMuQFXpaHVumzRDXY91Kvp6Upzb5lq8fSqs nzLOXUae1vWdon4K13kJ57bWkNa57fmLbhM1OXeltrStG72fbf2kydN2X3XuIx6T1kH3SmvP vw/9lMOUH6iN6vcdvHRX4L3ZVtSrztsmFXW+QD46/Cs6dWyWUF7b81rZpm2/MvK0vh5Vhj0s km1+Hd3ZaCPFPjZlTLNPmuuxzTdNnVvvW0L7Gdhzl2BLa23YnjtFm7CuxzLy1Nej4KPLsNvf hCD0hju8DSRsgAbQABpAA/3SQOdH7bwlTvnDAlgAC2ABLNBnC/x/ckfopPvf5pAAAAAASUVO RK5CYII=</item> <item item-id="312" content-encoding="gzip">H4sIAAAAAAAA/4xUW08TURCes73sdiktlIvAVooUAeViObTloibVNMTEW4I/gCztCjVCsSyG x8Yf4JuJb774E4zvxnf/kanfmSlL9cnTzM5lv5nvnDk7TRORgryCuGzH8HSCd/vBUat9miCz ypBUs92QWJxjOwZ20nh5+CZohByhfc638EyeH589bl9K+BnERmA/Aj6HlCCf60QjwLt7175Z s7ZsyiIrxkYuIn8Uhp3W4UUYKEbuQrI0uOK783/5CS4QDztB4HFAQ4bP2Ezq6R9E3YStv0DX ko5oOyXacUWnhrQFkvfoj6PsDbRjg9bRAA1Naf3pKdEHl4YZ9C3NIE3bVAFoi6q0aagyXKqb ymqz31oGoRE2uxneyqh2f8Jxcqxro2M6/hs6N65zv6DHJrh6cxxHiZ2iME4xqT/iGN1xusHv vk6iYYo7PCXFxqb5RThlXijsdUa2GPlEHtN0c3mh8W4KTX6AZlZo8lQQmtmIZk5ovFtCM8dl kTEvNHPXNFQUntEF4SneFp6FAZ5F4VmgJeFZjHiWhad4R3iWuS66eld4lgd4aEX6bK/K1a2s iV5dlytcYyy+tXvsf498Kkni6oZckAlpuaASF94UZ0UGQsDJilQvV0VXtoSlimOpWEnOtS1M 1YhpR5Iru8JkBum+FN/h4g/k/OWr8z/kkco29cFRxz87Pnjd7pz4oc3YCTOZHK77oS8tmOl/ +RYugKdZ9cdtiW3juf5l63yP68g0582cqj5WVg8/Uvn/j14Vt8OO3wh0PcavvD6woEZIeQrA glLKs6jXKyhLeUDBiCkv3jNGnDEwEsB0awAnGQPDZgwMx2AMOMV1EHGB4fQhYDg9DQynDxuM ycowBkbWYAxYtpt9cXESdFoN/600xOFtP4E0qYWfITd/MW6/m/+s9KDzBwAA//8DACMtzulO BQAA</item> <item item-id="313">iVBORw0KGgoAAAANSUhEUgAAAeAAAAFyCAYAAAAtegndAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACSKSURBVHhe7Z0LlqJKEAVdFwtyPa7G zbgYRqAdEflKERRJ9Dt93nQDlZVx07wWIH0p/ZKABCQgAQlIACdwwSMaUAISkIAEJCCBUgO2 CCQgAQlIQAI7ENCAd4BuSAlIQAISkIAGbA1IQAISkIAEdiCgAe8A3ZASkIAEJCABDdgakIAE JCABCexAQAPeAbohJSABCUhAAhqwNSABCUhAAhLYgYAGvAN0Q0pAAhKQgAQ0YGtAAhKQgAQk sAMBDXgH6IaUgAQkIAEJaMB9NfC4lcXlUl7+vq/39k6P8la8tl3Lj03l2DaLTQISkIAEJPAm oAF/VcO9vD6N97/p3q9PIy7K26PZ8X59mu/fxva/p7ZZdBKQgAQkIIE2AQ24Ww+V4Ra351r2 9dWsahvPrcz5bcZlvVJ+rYLHtll0EpCABCQggU8CGvBkRbRWxB+G2zHksW2TMdxBAhKQgATO RkADnlD8cSveK+KVBvy6puz/39fXZSELa8AayK0GqDcCGvAI6dp8/59ifu6YwIApYc8cp3ox +8UQkLWcGQJcFLKm7VQDujbm27reW+2nAXOvghWRyBfQimmGOFTWjIxyZjhXUUjWGnCPrl8r 3//7rLsJixSWK9f8IsmZ00TWDGs5M5w1YI5zf6R6ldtZ+bb2XPMxJF9EjLhyZjjTzYrLKr9I 1jSnCcnaFXBH19pgWw/h+H4YR3NXdPP77oM4xraxpza4cs0vEvkCyi97dkayZnjLmeFMv6nU gDld0WsLYFqGkoAEJBCGAPlmRwMGy4YUFkzLUBKQgATCECD7tAYMlg0pLJiWoSQgAQmEIUD2 aQ0YLBtSWDAtQ0lAAhIIQ4Ds0xowWDaksGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUggDAGy T2vAYNmQwoJpGUoCEpBAGAJkn9aAwbIhhQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEACYQiQ fVoDBsuGFBZMy1ASkIAEwhAg+7QGDJYNKSyYlqEkIAEJhCFA9mkNGCwbUlgwLUNJQAISCEOA 7NMaMFg2pLBgWoaSgAQkEIYA2ac1YLBsSGHBtAwlAQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgC ZJ/WgMGyIYUF0zKUBCQggTAEyD6tAYNlQwoLpmUoCUhAAmEIkH1aAwbLhhQWTMtQEpCABMIQ IPu0BgyWDSksmJahJCABCYQhQPZpDRgsG1JYMC1DSUACEghDgOzTGjBYNqSwYFqGkoAEJBCG ANmnNWCwbEhhwbQMJQEJSCAMAbJPa8Bg2ZDCgmkZSgISkEAYAmSf1oDBsiGFBdMylAQkIIEw BMg+rQGDZUMKC6ZlKAlIQAJhCJB9WgMGy4YUFkzLUBKQgATCECD7tAYMlg0pLJiWoSQgAQmE IUD2aQ0YLBtSWDAtQ0lAAhIIQ4Ds0xowWDaksGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUgg DAGyT2vAYNmQwoJpGUoCEpDA4Qm8zJDs0xowWDaksGBahpKABCSQHYHK3PoMbuj3rwTIPq0B g2VDCgumZSgJSEACmxP41VCXTozs0xrwUnVW7E8Ku2KaHioBCUggGYGlxjm1Qk02sYGByD6t AW+tZmt8UlgwLUNJQAIBCRzNOFNJQPZpDTiVajPGIYWdMR13kYAEghJYcu1z7xVnbhKQfVoD BtUnhQXTMpQEJLAxgaWGuvF0Qg9P9mkNGCwlUlgwLUNJQAILCWioC4GBu5N9WgMOKiyYlqEk cGoCv1wrPTWwzJPXgDMX6NfpkcL+OkePk8BZCPxinK5Y4lcH2aetJ7CeSGHBtAwlAZSAxoni Pl0wsk9rwGB5kcKCaRlKArMIaJyzMLnTzgTIPq0Bg2KTwoJpGSo4AY0zuMCm90GA7NMaMFh8 pLBgWobKlIDGmakwTitrAmSf1oDBUiCFBdMy1AwCSz92kmL/GdNyFwlIoEOA7NMaMFh+pLBg WlmGSmFgqVaQvsiyLBEnJYFeAmSftjeARUgKC6ZVh9LwaOLGk4AEtiBA9mkNeAsFB8ZMuaLS 8EDhDCUBCZyGgAYcVGpS2KAITUsCEpDApgTIPu0KeFMpPwcnhQXTMpQEJCCBMATIPq0Bg2VD CgumZSgJSEACYQiQfVoDBsuGFBZMy1ASkIAEwhAg+7QGDJYNKSyYlqEkIAEJhCFA9mkNeKxs HreyuFzL+8c+j/JWXMpKpMuibc+P6jyP8UsCEpCABPIlQPZpHWGwDu7ltcdk79en8V4bS27/ u/tzd1u1nRQ23/J2ZhKQgATyJUD2aQ24pw4et6I2y+J67ayAK1Muytvj76CPFfLYtmZ/Uth8 y9uZSUACEsiXANmnNeA+A77fy9pju6egv05Jt0x3bNtfDFLYfMvbmUlAAhLIlwDZpzXgsTrY wICba8ef3/mWojOTgAQkEJNAXy9+/Y7KWAOGDZgS1jgSkIAEJLCcgCvg5cy2OWKDFfA2E3VU CUhAAhJIQUADTkExxRhT13W9CSsFZceQgAQkkA0BDTgXKXo+B+zHkHIRx3lIQAISSE9AA07P 9LcRex/E8fp8cN+DOMa2+TGk30TwKAlIQAIcAQ2YY41GIoVFEzOYBCQggSAEyD7tXdBg0ZDC gmkZSgISkEAYAmSf1oDBsiGFBdMylAQkIIEwBMg+rQGDZUMKC6ZlKAlIQAJhCJB9WgMGy4YU FkzLUBKQgATCECD7tAYMlg0pLJiWoSQgAQmEIUD2aQ0YLBtSWDAtQ0lAAhIIQ4Ds0xowWDak sGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUggDAGyT2vAYNmQwoJpGUoCEpBAGAJkn9aAwbIh hQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEACYQiQfVoDBsuGFBZMy1ASkIAEwhAg+7QGDJYN KSyYlqEkIAEJhCFA9mkNGCwbUlgwLUNJQAISCEOA7NMaMFg2pLBgWoaSgAQkEIYA2ac1YLBs SGHBtAwlAQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgCZJ/WgMGyIYUF0zKUBCQggTAEyD6tAYNl QwoLpmUoCUhAAmEIkH1aAwbLhhQWTMtQEpCABMIQIPu0BgyWDSksmJahJCABCYQhQPZpDRgs G1JYMC1DSUACEghDgOzTGjBYNqSwYFqGkoAEJBCGANmnNWCwbEhhwbQMJQEJSCAMAbJPa8Bg 2ZDCgmkZSgISkEAYAmSf1oDBsiGFBdMylAQkIIEwBMg+rQGDZUMKC6ZlKAlIQAJhCJB9WgMG y4YUFkzLUBKQgATCECD7tAYMlg0pLJiWoSQgAQmEIUD2aQ0YLBtSWDAtQ0lAAhIIQ4Ds0xow WDaksGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUggDAGyT2vAYNmQwoJpGUoCEpBAGAJkn9aA wbIhhQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEACYQiQfVoDBsuGFBZMy1ASkIAEwhAg+zRi wI9bURa3R79Aj1tZXO9hxBtLhBT2FEBNUgISkEBiAmSfBgz4Xl4v1/K/xVaG2/75Ce9+vZRn 8GBS2MQ16XASkIAETkGA7NObG/DX6rfHgJ8OXF6KWzmwRg4jOilsGGgmIgEJSAAkQPbpaQP+ M8zb8zRyNbHqe/B08hekR3krivJ99rlaDTdjXC7d37d/BmmDoUhhwbQMJQEJSCAMAbJPzzTg lulWq9WvU8ovU+2cSu5b7fb97rn2vRXxT0OTwoZ5NZiIBCQgAZAA2adnGnBrdfphoNWKtrut 9XPXrCuIvQbcXAeev7IG1UgYihQ24bQdSgISkMBpCJB9eqYBD9xEVRls5+6pjxuq+q7tasCn KWQTlYAEJHA0Ascx4C+yfSvilnm7Aj5aLTpfCUhAAqcicFADbq7jfpxGHrwG3L3hymvAp6pw k5WABCSQKYEDGnBzd/P3Ndw+Y21+VyX5PnvdWTlnKszaaZHCrp2rx0tAAhI4IwGyT09fA55S oF7lDt/BPPoUrNfYY58DHrhmPDqtX46ZyjPBdlLYBNN1CAlIQAKnI0D26XUGPGG+jXKdJ2H1 yDn4JKz6Lupqtdy5jjxWEr8cA5UYKSyUkmEkIAEJhCJA9ulVBlytbl8P52j/v/tYyclnQfc8 Basy5fphHffvR1cOqf3LMWTlkMKSeRlLAhKQQBQCZJ9eZcAI8F9OJ/9yDJAMKSyQjiEkIAEJ hCNA9mkNGCwfUlgwLUNJQAISCEOA7NMacNKyed/h3XfdmhQ2aVoOJgEJSOAkBMg+rQEnLKr6 GvTfBfD2v18hSGETpuVQEpCABE5DgOzTGnCyspp+ChgpbLK0HEgCEpDAiQiQffqgBvz3Zw27 t1u/imSPm7C+Yn4/XIQU9kSvF1OVgAQkkIwA2afzN+ARrPf7PRn01QPNNOC+j22tju0AEpCA BCSwiEBfL379btFAK3Y+qAFn+OzomQa8QisPlYAEJCCBjQm4At4Y8CbDa8CbYHVQCUhAAiQB DZiknSyWN2ElQ+lAEpCABHYioAHvBH5tWD+GtJagx0tAAhLYl4AGvC//FdH/7s4e+AMSpLAr kvBQCUhAAqclQPbpg96EdczaIIU9JiFnLQEJSGBfAmSf1oBBrUlhwbQMJQEJSCAMAbJPDxrw 86GKu/wXRsWeREhhI3M0NwlIQAJbESD7tCvgrVTUgEGyhpKABCSQhoAGnIZjdqOQwmaXvBOS gAQkcAACZJ92BQwWBCksmJahJCABCYQhQPZpDRgsG1JYMC1DSUACEghDgOzTGjBYNqSwYFqG koAEJBCGANmnNWCwbEhhwbQMJQEJSCAMAbJPa8Bg2ZDCgmkZSgISkEAYAmSf1oDBsiGFBdMy lAQkIIEwBMg+jRjw41aUxe3RL1D1Z/yu9zDijSVCCnsKoCYpAQlIIDEBsk8DBlz9gYJr+d9i v/5ubllWf0XoDB5MCpu4Jh1OAhKQwCkIkH16cwP+Wv32GPDTgctLcSsH1shhRCeFDQPNRCQg AQmABMg+PW3Af4Z5e55GriZWfQ+eTv6C9ChvRVG+zz63/1xf9/ftn0HaYChSWDAtQ0lAAhII Q4Ds0zMNuGW61Wr165RyY8zV98ep5L7Vbt/vnmvfWxH/NDQpbJhXg4lIQAISAAmQfXqmAbdW px8GWq1ou9taP3fNuoLYa8DNdeD5K2tQjYShSGETTtuhJCABCZyGANmnZxrwwE1UlcF27p76 uKGq79quBnyaQjZRCUhAAkcjcBwD/iLbtyJumbcr4KPVovOVgAQkcCoCBzXg5jrux2nkwWvA 3RuuvAZ8qgo3WQlIQAKZEjigATd3N39fw+0z1uZ3nzdsdVbOmQqzdlqksGvn6vESkIAEzkiA 7NPT14CnFKhXucN3MI8+Bes19uC14oG7q2fNqXPqe+oYYDspLJCOISQgAQmEI0D26XUGPGG+ jTKdJ2H1yPX9JKyJu6vHJK/vvK6MWwMO98owIQlIQAIbEziMAVer29fnf9v/7z5WcvJZ0N2n YE3dXT0gQGXkl+pjUfdqVa4Bb1ynDi8BCUggHIHDGDBHfuE14oGPOnHz7Y9ECrt3rsaXgAQk cEQCZJ9edwoaodtzd/VUXA14ipDbJSABCUigh4AG/B/K0N3VE3WjAfvCkoAEJCCBHwhowBW0 WTd4DdDVgH8oOw+RgAQkIAENeI35/jdvb8LypSQBCUhAAssInN6Ap++u/vuzht3brV+cXQEv qzj3loAEJCCBmsDpDXhuHdzv97m7ZrEfKWwWCTsJCUhAAgcjQPbpA9wF3afeMZ8dTQp7sJp3 uhKQgASyIED26YMacBY6LZ4EKeziyXmABCQgAQl4CjpqDWjAUZU1LwlIIAoBsk+7AgarhhQW TMtQEpCABMIQIPu0BgyWDSksmJahJCABCYQhQPZpDRgsG1JYMC1DSUACEghDgOzTGjBYNqSw YFqGkoAEJBCGANmnBw242tC3cevfh1GxJxFS2MgczU0CEpDAVgTIPu0KeCsVNWCQrKEkIAEJ pCGgAafhmN0opLDZJe+EJCABCRyAANmnXQGDBUEKC6ZlKAlIQAJhCJB9WgMGy4YUFkzLUBKQ gATCECD7tAYMlg0pLJiWoSQgAQmEIUD2aQ0YLBtSWDAtQ0lAAhIIQ4Ds0xowWDaksGBahpKA BCQQhgDZpzVgsGxIYcG0DCUBCUggDAGyTyMG/LgVZXF79Av0uJXF9R5GvLFESGFPAdQkJSAB CSQmQPZpwIDv5fVyLf9bbGW47Z+f8O7XS3kGDyaFTVyTDicBCUjgFATIPr25AX+tfnsM+OnA 5aW4lQNr5DCik8KGgWYiEpCABEACZJ+eNuA/w7w9TyNXE6u+B08nf0F6lLeiKN9nn6vVcDPG 5dL9fftnkDYYihQWTMtQEpCABMIQIPv0TANumW61Wv06pfwy1c6p5L7Vbt/vnmvfWxH/NDQp bJhXg4lIQAISAAmQfXqmAbdWpx8GWq1ou9taP3fNuoLYa8DNdeD5K2tQjYShSGETTtuhJCAB CZyGANmnZxrwwE1UlcF27p76uKGq79rukQx4ZLXenEZvcanLs1nJ9297/nnH5zF+SUACEpBA vgTIPj3tCF0TGjDQBmffirhjUocx4Nf16s/5V28wXm862v+usx/ZVm0nhc23vJ2ZBCQggXwJ kH06oQE3q7+P08iD14C7N1zldQ24unO7vtnseu18ZGrsDcb0mw9S2HzL25lJQAISyJcA2acT GXCzWvy+httnrO/TtO+z1x3z2lmbx/3efCRqcvXfmvfXm43vnEhhd0ZoeAlIQAKHJED26WkD nkJYG8/wHcyjT8F6jd13rbi+gWv4eurotEZPk08l1Nq+gQG/c3rfOb5gRu4qAQlIQAIJCPT1 4tfvEgw/a4h1Bjxhvs0MOk/C6pnW15OwOsZXnxKe+6is/8bdvUFqFo/PnTYw4B9m4SESkIAE JAAROMwK+HWttPtOouuVk8+CnnoK1swVbX0TVPWxqHv3cZftu5PfK8963mPGrgFDJW8YCUhA AnkQOIwBU7gWrYCrSc007Mn5T13XnfxM9OcqnBR2Mjd3kIAEJCCBLwJkn153Cnpr8f5OcX8+ tnJG0M0MePyjRn4MaYY27iIBCUggYwIa8Jc4C++S3tCAm2vaQzeHjW3zc8AZv+acmgQkIIGa gAbcUwiL/mRhKgNOXJCksImn7nASkIAETkGA7NN5noL++ljSTivgxOVGCpt46g4nAQlI4BQE yD6dpwE/Zf68w7r75Ky/U71DdzC7Aj7FC8UkJSABCaQmoAHPJHp/PrHqSF+ksEfi4lwlIAEJ 5EKA7NPZroDHxcjr2dFzC4cUdu6c3E8CEpCABN4EyD59UAM+ZrmQwh6TkLOWgAQksC8Bsk9r wKDWpLBgWoaSgAQkEIYA2ac1YLBsSGHBtAwlAQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgCZJ/W gMGyIYUF0zKUBCQggTAEyD6tAYNlQwoLpmUoCUhAAmEIkH160ICfjzt+PhNz3feYIn1jh1Fw IBFS2OgszU8CEpDAFgTIPu0KeAsFNWCQqqEkIAEJpCOgAadjmdVIpLBZJe5kJCABCRyEANmn XQGDRUEKC6ZlKAlIQAJhCJB9WgMGy4YUFkzLUBKQgATCECD7tAYMlg0pLJiWoSQgAQmEIUD2 aQ0YLBtSWDAtQ0lAAhIIQ4Ds0xowWDaksGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUggDAGy T2vAYNmQwoJpGUoCEpBAGAJkn9aAwbIhhQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEACYQiQ fVoDBsuGFBZMy1ASkIAEwhAg+7QGDJYNKSyYlqEkIAEJhCFA9mkNGCwbUlgwLUNJQAISCEOA 7NMaMFg2pLBgWoaSgAQkEIYA2ac1YLBsSGHBtAwlAQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgC ZJ/WgMGyIYUF0zKUBCQggTAEyD6tAYNlQwoLpmUoCUhAAmEIkH1aAwbLhhQWTMtQEpCABMIQ IPu0BgyWDSksmJahJCABCYQhQPZpDRgsG1JYMC1DSUACEghDgOzTGjBYNqSwYFqGkoAEJBCG ANmnNWCwbEhhwbQMJQEJSCAMAbJPa8Bg2ZDCgmkZSgISkEAYAmSf1oDBsiGFBdMylAQkIIEw BMg+rQGDZUMKC6ZlKAlIQAJhCJB9WgMGy4YUFkzLUBKQgATCECD7tAYMlg0pLJiWoSQgAQmE IUD2aQ0YLBtSWDAtQ0lAAhIIQ4Ds0xowWDaksGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUgg DAGyT2vAYNmQwoJpGUoCEpBAGAJkn9aAwbIhhQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEAC YQiQfVoDBsuGFBZMy1ASkIAEwhAg+7QGDJYNKSyYlqEkIAEJhCFA9mkNGCwbUlgwLUNJQAIS CEOA7NMaMFg2pLBgWoaSgAQkEIYA2ac1YLBsSGHBtAwlAQlIIAwBsk9rwH1l87iVxeVSVkJU 39d7e6dHeSte267lx6ZybFtZj+WXBCQgAQnkS4Ds0zrCVx3cy2vbdO/Xp3EW5e3R7Hi/Ps33 z5Hb/57aVm0nhc23vJ2ZBCQggXwJkH1aA+7WQWW4xe25ln19NavaxnMrc36bcVmvlF+r4LFt zViksPmWtzOTgAQkkC8Bsk9rwJN10FoRfxhux5DHtv3FIIWdTMsdJCABCUjgiwDZpzXgiQJ8 3Ir3ijiBAb+uK7f/72tAAhKQgARYAn29+PU7aiYa8Ajp2nz/n2J+7pjAgClhjSMBCUhAAssJ uAJezmxqHdu6c/l9d3P9bufzFuf/4zTm27reW23RgJMr44ASkIAEciKgAe+sxtfK9/98vAlr Z2kMLwEJSCA5geoToq9PiWrAyfEuGLBe5XZWvq3D/RjSApbuKgEJSAAi8DLRof/PnYYGPJfU BvvVBtt6CMf3wziau6Kb33cfxDG2zY8hbSCXQ0pAAicgMGWuKZ9xpAEHLShS2KAITUsCEjgg AdJA1+Ih+7R3Qa9Va8HxpLALpuWuEpCABGoCU0Y5hmns2CPhJfu0BgxWBiksmJahJCCBAxCY MteUp3EPgGNwimSf1oDBSiGFBdMylAQkABGYMlFoGqHDkH1aAwZLiRQWTMtQEpBAAgJT5uoK NQHkGUOQfVoDniFIql1IYVPN2XEkIIFxAnOMs/05U3nmTYDs0xowWAuksGBahpLAKQis/Xzp KSAFSJLs0xowWDCksGBahpLAYQhMrVYPk4gT3YwA2ac14M1k/B6YFBZMy1ASSEZgjUFOHes1 1GQyhR6I7NMaMFhKpLBgWoaSwCwCGuQsTO60MwGyT2vAoNiksGBahgpOYI5xepNR8CI4UXpk n9aAwcIihQXTMlRGBKbMcmyq3mSUkZBOZTcCZJ/WgEGZSWHBtAy1gMAWBtkec8FU3FUCEugh QPZpDRgsQVJYMC1D/RGYMldvArJUJJA/AbJPa8BgPZDCgmkdJtQcg5za5zDJOlEJSOAnAmSf 1oB/kui3g0hhf5vh+qPWGNjUsXO2r8/AESQggTMTIPu0BgxW2hwDmdpnbLpTx87ZvnZ8EKeh JCABCSQnoAEnR5rHgKSweWTsLCQgAQkciwDZp10Bg7VBCgumZSgJSEACYQiQfVoDBsuGFBZM y1ASkIAEwhAg+7QGDJYNKSyYlqEkIAEJhCFA9mkNGCwbUlgwLUNJQAISCEOA7NMaMFg2pLBg WoaSgAQkEIYA2ac1YLBsLmXc/0CMhpKABCSwGQENeDO0+w5MCktnmttbCzp/40lAAjEIkH3a FTBYM6SwYFpZhsrtDUE1H78kIIH8CZB92q4A1gMpLJiWoWYSIN8UzJySu0lAAh0CZJ/WgMHy I4UF0zJUhgRSmX2GqTklCWxKgOzTGvCmUn4OTgoLpmWowAQ08sDimlovAbJPa8BgEZLCgmkZ SgKTBDTySUTukAkBsk9rwKDopLBgWoaSAEZgjZFjkzTQoQmQfVoDBkuFFBZMy1ASOASBpeZ9 iKScZHICZJ/WgJPLNzwgKSyYlqEkEJKAhh1S1smkyD6tAU/KkW4HUth0s3YkCUhgDoG5hj1n LPfZjwDZpzVgUGdSWDAtQ0lAAgsIzDHqBcO5a2ICZJ/WgBOLNzYcKSyYlqEkIIHEBOaYtE9X Swz9bziyT2vA22jYOyopLJiWoSQggZ0IzDHqnaZ22LBkn9aAwTIhhQXTMpQEJJAxgSmTznjq u0yN7NMaMCgxKSyYlqEkIIEDExgz6AOn9fPUyT6tAf8s0/IDSWGXz84jJCABCXwSOOPqmezT GjD4iiOFBdMylAQkcFICEVfPZJ/WgMEXDiksmJahJCABCXwROKo5k31aAwZfOKSwYFqGkoAE JLCIQM7mTPZpDXhR2azbmRR23Uw9WgISkMA+BPY2Z7JPa8BgjZHCgmkZSgISkABCgLgpjOzT GjBSNk0QUlgwLUNJQAISyIJAitUz2ac1YLBsSGHBtAwlAQlIIHsCc82Z7NMaMFg2pLBgWoaS gAQkcGgCH+Z84WyRi3RoedJMXgNOw9FRJCABCWxFgOzTGvBWKvaMSwoLpmUoCUhAAmEIkH1a AwbLhhQWTCu7UHLmJJE1w1rODOcqCslaA+Z0RYUF08ouFPkCyi55eEKyZoDLmeGsAXOchyPd r7VZNt9FeXu0d32Ut+K17VreP0YZ28a+s8oB415zsFlx5GXNsJYzw1kD5jj3R3rcyqJturUZ v432fn2a77Wx3fa/uz93t9HC7o1xz/g2K46+rBnWcmY4033aU9CTut7L639Dbv/7eWBt1i9z HtvWBPFFNAk7yQ5yToJx1iCynoVp9U5yXo1w9gAkaw14QpbHrSgvxa2sz0J/GG695n2b89i2 vxiksLOrLeCOcuZElTXDWs4MZ3qhpAEP6VobaucacAIDfl9bfl1H9v8ysQasAWsgpxqg7F4D niLdvga80oCnQrldAhKQgATOQ+AkBty+O7nzTvPvhqphyWeeZp5xCvo8ZWWmEpCABCQwReAk BjyFYWx7upuw1szCYyUgAQlIIBYBDbirZ+djR/WNV6+bsJ77rvkYUqzSMRsJSEACElhDQAPu oVff+fz/QRzdh21UK+KhB3GMbVsjk8dKQAISkEA0Ahowruj407Lw6Rwy4BKGI/v+v9P97w1V 60zHIbEgk17C/m9CX/dHIBM9WJBEXK3pH3RfwL7Dd/IWoonZaMA/yLXmkLFT2GvGPdOxSxiO 7ltdblj7CjoT+IlLMP0oXmeFumeSTgZuIt0lNd0MNcDVml5cWPPZN8z/t4z6cmX3UcXLwmvA y3it3Hv6aVkrA5zg8CUMx/etXnjF54O+T8BvTYpL2FfPrWku5RTXa+uJcWviRz02HVdremmN LGBfGe7HWbJm5bzmPbwGvFSvNfv7UaU19JpjlzAc3bd68ax797o+mYONsIR9JdX9PvAEuYPl vfV0k3G1phdLtZD95/idFfHi4M/HE/9wjIf8SmCV2L8GDXbcEoaj+zbvfIv/f9lKM56slCXs 24N5DXgcbTKu1vRkDXd3+JV9vRZoPaZ4ceDmAA34R3A/HbZC7J/iRTxoCcPJJ5e1TbdqXl6n HC2ZJew14PmvvlRcu3/Jrb5ObE1vUdPN5ZX1bDXg+S+T9Xv++kJbHznOCEsYLtm3/Yc14tBK m8kinq3QroChFXA3TOf6ZtpqiDHaDzXdmG+aM2YaMFpGCy74o/M6UrAlDFfseyQk2FyX8NSA 58uyFVcNeFqDZexTrXxf89KApxVKusf8W96Thg012BKGg/tOPPEsFLCEySxh/z+sK+BJBZJw taYnOfftMJv91yn+n8J9HKQBr2e4cASflrUQWM/uwwy/P4YxvO/4E8/WzzLmCEvY/xHQgGeU Qhqu1vQM1F+7zGNfG/X/pyC+/+3HkH5h7jESkIAEJCCBHQm4At4RvqElIAEJSOC8BDTg82pv 5hKQgAQksCMBDXhH+IaWgAQkIIHzEtCAz6u9mUtAAhKQwI4ENOAd4RtaAhKQgATOS0ADPq/2 Zi4BCUhAAjsS0IB3hG9oCUhAAhI4LwEN+Lzam7kEJCABCexIQAPeEb6hJSABCUjgvAQ04PNq b+YSkIAEJLAjAQ14R/iGloAEJCCB8xLQgM+rvZlLQAISkMCOBDTgHeEbWgKHJ+BfOjq8hCaw HwENeD/2RpbA8QlowMfX0Ax2I6AB74bewBI4OoH231Etytvj6Pk4fwmwBDRglrfRJBCLgCvg WHqaDUpAA0ZxG0wCwQhowMEENR2SgAZM0jaWBKIR0ICjKWo+IAENGIRtKAmEI6ABh5PUhDgC GjDH2kgSiEegNmBvwIonrBkRBDRggrIxJBCWwKO8FZfycrmU13vYJE1MApsQ0IA3weqgEpCA BCQggXECGrAVIgEJSEACEtiBgAa8A3RDSkACEpCABDRga0ACEpCABCSwA4F/bA5mcM8Q3FgA AAAASUVORK5CYII=</item> <item item-id="314">iVBORw0KGgoAAAANSUhEUgAAANoAAAAVCAYAAAAgo/C6AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANESURBVHhe7VqLkYUgDLQuC7Ieq7EZ i+EMCEIEDOHnO7mZmxvfKSTLbjbgm8T4GQgMBKojMFWfYUwwEBgIiCG0QYKBQAMEqglt3/cG 4Y8p/isCv8ifWMyu0LZFTNMkf+eVLpRtmcSy6SXfxTrbz29imWaRMNxPcwew0Biqv9/Jnbtw XfnTiPOO0CRJLsWQcNvXGT2DhXYMs69inldBly5p6pfdBAXFg9+5kImwviy3euH05k8rzhuh uZV4EcagohgDuex7lchMRbfYBeOnuCRraUHQ4CDr5cyycFhVK7WQUOOILZgkU8lC0zFPWTTP rkevM7+I9OVPS85nOdq9GgEtPY4GHwPZo2RTjpAlRk0CvfJaYPpaE7S4tTZuj7vmaW8TYFmh sFILs1u2yvLHGvtYd6r4Ux2NGzNNaHJhMZgBQYWEdnhk9b3aScALZCXe8PW5ON78qF52tsZM siXMct3aK09fsLKYndwI4diaPzlCQ47tCpbP+WehmbYLCw2TOHQY4n5OqTT3AwV/O3pb95tj YXF7Yg7mlyABH5FuLVbBQ5FeeRpIzv2oaSEjQuvAH+ieKDxTjZa9r0Z88eLsOrqCJC5AiCUq NEX4gyCbz9FCDpWq+gRCP92aSMB4ftZkNwfBgTy4daRlZRWVrnmiU2njaLb4lPBa8oeFIxYa 5IIU6p6I8jn/7GhSsCGh8dT9pBcuaCpO2zkIjhbM7ylK9//RXr/03rBXnr59Nrt1rNcR8R3t qYDyY84QWqpztdqj9RHaUb/V8T4+8DEtZOfWsURBsUVlxrPeFf6HPZrRmo/ffM5nCA2MDr9D OztW+By/U2p26thLaCh36wicul8ge2gvRzPtoN4zQ4toVfkkoZXmj4Uee4+mxwifgHM5T/sK VvBUju5STd6jkZmKbsw9deTO2/q52nkmCk11ATSnb8af3P24o/frdVWm0MJVyeEQBF/yhW1p gtYmYOl4uePVzjNZaC/jz6PIrK7lqU1BnM8Wmj7aDM9Lr1pc/mQ/V5uA2QEWGqB6nvqbQehV UHRe9cwb+CPbQvStF7i+x5YeM01ohdZ5DDMQ+CoCQ2hfXfmRd1MEhtCawj0m+yoCQ2hfXfmR d1ME/gA7gHn+HkEiuQAAAABJRU5ErkJggg==</item> <item item-id="315">iVBORw0KGgoAAAANSUhEUgAAAKIAAABKCAYAAAA45Y/0AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAdxSURBVHhe7Z3bleQoDIYrgc1jYqgs OgnnMRlUNPXUmVQwHoNvXASSMLi8+N9z5mXBAosPSVCW+jHiP2jgAhp4XGAO503hPYyPxzC+ zxvxBiN9xtfzMT5fn0PvehMQZ2U9BiB4iJbMw5/X89AmvwGIBsLneHDDtlq/zuS+x6HQ43QP 4nt4jG0N4WxtvTFsCDBZYOKf7ce1U3h+XuMzlPd8ja5DNO+6jxluPgOJ095KKWaewbwku61v EM2Ct1K41e7i8qcF5oaxkGQWiGu38GYGMc97cZoXD4ehSZ24LgWYcdPamLFjEI2y2x1M5pjI wDWMQ2gRwxXiDklcuzWiGdittcyFH7M1dDm28+d2j8SUkX30LrpfEM3iNFP0ZAtfr+X0Tbhm b3E468O1r5Z3sjLmwLW6V9e6GpCz7vBci2hnPIGuUX+3IGoVUbz5F/ecVDpn7bh2O7HZonnu zonFrHWbQHyvVtrCGnsDN4bUQFKkG6Uh6BTEtm7ZX5icReSsHdeeQ2B3t2uYkI4RY5AtlE1p 1K1BpyBOii84uRXt/JxF5GI3rj07oX0DrBbRv1J2Ngjlug+NLdPUe5Bfm/UJotItyNSaPCPG 1zdrVy5249pdOZGrNVZuWWhSzvdB1IRHAPEYhdsVDuXlOPfHte9TS9xVblY/dZe5xokJ19zY awDEySIOp/2Uko4Ro7u9APpce9wWXEhHEO13mvPJOjyscM8f3pGRAIB4Koj1F7AXiQARIF6C ZYAIEAHiJTTw+zP++fm9xFTuPInfn//GP39lGuj21HzeYUWm6Dv2gmuGa74E9wARIALEi2jg xHvES7zxJScBiwiLeAkwASJABIgX0QBc8wUWAhYRFvECGOq+0sY94iWWrM9JwCLCIl6CbID4 FRCDz7CiDxT9dirdMp+XHLLF5ymr8pwLE+NzxAPEL4Dof+Qa5qKEWXT0h6rpnJNwufmsvHye czz+0ZIhFJAA8WwQifwPL4+Eyg9xP+9X548wecqcPDJz0Ek9qOTYAeLZIMbfJvsVspLJS8tX 1NLclW0cxiKq5U2COXgL4CwH0anJoikZEVchyMVD9XdezMGZqQLu6M57O5/yk1l2zsJL85Kj KNGpdRNVcRDkOe/y2lRLKwZRnszjvEJUuoKPh+zua5m483WLOOnHcX8iEMME+mzifT5Pmc9z JjZPgxznIhD9E5a0ZgxR44SLhxYdcIlFBZ7A3R1Vf1nxdRNU+UouoCSdc9Yzm5ccm8K4xAhh YZN5zqs8+8zxIpuptSoC0QjTWkSykA8XD62zLoljpHSebRGTwf9S+MgueLC53ffn8pKVIFpr nMjy2/aNnbM8AV6qes/WKurfeL+sJEGkFLlUOAhjSc4N7RNtGCueDSJV7cGDgQtXuLxk+g7R 1b1f1o6R1+BgUvX6hgRxO8DQebKhZ5KDyFXRWix0ouBltm7L6SCaZQgutJm84/gwmM9Lrpnn vMaQyUKiJeaPeKaaa55jo8l8vwnXYitUEaZd6poTFrWKDr4CYpWZdyWkGoibVkjXHF+q2v5c PLQLTdeMcQ40qRLA17OIXTFU5WVOAjFVUo2Lh7bTCm1Ra6gAFrGGFg/LOAnE5dqBvL7gf+Cn T3aH330WABArKfKYmGIQk8OSrtn0Lj/5/p/uEY8tx32fPhHEnFXMLMAdflm5L3/O0UJeR1v2 hXbSIlo/yB46/DUpt6LitYVrFquqZcf6FrHlbFvIBogttKqWCRABohqaFg8ARIDYgiu1TIAI ENXQtHgAIALEFlypZQJEgKiGpsUDABEgtuBKLRMgAkQ1NOwD3t+Yln1QCxABIsuVqkP4Ia3o D1mi9g0+elBRVtJZ9usYLCIsYgld4mfoZK/4cYCIP28hhkrVccn6kyZd4c9bwCKq+FJ3Rowo VBlAFCqqtBtiRJnmAKJMT8W9AKJMddVBlH5zydUs5NrX15OOJ1OH3yslO5PeEbpi4YfNOKwY RVWr5bIvUF4kXaFrzzbk2n0ITfZitVfYSEy9C5/w5udCy0rSAMRKIG7Kfw7j8GTAoAJ49yKY a59gUY2nNIZZ2VTlhwolYQCiSeqqUG3s83rZIkmSdAj6bm3P/eba7Sji8YjiVzaRLW2psrLF RRF09L8H2U+BRqosZ0U3/gV6G1cjcx+yyQpitqTFWywp1+5NRDCeB14eQi5GlJeJkWlr7qVb g05B1P3OyatXCsZUosUJ7NZydvP/Wg4qyXZ3FpLxHJmqQuyx7CYgKsOjbkG0pU8y0b6u5qEW jLmG4vAOn/NPzXG79tS8ytNY/0SlsDCUyWZuCrauoiRdx65Z7xryqpWCGEjhFjPZLhnPdcfH XLO8XhEPYIlb7hxE4w2nYpRV7kAEYEQnz6A2ENeuihH1h5VdPPUu/PWNFEFrAiZrqKnB3j+I lsUa93E0iPTfMtlLG0eL4X1cmisZLABfQ4YIckG9IsmYwsvuUFS/MeL2pkbB8msEia7RJ6UB TYjgy7gBiGu8CBjbbqByCG/hmsPY6KG66mi7dH1IX1265uQev/lNLGIfS97zW/wDNTzfFjx+ B0QAAAAASUVORK5CYII=</item> <item item-id="316" content-encoding="gzip">H4sIAAAAAAAA/+zdCZwU1aHv8QITleRpEkl8GlGCihLEURY3dFB2FYawKsgioiiyyqK4RVCv yY3Rm4TEePHe+6KfvE/eS2I0GrOYqwjua0AQGGDYZh+GRWC6Z/QlmXeqT09NTVV1dXV3dXfV qV99vranq6vq1Onu+XPqVHd1J62Lph1z/I1f0DTtyAz99ovivy931pKl/9H5jguqe+uPDP3K t7QPxZwPOv2ik/6oPl//fy/xnz7nA/FfJ+0UfZb29KvHa9Zp9de1x7oCgGrE9NzJ2tNn6J45 I1nIxTOuct3+6bnJYePu7Xom99Xdn9XT3eT4oqTnWnuu++a+hdz2PMhv5vz+peS4bzm8prm+ 2XJ+xX+ZKPzHacl8W3+qtq3v8dtHnrB74le3XfOl8sFfcLFzkOauojSfBrnZWZpGLlWn37j7 vuXzectx47munpv8vig5vJ3SvqNyfDMXc+P5bHiOL0rub6cNl2iv9NFTzpxvNeNPOjj35J2T jt/3neNcHL5aA4DAEhG35nz9oMmcbzLcyhv2A0B4yYhzybf1O3dv2Ln74117Nrb52MkGfbG9 0vqdeyz+tsuZfPRDVx9UWL1fsRsAhHfbvLdD9/6O3e/s2Pn2tl1vbdvpJd/e37bD3Xvlzt4u 3+7iLZM3t1q9vkVnLne0bS2AiFm3Zbsh5WKbt61p4yXf2jpau9fv2iUl7xoSMz/amZ6XNJYh /G6F1Ts7LHYCiJq3duwyvLljp2S++8Z23YtvvdPa2uol37ZU1Qhbq5M2S1Xttph8Ulltsclk Y2WVxceV1bq9VTr9btWGvdXCemlPVVLHOR/tBRBB1cIHe6ra7a7Wtd19r80fPOdbRUODsKth nyDLO+r3SZaysL2ug/LUttTVO9pco/ukps6wyebjagBRtLG6XtxuSNzKgrDe5G9Vupfefs9j vlXuazTsaZT2t9HvGt992L2vcWcbY2ZFQ6MgCztM87c1NErGHJl7W+v2ifKWen2+TDxjgc11 DYIsbKrdJ4iyLBjkkua75vnmRy0POc6xzExVKYAi2lCj+7hOJ8t/fPt9j/lWtd+qsvHA3v37 JbGKpbx7/wFR2GVKP1E2bkX0VezbL4iyjDtxuy1BlLcn4s7IPXm7RRwjC/XJsrz9pL7xk8Qc WbDclQXLXfeHZKalWgtAMG2qb9xY106m3J8851vN/gOpmEPPnHWyYOrmdcg3URCMbp7IOhFx O0y5J7Jue6Igb809vfbEq29MJl6iYGbMtBeMsstDLlsGEBDiIE6Gm4VMuT++84HHfKs/eLB+ /4E2B2vb2LNOrC7LWsdJ9PeMW/Nk9Otk1pn7dUbXLtN8c8krY9qSLt8INyD4ZMTp6nTmfPvV X1/xmm+HDrUTWSccOlR36FDNwSQjN8xzqg8clPRkM93uOXDQ6OPJI1lxK3t05sSrMPXfxK2w bd8B2bWTdcl9MwqWu7JgedTxIfMyLg8BCJQtJptNZOL9ds06X/LNHGsGGWvJztuBg0a+7THN F7EmmbtzMt+0xEGrkWzGAiLiZL5ZUs7Mkn6Wsv0he75ZVgQQQO759vy6t/KabwZLvhn9NyPf jP6buRcnj1W3myTC7cC2tpMRXp4Bl4wivoBQc8+3F97w+vk37/lmlMk3AHnlnm/ev7+Qxfhb LvkmmY9Ps843AKrKLN/OyD7fvByfShnlW+79NwCqcs836/ezyDcA4eGeb9bvZ6XOt8ZPD5nt M8edSZ2NzLoqG3PWmZkTT6poPGi2vc02ANHTsauTtKWjT/btF6zfz3Lpv+1vrGvcV9NQL1XX 11c3tKmvr2qz12SPye6EnSYVUp1uR61ue127bbV1wtbaekfy2/eJL+ADiJBN1XVmG82qaoX1 VbUbqpOs389KnW+7q6u27961rWKHtHX7ti3byoVPhPLyTeVbN+m3emFDebnFesPW8o86+tDk /S1bP9i85f3N5botunc3697ZvNXi7U+2vgUgqt7ctOWNT7aavbm5/PVPtgpvbC5/c+s2yfr9 rNT5tnHzpvc+/ODNd96W1r355mtvvL7m9XW6dWvNXjGsfU3469q1hpcT/vLa2j+5emmN4TXh D2vWvLjmNUe/fxVA5Dzf0XOvrEkSd19b98Lrb0p/fPu9V/62wUu+PfG/f/X4f/yvR598SvrX J5783k9//shPnwCAgBChJKLp0X9/SvrRf/1CBJeXfAOAkCLfAKjKJd9K+vUHgPAi3wCoinwD oCqHfOt3HPkGQAF6vg3SnjmdfAOgGvINgKrINwCqIt8AqIp8A6Aq8k0ZWmurWdH3Byg68g2A qrLOt1ZNQ1o5vjpGN8zSK7P00FL11izL0LVD1NB/CzKZRfYos2SUl3xzWQxQFfkWZOQbkAvy LcjsR5SZ5pv9wLbojQIKhnwLMiPNzDGVKvRSrW6+y/gbIoV8C6NU5x1SLQZEk0O+cX2ksPF+ fApECtd/A6Aq8g2Aqsg3AKoi35SR9vunjMIhasi3SCHiEClZ51vHzgKc5fjqpPocSHaff3NZ ElAS/bcg03z9flaJLRgBtZFvQeZvvjmuCyiMfAsy+8mCTPPNvAXz4W3RmwYUAPkWZEYuWWIq i/E3L8sDiiHfwijVeYdUiwHRRL4pwOPxKRA15BsAVdnzrbwv10cCoAKZb8+Qb+Fn+Wxx0fcH KDryDYCqss634v/2Xhjk+Or4+P0sPh+CCKL/FmR8fwHIBfkWZPn4/mnRGwUUDPkWZPn4fhYR h+gg34KM72cBuSDfwojvZwFekG8K4PtZgCPyDYCqyDcAqiLfAKiKfAOgKnu+cX0kAGoQ+bZz kPb06eQbQs/L5/0cPyzNWWZVkW9QRhb5RqypjXyDMrLLt6LvNvKHfIMysu6/0ZFTFfkGZXjp p7n038g39ZBvUIaX8wgltmE3Om8KI9+gDDIKFuQbws4+jEZ/DBL5BkBV5BsAVZFvAFRFvgFQ lVO+cf0QACqQ+dbx+iHkGwAVRDDf7B/vTDU/x0+Beq/IfcVc6sqojVlUVJL6k7T2xULdqFT7 4Euj7M9YnhrlUpHvb/V8NCpTUcs3y3Obdr5ljveXI6OKUm0zx7osC7i/zXysyH3Pfa8rT69U qoo87kymdbm8SfxtlOPzlqdXymXLWTQqC5HNN49l+/Of6YueXaW+1GWZaf+nPE8VuW8zH3UV rFHe52RRl+O/DvlolMf9z1NdWTcqC+SbS9n417Pw+WavN4u6LDMLnG+FaVT+XimXmY5Vh/qV KkCjcn+lskC+uZRT/Xvqe0VZ1+JxxeDkm++Nyt8r5XGmGq9Udk9dgV+pLEQt30pMbyHHvz6t 48hA2rV8qcjyUEnmr7hLXfYWGXP8bZRjRY6t87euvL5SLttxbGMuddnfAHl6pVI9Y/l4pVy2 nEWjMhXNfEuVLfa/GvMbLNMXwmNFxl3HmTnWZTzqXnXujXKvKK+Nyt8r5VJR1tVl+q7w/ZVy f5/7+0r5/jeVqQjmG4CIIN8AqIp8A6Aq8g2Aqsg3AKqKZr615vOUTbHqolFhqYtGFYzIt4pB 2tPkW948+rOfK1YRjQpLRao2yjvyTZm6aFRY6qJRBUO+KVMXjQpLXTSqYMg3ZeqiUWGpi0YV DPmWb0oOgNCoUFSkaqO8I98CuFbAd49GhWX3gv9U5Bv5FsC1Ar57NCosuxf8pyLfyLcArhXw 3aNRYdm94D8V+Ua+BXCtgO8ejQrL7hVyLcbfgiPgb5WA7x6NCsvuBf+pyLfI5hsTE5O/U9H/ rgufb2mvTJv22qFZXNG02K8zE1MUp6KnWeHzraTj5Z3t0Wcp2+d4SbmM9qfAL/qjP/u5YhUV si4aFZa6IjX+liqd0i6Tai17By9tfqbNt6I/+QDySr8+Umkhxt9S/UiHZQHyDYBfipVvqWaS bwD8UoB88xJc9hMK9oE1y/xUi6VV4HxT8guANCoUFanaKO8Kk28Z/QZidj8Q6R39NyAiCnZ8 GhzkGxAR5BsAVZFv+abkAAiNCkVFqjbKO/INgKrINwCqIt8AqIp8yzclB0BoVCgqUrVR3pFv AFRFvgFQVTLfTiffAKiGfMs3JQdAaFQoKlK1Ud5FJN/sl+Oj/wYoLyL5Zka+ARFBvgFQFfmW b0oOgNCoUFSkaqO8I98AqIp8A6Aq8g2Aqsi3fFNyAIRGhaIiVRvlHfkGQFXkGwBVkW8AVEW+ 5ZuSAyA0KhQVqdoo70S+VZRqz3B9JADKId8AqIp8A6Aq8i3flBwAoVGhqEjVRnlHvgFQFfkG QFXkGwBV5TvftNZWg2WO413HBTyuaGj1NsmFzeMGoS6Lgnp1mW+Vqcv8NKpUl1EOjgL03yzZ ZRTsYWVfwPuK3unRpmkAslb04Cpuvrmkk/syjmt5WTGzfOP4FMgW+WbnGF/kGxBGYYk48i3f lPwAEo0KRUX5q8uebxEff7McoloG3OwnFOwDa2lX9PrS0H8DchPm/tvxvudbLudPPW4ng5eG fANyQ74FFvkG5Ih8CyzG30JUF40KZl1hHn8j3wCkEYouHPkGIAvkWzCRb0DuyLdgYvwtRHXR qMDWZck3xt8Cgv4bkDv6b8FEvgG+CH7EkW8AskO+BRDjbyGqi0YFuS5zvjH+FhD03wBf0H8L IPIN8AX5FhCtTlPR9woIu4BHXETyrcMrwvhbeOqiUQGvy8i3wI6/7RykPXM6+QYgY8Hvv5Fv ALJDvgUN+Qb4hXwLGsbfQlQXjQp4XYy/BQ39N8BHQe7CkW8AckG+BQr5BviIfAsUxt9CVBeN Cn5dMt8YfwsI+m+Aj+i/BQr5BvgrsBFHvgHIEfkWHIy/haguGhWKukS+Mf4WEPTfAH8Fuf9W MYjrhwDIHvkWHOQb4C/yLTgYfwtRXTQqLHUFM+LINwC5i3i+aW15IgqS413HBTyu2P5Ue5vk wuZ/4ChTppxdmXyzz7GEVYktzeyrO6ZcRntC/w3wXaTyzR477vlmLOCYafZyqoc8vRCMv4Wn LhoVlroC+/m3wvffjD5YFPINQLEUK99SzSTfAPilAPmWqqtmLttPKKQ6wrWM1DH+BiCV4h6f lqRIP8fU8n7+1B3jbyGqi0aFpa6Ij78FB/03ICLINwCqIt8AqIp8yzclB0BoVCgqUrVR3pFv AFRFvgFQFfkGQFXkW74pOQBCo0JRkaqN8o58A6Aq8g2AqnLJN/NlQLL7qlRRkG9ARGSXbyFK MzvG30JUF40KS12Kjb+FK+Janaai7xWAvMpx/C1cKSeRb0BE+HJ+IVwpR74BEZF7voXr5EIJ 42+hqotGhaUuxcbfSsLWbTPQfwMiIpfzC0Xf+eyQb0BE5PL5kNAdmUrkGxARvpw/DVfQMf4W orpoVFjqUnL8rSSH37EqFvpvQET4lW8l4RmRI9+AiCDfAKjKx+8vkG+OlBwAoVGhqEjVRnnH 9ZEAqMrH72fRfwMQKLmPv5XYBuICjnwDIoJ8yzclB0BoVCgqUrVR3nH9XgCq4vwCAFWRbwBU VbB8Mw/WWT41Zzm2tS/gcUVDq7dJLmweNwh1WRTUq8t8q0xd5qdRpbqMcnAU7PO99i872MPK voBldZcVvaP/BkREnr6fZY8d+zlWxwRzzDQvK3pHvgERUbDPh5BvAArMr3xLGzKRzTclP4BE o0JRkaqN8q4A5xcczxdYBtxcFjBvx31Fj+i/ARHh4+d70y5sWcvxruMcjyt6RL4BEeFj/43v LwAIFPIt35QcAKFRoahI1UZ5R74BUBXfrwegKr5/CkBV9N/yTckBEBoViopUbZR3uX//tOhN yBT9NyAifPn+QriQb0BE+HL9kBAdnJaQb0Bk+HX9kBBFHONvIaqLRoWlLvXG31yujxRk9N+A iIhIvrU6TUXfKwB5VbDr9wYH+QZEBJ/vzTclB0BoVCgqUrVR3pFvAFRFvgFQFfkGQFXkW74p OQBCo0JRkaqN8o58A6Aqe76Vk28AlEC+AVAV+ZZvSg6A0KhQVKRqo7wj3wCoinwDoCryDYCq yLd8U3IAhEaFoiJVG+Ud+QZAVeQbAFWRbwBURb7lm5IDIDQqFBWp2ijvCp9vlt/bsv/8ln0B jysaWr1N9teFMmXKuZeDo4j9N3tYldjSzLyweX6qxbzg+BSICIfrh/Q7zvd8c0whxwRzzDR7 OdVDXpBvQETo+VaqPZ3nfLNw/FVoVfNNyQEQGhWKilRtlHfFyjdLoUTdfANQLMXNtxJTrFlC z35Ia5mfarG0yDcgIop7fGop2x9NtZbLYmmRb0BEFCXfiovxtxDVRaPCUhfjbwFB/w2ICPIN gKrINwCqIt/yTckBEBoViopUbZR35BsAVZFvAFRFvsH0zGiAF0V/r3oU1Xwr/jskgLw/h0qO 6tAo7+zvlrCMv3F9SwDuwtKFI98AZIp8CyzyDcgR+RYorU5TYapmVCcUFdGoTFkijvG3gKD/ BuQuFF048g1AFsi3YCLfAF8EP+LIt3xjVCcUFdGoLJjzjfG3gKD/BviC/lsAkW+AXwIeceQb gKyRb0HD+FuI6qJRAa/LyDfG3wKC/hvgF/pvQUO+AT4KcsRF9fpI5Bvgj4Dn207yLZ8Y1QlF RTQqazLfAjv+Rr4ByEVgu3DkG4AckW/BQb4B/iLfgoPxtxDVRaPCUlcwI458A5A78i0gyDfA d+SbR8bv1Rl3U8033+34VHua5MLmDjxlypRzLwdH0PLNEl+p5qdazAvG30JUF40KS13kmxeO mWYvp3rIC45PgYgg3wCoinwDkDuN8wten6jWEqeBNcv8VIulxfhbiOqiUaGoS4RbaMbfin19 pFQnRr2fP3VH/w3wVzA7byWO10cqdr7lG/kG+Ciw4VZCvgHIDfkWKIy/haguGhXwurSw/f4C +QbAoyB33krINwA5IN+ChnwDfBHwcCuJar6J1yWAcmyXSqM6NCoUdZnftIy/BURg+29FD9iw JDmCIBSvI/mGwit6wBK2vryIRd+HtMg3RBzpmt2TVvR98IJ8yzdGdUJRUbEaFdIstW+N8beA oP+GaApmVOaVPd/KVcy3Vqep6HsFIK+S+Xa64vlmRr4BEUG+5RtDVaGoiEaFpaKMkG8AVEW+ AVAV+QZAVeRbvik5AEKjQlGRqo3yjnwDoCryDYCqyDcAqiLf8k3JARAaFYqKVG2Ud+QbAFWR bwBURb4BUJVTvh1HvvlIyQEQGhWKilRtlHci33aWas+cQb4BUA35BkBV5BsAVZFv+abkAAiN CkVFqjbKu8Lnm6b/vLLO8a7jAh5XNLR6mBxfF8qUKedeDo4i9t/sYVViSzPzwub5qRYDAENA 8q2kLcEcM81eTvUQABiKkm9GH4x8A5A/xco3S6GEfAPgt+LmW4kp1iyhZx9Ys8xPtRgASMU9 PrWU7Y+mWstlMQCQIvj5NwARQb4BUJVTvil+fSQAEaFfH2mQ9kyUrv8GICLINwCqIt8AqIp8 A6Aq8g2Aqsg3AKoi3xBqfIEFLsg3hBr5BhfkG0KNfIML8g1SqqBwnJ/qGvL2BdJeA8FlyVSb LUlxGRmXq2YRg9FEvkHynm+prhvvZWuWZTxu3F5XqnLadREp5Bskj/mWKpGyyzf3mS7bTJur 5BtKnPON64dEUYHzzUt19m3a44t8gws930q1p7k+UuTlmG8lrtGUXXVZDP2RbzAj3yC5DPJ7 OU60l93PL2Q9QGdZ3WUszrGMSCHfINnTyTzffnbSe+6lrc59GceqHZfxMh+RQr5B8uWALtXh oZca89ocRBP5Bsmlj5TFRnz5fIhfzUFkkW+Q0o6YedxIplvzpV6XPUGUkW/wV0CCJSC7geIi 3wCoinwDoCryDYCqyDcAqiLfAKjKJd/KG/YDQHiRbwBURb4BUBX5BkBV5BsAVZFvAFRV4Hxb /X+fbW1tLXqrFcAzCaRFvoUUzySQFvkWUjyTQFrkW0jxTAJphSLfNNtU9Oet6LJ7JoFIyTTf VnuenFfP8K9SptnatWvF7cqVOuNuRFLugoELhdyfSSCCMsq3WzOZHCNudeq/ypW2vBJzWhPT Sn3STFbK+S7tWt1f88jHJzNVFmW9Y2JrZ41fRb4B2fGebyKy3t281aNUEbc68/5bqnxz77+t 7p/MRjG9+NY7qzWtf//+rdUfHvxwtZmP+eaSRal2zH1y36D7MymetqK/tYCiyzTfNJEUq7Vk OXHHMfdkuIlby0ZWO/1Vyp5bqltjzM04PvVycFrgfPMYbuWe883YoCg77qTjMymJcJPKnYYu GcZEdNjzbVvf493z7dbWZKZ9odt7Qu75ltZKc67pQbcy7Sr2GNGzePVqS8T5km/ew81xx156 6aX+pkmG29Tf/FmGW6b5Zko2mXIp45R8g/KS+Xa613zzfnyaab45jr+lnZOKNUZWa44Rl3u+ GVmU3Y6Jp0hmmjGJu+ZwyyLfzGUZbys7TuQbIiKjfMv0/IJf/bcsdIiR1ZpRsESc93wTvSxz 68Td8szDzbJjYiNDhgyRT4gl4jpkc4bHp2ZGxNF/QwRFpf9mSjkZcd7zzUg2S79LTHvq6zIK N8uOyRwr7xhu9ojLLd80GXFr1641d97IN0SB93wrN0Wc5Y/d8odvPoVq2cLq4vbfWtsPVL3n m3tjc9mxwuRbIsocenHkG5SXUb6Vm45SXf7kzZNl9dWZnz9NdevO+TSlOegSh6hp80123owU Mk4BGI2VB6re2fPNMhkV+ZhviU9EW7tw5BuUl2m+SfJP3j7m1pquS7O6KP03S7K1topk85hv liS35Fva9rrvWMHyzXEi36C8XPLNcco63/I+/mYLt4zyrb9tyj3fjPML9nATD/mVb3z+DZEV lf6bKdky+nxIXvNNrm6JOHHX8s8H+QZkJyL9N3uyZZpv5pTz3t60O9Zq+3yvueeWXb65Zxr5 hujwpf/W2rEv57Li6gL23+w9Lvvk/fyCJd/KEweSOZ5f8DhlkW/GupZAM2+WfIPy/Oq/GXOy yLeV+Tl/6tf1Q/L3+ZD85Rv9N6Dc73wTfRv36laH8Ko+Lp/vzbTzVu65Y5m2kxnGZxIosKzz zXFKW93qQo2/+c7x+1lZ8N6xdO9kujyTACR7vm0f0CVo1ydXCfkGFAz5FlI8k0Ba5FtI8UwC aZFvIcUzCaRFvoUUzySQlku+ZfoxLSYmJqZATQXuvwFAwZBvAFRFvgFQFfkGQFUZ5Vs+vqAd nC99B2EfAPiI/hsAVWXaf3OcY8zPuv9jXsVla6nKGW3fPNO8/VT7kGqvLHOK/lICsHDKt+Oy y7esw8dxXfe0ybSKVHvuvcZUy5BsQGCJfNt+ufbrHj7nW0bsnUCPdXmvkXwDIsjffMtuiD5V vlm2FoR8s+xYRvsAoMAyzbe0mWMs6X0f0vbfHBfIqJZUe27Zvnusue82gKDxsf9WntX5Bfcc yzRzvNRinmnfvqX3WN4x9xzXyrTJAAojx3xzn+9F1r2+rGsJy5YB5MjH49PsuPTffGTfcx+3 XPQXEYCjjPItFf7GAQSQL/kGAAFEvgFQFfkGQFXkGwBVkW8AVEW+AVCVNd++qe25PGGUtn6o 1GnDsIThnVMallxGLCyXNwrIt7aXCfnTCXmWr9dORFlFibaun7bqG9Z8+7BUX8BItvJrNami rJO0Z6xWVaZVjk3aO6G9LIlHgbDbMwL5NEqrGuX8UMVQreKqhNKk7YPa7l6VJOeI220DdeWX Jm4v0gviVkTZvkv1fPuhqf/WOCrxyk7UaifrGidr+6dpB2dqR27UDs8+Rmqa0+5zYW4ni3/M 1j67pZNupob8+TvyrOgvseKmJZ7kaVrLFC12g3Z0sha/XmuerBOFpkla07i2W1lo8+k47dBo /VY+enS07tBIK8d8OzhZOzI1eXt45jFC/KZklH0291jp7/OT/t+8Y+z+Obez8LlMP+SN+HcE 8EvzbSccXPdcpj+j/Pd4k1hLrCs38tltXT59cVXGG4kdPfTCqtisLjL0YjO6HPp9Vht5btWh sV1k1u0bYc23SlO+xWZ2ErH22ezOgkw2kWb/WHScbknSPxcfa2hdckzSwiSZcjl6+JQvCb5s CoALEVOHt29447pef7ryhFeHfe2/h5/08vCvvzzspFeGd311RNc1w7+6dvgJ64Z/6Y1hx68d fOzaK49548pOay7XXh7T/UD5erGu3MjhP6zKeiMiGEVCih7dpy+s2rDlYK9hfzzhvF997cJn T+r726/3+/VJF/66a79nu/b73Vf7PnfChS98qeTF489/6djeLxzT64VO576knf1c9yueXf/J PhFxskdn778Z+SbCTeab7CdYku2fy2xSRFyuEpPIN982qJai/0VAJaIntntGr93f6bp70mmV N/TYO63nnunn7J12duWMsypn9KiccUbNjafVzDi5dnrXmqkn1k7uUjvxC5VjOm0arv1lTHfx d5rcSOxoLhuR+SY20uuaj7pe+uFpgz7sMWx9z5Hrzxm5/uwR688auaHHiI/PGL7xtOGbTx6y uetVW04s3dzlsi1fuGhzpws/1nq/3v2K34qNeMk32XkT4SaONz9fpOebDDGHfEsdbjk+4Ua+ Ff2lB5Qn/tYOjD3x0NRun97c69M5Fxye1//w/AFH5vc9sqDvkUUlR+7offSOnkcXdW9acGrT 3K5Nt55wdOZxn97QubJMe3mgZuRbjhuRw56icOIl5d2G7ug1eucF43f1n7R7wPV7+k7a0/e6 PSXX7e09qbLnhOruY6tPHV3T9eqaE4bWHDeouvOle7QLPtbO+o1Y1xiOk/kmz59u7G46Pr1R jziRbytXrtTSTcl8k4E2v5PO9KTJA0yDZb77kka+ua+e9iHHBVLtQNHfZgiOoo+JFZKeDNd9 vWlWz6Z5fZsWXxZbVhpfVhq78/LYXZfFll8Sv7tf8919mpf3bL6re/OSU1sWfq15zpebZn6x dkLnNaWdZNcr943I0w2i8PUrdvYctafvxL2XTa0qnVFdemP15TOqL5tRc8mMmn7Ta/tMret5 fX33iQ2njm342rUNXx5W/8XS6s79t3Q653mZb8b429t9k/m25Sz9/ELdKP2cqcw30YUT+SaW 1xI543grA9DoqhnnT/+ROIVqGQCUAWLMl2XJvqTH1S2bknft27Ssa5lpWRGQin4Ct5D0ZJhy StOckqbFA2PLh7Q6TS3392659+yW5ae3LP1Gy/wTm27uUnfdF1+7srO565V2Ix022HEj8lyq KJxy1a6ScXsHTqsaMqv6pXVNYs7Q2bWDZ9eW3lJ76ay6fjPre09rOHvKPjH/mb/ET7y6octV NV+8eGvnc38v5siTp/WD9Xx7t0+HfBOh1zhOzzcZcXp8JXYj1a2+QCLi9HMQiZMRyffGTC2Z GG3ngtuDqGPZ5SHfy14WBqJJj6bpZzQtvDh215DYfdc4xlHzd89vubdny/IzWpb+z+YFXxMH mHVTvrx28LHGX7p9I80PXBt/4Or4iuHxlYPjKy5vXnGRsRH90Y4bOTpZ/8iHKJwxfPfFkytF uF1zW41R+/A5tYNvq7v8lrqLZtWfP2OfMV904U4YVvvly7cee94LMt9Ejol8Ewek5uNTkW/V olM3Sf/Mm4w4o/+W6kB1ZWISBZFsor8niWA0EkOeqrDMsTya6iHfy14WDpMbNMAveryI48ql pbH7ro6vHOOcb/ef33LPOc3Lv9W89NTmRSc33d61fvpXXxum/2Wl2kj8wTHxlaPiK0bGVwyJ r7iiecXFxkb0DXbcyOFJ2uFEvomD09IZVVffVjNmfu3YBbXGDgyZU3fF7LqLZ9Ubc8Qh6smj 67uOrP7qleVfOl/PN5FsMtwqSrQ/927Pt4pSPd9qJiU/1ivzzeinrV27VkSd5bYt3jQj2Yxm ysQ4MlWTzHMsjxp3zRHkskrWZS8LAwbRnYgO8SfQdOt5sbuHxVeMiT80Pv7whPhD45ofLIuv EL2vofEHSuP3X9R87/nNy89pXtajefFpzQtPaZp7St2NJ68d+ZXWRNfLvhE931JvRM+3jhs5 nPjsriic9529w26uHjOvdvyiugmL6sYtbI+40tl1snC46R89JtafNrb+lLK6U66tPnnI1q/0 fVHm296rkt/PMvLt3W/p32vQ821c+9cWzP03e7iJW6P/Jj8JLN8VBye3J4YoG3fFZL4rH5W3 rR0n80wfy14WBqJJj6Z5/WLfHRV/eGLzv1zX/PAkPeVWlsW/e3X8/iHxe6+I3z0gftf5zUvP aV7cI76oW3xBt6a53Wpv6vba1SeZ/7TNG0nkW8qN6I923EjjOH18TBT6TawcdXvNxDvqrltc N+mOepFyZfPbI05O50yq6zG+rtuY2m5ltd1GV3UbseWk/vr4W2Xie6blF+ljbiLf5OdDzPm2 r60L573/tn/6MUnT9HWNxGhMfMnLwhw4xjLm/ptlsaznW5ZJu6Lj3gaWeJkAv+jRtPCS+IPj mh+5vvl7U8Rt/MHx8QfK4veNjN8zOLb88tiyAfElfeKLzokvODM+74z43O5H5/aondVjzTUn i3UdN6InWOqN6I923IgIt5pEvl0ypWrcgrrrl9RPWVp//eK68Qtry+bWjjSNxfW5vuacCTVn jq05o6yme1lNjzGVPa7ZcvJFz4uHxHGo/CLqhm9rz56TzLdXvqltvFj/vmrlWP2bp/VTtIZp GfTfzOFWP6U9MVI9k8aUao5lZtr5WWzTMjPV3gJRoEfTkivi35/S/Oj05h9MF+kUf3BC/IEx sXtHxu4eHFs2MLZkQGxRn9j8c+Nzz4rf/q3YnDOP3N6zdlbPNaNO7ZBvpo0k8i3lRsSjlo3I yxqIwhXTq6Ysq5++vH76XfVTlohD1Nox82paO07njqs+6zvV3xpddWZZVc/v7O157eZTL9Hz TX6/XqSZyDfRf/vuiR3yreJaPUJrJukxlWn/TUSiWMucb4LYlGS5mzVj4x7nZ71BIDr0tLln RPNjM1sen9X8w5nN35/a/NDE+P1j4nePjC0bHFs8sGnhgNi882O394rddnbs1jNjt/U8Mufb 1Td/+9VRp4l1HTci7rpsRF+440b0y4mM0jcyYnbNzHvrZ91fL26nLqufuLDOiLWB06qM8tll lWeOquxZVvntsXu+PfqT0y57zsg3EW7imFT03+z5VjVR31WZb63e+m8N0zvLZBPktUfMEWcc D/r1Qrjkm48bBKJDRlPLqjktP53b8qPZzT+Y0fzw9fEHxsbvuTZ259DY4lL9Ux/zLojdfl7s tl6xW8+Nzel95PY+1bN6vzq6myXfjI20ppssG9GvSdWWb3MebJj78L7ZDzTMWN5+tnToTdWl 06svntweceeOqew9trLPuD29yzZ1u+x3Mt9k582Sbx9com28XM+3vRP0Xa27QZPdNtlPW+s0 Gf03sbAkw81orHny8YXwcWv52CAUMS5CxJ9A/IGylicXtqy+Q0+nx2Y1f29q88qJ8fvK4stH xpZcFVs0sGnBgKZ5FzbdLjpgfWK3n3/k9pKam/u8Mvp0/c/HaSPp863jRox8K5tbu/D7jXc8 2igizli4bE7NyFuqr7qxeuDUqgHXVRrzzx9fWTJ+d5+yTacP1PNNhJvwbh893351djLffnuK /l2GjVfq17HUL185MZlv8o+/rQvnMMmAc8w3AGHRmjjX2fKLe1qeub9l9eKWn9ymH6U+khiF u68stnxEbOngJhFxCy9tmj+gaX6/pnl9D99+YfWstnxz2kjafLNsxMi38Yvq7vnJ/vt/un/x o42vfxgXc/RRuAV1IuJG3FI9OBFxl07Re3HP/vVo30mVF07Y3WeMQ74Z/TfHfJOnGMyf5k31 LVTyDQg1PZq+N/mz3/zgs9893vLLFXrE/XRu87/d0vzoDP1cw0MT4yvHxe4fFbv/2tjdw2J3 Xtm0ZOCR+QOqbur931ef0iHfctiIkW+Tl9X/4L8OPv7MoRVPHFic6MXd8t2GGXfXT1laN3FR 3bgFtaPm1Fw7p2bYzdVXzqweOE105/b0Hr3xlIufdcm3df30K5NvHaltn6DtvkGrFnk1Q2uY oe27qZOh8aZjZKFhemf9NrGAblqHfCPiCkD8G4S82jshQkQyNP949mcvPfn5n58SAdXy9L0t Ty1peWJBy6o5zT+a3fxvs5ofv6n50enx70+JPzw+/sDo2PKhRxZeUnVjr5dHfEOs68tGRM9K 5tvsFQ1P/vrTp549LFLu3p/sX/LDxgWP7JvzYMPsB+pn3d9w030N05fXT1lWP35R7ei5NUNv rr5kyt5e1278Rn/9+iEfXKIPtdmPT2W+bRjeWeSbOeL0HJuVvG2c3UlIRpycaQo3c74V/c0J 5KjomVPgfGv5z7s+e/7Hn734s5b/80jLf97Z8uTCZpFLP75Vz6XHbmz+4Yz4v06JP3Jd/KGx sfuvEb2vI/P6VU07661pF/493uTDRmJH9Xwbq2/krsf3//iXh372q08feergnY83Lvy+CLd9 t65oEOF24z31M+6pn3Jn/XVL6sYurL1mTo3owvWbtOesERsuHPUnsRERbuJQVOTby2e255so iHx7f7C2YXQnS76JHDOSzUzOlxFXJ3GUSv9NIUXPnEI6sPa5f9RUtDy1tPmxmfF/mRR/oCx2 79X61+TFgeTSQbrFlwtN8/vr5l7YdEuvQ9O777ltwJEdG8W6ciONz6/KeiNi3cpEvu17blXF 3s+X/rBx5n0NkxbXlc2tvfrWmiE3VYuj0UE36i6fViX0v65SuHBCZa+yPd2HVwyYsGFj+aG6 36wS4SaINDPnm7hrz7fdKfLtwG2awci69sNV27EqgICrmnrCgXXPiZ5Y2pMClkmsJdaVG6m+ ocv+368SnahMN7L/+VV7r+8i/k0REbdrYhcRcVlsRITbR6VdZP9NpNmfe+vjb09/I5lvFddq H43SZLg55puRaUdub2fJuoMzNWn/NORXAxByxhGf+dBPHpvIDqE8Yk3+Mum1mlRusnWkbtNQ 3cYr9RE2SaSc7LPJfKtubBSdN5FvMtbM4SaT7fD8zlJs4TGpiEfNvx5o/KQgAKS1/2adPInZ ML2zYB/ssowetAegKe5EQcSdiLjfnqInm5FvonMoem6Wg1CZaZ8vOuafy477x1JN/s6CLMuf YJAzZSE5M/FLDe0/ygCEUPJ6+8gP+QzL9JDRIX0+V/9xBNlBis3spF9r94bEFSmnJn/6SpTN x4nyB5r3TUped0Ie3YgAFBGnX/OtLd+EDaP12Gy67ViRaSKmWu/tqnvom7of9NA9fm7rj89r 97O+SeaZAJCWCBPJfPeRs5JEWWaOQcw035W5ZJBhdW9X+WN/Ryfr38aSsWbkm4w4QUSc3gEz wk1W91giyn4yUPdEqe7JK1OSCyB/XJ58+KLoL7Hy7E+4zBbjNhWRRRYyFe/t+vf5x268Uj/F YGSaOd+kj0ZpMuiM41lJHOqKY175uZH2T8fNSH7ZQZ48lYp+eTTlFf2KiMozLhmBfLC8ma3v 8MS1LmsSt3Wjkl+S1X8Aa5z+M3+iUDVKv16lUJW4qz80Sv/lBRFuljQT+XZM4mtW/x8AAP// AwAW7VzREL4IAA==</item> <item item-id="317">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAErdSURBVHhe7Z0J2B1Fme9PQEnQB0eN 5pJhE1lEBCQBRcGw7yHIFhCBsCiLkUUWN9SRGceZkYE7ijpenDt34Jn7eK+KIA7jjDMIQQQV ccKWlYSE5Eu+Lwthy4Z3nPdWdZ86X5/+eu/qc6r7/L48lXNOL9XVb/3r/fVbVd3dEv6wABbA AlgAC/TJAi193HXrhsak1vTfybhTnvBS64QFfjp54Wg6bbm0znxeWh8dktas4c7nuIvXqt9r 1G+17Hz1qb/rT5M+sk5apAbaYIM6J1LjbHDuiLRIzbLBGP+r222EXz5dLfPSKv9zuvLp3neV vO96WXv59JXSOl6xQCf9Xa/3klp/vGLCEU9FckbzZwyEDHi2u3yjjL/uDzLxRpE//jM/7fFV kXfdKjLlFpW+JXLoN/w07dt+OuI76clsy+eo3Zpgiyx1zzbp7cM1GzVBm5zDWF8TpTNtJ+PP g5/Gz8d9ejyISJoXOmmGbHflf3ogak15tAtGYyCkAbTNBWtEA2ibK1+W8Tf8l5dBEES7f01E Jw2j93y9O2kwmRRex++x9sIm2AQNoIFea0D7bpPMsc1vAw4TcBh/H/zU68LLTaAS/DTs0J/j r/mDl1ofeVVah41GRV0Qah31mLROW6G62BbLuEvXeal1+QudpKG07dWbZNtrfu/BqXX9H2Tb 68RL5rf+DK4z3/W2+vt216r1Kroy+/Hp24+EDVzVwLgr/0tIzbKB1pquU+PD9WcwjZv9e9nm 0tdk2ys2yraXvizjLtokrQtfUUMs7c/zXvGWdZZfpLrzTDp/vf9dbz9TdcOZbj69XKezVFfd MU9La9oSLyIaCyE1DtT66LLupMd7LlnTgZKGkUkelFKSBy99MsGkTkyfHAkboAE0gAYc0cDH 1su2Ol2sghA1tq97xXTyxvc/stpPM9V4kEkaKCbp+QE66bkCKo2bsUTNH9BJzSMIzinQADrk t9La8YfdEGpNfcjfQUNIRUKdZIDUBlEQRp0o6ROKeMEUiJ70Nl5EFSaloSKf/tVBI1JoAkpw MgrfuyfnYA/s0W8NaLBEJQMaDZcIsIzCJQCZ4IQ1AxwNG530ONC0x0eTBpDmjU5vv2M0Euos VF1y3mw4A6IYCJnuunCXnYGOt1xHT2amnJkhZ07aUJXP0SsMbIEt0ECjNLDDeSvl7odekI2b /7P05Gedj87PRCTbq1nJt/14vby6qXzet92zXrY/R0UxGjxqSGb7s56T2+5eayfvHwzL9tNU cKPhoyYleKzZ91+ktfddIQjt+T1/ZSSE2lOwFVRMJBSEUGf8yKzvgEeR1pu6HUhRIV0wvON7 d7hbJ3sEQ3O+j3ZT1N0W5mqYz9HIIKMt7p7zgixZ9Qe5/rtb5aJbtsjMP98sM/5ks5x44yY5 +jOb5NjPbZLDr/fTYdf66aArN3rpwNkbZZ+Pb5TdLnhRDr58uTz17Cui8zPRyW33rLOat87P mxOgutI0gH7/vBqz+evrZc0XLpLha2fK6tkzZNVlJ8rQxUfL0MeOlaELD/fSyvMP89KKsw/y 05kHyvIZ+8iS43aTJ848WF5c+JTcpkDkAchA6J0/k5Zmzpu+FIiEVP+cByEVNm1zXDgS8iHk RTUmummPEXkAUsu71oWjnmB/ooZQ3Rsl5acOB0kDGR1up+uG7Tug0B72M/9zq3z9ntfkWz95 Tb76f7bKp9Xvq7+zVa64bYtc9vUtcsl/3yIXKkDN+ustcu5fbZazv7pZTvuzzXLSFzfJEZ/e JFM/+Yrscf5KOfD8R7yIytjZdt46ojLjOTrv9bd+Rl78x6/LS9/7lmz47ldl3a2flrV/ebWs /dMrZM2XL5M1X7xERj5/oUqzZOTT58rwdWfL6qtPk1VXnCRDFx0hy2dOlSeO30N+Ov1AL6Lq REL7/VpaaRDyBpF0d5zXFdeOghRYDGzMpxm8MgNYXV1vSd1vdbq6p6zZI7NBcsyDdK5AJXcE FATFpQo037nvNfnuv/xevvaD1+TGO7bKdSoyuurbGkRb5dK/8UF08a1b5IKbFYj+crOc8ZXN coqKmI757CY55OpXZJ8LV8rbj/+ZHzW060N/t563nlQwfbl3nDVfvlRe+v535OW7visb/v5r sv4bN6rI6DpZ+9WrZI0C0cifXOqBaM0XLpaRz14gIzecK6uvOUNWzT5FRUrHyPPnHiJPnbyP /OCgt/vl1t1xOmkIvUOlyEhIh0p6EEkPMunC6IbWfurBTTfdJK1Wq5PCv4PrOt/phsvuwIEd tkIDjdOAdr4f+YvNHnxu/dFr8uV/3CrX3r5VZn9zq3xcgWeWhs5fbJGzVORz+k2bZbqKfk5W SXfT6Sjo0Os2ysFXviL7XrxSdjzx331n3tZJJXnP0E868CE0csNHPPi8eOet8sK3vyzrbr5W 1n5ltqz50sdl5HOzZPh6Ff1cc5asvup0Ff1MV+lkv5tORUErzz9Ulp99sDx1yr5y1/t39Mv9 fsUWnQyE9JjQmO64GAhp4LQfrOB9+r/j/zqAAkKNa1Rd0zNxmtQvGkjUgPaSZyjAfP4ftsoX 7/QBdPk31PiQ7nr76hY580/VGNEXNsvxKuI5So0LHXrNRvnA1Ro8G2WqSlM+qcaGPvGy7HfJ kOxyyv1jIBTOO9Exh1ZG5h2A0LCKatZ/4/Oy/ptf9AC0+fFfeDkMX6fgc9WZCjozZOjjx6tx oaNk5XmHyspzP+Ctf/Xf7pIVM6fIMjU29PSp+8mPDt0lI4T++H4/VFJ3snpTtXXIpwWmQKKh MmfOHC8Fv5tlwU8PQCZqSoBQlLGqdnDmmFUfR+ffy2P14nw4RuDeiEFzvOZZYXyOPjctoy20 H9ATEfQY0KfaEdAlt2yV83T0c9MWD0AnfHazHHmdBtAmOfgqBR0Fnv0/sVH2+8Qm9blJDlC3 v+z3sVWjEGofOyrvPBCKzDsAIT0RYZ0aA1p386e8CCj45wPoBAWgIz0ArVBRT/BvxRn7y7Iz DpCnZyRAaEx3nIaQDpWObM/91l1xurGpBxeORj5+FKQfNqfBE/Wp15tIyLvJKfjgw/bMOFPY N+z4FTGpF047eNwop2qzDGnHwqkPsFMfNIgN8PlqP3D85zd5Yz+6C+7Sv9kqs762Rc75yhY5 TcHp5M+rcR/V7TZNzYp7v4qA3vvJTfIeBZ59Lt8k77psk+x7xSYFI9UdpyKhnU/5+ZhIKJx3 HghF5h2A0KpLj/fGfrwuODX+M/LZWV3ZD118jAxdME1WfuT93QA69V2y4rR9Zfnp+ykI7Ss/ +uDOfrk/oIZ5NGPerSa+6TGhMd1xYQhp2nZByHvOaScSigNRMBLa9gJ1561K3tOz2zAKAyjo jA2QqnLQaWBIW5+nXDbzynNctgVuaMAdDRgI6enZl9zqd8Od95d6DGiLnPpFFQV9brMcdYOK ghSEDlYQ2l9BaB8FoT0VhN6pILSX+nz3Fa/Iuz82JDtNj4ZQMG99vCx56+0i8/aefu2PCWkI jdx4kYzoWXD684bzZPjqs7qAo8d+gn8rZuwpK6a/U1bM2EuWn/ZueeaUd8vdH9xpFELvUyDK BCE9V1xHLRocCiBFI6FRCCkQ6ecHqfy6nbOa8q2fLRSRwkQ328Qt1+uj/oJ5J623cbyoY2mw xp0jy+PrH9tgmyZoQPuVD6nJBXrGm575doGKgvREBD0WdKqKhE5Q9wsdpSYhHKpAdLDqkttP dcm968pNssfszfKOT2yWd6pIaC8VCe11yWqZPP0B35m3/WVU3npZlrz1dpF560hIJf238oIP eTPevJlvn7nAGwtafY0aC/rkqZG+duj0d8nQh/eQlae8Q1bOeKc8/+G9ZN7Je8k9h0zuhpCJ hvQNq10TE3R4pMMl/S4ILwpqP3hOPU4mODHBjAnliYT8aMgHUReEEt4pFNxOf/eceXv7MV14 7eXBffQ25s/sV3R91PHy5DUw706KuaBogjPhHIBiEQ1oP3GIinBOV9A5R01E0ADSn2foCQka QmpM6CjVJXeYmphwsALRftdtlr2vUfC5arPs+snNspuC0e6zX5XdFYQmnTQWQuG89fGy5K23 i8y7/e4gD0JqivWwmvk2ct05MqJnwl17jroP6Az/ptXLT+gC0apz9pNVZ+4tq057p6yasatK u8mKU3eX+SftLve8b5IPIfXA0tahi6RloiHdHTfxr/113n9hCGnH3n4aauFI6CL1UD6VWuqJ q15SLzzrhpD/ArTgn3khWHg7H0Ld24a36eXvvMdq3IvOeHkdL/BDA6ka0H5iqppoMP1Lm+Qs de/P2X+unpqgxoP0rLYZakr2iV/aLEerbrkP3bhZDlZdc/t/RkHo+i2y+7VbZGcFo50VjHZW T07Y+eLV8tYTH/QddtvuUXl7EMqQt94uMu/2S+z0+hVnTZVVn5guw586SwHobBn51Ew1JVtB 6MoZXT7b/BieubcMn7G7rD51Z1k9Y2cVEe0s84/fWX580Fv9ch+metgOU7f+aAjtMd9/dE8X hHbTD5lTpNKRkB4LMhBSj+MuHAldvFk9jXWz/7hv/Qhwlbqct4GT+gwvj9ouuCwY6XiAypBH 2jHyrM+zbQfCgfNlWfvCBJuMXqS5agv9/hdSIRtoP/GeyzZ69/2c+mV1E6oCxJkKRqdrUPzp FjlRLTtGpWkqKnqfgtH+N26RvT+rIHTDFtlJgWjHq1VSEJp04bD80Qlz2hDy6yMqb70sS956 u8i8Z6qg4fSXvLyf//B7vPt+VqvuNw2fYdUVt/rq07sANHzptM7vP2x8WUbO2l1GTttJhmfs KEMn7ygLjp4kP5nyR365j1LDO0eqWdcaRAco1mgIvf02f533n4aQXulBSIXeOgrS74PoQMjf NO0m1a7Zcfp9FG0QGRgFnbd5H4X+DC+P2i5tm16uz3us4Lk29bu50OBz9KILWwy2LbSf2OuS V2Xa9RvlxC8oEKnoJ+lv/y8qCH1+q7xDgWiyiogmXbNFJqrp2m++YETecOyDvsMOXNBH5X2q 6uqbro5zgoLb0Sp9SKX3f3mLBPPW+UTmrSGkkv5bPn0vWTlrmup6O1FFP6eqm1JP6yr68BVH y/Clatzoku7ZcWtOmywjp0ySoRMmysIj3iz37v+GUQhpEOmIKBJCOjzyIKQApEOyNoC0wwzf rOqXxJ8tF/70IeQ/WWHbK/wXI+k07uN+al30WudE9HeTgk49uI0X5bS3S9uml+vzHit4rnwf rXdsgS2arAHtJ3a94FVv+rV+YOlJCkSJEPrSFtnrxq2y62e3yn+7fqu85aotsoOKpN547rBs d1Q7Egr4w6i8T/4TFWGpyOo4BZ+jFIwOU5/v0xAK5K3LEJm3jnhnbvSKuOy4XWWFmn49dMnR CkQndRV79RXHyfDlR8nwxw9TEHqfrJ21f9f6NSe/RVYfu4MsOOyNcu97tvNJccKLPl8MiLxX OQQjIQOh6frlRT6ENIB0BBMcE0oCUDBS2vZqkW1m/5eX9Fv6dGpdqt7ep5KGUdSfmQAQXK+X GYAl7VckzyBIzDHMsvDv4LamTOFzCJY/WJ5g+fk+ekGCLephi9ZF6uGTpEI20D5ix3NflQPU Cz0PvVaBSE1ASPrb94tbZU8FoV0UhN6uIPSmK7fK9h/bKK8/e1i2OeJB35m36yJv3uHjRuZ9 vrooOnert+lzR+4oz59+gPcIHg2ijQ/d5y1ffekxKh0lqz8+TYYv+YCMXDRV1py/r6w9d09v /eZ/vVPWnPgmWXXk9rLg/a+XH79rm1EIaRBpCH1AwUg/vmdsd5wKk6YrAOmBrzaEdBST1gUX fm6cfoW3ThpEOplXAxsomc/gzarme3CbqGV6fdx+YVBkyTPPNknbppU1fO789i9QSO7bwFw8 8ulfROdJ2ie97exXVZec/wieDyoQTVOz4KbdoCIUdZPqB1V0dIgC01Q1KWG/z6koSHXD7fYZ 1RV33RZ5y9Vb5Y1XbJHXX7RRtjlztYyb1p4d1y5DJXlrwCkQ6b+lH3qb1yX3/FlT1FMRPihD qmtu6EKVZh0mq2Z9UKVDZPUFU2X4vP1k5Jy9ZM1Zu4nuitNR0Mixb5Shaa+X+QdtI/fsPc6H 0CkqyjLRkIaQfkxcF4T+eK7fV9eGkImC/PeM/162/eT/k+2u+b2Mv+YPHmB0Gn/dH2T8Deoz lDoQUu8x1+8y91IbSOazCucThFAV+ZOn+w6TOqKOXNKA9klvOu0F2fm8F2Wfj70k773iJTno ky+rZ8O9LFPUg0mnXPWKHHCNeiLCp9S9QJ96VXa75lWZrB7dM1FNRtDdcOMvelW2+ehL6t4d 5ZsP9Z+ibc6viryDUdbCQ94kzx6zsyw9ZR957oz3yrKZB8nycw5Wr2iYoh5OOkWeP/sA9Yy4 fWXozL1k6LTdZNUpk2XViRNl1TE7yNDh42X5B7aRJ9/bkh/s4Q/deBAyINIQGtMdFwEhAyIP Qiptd+V/ehDykgZQDIQ0lLKAKAymsr+DECqbF/uPvXBIs4lLjZ+yACMXNKDf/7PPrGUy8cPL ZKeZy2T3j66Qvc5/Xva+YLnsqT73mLVCdldpV5V2unCVTJq1SiZesFredN4q2V49MOB1Z6kI 6FQFoOOelt1O/dcuCOl39NjO24vyVDSk8/7dSfvI4x+YKI8fvpPMPXZ3mXvCXirtLXOP31Oe OGEPefL43eUpNW4077idZJ6aBTf/yIkyb9qbZP4Ht5d573udPHngOPnFvi354Yd28yF0+sax EOqaoh2CkJ5CHIyGTES03ezXomGkgGTAkwagKsUR1y1W5THJG4eHBtBAlAbufmiDPLH4Zdnn 7IdlhyN+Km859ufy1uP+Xd523M/krcf+TCYed79MPP7n8ubjHpAdjpsjbzjuIZlw7MPeJIRt j5gj4454WPVQPaAA9DOZu/AF9arwDZ1I6LZ/etlq3rf9REVcbQjddu9LsmH+E/LPx+4j33vP DnLXgW+RH055q3x/6tvk+we+Ve6aOlF+pNLdU9TstwN3kJ8c8Aa5b/8Jcu++28m9+2wr971r nNy9Z0vuUgBa+8xc9aZWNRaUDUL6hUbtMaH2zaUaRvqGUy/p6dZqgM2LijSMTFIRko6SdNLd dnHJVJKJrPj0I8ympDx95Wybb2wBe9XTXjtcvsUDR9k/HVHpfHR+RgvbX/6aaHCU/dNRz233 vijbX6Km0+uZd2pMaPtZm+S2H79YNmsvotIA2v40BaHwmJDujhsbCbUhpJ8fpJ+i3X7qdefG 1Yv8CQvbXqqAZJIHpWDyZ8JFJTMzzkzVbvLUzME8N2ZRNXMWGdPIG9ee9Sy49iQEPRvOu/dI T88+Z7P6VKDTSX9X07W9CMZ8mu/6t0nq5tbWKTrSUZ9mu+D4j56MEE5mTCgSQvpeIfUU1da0 x6V1zFwZd+wTss1xfvLeuNpO42YsEZO8t7BqcOkHn5qk30cU/G2+tx+Q521PwgZowH0NHK/v HyQ1ygbax+snZifV6zHqqQb61T466afpmHT44tFlZr3+NMv1p35GnE76eaTmeXH6u35kj2ZM JggpAHkQaoMoCCMDpahPvV0nBfcP5dW1XXAfvo/ar2a20HohNc8Gng8gNc4GfWur5rE9Y2bH TZ4r4w9eLJNmb5AJM5fK+jULSdgADaABNIAGrGqgdaJ6NNBhKlra/ftqTOgWf+ac9x8Qsmpo IM5FDBpAA2hgrAaAEFc1wBYNoAE00DcNACHE1zfxcVVIZIAG0AAQAkJACA2gATTQNw0AIcTX N/FxFcxVMBpAA5VDSD9RG6EhNDSABtAAGojSQGkIhV/bYKAT/rQlwDDUqjpOWnnjzjttv7Lr gToNuayG2B8NuaQBKxBKOiHbTjMOQr02qu3zylr+fh03a/nYDgeHBtBAHg1UBqGoCCUYPeQp ZHDbLJFQ1HGC+8V9z1OmJBgkHT9oF7OdPm7wuylHXD5R2+YpO9viJNAAGnBFA1YgFO6aMk41 6jPoYIsaIQ5wweOFj1MFhJLOO+r4WcoQB7d+dTsWrSP2w8mhATSQRQNWIBR1oKixoSinnaWQ 4W3SIJQHikW7t9JgkQTBMCyT4BSOhoqWt4id2QcnggbQQNUa6CmEbJ1MGoSyQjEqcspaxqoh lKXbMWtZ2Q5HggbQgKsa6BuEyl7RZ3XSSeM/ZcoAhGjUrjZqyoU266SBRAhtn+Ep2mnOOAwB W4PqcRAy0U3cQH+wcqqAUNzx08obNVYW131py4Z1EiplxbGigWZqwIOQfjfRLneMfYp2Fggh jGYKg3qlXtEAGuiFBkpDKHy1XvVVeq+PZ6sSbE3KsFUe8sHBoAE04IIGSkPIhZOgDDQmNIAG 0EA9NQCEeIApz/ZDA2gADfRNA0AI8fVNfFy51vPKlXqj3mxqAAgBISCEBtAAGuibBjJDSPjD AlgAC2ABLGDZApkhZDP8ypLXXf/3du9Us2zLNu50D1Bv7tQF7YK6qIMGgBBhuFXQAyEcXx0c H2V0R6dACAgBITRgVQM4eHccfB3qAgjhgKw6ICIhHFAdHB9ldEenQGjAINQ66HaxkeIaMRBy p3HjaKmLOmggEUITpiySSbM3yISZSzNdLV922WWSlPIYJIsza7VuiixX3uV5ylX1tvfdd98Y G+plto5rA0A6DyCEg7OlSfIZbC1Zh1DU7D0NJv130EEHZXamWSDUJPEG4RO2oQG7DRhpgOh6 KJOA0GA7jSa1O86l/1ruKYS0c9UONUvFJ0HIRDplP7OUQ29TNHrImr/ezoA6aQp+VtslHVef S9m/shCKewht2vI89mTb/jsX6oA6yKKBSiAU7JIz4Akuy1IwlyKhItFDkqMOn7+JgoJwMJGK uVfK2LFsNOQKhILnGgWfMCjLvPspi97YBoeJBvqjgUogZONqPguE8o79xG2fJr4ox3374xvk 8SHxkv4eTnkgFBUFBSEUtGfZaCgOQhpu4S46vSzqj0ioP401Taesp17qqIFKIBQ3OcFWd1yv DZ0UPcTBqCiE4sZqDAyqgJDO8+ijjx7DG70sCpBlIRSuv7RuuKrfUdVrPXE8YIEGRjVQCYQG IRIKn6OBkYmI6gIhHe1EAUg3EjOZJBwRASGcKE4UDdjSQCUQGoRIqBUxvh8EUVEIGbj1qjtO HyfuLwiirjEcy1O0daST9seYEE7PltMjH7e0ZAVC4YkIaZFQGFJRonBtdlzcOYVhZMaI8kAo ODEh6PjDgNB2sz0xwSUIzZkzR0QBSX/edNNNXjJ/QMgtx4Ejpz5saaA0hLRjXDDv117KOs04 uH3cGEeWiQm2jJCWT3hMKAwe87ulvhTpjuvnFG0DIQO/KNiGQVVFd5x3XB0RxURFQAinl9ZO WV9PjZSCUBBABixZP/W+t99+e+x9Q1kg1M/ZcZ7PDHTJeQBS51MUQlluVh0eWS5XH/reTPdZ xTXIMFCdgVAbQFFRkM+nVqnzxkHV00FRb82vt9IQSntUT9L6shDqlUCTIiENIgOg4HTtPN1x wfNIemyPBtC//OC8UiAKn0twYkJUNBTVXWc7EkqKgOiOa74T6lU75jhuaqk0hLJGPuHt6h4J dXXBqQgofL9QUQilNZSyIIqabq7rIgo2epmBnq2JCRo4wXMMAsiMAwU/gZCbjiNNp6yn3rJq wAqEWre3RHWseV1rGja/2fl1XkrqrrMBoSwnqR1a+D4UvSzLvmabuPuEoiKgot1xecqjQXTb GXsUiojy3KyqARCEXgcIJWbHGeh4UVe7C47ZcTisPPpn22bpJRFC46csTHyKtoGMhpBO5vft yrnoVBWEsj8zTpVLlcNLGkYhIGUVc9hx/+qRn3hdcDpSsPHEhKzlCG5XFERFHtsTPJY3PlMC QkH4mKiIm1Wb5VSK6Jl9BlcDHQjteoe0Jt7iz1Hy/ps8V7JCqEiXnBkr0uNCUQLMMjEhSbjm 6tqLhELJTP3NOtjtIoT0uRcBUREImYgoS/SVtd7C3XI4ocF1QtT9YNd9KQhp8ZSdmBAnwCzO LGl2nOk6SoKQ3iZLA9COu0jKknfZbTSI8syYK3IeJvLJAr0s9Vb2nNl/sJ0W9d+s+i8NIS0I b2pygZQkprLOzHTx6Cm/4e64zjKm/WaCcLgbMAl6ZesNB9MsB0N9Up9pGrACobSDFFlvy5nF jTcUKRP7pDcoW/WGrdNtjY2wURM00HgINaGS6nQOQAjHWCe9Utb+6xUIqe5EhGjPBkDIni3R JbYcBA0AISBkFcJACMc5CI6Tc7SncyAEhIAQGrCqARy0PQc9CLZ0FkKDYHzOkcaKBtDAoGsA CHEVzFUwGkADaKBvGgBCiK9v4hv0K0DOnygIDSwUIASEgBAaQANooG8aAEKIr2/i4yqQSAAN oAEgBISAEBpAA2igbxrIDKGDph4gJGyABtAAGkADNjUAhIArFxdoAA2ggb5pAAghvr6Jz+bV FHlxdY4G6qkBIASEgBAaQANooG8aAEKIr2/i48q1nleu1Bv1ZlMDQAgIAaEYDeg33dtsbL3I q45l7oVdOIa74ARCQKh2jtY4FO1ww8mWswk686LHKbpfmXMAQu462zL12uR9gRAQqjWEgo3T OH0bDTYMoTx5JpWjakhUnX8eO7AtQMyiASAEhBoDIS14W064LISyNL4qtrF1/lWUjTyBUpQG gBAQagyEwhGIcchRkUmwqyzcMMKOPI9jz7NtEJpJZQxHe2a/uH2S1gMCQOCaBoAQEKo1hNJg EgWFNMhErc869lQEQmn7RI1PhcfFsv52zQFRHqAIhIBQrSGU5MSyACjovKO+5+3iywOUtLyj AJt2Tmnrcfo4fdc0AISAEBAKjCWVdeI2IBTXrRgHrbTxq7QyueaUKM9ggTIRQhOmLJRJszfI hJlLa+uoEHRzBZ3mXPMAJTh+lDZGlKappHKldQVGgSYPZPKcc9p5sL65bceluvUgdPgSae1y p7Qm3qImF/mXYdKaPFeAECJ0Sax54RAHgyQQ2HDiURMG8nT15R0Dipq4kLbM5XqlbIPld4AQ 3XG1jXKLRELhAfy0KCM80ywJMFGQTJvQkATKYHQWjtSixouydNfh4AfLwdehvoEQEKothOrQ wGyXMQ28to9HfkCrag0AISAEhGqkASAEFKqGQq/zB0I1ckC9FgfHc8/hASH36oR2Uq5OgBAQ IhJCA2gADfRNA0AI8fVNfFxBlruCxH7YrwkaAEJACAihATSABvqmASCE+PomviZcxXEORCNo oJwGgBAQAkJoAA2ggb5pAAghvr6JjyvIcleQ2A/7NUEDQAgIASE0gAbQQN80kAih8TzAtG8V 04QrHM6BK3U0gAbSNOA/RXuptHaNeIApEEJAaQJiPRpBA2igjAach1D4QY1JD25Me3px1Hta 8jyQsoyh2ZeGigbQABoYq4FaQChYcVFPFtbr45abfbM8kRiB4CTQABpAA73VQK0gFPcemLQX hUWtT9sHIfZWiNgbe6OBwdRALSCU9u6UNKAAocEUN06NekcD7mvAeQgFu9OIhNwXFI2eOkID aCCPBmoLoeCEgqTXIQfHi8z3uAkKeQzHtjQ0NIAG0EB5DTgNoahuuDyz46LglLYsLCo14yHX X3D/v/3WzV33GfEbe6CPUadFe7DbHuoKRKchVCejBknlSrnDjbyf5XKpLNoOLpXHpbJgm+Qr e5fqyqWylPEtQMjS4zpchFAZYbBv+W4GbIgN0UC6BoAQEOLRRJY0gMNJdzjYCBuFNQCELDkg IiEaFw4WDaCB/BoAQg2GkEt9xi6VhXEPxj2KwsIlHbtUlqL21PslQmgCT9HO3FVFJJT/CqiM cNkXe6OBZmjAh9ASae1yh7Qm3uK50pb33+S5AoSyVzIQym4rnAe2QgNowGgACDW4O46GTkNH A2jAdQ0AoQZDyKU+Y5fKwpgQY0JFHbNLOnapLEXtOTomRHdc5rGfOGPTHccVZ5mGyL7oZ1A1 QCTU4EhoUEXNeePQ0UB9NACEgFDpKJAGX58GT11RV65pAAg1GEIu9Rm7VBbGhBgTKuqIXdKx S2Upak/GhCwBSBuSMSGuMMs0RPZFP4OqASIhSyACQjiRQXUinDfaL6MBIASEGBOypIEyDZF9 ceSDqgEgZMkBuRgJudRn7FJZGBNiTKiow3dJxy6Vpag9GROyBCDGhLiKLdMI2Rf9DLIGiIQK gijpnd+DLCjOHYeKBtBAHg2kQGiRTJq9QSbMXMq4QQqsXOyOyyMEtsVxoIH8Gmip5z1X/a/p 9dKB0K6RT9EGQlkF4CKEXOozdqksjAnVd0yoaoefN/+s/qHMdrpMUfu71qaKniMQKtgdFza4 ixAqKgr2y39FXHeb5XW+/dq+7nYuUv44CBXJy8V9gBAQoqvVkgb65ZhtHNdF50SZRi+Gmgwi IGTJATUpErLh1AYxD5zm4EWQvapzIMTEhNRowX8lbTP+VdGwXOu/dqk8LpWF8TJ3x8vCIHJN N0X9BpEQkVAqYIuKi/2IDNCAPQ00NRoCQkAICFnSAA7XnsPFltG2bCKIgJAlB9SkMSEcAM4U DbipASBkyWE3UeAuQsilPmOXysK4h7vjHmHfgG666yoIIddsU9SvEwlZAquLECoqCvZz8yqY eqFetAaaFg0BISDEmJAlDQAJINELDQAhRxusniBtUpQQotan7ZNHUERCOKA8emFb9FJGA00C UWIkNH5qfZ4dp4GiKzUORFHr0/bJIxIXIeRSn7FLZWFMiDGhPG07uK0rOtYQcqUsRW1p9vMh tFRaUQ8wrQuEDEzMSWX5nbZNXsO6CKG858D2XJ2jgfpooCnREBBqdy+GoZS3MQKh+jTevHXL 9tQtGqhOA0AICDExwdFxThxfdY4P27pj28ZBKGpMKBjlJE1QKCNMFyMhl/qMXSoLY0KMCRVt 6y7p2KWyFLWnN+W8CWNCwQkJYeAEx4nCgMoyOy7pNd5x68wxwyLh981dURf2wB5Jg/7oI58+ yoCgn/s2BkL9NKIPwdG/fpeF47vT1UBdUBdVaUDflFJV3r3MFwhZGg8AQjibXjZcjoXegJAl 592UxuQihFzqM3apLIwJMSZU1O+4pGMgBIS6QmEXIVS0obEfV9lowG0NNAVAjZqY0O9GA4Tc brT91gfHRx82NQCEiILGDAgCIZyMTSdDXugpSQNACAjVAkIu9V+7VBbGhBgTKgp5F3RsAORC WYraMbgfs+MsAZVIiCtXGw2SPNBRmgaaFAWljglNmLJQJs3eIBNmLm3EfPS0yi2zHgjhPMro h33RT1YNNBNCS6Kfog2EsjcMIJTdVlkbG9thUzTQrYGmAWg0EgJCpSM9FyHkUp+xS2VhTIgx oaJw67eOgxDqd1mK2jC8X8rrvemOy2poFyGUtexsR8SBBuqhASIhS4P4TRQ8EKpHI26i9jin wdEeEAJCsd12QGhwHAFOn7ruhwaaCCDGhCxC1UUIudRn7FJZGBNiTKgoRPqp4zCE+lmWovaL 2o8xIUsgchFCNoVCXlz9o4H+aoBIyJKzbqqQgVB/G2hTdcV5oSuvy6oh7w4iEqoQpEAIZwEw 0EBVGgBCPDEh8Vlx4dd8VyXEvPm61GfsUlkYE2JMKG9bMtv3S8dREOpXWYraLm4/xoQsRUdE QlwF226c5Iemmt4Vx+w4SwDShgRCOAyggQaq0ECTu+KAEBAq/biiKhodeeLM0cCoBgYaQuOn LuIp2hlBpSMhLRZSb21Q1Fm51J/uUlkYL3NvvCwOQq7ppmhbTBwTAkLZr0jpjstuq6JijZze Cfi58Gm4Bmy2FxfzAkIZI520ygNC/YFQWr2wnnpBA25rAAgBIcaFLGkAZ+e2s6N+3KwfIGTJ AbkYCbnUZ+xSWRj3cG/cIw4Q6Ca+rlyzTVHIA6EGQ6ioKNjPzStG6oV6aaIGgBAQojvOkgaa 6CA4J8BXtQaAkCUH5GJ3XNXiIX8cFBpAA2U1AIQaDCGX+oxdKgtjQowJFXWcLunYpbIUtafe z3kIBW991AUO/zYnH7c8aX3aPnkMSyTEFWEevbAtekEDvgZqAaFgZWlwBGEUhEzU8qT1cXkV EQcQwqkU0Q37oJtB10CtIGSgEQWWKFCFtwtHRUn75BUGEMKZ5NUM26MZNFCTSCipC85EP0Bo bIN2qc/YpbIwJsSYUFHn75KOXSpLUXs61x1nYBN1QlHrgt1pQIiryjINgX3RDxrojwZq81K7 MISCv4PddEmwCo4Zpe2TV5B0x/VHwHnrie2pJzTglgY8CB2+RFq73imtibd4rlQ/OVxak+fK hCkL+/oqh6huuDyz46JAk7YsLNDwq7uz/DZ5hMNlft/cdWMs9sAewfaGHsrpoa5wdRpCdTKq i5GQS33GLpWFMSHGhIr6Fpd07FJZitqzMybkaiRU5sR6va+LEOq1DTieW90c1Af1UQcNEAk1 +IkJdRAgZcRRooHB1gAQAkI8wNSSBnCmg+1Mqf9i9Q+ELDkgF7vjXOozdqksjAkxJlQUGC7p 2KWyFLUnY0KWAORP/R79K1Mh7Fvsagq7YTc0UE8NEAlZAhEQqmcDwHFRb2igvxoAQkCIMSFL GsCZ9deZYf962h8IWXJALkZCLvUZu1QWxoQYEyoKLJd07FJZitqTMSFLAGJMqJ5XYGUaDvtS 52jAjgaIhCyByMVIiEZip5FgR+yIBqrTQAqEFvX12XF1qnggVJ1I66QDyooO0EA+DQChBkdC LvUZu1QWxoQYEyoKCpd07FJZitozw5gQkVBW4xIJ5bv6yWpXtsOuaKDZGiASanAkRONtduOl fqnfJmgACAEh7hOypIEmOATOAbD1WgNAyJIDcrE7zqU+Y5fKwpgQY0JFHa1LOnapLEXtWemY UNTruMsU1PV9XYSQ6zajfFx1owE0UEkkZF6hHX6VdpMEl/Sa7yadJ+eCk0ADaKBKDQChBnfH VSkc8sYxoQE0YEMDPYFQuGvORsFdy8PF7jiX+oxdKgtjQowJFfUfLunYpbIUtWdPxoQGAUDa kC5CqIww2JerXDSABnqhgUojoV6cgCvHAEI0WFe0SDnQYp00UAmE/MigNVD3nwAhGn6dGj5l Ra+uaKASCJkuuPCnKyddRTlchJBLfcYulYUxIcaEivoAl3TsUlmK2rPSMaEyharjvi5CqI52 pMxcoaOBwdIAkRBTtAeq2xQHN1gOjvp2v74rgVBUxTd9jIhIyH2x45CoIzTgngaAUIMjIZf6 jF0qC2NCjAkVhZFLOnapLEXt2dMxISIh965AygiHfalPNIAGbGigkkgoanZc1sKGnzcX9SDU qBtgg8eM6w7MmlfWsga3ozuOBllEN+yDbgZdA5VAqIhRoyASfBBq+KGocU/pjntCQ568ipV/ FENF9mcfnBEaQAODqIFKIBQVzWQ1btQTuPW+cdGPWdcdlXTfKBvuCkzKK2s5w9u5GAm51Gfs UlkYE2JMqGg7d0nHLpWlqD0rGxOKeoVD1jEhIMTVYBlBsy/6QQP10kClkVDS+4SydJuFo5uo iIZIqF6Cw0FQX2gADQQ1UAmEorrPykRCceNFUVFTWldbWl5FG4iL3XFFz4X9cBJoAA30SgOV QajoCdicHVc0r+4ILOkdqtHrzP7hPttB/q3P3aXzd6k8xi6u2Mel8gRt4oJ9XCtPUT/r0n7O Qcgl4+QpC5EQV4559MK26AUN+BoAQg1+YgIix9GhATTgugYqgVDUzapZx4RcN1hc+YiEaOx1 1S7lRrv91EBlEDInFTflup8nXcWxXYSQS/cRuFQWXf8ulcelsmAb7qGqwj8m5QmE6I7jVQ6W NNDrxsvxiGCaoIFKINQ9u6wV+bSDJhgvbhZd086N88HZoQE0UJUGKodQVQV3LV8Xu+NcsxHl wZGhATQQ1kBlEIp7wGhTRegihFwaa3CpLIx7MO5R1A+5pGOXylLUnnq/SiAU9ySDMgV1fV8X IeS6zSgfV8VoAA0AIUuD0kCIxoRDRQNoIL8GegKhuIeVNqnCgFB+8TWp/jkX6h8NFNNAJRDS lRF1w2qTK8lFCLnUZ+xSWRgTYkyoqC9yScculaWoPa2PCQ0aeIKGdxFCZYTBvsWu6rAbdkMD +TRgPRJq+uN54gQGhPIJj4aKvdAAGrAeCRlRDcIYULgBASEaFE4VDaCB/BqwHgl1d1ENxtMS /DGw0T9XhOhSn7FLZWFMiDGhom3UJR27VJai9qwsEooCUZlC1mFfFyFUB7tRxvxXjtgMmzVJ A5VFQoPWJQeEcAxNcgycC3rulQasQ2hQ4JP00u9eVR7HwVGgATRQdw1YhdCgACiq0l2MhFzq M3apLIwJMSZU1HG7pGOXylLUnpWNCfFmVa7OyoiSfdEPGhgcDViNhAZZOC5GQoNcH5z74Dgx 6rredQ2EeIApb1a1pAGcYb2dIfXXn/oDQpYckIuRkEt9xi6VhTEhxoSKAsclHbtUlqL2rGxM qEyB6rqvixCqqy0pd3+uSLE7du+HBoiEGhwJ9UNQHBNHhgbQQB4NACEgxJiQJQ3kaXhsi6NG A74GgJAlB+Rid5xLfcYulYUxIcaEigLAJR27VJai9gRClgCkDekihMoIg325UkcDaKAXGiAS sgQiIESD7UWD5RjorGkaAEJAiDEhSxpomnPgfABeLzTgHITCb2YNPgLI7/aKfkdR3HJjxKj1 afvkqQAXIyGX+oxdKgtjQowJ5WnbwW1d0rFLZSlqT6fGhJLgEjxBA6nww1LjlgchFISY+R5e VtSYLkKo6LmwH1fAaAAN9EoDtYiEwiCJAksUqJL2i4q4yhgdCNFoy+iHfdHPoGqgFhBKi5LS gBLXxZcErryCAEI4kbyaYXs0gwb6eJ9Q3LuHwsAIj+nEdc0RCY1t0C71GbtUFsaEGBMq6vxd 0rFLZSlqT6fGhOK6zuIgFIRYEFxRcItan7ZPXqMSCXFVm1czbI9mymigpeZoldnflX2d7o7L M6MtbtswxNKAFK6YpNd4x60zeYSvVPh9c1ejwR7YI9je0EM+PQAh7q3ocqhEQlzVunJlSTkG Q4tACAg5DyGX+oxdKgtjQowJFQW1SzoGQkDIeQgVbWjsNxhX0tRzfeu5KQBycmJCXRsG3XH1 bdB11RzlHlzNASGioDGzUoDQ4DoEYEDd91oDQAgI1QJCLvVfu1QWxoQYEyoKDVd0rCHkSlmK 2tLs50/RXiqtXe6U1sRbvOt5/YRQaU2eKxOmLJJJszfIhJlLGzEfvayxkvYnEuJquEp9kTf6 CmqgeZEQECoNWSCEkwAUaKBXGgBCdMfVojuuVw2C4+B80UDvNNAkAI3OjiMSamQk5FKfsUtl YUyIMaGi0HRBxwZCLpSlqB27uhYZE7JzBUN3nB072hA1eVAXTdYAkRBdcZFRExDC8TXZ8XFu 7ugbCAEhIIQGSnff4tTdcep1qwsghAOqDYRc6jN2qSyMCTEmVBQ8/dZxEED9LktRG4b34z4h S1ClO44rW1uNknzQUpwGmhYFMTvOEoC0IYEQjgN4oIGqNQCELDrtqiur1/kDIRxQrzXH8QZP c0AICMUOSLsIIZf6jF0qC2NCjAkVBXi/dcyYEBDqQCjptd9FBc5+g3dlS51T53k00NhIaNoS ae3KA0xLTbt1MRLKI262xRmiAbc10EQAdSYmAKHy4gNC5W2IE8SGaCBeA0CIrrjESMlFCPW7 /zroUFwqC2NCjAkVhV0/dRyGUD/LUtR+Uft59wkRCZW/AnURQjaFQl7lNYINsWEZDRAJEQnV LhIqI3j2xWGiAbc0AISAEBBCA6Umr+DU3XLqdaqPpgKIiQkWnaqL3XEu9Rm7VBbGhBgTKgqg fuk4CkL9KktR28Xtx5iQJRC5CCHbYiE/ruTRQH80QCQ0cyndECmwAkL9aZw4Rew+CBoAQkAo FcJACGc4CM6Qc+yPzoEQEKolhFzqM3apLIwJMSZUFKb90HEcgPpRlqJ2S9qPMSHGhFIBW4Xw yLM/V9TYvX52b3IU5NTsOJGW6tHyk2koWZfp7aO2DTa4PHkVaah0x9WvcRepZ/ahnnutgYGG 0Pgpi2TS7A0yoQfdcQY+YQgFAWO+h5clLQ8CLWteRUQGhHBORXTDPugmTQNAqEcQioJFVCQT XhYEUDiPpN9B2EXlkSaM8HoXIeRSn7FLZdF151J5XCoLtnFvvGygx4R6GQkBIa4I84Kf7dHM IGiASKiiSCg8/hOORqIilbjoJS2qyZNXUVG7GAkVPRf2w7mjATc00HQAaZ0lzo7rZSSUBJKk SQVR8CqTV9HGpyGkBUPCBmgADdjUQFGfVJf9nIBQEDI2Z8cVzat73CnpRd7R68z+4b7+Qf6t z92l83epPMYurtjHpfIEbeKCfVwrT11Ak1ROJyDUBEPSHedG90UTtMQ5oKVB0gAQ4mZVbla1 pIFBchycK6C0pQEgZMkBEQnRKG01SvJBS4OkASDUYAi5dP+JS2XhXhj37oWJc7roJr6uXLNN UXACoQZDqKgo2I8rcTSABnqlASAEhBgTsqSBXjVajgMgmqQBIGTJATEmhGNokmPgXNBzrzQA hBoMIZf6jF0qC2NCjAkVdbAu6dilshS1p94PCDUYQmWEwb5cCaMBNNALDfgQWiqtXe6Q1sRb vE4l/VIfaU2eK718bE8vTrbKY9AdR4OtUl/kjb6aqgEgRCTExARLGmiqk+C8AGCVGgBClhyQ i5GQS33GLpWFMSHGhIo6VZd07FJZitpzdEyI7rjS0YCLECojDPbl6hcNoIFeaIBIqMGRUC8E xDFwVGgADZTRABACQqWjwDICZF8cGBoYbA0AoQZDyKU+Y5fKwpgQY0JFweeSjl0qS1F7MiZk CUDakIwJDfbVXJlGyL5oZ5A1QCRkCURACEcyyI6Ec0f/RTUAhApCKOml30Urg/1oyGgADQya BoBQQQiFheJiJORSn7FLZWFMiDGhoo7eJR27VJai9mRMyBKAGBPi6rVMI2Rf9DPIGiASsgQi FyOhQRY2545jRwP10AAQAkLcJ2RJAzi9ejg96smteupAaFeeol3KGbsYCbnUZ+xSWRgTYkyo KIhc0rFLZSlqz64xISBU7urARQiVEQb7ltMD9sN+aCCbBoiELHXFAKFsgqNhYic0gAaCGgBC QKhUNyQOBYeCBtBAGQ0AoQZDyKU+Y5fKwpgQY0JFnaZLOnapLEXtyZiQJQBxnxBXgmUaIfui n0HWAJGQJRAxJoQjGWRHwrmj/6IacAZCIi3lx/0UPJnw8qzbhQ0StV9cXkWMCYRohEV0wz7o ZtA14BSE/G6tsRAKQ8lsF9zWfI8CWTDf4Pq0ffKIw0UIudRn7FJZGBNiTChP2w5u65KOXSpL UXs6OSaUBKG4dVnBZQwVF3GVMaSLECpzPuzLFToaQAO90IAzkVAQEHHdcUCIRtGLRsEx0Bka 6J0G+gahvNFI0vZEQr0TDI0TW6MBNGBTA32DUNTEgaQTC0MoamwnaqwoPM6UNEGhjGGTXnLX r3W6z9iVP5fKom3iUnlcKgu2SW4xLtVVo8aEDl8irX4+Oy4IhvBkgzj4pM2iywOfcF7d3YGu uHHKgQWwABbotkCZC2dX9vUioX5DyBVjlC0HDQQLYAEs0EsLlPVZLuwPhCzdrOpHXmLlOWwu 5eNSWVyzMbaJHxvBNsnjRjbsYyMPIGQRAC4Y05YoXMrHpbIAoeodmy0bo5vq64oxoYYBxAbE mtjwmnhOONrqHSS6qY+Nbfi+MnnQHWcRpk1seE08JyBUHweJ/qrv8iwDEBv7AiEglDiOhROo 3gk00cZNPCdbFy+28rFlYxsgKZMHEHIQQmUqNLivS33GLpVF28il8rhUFmzDc/Vs+Z+s+QCh BkPIpSsll8pi60o0ayNL2w7bVB9tptVB1vUu1ZVLZclqv6jtgBAQsjKtPE2ErjUYl8rjUlkA dPXjZWltJet613STtdzh7YAQEAJCFjVQpCG65kxcKo9LZQHQ1TwzDwhZdECuNRiXxhpcKgvj Hox7FLlYQDdAqCdX7EXF6dpVkmvlcQ3QLpXHpbKgG7rjyvjAIvsSCVmMhIpUAPtUc3WFXbEr GqiHBnwILVVP0b5TWhNv0ddk6v3a+r/Jc2X8lEUyafYGmTBzqfNRCIKrh+CoJ+oJDaCBoAaA EJEQFxhoAA2ggb5pAAghvr6JjytirojRABoAQkAICKEBNIAG+qYBIGRJfFGvDQ9e5cWtDy9P yyfLlWNaHkmvOE9bl+X44W3SymO2L/pW3TxlslWWYJnDb/+tujz+DDY9dOunqN95ypD3XJLe amyzTGl1lVWraflksVVaHlnbd15bx5XNVnnS8slim7LbACGLEAo6gyhHHLU+qkEn5ZOlwsOO KWtZwtCMgkOW4+c9XpwzCdsh7byylC0tj7SyxJ1blmNHbVOkPMYuUfVVFohpGs6Sf/Ccitol eI5xx4w6TpQ902ycpYxpecSdc9ryLMcuqpsknYTbdpZ6LVrWtP2AkAUIxYEkzokHt4/7HiWg tMrMI7okwKSdT5ZyZDn3JFiFHayNMuXJI7xtXH1EbZfVPmXK02vdxF2gJEG517aJsmceG8fV W5484s45Tx5p+smTV9K2efJJK1OZ9UDIAQhFXX33C0JxzrfolVIeoSddNebJpypn4oJtgnDv pW6yQCgOAkVglKe+XddN3MVhL9tUVbopAx+zLxDqM4TC4sjS2JMqPq3x5l1fdXmi8nfxijbN kaatj6qztLrIYvsoR9bPsmQ5zyyOK6tt0iLCrPmUaVNJvQppF5NV1lVS3rZ0k6Uu07YBQpYh lFa5cVc/4eU2rpLyliWtQaStT3NAaecUdUUbdbWflk+WSCgtjyTnlnaeaY0uymnlKU8YTuGy 9qqeskAyzQmXqaskwPRaN3E2T6uLtPVpWkvyJ2lgtaGbrFpP2g4IWYCQaWhRIIkKg/Muy1vR cQ0w7bhxgk9zkGnlSytPklOOaihFGm7SuUc5yiAQo8ofV+dptgivr7NtkiKAOJvlsU+SbYLr 0jRSVVnCGohq/0kwtK3jNM1WVZY8dRq1LRCyBKGyFcH+3LSHBtDAIGoACAGhvt2kNogNjnMG NGigWwOJEJrAA0xx0EAaDaABNFChBjoQ2uWOsU/RBkJctXHVhgbQABqoUgNAqELCV1lx5I1j QANooAkaAEJAiK4GNIAG0EDfNACEEF/fxNeEq7h+nEN4enLcdOV+lI1jEp3l1QAQAkJAqMYa KHOvSV5nwfYApgoNAKEaO6AqBEGe9XI0SU8NMDdTBm+qDN9gGbzhtOxNyWinXtpxpb6AEBAi EqqxBrJAKPxEgaDziQIP0RUw6SWggFCNHVAvhcKx3HRMWSAUhk4UhBhXcrN+B6HdASEgRCRU Yw3YgtAgODvO0U3QAqEaOyAalZuNqpf1YgtCdMGhpV7qNngsIASEiIRqrAEbEApPVgBIAKmX QAJCNXZAvRQKx8IxoQE0UIUGEiE0fspCmTR7g0yYuZSrZWCFBtAAGkAD1jXgQWjaEmnteufY B5gCIa58qrjyIU90hQbQgNEAEOLKxvqVDQ4GB4MG0EBWDQAhIASE0AAaQAN90wAQQnyVii9t phU3SXLFnPWKme2aqRUgBISsQSj8eJgszyJLgxSOp5mOh3qlXhkTAj654WOAERW9BJclPSYm 7Hzy3ueC88J5oYFmaYBICBhlhlEaaKKimrRIJw5o5gZKHE6zHA71SX2GNQCEgFAuCEXBIRgh pUU6WdenwQtnhjNDA83QABACQs5BKAlqOJ5mOB7qkXqsbEyoJfxzwQJVNPK0iQdF3k3DmBDO qAqtkmd9dEUkRCSUORKiYdenYVNX1FVdNACEgFBPIBSegMCYD06yLk6SclarVSAEhHoCIRpy tQ0Z+2LfumogEUITpiziKdpACkihATSABirTwCiE7hj7FG0gxNVV2aurtG43HtuDxspqjP3r rSEgxBWOtSuctNlzUc4iDVI4mHo7GOqP+kvTABACQpkhxGN7cChpDoX1aCSvBoAQEMoFoaR7 gWw/tifq6Qx5Bc72OEU04LYGgBAQygWhKDDYfmwPT0xw22ng1KkfmxoAQkDIOQgZ0DFehLOz 6ezIy009WYdQS6JuS2RZr+1SRYNLm3hg47E9ptwAyE2HUYWuyHOw69o6hBDUYAvKVv0DIXRk S0vk47aWgBDdcZm748o05jyP7QFAbjuNMjpgX+o2rAEgBIR6AiGcD84HDaCBKA0AISAEhNAA GkADfdMAEEJ8fRMfV8ZcGaMBNACEgFClEEob3+HZcTghQDTYGkiE0PipPEWbBpK9gaRN4Y6y ZRqksH92+2MrbFVHDXgQOnyJtHa5c+xTtIEQog6KuhfPjgveqAqg0F8dnSplzqdbIER3XObu uGDXWRycwg0wDSRx3XFp+9HQ8zV07IW9XNUAEAJCuSBkIhWbEMoLLlcbE+XC0aOB/BoAQkAI CKGBzBrAyeZ3stgs2WbWIdRSD0kj9d8GVQg/beKBjWfHMVsOJ1eFdsnTXV1ZhxCV7W5lUzfU DRpAA65pAAjRFdOTrpg8z45zrZFQHhw3GqhOA0AICPUEQjTi6hoxtsW2ddYAEAJCQAgNoAE0 0DcNACHE1zfx1fnqjbITfaABOxoAQkAICKEBNIAG+qYBIIT4+iY+riTtXEliR+xYZw0AISAE hNAAGkADfdNAIoQmTOEp2nW+wqDsXCGjATTgugZ4nxBXQH27AnK9cVA+HDgaqF4DQAgIASE0 gAbQQN80kBlC69csFBI2QANoAA2gAZsaAELAlYsLNIAG0EDfNJAbQt/739+W//V3t8p3v3Nz J33n238lf/vNv5Bvf/OrJGyABtAAGkADHQ1oNmhGfPd/KGa00z/8/d+IZomOqHJD6Ol5T8lv H/+NPPqrX3bSL3/5kPzi4QfloV884KU5D0Wl+9VyPz04x09z5vxbKP1M/VbpwX9V6afZ0gP3 yZx2elB96vTAA/+kPn+SnH7+Y3mQhA3QABpAAyU1cI/avzs9cP/dYtKDP79bHnrwHvnlL+7t pN88+s/yxH/cXwxCK4eWyXPLFsuzSxZ10qLFC2Thovnt9IwsXPiMLFj4tPr0k//9iZg0Vy1v pwXqc8HvItLjatloWjD/MZk/77eycN5jflK/vTTv115aMO9X0emZR2XBM4+QsAEaQANowJIG 5j/9S2XLh8ekhfP08l94aeG8h2XRgl920m9/9c+i/wpFQuvWj8jadcMysmbVaBoZUt8DSf8e WRlIz6vvwbRc/Q6mZeq3TktDaYn6rdJwO61+VkZ0Gl7clYZXLxKdRlYvSE6r5slIJz2jvpOw ARpAA2igiAaGh56WsekptWw0rV75lPhprqweeqKTHnv0p8Uh9OJL62RMenGtvPjiSEIaVusi 0oZV8qKXVkamDS+sED8tj0wvrF8mUWnDuiUyNi1Wy0xapL6TsAEaQANooIwG1q9dLDq9sHZR RJqvlnWn9WufUds/I4+p7rjCkVAYNhs2jIhO/nIFmg5YDGDGfm54YUhBJZgMbLqhs37986JT GDTr1z0nkWntEnWCOvmGCRtonTKUSTanGJIXU1bRABpAA1oD80Npnvo9mtaNPCM6/ebR+4AQ gsFpoAE0gAZsayAbhH71yD/1BkKtVktMCkZIcZGQ3jbY/VYkEtJ5EAnZFhb54azQABrIooGs EPpJ9RDSMAiCJ/jbNoQ88Oguugq747xjpNzQlmWbtDxYn0XobINO0ICbGigBoV3ukNbEWzw4 tbz/Js+V4FO0zQlnHRMKQ6jKSAgI0SDdbJDUC/UyaBrICKGH7x0bCfUaQsGuOjMLLtgdF1wf nJgQXG4mJ5hlOhIKdsd15dGelKCX6ckJnX1iopvw+rjfwegnuE04KorbjkY6aI2U80XzTdZA Ngg98tA91UNIRz5xY0I+bEZnxxn4dH8u92bG6aSXaxCZzyB89PdgJGQgFISRnj4YB5+oLrQw MLwbqhK648y6qP1Mg8uyDY2zyY2Tc0Pfg6CBbBB66IEfFoeQno79grph1aQN6vuG9as76YX1 q9S67rR+/co2QPzlQTiZ7y+sW+Fv0/4MbxOEzbq1S1U0s7QzBuQD5lkvme/e5xo1JbudzG8f BvPVNEE/ecvb34Of4eVRv4NlDOeVtH/cMaPKwbLRusIW2AINuK+BNcPzvGnYXhpup5Gn1W+V hp/y0v3/9r3iEIqCTBR0NHhGkx/NBCMb7/s6Fe0EkolofJAoyLTvBzLQ8aObJR3gmIkIJsrR s+KCkVAZCCVBJQ4wweVZIEaDcr9BUUfUERrIroFRALWhY+ATglDkY3uyjgl1w2UUNDqCMZAx XWhRv023mgbMOgUgnYLwMRFPVKQzGvH4N5360Y0PnriIx0Q9JgIajYR8UvuwaFO7/RlcZr5H LTP7pW1jIqbw8aKOHS4Lv7vrBntgDzRQFw2MRj4mAlo7/KToFPnYnqwQWrd2hQJAILVBEoxo gnDpOOC1y7zoJhjVdNatUdGNSj5M/Einq6sr1K1m1q0ZXig6rR1e0OlW0+tGhud7KZiHJrRO epn+XLv6aS/p3+Z78NPsG14W3C+Yf1R+wTyCxwnnHV6XVrao8rLMr08SNkADDmlg1ROyVqc2 fLzvKkU+ticrhNYoSOi0ds1zXur8HnlW1raTtz7029tOPXh0bPJBkpQMVGI/2w8lHVYPJO1O 6gF7qyLS0JPqIXskbIAG0AAaKKuBEe+BpU/KiHpAqclLf/fT3O608j9kRKXIx/ZkhdCqlfPF S0MLAmme+q7SynBqb9veZ2jFMxKdnlbLR9PKFU9JVBpa8aTa7klZ+Xw76e962fNPtNNc9TlX Vi4fTfq3SZ3lz/9O5UHCBmgADaCBMhoYUn5Up5XLf9uVhpb9VnTqXv4b9dtPkY/tyQqh5c/9 h+i0bOlcee650WSW6eUmddYv/Z08lyMtW/KY5ErP/kaW6bTk19Hp2V+p9d1pqfpNwgZoAA2g gXIaeO7ZRySYlj77S+Vb/WSWd5YtfliWqvSrRyIe25MVQs8uekwyp4W/kWcT0uKFj0q29Ija LpDUy5EWR6X5v5DFOpl15nfoc5H6vWj+HBI2QANoAA2U0MDi+Q8pnzuaUv3qPOV35z3QSV0v tcsKIT/KeUJFQ0+q9FQg6d/RSW//fCAtV3lEpnaUZaKtMZ+d/R5X+2dIS34ryyNSrigrb1TG 9vmiWOyFvdBAQzUQ6JkyvVXPPub1QD236FFZuuiR7jerZoUQdz0Pwl3PnCM6RwNooDcaaJ34 srSmqdnRcRB66xmrZNLsDTJh5lIZ/+G1mZKXKQkboAE0gAbQQJoGNID2fyAeQjucsFjefNYy ecNJi+R1Ry3MlFqHL5XMSRegX+lwdewsaZo6n8zJ9vnkOHaWc/G26WP9VHHsKvLMXN856se6 zis4dmYNaZ1nPb7tNlGTY/fVllnrRm+XtX7y5Jl1W3XsQ56Q1n73S2vXfwy9ymHS3Wqher+D l+4MfDfLbH3qvLMkW8cL5KPDP9upY7OU8mY9bibbtO1XRZ6Zz0eVYZcMKWt+Hd1l0UaObbKU Mc82ec4na7556jzzthW0n4E9dgW2zKyNrMfO0SYy12MVeerzUfDRZdjp70IQetvt3gISNkAD aAANoIFeaaDzUjvvEaf8YQEsgAWwABbosQX+PyvFMLFvRjFPAAAAAElFTkSuQmCC</item> <item item-id="318" content-encoding="gzip">H4sIAAAAAAAA/4xU3U4TURCes7vttktrsUr52WoRwSIitAfUtooWQ4iJfwk+AFnaBWrEYlkM l40P4J3XeuEjGO+Nd8b4RqZ+Z6aU6pVnMzs/+818s3P2bIqIFOQFxGPbxj0RvtkK91rt1zEy axWSbLYbEnM4VjWwg8bznZdhI+IIbXG+hXv8aP/wYftEwk8gLgJbA+BTyCjk0yaRDXzu0Zlv 1pwrTVlk2WxkB+TrUdRp7RxHoWJkDZKh4eXUZv7yY1zAiTph6HNAQ9KHbMb15DeibszVH6Hr 8YRoNyk64YlOjmgLJG8xn4RyNcZRpiXUqZjBpHT8B9E7L60/PAY2RecY/CWN8ipmgFVcZdOn jv0EW2qUARHEVlaZSkTnJQViKbXCU8wydTd5QZv3q2cRvMhmN8utj2nvO5xEjnV9bFw7v6Fz Ezr7C3p8kks2J/Dq9i6aQANT+j1euztBPj/7PGXoeEfyUmz8knSW5z6QcVn6GvhEBabp5qaF pnBFaKaHaGaEZpquCs3MgGZWaApzQjPLZbEd14Rm9oyGisIzNi88xevCMz/EsyA883RDeBYG PIvCU7wpPIunY10SnsUhHlqWObsl2erlsuiSli0vMxZbtML+14FPq5JYuiUbZI7IbdmgVS58 R5xldioCjleleqUmunpXWPAVO8ou8UdF94SpNmBak+TqfWFaQ+iBFF/j4vW6DKByOoD6Oh/C TFNv73WCw/3t3XbnIIhc+XDMWebwRhAFMoSp/lmxsI98/s2RMdRFto3nBSeto02uI+c/b062 6mNl9XCRyv9/9LS4G3WCRqg3bH7k94EFNUrKVwAWlFK+Rb1eQVnKBwqGrXynZwyHMTBiwHTr AMcZA8NlDIyEwRhwkusg4gHD6SPAcHoKGE5PG4zJOscYGBmDMWBpN/Ps+CDstBrBKxlIgtvG P4ya1MJlyM1PyetP85+VGnb+AAAA//8DAEKDqSWABQAA</item> <item item-id="319">iVBORw0KGgoAAAANSUhEUgAAAfMAAAF2CAYAAAB6cnEgAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACUJSURBVHhe7d0LduI4EAXQrIsFZT1Z DZvJYhjIpyfhE2wBTyp0e06fmUksq3xVqYrBNi87fwgQIECAAIHSAi+loxc8AQIECBAgsNPM JQEBAgQIECguoJkXX0DhEyBAgAABzVwOECBAgACB4gKaefEFFD4BAgQIENDM5QABAgQIECgu oJkXX0DhEyBAgAABzVwOECBAgACB4gKa+agLuH3dvby8fP193W1HjVNcBAgQINBdQDPvvgRn Anh/221e/m/g72+b3curdj7iUomJAAECIwho5iOswrUYjpr7tc19nwABAgTmEtDMC6y3M/MC iyREAgQIdBTQzDviX53644z88L75Zvf2fnVrGxAgQIDApAKaeYmF3+5eNfQSKyVIAgQI9BDQ zHuoN8y5fX3ZuQauAc4QAgQITCCgma9d5NaL0c6Oe9+9bc7cfna4LW3ztvv/lXVn5muXyfYE CBCYSUAzX7Xah6Z6aL5r7/s+P+5wtv19y9nP/z6E9HHR27/7zL1nvmqZbEyAAIHJBDTzhQv+ 3Vw3r6+/7gG/NvzyuKOz7dYz/msB+D4BAgQIPL2AZr5wid+328+XvVc23YvjTvbjpfSFS2Ez AgQIEDgS0MzXpsSvJnxowEcvuR++/+v97q8Jjpv3jc38/5fgv99z928mckAOyIHRcmBti2nd XjNfK3e2CX819EuN/NwZ/R2a+drQbb9e4FAY/MkIsOacEcjNksxplWrtup59mf3rArdzZ+Tf +3/Amfna0G2/XiD5w7g+uucawTqznpwzzodZktaa+dp1vVcz338O2q8Hwax8Lz6ZJGuJnml7 zrnVZJ2x5pxx1sxzzm0z3etl9v3sf92adi04P5DXhO7zfc73cVyyF9ZLlG7fhvPthkv3kLR2 Zr50Vc6+XH7DBXAf+/u+/3z9vevJJFlL9Ezbc86tJuuMNeeMszPznHPpmfxAll4+wRMgMIFA sk47My+aUMkkKUokbAIECHQVSNZpzbzrUrdPnkyS9iiNJECAwLwCyTqtmRfNs2SSFCUSNgEC BLoKJOu0Zt51qdsnTyZJe5RGEiBAYF6BZJ3WzIvmWTJJihIJmwABAl0FknVaM++61O2TJ5Ok PUojCRAgMK9Ask5r5kXzLJkkRYmETYAAga4CyTqtmXdd6vbJk0nSHqWRBAgQmFcgWac186J5 lkySokTCJkCAQFeBZJ3WzLsudfvkySRpj9JIAgQIzCuQrNOaedE8SyZJUSJhEyBAoKtAsk5r 5l2Xun3yZJK0R2kkAQIE5hVI1mnNvGieJZOkKJGwCRAg0FUgWac1865L3T55MknaozSSAAEC 8wok67RmXjTPkklSlEjYBAgQ6CqQrNOaedelbp88mSTtURpJgACBeQWSdVozL5pnySQpSiRs AgQIdBVI1mnNvOtSt0+eTJL2KI0kQIDAvALJOq2ZF82zZJIUJRI2AQIEugok67Rm3nWp2ydP Jkl7lEYSIEBgXoFkndbMi+ZZMkmKEgmbAAECXQWSdVoz77rU7ZMnk6Q9SiMJECAwr0CyTmvm RfMsmSRFiYRNgACBrgLJOq2Zd13q9smTSdIepZEECBCYVyBZpzXzonmWTJKiRMImQIBAV4Fk ndbMuy51++TJJGmP0kgCBAjMK5Cs05p50TxLJklRImETIECgq0CyTmvmXZe6ffJkkrRHaSQB AgTmFUjWac28aJ4lk6QokbAJECDQVSBZpzXzrkvdPnkySdqjNJIAAQLzCiTrtGZeNM+SSVKU SNgECBDoKpCs05p516VunzyZJO1RGkmAAIF5BZJ1WjMvmmfJJClKJGwCBAh0FUjWac2861K3 T55MkvYojSRAgMC8Ask6rZkXzbNkkhQlEjYBAgS6CiTrtGbedanbJ08mSXuURhIgQGBegWSd 1syL5lkySYoSCZsAAQJdBZJ1WjPvutTtkyeTpD1KIwkQIDCvQLJOa+ZF8yyZJEWJhE2AAIGu Ask6rZl3Xer2yZNJ0h6lkQQIEJhXIFmnNfOieZZMkqJEwiZAgEBXgWSd1sy7LnX75MkkaY/S SAIECMwrkKzTmnnRPEsmSVEiYRMgQKCrQLJOa+Zdl7p98mSStEdpJAECBOYVSNZpzbxoniWT pCiRsAkQINBVIFmnNfOuS90+eTJJ2qM0kgABAvMKJOu0Zl40z5JJUpRI2AQIEOgqkKzTmnnX pW6fPJkk7VEaSYAAgXkFknVaMy+aZ8kkKUokbAIECHQVSNZpzbzrUrdPnkyS9iiNJECAwLwC yTqtmRfNs2SSFCUSNgECBLoKJOu0Zt51qdsnTyZJe5RGEiBAYF6BZJ3WzIvmWTJJihIJmwAB Al0FknVaM++61O2TJ5OkPUojCRAgMK9Ask5r5kXzLJkkRYmETYAAga4CyTqtmXdd6vbJk0nS HqWRBAgQmFcgWac186J5lkySokTCJkCAQFeBZJ3WzLsudfvkySRpj9JIAgQIzCuQrNOaedE8 SyZJUSJhEyBAoKtAsk5r5l2Xun3yZJK0R2kkAQIE5hVI1mnNvGieJZOkKJGwCRAg0FUgWac1 865L3T55MknaozSSAAEC8wok67RmXjTPkklSlEjYBAgQ6CqQrNOaedelbp88mSTtURpJgACB eQWSdVozL5pnySQpSiRsAgQIdBVI1mnNvOtSt0+eTJL2KI0kQIDAvALJOq2ZF82zZJIUJRI2 AQIEugok67Rm3nWp2ydPJkl7lEYSIEBgXoFkndbMi+ZZMkmKEgmbAAECXQWSdVoz77rU7ZMn k6Q9SiMJECAwr0CyTmvmRfMsmSRFiYRNgACBrgLJOq2Zd13q9smTSdIepZEECBCYVyBZpzXz onmWTJKiRMImQIBAk8DL7k7/vORabG6mJlKDLglo5nKDAIFnEbhT67xXC74ba7JOa+Z3W7bs jpJJkj0ysxEg8GiBZ22ej3Zbu/9kndbM167OINsnk2SQQxYGgZICozXOQzz+ZASSddqqZtb0 7rMkk+TuwdshgQcKjNY8H3iodj24QLJOa+aDJ8Ol8JJJUpToacMerVmNFs/TLrwDKyeQrNOa ebn0+Az4XkkyWiEWz3WBoikrbALTCdyrTi+B08yXKA24zfWSv2yLAQ9NSAQIEHgKAc38KZbx sQeRTJLHHom9EyBA4DkFknXamXnRHEomSVEiYRMgQKCrQLJOa+Zdl7p98mSStEdpJAECBOYV SNZpzbxoniWTpCiRsAkQINBVIFmnNfOuS90+eTJJ2qM0kgABAvMKJOu0Zl40z5JJUpRI2AQI EOgqkKzTmnnXpW6fPJkk7VEaSYAAgXkFknVaMy+aZ8kkKUokbAIECHQVSNZpzbzrUrdPnkyS 9iiNJECAwLwCyTqtmRfNs2SSFCUSNgECBLoKJOu0Zt51qdsnTyZJe5RGEiBAYF6BZJ3WzIvm WTJJihIJmwABAl0FknVaM++61O2TJ5OkPUojCRAgMK9Ask5r5sPm2fvubbP/5LOXw9/X3fYo zmSSDEskMAIECAwskKzTmvmgibB93Tfx188W/vO/v8NNJsmgRMIiQIDA0ALJOq2ZD5kK293r y2b39v4V3PvbbnN0dp5MkiGJBEWAAIHBBZJ1WjMfMRlOmvdRc9/HnEySEYnERIAAgdEFknVa Mx8xGxY288/303//HfFwxESAAIFnFjhXi7+/ljpuzTwlvWaehc18zS5tS4AAAQJZgeHOzD8u wDqcAW7edt9v414jeX/b7Db/3vQ92vrQrL4u7rq2nym/r5lPuewOmgCB5xIYrJmfvl97nfsw 5sftVGcu4Dr8gqCfX5J0Adz1HLMFAQIExhYYq5mfacTX+E7Oys/tY/u66kz/2pzP9n23pj3b ijoeAgRmExinmX804f8vsFp2Jn142MmP26r2jzt5/beP46///P/Zlvna8f5089CYa1q+T4AA gdEExmnmB5lLZ+Zrvn52288nnC37BWG0JeofTzJJ+h+tCAgQIFBPIFmnr1/Nfukl8guPGd0/ ruz08aMXGv/hpeSLF8nVW7doxMkkiR6YyQgQIPAkAsk6vbqZf17Zvn95fHv6VLIP/3PvhWvm d0/NZJLcPXg7JECAwAQCyTq9upn/87/5ZfbPZ447M2/L6GSStEVoFAECBOYWSNbpYDM/vtjN e+a3pHkySW6J01gCBAjMKpCs0/dv5vvHypxe2Pb/x3n+f8Fby/3rs6bE6XEnk4Q6AQIECKwX SNbp6838Uvx/3H/+59Pfvvf3133mDfe2X7zqfr1/iRHJJCkBIkgCBAgMJpCs0w9p5vt3w38/ Ae4M8MUnwH1cDX+4yO703uqL69QyZrBFXxtOMknWxmZ7AgQIEMh+uuWDmvnh9vQrz2Y/85z3 q1fKX/il4M+r6580ozTzJ11Yh0WAwNMIJOt0ezN/JLeX2a/qJpPkajA2IECAAIETgWSd1syL JmAySYoSCZsAAQJdBZJ1WjPvutTtkyeTpD1KIwkQIDCvQLJOa+ZF8yyZJEWJhE2AAIGuAsk6 rZl3Xer2yZNJ0h6lkQQIEJhXIFmnCzXzr48EvfQxay0XzRXOsWSSFGYSOgECBLoJJOv0mM38 D/rtdtttYUaaOJkkIx23WAgQIFBFIFmnCzVzz3L/mcDJJKnygyNOAgQIjCSQrNOFmvlIS9Q/ lmSS9D9aERAgQKCeQLJOa+b18uMj4mSSFCUSNgECBLoKJOu0Zt51qdsnTyZJe5RGEiBAYF6B ZJ3WzIvmWTJJihIJmwABAl0FknVaM++61O2TJ5OkPUojCRAgMK9Ask5r5kXzLJkkRYmETYAA ga4CyTp9sZnvP1G8yz9d5QtNnkySQixCJUCAwDACyTrtzHyYZV8XSDJJ1kVmawIECBA4CCTr tGZeNOeSSVKUSNgECBDoKpCs05p516Vun/ywcOcWz9c/TTn0dWjPbCMJPI+AZv48a/mwI0km ycMOwo6fVsAvU31/meJ/X//WH9RknXZm3rpKncclk6TzoZqeAAECXQVafjn6eIXwJddiczN1 XYrnmzyZJM+n54gIECDweIFkndbMH7+eD5khmSQPOQA7JUCAwJMLJOu0Zl40mZJJUpRI2AQI EOgqkKzTi5r59nX/AJn9a/8vm7fd+0Ka97fNbvN2Yev3t93mdbtwTzY7J5BMEitAgAABAusF knV6QTPf7l5fNrtLffn84R3GvO7+tetD8/75//tBh18Q9PP1yfE9Ipkk7VEaSYAAgXkFknX6 ejM/04ivLc3JWfm5fWxfV53pX5tztu8nk2Q2W8dLgACBewgk6/TfzfyjCX+9xL7/97Iz6ffd 2+bnmfzhLP17H8dfX3vGfw/e59hHMkmeQ8xRECBAICuQrNPtZ+aXztjPff3stoemv/QXhOwC VJgtmSQVPMRIgACB0QSSdbqtmR9eIv842/7xvvi34sf3jr5+ofEf3je/eJHcaKsyWDzJJBns 0IVDgACBEgLJOr26mX9e2b5/eXx7elHbh+6598I187snXjJJ7h68HRIgQGACgWSdXt3M//nf /DL75xXtzszbMjqZJG0RGkWAAIG5BZJ1OtjMjy928575LWmeTJJb4jSWAAECswok6/T9m/n+ sTKnF7Z9fu1wYP9fEd9y//qsKXF63MkkoU6AAAEC6wWSdfp6M78U/x/3n//59Lfv/V18b33t rXBfO2y4H3790owzIpkk4xy1SAgQIFBHIFmnH9LM9++G/34C3Bn70yfAHZ2pfzTnhfeh/3V1 fZ11XxVpMklWBWZjAgQIEPgQSNbpBzXz3e7qs9mPn/N+aMhHT6VZ8sjXq1fXP2lSJZPkSQkd FgECBB4qkKzT7c38oQSHna98T93L7A9fERMQIECAwHIBzfzrIrpVt61p5sszzJYECBAg8HCB yZv557PcVzXyw5Jo5g9PTBMQIECAwHKBeZv51we7LPtAlyNQzXx5htmSAAECBB4uMGczv6WR OzN/eFKagAABAgTWCUzZzA9Xv39+eMvvv78fMrP/3qXTdmfm67LM1gQIECDwUIEpm/lS0e12 u3TTp94umSRPDengCBAg8CCBZJ0e+Na0Y13Pcv8pkkySB+W53RIgQOCpBZJ1ulAzf+o1X31w ySRZHZwBBAgQIFDkCXAWqquAZt6V3+QECBC4KpCs087Mry7HmBskk2RMAVERIEBgbIFkndbM x86Fi9Elk6QokbAJECDQVSBZpzXzrkvdPnkySdqjNJIAAQLzCiTrtGZeNM+SSVKUSNgECBDo KpCs0xeb+eEb57756K93lS80eTJJCrEIlQABAsMIJOu0M/Nhln1dIMkkWReZrQkQIEDgIJCs 05p50ZxLJklRImETIECgq0CyTmvmXZe6ffJkkrRHaSQBAgTmFUjWac28aJ4lk6QokbAJECDQ VSBZpzXzrkvdPnkySdqjNJIAAQLzCiTrtGZeNM+SSVKUSNgECBDoKpCs05p516VunzyZJO1R GkmAAIF5BZJ1WjMvmmfJJClKJGwCBAh0FUjW6UXNfPv68nG/3Mvmbfe+kOb9bbPbvF3Y+v1t t3ndLtyTzc4JJJPEChAgQIDAeoFknV7QzLe715fN7lJfPn94hzGvu3/t+tC8f/7/ftDhFwT9 fH1yfI9IJkl7lEYSIEBgXoFknb7ezM804mtLc3JWfm4f29dVZ/rX5pzt+8kkmc3W8RIgQOAe Ask6/Xcz/2jCXy+x7/+97Ez6ffe2+XkmfzhL/97H8dfXnvHfg/c59pFMkucQcxQECBDICiTr dPuZ+aUz9nNfP7vtoekv/QUhuwAVZksmSQUPMRIgQGA0gWSdbmvmh5fIP862f7wv/q348b2j r19o/If3zS9eJDfaqgwWTzJJBjt04RAgQKCEQLJOr27mn1e2718e355e1Pahe+69cM387omX TJK7B2+HBAgQmEAgWadXN/N//je/zP55Rbsz87aMTiZJW4RGESBAYG6BZJ0ONvPji928Z35L mieT5JY4jSVAgMCsAsk6ff9mvn+szOmFbZ9fOxzY/1fEt9y/PmtKnB53MkmoEyBAgMB6gWSd vt7ML8X/x/3nfz797Xt/595b/3dh3YWL6/6ybLgffv3SjDMimSTjHLVICBAgUEcgWacf0sz3 74b/fgLcGfuTJ8AdNePDLwQvy25s/7zo7tLV9XXWfVWkySRZFZiNCRAgQOBDIFmnH9TMd7ur z2a/9pz3hWfaV6+uf9KkSibJkxI6LAIECDxUIFmn25v5Qwk+fxlYfGZ+iGVh839w2LHdJ5Mk dlAmIkCAwBMJJOv0eM383yNkVz7qVTN/oh8Bh0KAAIH6AnM383/rt/Jqd828fuY7AgIECDyR gGb+tZirPiZVM3+iHwGHQoAAgfoCczbzk1vVnJn/lcrJJKn/I+UICBAgkBdI1umh3jP/uOjt 7MelHhbh66NUL92u5sw8n6lmJECAAIGLAtM28yU5sd1ul2xWf5srD9BJJkl9TEdAgACBvECy Tg91Zv439UTPcl/wAJ1kkuR/BMxIgACB+gLJOl2omddf2OYjOPMWQjJJmuM2kAABAhMLJOu0 Zl4g0c49QCeZJAWIhEiAAIHhBJJ1WjMfbvl/BPTHA3SSSTIykdgIECAwqkCyTmvmo2bBr7hO b9NLJkkJIkESIEBgMIFkndbMB1v8S+EcP0AnmSRFiIRJgACBoQSSdVozX7v0rfeznx33eYX+ yce3LniATjJJ1hLZngABAgQG+QjU/bNb9k3mtr9/Lea5fY+/+F8Prnl53T/CZs2f8+M+Pr71 6yE4P//7sOe/H6CTTZI1R2pbAgQIEPgUSJ50OTNfmHXfzXXz+rrbrGjml8cdvQ++8ow/mSQL iWxGgAABAj8EknVaM1+Yeu/7J8+9f54yr2vml8ad7Gfds+iTSbKQyGYECBAgoJkXyYFfTfjQ gI9ecj98f/P22fh//jlu3ndo5v8/x/77fXe/mxXJImESIPBEAudq8ffXUoep+q+VPtuEvxr6 pUZ+7oz+Ds18bei2J0CAAIGcQPIV1Imb+c8ryf8/s/34berSJ7NdfJn96wK3c2fk33nzgDPz XEqaiQABAgTWCmjma8WS2599z7yhmX98pOtm9/b9evzK9+KTSZLkNRcBAgSeRSBZpyc+M29M l3u9zL6f/q9b065Fl0ySa7H4PgECBAicCiTrtGa+NgPvdQHcx7zf958fXuZfd+96MknWEtme AAECBNxnLgcWCGjmC5BsQoAAgY4CyTrtzLzjQt8ydTJJbonTWAIECMwqkKzTmnnRLEsmSVEi YRMgQKCrQLJOa+Zdl7p98mSStEdpJAECBOYVSNZpzbxoniWTpCiRsAkQINBVIFmnNfOuS90+ eTJJ2qM0kgABAvMKJOu0Zl40z5JJUpRI2AQIEOgqkKzTmnnXpW6fPJkk7VEaSYAAgXkFknVa My+aZ8kkKUokbAIECHQVSNZpzbzrUrdPnkyS9iiNJECAwLwCyTqtmRfNs2SSFCUSNgECBLoK JOu0Zt51qdsnTyZJe5RGEiBAYF6BZJ3WzIvmWTJJihIJmwABAl0FknVaM++61O2TJ5OkPUoj CRAgMK9Ask5r5kXzLJkkRYmETYAAga4CyTqtmXdd6vbJk0nSHqWRBAgQmFcgWac186J5lkyS okTCJkCAQFeBZJ3WzLsudfvkySRpj9JIAgQIzCuQrNOaedE8SyZJUSJhEyBAoKtAsk5r5l2X un3yZJK0R2kkAQIE5hVI1mnNvGieJZOkKJGwCRAg0FUgWac1865L3T55MknaozSSAAEC8wok 67RmXjTPkklSlEjYBAgQ6CqQrNOaedelbp88mSTtURpJgACBeQWSdVozL5pnySQpSiRsAgQI dBVI1mnNvOtSt0+eTJL2KI0kQIDAvALJOq2ZF82zZJIUJRI2AQIEugok67Rm3nWp2ydPJkl7 lEYSIEBgXoFkndbMi+ZZMkmKEgmbAAECXQWSdVoz77rU7ZMnk6Q9SiMJECAwr0CyTmvmRfMs mSRFiYRNgACBrgLJOq2Zd13q9smTSdIepZEECBCYVyBZpzXzonmWTJKiRMImQIBAV4FkndbM uy51++TJJGmP0kgCBAjMK5Cs05p50TxLJklRImETIECgq0CyTmvmXZe6ffJkkrRHaSQBAgTm FUjWac28aJ4lk6QokbAJECDQVSBZpzXzrkvdPnkySdqjNJIAAQLzCiTrtGZeNM+SSVKUSNgE CBDoKpCs05p516VunzyZJO1RGkmAAIF5BZJ1WjMvmmfJJClKJGwCBAh0FUjWac2861K3T55M kvYojSRAgMC8Ask6rZkXzbNkkhQlEjYBAgS6CiTrtGbedanbJ08mSXuURhIgQGBegWSd1syL 5lkySYoSCZsAAQJdBZJ1WjPvutTtkyeTpD1KIwkQIDCvQLJOa+ZF8yyZJEWJhE2AAIGuAsk6 rZl3Xer2yZNJ0h6lkQQIEJhXIFmnNfOieZZMkqJEwiZAgEBXgWSd1sy7LnX75MkkaY/SSAIE CMwrkKzTmnnRPEsmSVEiYRMgQKCrQLJOa+Zdl7p98mSStEdpJAECBOYVSNZpzbxoniWTpCiR sAkQINBVIFmnNfOuS90+eTJJ2qM0kgABAvMKJOu0Zl40z5JJUpRI2AQIEOgqkKzTmnnXpW6f PJkk7VEaSYAAgXkFknVaMy+aZ8kkKUokbAIECHQVSNZpzbzrUrdPnkyS9iiNJECAwLwCyTqt mRfNs2SSFCUSNgECBLoKJOu0Zt51qdsnTyZJe5RGEiBAYF6BZJ3WzIvmWTJJihIJmwABAl0F knVaM++61O2TJ5OkPUojCRAgMK9Ask5r5kXzLJkkRYmETYAAga4CyTqtmXdd6vbJk0nSHqWR BAgQmFcgWac186J5lkySokTCJkCAQFeBZJ3WzLsudfvkySRpj9JIAgQIzCuQrNOaedE8SyZJ USJhEyBAoKtAsk5r5l2Xun3yZJK0R2kkAQIE5hVI1mnNvGieJZOkKJGwCRAg0FUgWac1865L 3T55MknaozSSAAEC8wok67RmXjTPkklSlEjYBAgQ6CqQrNOaedelbp88mSTtURpJgACBeQWS dVozL5pnySQpSiRsAgQIdBVI1mnNvOtSt0+eTJL2KI0kQIDAvALJOq2ZF82zZJIUJRI2AQIE ugok67Rm3nWp2ydPJkl7lEYSIEBgXoFkndbMi+ZZMkmKEgmbAAECXQWSdVoz77rU7ZMnk6Q9 SiMJECAwr0CyTmvmRfMsmSRFiYRNgACBrgLJOq2Zd13q9smTSdIepZEECBCYVyBZpzXzonmW TJKiRMImQIBAV4FkndbMuy51++TJJGmP0kgCBAjMK5Cs05p50TxLJklRImETIECgq0CyTmvm XZe6ffJkkrRHaSQBAgTmFUjWac28aJ4lk6QokbAJECDQVSBZpzXzrkvdPnkySdqjNJIAAQLz CiTrtGZeNM+SSVKUSNgECBDoKpCs05p516X+Y/Lt6+6QCJ9/X3fbo02TSTIqkbgIECAwskCy TmvmI2bC+9tu86OBv79tdi+vv9t5MklGJBITAQIERhdI1mnNfPRsOMR31NwPX0omSQUiMRIg QGA0gWSd1sxHW/0z8TgzL7BIQiRAgEDHt0M185HT7+OM/PCe+Wb39v470ORvfCMTiY0AAQKj CiTrtGY+ahb8imu7ez1q6MkkKUH0oCA5Pwj2zG5ZZ6w5Z5zTb4dq5rl1vWmm7evL7uc1cH4g b+JcPJjzYqqbN2R9M+GiHXBexHSXjZLWmvnSJfv3kvfn7WJHF5df38uZi9j2V7bt3jZnbj87 3Ja2edt/9/uPM/PrwI/ZIvnD+JgjqLNX1pm14pxxdmaec14x06GZ/mjgH/eAn76PfXmHn+OP 7xc/nG1/33L2878P+/m46O3ffebeM1+xWHfdVOG7K+efO2OdseaccdbMc87LZzo5U/48o15y dv7dlDevr7/uHd/tHwPz633ws2ful0P0A7l8+W7ZkvMteuvGsl7n1bo151a59eOS1l5mX78+ +xFHZ+p/7ON9u/18ufy4WZ8079OX0v8KbX/Svj9zv+2v/f/t99dv1rfaH8bzv+5/yYi//LmW A71/vpyZNzXX7KCPs+2P97QPDfjoUauHJv3r/e6v2O7ezL/fa/fv/9+OYMFCDsiBsXIg1Z2c ma+U/nzZ/GcD/9HQLzXyB5yZrwzb5gQIECDwxAITN/OfV5If/SZ34c3wz0Z+7sK3rwvczp2R fyfPnc/MnzgnHRoBAgQIrBSYuJmvkzo9I/85vqGZ33gB3LrobU2AAAECzyygmS9Z3Y+z6ku3 ojW+zL6f969b05aEZRsCBAgQIHAQ0MwX5MFH0/13z/f///26v1K9+QK4j3m/7z8//5nlC0Kz CQECBAgQ0Mxr58CFJ8jVPqhw9GsM/9j26AmBv5/gFz6kMtOtsf86qJXPYyhDcddA7+QqpxtW ZYX9rU8VPYrOmXnDco0yxMv0t6/EGsM/tz08WGjJU4RuD/lp9rDG/vOgzz9J8WlA7nQgd3OV 06tXZLn9rU8VPQ1NM1+9XKMMuO0JcqMcRd841hj+ve3hh3hz/Dm1fQ9u8NnX2P//eOPTJykO fpjx8O7nKqfXLt4K+xueKnopKs187XqNsv2NT5Ab5TC6xrHG8M9tDy+trXlWf9ejHmPyNfb7 iC8+SXGMoxkniru5yunVi7rS/vf+lz9VVDNfvTKDD7gpcQY/tlR4awz/3PbzN/LNv0/A09iv LuEa+587857537R3c5XTV3P4eINW+8Mvq/+eKrp61n8DnJm32/UdeUPi9A18oNnXGP617cmt i2fuchjosIcIZY29Zr58ye7lKqeXm39v2Wj/9zNMloehmS+3GmvLxsQZ6yA6R7PGcM22xw8E 6nyYQ06/yvPHETgzD52ZH0+z7oOghsy5RwfVkNOXnyq6PljNfL3ZICNWXGwxSMTjhbHG8IZt xzvwASJa46mZL1+wR7lq5tfXYJ39vc7Iv+PSzK+v0LBbLL8NYthD6B7YGsOL2x6uTP354TuH 39D/ek5/96MeI4A19v8idmZ+dfHu4iqnrzqf22Cx/cnbGE3T/Rqkmd9u2HEPniB3O/5lw9Nb cy5v+/lb9vfTAY8+Fvf2IJ90D2vsvwg08wW5cB9XOb2A+mSTZfaXnyraMufnGM283c5IAgQI ECAwhIBmPsQyCIIAAQIECLQLaObtdkYSIECAAIEhBDTzIZZBEAQIECBAoF1AM2+3M5IAAQIE CAwhoJkPsQyCIECAAAEC7QKaebudkQQIECBAYAgBzXyIZRAEAQIECBBoF9DM2+2MJECAAAEC Qwho5kMsgyAIECBAgEC7gGbebmckAQIECBAYQkAzH2IZBEGAAAECBNoFNPN2OyMJECBAgMAQ Apr5EMsgCAIEdj4RTRIQaBbQzJvpDCRA4K4CmvldOe1sLgHNfK71drQEBhX4+TnQm93b+6Bh CovAoAKa+aALIywC0wk4M59uyR3w/QQ08/tZ2hMBArcIaOa36Bk7uYBmPnkCOHwCwwho5sMs hUDqCWjm9dZMxASeU0Azf851dVQRAc08wmwSAgSuCnw0cxe/XXWyAYEzApq5tCBAYBCB993b 5mX38vKye90OEpIwCBQR0MyLLJQwCRAgQIDAJQHNXG4QIECAAIHiApp58QUUPgECBAgQ0Mzl AAECBAgQKC7wH5OOlEMIjR2GAAAAAElFTkSuQmCC</item> <item item-id="320">iVBORw0KGgoAAAANSUhEUgAAARgAAAAVCAYAAACdZ/HmAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARjSURBVHhe7VvLseowDE1d6YE2UgUl sMiaBuggO9Zs2TKpgB0d+FoOBtuRv7lx5ODMMPPezU/nWDqWZKdh9agMVAYqAysx0Kz03PrY ykDRDAx9z8aiEWxh/Mj6ftBeXAVmi3Go7yTNwNi3rNPjhLS9pIwbOtb2X2nOKjDjuJ85oSQs JdnqC5bVsYw965QA8dmTen51HKmGee4LsXvsOyYpVARmYF3TaOoj3sUJb5uOxQr60DXKLMBT p1Z9Nryr/RixEhfzxwos8e8licVCWkm2+sZ9CyxqcMzs+wH/UTEn86+I9ExgGjMAEwQGUsxG yzFNgXkLV5u5zk1wELJYkOgsyVafuGyDBfzUMZnu3H/UMVnGP08g3rFtCAyf3Xl6o4lDtMBA dqIO0iQuDc+OxE8RHlBItV7zOd3i89EOQhjLjIySbPWN5EZYwD9ck96u/UfLXRbGMMT8VCnM BYb3SeTJlBJprnyizjJKpDcY3hBqnFmMpWzz+aftfKSD/C8Wv9G32+0rxFyMz+ez/6b3FavZ yscotOH5eDzY8/lEbb5cLgzwhRz/h8UUKng79jfFH11gifsPJf5leYUIzLt8kUTbMhj07xYh sQmMGOz4nkiIk6LX2ByEABYIvsPh8AlQCFRUYHLbGiEwp9OJvV4vlHrABhmsdmTBogqKQ1yE 25ulvQGFsP+ApZT4l9UJLjCg87JJizkBZB6i5DHr1SnjmE8CbuEJmSHBnk+ZJcstpOxyig/m IBtgwWwEMbHN/p/rt7A1QmAgS1GP+/2u/V8TmKxYJr+c+6upd627ZCfsP4CEEv8g1tD+sAqM WD2C8sUQmCnQedYxYKtLtowkNrNJzlHcNxoOkhWLeDcmvpPJkN5CAB6PR/EzgzOnralirmZc YL+ZscgAyIllYjdcYPTFCXcGkxWHx3/AUkr8+wVGZjF8RyO6TI2mt/QyGK2RHJXirofFlsFA mQRBCD9bqYFvG1jR1ogMBlJ0eZgCA3hAOLUjiw8tK5FK8R9ZIlHh31sieZU/S/28PJMRdbVs JNuaygSwwGxvioqZxQg2ctsaITAgIDCLyn4SYJLNXfj39XoNEJjYbNfVx1ve5C3Ff4BYSvy7 m7yKGwiCsY12luavrVE2PUdfpuaNngyrSOoyuaWhnAWLWyxliST7TFiZZBcYe4MyjXfF1giB AYGU9kM2o2IKb1iviMU3X6HL1GX4D0Cjwz+6TO1jH6tHsU1J4StD2ffB2CBa9/oQxFKSrT6X IofFs9FuD/6jYliNf85jN22iTf8WyWpcwHKfTPVz7+SNdhCCWCrv31FEMw6fqrnPOz8V2IP/ BAnMQr/n4yK/51pFYOTGOvvyc3hmsMxdAu92BC05LCXZ6qOfJJaB72aP/CiXJA4f+bZ+nrxv Kg1TYtjysWOAQfWSysAPMDDyldPYj3t/gJZAiLpAp2cwga+rl1UGymPg+7FeebZvafG8h1UF ZsvxqO+uDOycgSowOx/gCq8ysCUDf/jSdf2bq+zMAAAAAElFTkSuQmCC</item> <item item-id="321">iVBORw0KGgoAAAANSUhEUgAAAKkAAABKCAYAAADABXQDAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAckSURBVHhe7Z3tsaM6DIbTwPaxNaSL 0wR93A5SDb9OJymGCzZO/CFbEtjBG787szM7i/GH9CDJDhK3BX8ggc4lcOt8fu2nN0/L7TYt c/uRBhzhuTzut+X+eJ5a+8CQWgHeJuB5iiDBzc/H/ZQhGBTSDdD7cvIBF6gHTd4SmJfpoMca EtJ5ui3XGdBNWasFf/3lQo2oPTHxbT3v/ryHz4Qy/rX3vy9Z//Ox3O+PRev8x4N0U9wlGtps igXOj9HKrjAOSdIQZQM0iPmYGNsAfQCUWj5hW682Rh0M0k3JnOWqpQ6iHxKgDdxM6EG136yR a+//WzLtLjaJerc/FqSbUi+zohmKCqAZK5tYPWuNzTI26MRWsc5OW/IscG22dWnUMBSkWuFw wj5/nTlhyFpSC6mDeDa7ZxdvZjxFF1Z0l5jSWAwE6cWuPiFacgS2b5o8s+M2SS9IoxjXWNdk F92PFbVi0OliIEhXhYtd43kbWezBuHjpIXe4u59mC5xvScPd8vv6aw7a2LXx8s0WcpIfAY4D qdLFNNOTsXRyBaUGeAN8d+lkTEpAqopdm6086FgTegHSz+hk93LezlwybmIBY7edATJy9yZE 0OxUJHM72QaQUgJcFT5d/BOTPRMtH67T557ve9Izxj22LWyckj5PAlbjdkDaKaQ1lPstfQBS QNo9y4AUkALS7iVATfD3Z/n78/tPTv0bJ/3782f5+59sZUPt7q/eOMlUMkYruHu4++5JB6SA FJB2LwFA2r2KYEkBKSDtXgKAtHsVwZICUkDavQQAafcqgiUFpIC0ewkA0u5VBEsKSK+B1Lz/ KsvGBaSA9BJIbf4VID0u/A5eej4++X/gTpOishZ+AKQnlAVITwiPu3XP/mzv7tMSMGZqioH9 paT1lsI0hzANolDFg5OP9DoglUpK3e5VOkfBysGY1KXORpmMioHd6kwuT5D4FeeYEw/EwWJW YokCUrGodA29VHEFKycgXQF9RAW9FAPbxRG1fqi8byLNtmnCGCBVsBcn93nJg1HWaeAxFayc g/QZ1e5UDGyjg9iKbtwSNYuoflvmhwNSBaTSpnEZS3lpyZOQ7nGoe2JykJL/T5dzIQtvkVU1 GsamRyAVVf4oxdrmsbUVpfeU4zQlma8/KkUm347Iz7cbDmZuypEVBu08pMb47ZXbchbPCD0+ E/Mqvnnrk0OaE+a7s7BgbJTDXiqAoIbUKbBUbYSLtbXXJfWhlOB4IIbi4eamHWc3bm2PoCIr 5jYyEaQWklVxM/XrQsYSSt39LlBtkVWROJWQmh3rNL1rgVKDcLE2d52rPypaWMF+umIUa03W aa8f9WrNze3k2NztVSyp2QJt1vSR+amLNO20JSWPsaR1jKLVfsSSBg9owZJyDx9zna0/Gqyd Kj5bLkj7XHVnP1shrA+lcNcchNz1apC68tnkT12KmPQV+7z8TeZM1pwMnCjmVZKM2JJ6G0cm JuXCGO46WabRjJmr6e9DqamYnELKzo2j7OT1ipDuu3Uqzsg8deTuXhqkd7C7fx1MGwNULjDG KZq7/jICmfqjNAduoyX7jdz28TWQKh+NrGs4bg0vPyd1bt6Jgtvdn3T3dph8/dGWkIqPBZVY SJsftKTS7vd2hfglb00LY8SAKKfDNhe4ezNvzSdluLNe7jo16WJcWM/dy/cJrGQPNbgcUjJQ Ly7luPUVS0gAadIXZ0nd8U421maOeZL+S2XD9Run93qoo70GR1BiZdgwUloyFWV2SoIlIE1D Eu5AnLkefRCsyfEbtbuX7hMU4GmaAtKMG0UtKA1GbdsCUkDalrAKvQNSQFoBo7ZdAFJA2paw Cr0DUkBaAaO2XQBSQNqWsAq9A1JAWgGjtl0AUkDalrAKvQNSQFoBo7ZdAFJA2pawCr0DUkqI +EROBbTqdYFP5MCS1qOpUU+wpIC0EVr1ugWkgLQeTY16AqSdQxomE/I5XeX2hVcBo9cA/Re6 pe9yNmIU75OSgt3eDb1aM+vE6O/Z5/OVyu31Ly4b4O+P9Q3Ta//AkmYs6eWQsm/6RxPn2mtz 56k8/4tYBaSk4L3qbxcphkx+K82Fy57lEgGDvkupKZ8XyDzxYY6b1TjpIyaFQpMGXF9xLsV5 DhL+8nPi2vMp094aOrKiNgdOrouBINUlf9VH1NUwuC1BHlMBHpe9mmsvh7QvK2oyVRX7g6Eg 1QqnNqgkVNkkuR3qZJPjZX5K3T0X29ZeKNOfJh7duhoLUqWbqa47bf0rrr00r5+LbasvtNSh ztUPCKk5A4pKpX9SQ5nCYdlyiVx72RGUOXZSuNeWEgnKGAkHGsySWqmkH50QSqtKs/DwPS4G x+X1p8XjuLx/4my2yjoOdHKwSs2QkNrdpfwI5IA6cEsiAU0VwPDmQSHdhABQP/ckHQd0zJg0 0IxzlfIzu88p9htGqiPfgS3pN0Awxhr+B0Olsm2kw+q7AAAAAElFTkSuQmCC</item> <item item-id="322">iVBORw0KGgoAAAANSUhEUgAAAZYAAAAVCAYAAABlq8hUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAW2SURBVHhe7VyLsZwwDKSuK4h6KCB1 0MwVQ2zA4I9ky0b+cE+ZyUzmhQderaSVZMO0yR+xgFhALCAWEAswWmBivJfcSixAssC6LNuX dKVcVN8C321Z1vqPkSf8KQuIsPwpuvuD/S6fbZY81p8IewXrvH0WkfqxSHn3apoJy/f7e477 K5ia4fgu2zxIAmuGeYD8QMH6XeZtEGoCi1HWP4CZWZbwJqyxtVYRlnWerKpUtdqfyaqI1m2e PsM6MeYd/TBpe9n2O1eokvRnmrfc4r8fjm3rlbx6YmbJNhk3KcbKLfqqC5qU3+q/Od1Q8foz bDTKpV2wNuKFXVj0qGNyZh2+sChadVL8vGfO3hfTISyTL8YFwtIXh/aDfCF8mgT6Yn66+rzf f4ZV+RljTOqk6eaBNJZn60/ff6QremFtxYslLGcnsepK+Kg0gmSWZEbfw04eh6iYysV2NA0w p5JJPhq84BcwnRjUqMIJ1Gxh6cwNWExA/HCKT2fMqp/cu3MnpjjxORslD2NPxyrPJGFPXlcO oeIVrmrnyZa8eMKiHeJ2hH0hGVVMqMLa8YGORf9Yt2TReyMjoCyFMdX+KJiyFn9ebEaHXuBn CgsvNxYOxSNpM17zHVwY8rOvs2DEB1m2O+ZdWNyY4sRnY+bA6o5mYqK1B7AnZC4DuZUxx/pL ouv+nXdxdawb4mAMXgJhcWJ/n8cBFQeY1BABwYTFVHNV9/QPZ4li2rHcFZab+0bAZO1J6bWa BWLC0poborDAiQPg50zGNw8m4CNFzqCYj8D3/M/+WQaHeNKPFG+ZsRefItgJK568jroRGYW1 5oqsNu/iyhVEk6MLeKmU//KF5dr88QUHIibt9JRq123h7DY7NcdNCYuVtPelapGxxwH1MJH9 3RPgK8FAAdqBG915UjjUwhKOPj3770axxfz4962l/v7d2fl6XcFdzflJnccfqZgPYfHHSxa+ DA7jwsLjpzBHfufidmCYH4PC0sM/yYH2Lq68/jDojGm81Mt/WcJyJHgzM4aEBZrR5lb9ZE8g XJgQFmA84wYw5Gzp5ITtHZUJJEC+HiF6SaklNyU48I4lknj9Vv9lmOPC8u9MBneijnG4++V8 n7RyxZzHT2sKy+j++TauWISlYv7LEpYLDNjO8lRNkFqUJDK0asXGe9fMcuyOxYwZZvX2Onjc uDE31Oq9aBQWbPgjCXRQzNyjsGtPMsDLE3v9RmE86ydUmpFLeEdhtbliG4U5FvHjq5wXRmHJ 7UywKuuZe0BKTto3AufRI2CC7GT2HQbY/yKOwvbDGoTNe+fASHDAI0dYKnJHxQxs3jv4Huyx xN+BMFGA2QC2Y5PN+8H3WNDDS4NxdRfO0OQIP4mHH6qAfKU8hhiFRW9RADPwfetCn/Tx9kMa ngpLC8uRqKERFi+mEtGEkwB6uggJgGo4qEkWPW7sjnick4KPOhZuf7S4o2I2G/XWCCvARzwc s87uyNAXgef88h03Nl01+B5La/8kh9xZnb+CKzKo4EJYWPjzX9kLkuhRV3oX0uY9FgIB56kI fAP6ZZiG5QZ6QRJrtQ1v+v+t6iujarwrOtq7GXX8MYEvAw/UodD2WcIYgLEqfuYGLy0P659v 4oqQ16iXVMp/zMKCV4kOTrB6pVqC8bqkUY9nYdXguJjgVrg3jvCTLilhcVtxdP1osurNHW+y ujqAzKqf5Kfqnk2+4yZcjZNTKuY/dmExx0U5OgBGCQFvdY3orPdY9MguXLt77BWoAcf5/lkk cPtzs6pPtNsvLqWEZR+q3KensBdqh8Wcwme+TOEVAgAe91QY1oWV+2mz77gJV2f6KOeKKy/W zH9lwsKFTO7z5yzwVafZcj+c+eeM1BywL/jNFyAP/DELiLD8GKHjw1FVfMZngsbH8/YV9vk4 6NutJuuPW0CERTxELCAWEAuIBVgtIMLCak65mVhALCAWEAv8B29D3mtgEXpoAAAAAElFTkSu QmCC</item> <item item-id="323">iVBORw0KGgoAAAANSUhEUgAAAJAAAABCCAYAAAC4sF+cAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAYhSURBVHhe7Z3tuaQsDIZtYPvYGuzi NGEf28FU46/TyRTjCojyEUhCZkYd8l7X/nh3VCDeJIHNI8Oi/6kFBBYYBPfe/9Z5WoZhWub7 j6RhBM/lMQ7L+Hg23Hvc0ilAznjD1Cc6ITHPxyiaRB0CZOAZF+HEE83a6908L1OjJ+4OoHka lnbHYwy9eq79TyX8PR/LOKSgbp7P38/pCPi8AEVpe+b+8bFwA1pfAJmch/PSIlfh4AlzhrL7 96DEABl4j/Y5OQj8vKN7r2nPjIebE3UEkDGyIGEGE24DVR4O7YuYptgDAR7CAkiY9eDzIufz qvb4oawfgMwLbPY+hawFChs+FGAhZw0WpFUQ9jzs973rtPYMrBwzdQMQ1zB4ogut5IIEvQhQ kAeh3gd7Hva7GQWnPXM5b6J1ApAwfGU0wdsAUQ6BeqD1ocg+FPY87Pes26R9L56tOgFoje3I bLcJbrTCCv4/9OkWDGADLl3FUADavAMYMrDnYb+DLtSBj4WoeaJvc/QBENMtF8OXncGwcd2K DIbQvrBiEg6/UOx52O/c9tLNRQwyf70ChCc77gqSR6ntywCz30CF5kHbM7H2s9/b2+Pki90A NAm3ntEZn4JI2dhL4DFhtLgPwwYoSaCNdyTCqgABL1MKENVRfcN1CpACJOJYAVKAFCCRBdKb f3+Wvz+/L33kNz/s9+fP8vcfbYSaRNPs1NVVGsI0hImAV4AUIAVIZAEFSGQ+9UAKkAIksoAC JDKfeiAFSAESWUABEplPPZACpACJLKAAicx3ugfKtVexHiouWYCVDSILvBygUiUfQ+eFlWPY PtfsZH5PdGm1qi9Se7CVTwXI1s1EA0vrh3N9lS3WItaqNIG1Pr+9nON4qen7ouu8MF1XAM/e SGqn1I41eTalvbIlGwHaPMHsan5deSa9NtZ1B9AVQTMBqMSrFlM1URPc1AjQXkS26smmtJaY ofPCdF3O+QBK1tBOUElswcuQ2qvYVACQgeYQ39kZxvAMufcxTAFlm3bgiciPU97JBaoZoMf2 5Q5KMXpBd0XVbSF2gkWIzkvFDn/z5p8PYUBnSjIQCICCUA4cODi4N+ZCjQAdnNYAqumuKLot 1wpqp6IHCgGit1ebgyIPFNEMddr+XeypjvCVKwxQw+wjwWc5WXrzsSQ6aSixF0e3hdtpS6CD F+Tt4f+K094pALkOr3mRzZNSnXnBg1BDGFXqyw1fW37RnkQfCS4udQkmAVe3RbJTvAqbZkF7 78qBUA+0J3wQQIDGiZzv3MwDITqvNhUHMy8MbMtu73oAFZJIv7dRXJ76kdwtB2LqrtCkFtnu KOi+mmVA1wNoSwRhna77pNy2PQAO+oKrMDyJTjYSaytWAKB86wLZSNzzT2fL6rd8UGDLBDUm 0YzkAlyF+X0g7t7RloLXRHWMroGXildh0g7c6/4TAap5oarPvPBO9L1e/it6eypA/t9z8BXL B3If34R6IBZX7weI1Z0LXKwAsV6CAvTyjUSW/W9/sQKkAIkgVoAUIAVIZAEFSGQ+9UAKkAIk soACJDKfeqDUfPp5FxZQ+nkX9UAsYHJz0b9Wr98HEpn6O2/WEKYeSES2AvQ2gD58Xpitekg+ Xh6VjOA6sbgMmFYpoQABAMlP6jnhvLDq+Wa4TiyrNyKdleEqKqj/GN5NDiQG6ITzwqqnK2I6 sUsXlIki7Bk344etNPUKeklUHRgqInASnTGo5Aw1eqhOTFDhqYetZDTwjjCiwQRJiym6rJqO LGwZkYAjOjEP2BwdAkM5sZFnqz5C2PpeOHEdBwjWpbN1WcSc5OhPKP6s68S8SiOqm6a0Zzwo NQFaO9YNQNhJfGTR4rYyygrauTowSwUuZYphTq8v68TgEIe3x51o/QBkXxbFhVf8zwfPCyuf 91VZiodiBzAHwgDi26gjgFYwqstiJHBxVzUFHVcm3CxKgRDdGaoTK9yfKYqPcUchGI/j9oq+ ALIM4Uc+QrZjKz9B4Oo6slwnlmwUprChOrGkvQo8rd9o6g4gl3fQdmSJk/ALLuOfF+8H3SFA PnlViBwE7fB0GcKCiL/JrYWJ9W39jw9vsvF36oFu+9Yv1/H/yZpq+rUFAIAAAAAASUVORK5C YII=</item> <item item-id="324" content-encoding="gzip">H4sIAAAAAAAA/+zdCZgU5b3v8QKDS3I1iSRejShBRQliK4sbOigKosIQVgUFRBRERBBccIug HuMJ0RMTtzvm5Eaf3Cf3JjHJ0WMWcxRx3wOCwACDwOwLi+B0z+iJmftWvz01NdVV1dXdVd1V b3/r+dhWV1fVW1Xd8+Nfb3dX99AO0bQDDr7qK5qm7Z+l3/YS/32tp5Ya+x89bzq1dqD+yIVf /672gZjyfo9f9tAf1afr/x8g/tOnvC/+66EdqU/Snn75YM06VHxLe6g3AKhGDH84Qnv6WN0z x6ZG8vGMq3zXf0x+8li5+349k//i7kf1GDd5PimZubae77a5ryG/LQ/ziznYv5Q8ty2P5zTf F1vez/ivkiM/PzqVb2uO0jYPPnjLmEO3T/nG5ku+WjnyKy62jdDcVZUFaYSbbWUZ5NN05pW7 b1uQxy3Plee7eH6CfVLyeDllfEXl+WIu5sqD3PE8n5T8X05rz9ReGqSnnDnf6iYdvmfBEdum Htz8/YNc7LtYA4DQEhG36hT9pMmcbzLcKpt2AUB0yYhzybc127av3bb9o092rOv0kZ21+mw7 pTXbdlj8/RN78tEPXL1fZfVe1XYAEN7p9O5W3Xtbt7+9ddtbmz95c/M2L/n23uat7t6ttPdW 5RYXb5q8scnqtY0683h3m1cDKDGvbtxicJxtw+ZVnbzkW2ehtX3NJ59IqbuG5MQPt2XmJY1l CL9TZfX2VottAErNm1s/MbyxdZtkvvv6Ft3zb77d0dHhJd821tQJm2pTNkg1XTaafFxda7He ZF11jcVH1bW6nTU6/W7N2p21whppR01K9ykf7gRQgmqF93fUdNleq+u8+26n//Scb1VNTcIn Tc2CHN/a2CxZxoUtDd1UOtvY0GhrQ53u47oGw/o0H9UCKEXrahvF7drkrRwR1pj8vUb3wlvv esy36uYWw44WaVcn/a7x3YftzS3bOhkTq5paBDmy1TR9c1OLZEyRubepoVmMb2zUp8vEM2bY 0NAkyJH19c2CGJcjBjmn+a55uvlRy0O2UywTnRoFUERr63QfNejk+J/ees9jvtXssqpu2b1z 1y5JLGIZ375rtxj5xJR+Yty4FdFX1bxLEOMy7sTt5iQxviUZd0buyduN4hxZaEyNy9uPG1s+ Tk6RI5a7csRy1/0hmWlOSwEIp/WNLesausiU+7PnfKvbtduJOfTMWSdHTGVet3wTI4JR5oms ExG31ZR7Iuu2JEfkrbnS60q8xpZU4iVHzIyJ6SPGuMtDLmsGEBLiJE6Gm4VMuT+9/b7HfGvc s6dx1+5Oe+o7pWedWFyOa90HUe8Zt+bBqOtk1pnrOqO0yzbfXPLKGDZmyjfCDQg/GXG6Bp05 3379t5e85tvevV1E1gl79zbs3Vu3J8XIDfOU2t17JD3ZTLc7du8xajx5JituZUVnTrwqU/0m boXNzbtlaSfbkttmjFjuyhHLo7YPmedxeQhAqGw02WAiE+93q171Jd/MsWaQsZYq3nbvMfJt h2m6iDXJXM7JfNOSJ61GshkziIiT+WZJOTNL+lnG0x9KzzfLggBCyD3f/vjqm4Hmm8GSb0b9 ZuSbUb+Zqzh5rrrFJBluuzd3vhnh5Qi4ZBTxBUSae74997rXz795zzdjnHwDECj3fPP+/YUc +t/yyTfJfH6ac74BUFV2+XZs7vnm5fxUyirf8q/fAKjKPd+s388i3wBEh3u+Wb+f5ZxvLZ/u NWs2x51JQxqZdTVpzFlnZk48qaplj9mWTpsBlJ7upU7Kxu4+bt4lWL+f5VK/7WppaGmua2qU ahsba5s6NTbWdNppssNke9I2kyqpQbe1Xrelocvm+gZhU32jLfnt++QX8AGUkPW1DWbrzGrq hTU19WtrU6zfz3LOt+21NVu2f7K5aqu0acvmjZsrhY+Fysr1lZvW67f6yNrKSos1hk2VH3b3 gcl7Gze9v2HjexsqdRt172zQvb1hk8VbH296E0CpemP9xtc/3mT2xobK1z7eJLy+ofKNTZsl 6/eznPNt3Yb1737w/htvvyW9+sYbr7z+2qrXXtW9utrsJcPqV4S/rV5teDHpr6+s/rOrF1YZ XhH+c9Wq51e9Yus/XgZQcv7Y3R9eWpUi7r7y6nOvvSH96a13X/r7Wi/59vj/+fXDP//fK598 SvrXx5/84aNPPPDo4wAQEiKURDSt/F9PST/5xS9FcHnJNwCIKPINgKpc8i02ZCgARBf5BkBV 5BsAVdnk25CDyDcACtDzbYT2zDHkGwDVkG8AVEW+AVAV+QZAVeQbAFWRb8rQOjrMir49QNGR bwBUlXO+dWgaMsrz2THKMEtVZqnQbKs1p4nUeCgd1G9hJiMoPcos0eSeb5ZgdJofUA/5FmZ+ 5ZvtLaA88i3M0k8kvedbzDXZiDiUAvItzIxQMgedU+jZLu50lkr/G0oB+RZFHpPKYwwCqrLJ N66PFDXu56cZZwNUxfXfAKiKfAOgKvINgKrIN2V4/24CHXEoEeRbaSLiUApyzrfuxQLs5fns OH0OxMsHP9wnkm8oBdRvYaYF8/3TWFpCAkoi38LMr3xzuQUURr6FmeW0NObT9085S0WJIN/C zIgjc9A5hZ7t4uknpF4WBNRAvkWR0/sO6bORZihl5JsC3M9PM84GqIp8A6Cq9HyrHMz1kQCo QObbM+Rb9Fk+W1z07QGKjnwDoKqc8634v70XBXk+O0F8P4t3VFE6qN/CLKDvZ/H9BZQI8i3M Avp+ltMigGLItzAL9PtZRByUR76FGd/PAvJBvkUR388CvCDfFMD3swBb5BsAVZFvAFRFvgFQ FfkGQFXp+cb1kQCoQeTbthHa08eQb4gqp7eJnT4bY/upQiiJfEPU5ZBvxFqJIN8QdbnlW9E3 GwVAviHqcq7fKOSUR74h6lzyzSnr+NpaiSDfEHXu9ZvTdQko3koB+YaoI6PghHxDRKV3o3Fd O1iQbwBURb4BUBX5BkBV5BsAVdnlG9cPAaACmW/drx9CvgFQgfL55vITe+nT8/z8Z1ZtuS+Y Q3PuH+PP83OtXtpK/8ZTIffL36fMfdzHtmy/JhbcYUz/LE3B2vJrv7Kidr5ZjmTG6ekTvR// bNuyXa335zrjFhqvMfNsOeyX97Zctj+Ittz3NIi28nnKXNryGOB+PWVedsqvp8xl5bntV7ZK JN88jtse8GxfwN7bcvpTzac5y8T0qiC4tjzO4GNbLnsaaFs57FrGl5zTeBBPmY+5nW1bee5X tsi39JdTUfItvd3cmrNMLHy+FWa/0lde+HzLate8t1UiTxn5lr8c8s3jU5Z/Wy4t5tOcZWIY /liC2K9sj7Mv+5XPUxatfCvAU0a++cL4M7d9Ql1eP04L+tVW+qM+7pp5omW2HPYrh7ZsD6m/ baWv3N+nzGU9uT1lGV8eTnP6/pSZmwv6KXNZeW77lZVSyDfbA2g73TzR/RWeZ1vGlCCaMx61 nS2HhnJuK9D98mXXcmgr56csh5dHEE9ZxpUX5pWf835lRfl8A1CyyDcAqiLfAKiKfAOgKvIN gKpKJN86gnyPhrai3hxtRast70S+VY3Qnibf/LPysSdoK1rN0Va02vKOfKOtELal8K7RViGR b7QVwrYU3jXaKiTyjbZC2JbCu0ZbhUS++U7VTg/632grJG15R76xVAiXisRGslT+SwWNfGOp EC4ViY1kqfyXChr5xlIhXCoSG8lS+S8VNPKNpUK4VCQ2kqXM6H8rovC/PFgqchvJUvkvFbTS yTcGBoZAh6L/mRcx37xfnjTbC88W+1llYGAQf5ha0dMsDPnmHl+287vM5kWBn+iVjz1BW9Fq jrbyH0ot3yzXqzdfdN0yT3qmeZ8tq3wr+tEGlBTOcIvJ6yOVBVu/WWKNfAMUU8r5FuseUOQb oBjyLT2gLGes6R1rHmfLqMD5puqX/vj+KW05EfkW2s+/FSDfYjn9bKUvvwIZo34DAlbi9Vtx kW9AcEIbbjHyDUB+yLfiov8tcm0pvGvqtSXzrcT734qI+g0IDvVbcZFvQHDIt+Ii34CAhDnc YuRbANTrYCl8WwrvmmJtGflG/1vBOH0FuOgbBiiG+q3oyDcgINHIt2PINwDZCXm4xci3ACjW wVKUthTeNZXaMudbqPvfyDcAWaJ+CwPyDQgC+RYG5BsQBPItDOh/i1xbCu+aMm1Zwo3+t2Kh fgN8F/7iLUa+AcgJ+RYS5BvgO/ItJOh/i1xbCu+aMm3R/xYS1G+AvyJRvMXINwDZI99Mh6LD /Zew0u96mc3gdLUQ8yCKZyPfzIU044wznsO45QcBw3lyGits/Zb+Q/bp8WWZOeNsXtD/Frm2 FN41NdpKr9/CGXEi36rKtGcCuD6Sy+81O83D79cDkRCh89OA8q370bA5/YyRb0AERSXcYoXK t87DQv0GRB755nBYupVwRmpZ7lrmzzhbRvS/Ra4thXctQm2JHLNV9P3yrgD5lu37p+kLus+W EfUb4MQpxCJUpLkoZP1WLOQbSpZLfCkTYi7INyC6Sjy+MiLffBehDpbQtqXwrnlvK2N2ZYyv cO5XIZFvQIF5CS5KL1+Qb4AvPKYWwVVI5Btgy3tekVqhRb75TtVOj0j3v2UbVsHllapPGf1v BeN0FZGibxhylkNAUVzBLt8Ojnq+WejRltcfhz+KfhyKwq/DV/QdQRSVSr6FoH4resBmFMRK i/7so5SRb75z6ogofn5lyp+CNZvPYSzkU0Zb4WzLuxLJt6LHCJVMt2ek4GmJ0lQi+RaG81ME hLSEE/INMCMkVUK++U7VTo9If/6twG2FJCEjfQx9Qb4BIcTpti/IN0BhJR6S5BsAd9FNPPLN d6p2etD/RluSbb7R/1Ys1G+Aj6jfQoV8A3xEvhnSfzwrlumHsbL9mS2nq4WYB1E8G/lmLqQZ Z5zxbMdlvjnNEyoFqN9sf9U05hBf2c7mBf1vkWtL4V1To630Ei6cESfybdsI7Zlj/M8325Is fZzfrwciJyqnqMHlm4VT1pFvQOSQbxbkG6AM8s0g4yg9oIzUstzNdrbMzwX9b1FrS+FdU6Mt +t8M2b5/mu1smZ8L6jfAV9Rv4UG+Af4i38KDfAP8Rb6FB/1vkWtL4V1Toy3638KD+g3wXSRK OPINQA7It5Ag3wDfkW8hQf9b5NpSeNeUacuSb/S/FYzTVUSKvmGAMqJSv1WN4PpvALJDvoUE +Qb4jnwLCfrfIteWwrumTFtR6X8j3wBki/otJMg3IAjhjzjyDUBuyLcwoP8tcm0pvGsqtWXO N/rfioX6DQgC9VsYkG9AEMi3MCDfgCCQb2FA/1vk2lJ411Rqi/63MKB+A4JA/RYG5BsQBPLN 4P33s1ym2/5+ltPVQsyDKJ6NfDMX0owzzng+4zLiwnlyGitGvrnHl+38LrN5Qf9b5NpSeNcU a8so4cIZccHlm0teZZzH+2yengLOT4FghPwUtYj1W4x8AyKOfJPIN0A95Fv6+wJy3JhouZvt bJmfAvrfotaWwrumWFsl2/9m4f3902xny/wUUL8BwaB+KzryDQiIwvlmFFQ5V1YFegrINyAY SuZbmNPM5img/y1qbSm8a4q1pWr/W4QijvoNCE6YS7g8+98ikXLkGxAchfNNCnnKkW9AcNTO t5C/uRCj/y2CbSm8a+q1Feav2Of//mnRd8HmgDsMRd8wQD1K1m/hTDb740++AYFRL98i8bG3 ruNPvgGBUS/fDJEIOvrfIteWwrumXlsK97/F8vjae8FQvwHBUbV+M+dbLMQ9cuQbEKjQRhz5 BiBPSuZbrPtpKfkmqdfBUvi2FN41JdsS+aZe/1tUUL8BgVK1fpN4/xQoZUrmm+XMlHwDShP5 VsyDT/9b1NpSeNeUbEvJ/jeu3wsgpmj9FhXkGxAokW+iwCn6ZqQj3wDkL5wlXBjyLf13AJ2m 254FO10NyTysfOwJI9/MHQWMh3bcuEtbkWhLyXzL//O9lvhymu40mxfUb0DQ1Ms3X76fZZtp 6eNOD3k68uQbEDBV8y2W3+dDyDcg6vQ/UKXzLecPh6iXb0p+wKnAbSm8a0q2pWS++cXpCnKW 6TlfaI76DQiUkvnm14d7ndbg8f1TDweffAMCFM4Pv8V8rd/4/gJQmsi3oh58+t8i1pbCu6Zk WyLf1Pv+qQX5BpQmJes3vl8PILThFgvH+6fBH3/yDQiKqvlG/WZLyQ6WArel8K6p15bMNyX7 30Kbad2PP/UbEBSF67eib7/DAbcfir5hgHpUzbdY91PUou+L8/En34CgqJpveX5tqoDHn/63 iLWl8K6p15aq/W/8fj1Q4sJcvMXINwB5UDjfYn5cv7cgTwH5BgRC7XyLBPrfIteWwrumWFtG vqnX/xYV1G9AQKjfio58AwJCvhUd+QYEhHwrOvrfIteWwrumUlvmcKP/rVio34AghLx4i9nl WyX5BsAD8i0MyDcgCOSbIf33TJ1+GMtluu23XJ2uFmIeVj72hJFv5o4CxkM7btylrdC2Zf7w W1T634LON/f4sp3fZTYvqN+AIFC/GWy/xuXyw/TR/f16oESQbwbyDVBJ+MMtRr4FQKUPOBWr LYV3TZm2LPlWsv1v6e8LWC6J6XSFTI+zeXgiqN8An1G/mXl//zTb2Tw8EeQb4DPyLSTIN8B3 5FtI0P8WubYU3jVl2qL/LSSo3wDfUb+FBPkG+CsS4RazvX7IkINUzDct6op+GAFDVF6Qer6V aU+rn2+R738resAW+CWtTD+Vkm2lvxjC2/9GvsHrkYx8bMIXUXnWlMw3p6uIFH3DYIvAjJyo HGQl8y3tuSDfSgtRWYAjXPRt8IJ8850aHSzFbSs8u+Z7ToZkv/JE/1t4UL+h6FQqI8O2PS7I NyD8QnW6Tb6FCvkGSKHKyQIg33ynRgdLcdtSeNdoq5DINwCqIt8AqIp8A6Aq8s13qnZ60P9G WyFpy7v0fOP6SADUQL4BUBX5BkBVQeeb+UOB6ROd7nqZzeB0tRDzsPKxJ4x8M3cUMB7aceMu bUWrrVApQP1mSST3+Mp2Ni+o34DSVJjzU9vgiin6+/UAQqJg/W/pp58x8g1AkMg336n6oSM+ /0ZbIWnLu4L1v6UHlJFalrvZzpYR9RtQmgqTb1m9f5rtbBmRb0Bp4vNvAFRFvvlO1U4P+t9o KyRteUe+AVAV+QZAVVwfCYCqRL5tI998pWqnB/1vtBWStrwj3wCoSsl8c7qKSNE3DEAhKZlv FuQbUJrIN9+p2ulB/xtthaQt78g3AKoi3wCoinwDoCryzXeqdnrQ/0ZbIWnLO/INgKrINwCq It8AqIp8852qnR70v9FWSNryzibfuD4SACXYXB+JfAOgBPINgKoKkG/G7145/RJW+l0vsxmc rhZiHlY+9oSRb+aOAsZDO27cpa1otRUqhazfLD+EahtflpkzzuYF9RtQmoqYbzFFf78eQEgU Jt9sTz9j5BuAIFG/+U7VDx3x+TfaCklb3hU+32KmoDMnXnrHmsfZMqJ+A0pTCN8/TV/QfbaM yDegNPH5NwCqIt98p2qnB/1vtBWStrwj3wCoKj3fKsk3AEpI5dsx5BsA1ZBvvlO104P+N9oK SVvekW8AVKVkvjldRaToGwagkJTMNwvyDShN5JvvVO30oP+NtkLSlnfkGwBVkW8AVEW+AVAV +eY7VTs96H+jrZC05R35BkBV5BsAVZFvAFRll28HkW/5ULXTg/432gpJW96JfNtWpj1zLPkG QDXkGwBVkW8AVEW++U7VTg/632grJG15V7B8S/+9ZpefC/Qym8HpakjmwXzwGWec8eDGQ6Xw +eYeX7bzu8wGAE6Czjfzjzubf4be/Kj5rtO400MA4KQA9Zsl1sg3AIVRmPNT2+61GPkGIEiF z7eYqaIzl3bpHWseZwMAWyF8/zTb2QDAVil8/g1AaSLfAKjKLt9Uuz4SgNKkXx9phPaM0td/ A1CayDcAqiLfAKiKfAOgKvINgKrINwCqIt8QaXyfBS7IN0Qa+QYX5BsijXyDC/INklNQ2E53 uqR8+gwZL4ngMqfTamMOV5VxuYgWMViayDdI3vPN6TLyXtZmmcfjytPbchrPuCxKCvkGyWO+ OSVSbvnmPtFlnRlzlXxDzD7fuH5IKSpwvnlpLn2d6fFFvsGFnm9l2tNcH6nk5ZlvMddoyq25 HLr+yDeYkW+QXDr5vZwnpo+7v7+QcwedZXGXvjjbcZQU8g1SejqZp6e/O+k99zI25z6PbdO2 83iZjpJCvkHy5YTO6fTQS4uB7g5KE/kGyaVGymElvnw+xK/dQcki3yBl7DHzuJJs1+ZLuy5b glJGvsFfIQmWkGwGiot8A6Aq8g2Aqsg3AKoi3wCoinwDoCqXfKts2gUA0UW+AVAV+QZAVeQb AFWRbwBURb4BUFWB863i/z3b0dFR9L1WAEcSyIh8iyiOJJAR+RZRHEkgI/ItojiSQEaRyDct bSj6cSu63I4kUFKyzbcKz4P94ln+Vco0W716tbhdsUJn3C2RlDt1+CIh/yMJlKCs8m1eNoNt xFU4/1WuSMsrMaUjOazQB81khZzusl8VQzWPfDyYTlmU84aJtR0/6WfkG5Ab7/kmIuudDZs8 coq4iuzrN6d8c6/fKoamslEMz7/5doWmDR06tKP2gz0fVJj5mG8uWeS0Ye6D+wrdj6Q4bEV/ aQFFl22+aSIpKrTUePKObe7JcBO3lpVU2P1VysrN6dboczPOT72cnBY43zyGW6XnfDNWKMZt N9L2SEoi3KRKu65LujFROtLzbfPgg93zbV5HKtO+0uddIf98y2iFOdf0oFuRcZH0GNGzuKLC EnG+5Jv3cLPdsBdeeGGoaZDhduVv/yLDLdt8MyWbTDnHOCXfoLxUvh3jNd+8n59mm2+2/W8Z pzixxkiFZhtx+eebkUW5bZg4RDLTjEHcNYdbDvlmHpfxtqL7QL6hRGSVb9m+v+BX/ZaDbjFS oRkjlojznm+iyjLvnbhbmX24WTZMrOSCCy6QB8QScd2yOcvzUzMj4qjfUIJKpX4zpZyMOO/5 ZiSbpe4Sw47GhqzCzbJhMscqu4dbesTll2+ajLjVq1ebizfyDaXAe75VmiLO8sdu+cM3v4Vq WUNFceu3jq4TVe/55r6z+WxYYfItGWU2VRz5BuVllW+VprNUlz9582BZvCL790+dbt3Zv01p DrrkKWrGfJPFm5FCxlsAxs7KE1Xv0vPNMhgN+ZhvyU9EW0s48g3KyzbfJPknn97n1pGppKko Sv1mSbaODpFsHvPNkuSWfMu4v+4bVrB8sx3INygvn3yzHXLOt8D739LCLat8G5o25J9vxvsL 6eEmHvIr3/j8G0pWqdRvpmTL6vMhgeabXNwSceKu5Z8P8g3ITYnUb+nJlm2+mVPO+/5m3LCO tM/3miu33PLNPdPIN5QOX+q3ju61nMuCFQWs39IrrvTB+/sLlnyrTJ5I5vn+gschh3wzlrUE mnm15BuU51f9ZkzJId9WBPP+qV/XDwnu8yHB5Rv1G1Dpd76J2sa9uYoIXtXH5fO92RZvlZ4L y4xFZhSPJFBgOeeb7ZCxuYpC9b/5zvb7WTnwXli6F5kuRxKAlJ5vW4YdErbrk6uEfAMKhnyL KI4kkBH5FlEcSSAj8i2iOJJARuRbRHEkgYxc8i3bj2kxMDAwhGoocP0GAAVDvgFQFfkGQFXk GwBVZZVvQXxBOzxf+g7DNgDwEfUbAFVlW7/ZTjGm51z/mBdxWZvTeFbrN080r99pG5y2yjKl 6E8lAAu7fDsot3zLOXxsl3VPm2ybcNpy7y06zUOyAaEl8m3LOdpv+vmcb1lJLwI9tuW9RfIN KEH+5ltuXfRO+WZZWxjyzbJhWW0DgALLNt8yZo4xp/dtyFi/2c6QVStOW25Zv3usuW82gLDx sX6rzOn9BfccyzZzvLRinpi+fkv1WNk992yXynaXARRGnvnmPt2LnKu+nFuJypoB5MnH89Pc uNRvPkrfch/XXPQnEYCtrPLNCX/jAELIl3wDgBAi3wCoinwDoCryDYCqyDcAqiLfAKjKmm/f 0XackzRWW3Oh1GPtqKTRPR2NSs0jZpbzGyMIWufThOD0QMCCeu5ElFXFtFeHaD/7tjXfPijT ZzCSrfJSTaoq7yHtmKDVlGvVE1J2Tu4al8SjQNTtuAhBGqvVjLV/qOpCrer8pLKULSM6756f IqeI283DdZVnJW9P10fErYiy5rP0fPuxqX5rGZt8Zqdo9dN0LdO0XTO0PbO1/Vdp++YeILXO 7/KFsKCHxZdztc+v7aGbrSE4/0DAiv4UK25G8iDP0Nqna/ErtM+maYnLtbZpOjHSOlVrndh5 K0c6fTpR2ztOv5WPfjZOt3eMlW2+7Zmm7b8ydbtv9gFC4upUlH2+4EDpHwtT/vuGA9L9c0FP 4QuZfgiM+HcE8Mt/z+vV+vN52f6M8j9214mlxLJ5rmR/xby2q3vJ0Gub2Wv/49mvZFfdpz+b t298L5l1zRdZ863alG/x2T1ErH0+t6cgk02k2ZeLD9ItTfnnkgMNHUsPSFmUIlMuT/cf+VXB l1UBcBH/xbx9W9a+ftmAP5936Mujvvlfow9/cfS3Xhx1+Euje798Ue9Vo7+xevShr47+6uuj Dl498sDV5x3w+nk9Vp2jvTi+7+7KNWLZ/FciglEkpKjoWivmrd24Z8CoPx168q+/edqzhw/+ 3beG/Obw037Te8izvYf8/huD/3Doac99Nfb8wae8cODA5w4Y8FyPk17QTvhD33OfXfNxs4g4 WdGl129Gvolwk/km6wRLsv3zljQOEZev5CDyzbcVqqXofxFQiSiits8asP37vbdPPbr6in47 Z/TfMfPEnTNOqJ51fPWsftWzjq276ui6WUfUz+xdd+Vh9dMOqZ/ylerxPdaP1v46vq/4O/Vl JTLfxEoGXPJh77M+OHrEB/1Grek/Zs2JY9accNGa48es7XfRR8eOXnf06A1HXLCh9/kbDyvb cMjZG79y+oYep32kDXyt77m/Eyvxkm+yeBPhJs43v1is55sMMZt8cw63PA+4kW9Ff+oB5Ym/ td0TDtt7ZZ9Prxnw6fxT990wdN/CYfsXDt5/4+D9i2P7bxr42U39P1vct/XGo1oX9G6dd+hn sw/69Iqe1eXai8M1I9/yXIns9hQjh51Z2efCrQPGbTt10idDp24fdvmOwVN3DL5sR+yynQOn VvefXNt3Qu1R4+p6X1x36IV1B42o7XnWDu3Uj7TjfyuWNbrjZL7J90/X9TWdn16lR5zItxUr VmiZhlS+yUBb2ENnOmjyBNNgme4+p5Fv7otnfMh2BqcNKPrLDOFR9D6xQtKT4bJvtc7p33rD 4NYlZ8dvKUvcUha/9Zz4bWfHl52ZuH1I2+2D2pb1b7utb9vSo9oXfbNt/tdaZ/eqn9xzVVkP WXrlvxL5doMY+da52/qP3TF4ys6zr6wpm1VbdlXtObNqz55Vd+asuiEz6wdd2dD/8sa+U5qO mtD0zUubvjaqsVdZbc+hG3uc+EeZb0b/21uDU/m28Xj9/YWGsfp7pjLfRAkn8k3MryVzxvZW BqBRqhnvn36ZfAvV0gEoA8SYLsel9Dk9Lm5Zlbybvk7LspaJlgUBqehv4BaSngzTj2ydH2td Mjy+7IIOu6H97oHtd57QvuyY9pu/3b7wsNZrDmm4rNcr5/U0l14ZV9Jthd1XIt9LFSNHnv9J bOLO4TNqLphT+8KrrWLKhXPrR86tL7u2/qw5DUNmNw6c0XTC9GYx/Zm/Jg67uOmQ8+t6nbGp 50n/IabIN08bR+r59s6gbvkmQq9lop5vMuL0+EpuhtOtPkMy4vT3IJJvRqReG7O1VGJ0vhfc FUTdx10e8n3cy8xAadKjaeaxrYvOiN92QfyuS2zjqO0Hp7Tf2b992bHtN//Pthu/KU4wG6Z/ bfXIA42/9PSVtN1zaeKeixPLRydWjEwsP6dt+enGSvRHu6/ks2n6Rz7EyLGjt58xrVqE2yXX 1Rmtj55fP/K6hnOubTh9TuMps5qN6aKEO3RU/dfO2XTgyc/JfBM5JvJNnJCaz09FvtWKom6q /pk3GXFG/eZ0oroiOYgRkWyi3pNEMBqJId+qsEyxPOr0kO/jXmaOkis0wC96vIjzypvL4ndd nFgx3j7f7j6l/Y4T25Z9t+3mo9oWH9F6fe/Gmd94ZZT+l+W0ksS94xMrxiaWj0ksvyCx/Ny2 5WcYK9FX2H0l+6Zq+5L5Jk5Oy2bVXHxd3fiF9RNurDc24IL5DefObThjTqMxRZyiHjGusfeY 2m+cV/nVU/R8E8kmw60qpv1lYFe+VZXp+VY3NfWxXplvRp22evVqEXWW285404xkM3ZTJsb+ KzXJPMXyqHHXHEEui+Q87mVmwCDKidIh/gRa550cv31UYvn4xH2TEvdPTtw3se3e8sRyUX1d mLinLHH36W13ntK27MS2W/q1LTm6bdGRrQuObLjqiNVjvt6RLL3SV6Lnm/NK9HzrvpJ9yc/u ipGTv79z1DW142+on7S4YfLihomLuiKubG6DHNnX+mW/KY1HT2g8srzhyEtrj7hg09cHPy/z bef5qe9nGfn2znf17zXo+Tax62sL5votPdzErVG/yU8Cy1fFnmldiSHGjbtiMN+Vj8rbju6D eaKP415mBkqTHk03DIn/YGzi/ilt/3JZ2/1T9ZRbUZ74wcWJuy9I3Hlu4vZhidtOabv5xLYl /RKL+yRu7NO6oE/91X1eufhw85+2eSXJfHNcif5o95W0TNT7x8TIkCnVY6+vm3JTw2VLGqbe 1ChSrnxhV8TJ4cSpDf0mNfQZX9+nvL7PuJo+F208fKje/1ad/J5p5el6n5vIN/n5EHO+NXeW cN7rt10zD0iZoS9rJEZL8kteFubAMeYx12+W2XKebpkn44K2Wxta4mkC/KJH06IzE/dObHvg 8rYfThe3iXsnJe4pT9w1JnHHyPiyc+K3DEssHZRYfGLixuMSNxybWND3swX96uf0W3XJEWJZ 25XoCea8Ev3R7isR4VaXzLczp9dMvLHh8qWN029uvHxJw6RF9eUL6seY+uIGXV534uS64ybU HVte17e8rt/46n6XbDzi9D+Kh8R5qPwi6trvac+emMq3l76jrTtD/75q9QT9m6eN07WmGVnU b+Zwa5zelRhOR9IYnKZYJmacnsM6LROdthYoBXo0LT038eD0tpUz2340U6RT4t7JiXvGx+8c E799ZPyW4fGlw+KLB8UXnpRYcHzi+u/G5x+3//r+9XP6rxp7VLd8M60kmW+OKxGPWlYiL2sg Rs6dWTP9lsaZyxpn3tY4fak4Ra0ff0NdR/fhpIm1x3+/9rvjao4rr+n//Z39L91w1Jl6vsnv 14s0E/km6rcfHNYt36ou1SO0bqoeU9nWbyISxVLmfBPEqiTL3ZwZK/c4PecVAqVDT5s7Lmp7 aHb7w3Pafjy77cEr2+6bkrh7fOL2MfFbRsaXDG9dNCx+wynx6wfErzshPu+4+HX998//Xu01 33t57NFiWduViLsuK9Fn7r4S/XIiY/WVXDS3bvadjXPubhS3V97SOGVRgxFrw2fUGOMnlFcf N7a6f3n19ybs+N64j48++w9GvolwE+ekon5Lz7eaKfqmynzr8Fa/Nc3sKZNNkNceMUeccT7o 1xPhkm8+rhAoHTKa2n82v/3RBe0/mdv2o1lt91+euGdC4o5L47deGF9Spn/q44ZT49efHL9u QHzeSfH5A/dfP6h2zsCXx/Wx5Juxko5Mg2Ul+jWpOvNt/r1NC+5vnntP06xlXe+WXnh1bdnM 2jOmdUXcSeOrB06oHjRxx8Dy9X3O/r3MN1m8WfLt/TO1defo+bZzsr6pDVdosmyTddpqu8Go 38TMkgw3Y2fNg49PhI9rC2KFUMTEEiL+BBL3lLc/uai94iY9nR6a0/bDK9tWTEncVZ5YNia+ 9Pz44uGtNw5rveG01utFATYofv0p+6+P1V0z6KVxx+h/PnYryZxv3Vdi5Fv5gvpFD7bctLJF RJwxc/n8ujHX1p5/Ve3wK2uGXVZtTD9lUnVs0vZB5euPGa7nmwg34Z1Ber79+oRUvv3uSP27 DOvO069jqV++ckoq3+Qff2cJZzPIgLPNNwBR0ZF8r7P9l3e0P3N3e8WS9p9ep5+lPpDshbur PL7sovjNI1tFxC06q3XhsNaFQ1pvGLzv+tNq53Tmm91KMuabZSVGvk1a3HDHT3fd/eiuJStb XvsgIabovXA3NoiIu+ja2pHJiDtrul7FPfu3zwZPrT5t8vZB423yzajfbPNNvsVg/jSv07dQ yTcg0vRo+uG0z3/7o89//3D7r5brEffogrZ/u7Zt5Sz9vYb7piRWTIzfPTZ+96Xx20fFbz2v denw/QuH1Vw98L8uPrJbvuWxEiPfpt3S+KNf7Hn4mb3LH9+9JFnFXfuDplm3N06/uWHK4oaJ N9aPnV936fy6UdfUnje7dvgMUc7tGDhu3ZFnPOuSb68O0a9MvmmMtmWytv0KrVbk1SytaZbW fHUPQ8vVB8iRppk99dvkDLoZ3fKNiCsA8W8QArVzcgkRydD2yNzPX3jyi788JQKq/ek7259a 2v74je0/m9/2k7lt/zan7eGr21bOTDw4PXH/pMQ94+LLLty/6Myaqwa8eNG3xbK+rERUVjLf 5i5vevI3nz717D6Rcnf+dNfSH7fc+EDz/Hub5t7TOOfupqvvapq5rHH6LY2TFtePW1B34TW1 Z07fOeDSdd8eql8/5P0z9a629PNTmW9rR/cU+WaOOD3H5qRuW+b2EFIRJyeaws2cb0V/cQJ5 KnrmFDjf2v/9ts//+Mjnzz/W/n8faP/3W9ufXNQmcumReXouPXRV249nJf51euKByxL3TYjf fYmovvbfMKRmxvFvzjjtv3fV+bISPd8m6Cu57eFdj/xq72O//vSBp/bc+nDLogdFuDXPW94k wu2qOxpn3dE4/dbGy5Y2TFhUf8n8OlHCDZm64/iL1p429s+fN9eJcBOnoiLfXjyuK9/EiMi3 90Zqa8f1sOSbyDEj2czkdBlxDRJnqdRvCil65hRS46Pzvqyran/q5raHZif+ZWrinvL4nRfr X5MXJ5I3j9AtOUdoXThUt+C01msH7J3Zd8d1w/ZvXSeW9WUl1cl8q39kXtXOL27+ccvsu5qm LmkoX1B/8by6C66uFWejI67SnTOjRhh6WbVw2uTqAeU7+o6uGjZ57brKvZ88OE+EmyDSzJxv 4m56vm13yLfd12kGI+u6TlfTzlUBhFzd9F7Nj88TRVTGNwUsg1hKLJvvSh6bV31ZL/Fvioi4 7ZN6iYj7oiXrlYhw+2B4L1m/iTT7y0C9/+3pb6fyrepS7cOxmgw323wzMm3/9V0sWbdntibt moFgNQERZ5zxmU/95LmJLAjlGWvql0kv1aRKk01jdOsv1K07T+9hk0TKyZpN5ptIP1G8iXyT sWYON5ls+xb2lOKLDnAiHjX/eqDxk4IAkNGua3TyTcymmT2F9M4uS+9BVwCa4k6MiLgTEfe7 I/VkM/JNFIeicrOchMpM+2LxAf+85aAvb9bk7yzIcfkTDHKiHElNTP5SQ9ePMgARlLrePoIh j7BMDxkd0hcL9B9HkAVSfHYP/Vq7VySvSHll6qevxLj5PFH+QHPz1NR1J+TZjQhAEXFVZV35 Joa14/TYbL3uQJFpIqY67uytu+87uh/10z18UscjJ3d5bHCKeSIAZCTCRDLffeD4FDEuM8cg JprvylwyyLC6s7f8sb/PpunfxpKxZuSbjDhBRJxegBnhJpt7KBllPx2ue7xM9+R5juQMCI7L wYcviv4UKy/9gMtsMW6diCyykKl4Z+9/LDxw3Xn6WwxGppnzTQ4fjtVk0Bnns5I41RXnvPJz I12fjpuV+rKDfPNUKvrl0ZRX9CsiKs+4ZASCYHkxW1/hyWtd1iVvG8amviSr/wDWRP1n/sRI zVj9epVCTfKu/tBY/ZcXRLhZ0kzk2wHJr1n9fwAAAP//AwAyGJMvEL4IAA==</item> <item item-id="325">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEv0SURBVHhe7Z0JvB1Fne8PICTqB58a zSPDJrKICEgARcGA7EsIsgVEdpSIkUUWN9SRGcdxZOCNG+PDefMGPvM+vqeijg7jjDMIQQQV ccKWDRISkntzbxaCQDaccf6vqvvUvXX69unq7tN9urrP9+ZTOef06a6u/tev/t/+V1XXaQl/ WAALYAEsgAUqskCr23lbM38r25z6aJBaJy4K0ymLx9PpK6R11rPS+sCQtC4aGXvd5tK16vMa 9Vltu0C96vf61aT3r5MWqYE22KCuidQ4G5w3Ki1Ss2wwwf/qdhvjl89Q24I0HL7OVD49eK9S 8F5va2+fuUpaJygW6KTf6++DpL4/QTHhqMe7Im4ChAx4dvjwRpl03R9kyo0if/SnYdrziyJv uVVk+i0qfUPk8K+GacZtYTrqm+5k9uV13G5NsEWaumcfd/vwzUZN0CbXMNHXxOlM28n4c/vV +PlurwEPYpLmhU6aITtc+Z8BiFrTH5oAow4IaQBte+Ea0QDa9soXZNIN/xVkYINojy+L6KRh 9LavdCYNJpOi3/F5or2wCTZBA2ig3xrQvtskc27z2YDDBBzG39uv+rvodhOo2K+GHfp10jV/ CFLr/S9J64jOqGgMQq2jH5bW6StVF9tTss3l64LU+vBzY0lDaburN8l21/w+gFPr+j/IdtdJ kMxn/Wp/Z97rffX7Ha5V36voyhzHa2g/EjbwVQPbXPlfQmqWDbTWdJ0aH65f7bTN3N/Ltpe/ LNtdsVG2u/wF2eaSTdK6+EU1xNJ+Pf/FYNvY9ktUd55JF6wP3+v9Z6tuONPNp7frdLbqqjv2 CWnNWDoWEXVCSI0DtT6wvDPp8Z7L1oxBScPIpABKjhTAS1+MndSF6YsjYQM0gAbQgCca+OB6 2U6nS1UQosb2da+YTsH4/vtXh2m2Gg8ySQPFJD0/QCc9V0ClbWYtVfMHdFLzCOw5BRpAh/1G Wjt9rxNCrYPvDw/QEFKR0FgyQGqDyIbRWJT0EUU8O1nRk94niKiipDRU5DW8O2hEikxAsSej 8L5zcg72wB5Va0CDJS4Z0Gi4xIBlHC4WZOwJawY4GjY66XGgGY+MJw0gzRud3nhHAKIgEhrb qLrkgtlwBkRdIGS666JddgY6wXYdPZmZcmaGnLloQ1Vex+8wsAW2QAON0sD25w3LnNvWyvD6 /+h58rPOR+dnIpJC8/6GyvscNRSjwaOGZLY/c7nM+cpqGV73+97L/aVnZPvDFYQ0fNSkhIA1 +/2ztPa5KwKhvb4dfhkLofYUbAUVEwnZEBobPzLfj4FHkTaYum2luJDODu943xnu1skedmjO +/FuirrbwtwN8zoeGaS0xZyvj8rS4T/I9d/aKpfcskVm/9lmmfXHm+WkGzfJMZ/YJMd9apMc eX2Yjrg2TIdcuTFIB83dKPt+aKPsfuHzcuiHV8jjT78oOj8TnZSSt54ToLrSNIB+/+xSWfeX 18uaz1wiI9fOltVzZ8nwnJNk6NJjZOiDx8nQxUcGadUFRwRp5TmHhOmsg2TFrH1l6fG7y6Nn HSrPL35c5igQBQAyEHrzT6WlmfOaz1mRkOqfCyCkwqZtj49GQiGEgqjGRDftMaIAQGp7x3fR qMfuT9QQqnujpPzU4SBpIKXDHeu6Yf8xUGgP+4n/tVW+8sOX5Rs/flm++H+3ysfV56u/uVWu +NoW5ey3yGX/Y4tcrAB10V9ukfP+YrOc88XNcvqfbpaTP7tJjvr4Jjn4oy/KnheskoMueDCI qIydS8m7PZ6j815/6yfk+b//ivzu29+QDd/6oqy79eOy9ktXy9o/uULWfH6OrPnsZTL66YtV ukhGP36ejFx3jqy++nQZvuJkGbrkKFkx+2B59IQ95SczD5LhtS+PR0L7/0paLggFg0i6Oy7o imtHQQosBjbm1QxemQGsjq63pO63Ot3dU9b0kdkgOeZBulagkjkCskFxuQLNN+9+Wb71z7+X L3/3Zbnxjq1ynYqMrrpNg2irXP5XIYguvXWLXHizAtGXNsuZX9gsp6qI6dhPbpLDrn5R9r14 lbzxhJ+GUUO7PvT7wvPWEJq5IjjPms9fLr/7zjflhbu+JRv+9suy/qs3qsjoOln7xatkjQLR 6B9fHoBozWculdFPXiijN5wnq685U4bnnqoipWPl2fMOk8dP2Ve+e8gbw3Lr7jidNITepFJs JKRDJT2IpAeZdGF0Q2uvenDTTTdJq9UaS9HP9ndj7+mGS+/AgR22QgON04B2vu//880BfG79 /svy+b/fKtfevlXmfn2rfEiB5yINnT/fImeryOeMmzbLTBX9nKKS7qbTUdDh122UQ698Ufa7 dJXsdNK/hc68rZNS8p6lVzoIITR6w/sD+Dx/563y3G2fl3U3XytrvzBX1nzuQzL6qYtk5HoV /Vxztqy+6gwV/cxU6ZSwm05FQasuOFxWnHOoPH7qfnLXO3cKy/1OxRadDIT0mNCE7rguENLA ac9fCF7Dz93/xgAFhBrXqDqmZ+I0qV80kKgB7SXPVID59N9tlc/eGQLow19V40O66+2LW+Ss P1FjRJ/ZLCeoiOdoNS50+DUb5V1Xa/BslINVmv5RNTb0kRdk/8uGZNdT75kAoWjeiY458mVs 3haERlRUs/6rn5b1X/9sAKDNj/w8yGHkOgWfq85S0JklQx86QY0LHS2rzj9cVp33ruD7l/71 Llk5e7osV2NDT5y2v3z/8F1TQuiP7glDJfUkazBVW4d8WmAKJBoq8+bNC5L93myzXwMAmagp AUJxxirbwZlzln0enX8/z9WP6+Ec1rMRg+Z4zVphvI6vm5bSFtoP6IkIegzoY+0I6LJbtsr5 Ovq5aUsAoBM/uVnee50G0CY59CoFHQWeAz6yUfb/yCb1ukkOVI+/7P/B4XEItc8dl3cWCMXm bUFIT0RYp8aA1t38sSACsv9CAJ2oAPTeAEArVdRj/6088wBZfuaB8sSsBAhN6I7TENKh0nvb c791V5xubGrhwvHIJ4yC9JxuDZ64V/29iYSCh5zshQ/bM+NMYV+10xfEpH44bfu8cU61yDK4 zoVTH2CnPmgQG+Dr1X7ghE9vCsZ+dBfc5X+1VS768hY59wtb5HQFp1M+rcZ9VLfbDDUr7p0q Anr7RzfJ2xR49v3wJnnLnE2y3xWbFIxUd5yKhHY59WcTIqFo3lkgFJu3BaHhy08Ixn6CLjg1 /jP6yYs6sh+69FgZunCGrHr/OzsBdNpbZOXp+8mKM/ZXENpPvv/uXcJyv0sN82jGvFVNfNNj QhO646IQ0rTtgFC4sIKJhLqByI6EtrtQPXmrUrB6dhtGUQDZztgAqSwH7QKD6/ss5Soyryzn ZV/ghgb80YCBkJ6efdmtYTfc+V/SY0Bb5LTPqijoU5vl6BtUFKQgdKiC0AEKQvsqCO2lIPRm BaG91etbr3hR3vrBIdl5ZjyE7Lz1+dLkrfeLzTtY/TocE9IQGr3xEhnVs+D06w3ny8jVZ3cA R4/92H8rZ+0lK2e+WVbO2ltWnP5WefLUt8oP3r3zOITeoUCUCkJ6rriOWjQ4FEDyRkLjEFIg 0usHqfw6nbOa8q3XFopJUaKbfbpt19/H/dl5J31fxPnizqXB2u0a2d69/rENtmmCBrRfeY+a XKBnvOmZbxeqKEhPRNBjQaepSOhE9bzQ0WoSwuEKRIeqLrn9VZfcW67cJHvO3Sxv+shmebOK hPZWkdDel62WaTPvDZ1521/G5a23pclb7xebt46EVNJ/qy58TzDjLZj59okLg7Gg1deosaCP nhbra4fOeIsMvW9PWXXqm2TVrDfLs+/bWxacsrf88LBpnRAy0ZB+YLVjYoIOj3S4pH8LIoiC 2gvPqeVk7IkJeSKhMBoKQdQBoYTfFLL30+8DZ97ef0IXXnu7fYzex/yZ4/J+H3e+LHkNzG8n dbmhaIIz4RqAYh4NaD9xmIpwzlDQOVdNRNAA0q9n6gkJGkJqTOho1SV3hJqYcKgC0f7XbZZ9 rlHwuWqz7PbRzbK7gtEec1+SPRSEpp48EULRvPX50uSt94vNu/3bQQGE1BTrETXzbfS6c2VU z4S79lz1HNCZ4UOrHz6xA0TD5+4vw2ftI8Onv1mGZ+2m0u6y8rQ9ZOHJe8gP3zE1hJBasLR1 +BJpmWhId8dN+cvwu+C/KIS0Y2+vhpo7ErpELcqnUkutuBok9YNnnRAKfwDN/jM/CBbdL4RQ 577Rffr5Oeu5GvdDZ/x4HT/ghwacGtB+4mA10WDm5zbJ2erZn3P+TK2aoMaD9Ky2WWpK9kmf 2yzHqG6599y4WQ5VXXMHfEJB6Potsse1W2QXBaNdFIx2USsn7HLpann9SfeFDrtt97i8Awil yFvvF5t3+0fs9Pcrzz5Yhj8yU0Y+drYC0Dky+rHZakq2gtCVszp8tvkwMnsfGTlzD1l92i6y etYuKiLaRRaesIv8wyGvD8t9hOphO0I9+qMhtOfCcOmeDgjtrheZU6TSkZAeCzIQUstx546E Lt2sVmPdHC73rZcAV6nDeRs4qdfo9rj97G12pBMAKkUernNk+T7LvmMQtq6Xbe0bE2wyfpPm qy3077+QctlA+4m3zdkYPPdz2ufVQ6gKEGcpGJ2hQfEnW+Qkte1YlWaoqOgdCkYH3LhF9vmk gtANW2RnBaKdrlZJQWjqxSPy306c14ZQWB9xeettafLW+8XmPVsFDWf8Lsj72fe9LXjuZ7Xq ftPwGVFdcauvPqMDQCOXzxj7/IeNL8jo2XvI6Ok7y8isnWTolJ1k0TFT5cfT/1tY7qPV8M57 1axrDaIDFWs0hN74tfC74D8NIf1lACEVeusoSP8exBiEwl1dD6l2zI7Tv0fRBpGBke28ze9R 6Nfo9rj9XPv08/us57KvtanvzY0Gr+M3XdhisG2h/cTel70kM67fKCd9RoFIRT9Jfwd8VkHo 01vlTQpE01RENPWaLTJFTdd+7YWj8qrj7gsdtnVDH5f3aaqrb6Y6z4kKbseo9B6V3vn5LWLn rfOJzVtDSCX9t2Lm3rLqohmq6+0kFf2cph5KPb2j6CNXHCMjl6txo8s6Z8etOX2ajJ46VYZO nCKLj3qt/OiAV41DSINIR0SxENLhUQAhBSAdkrUBpB1m9GHVsCTmZ4g6X0MIhSsrbHdF+MNI Om3zoTC1Lnl57EL0e5Nsp27vE0Q57f1c+/Tz+6znsq+V9+P1ji2wRZM1oP3Ebhe+FEy/1guW nqxAlAihz22RvW/cKrt9cqv89+u3yuuu2iI7qkjq1eeNyA5HtyMhyx/G5X3KH6sIS0VWxyv4 HK1gdIR6fYeGkJW3LkNs3jrinb0xKOLy43eTlWr69dBlxygQndxR7NVXHC8jHz5aRj50hILQ O2TtRQd0fL/mlNfJ6uN2lEVHvFp+9LYdQmKc+HzIFwOi4Kcc7EjIQGim/vGiEEIaQDqCsceE kgBkR0rbXS2y7dz/CpL+lT6dWperX+9TScMo7s9MALC/19sMwJKOy5OnDRJzDrMt+tne15Qp eg12+e3y2OXn/fgNCbaohy1al/ynuhEk5bGB9hE7nfeSHKh+0PPwaxWI1ASEpL/9PrtV9lIQ 2lVB6I0KQq+5cqu88oMb1c8sjMi2R90XOvN2XWTNO3re2LwvUDdF520Ndn3mvTvJs2ccGCzB o0G08f67g+2rLz9WpaNl9YdmyMhl75LRSw6WNRfsJ2vP2yv4fvO/3ClrTnqNDL/3lbLondvL P7xl23EIaRBpCL1LwUgv3zOxO06FSTMVgPTAVxtCOopxdcFF143TP+GtkwaRTuangQ2UzKv9 sKp5b+8Tt01/3+24KCjS5Jlln6R9XWWNXjufwxsUkv82MDePvIY30VmS9klvOOcl1SUXLsHz bgWiGWoW3IwbVISiHlJ9t4qODlNgOlhNStj/UyoKUt1wu39CdcVdt0Ved/VWefUVW2T7SzbK tmetlm1mtGfHtctQSt4acApE+m/Ze94QdMk9e/Z0tSrCu2VIdc0NXazSRUfI8EXvVukwWX3h wTJy/v4yeu7esubs3UV3xekoaPS4V8vQjO1l4SHbyg/32SaE0KkqyjLRkIaQXiauA0J/ND/s q2tDyERB4e+M/162++h/yA7X/F4mXfOHADA6TbruDzLpBvUaSWMQUr9jrn/LPEhtIJnXMpyP DaEy8idP/x0mdUQd+aQB7ZNec/pzssv5z8u+H/ydvP2K38khH31BrQ33gkxXC5NOv+pFOfAa tSLCx9SzQB97SXa/5iWZppbumaImI+huuEmXvCTbfuB36tkd5ZsPD1fRNtdXRt52lLX4sNfI 08fuIstO3VeeOfPtsnz2IbLi3EPVTzRMV4uTTpdnzzlQrRG3nwydtbcMnb67DJ86TYZPmiLD x+4oQ0dOkhXv2lYee3tLvrtnOGQTQMiASENoQndcDIQMiAIIqbTDlf8ZQChIGkBdIKShlAZE UTD1+tmGUK95cfzEGweXTXxq/JQFGPmggeHn/lP2vWi5THnfctl59nLZ4wMrZe8LnpV9Llwh e6nXPS9aKXuotJtKO188LFMvGpYpF66W15w/LK9UCwa84mwVAZ2mAHT8E7L7af/SAaEy8g6i PBUN6bx/e/K+8si7psgjR+4s84/bQ+afuLdK+8j8E/aSR0/cUx47YQ95XI0bLTh+Z1mgZsEt fO8UWTDjNbLw3a+UBe94hTx20Dby8/1a8r337B5C6IyNEyHUMUU7AiE9hdiOhkxEtMPcl+Nh pIBkwOMCUJni6NYtVuY5yRuHhwbQQJwG5vztJnn0qRdk33MekB2P+om87rifyeuP/zd5w/E/ ldcf91OZcvw9MuWEn8lrj79Xdjx+nrzq+Ptl8nEPBJMQtjtqnmxz1AOqh+peBaCfyvzFz4nO z5yn8Lz/RkGiDaE5t2+UDQsflX86bl/59tt2lLsOep18b/rr5TsHv0G+c9Dr5a6Dp8j3VfrB dDX77aAd5ccHvkruPmCy/Gi/HeRH+24nd79lG/nBXi25SwFo7ZPzZc7XVDSXDkL6B43aY0Lt h0s1jPQDp0HS063VAFsQFWkYmaQiJB0l6aS77bolYzwTWfEaRphNSVn6ytk329gC9qqnvbaf 8x8yRzn3Xv90ZKLz0fkZLRSa9+0vyvaXbglnIqsxoe0vVL/6etv485t5yz+8XpVbAWj709TU 7+iYkO6OmxgJtSGk1w/Sq2i3V70ee3D1knDCwnaXKyCZFEDJTuFMuLhkZsaZqdpNnpo5mNfG DKo8M6j8P4Zp5I1rz3oWXHsSgp4NFzx7pKdnn7tZvSoY6aTfq+naQQRjXs17/dkk9XBr61Q1 602/mv3s8R89GSGazJhQLIT0s0JqFdXWjEekdex82ea4R2Xb48MU/OJqO20za6mYFPwKqwaX XvjUJP17RPZn8769QF6wPwkboAH/NXCCfn6Q1CgbaB+vV8xOqtdj1aoG+qd9dNKr6Zh05FPj 28z3+tVs1696jTid9HqkZr04/V4v2aMZkwpCCkABhNogsmFkoBT3qvcbS/bxkbw69rOP4f24 /WpmC60XUvNsEPgAUuNsUFlbNcv2TJgdN22+TDr0KZk6d4NMnr1M1q9ZTMIGaAANoAE0UKgG Wiep8aEjVLS0x3fUmNAt4cy54D8gVKihgTg3MWgADaCBiRoAQtzVAFs0gAbQQGUaAEKIrzLx cVdIZIAG0AAQAkJACA2gATRQmQaAEOKrTHzcBXMXjAbQQOkQ0itqIzSEhgbQABpAA3Ea6BlC 0Z9tMNCJvhYlwCjUyjqPq7zdrtt1XK/fA3Uacq8a4ng05JMGCoFQ0gUV7TS7QajfRi36utKW v6rzpi0f++Hg0AAayKKB0iAUF6HY0UOWQtr7pomE4s5jH9ftfZYyJcEg6fy2Xcx++rz2e1OO bvnE7Zul7OyLk0ADaMAXDRQCoWjXlHGqca+2g81rhG6As88XPU8ZEEq67rjzpylDN7hV1e2Y t444DieHBtBAGg0UAqG4E8WNDcU57TSFjO7jglAWKObt3nLBIgmCUVgmwSkaDeUtbx47cwxO BA2ggbI10FcIFXUxLgilhWJc5JS2jGVDKE23Y9qysh+OBA2gAV81UBmEer2jT+ukk8Z/eikD EKJR+9qoKRfarJMGEiH0yhSraLuccRQCRQ2qd4OQiW66DfTblVMGhLqd31XeuLGybt2XRdmw TkKlrDhWNNBMDQQQ0r9NtOsdE1fRTgMhhNFMYVCv1CsaQAP90EDPEIrerZd9l97v8xVVCUVN yiiqPOSDg0EDaMAHDfQMIR8ugjLQmNAAGkAD9dQAEGIBU9b2QwNoAA1UpgEghPgqEx93rvW8 c6XeqLciNQCEgBAQQgNoAA1UpoHUEBL+sAAWwAJYAAsUbIHUECoy/EqT113/7/bgUtPsyz7+ dA9Qb/7UBe2CuqiDBoAQYXihoAdCOL46OD7K6I9OgRAQAkJooFAN4OD9cfB1qAsghAMq1AER CeGA6uD4KKM/OgVCAwah1iG3SxGpWyMGQv40bhwtdVEHDSRCaPL0JTJ17gaZPHtZqrvlOXPm SFLKYpA0zqzVuim2XFm3ZylX2fvefffdE2yotxV13iIApPMAQji4ojRJPoOtpcIhFDd7T4NJ /x1yyCGpnWkaCDVJvDZ8ojY0YC8CRhoguh56SUBosJ1Gk9od11K9lvsKIe1ctUNNU/FJEDKR Tq+vacqh98kbPaTNX+9nQJ00BT+t7ZLOq6+l179eIdRtEVrX9iz2ZN/qnQt1QB2k0UApELK7 5Ax47G1pCuZTJJQnekhy1NHrN1GQDQcTqZhnpYwde42GfIGQfa1x8ImCspfffkqjN/bBYaKB ajRQCoSKuJtPA6GsYz/d9neJL85x3/7IBnlkSIKk30dTFgjFRUE2hGx79hoNdYOQhlu0i05v i/sjEqqmsbp0yvfUSx01UAqEuk1OKKo7rt+GTooeusEoL4S6jdUYGJQBIZ3nMcccM4E3elsc IHuFULT+XN1wZf9GVb/1xPmABRoY10ApEBqESCh6jQZGJiKqC4R0tBMHIN1IzGSSaEQEhHCi OFE0UJQGSoHQIERCrZjxfRtEeSFk4Nav7jh9nm5/Nog6xnAKnqKtIx3XH2NCOL2inB75+KWl QiAUnYjgioSikIoThW+z47pdUxRGZowoC4TsiQm2448CQtut6IkJPkFo3rx5IgpI+vWmm24K kvkDQn45Dhw59VGUBnqGkHaMixb8Kkhppxnb+3cb40gzMaEoI7jyiY4JRcFjPrfUmzzdcVVO 0TYQMvCLg20UVGV0xwXn1RFRl6gICOH0XO2U7+upkZ4gZAPIgCXtqz729ttv7/rcUBoIVTk7 LvCZVpdcACB1PXkhlOZh1ZHRFXL14W9P9ZxVtwYZBao3EGoDKC4KCvnU6um6cVD1dFDUW/Pr rWcIuZbqSfq+Vwj1S6BJkZAGkQGQPV07S3ecfR1Jy/ZoAP3zd8/vCUTRa7EnJsRFQ3HddUVH QkkREN1xzXdC/WrHnMdPLfUMobSRT3S/ukdCHV1wKgKKPi+UF0KuhtIriOKmm+u6iION3mag V9TEBA0c+xptAJlxIPsVCPnpOFw65XvqLa0GCoFQ6/aWqI61oGtNw+bXu7wiSEnddUVAKM1F aocWfQ5Fb0tzrNmn23NCcRFQ3u64LOXRIPramXvmioiyPKyqAWBDbwwIPcyOM9AJoq52Fxyz 43BYWfTPvs3SSyKEJk1fnLiKtoGMhpBO5vPtyrnoVBaE0q8Zp8qlyhEkDaMIkNKKOeq4f/ng j4MuOB0pFLFiQtpy2PvlBVGeZXvscwXjMz1AyIaPiYp4WLVZTiWPnjlmcDUwBqHd7pDWlFvC OUrBf9PmS1oI5emSM2NFelwoToBpJiYkCdfcXQeRUCSZqb9pB7t9hJC+9jwgygMhExGlib7S 1lu0Ww4nNLhOiLof7LrvCUJaPL1OTOgmwDTOLGl2nOk6SoKQ3idNA9COO09Kk3ev+2gQZZkx l+c6TOSTBnpp6q3Xa+b4wXZa1H+z6r9nCGlBBFOTc6QkMfXqzEwXj57yG+2OG9vGtN9UEI52 AyZBr9d6w8E0y8FQn9SnSwOFQMh1kjzfF+XMuo035CkTx7gbVFH1hq3dtsZG2KgJGmg8hJpQ SXW6BiCEY6yTXilr9XoFQqo7ESEWZwMgVJwt0SW2HAQNACEgVCiEgRCOcxAcJ9dYnM6BEBAC QmigUA3goItz0INgS28hNAjG5xpprGgADQy6BoAQd8HcBaMBNIAGKtMAEEJ8lYlv0O8AuX6i IDSwWIAQEAJCaAANoIHKNACEEF9l4uMukEgADaABIASEgBAaQANooDINpIbQIQcfKCRsgAbQ ABpAA0VqAAgBV24u0AAaQAOVaQAIIb7KxFfk3RR5cXeOBuqpASAEhIAQGkADaKAyDQAhxFeZ +LhzreedK/VGvRWpASAEhIBQFw3oX7ovsrH1I686lrkfduEc/oITCAGh2jla41C0w42mopyN 7czznifvcb1cAxDy19n2Uq9NPhYIAaFaQ8hunMbpF9FgoxDKkmdSOcqGRNn5Z7ED+wLENBoA QkCoMRDSgi/KCfcKoTSNr4x9irr+MspGnkApTgNACAg1BkLRCMQ45LjIxO4qizaMqCPP4tiz 7GtDM6mM0WjPHNftmKTvAQEg8E0DQAgI1RpCLpjEQcEFmbjv04495YGQ65i48anouFjaz745 IMoDFIEQEKo1hJKcWBoA2c477n3WLr4sQHHlHQdY1zW5vsfp4/R90wAQAkJAyBpL6tWJFwGh bt2K3aDlGr9ylck3p0R5BguUiRCaPH2xTJ27QSbPXlZbR4Wgmytol3PNAhR7/Mg1RuTSVFK5 XF2BcaDJApks1+y6Dr5vbtvxqW4DCB25VFq73imtKbeoyUXhbZi0ps0XIIQIfRJrVjh0g0ES CIpw4nETBrJ09WUdA4qbuODa5nO9UrbB8jtAiO642ka5eSKh6AC+K8qIzjRLAkwcJF0TGpJA aUdn0UgtbrwoTXcdDn6wHHwd6hsIAaHaQqgODazoMrrAW/T5yA9ola0BIASEgFCNNACEgELZ UOh3/kCoRg6o3+LgfP45PCDkX53QTnqrEyAEhIiE0AAaQAOVaQAIIb7KxMcdZG93kNgP+zVB A0AICAEhNIAG0EBlGgBCiK8y8TXhLo5rIBpBA71pAAgBISCEBtAAGqhMA0AI8VUmPu4ge7uD xH7YrwkaAEJACAihATSABirTQCKEJrGAaWUV04Q7HK6BO3U0gAZcGghX0V4mrd1iFjAFQgjI JSC+RyNoAA30ogHvIBS3wnHc76u4VirOekwvRuRYGiEaQANoIJ8GvIJQHFjSrCQcrfw8xyCg fALCbtgNDaCBXjTgNYS6RUX2Bbt+JCwJbL0YjmNpeGgADaCB3jXgDYSiv5eiKxcI9V7BNBJs iAbQgM8a8AJC0R/+igOSgVKayCcaKbmO8bmCKBsOBA2ggSZrwAsIdetei/uZ46SfPo5GT3G/ PpnllzGbXPFcG44NDaABHzTgNYTs6CcNkIxBk+DT/eeUVe9fhr+//sbNHc8Q8Rl72A0aPaCH furBB5jkLYN3EMp7If08zmZVP8+bdK6o06u6XJTHfZeNjZJthH3qZZ+8PgcI5Viuw0cI5RUA x7lhgY2wERooTwNACAixNFEODeCUynNK2HawbAuEcjggIqHBaiQ4ReobDZSnASDUEAjRf16/ /nPqrF51Rn2VA6JECE1mFe3YrioioXLEyN0mdkUDg6eBEEJLpbXrHdKackvgXlvBf9PmCxCK FwQQGryGgnOkztFAORoAQg3pjqOBlNNAsCt2RQPlagAINQRC9FfXa3xBOzbqrF51Rn2VAyMg 1BAIcbdWTgPBrtgVDZSrASAEhHhOKIcGcEzlOibsOzj2BUI5HBATEwangeAMqWs0UK4GgFBD IER/db3GFxgTcjs2NF0/TecBNhBqCITyVD7HuB0hNsJGaKBcDQAhB4Rcv+6AQMsVKPbFvmig 2RoAQkRCTEzIoQEcY7MdI/Xbv/oFQjkckI8TE+g/r1//OXVWrzqjvsoBExBqCIS4cyungWBX 7IoGytUAEAJCdMfl0ACOqVzHhH0Hx74OCC2RqXM3yOTZy3BUlqPysTuORjs4jZa6pq6bpIEx CO0Wu4o2EIqrbB8hRH91vcYXeE7IDRI0XT9N54EjEMrRFeMjhPJUPse4HSE2wkZooFwNeAOh 8GeMxpOp+LTbbKHkOSaL0IBQuaLMUhfsS12ggXprwBsIRSFiQ0i/N2Ax76Pb4o7PckwWIQOh eos+S12zL3WNBsrVgNcQ0hCJi3C6AcsGVDSSSjomq8h8hBD95/XrP6fO6lVn1Fc5MPIKQnbk khcoecDVBAhlvQb2L6dBYVfsigayacArCMV1wREJZatQGgD2QgNooE4aqA2EkiYbJI0nxUVX 0Wgpa4X52B2X9RrYH0eFBtCADxrwBkK9zo6zwZJndpxrtezo97p/WP+ZSoz2F/P55o7xPOwx 0R62TXywD+UZh1JcffhsHx9gkrcM3kAo7wVUcRyREHeQVeiOc6K7JmoACPGwKksy5dBAE50B 1wTkqtAAEMrhgIiEaKxVNFbOie6aqIFECE06mLXj4irdRwjxDEO9njnRuqLO6lVn1Fc5NwEh hJZJK24BUyAUb3QfIdTEOySuqZxGj12xq08aAEJ0xzEmlEMDPjViygJU6qwBIJTDAREJ0ejr 3OgpO/r1SQNAqCEQor+6XuMLjAm5QYCm66fpPHADQg2BUJ7K5xi3I8RG2AgNlKsBIASEGBPK oQEcU7mOCfsOjn2BUA4HxJjQ4DQQnCF1jQbK1QAQagiE6D+vX/85dVavOqO+yoEREGoIhLhb K6eBYFfsigbK1QAQckDItbo2Ai1XoNgX+6KBZmsACBEJMTEhhwZwjM12jNRv/+oXCOVwQD5O TKC/ul7jCzwn5HZyaLp+ms4DbyDUEAjlqXyOcTtCbISN0EC5GkiE0OTpi2Xq3A0yefYyumws WPkYCdFQym0o2Bf7ooFyNOD4PSEgFCc8IFSOGGnk2BUNDJ4GgFBDuuPoP69f/zl1Vq86o77K ASQQagiEuIMsp4FgV+yKBsrVgDcQEmmpXq4w2ZUet73bvua4PMdkERrdceWKMktdsC91gQbq rQGvIKTFFAchs918Z79G97fzsKHmOiaLkIFQvUWfpa7Zl7pGA+VqwBsI2VFM3PsoiJL2iYuk ott6EZaPEKK/ul7jC1p/1Fm96oz6KgdGQIgxIabf59BALzcxHFuOM8Ou9bSrVxDq1hUXHetJ imq6jSk1PRKiAdazAVJv1Nuga8AbCCWN7dhdcfZ+3SYypJmg0EvF+9gd18v1cCyOEA2ggao0 4AWE7NlseWfHxcHJta0zOnKtl935ve4f1n8mj2h/MZ9v7ujmwx4T7WHbxAf7UJ5xEMXVh8/2 qQogRZzXCwgVcSH9zINIiLvGfuqNc6G3JmsACOUYlAZCOIUmOwWuDX33UwNACAgxOy6HBvrZ SDkXUGiyBhIhNOngJayiHeOgfIyEeIahXs+c8JyQGyxoun6azgNLIJTjLthHCOWpfI5xO0Js hI3QQLkaAEJAiO64HBrAMZXrmLDv4NgXCOVwQERCg9NAcIbUNRooVwNAqCEQov+8fv3n1Fm9 6oz6KgdGQKghEOJurZwGgl2xq0sD4z9CE33svpjPrvPX/XsgBIQYE8qhgbo3/EEqf50hocve 9LoCQjkcEGNC3B033TFUdX1lAKOqaynivECI54Ri70J8hBD91fUaX6jrc0JlQMLO03bcaDrU dDcQ+WafvNAlEiISany4n7dx1O24sgExCHflPtZ50+0OhBwQcq2t7aNoKZM/3YX9AIM5B/Xu T70XWRdAaO4GmTx7GXfLFqx87I4rUvRNzaufQAAMzQRCFW0DCAGhCQD2EUJV9A9X4dR7OWcV DiTpnFXUGeXJD8eq6osxISAUC6FenGFTjvXNqVOe/A4W2/lru4GOhCZPX8wq2jVZRRsn4q8T oW6om140MBAQOnKptHa7U1pTbgk6mvQ1S2vafAFC8Y3Hx+64XkTOsThJNOC3BpoMomB2HBDK JkAfIVRVf3U350V53JrCRvV6tqvK+oqDUJXlKfKmBQjxnBAzH3NooMhGSF5uYA+6jYiE+jhF W/cG2oKzlwA02+O29XpMFpH7GAllKT/74vTQQL00AIT6AKFuYDFQMt/rxhO3LQohs5+9b3Rb 3oYIhOrVgPPWM8dRz75oAAj1AUJ2lBP3vhtA4iKnuKgoDlJ5BeYjhHzrH6Y8bgeOjRgTSuuD GBMCQpEuwnEMpRUR+7mdMjbCRmggXgNEQkAICDF4zwQONFCpBpoKIu9mx9nda9H39rhQmu65 pEkNvdxx+dgd18v1cCwRCBrwXwNAqE93QXlnx6UFVjT/8fEn13rZnd/r/nz9Z46P9u/z+eaO u0bsMdEetk18sA/lGQdRXH1UbR8bQrosvo0p5r2R8S4Synsh/TyOSMj/u8Z+6oFzoYd+aIBI qE+RUD8qs9dzACGcTq8a4ng0lFUDAwqhJSxgygKmlQ7GZm2o7I9zb6oGgBCR0Jgz9jES8q1/ mPK4YYCNeE4oCzCjEPJNP1muxd7XMSZEJBRnWB8hlFcAHOeGBTbCRr5ooInREBDKEeEBIZyS L06JcgyWFoFQDofdxEYChAar4TdRw1xTPTUMhIBQMC7kI4R86x+mPG4nh40YE8p6MxB9Vijr 8T7uX1p3XNzqBj4aIE+ZfIRQnuvgGDcosBE28kkDREIpI6HozyeE0UPn7wT5VLFZywKEcExZ NcP+aKYIDQAhIORtd1wRAicPHCUa8FsDQCgnhKJdc3UXuo+REOML9Rpf0G2AOqtXnflSXwZE vpSnV39e+phQ0wDk68SEXoXA8X7fAVM/1I/RQNOioVIg1NTxn7h1tnEOOAc0gAb6qQEglLFL rp+V069z+dgd169r5zw4XDRQrQaAUAoI2T8mF/fDcnUXsY8Q8q1/mPK4HRU2Ykwojy9kTCgF hPIYtk7H+AihOtmPsroBhY2wUTcNEAmlgBCREA0IJ4oG0EA5GgBCKSAUJ76mTlagoZXT0LAr dkUD3TXQJBCVMjsOCPXfgTC+UK/xBZ4TcrcRNJ0MId/sk/emAQjliOwYE3I7kLyC5Dhsiwbc GiAScjjuuDGhIoXlmnEX973rmCzlA0LuRpLFnuyLPdFANg0AoRzRQ5EisxdIjRtrivvedUyW 8gGhbA0mi23ZF9uiAbcGNIRa6r8m2KqU7jgbDEUv2xOFTprPrn2yVqSPEPKtf5jyuB0JNqrX OJ5P9QWEUnTHGcce97MOWZ2+vb8LKHHfu47JWh4fIZT1GtjfDQlshI181QAQSgmhaERURIW6 gAKEcBxF6Iw80JHvGqA7LgWIyoZQXFdfXFdg0d2DREI4KN8dFOVrvkaBUIWTE7rNfrO7AKOA cs2Oi1shO2mb7h/Wf+ac0f5iPt/cMWiKPSbaw7aJD/ahPOPgiqsP3+wDhCqEUNV3eURCzb/L rFpjnB+NuTQAhIBQRyTkEgzf41TQABooSgMaQE15Vqi0KdplP7BaVGXmyYdICGeSRzccg26K 0kBToiBtj9IgVNYU7aIqsZd8fISQT88waNtSHrfDxUY8J5TXD2kI+aaf3Ndy0gvSOnKptHa7 U1pTbgncq47ypDVtvkyevkSmzt0gk2cvy/RkbtysuLiVDfIWuurjfIRQ1Tbh/G7oYCNsVJQG iIQyjAe5ZqUVVSn9zAcI4Uz6qTfOhd6iGgBCGSDUxAYEhHAKTdQ111QfXQOhFBCKe06nKSL3 EUK+9Q9THrdDw0aMCeX1iYwJpVgtQRu3jBUT8lZakcf5CKEir4+83ADBRtioSg0QCQGhMQ5V KUTOjSNEA4OpASCUEUJF/5xD1Q2PSGgwG37VuuP86E5roEkACq6njCnapisu+sBqUxqRjxBi fKFe4wu6LVBn9aozX+rLQMiX8vTq1wuFUJNXSbAN7SOEehUCx3OXjQbqoQEioZRdcU0WNBCq R2Ntsga5tsHVIBDKMT27zg3G9RMPdb42yj64joy6r2/dA6EUEDICb+JqCeF41/ifL43Zt/5h yuN2ctiIMaE8/oMxoQwQsico5DG2r8f4CCFfbUW53DDCRtgoiwaIhFJCqGnTspmYgKPI4ijY F72UpQEglGJiQpNWzI4TEpEQDqYsB0O+aMulASCUAKEmRz++R0KML9RrfEHriTqrV535UF82 gHwojwuYab4v9DmhuAkJTZycQCTE3WqaxsU+6KRoDTQtCtL2KQVCRRvet/yAEM7FN01SnsHQ JBBKOSmhlwYRHU+Ki6Rc0VWeY7KUGQgNRoPPogn2RRP90AAQKhFC3cBioGSPN8Vt6xyzaQU/ R57lmCwC8hFCvvUPUx63U8ZGjAll8TtB11VLAt/m45hi1msx+3vXHZf0G0RxEx/iIqcokFz7 ZDWejxDKeg3s74YENsJGvmmASKjESMie1BD3PhrZJO0DhHAevjkPyoMmi9AAECoYQq7Iptv4 UFzXWy/gyioOIiEcSlbNsD+aKUIDQKhgCMVVSrfuuKTJBt2glPaYrOLwEUKML9RrfMHHPn00 5L+GGBPqM4TsLrgonKJRVJrvkx6mda2WHf1eN1j9122QMNqg+XzzmK3iHDD2wT72zSB6iNdD 0xYv1XXu3cSErFFJFfv7GAlVYQfOSRcTGuifBprYFQeEckZ2QKh/DQ8nh63RQKgBIJTTYTdR QD5CiP58//vzo22BOqtXnVVdX1EIVV2eonw73XE54OojhIoSBPkQeaABPzVAJJTDWTdVzEDI z0baVL1xXeiN7rjZyzpmNg16owBCOIVBbwNcf//bAJEQkdAYiH2EkG/9w5TH7aSwEWNCWWDO mBAQ8hpCWcTMvm5AYCNs5JsGiISAEBBCA3RLo4HKNACEEB8QQgOVOSDf7sopT38jxaYCiIdV czpVxoTcDZDxDmzUK6jQ0LiG4iDkm33y1jfPCeUAkY8QyisAjnPDAhtho6o1QCTEFO2Obhgg hFOq2ilx/sHSIBAaYAi5VtfGGQyWM6C+qe8qNACEBhhCcYLzMRLyrX+Y8ridNTbiOaG0QGv+ mNAyae16p7Sm3BK411bw37T5Mnn6Epk6d4NMBkJ0x+UYO0vbwNjPDSxsNNg2an4kBIQyTb31 MRLCSQ22k6L+m13/QIhIiEiISCjTjQpQaDYU+l2/QAgIeQ8hxhfqNb6gnRh1Vq86q6q+ugGo qvIUDeDwOSG64zLd5dIdx11u0Q2R/NBUNw00OQoaXzEBCAEhutsyaQBoAI1+aQAI9Wl2XDgp L0x25cZt77avOS7PMVkERSSEA8qiF/ZFL71oAAj1EUK6ouIgZLab7+zX6P52HjbUXMdkEYmP EPKtf5jyuB0vNmJMKI3fYUyoTxCyo5i491EQJe0TF0lFt6Wp/G77+AihXq6HY93AwEbYqCoN EAkBoQljBUAIh1SVQ+K8g6c9IFQihKJjQN264qJjPUlRTbcxJSKhwWu8OGzqvAkaAEIlQsgF BhsoSZMNuuWT9pisQvUxEmJ8oV7jC1pz1Fm96qyq+mJMqA8QsmGRd3ZcWmDFTWQIx5uy/WlB 6j8DsKhA+XxzRzcm9sAe9s0eekinBwMgl72y3kj7tH/wsOqMpdLajQVMUz8n4mMk5JOoKAvd YGigGA00vStO6wQI5XhIEwgV08BwVNgRDSRrAAjxUw6x0ZGPEKqqv7qbE6E8bsBgI8aEXBBO gpBv+nFdS7fviYSIhFJ3Q+YVGce5gYSNsJEGTlxqujaAEBACQjk00HTHwPXFQ7EbKIrYPqg2 B0I5HJCP3XGDKmCumwjC1kARMEjKA70Vrzcg1BAI+dY/THncjXWQbVQWLMqExCDXV5l2BUIN gVCZIiFvN1CaaKOyQDEIM76aqIeyrgkIASHGhHJooKwGmSbfMuFg552mLOwzmDcoRdY7EMrh gPSYUKtm/4oUDXn1f9AaOODsm9rugFBOCJnJCb4Iw9VfXTdoditv1N79igrSnCerFlx1ljW/ XvenPDy31KuG8hwPhBoCIVflp3GitdynzxGpy858T8SCBrJpAAjlhFDdHDYNI1vD6GavsiNK 6qmYesKO9bFjIoQmsWyPc2ltxF4fsdehrsqAXB2umzIObjsCQjkjobqNCfW7kTO+4HYq/bJR EWDrt370+fpln7TXRnncmk5rS3s/INQQCOWpfI4pp1E10a69gqyJNuGaimk/QAgI8ZxQDg3g gLI5oLwQw87Z7FxHewGhHA6IteOa3zDq2JibWOY88GqiHZp8TUCoIRCiv7pez3gw5uG+kcmr 6azgSuvg85Ynbf5Z9/OtPFnLb/YHQg2BUF4BcJzbGWKjZtsoC7TQQvFaAEJAiDGhHBrAGRXv jOpgU4BVfL17AyG9GpudjCDTbrMFnOeYLA2AMaHihZjF/uyL/euggTTAqsN1lF1GbyAUhYgN If3egMW8j26LOz7LMVkM7SOEfOsfpjxuUGCjeo3jlVFfLlAl+aUyypPFDxa1r9cQ0hCJi3C6 AcsGVDSSSjomqzF9hFDWa2B/NySwETaqWgMaUlWXoezzewUhO3LJC5Q84MpqZCCEc8qqGfZH M3k0AIRKXjsuCp24LjgiIRpvnsbLMeimKRpoOoi8ioSSIJQ02aBbV1vaY7KK1cdIyLf+Ycrj hgA2Ykwoje/pBiHf9JPmWuL28QZCvc6Os7vh8syOcy6XHdlBC0D/GaNGBcHnmzv6srEH9rAd EHpIrwcNIZe98gLAh+NCCC2T1q53SGvKLYFf1XOlpTVtvvBTDvF3aj5GQj6IiTK4ox9shI2y amAwuuOAUKYZKEAIR5LVkbA/msmrASA0d4NMnr0sk5POa+y6HOcjhHzrH6Y8bqeLjRgTSuvz 4kDkm37SXkt0P7rjcizZ4iOE8gqA49ywwEbYqGoNNDkaAkJAiCg3hwaqdkqcf7DACITojous 3DAeC+EMBssZUN/UdxUaAEJAyHsI+dY/THnczhobMSaUFmiMCQEh7yGUVszs54YDNsJGPmqg qdEQY0I5xgOYmICT8tFJUaZm6xII5XDWTW0UQKjZjb2puuW66q1bIASExrrkfIQQ4wv1Gl/Q QKDO6lVnVddXFEJVl6eomxq643LA1UcIFSUI8qn33TL119z6IxLK4ayb2iCAUHMbelM1y3U1 Q7NNBBGRkAOurtW1adzNaNzUI/VYBw00GkK7sYp26pUDfIyEfOsfpjxup46NGBPKCj4bQr7p J+u1mP3HIiEg5HYaxmg+QiivADgufb1jK2xVtQaIhBgXCqIlIIQzqtoZcf7B1WDTQEQklAOs QGhwHQDOn7qvWgNAKIfTrrrSij6/jxDyrX+Y8ridNTZiTCiPbzIQ8k0/ea5FH0MklAOqPkIo rwA4zg0LbISNfNIAkVAOp+1TBRZRFiCEUypCR+SBjvJoAAiVDCGRVmTF6pby+WEan502cZtd mWb/LMdkEQMQwnlk0Qv7opeiNdAkEHnVHReFTTgTLYSP/V3ctiiEsh6TRSQ+Qsi3/mHK43a8 2IgxoSx+x95XQ8g3/eS+lpNekNaMZdLy4TmhuIgnLsKJA44dJWU9JqvxfIRQ1mtgfzcksBE2 8lUDREIldMnZ0U0vQOnWnZcErqxCA0I4p6yaYX80U6QGgFBBELLHbqLv7a646FgQkRANusgG TV7oqW4aAEIFQSiu4qOTCaIAipts0A1KSRMUehGda1HTKr7X/cM+/VEed21go2QbYZ9k+zQF RMHEhCOX+jEmlBT9uGa6pfk+buLDOOTcToM9sAAWwAK+WAAIlRgN9RKl9OtYX4RIObAAFhhc C/TL35V5Hu8ioTIvtsi8teyLyI98kscjmmqfMOpHQ0ltCPv0p20U4cd6yQMI5YzoaCD9aSBN tTMQck+GaGrdF3VdjXpOyKcxoV6I2s9jixIS+QwmzIAQEOrVXxXlO3otR6/HEwkRCUWWSaKL qB9dREAICPXqvIFQTufdq+F9Ob4oAZAPkVCvmkZDg6mhouq9V/31ejyRUE6Y+iYA3/qHKY/7 Th8bsXZcLw7cN/3kvRYg1BAI+QZFyuOGEDbqTwST1zlGj6O+3JrOY2sgBIQKmWpOg83eQHFq QCiP0zbH+KafvNcChIAQEMqpgbyNzlcn4ptTozz1gnTe9gCEcjog3xqIb/3DlMcdGWEjxoTy Om59nG/6yXstQKghEPINipTHDSFsVK87ferLrek8IAJCOSGUx9gcU46IsSt2RQP11UAIIf3L qndKa8otwXJWreC/afNl0vQlMnXuBpk8e1kp4wYIp77Coe6oOzSABorQABAiEuIGAw2gATRQ mQaAEOKrTHxF3EWRB3fjaKDeGgBCQAgIoQE0gAYq0wAQyii+uJ8Mt+/Ekr6PfufKK80dniuP bt/b2+1fnHXlV0SZxp+TaY0JP+mn2O1fzU1z/okPzuphzjAlHe/6dV59bFX26XZuX8pTpIZc 15RG07bG0tS9S1d5ypSlnK7zZ9V02nO7ritrufLsD4RyQMh2CHHi6PZ91Amaz700Elceru+j QHA56jQic52zG3CidnPlk6YsJk9XnUXrwD539CYj7Xm77ee6riQHkkVvacuZtzxJZUl77rj9 0pTHrtc4DUfrr5c2llZD0TJVraEkGyXZrJe6y3MsEMoAoW4QiVZoms+uvNJUpisP1/dx5ewV QmnPGW3YUUefJZ8kW2XJJ+7asxxfRJ0lAc9Vljx158ozLYDtfPKUI02b6Qa9bs42y7UNooaK sk8a3SftA4T6DKEsd7muynWJyPV9UuPN60jSnDPuLqxOEOrlrjqPfWx72efOklc3LWXJo5sm 4vLIa6O85elWhrQQ7TeE8tonTXTjupEp0ge5fFSa74FQHyEUdSa9NhBXg3V9HyfobnekacSU t4H46kCSQNxPSHeLANLUr6vesuSRFkK9aChteVz7xTn5sussLv8qNeQ6t8uGLu0U9T0Qygkh l8iT7nSi3+W9K7JFlKc8LpHmEZmrTHHgjTsmSz5p72Jddo6eM22+WeyU5bpcTj9LXmkioSz2 SQOaPE4/zTW5nL25jjR5pam7NPm4yhR3njz2id7odaszV95F+aA09nPtA4QyQMgIIMnhxzWA bsd129dVaVFHnrc8cXfYLkeUpmzdnEC3O/oy7ZOUd1KEkeTIXA3cZaOi7JOkR1cZsmioG3C6 Od5eNZSmDXXTfDfnWmad2eU154nbVlR9uTSd5dxF+KAsWovbFwhlhFCvBuf4ej9YR/1Rf2ig WA0AISBU2UNqNOZiGzP2xJ511EAihCazgCkOGkijATSABkrUwBiEdr1j4iraQIg7qzreWVFm dIsG6qMBIFQi4WkI9WkI1BV1hQaq0QAQAkJ0NaABNIAGKtMAEEJ8lYmPO8/0d57RabfRqbW9 TkGmLtLXBbYq1lZACAgBoZppAOAU6wSBSrX2BEI1c0A0mGobjA/2dz2dH31gsuyHgX2wCWWo b7sAQkCISKhmGkgDIXuf6P5JK2zgzOvrzOtad0CoZg6orkKj3MU5tzQQii7LE/0cN8ZEHRVX R9gyvS2BEBAiEqqZBoqCEI4yvaPEVuXZCgjVzAHRGMprDHWxbVEQYoIDWvJB80AICBEJ1UwD RUAoOlkBIAGkqoAEhGrmgKoSCufFSaEBNFCGBhIhNGn6Ypk6d4NMnr2Mu2VghQbQABpAA4Vr IIDQjKXS2u3OiQuYAiHufMq48yFPdIUG0IDRABDizqbwOxscDA4GDaCBtBoAQkAICKEBNIAG KtMAEEJ8pYrPNevKNdMr7d0U+3HnjQbqqQEgBIQKg1B0qZi45WGijoIlZOrpOHD41FtRGgBC QCg1hKILY9oAif60gBFomkgoDl7mOZak5WeKagTkg0NFA9VpAAgBoUwQSopc8nSt2WCzwdNt O86iOmeB7bF9GRoAQkAoE4SSIpSsEIpb6TkKn7jzldEQyBMHiwaq0QAQAkLeQCgtlHAW1TgL 7I7dy9BA4RBqCf98sEAZYnFNPMg6ySBpvChrXmVcL3nidNFA+RooHEJUWvmVho2xMRpAA03R ABCiOy51d1wvoudH1HCaveiHY5urHyAEhPoCIZxIc50IdUvd9qKBRAhNnr6EVbSBFJBCA2gA DZSmgXEI3TFxFW0gxB1OL3c4aaZXZ53W3Wt5OB5NowG/NACEuMMp7A7HNXsurvEzC84vh4CD pj76rQEgBIRSQ4hle3BQ/XZQnK/5mgNCQCgThKpatidN1x4Oq/kOizpuXh0DISCUCUJxMIhb asc4C9cDqdH9XGvJ4YSa54So08GuUyAEhLyBUNyyPQZ6rtW4cWSD7cio//rWf+EQakncY4ls 67ddymiUrokHWScZZI2Syrgm8qyv86LumlF3hUMIYTRDGD7VI1EQmvJJj5SlWD0CIbrjUnfH 9dL48i7bA4CKbfC91CHHUhdlaAAIAaG+QKgM8ZInThEN1F8DQAgIASE0gAbQQGUaAEKIrzLx cRdb/7tY6pA67FUDQAgIlQoh15gOa8fhxHp1Yhxfbw0lQmjSwayijcDTC9w1hTvOllmndVMf 6esDW2GrOmgggNCRS6W1650TV9EGQojYFnG/146zH1R1RVR1aGyUkfaEBiZqAAjRHZe6O86e Zt0NTtFG5oJHmmV6XHnQsHHuaKC+GgBCQCgThEx0UgSE4pbp6QYlnEx9nQx1R90laQAIASFv IJQEJRwZjgwNNFMDhUOopRZJI1VvgzIarGviQdZJBq6146KrLJRxTeTZTMdGvdanXguHEJVf n8qnrqgrNIAGqtYAEKI7LnV3XC9izbt2XC/n5FgcLBrwXwNACAj1BUI4A/+dAXVEHVWhASAE hIAQGkADaKAyDQAhxFeZ+Kq46+Kc3O2jAb80AISAEBBCA2gADVSmASCE+CoTH3ekft2RUh/U RxUaAEJACAihATSABirTQCKEJk9nFe0q7gw4J3ekaAANDIoG+D0h7oAquwMalEbGdQIUNNBd A0AICAEhNIAG0EBlGkgNofVrFgsJG6ABNIAG0ECRGgBCwJWbCzSABtBAZRrIDKFv/5/b5H// za3yrW/ePJa+edtfyF9//c/ltq9/kYQN0AAaQANoYEwDmg2aEd/6n4oZ7fR3f/tXolmiI6rM EHpiwePym0d+LQ/98hdj6Re/uF9+/sB9cv/P7w3SvPvj0j1qe5jumxemefP+NZJ+qj6rdN+/ qPSTdOneu2VeO92nXnW6995/VK8/Tk4/+we5j4QN0AAaQAM9auCH6vjOdO89PxCT7vvZD+T+ +34ov/j5j8bSrx/6J3n03+/JB6FVQ8vlmeVPydNLl4ylJU8tksVLFrbTk7J48ZOyaPET6jVM 4ftHu6T5ans7LVKvi34bkx5R28bTooUPy8IFv5HFCx4Ok/ocpAW/CtKiBb+MT08+JIuefJCE DdAAGkADBWlg4RO/ULZ8YEJavEBv/3mQFi94QJYs+sVY+s0v/0n0X65IaN36UVm7bkRG1wyP p9Eh9d5K+vPoKis9q97baYX6bKfl6rNOyyJpqfqs0kg7rX5aRnUaeaojjaxeIjqNrl6UnIYX yOhYelK9J2EDNIAG0EAeDYwMPSET0+Nq23havepxCdN8WT306Fh6+KGf5IfQ879bJxPS82vl +edHE9KI+i4mbRiW54O0KjZteG6lhGlFbHpu/XKJSxvWLZWJ6Sm1zaQl6j0JG6ABNIAGetHA +rVPiU7PrV0SkxaqbZ1p/don1f5PysOqOy53JBSFzYYNo6JTuF2BZgwsBjATXzc8N6SgYicD m07orF//rOgUBc36dc9IbFq7VF2gTqFhogZapwxlUpFTDMmLKatoAA2gAa2BhZG0QH0eT+tG nxSdfv3Q3UAIweA00AAaQANFayAdhH754D/2B0KtVktMsiOkbpGQ3tfufssTCek8iISKFhb5 4azQABpIo4G0EPpx+RDSMLDBY38uGkIBeHQXXYndccE5HA+0pdnHlQffpxE6+6ATNOCnBnqA 0K53SGvKLQGcWsF/0+aLvYq2ueC0Y0JRCJUZCQEhGqSfDZJ6oV4GTQMpIfTAjyZGQv2GkN1V Z2bB2d1x9vf2xAR7u5mcYLbpSMjujuvIoz0pQW/TkxPGjukS3US/7/bZjn7sfaJRUbf9aKSD 1ki5XjTfZA2kg9CD9/+wfAjpyKfbmFAIm/HZcQY+na8rgplxOuntGkTm1YaPfm9HQgZCNoz0 9MFu8InrQosCI3igKqE7znwXd5xpcGn2oXE2uXFybeh7EDSQDkL33/u9/BDS07GfUw+smrRB vd+wfvVYem79sPquM61fv6oNkHC7DSfz/rl1K8N92q/RfWzYrFu7TEUzy8bGgELAPB0k8z54 XaOmZLeT+RzCYKGaJhimYHv7vf0a3R732S5jNK+k47udM64cbBuvK2yBLdCA/xpYM7IgmIYd pJF2Gn1CfVZp5PEg3fOv384PoTjIxEFHg2c8hdGMHdkE79epaMdKJqIJQaIg034eyEAnjG6W jgHHTEQwUY6eFWdHQr1AKAkq3QBjb08DMRqU/w2KOqKO0EB6DYwDqA0dA58IhGKX7Uk7JtQJ l3HQ6AjGQMZ0ocV9Nt1qGjDrFIB0suFjIp64SGc84gkfOg2jmxA83SIeE/WYCGg8EgpJHcKi Te32q73NvI/bZo5z7WMipuj54s4dLQufO+sGe2APNFAXDYxHPiYCWjvymOgUu2xPWgitW7tS AcBKbZDYEY0NlzEHvHZ5EN3YUc3Yd2tUdKNSCJMw0uno6op0q5nv1owsFp3Wjiwa61bT342O LAySnYcmtE56m35du/qJIOnP5r39ao6NbrOPs/OPy8/Owz5PNO/od66yxZWXbWF9krABGvBI A8OPylqd2vAJ3qsUu2xPWgitUZDQae2aZ4I09nn0aVnbTsH3kc/Bfmrh0YkpBElSMlDp+tpe lHRELUjamdQCe8MxaegxtcgeCRugATSABnrVwGiwYOljMqoWKDV56fdhmt+ZVv27jKoUu2xP WggNr1ooQRpaZKUF6r1Kq6KpvW/7mKGVT0p8ekJtH0+rVj4ucWlo5WNqv8dk1bPtpN/rbc8+ 2k7z1et8WbViPOnPJo1tf/a3Kg8SNkADaAAN9KKBIeVHdVq14jcdaWj5b0Snzu2/Vp/DFLts T1oIrXjm30Wn5cvmyzPPjCezTW83aez7Zb+VZzKk5Usflkzp6V/Lcp2W/io+Pf1L9X1nWqY+ k7ABGkADaKA3DTzz9INip2VP/0L51jCZ7WPbnnpAlqn0ywdjlu1JC6GnlzwsqdPiX8vTCemp xQ9JuvSg2s9K6seRnopLC38uT+lkvjOfI69L1OclC+eRsAEaQANooAcNPLXwfuVzx5PTry5Q fnfBvWOp40ft0kIojHIeVdHQYyo9biX9OT7p/Z+10gqVR2xqR1km2prwOnbcI+r4FGnpb2RF TMoUZWWNytg/WxSLvbAXGmioBqyeKdNb9fTDQQ/UM0sekmVLHuz8ZdW0EOKp50F46plrROdo AA30RwOtk16Q1gw1O7obhF5/5rBMnbtBJs9eJpPetzZVCjIlYQM0gAbQABpwaUAD6IB7u0No xxOfkteevVxedfISecXRi1Ol1pHLJHXSBagqHanOnSbNUNeTOhV9PRnOneZagn0qrJ8yzl1G nqnrO0P9FK7zEs6dWkNa52nPX3SbqMm5K7Vl2rrR+6Wtnyx5pt1XnfuwR6W1/z3S2u3vIz/l MPUHaqP6fYcg3Wm9N9uKetV5p0lFnc/KR4d/RacxmznKm/a8qWzTtl8Zeaa+HlWGXVOktPmN 6S6NNjLsk6aMWfbJcj1p881S56n3LaH9DOy5S7Blam2kPXeGNpG6HsvIU1+Pgo8uw85/E4HQ G24PNpCwARpAA2gADfRLA2M/ahcsccofFsACWAALYIE+W+D/A7gQVX7qtBH8AAAAAElFTkSu QmCC</item> <item item-id="326" content-encoding="gzip">H4sIAAAAAAAA/4xUS1MTQRDuyWs3S0ggPAQ2EgSEIA+TIQkPtSpYlOXbKvwBuCQrxBKCYbE4 pvwB3jx78SdY3i3vHvw/VvymOyzRk7PV6cd83d9MD02KiBTkJcRhO4pf23+35x82WydxMqsM STZadYnFOLZlYMf1Fwdv/HrAEdrj/Ah+E2dHp/dbFxJ+CrEQ2AuBzyAFyKtHqAH8r8dXvllL lhwqQpEoG9mQfCcI2s2D88BXjNyGZKh/xbZn//LjXCAWtH3f5YCGDJ6ymdCT34k6cUt/hq4l bNFWUrTtiE4O6AhI3qM/trJKVKUSrdEmWlAiSulPT4g+ODTIoK8pBmlsVwAq0wY+rDSX6iQz 2py3lkZoiM1Omo8yrJ0fcOws69rwiI79hs6O6uxP6JExrt4YxVWiJygM5nH9EdfojNI13vsy joYp7vCEFBuZ5I1gwmwoZEzJEUOfyGWaTjYnNO51ocn10UwLTY7yQjMd0swIjXtDaGa4LNo7 KzQzVzQ0JzzD88Izd1N45vt4FoRnnhaFZyHkKQjP3JLwFLjuOtEt4Sn08dCy9NlakadbXhW9 siZPuMrYItFt9r+FPhUlcaUkD2RCWh6oyIXXxVmWgRBwoiLVy1XRlQ1hqeJaKlrEvdCNTWGq hkxbklzZFiYzSHek+BYXvyv3L1/e/x6PVKah9w/b3unR/utW+9gLLMaOmcnk8K4XeNKCqd5f fgQPwNNsBsAQL7JtPMe7aJ494DoyzTkzp6qHldXFRyr3/9HL4lbQ9uq+3o3yltsD5tUQKVcB mFdKuRHqdvMqolygYESVG+saI8YYGHFgOjWAE4yBYTEGhm0wBpzkOog4wHD6ADCcngKG0wcN xmSlGQMjYzAGLMfNPD8/9tvNuvdWGmLzsR9CGtTEZ8jNvxin181/Vqrf+QMAAP//AwDCRzl1 TgUAAA==</item> <item item-id="327">iVBORw0KGgoAAAANSUhEUgAAAeAAAAFyCAYAAAAtegndAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACRhSURBVHhe7Z0NdrJKEAVdFwtyPa7G zbgYIqgRkV8ZiqGpvJPz8gWYnq7b9s0A4qn0SwISkIAEJCABnMAJj2hACUhAAhKQgARKDdgi kIAEJCABCWxAQAPeALohJSABCUhAAhqwNSABCUhAAhLYgIAGvAF0Q0pAAhKQgAQ0YGtAAhKQ gAQksAEBDXgD6IaUgAQkIAEJaMDWgAQkIAEJSGADAhrwBtANKQEJSEACEtCArQEJSEACEpDA BgQ04A2gG1ICEpCABCSgAXfVwO1SFqdTeXp+n6/NnW7lpXhtO5cfm8qhbRabBCQgAQlI4E1A A/6qhmt5vhvvv+lez3cjLsrL7bHj9Xw33+fG5s9j2yw6CUhAAhKQQJOABtyuh8pwi8t9Lfv6 eqxqH55bmfPbjMt6pfxaBQ9ts+gkIAEJSEACnwQ04NGKaKyIPwy3ZchD20ZjuIMEJCABCRyN gAY8ovjtUrxXxAsN+HVN2f+/r6/LQhbWgDWQWw1QfwhowAOka/P9P8V83zGBAVPCHjlO9WL2 iyEgazkzBLgoZE3bqXp0fZhv43pvtZ8GzL0KFkQiX0ALphniUFkzMsqZ4VxFIVlrwB26fq18 //dZdhMWKSxXrvlFkjOniawZ1nJmOGvAHOfuSPUqt7Xybey55G1IvogYceXMcKabFZdVfpGs aU4TkrUr4JautcE2HsLx/TCOx13Rj9+3H8QxtI09tcGVa36RyBdQftmzM5I1w1vODGf6j0oN mNMVvbYApmUoCUhAAmEIkH/saMBg2ZDCgmkZSgISkEAYAmSf1oDBsiGFBdMylAQkIIEwBMg+ rQGDZUMKC6ZlKAlIQAJhCJB9WgMGy4YUFkzLUBKQgATCECD7tAYMlg0pLJiWoSQgAQmEIUD2 aQ0YLBtSWDAtQ0lAAhIIQ4Ds0xowWDaksGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUggDAGy T2vAYNmQwoJpGUoCEpBAGAJkn9aAwbIhhQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEACYQiQ fVoDBsuGFBZMy1ASkIAEwhAg+7QGDJYNKSyYlqEkIAEJhCFA9mkNGCwbUlgwLUNJQAISCEOA 7NMaMFg2pLBgWoaSgAQkEIYA2ac1YLBsSGHBtAwlAQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgC ZJ/WgMGyIYUF0zKUBCQggd0Q6DK96nev35N9WgMGy4YUFkzLUBKQgARWJ9A0yWawub8fmyjZ pzXgMTUSbieFTThth5KABCSQnEBq40w1QbJPa8CpVJswDinshOm4iwQkIIFkBHI11LkJkn1a A56rzoL9SWEXTNNDJSABCdTXRMeul0bERPZpDRisIFJYMC1DSUACGRGYa5x9+2eUEjoVsk9r wKC0pLBgWoaSgAQSENA4E0BMMATZpzXgBIJNHYIUduqc3E8CElhOYM6pWlecy3mvOQLZpzXg NZVsjU0KC6ZlKAmEIzDXUMMBOHBCZJ/WgMFCI4UF0zKUBLInoKFmL1E2EyT7tAYMyk4KC6Zl KAmgBH65VopO0GC7JkD2aQ0YLBVSWDAtQ0lgEoFfjNMGNQmtOyUkQPZp6zuhcGNDkcKOzcXt EphKQOOcSsr9IhAg+7QGDFYMKSyYlqEyJaBxZiqM08qaANmnNWCwFEhhwbQMNYHA3JuAUuw/ YVruIgEJtAiQfVoDBsuPFBZMK8tQKQws1QrSF1mWJeKkJNBJgOzT9gawCElhwbTqUBoeTdx4 EpDAGgTIPq0Br6Fgz5gpV1QaHiicoSQggcMQ0ICDSk0KGxShaUlAAhJYlQDZp10Bryrl5+Ck sGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUggDAGyT2vAYNmQwoJpGUoCEpBAGAJkn9aAwbIh hQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEACYQiQfVoDBsuGFBZMy1ASkIAEwhAg+7QGDJYN KSyYlqEkIAEJhCFA9mkNGCwbUlgwLUNJQAISCEOA7NMaMFg2pLBgWoaSgAQkEIYA2ac1YLBs SGHBtAwlAQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgCZJ/WgMGyIYUF0zKUBCQggTAEyD6tAYNl QwoLpmUoCUhAAmEIkH1aAwbLhhQWTMtQEpCABMIQIPu0BgyWDSksmJahJCABCYQhQPZpDRgs G1JYMC1DSUACEghDgOzTGvBQ2dwuZXE6l9ePfW7lpTiVlUinWdvK+hi/JCABCUggXwJkn9YR euvgWp47TPZ6vhvv+WHJzZ/b/25vq7aTwuZb3s5MAhKQQL4EyD6tAXfUwe1S1GZZnM+tFXBl ykV5uT0P+lghD2177E8Km295OzMJSEAC+RIg+7QG3GXA12tZe2z7FPTXKemG6Q5te8Yghc23 vJ2ZBCQggXwJkH1aAx6qgxUM+HHt+PM731J0ZhKQgARiEujqxa/fURlrwLABU8IaRwISkIAE 5hNwBTyf2TpHrLACXmeijioBCUhAAikIaMApKKYYY+y6rjdhpaDsGBKQgASyIaAB5yJFx/uA fRtSLuI4DwlIQALpCWjA6Zn+NmLngzhe7w/uehDH0DbfhvSbCB4lAQlIgCOgAXOs0UiksGhi BpOABCQQhADZp70LGiwaUlgwLUNJQAISCEOA7NMaMFg2pLBgWoaSgAQkEIYA2ac1YLBsSGHB tAwlAQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgCZJ/WgMGyIYUF0zKUBCQggTAEyD6tAYNlQwoL pmUoCUhAAmEIkH1aAwbLhhQWTMtQEpCABMIQIPu0BgyWDSksmJahJCABCYQhQPZpDRgsG1JY MC1DSUACEghDgOzTGjBYNqSwYFqGkoAEJBCGANmnNWCwbEhhwbQMJQEJSCAMAbJPa8Bg2ZDC gmkZSgISkEAYAmSf1oDBsiGFBdMylAQkIIEwBMg+rQGDZUMKC6ZlKAlIQAJhCJB9WgMGy4YU FkzLUBKQgATCECD7tAYMlg0pLJiWoSQgAQmEIUD2aQ0YLBtSWDAtQ0lAAhIIQ4Ds0xowWDak sGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUggDAGyT2vAYNmQwoJpGUoCEpBAGAJkn9aAwbIh hQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEACYQiQfVoDBsuGFBZMy1ASkIAEwhAg+7QGDJYN KSyYlqEkIAEJhCFA9mkNGCwbUlgwLUNJQAISCEOA7NMaMFg2pLBgWoaSgAQkEIYA2ac1YLBs SGHBtAwlAQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgCZJ/WgMGyIYUF0zKUBCQggTAEyD6tAYNl QwoLpmUoCUhAAmEIkH1aAwbLhhQWTMtQEpCABMIQIPu0BgyWDSksmJahJCABCYQhQPZpDRgs G1JYMC1DSUACEghDgOzTGjBYNqSwYFqGkoAEJBCGANmnNWCwbEhhwbQMJQEJSCAMAbJPa8Bg 2ZDCgmkZSgISkEAYAmSfRgz4dinK4nLrFuh2KYvzNYx4Q4mQwh4CqElKQAISSEyA7NOAAV/L 8+lc/ltsZbjNf9/hXc+n8ggeTAqbuCYdTgISkMAhCJB9enUD/lr9dhjw3YHLU3Epe9bIYUQn hQ0DzUQkIAEJgATIPj1uwE/DvNxPI1cTq757Tyd/QbqVl6Io32efq9XwY4zTqf375r9B2mAo UlgwLUNJQAISCEOA7NMTDbhhutVqtXUKuSbftbKd+rv72vdSxD8NTQob5tVgIhKQgARAAmSf nmjAjdVp3ynkelXbuNZbAesy667j613nrKxBNRKGIoVNOG2HkoAEJHAYAmSfnmjA/TdRVcZZ n06+ft9c1XltVwM+TCGbqAQkIIG9EdiVAf/DnXq6WQPeWz06XwlIQAKHIXAAA27fcOU14MNU t4lKQAISyJhAHAPuvLnqYbZVku/3/lZ3R3sXdMY16dQkIAEJHIJAXgY8FXnPqeXBp2C9xh56 H3DPuIPT+uWYqXku2I8UdsE0PVQCEpDAYQmQfXr8JqypMvSaXutJWB3j9T4Jq76LuuPu6qE5 /XLM1BwX7kcKu3CqHi4BCUjgkATIPg0YcPUW4ZFnQXc8BWvw7uqesvjlGLLCSGHJvIwlAQlI IAoBsk+nM+C16P9yOvmXY9aaf2NcUlggHUNIQAISCEeA7NMaMFg+pLBgWoaSgAQkEIYA2ac1 4KRl877Du+txnaSwSdNyMAlIQAIHIUD2aQ04YVHV16Cf761q/vwKQQqbMC2HkoAEJHAYAmSf 1oCTlVXrvcwd16FJYZOl5UASkIAEDkSA7NM7NeDnxxq+n+TxWR5b3IT1FfP74SKksAd6vZiq BCQggWQEyD6dvwEPYL1er8mgLx5oogE/3tf8+b04tgNIQAISkMAsAl29+PW7WQMt2HmnBpzh s6MnGvACrTxUAhKQgARWJuAKeGXAqwyvAa+C1UElIAEJkAQ0YJJ2sljehJUMpQNJQAIS2IiA BrwR+KVhfRvSUoIeLwEJSGBbAhrwtvwXRH/end3zARKksAuS8FAJSEAChyVA9umd3oS1z9og hd0nIWctAQlIYFsCZJ/WgEGtSWHBtAwlAQlIIAwBsk/3GvD9naqb/BdGxY5ESGEjczQ3CUhA AmsRIPu0K+C1VNSAQbKGkoAEJJCGgAachmN2o5DCZpe8E5KABCSwAwJkn3YFDBYEKSyYlqEk IAEJhCFA9mkNGCwbUlgwLUNJQAISCEOA7NMaMFg2pLBgWoaSgAQkEIYA2ac1YLBsSGHBtAwl AQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgCZJ/WgMGyIYUF0zKUBCQggTAEyD6NGPDtUpTF5dYt UPUxfudrGPGGEiGFPQRQk5SABCSQmADZpwEDrj6g4Fz+W+zX5+aWZfUpQkfwYFLYxDXpcBKQ gAQOQYDs06sb8Nfqt8OA7w5cnopL2bNGDiM6KWwYaCYiAQlIACRA9ulxA34a5uV+GrmaWPXd ezr5C9KtvBRF+T773Py4vvbvm/8GaYOhSGHBtAwlAQlIIAwBsk9PNOCG6Var1eYp5Rf2rpXt 1N/d176XIv5paFLYMK8GE5GABCQAEiD79EQDbqxO+04hd30IfZdZdx1/h1tdB56+sgbVSBiK FDbhtB1KAhKQwGEIkH16ogH330RVGefpdDfo6/1u5vbKuOvargZ8mEI2UQlIQAJ7I7ArA/6H O/V0swa8t3p0vhKQgAQOQ+AABty+4cprwIepbhOVgAQkkDGBOAbceXPVw2yrJN/v/a3ujvYu 6Ixr0qlJQAISOASBvAx4KvKeU8uDT8F6jd17rfhh1J9mPWFCPXOZcOSqu5DCrpqIg0tAAhII SoDs0+M3YU2F3Gt6rSdhdYz3/SSs1oq4HnviCrm+87oy7caNY1NzWHk/UtiVU3F4CUhAAiEJ kH0aMOCyHH0WdPspWJWJtp5NOeVxlYN3ZGdQKqSwGaTrFCQgAQnsjgDZp9MZ8KqYZ14j9hT0 qmo4uAQkIIGoBDTgD2UfN23NekiHBhz1tWFeEpCABFYloAH/4308O3qW+VbHasCrFqiDS0AC EohKQAP+N9Efnw+tAUd9bZiXBCQggVUJaMC1gf5ovq6AVy1OB5eABCQQmcDhDbi6a/r1/t/m /z8f3HF/q1HrTun/onAFHPn1YW4SkIAEViNweAOeSvZ6vU7dNYv9SGGzSNhJSEACEtgZAbJP 7+RtSG0F9/nsaFLYndW805WABCSQBQGyT+/UgLPQafYkSGFnT84DJCABCUigvvxJfXGRqIwy jkMKmzEGpyYBCUggWwJkn9aAwTIghQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEACYQiQfVoD BsuGFBZMy1ASkIAEwhAg+7QGDJYNKSyYlqEkIAEJhCFA9uleA642dG1c+/dhVOxIhBQ2Mkdz k4AEJLAWAbJPuwJeS0UNGCRrKAlIQAJpCGjAaThmNwopbHbJOyEJSEACOyBA9mlXwGBBkMKC aRlKAhKQQBgCZJ/WgMGyIYUF0zKUBCQggTAEyD6tAYNlQwoLpmUoCUhAAmEIkH1aAwbLhhQW TMtQEpCABMIQIPu0BgyWDSksmJahJCABCYQhQPZpDRgsG1JYMC1DSUACEghDgOzTiAHfLkVZ XG7dAt0uZXG+hhFvKBFS2EMANUkJSEACiQmQfRow4Gt5Pp3Lf4utDLf57zu86/lUHsGDSWET 16TDSUACEjgEAbJPr27AX6vfDgO+O3B5Ki5lzxo5jOiksGGgmYgEJCABkADZp8cN+GmYl/tp 5Gpi1Xfv6eQvSLfyUhTl++xztRp+jHE6tX/f/DdIGwxFCgumZSgJSEACYQiQfXqiATdMt1qt tk4h1+S7VrZTf3df+16K+KehSWHDvBpMRAISkABIgOzTEw24sTrtO4Vcr2ob13orYF1m3XV8 veuclTWoRsJQpLAJp+1QEpCABA5DgOzTEw24/yaqyjjr08nX75urOq/t7smAO+f6WK0/TqO3 /uB4ruS7t90/3vF+jF8SkIAEJJAvAbJPjztC24R6DHTZKegcV8Cv69WfJlv/wfG8Zbv582PB 37+t2k4Km295OzMJSEAC+RIg+/RGBty+4Sqva8DVndv1zWbnc+stU5Up952OH9r2KDZS2HzL 25lJQAISyJcA2afXNeDOm6vep3Df7/1tmdfG2tyu18dbokZX/415f50Z+M6JFHZjhIaXgAQk sEsCZJ8eN+CpCHtOTQ8+Bes1dtf7gOsbuPqutY5Mqu80+dRcXvutYMDvnF65pZNgbnruLwEJ SOCoBLp68et3FJN03b/X9FpPwurI7OtJWK2x6lPCUx+V9W/c7RukfkC6ggH/MAsPkYAEJCAB iECoFfDjTO7Is6DHnoI1cUXbf0d2887l98qz/mtnyNg1YKjkDSMBCUggDwL7NOAV2c1aAT8c /+t50z9Nb+y67sd2b8L6ibEHSUACEsiIgAb8EqM2uPZjKycotZoBD7/VyLchTdDGXSQgAQlk TEAD/hJn5l3SKxrw3YIbz7NuX2ce2ubbkDJ+zTk1CUhAAjUBDbijEGZ9ZGEqA05ckKSwiafu cBKQgAQOQYDs0+nugk4pzdfbkjZaAafMCf7LKvHUHU4CEpDAIQhowHeZX0+j+v7owqoGnqd6 ++5gdgV8iBeKSUpAAhJITUADnkj0en9i1Z6+SGH3xMW5SkACEsiFANmn8zwFPapEXs+OHp3u cwdS2Klzcj8JSEACEngTIPv0Tg14n+VCCrtPQs5aAhKQwLYEyD6tAYNak8KCaRlKAhKQQBgC ZJ/WgMGyIYUF0zKUBCQggTAEyD6tAYNlQwoLpmUoCUhAAmEIkH1aAwbLhhQWTMtQEpCABMIQ IPu0BgyWDSksmJahJCABCYQhQPbpXgO+fwbC/ZmYy76HFOkaO4yCPYmQwkZnaX4SkIAE1iBA 9mlXwGsoqAGDVA0lAQlIIB0BDTgdy6xGIoXNKnEnIwEJSGAnBMg+7QoYLApSWDAtQ0lAAhII Q4Ds0xowWDaksGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUggDAGyT2vAYNmQwoJpGUoCEpBA GAJkn9aAwbIhhQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEACYQiQfVoDBsuGFBZMy1ASkIAE whAg+7QGDJYNKSyYlqEkIAEJhCFA9mkNGCwbUlgwLUNJQAISCEOA7NMaMFg2pLBgWoaSgAQk EIYA2ac1YLBsSGHBtAwlAQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgCZJ/WgMGyIYUF0zKUBCQg gTAEyD6tAYNlQwoLpmUoCUhAAmEIkH1aAwbLhhQWTMtQEpCABMIQIPu0BgyWDSksmJahJCAB CYQhQPZpDRgsG1JYMC1DSUACEghDgOzTGjBYNqSwYFqGkoAEJBCGANmnNWCwbEhhwbQMJQEJ SCAMAbJPa8Bg2ZDCgmkZSgISkEAYAmSf1oDBsiGFBdMylAQkIIEwBMg+rQGDZUMKC6ZlKAlI QAJhCJB9WgMGy4YUFkzLUBKQgATCECD7tAYMlg0pLJiWoSQgAQmEIUD2aQ0YLBtSWDAtQ0lA AhIIQ4Ds0xowWDaksGBahpKABCQQhgDZpzVgsGxIYcG0DCUBCUggDAGyT2vAYNmQwoJpGUoC EpBAGAJkn9aAwbIhhQXTMpQEJCCBMATIPq0Bg2VDCgumZSgJSEACYQiQfVoDBsuGFBZMy1AS kIAEwhAg+7QGDJYNKSyYlqEkIAEJhCFA9mkNGCwbUlgwLUNJQAISCEOA7NMaMFg2pLBgWoaS gAQkEIYA2ac1YLBsSGHBtAwlAQlIIAwBsk9rwGDZkMKCaRlKAhKQQBgCZJ/WgMGyIYUF0zKU BCQggTAEyD6tAYNlQwoLpmUoCUhAAmEIkH1aA+4qm9ulLE6nshKi+j5fmzvdykvx2nYuPzaV Q9vKeiy/JCABCUggXwJkn9YRvurgWp6bpns9342zKC+3x47X8918n47c/HlsW7WdFDbf8nZm EpCABPIlQPZpDbhdB5XhFpf7Wvb19VjVPjy3Mue3GZf1Svm1Ch7a9hiLFDbf8nZmEpCABPIl QPZpDXi0Dhor4g/DbRny0LZnDFLY0bTcQQISkIAEvgiQfVoDHinA26V4r4gTGPDrunLz/74G JCABCUiAJdDVi1+/o2aiAQ+Qrs33/xTzfccEBkwJaxwJSEACEphPwBXwfGZj69jGncvvu5vr v3Y+b3H+H+dhvo3rvdUWDTi5Mg4oAQlIICcCGvDGanytfP/n401YG0tjeAlIQAKrEtCAV8U7 tliu7mxurXwbh/g2pC3FMbYEJCCBdQlowOvyHRy9NtjGQzi+H8bxuCv68fv2gziGtvk2pA1l NbQEJCCBXgLVM5Jez0nSgIMWCilsUISmJQEJSKCTwMtE+/4/FRvZp70LeqoqCfYjhU0wXYeQ gAQkkAWBMXNN+ZRfsk9rwGB5kcKCaRlKAhKQwOjp3TETzQUh2ac1YFB1UlgwLUNJQAIHJzBk rntDQ/ZpDRisDlJYMC1DSUACQQhEMtJfJSH7tAb8q0o/HEcK+8P0PEQCEghKYOz0b/Mu4KAI JqdF9mkNeLIsy3ckhV0+W0eQgARyIjBmojnNdc9zIfu0BgxWCiksmJahJCCBBAQ02AQQEwxB 9mkNOIFgU4cghZ06J/eTgASWERgzzub2ZZE8miBA9mkNmFD0GYMUFkzLUBI4BIGlD3g4BKQA SZJ9WgMGC4YUFkzLUBLYDYGx1epuEnGiqxEg+7QGvJqM3wOTwoJpGUoCWRAYM9eUT0vKImEn sQoBsk9rwKtI2D0oKSyYlqEkkIzAmIkmC+RAEughQPZpDRgsQ1JYMC1DSWASgTFzdYU6CaM7 rUyA7NMa8MpiNocnhQXTMlRwAlOM0wc5BC+CA6VH9mkNGCwsUlgwLUNlRGDMLIem6l2+GQnp VDYjQPZpDRiUmRQWTMtQMwisYZC+z3SGAO4qgRECZJ/WgMFyJIUF0zLUk8CYuXqN01KRQP4E yD6tAYP1QAoLprX7UFOM02ucu5fZBCQwiQDZpzXgSZKk2YkUNs2M8xtlzCy9xpmfZs5IAnsi QPZpDRisDFJYMK2PUGsYpNc4t1LTuBI4HgGyT2vAYH2NmdOk7eWp/7+7mpPGGNpv6fhDx4Pb QFkNJQEJBCKgAQcSs5kKKWxQhJPTGvgzZZU/AyZPzB0lIIGsCZB92hUwWAqksGBahroTSGX4 wpSABLYlQPZpDRjUmhQWTMtQCQlo5AlhOpQEfiBA9mkN+AeBfj2EFPbXOXpcDAIaeQwdzYIn QPZpDRjUlxQWTMtQgQlo5IHFNbVOAmSf1oDBIiSFBdMylARGCWjko4jcIRMCZJ/WgEHRSWHB tAwlAYzAL0aOTc5AIQiQfVoDBkuGFBZMy1ASyJrAFNPOOgEnhxIg+7QGDEpLCgumZSgJ7J6A Jr17CZMlQPZpDTiZbOMDkcKOz8Y9JCCBOQQ06Tm09rsv2ac1YLBOSGHBtAwlAQk8CWjS+y8F sk9rwGC9kMKCaRlKAhKYQUCTngFrg13JPq0BgwKTwoJpGUoCEkhMYIpJV/v4lZ4A2adVML1+ vSOSwoJpGUoCEtiIwBSj3mhquw1L9mkNGCwTUlgwLUNJQAIZExgz6YynvsnUyD6tAYMSk8KC aRlKAhLYMYEhg95xWj9PnezTGvDPMs0/kBR2/uw8QgISkMAngSOunsk+rQGDrzhSWDAtQ0lA AgclEHH1TPZpDRh84ZDCgmkZSgISkMAXgb2aM9mnNWDwhUMKC6ZlKAlIQAKzCORszmSf1oBn lc2ynUlhl83UoyUgAQlsQ6DPnKnZkH1aA6ZUvcchhQXTMpQEJCCB1QlQxkz2aQ149bJ5ByCF BdMylAQkIIHNCKQ2ZrJPa8Bg2ZDCgmkZSgISkEB2BH41ZrJPa8Bg2ZDCgmkZSgISkMBuCIwZ M9mnNWCwbEhhwbQMJQEJSGD3BP6N+cTZIhdp9/IsT0ADXs7QESQgAQmsSYDs0xrwmkq2xiaF BdMylAQkIIEwBMg+rQGDZUMKC6aVXSg5c5LImmEtZ4ZzFYVkrQFzuqLCgmllF4p8AWWXPDwh WTPA5cxw1oA5zv2RrufaLB/fRXm5NXe9lZfite1cXj9GGdrG/mWVA8at5mCz4sjLmmEtZ4az Bsxx7o50u5RF03RrM34b7fV8N9/zw3abP7f/3d5GC7s1xi3j26w4+rJmWMuZ4Uz3aU9Bj+p6 Lc//htz8+X5gbdYvcx7a9gjii2gUdpId5JwE46RBZD0J0+Kd5LwY4eQBSNYa8Igst0tRnopL WZ+F/jDces37Nuehbc8YpLCTqy3gjnLmRJU1w1rODGd6oaQB9+laG2rrGnACA35fW35dR/b/ MrEGrAFrIKcaoOxeAx4j3bwGvNCAx0K5XQISkIAEjkPgIAbcvDu59Zfm84aqfsknnmaecAr6 OGVlphKQgAQkMEbgIAY8hmFoe7qbsJbMwmMlIAEJSCAWAQ24rWfrbUf1jVevm7Du+y55G1Ks 0jEbCUhAAhJYQkAD7qBX3/n8/yCO9sM2qhVx34M4hrYtkcljJSABCUggGgENGFd0+GlZ+HR2 GXAOw4F9/+90f/5B1TjTsUssyKTnsH9O6Ov+CGSiOwuSiKs1/YPuM9i3+I7eQjQyGw34B7mW HDJ0CnvJuEc6dg7DwX2ryw1LX0FHAj9yCaYbxeusUPtM0sHAjaQ7p6YfQ/VwtaZnF9Z09g/m /y2jvlzZflTxvPAa8DxeC/cef1rWwgAHOHwOw+F9qxde8fmg7wPwW5LiHPbVc2sel3KK87nx xLgl8aMem46rNT23Rmawrwz34yzZY+W85G94DXiuXkv2961KS+g9jp3DcHDf6sWz7K/X5cns bIQ57CuprteeJ8jtLO+1p5uMqzU9W6qZ7D/Hb62IZwe/P574h2M85FcCi8T+NWiw4+YwHNz3 8Zdv8f/JVprxaKXMYd8czGvAw2iTcbWmR2u4vcOv7Ou1QOMxxbMDPw7QgH8E99NhC8T+KV7E g+YwHH1yWdN0q+bldcrBkpnDXgOe/upLxbX9SW71dWJreo2aflxeWc5WA57+Mlm+568vtOWR 44wwh+GcfZsfrBGHVtpMZvFshHYFDK2A22Fa1zfTVkOM0X6o6Yf5pjljpgGjZTTjgj86rz0F m8Nwwb57QoLNdQ5PDXi6LGtx1YDHNZjHPtXK9zUvDXhcoaR7TL/lPWnYUIPNYdi778gTz0IB S5jMHPb/YV0BjyqQhKs1Pcq5a4fJ7L9O8f8U7uMgDXg5w5kj+LSsmcA6du9n+P02jP59h594 tnyWMUeYw/5JQAOeUAppuFrTE1B/7TKNfW3U/09BfP/s25B+Ye4xEpCABCQggQ0JuALeEL6h JSABCUjguAQ04ONqb+YSkIAEJLAhAQ14Q/iGloAEJCCB4xLQgI+rvZlLQAISkMCGBDTgDeEb WgISkIAEjktAAz6u9mYuAQlIQAIbEtCAN4RvaAlIQAISOC4BDfi42pu5BCQgAQlsSEAD3hC+ oSUgAQlI4LgENODjam/mEpCABCSwIQENeEP4hpaABCQggeMS0ICPq72ZS0ACEpDAhgQ04A3h G1oCuyfgJx3tXkIT2I6ABrwdeyNLYP8ENOD9a2gGmxHQgDdDb2AJ7J1A83NUi/Jy23s+zl8C LAENmOVtNAnEIuAKOJaeZoMS0IBR3AaTQDACGnAwQU2HJKABk7SNJYFoBDTgaIqaD0hAAwZh G0oC4QhowOEkNSGOgAbMsTaSBOIRqA3YG7DiCWtGBAENmKBsDAmEJXArL8WpPJ1O5fkaNkkT k8AqBDTgVbA6qAQkIAEJSGCYgAZshUhAAhKQgAQ2IKABbwDdkBKQgAQkIAEN2BqQgAQkIAEJ bEDgDz7q+fGjnMT8AAAAAElFTkSuQmCC</item> <item item-id="328">iVBORw0KGgoAAAANSUhEUgAAAJcAAAAVCAYAAABL53yqAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALESURBVGhD7ZjdkesgDIWpyz2kDVeT B1fjOvKacQV5SwdcCwPhR4ARhuWO8UxmNtnE5kifDkKMj2tEoFIEWKX7jtuOCPAB14CgWgS6 h2vbtmri/+LGd9LTFVzrzPi8qpRvfJkYnxYF18pnNnH9tioZ8CxzLbSH9aOHtn73V7l6uoFr WybOfmTtuly44KOFT9Oy/6f2VQ5XX3rK40XR0wlckMyZa9OSYLHdPcTLgA6q5+dm5UHD7+DA BVA764g/uSc90vFXqUHENHcHoOnpAi6/KiB1iHPBx+vMWdS9DjDKADTgkmBZpppg+lo9pQV0 aGFG8UKBxmNoP5OqR8P1er0Ol3Bez+fTVycCbjpNSQACEIXg2v2tfu+l4AqBqhKGJak3PcgW DwWK5Q/NK12PgOv7/QqoADB4PR4P/ffn87HJEQuzK6EErd2KAs1zXNQZJxEVihSMu9X66zfg 8baQY13q+X5V19NDi/NJuIJ5pevRcAFg6oLgY9eRrH2/Fvu34Vyy0V6MZNrJN5PlOl7IiXIr hhb6ZM/lbcNO/+FV+8V6EttyuoDScAXzKoJD1+NR9H6/RbVHLzegMgC6z3ESYjbhLSs9HfiQ SjMhDuTeidUNPr3SryyP373ScOnvotsiXY9Hkeq98uFynEw7GxZ8/2ToN+Ah52rZc8koiC1D nrBQJzNPX7mOW1tPKVx0PRc6Vwwut/exj8L4aQTGWvvsyx0BtD4tar5k8550LrlupCmk6Sn1 s1K46Hpoowh0W4zBlTpZnq/eNnOuWEJTPVesT0GODk3mdicBDU4BaPlpABeMpoy5U8B5Qu5l haXZhD6WDHubiLpu6kjbhR5Da2TERMlPE7jUuOEYC4Smw/YRHx8P5E6WT1Zs9tdicy51s/9J j1xzdH6Zr4cGV3Yyxg/uGIEB1x2z3kjzgKtRoO/4mAHXHbPeSPM/rQ7jrQMha9oAAAAASUVO RK5CYII=</item> <item item-id="329" content-encoding="gzip">H4sIAAAAAAAA/+zdCZwU1aHv8QKDmuRpEkl8GlGCihKCHVnc0EFREBWGsCooIKIgIoKgEbcI xmtyY+LNosY35uZFP3mfvJfEJDe5ZjHXIO5rAoLAAIPA7AuL4HTP6E0y71Sfnpqa6qrq6u7q Wk7/6vO1PV1dVaeruufPqVNdVX20j2vaYUde+zFN0w7N0x/7if8+2VfLlP5H31u/XD9Uf+WS T31Be1uMeavPT/ror+rj9f8PEf/pY94S//XRjtNHaU/+5UjNOlR9VvtOfwBQjRh+faz25Em6 p07KFIrxlKtil39icYpYuPt6PVX87O5b9UQ3RX4oubnWXux7c19Cce88yl/m0v6lFPneivhM i/2yFf2J/zRd+NEJmXxbf7y2bfiR2ycctWvGp7dd/onqsR9zsXOM5q6mopTGuNlZkUMxVede uPt7K+V2K3Lhxc5enNJ+KEV8nXJ+o4r8Moe58FKueJEfSvFfpw3naM8N01POnG8N047Zv+TY nTOPbP3KES4OXqYBQGSJiFt7hr7TZM43GW7VLXsBIL5kxLnk2/qduzbs3PXOe7s3dnvHzgZ9 sj3S+p27Lf72nj356tuu3qqxerNmFwAIr3d7Y4fuzR27Xtux89Vt772ybaeXfHtz2w53b1Tb e7V6u4tXTF7eavXiFp253Nu2dQDKzAtbthscJ9u8bW03L/nW3dDatf6996TMU0N65F935uYl jWUIv15j9doOi50Ays0rO94zvLxjp2R++tJ23e9eea2rq8tLvm2paxC21mdslup6bDF5t7be YpPJxto6i3dq63V76nT607oNe+qF9dLuuozeY/66B0AZqhfe2l3XY1e9rvvpG93+03O+1bS0 CO+1tAqyvKO5VbKUhe1NvVQ729LUbGtzg+7dhibDpizv1AMoRxvrm8XjhvSjLAjrTf5Wp3vm 1Tc85ltta5thd5u0t5v+1Dj3YVdr285uxsialjZBFnaYxm9raZOMMTL3tja1ivKWZn28TDxj gs1NLYIsbGpsFURZFgxySvNT83jzq5aXbMdYRjpVCiBEGxp07zTpZPn3r77pMd/q9lrVtu3b s3evJGaxlHft3ScK75nST5SNRxF9Na17BVGWcScet6WJ8vZ03Bm5Jx+3iH1koTlTlo/vNre9 mx4jC5ansmB56v6SzDSnuQBE06bmto1NPWTK/cFzvjXs3efEHHrmrJMFUzOvV76JgmA080TW iYjbYco9kXXb0wX5aG7p9SRec1sm8dIFM2NkdsEou7zksmQAESF24mS4WciU+/1rb3nMt+b9 +5v37uu2v7FbdtaJ2WVZ6z2I9p7xaB6Mdp3MOnO7zmja5ZtvLnllDFty5RvhBkSfjDhdk86c bz/783Ne8+3AgR4i64QDB5oOHGjYn2HkhnlM/b79kp5spsfd+/YbbTy5JyseZYvOnHg1pvab eBS2te6TTTtZl3xvRsHyVBYsr9q+ZJ7G5SUAkbLFZLOJTLxfrn3Bl3wzx5pBxlqm8bZvv5Fv u03jRaxJ5uaczDctvdNqJJsxgYg4mW+WlDOzpJ+lnP1Sdr5ZZgQQQe759psXXilpvhks+Wa0 34x8M9pv5lac3FfdbpIOt33bug9GeNkCLhlFfAGx5p5vv33J6+/fvOebUSbfAJSUe755P3+h gP63YvJNMu+fFpxvAFSVX76dVHi+edk/lfLKt+LbbwBU5Z5v1vOzyDcA8eGeb9bzs5zzre39 A2at5rgzacois64uiznrzMyJJ9W07Tfb3m0bgPLTu6mTsaW3d1v3Ctbzs1zab3vbmtpaG1qa pfrm5vqWbs3Ndd32mOw22ZW206RGatLtaNRtb+qxrbFJ2NrYbEuefZ8+AR9AGdlU32S20ayu UVhf17ihPsN6fpZzvu2qr9u+671tNTukrdu3bdlWLbwrVFdvqt66SX/UCxuqqy3WG7ZW/7W3 t03e3LL1rc1b3txcrduie32z7rXNWy1efXfrKwDK1cubtrz07lazlzdXv/juVuGlzdUvb90m Wc/Pcs63jZs3vfH2Wy+/9qr0wssvP//Si2tffEH3wjqz5wzrnhf+vG6d4dm0Pz2/7g+unllr eF74z7Vrf7f2eVv/8RcAZec3vf36ubUZ4unzL/z2xZel37/6xnN/2+Al3x77Pz97+Ef/+6HH n5D+9bHHv/HIDx985DEAiAgRSiKaHvpfT0jf/fFPRHB5yTcAiCnyDYCqXPItMWIkAMQX+QZA VeQbAFXZ5NuII8g3AArQ822M9tSJ5BsA1ZBvAFRFvgFQFfkGQFXkGwBVkW8AVEW+AVBVwfnW pWnIqchPR+vqMssemf0UgIH2W5RZYs2pYPsUAPkWZZYWmnlkgnwDciHfoswcWe4NOcINyEa+ RZZt51uC9hvgGfkWZXlFFvkGWNjkG9dHihWOnwJOuP4bAFWRbwBURb4BUBX5BkBV5BsAVRWc b+Gf2xkHRX46Xs4/NUaG/l0qTO9VhL1Sf5FUPQpP+y3KLN9Gp0IizvmGAHj5Iin5FSLfokzz fP6pkl9O+MXjF0m9bxH5FmW2CUa+IV9l+0Ui3yLLqVekHL6W8FE5f5HItyjz8mVTslsY/vL4 RfI4ZYyQb2pQ7GuJ4Cn5DyX5BkBV2flWPZzrIwFQgcy3p8g3AMoh3wCoinxD3Fm6xHP+7MHy Y1fFetRhRr4h7grIN2KtTJBviLvC8i30t40AkG+Iu4LbbzTklEe+Ie5c8s0p6xQ+Iwlm5Bvi zr39ZqSZ09XPQn//KB3yDXFHRsEJ+YaYcrr2LHEHA/kGQFXkGwBVkW8AVJWdb1wfCYAaRL7t HKM9eSL5BkA15BsAVZFvAFSlfL453TbIdnyRv2/Pqy73GQuozv00pSJ/t++lruwzOoNcL38/ Mveyj3XZngZbus2Y/VvBwOrya73yona+WbZkzvHZI71v/3zrsl2s98865zs0vmPmyQpYL+91 ubz/UtTlvqalqKuYj8ylLo8B7tdH5mWl/PrIXBZe2Hrlq0zyzWPZdoPn+wX2XpfTn2ox1VlG ZrcKSleXxwl8rMtlTUtaVwGrlvMr51QuxUfmY27nW1eR65Uv8i376xRKvmXXW1h1lpHB51sw 65W98ODzLa9V815XmXxk5FvxCsg3jx9Z8XW51FhMdZaRUfhjKcV65budfVmvYj6yeOVbAB8Z +eYL48/c9gN1+f44zehXXdmv+rhq5pGWyQpYrwLqst2k/taVvXB/PzKX5RT2keX8ejhN6ftH Zq6u1B+Zy8ILW6+8lEO+2W5A2/Hmke7f8CLrMsaUojrjVdvJCqio4LpKul6+rFoBdRX8kRXw 9SjFR5Zz4cF88wter7won28Ayhb5BkBVdvnG9UMAqEDmW+/rh5BvAFRAvgFQVZnkW1cpj9FY PPToD6krXtVRV7zq8o58o64I1qXwqlFXkMg36opgXQqvGnUFiXyjrgjWpfCqUVeQyDffqdrp Qf8bdUWkLu/IN+qKYF0Krxp1BYl8Y64IzhWLN8lcxc9VauQbc0Vwrli8SeYqfq5SI9+YK4Jz xeJNMpcZ/W8hiv7Xg7li9yaZq/i5Sq188o2BgaGkQ+h/5iHmm/fL9+V7YcawP1UGBgZ9CD3N bPOtZoz2ZID55h5fttO7TOZFwJ/yQ4/+kLriVR11+VJX6GkWZL5ZrudsviixZZrsTPM+WV75 FvrWBhCkANpvllgj3wAEI5j9U9vutQT5BqCUgs+3hOfbn3mcLKeA803Vk/44/5S6IlKXd8Ef X0h4PjDqy13SErTfgHIVWL6FiHwDyhP5BkBV5JvvVO30oP+NuiJSl3fkGwBVkW8AVKVkvjmd QhL6GwMQJCXzzYL+t9jVpfCqUVeQyDcAqtKvj1RBvgFQEPkGQFXkm+9U7fSg/426IlKXd+Qb AFWRbwBURb4BUBX55jtVOz3of6OuiNTlHfkGQFXkGwBVlTrfLDfPsox0euplMoPT2abmQd4o TU5vbkhTpkzZ33KkBNB+s72rQiKM+58Gs0lV7fSg/426IlKXd6XLN5d7ZtlOU9hkXrB/CpSn wPrfuD8ggIBl8u1E8g2AagLIN8v9681juP8pdUWhOuqKV13eBZNveR0/zXeynGi/AeUpsP3T EJFvQHki3wCoinzznaqdHvS/UVdE6vKOfAOgKvINgKqUzDens1BDf2MAgqRkvlnQ/xa7uhRe NeoKEvkGQFXkGwBVkW8AVEW++U7VTg/636grInV5J/KtpkJ7iuuTA1AO+QZAVeQbAFWRb75T tdOD/jfqikhd3pFvAIqndWmhv4dsUci3Iu8PmBP5BpQa+eawWYq9P6DT2abmgfufUqZcunI0 wy0RpXxzL8fo/jKqdnrQ/0ZdTkS+0f/msGVUyzeg3Ih869Ki2IQj3wAUiXxz3ThK3R8QKCuy 8418c94+St0fUMkOloDrUnjV1KuLfAsX7TegdCK7c5qwz7cjyTcAHpFv4SLfgBKJ8s5pgnwr AfU6WIKvS+FVU6wuI9/i8/s38g2AJ7Tfgud0llbobwxQTJQ73xKK5psF+QaUQsQbbwnyrQQU 62AJpS6FV02lusz5Rv9bWGi/AaVA+y0KyDegFMi3KCDfAN9FP9wS5FsJqNTBElZdCq+aMnVZ 8o3+t7DQfgN8R/stIsg3wHfkW0SQb4C/jBsukG+ho/8tdnUpvGpq1JXdeIts/9vOMdpTJ5Jv ALyKxc5povT5Zlx0N/t+Ci53APQymcHpbFPzwP0BKVP2sSxvmBXxg6eJQNpvtndVSOS6san3 +5/mRPsN8FFcOt8SQe2fFnBjrPjeP0uNDpZw61J41cKqS7/Mh3/kMul/M21e6+5nQtF8Qxny Nz1KoRRrTfvN9AUg35CH0AMh9PSIuOiHWyLA/rfsgMp5Y9NyuP9p6H+YkRX6RwN35JuU7/HT fCfL/UF0dYX+11qiv2JVO44UXjVl6rLkW5n3v4Uoyu03IKZov0UE+Qb4jnyLCPIN8Fcswi1B vpWAMh0sIdal8KqpUVd2vtH/Fhbab4C/YtR+qxmj2vVDbE5ADf9IaVyF/mkiguLyxVAy36yf Be23YrZe2AFLMkdQXDYv+eY7NTpYwq3Ll+pCD1jbsFXgI7MNt8j2v5FvQKlFJF39WpfQt6dH 5BugvIgHZumQbwBURb75ToEOltDrUnjVqCtI5BsAVZFvAFRFvgFQFfnmO1U7Peh/o66I1OUd +QZAVYHlG/c/pUy5HMqREny+cf9TAMEodb6Z719ve6MZ9e6fpWqnB/1v1BWRurwrJt8s2eUU O5ZYUz7fAEREYfmW706ibfda9nLINwA+Krj9llfE2QYU9z8FUFJF9r95T5tw739K/1u86lJ4 1agrSL4cXygsdgJD+w0oT8XnW8HNqsCQb0B5Kv74aeirkBP5BpSnYo4vhP7mPaL/LXZ1Kbxq 1BWkYn4fEv09U4n2G1CefDl+GrWgczoLNfQ3BiBIRfa/JYr4WVpgyDegPPmVb4kI98jR/xa7 uhReNeoKEvkGQFU+nr9AvgGIFK7fC0BVPp6fRftNUrXTg/436opIXd4V3/+WyOqIixrab0B5 It8AqCqA6/eGjnwDyhPHF3ynaqcH/W/UFZG6vCPfAKgqmHzLvj65y4V5Xcbb7gU7nW1qHrj/ KWXKwZQjJYDf9zodhrCNL9u5XCbzgvYbUJ4COD/L5TCrkvfPUrXTg/436opIXd4F8PuQcss3 ABHhV765ZI5T91r2jOQbAB8Fdnwh+6mRWk5XkPM4WU7kG1CefPx9b84ps2e0fZrvZDnR/xa7 uhReNeoKko/tN85fABAp5BsAVZFvAFTF+fW+U7XTg/436opIXd5x/ikAVSmZb05noYb+xgAE if1TAKoq/vz60FchJ/rfYleXwqtGXUHy5fysiKP9BpQnX66PFOWd0wT5BpQrv66PFOWII9+A 8hTA9d9CR/9b7OpSeNWoK0jkGwBVBXB98tCRb0B5UvL3vRbkG1CeyDffqdrpQf8bdUWkLu/I NwCqCvL+p+63/Mvux/N4/V6ns03NA/c/pUw5mHKkBJBvTneKsY2v7LncJ/OC9htQnkLMN9un HufK6w3Q/xa7uhReNeoKEvkGQFXB97+RbwCCEXz7zfzI/U8BlE4Ej596nMs7+t9iV5fCq0Zd QeL3bwBUlZ1v1eQbACWQbwBURb75TtVOD/rfqCsidXmnZL45naUV+hsDECQl882CfAPKE/kG QFXkm+9U7fSg/426IlKXd+QbAFWRbwBURb4BUBX55jtVOz3of6OuiNTlHfkGQFXkGwBV2Vw/ ZMQR5BsABej5VqE9Sb75R9VOD/rfqCsidXlXunxzuS4l9wekTFnVcqSUOt+y7+vH/QEB9Yi/ y9DfQ7bA8s1pDPeXARRAvpVJvqna6UH/G3W5IN/KJN+AMlQ++WZ7vMBlDPcHBOKufPJNKvj4 ab6Tedjy5BtQWuWWb9FB/1vs6lJ41ZSsS4RbNH8iQr4BKFI0G28J8g1A0ci3UDc++QaUEPkW 6san/y1mdSm8akrWFaP+NwWuj+R0FmrobwxQUozabwrkW9bGJ9+AEiLfQt345BtQQuRbqBuf /reY1aXwqilZF/1vIaL9BpROZBtvCfINQHHIt7C3P/kGlAr5Fvb2p/8tZnUpvGrq1SXzjf63 sNB+A0qH9lvY2598A0qFfAt7+5NvQKmQb2Fvf/rfYlaXwqumXl3l2f9mvpw49z+lTFnJcpTD LVH6fEtk3Q6G+58CyojyzmkikPsvuJe5fxYQX9HPt52lz7eEQ3NOyXxTr4Ml+LoUXjXF6jLy LZq7qOQbgIKVYfvN6f6n5gkSptTi/qdATJVhvknc/xRQXtnmW3TQ/xa7uhReNcXqKtv+t+ig /QaUQsQbbwnyDUChyLcoIN+AUiDfooD+t9jVpfCqqVSXOd/ofwuM01moob8xQCW036KAfANK gXyLAvINKAXyLQrof4tdXQqvmkp1xbL/jetbAvAgFu036/WRyDcAuUQ/3BLkG4CCkG8RQf9b 7OpSeNWUqcuSb5HtfyPfAOSL9ltEkG+A78i3iCDfAN+RbxFB/1vs6lJ41ZSpq8z735zuv5Dg /qeUKce/HP0f9ybCyDfufwrEXSx2ThOlzzfz/ettbzTD/bOA2CHfnO6fpXy+KdPBEmJdCq+a GnVl51s0d1GD2T+17V5LKJpvgPLi236rLjrfnG4IaH5qHsn9T4F4iVm+nehnvkkFHz/NdzIP nwX5BviJfIsO+t9iV5fCq6ZGXTHrfyPfAHhG+y06yDfAR3EJtwT5BiBP5Fuk0P8Wu7oUXjUF 6rLNN/rfAuN0FmrobwxQAO23SElnmwbAL6H/UZNvvfON9htQdsg33ynQwRJ6XQqvGnUFiXwD oCryDYCqyDcAqrLLtyPIt2Ko2ulB/xt1RaQu70S+7azQnjqJfAOgGvINgKrINwCqIt98p2qn B/1v1BWRurwrXb5prtcnN4/JfuplMoPT2abmIQr3i6RMuRzKkRJAvlkK7vFlO7vLZADgJMR8 SwR1/ywA5Yl8A6CqYPLNtnstQb4BKKVS5Fv2gQBLIhkNOXOLLrtjzeNkAGArgsdP850MAGyV w+/fAJQn8g2AquzyTbXrIwEoT/r1kcZoTyl9/TcA5Yl8A6Aq8g2Aqsg3AKoi3wCoinwDoCry DbHG+SxwQb4h1sg3uCDfEGvkG1yQb5CcgsJ2vMs1rywT5LwkgsuUTotNOFxVJucla1BuyDdI 3vPN6TLyXpZmmcbjwrPrcirnnBdlhXyD5DHfnBKpsHxzH+myzJy5Sr4hYZ9vXD+kHAWcb16q y16m00Xvs2ch35CQ+VahPcn1kcpekfmWcI2mwqoroOuPfIMZ+QbJpZPfy35idtn9+ELBHXSW 2V364mzLKCvkG6TsdDKPzz466T33clbnPo1t1bbTeBmPskK+QfJlh85p99BLjSVdHZQn8g2S SxupgIX48vsQv1YHZYt8g5Szx8zjQvJdmi/1urwTlDPyDf6KSLBE5G0gXOQbAFWRbwBURb4B UBX5BkBV5BsAVbnkW3XLXgCIL/INgKrINwCqIt8AqIp8A6Aq8g2AqgLOt6r/93RXV1foa60A tiSQE/kWU2xJICfyLabYkkBO5FtMsSWBnGKRb1rWEPp2C11hWxIoK/nmW5XnwX72PP8qZZqt W7dOPK5ZozOelknKfXn0MqH4LQmUobzybVE+g23EVTn/Va7Jyisxpis9rNEHzWSNHO+yXlUj NY983JhOWVTwGxNLO2XaD8g3oDDe801E1uubt3rkFHFV+bffnPLNvf1WNTKTjWL43SuvVWna yJEju+rf3v92lZmP+eaSRU5vzH1wX6D7lhSbLfSvFhC6fPNNE0lRpWXK6Se2uSfDTTxaFlJl 91cpW25Oj0afm7F/6mXnNOB88xhu1Z7zzVigKNu+SdstKYlwk6rtui7pxkT5yM63bcOPdM+3 RV2ZTPvYgDeE4vMtpzXmXNODbk3OWbJjRM/iqipLxPmSb97DzfaNPfPMMyNNgwy3a37xRxlu +eabKdlkyjnGKfkG5WXy7USv+eZ9/zTffLPtf8s5xok1Rqo024grPt+MLCrsjYlNJDPNGMRT c7gVkG/msoy3Nb0H8g1lIq98y/f4gl/ttwL0ipEqzShYIs57volWlnntxNPq/MPN8sbEQi6+ +GK5QSwR1yub89w/NTMijvYbylC5tN9MKScjznu+GclmaXeJYXdzU17hZnljMseqe4dbdsQV l2+ajLh169aZG2/kG8qB93yrNkWc5Y/d8odvPoRqWUJVuO23rp4dVe/55r6yxbyxYPItHWU2 rTjyDcrLK9+qTXupLn/y5sEye1X+x0+dHt3ZH6Y0B116FzVnvsnGm5FCxiEAY2Xljqp32flm GYyKfMy39C+irU048g3KyzffJPknn93n1pWrSVMVSvvNkmxdXSLZPOabJckt+ZZzfd3fWGD5 ZjuQb1BeMflmOxScbyXvf8sKt7zybWTWUHy+GccXssNNvORXvvH7N5Stcmm/mZItr9+HlDTf 5OyWiBNPLf98kG9AYcqk/ZadbPnmmznlvK9vzjfWlfX7XnPLrbB8c8808g3lw5f2W1fvtpzL jFUBtt+yW1zZg/fjC5Z8q07vSBZ5fMHjUEC+GfNaAs28WPINyvOr/WaMKSDf1pTm+Klf1w8p 3e9DSpdvtN+Aar/zTbRt3KuriuFVfVx+35tv463ac8MyZyMzjlsSCFjB+WY75KyuKqj+N9/Z np9VAO8NS/dGpsuWBCBl59v2UR+P2vXJVUK+AYEh32KKLQnkRL7FFFsSyIl8iym2JJAT+RZT bEkgJ5d8y/dnWgwMDAyRGgJuvwFAYMg3AKoi3wCoinwDoKq88q0UJ2hH56TvKLwHAD6i/QZA Vfm232zHGOMLbv+YZ3FZmlM5r+WbR5qX7/QenN6VZUzoHyUAC7t8O6KwfCs4fGzndU+bfKtw eufea3SahmQDIkvk2/bztZ8P8jnf8pLdCPRYl/cayTegDPmbb4V10Tvlm2VpUcg3yxvL6z0A CFi++ZYzc4wpvb+HnO032wnyqsXpnVuW7x5r7m8bQNT42H6rLuj4gnuO5Zs5Xmoxj8xevqX1 WN0792znyneVAQSjyHxzH+9Fwa2+gmuJy5IBFMnH/dPCuLTffJT9zn1ccugfIgBbeeWbE/7G AUSQL/kGABFEvgFQFfkGQFXkGwBVkW8AVEW+AVCVNd8+r+0+P22itv4Sqc+GcWnj+zoal5lG TCynNwoote6PCaXTByVWqs9ORFlNQnthhPaDz1nz7e0KfQIj2aqv0KSayj7S7ilaXaVWOyVj z/SesiReBeJu96UopYla3UT7l2ou0WouSqvI2D6m++lFGXKMeNw2Wld9bvrxLL0gHkWUtZ6r 59u3Te23tonpT3aG1jhL1zZL2ztH2z9fO3StdnDhYVL74h4fCUv6WPxjofbhDX108zWUzt9R YqF/xIqbk97Ic7TO2Vryau2DWVrqKq1jlk4U2mdq7VO7H2Wh2/tTtQOT9Ef56geTdAcmWNnm 2/5Z2qFrMo8H5x8mpK7LRNmHSw6X/r40479vPizbP5f0FT6S6YeSEf+OAH7570X92n+0KN/b KP99X4OYS8xb5EIOVS3quK6fDL2Ouf0OPZb/QvY2vP+DRQcn95NZ13qpNd9qTfmWnN9HxNqH C/sKMtlEmv1j+RG6lRn/XHG4oWvlYRnLMmTKFemB4z4h+LIoAC6SP150cPuGl64c8ocLj/rL uM/81/hjnh3/2WfHHfPc+P5/ubT/2vGfXjf+qBfGf+KlcUeuG3v4ugsPe+nCPmvP156dPHBf 9Xoxb/ELEcEoElK06NqrFm3Ysn/IuN8f9aWffebMp48Z/svPjvj5MWf+vP+Ip/uP+NWnh//6 qDN/+4nE744845nDh/72sCG/7XP6M9qpvx54wdPr320VESdbdNntNyPfRLjJfJPtBEuy/fP2 LA4RV6z0IPLNtwWqJfS/CKhENKJ2zRuy6yv9d808ofbqQXvmDN4997Q9c06tnXdK7bxBtfNO arj2hIZ5xzbO7d9wzdGNsz7eOONjtZP7bBqv/WnyQPF36stCZL6JhQy5/K/9z337hDFvDxq3 fvCE9adNWH/qpetPmbBh0KXvnDR+4wnjNx978eb+F205umLzx8/b8rGzNvc58x1t6IsDL/il WIiXfJONNxFuYn/zo+V6vskQs8k353ArcoMb+Rb6Rw8oT/yt7Zty9IFrBrx//ZD3F3/54M0j Dy4ddWjp8EO3DD+0PHHo1qEf3Dr4g+UD2285vn1J//ZFR30w/4j3r+5bW6k9O1oz8q3Ihchu T1E4+pzqAZfsGDJp55envTdy5q5RV+0ePnP38Ct3J67cM3Rm7eDp9QOn1B8/qaH/ZQ1HXdJw xJj6vufu1r78jnbKL8S8RneczDd5/HTjQNP+6bV6xIl8W7NmjZZryOSbDLSlfXSmjSZ3MA2W 8e5TGvnmPnvOl2wncHoDoX/NEB2h94kFSU+GKz/bvmBw+83D21ecl7y9InV7RfKr5yfvOC+5 6pzUnSM67hzWsWpwxx0DO1Ye37nsMx2LP9k+v1/j9L5rK/rIplfxC5GHG0ThsxfsHDxx9/AZ e867pq5iXn3FtfXnz6s/b17DOfMaRsxtHHZN0+CrmgfOaDl+Sstnrmj55LjmfhX1fUdu6XPa b2S+Gf1vrw7P5NuWU/TjC00T9WOmMt9EE07km5heS+eM7aMMQKOpZhw//Uf6EKqlA1AGiDFe lqXsKT3OblmUfJq9TMu8lpGWGQEp9AO4QdKTYfZx7YsT7StGJ1dd3GU3dN47tPPuUztXndh5 2+c6lx7dfv3Hm67s9/yFfc1Nr5wL6bXA3guRx1JF4biL3ktM3TN6Tt3FC+qfeaFdjLlkYePY hY0VNzSeu6BpxPzmoXNaTp3dKsY/9afU0Ze1fPyihn5nb+17+n+IMfLgafNYPd9eH9Yr30To tU3V801GnB5f6bfh9KhPkI44/RhE+mBE5rsxX8skRvex4J4g6l12ecn3speJgfKkR9Pck9qX nZ284+LkPZfbxlHH187ovHtw56qTOm/7nx23fEbsYDbN/uS6sYcbf+nZC+m474rUfZelVo9P rRmbWn1+x+qzjIXor/ZeyAez9J98iMJJ43edPatWhNvlNzYYtY9f3Dj2xqbzb2g6a0HzGfNa jfGiCXfUuMZPnr/18C/9VuabyDGRb2KH1Lx/KvKtXjTqZuq/eZMRZ7TfnHZU16QHURDJJtp7 kghGIzHkoQrLGMurTi/5XvYycZxcrQF+0eNF7FfeVpG857LUmsn2+XbvGZ13ndax6gsdtx3f sfzY9pv6N8/99PPj9L8sp4Wk7p+cWjMxtXpCavXFqdUXdKw+21iIvsDeCzk4UzuYzjexc1ox r+6yGxsmL22cckuj8QYuXtx0wcKmsxc0G2PELuqxk5r7T6j/9IXVnzhDzzeRbDLcahLaH4f2 5FtNhZ5vDTMzP+uV+Wa009atWyeizvLYHW+akWzGasrEOHSNJpnHWF41npojyGWWgsteJgYM ojlRPsSfQPuiLyXvHJdaPTn19WmpB6anvj614/7K1GrR+rokdV9F6t6zOu4+o2PVaR23D+pY cULHsuPalxzXdO2x6yZ8qivd9MpeiJ5vzgvR8633Qg6mf7srCl/6yp5x19dPvrlx2vKm6cub pi7ribiKhU2ycLD9H4NmNJ8wpfm4yqbjrqg/9uKtnxr+O5lvey7KnJ9l5NvrX9DPa9DzbWrP aQvm9lt2uIlHo/0mfwksvxX7Z/UkhigbT8VgfipflY9dvQfzSB/LXiYGypMeTTePSH5tYuqB GR3/cmXHAzP1lFtTmfraZal7L07dfUHqzlGpO87ouO20jhWDUssHpG4Z0L5kQON1A56/7Bjz n7Z5Iel8c1yI/mrvhbRN1fvHRGHEjNqJNzXMuLXpyhVNM29tFilXubQn4uRw2symQdOaBkxu HFDZOGBS3YBLtxwzUu9/q02fZ1p9lt7nJvJN/j7EnG+t3U047+23vXMPy5ijz2skRlv6JC8L c+AY05jbb5bJCh5vmSbnjLbvNrLExwT4RY+mZeek7p/a8eBVHd+YLR5T909L3VeZumdC6q6x yVXnJ28flVo5LLX8tNQtJ6duPim1ZOAHSwY1Lhi09vJjxby2C9ETzHkh+qu9FyLCrSGdb+fM rpt6S9NVK5tn39Z81YqmacsaK5c0TjD1xQ27quG06Q0nT2k4qbJhYGXDoMm1gy7fcuxZvxEv if1QeSLqhi9qT5+WybfnPq9tPFs/X7V2in7mafNsrWVOHu03c7g1z+5JDKctaQxOYywjc44v YJmWkU7vFigHejStvCD1zdkdD83t+NZckU6p+6en7pucvHtC8s6xydtHJ1eOSi4fllx6emrJ KambvpBcfPKhmwY3Lhi8duLxvfLNtJB0vjkuRLxqWYi8rIEoXDC3bvbtzXNXNc+9o3n2SrGL 2jj55oau3sPpU+tP+Ur9FybVnVxZN/grewZfsfn4c/R8k+fXizQT+Sbab187ule+1VyhR2jD TD2m8m2/iUgUc5nzTRCLkixPC2Ys3OP4ghcIlA89be66tOM78zsfXtDx7fkd37ym4+szUvdO Tt05IXn72OSK0e3LRiVvPiN505DkjacmF52cvHHwocVfrL/+i3+ZeIKY13Yh4qnLQvSJey9E v5zIRH0hly5smH9384J7m8XjNbc3z1jWZMTa6Dl1RvnUytqTJ9YOrqz94pTdX5z07gnn/drI NxFuYp9UtN+y861uhv5WZb51eWu/tcztK5NNkNceMUecsT/o1wfhkm8+LhAoHzKaOn+wuPOR JZ3fXdjxrXkdD1yVum9K6q4rkl+9JLmiQv/Vx81fTt70peSNQ5KLTk8uHnropmH1C4b+ZdIA S74ZC+nKNVgWol+TqjvfFt/fsuSB1oX3tcxb1XO09JLr6ivm1p89qyfiTp9cO3RK7bCpu4dW bhpw3q9kvsnGmyXf3jpH23i+nm97putvtelqTTbbZDttnd1gtN/ExJIMN2NlzYOPH4SPSyvF AqGIqWVE/Amk7qvsfHxZZ9Wtejp9Z0HHN67pWDMjdU9latWE5MqLkstHt98yqv3mM9tvEg2w Ycmbzjh0U6Lh+mHPTTpR//OxW0jufOu9ECPfKpc0Lvtm260PtYmIMyauXNww4Yb6i66tH31N 3agra43xZ0yrTUzbNaxy04mj9XwT4Sa8PkzPt5+dmsm3Xx6nn8uw8UL9Opb65StnZPJN/vF3 N+FsBhlwtvkGIC660sc6O39yV+dT93ZWrej8/o36XuqD6V64eyqTqy5N3ja2XUTcsnPbl45q Xzqi/ebhB286s35Bd77ZLSRnvlkWYuTbtOVNd31/772P7F3xUNuLb6fEGL0X7pYmEXGX3lA/ Nh1x587WW3FP//mD4TNrz5y+a9hkm3wz2m+2+SYPMZh/zet0Fir5BsSaHk3fmPXhL7714a8e 7vzpaj3iHlnS8W83dDw0Tz/W8PUZqTVTk/dOTN57RfLOccmvXti+cvShpaPqrhv6X5cd1yvf iliIkW+zbm/+1o/3P/zUgdWP7VuRbsXd8LWWeXc2z76tacbypqm3NE5c3HDF4oZx19dfOL9+ 9BzRnNs9dNLG485+2iXfXhihX5l86wRt+3Rt19VavcireVrLPK31uj6GtusOk4WWuX31x/QE ujm98o2IC4D4NwgltWd6GRHJ0PG9hR8+8/hHf3xCBFTnk3d3PrGy87FbOn+wuOO7Czv+bUHH w9d1PDQ39c3ZqQempe6blFx1yaFl59RdO+TZSz8n5vVlIaJlJfNt4eqWx3/+/hNPHxQpd/f3 9678dtstD7Yuvr9l4X3NC+5tue6elrmrmmff3jxteeOkJQ2XXF9/zuw9Q67Y+LmR+vVD3jpH 72rL3j+V+bZhfF+Rb+aI03NsQeaxbWEfIRNxcqQp3Mz5FvqXEyhS6JkTcL51/vsdH/7mex/+ 7tHO//tg579/tfPxZR0il763SM+l71zb8e15qX+dnXrwytTXpyTvvVy0vg7dPKJuzimvzDnz v/c2+LIQPd+m6Au54+G93/vpgUd/9v6DT+z/6sNty74pwq110eoWEW7X3tU8767m2V9tvnJl 05RljZcvbhBNuBEzd59y6YYzJ/7hw9YGEW5iV1Tk27Mn9+SbKIh8e3OstmFSH0u+iRwzks1M jpcR1ySxl0r7TSGhZ06Qmh9Z9I+Gms4nbuv4zvzUv8xM3VeZvPsy/TR5sSN52xjdivOF9qUj dUvObL9hyIG5A3ffOOrQjo1iXl8WUpvOt8bvLarZ89Ft326bf0/LzBVNlUsaL1vUcPF19WJv dMy1uvPn1Akjr6wVzpxeO6Ry98DxNaOmb9hYfeC9by4S4SaINDPnm3ianW+7HPJt342awci6 nt3VrH1VABHXMLtf62OLRCMq50EByyDmEvMWu5BHF9Ve2U/8myIibte0fiLiPmrLeyEi3N4e 3U+230Sa/XGo3v/25Ocy+VZzhfbXiZoMN9t8MzLt0E09LFm3f74m7Z2D0moBYs7Y4zPv+sl9 E9kglHusmTuTXqFJ1SZbJ+g2XaLbeKHewyaJlJNtNplv9W1tovEm8k3GmjncZLIdXNpXSi47 zIl41Xz3QOOWggCQ097rdfIgZsvcvkJ2Z5el96AnAE1xJwoi7kTE/fI4PdmMfBONQ9Fys+yE ykz7aPlh/7z9iH/cpsn7LMiyvAWDHCkLmZHpOzX03JQBiKHM9fZRGnILy/SQ0SF9tES/OYJs ICXn99GvtXt1+oqU12RufSXK5v1EeYPm1pmZ607IvRsRgCLi9Gu+deebsGGSHpvtNx4uMk3E VNfd/XVf/7zuW4N0D5/e9b0v9Xh0eIZ5JADkJMJEMj998JQMUZaZYxAjzU9lLhlkWN3dX97s 74NZ+tlYMtaMfJMRJ4iI0xtgRrjJ6r6TjrLvj9Y9VqF7/EJHcgKUjsvGhy9C/4iVl73BZbYY j05EFlnIVLy7/9+XHr7xQv0Qg5Fp5nyT/jpRk0Fn7M9KYldX7PPK3430/DpuXuZkB3nwVAr9 8mjKC/2KiMozLhmBUrB8ma3f8PS1LhvSj00TMyfJ6jfAmqrf5k8U6ibq16sU6tJP9Zcm6nde EOFmSTORb4elT7P6/wAAAP//AwCgi0t9EL4IAA==</item> <item item-id="330">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEvaSURBVHhe7Z0JvB1Fne8PICTqR58a zYNhExFEBCSAomBAdmSTLSCyoyBGBFncUEdmHMeRgTdujA/nzRv4zPv4noo6OowzziCLCCri hC0hgYSE5N7cm4UgkA1nnP+r6nPq3jp9u09V9+k+Xd3ne/OpnHN6rf7Xr/7f/ldVV7eEPyyA BbAAFsACFVmgpc+7Zs3IlNQ6/reyxQkPRal1zOPtdNzCyXTyMmmd9rS03j8irfPGJj63uHC1 +r1K/VbLzlGf+rv+NOl9a6RFaqAN1qlrIjXOBmeNS4vULBtM8b+63ib45VPUsiiNtj+PVz49 +q5S9F0v6yw/foW0jlYs0El/1+ujpNYfrZhw6COJnNH8mQIhA55tPrRepl31B5lxrcgf/Wk7 7fpFkTfdKDLrBpW+IXLQV9tp9k3tdOg33clsy+ek3ZpgC5+yZxt3/QjNRk3QJtcw1dck6Uzb yfhz+9P4+bTPiAcJSfNCJ82QbS77zwhErVn3d8FoCoQ0gLY8d5VoAG152XMy7Zr/ig5gg2iX L4vopGH0lq90Jw0mk+Lr+D3VXtgEm6ABNDBoDWjfbZI5t/ltwGECDuPv7U+9Lr7cBCr2p2GH /px2xR+i1HrfC9I6eDIq6oJQ67AHpHXyctXE9oRscfGaKLU+9MxE0lDa6vINstUVv4/g1Lr6 D7LVVRIl81t/2uvMd72t/r7NlWq9iq7Mfny27UfCBqFqYIvL/ktIzbKB1pouU+PD9aedtpj7 e9ny4hdlq0vXy1YXPydbXLBBWuc/r7pYOp9nPx8tm1h+gWrOM+mcte3vevs5qhnONPPp5Tqd rprqjnhUWrMXRxHRVAipfqDW+5d2J93fc9GqCShpGJkUQcmRInjpi7GTujB9cSRsgAbQABoI RAMfWCtb6XShCkJU375uFdMp6t9/38p2mqP6g0zSQDFJjw/QSY8VUGmLExer8QM6qXEE9pgC DaADfyOtbb/XDaHWfve0d9AQUpHQRDJA6oDIhtFElPRhRTw7WdGT3iaKqOKkNFTks3130IgU G4BiD0bhe/fgHOyBParWgAZLUjKg0XBJAMskXCzI2APWDHA0bHTS/UCzH5xMGkCaNzq97pbJ SGhioWqSi0bDGRClQMg018Wb7Ax0ouU6ejIj5cwIOXPRhqp8Tt5hYAtsgQYapYGtzxqVS25a LaNr/6Pvwc/6OPp4JiIp9NjfUMc+Q3XFaPCoLpmtT10ql3xlpYyu+X3/+f7SU7L1QQpCGj5q UELEmj3/WVq73xaD0Bu/3V6ZCKHOEGwFFRMJ2RCa6D8y6yfAo0gbDd22UlJIZ4d3fO8Od+tk Dzs05/tkM0XdbWHuhvmcjAw8bXHJ18dl8egf5OpvbZYLbtgkc/5so5z4xxvl2Gs3yOGf2CBH fmqDHHJ1Ox18ZTvtf9n6KO07d73s8cH1svO5z8oBH1omjzz5vOjjmeiklGPrMQGqKU0D6PdP qz6bv7xaVn3mAhm7co6snHuijF5yrIxceLiMfOBIGTn/kCitOOfgKC0/Y/92Om1fWXbiHrL4 qJ3lodMOkGcXPiKXKBBFADIQesNPpaWZ88rPWZGQap+LIKTCpi2PikdCbQhFUY2Jbjp9RBGA 1PKudfGox25P1BCqe6Uk/5ThMGnA0+FONN2w/QQotIf9xP/aLF/54YvyjR+/KF/8v5vl4+r3 5d/cLJd+bZNy9pvkov+xSc5XgDrvLzfJWX+xUc744kY5+U83yns+u0EO/fgG2e8jz8uu56yQ fc+5L4qojJ1LOXanP0cfe+2Nn5Bn//4r8rtvf0PWfeuLsubGj8vqL10uq//kUln1+Utk1Wcv kvFPn6/SeTL+8bNk7KozZOXlJ8vope+RkQsOlWVz9pOHjt5VfnL8vjK6+sXJSGivX0nLBaGo E0k3x0VNcZ0oSIHFwMZ8ms4r04HV1fTWq/mtTnf35NU/MhsmxzxM1wpUMkdANiguVqD55u0v yrf++ffy5e++KNfeslmuUpHRR2/SINosF/9VG0QX3rhJzr1egehLG+XUL2yUE1TEdMQnN8iB lz8ve5y/Ql539E/bUUOnPPT3wo+tIXT8sug8qz5/sfzuO9+U5277lqz72y/L2q9eqyKjq2T1 Fz8qqxSIxv/44ghEqz5zoYx/8lwZv+YsWXnFqTI69wQVKR0hT591oDxy3B7y3f1f1863bo7T SUPo9SolRkI6VNKdSLqTSWdGV7TOrAfXXXedtFqtiRT/ba+b+E4znL8DB3bYCg00TgPa+b7v zzdG8Lnx+y/K5/9+s1x582aZ+/XN8kEFnvM0dP58k5yuIp9Trtsox6vo5ziVdDOdjoIOumq9 HHDZ87LnhStk22P/re3MOzop5dgn6pkO2hAav+Z9EXyevfVGeeamz8ua66+U1V+YK6s+90EZ /9R5Mna1in6uOF1WfvQUFf0cr9Jx7WY6FQWtOOcgWXbGAfLICXvKbW/ftp3vtyu26GQgpPuE pjTHpUBIA6czsUL02f6d/jcBKCDUuErVNTwTp0n5ooGeGtBe8lQFmE//3Wb57K1tAH3oq6p/ SDe9fXGTnPYnqo/oMxvlaBXxHKb6hQ66Yr2843INnvWyn0qzPqL6hj78nOx10YjseMIdUyAU P3ZPxxxbmXhsC0JjKqpZ+9VPy9qvfzYC0MYHfx4dYewqBZ+Pnqagc6KMfPBo1S90mKw4+yBZ cdY7ovUv/OttsnzOLFmq+oYePWkv+f5BO3pC6I/uaIdK6knWaKi2Dvm0wBRINFTuvvvuKNnf zTL7MwKQiZp6QCjJWGU7OHPOss+jjz/Icw3iejiH9WzEsDleM1cYn5PzpnnaQvsBPRBB9wF9 rBMBXXTDZjlbRz/XbYoAdMwnN8q7r9IA2iAHfFRBR4Fn7w+vl70+vEF9bpB91OMve31gdBJC nXMnHTsLhBKPbUFID0RYo/qA1lz/sSgCsv/aADpGAejdEYCWq6jH/lt+6t6y9NR95NETe0Bo SnOchpAOld7dGfutm+J0ZVMTF05GPu0oSE82p8GT9KnXm0goesjJnviwMzLOZPZl235BTBqE 07bPm+RUi8yD61w49SF26sMGsSG+Xu0Hjv70hqjvRzfBXfxXm+W8L2+SM7+wSU5WcDru06rf RzW7zVaj4t6uIqC3fmSDvEWBZ48PbZA3XbJB9rx0g4KRao5TkdAOJ/xsSiQUP3YWCCUe24LQ 6MVHR30/UROc6v8Z/+R5XYcfufAIGTl3tqx439u7AXTSm2T5yXvKslP2UhDaU77/zh3a+X6H 6ubRjHmzGvim+4SmNMfFIaRp2wWhaJ7TiUgoDUR2JLTVuerJW5Wi2bM7MIoDyHbGBkhlOWgX GFzrs+SryGNlOS/bAjc0EI4GDIT08OyLbmw3w539Jd0HtElO+qyKgj61UQ67RkVBCkIHKAjt rSC0h4LQGxWE3qAgtJv6fPOlz8ubPzAi2x+fDCH72Pp8PsfW2yUeO5r9ut0npCE0fu0FMq5H wenPa86WsctP7wKO7vux/5af+EZZfvwbZPmJu8myk98sj53wZvnBO7efhNDbFIi8IKTHiuuo RYNDASRvJDQJIQUiPX+QOl63c1ZDvvXcQgkpTnSzTdpyvT7pzz52r/VFnC/pXBqsadfI8vTy xzbYpgka0H7lXWpwgR7xpke+nauiID0QQfcFnaQioWPU80KHqUEIBykQHaCa5PZSTXJvumyD 7Dp3o7z+wxvlDSoS2k1FQrtdtFK2O/7OtjPv+MukY+tlPsfW2yUeW0dCKum/Fee+KxrxFo18 +8S5UV/QyitUX9BHTkr0tSOnvElG3rurrDjh9bLixDfI0+/dTeYft5v88MDtuiFkoiH9wGrX wAQdHulwSb8LIoqCOhPPqelk7IEJpk8oSyTUjobaIOqCUI93Ctnb6e+RM+9sP6UJr7Pc3kdv Y/7MfnnXJ50vy7GG5t1JKTcUTXAmXANQzKMB7ScOVBHOKQo6Z6qBCBpA+vNUPSBBQ0j1CR2m muQOVgMTDlAg2uuqjbL7FQo+H90oO31ko+ysYLTL3BdkFwWhme+ZCqH4sfX5fI6tt0s8dufd QRGE1BDrMTXybfyqM2Vcj4S78kz1HNCp7YdWP3RMF4hGz9xLRk/bXUZPfoOMnriTSjvL8pN2 kQXv2UV++LaZbQipCUtbBy2SlomGdHPcjL9sr4v+i0NIO/bObKi5I6EL1KR8KrXUjKtRUi88 64ZQ+wVo9p95IVh8uzaEureNbzPI31nP1bgXnfHyOl7ghwacGtB+Yj810OD4z22Q09WzP2f8 mZo1QfUH6VFtJ6oh2cd+bqMcrprl3nXtRjlANc3t/QkFoas3yS5XbpIdFIx2UDDaQc2csMOF K+U1x97VdtgduycdO4KQx7H1donH7rzETq9ffvp+Mvrh42XsY6crAJ0h4x+bo4ZkKwhddmKX zzY/xubsLmOn7iIrT9pBVp64g4qIdpAFR+8g/7D/a9r5Pli1sB2sHv3RENp1QXvqni4I7awn mVOk0pGQ7gsyEFLTceeOhC7cqGZj3die7ltPAa5Sl/M2cFKf8eVJ29nL7EgnApTHMVznyLI+ y7YTELaul2WdGxNsMnmTFqot9PtfSLlsoP3EWy5ZHz33c9Ln1UOoChCnKRidokHxJ5vkWLXs CJVmq6jobQpGe1+7SXb/pILQNZtkewWibS9XSUFo5vlj8t+OubsDoXZ5JB1bL/M5tt4u8dhz VNBwyu+iYz/93rdEz/2sVM1vGj5jqilu5eWndAFo7OLZE7//sP45GT99Fxk/eXsZO3FbGTlu W3n88Jny41n/rZ3vw1T3zrvVqGsNon0UazSEXve19rroPw0hvTKCkAq9dRSk3wcxAaH2pq6H VLtGx+n3UXRAZGBkO2/zPgr9GV+etJ1rm0Guz3ou+1qb+t3caPA5edOFLYbbFtpP7HbRCzL7 6vVy7GcUiFT00+tv788qCH16s7xegWg7FRHNvGKTzFDDtV917ri87Mi72g7buqFPOvZJqqnv eHWeYxTcDlfpXSq9/fObxD62Pk7isTWEVNJ/y47fTVacN1s1vR2rop+T1EOpJ3dlfezSw2Xs YtVvdFH36LhVJ28n4yfMlJFjZsjCQ18lP9r7ZZMQ0iDSEVEihHR4FEFIAUiHZB0AaYcZf1i1 nZP2aLn4ZxtC7ZkVtrq0/WIknbb4YDu1Lnhx4kL0d5Nsp25vE0U5ne1c2wxyfdZz2dfK98ly xxbYoska0H5ip3NfiIZf6wlL36NA1BNCn9sku127WXb65Gb571dvlld/dJO8QkVSLz9rTLY5 rBMJWf4w6djH/bGKsFRkdZSCz2EKRgerz7dpCFnH1nlIPLaOeOesj7K49KidZLkafj1y0eEK RO/pyvbKS4+SsQ8dJmMfPFhB6G2y+ry9u9avOu7VsvLIV8jjB79cfvSWbdqkOObZNl8MiKJX OdiRkIHQ8frlRW0IaQDpCMbuE+oFIDtS2upykS3n/leU9Fv6dGpdrN7ep5KGUdKfGQBgr9fL DMB67ZfnmDZIzDnMsvhve1uTp/g12Pm382Pnn++TNyTYoh62aF3wn+pGkJTHBtpHbHvWC7KP eqHnQVcqEKkBCL3+9vzsZnmjgtCOCkKvUxB65WWb5aUfWK9eszAmWx56V9uZd8oi67Hj5008 9jnqpuiszdGmT717W3n6lH2iKXg0iNbfc3u0fOXFR6h0mKz84GwZu+gdMn7BfrLqnD1l9Vlv jNZv/JdbZdWxr5TRd79UHn/71vIPb9pyEkIaRBpC71Aw0tP3TG2OU2HS8QpAuuOrAyEdxbia 4OLzxulXeOukQaSTeTWwgZL5tB9WNd/tbZKW6fVp+8VB4XPMLNv02taV1/i187t9g0IK3wbm 5pHP9k10lqR90mvPeEE1ybWn4HmnAtFsNQpu9jUqQlEPqb5TRUcHKjDtpwYl7PUpFQWpZrid P6Ga4q7aJK++fLO8/NJNsvUF62XL01bKFrM7o+M6eSjl2BpwCkT6b8m7Xhs1yT19+iw1K8I7 ZUQ1zY2cr9J5B8voee9U6UBZee5+Mnb2XjJ+5m6y6vSdRTfF6Sho/MiXy8jsrWXB/lvKD3ff og2hE1SUZaIhDSE9TVwXhP5oXrutrgMhEwW13zP+e9nqI/8h21zxe5l2xR8iwOg07ao/yLRr 1GcsTUBIvcdcv8s8Sh0gmc8ynI8NoTKOzzHDd5iUEWUUkga0T3rlyc/IDmc/K3t84Hfy1kt/ J/t/5Dk1N9xzMktNTDrro8/LPleoGRE+pp4F+tgLsvMVL8h2auqeGWowgm6Gm3bBC7Ll+3+n nt1Rvvmg9iza5vrKOLYdZS088JXy5BE7yJIT9pCnTn2rLJ2zvyw78wD1ioZZanLSWfL0Gfuo OeL2lJHTdpORk3eW0RO2k9FjZ8joEa+QkUOmybJ3bCkPv7Ul39213XUTQciASENoSnNcAoQM iCIIqbTNZf8ZQShKGkApENJQ8gFRHEz9/rYh1O+x2H/qjYPLJiFVfvICjELQwOgz/yl7nLdU Zrx3qWw/Z6ns8v7lsts5T8vu5y6TN6rPXc9bLruotJNK258/KjPPG5UZ566UV549Ki9VEwa8 5HQVAZ2kAHTUo7LzSf/SBaEyjh1FeSoa0sf+7Xv2kAffMUMePGR7mXfkLjLvmN1U2l3mHf1G eeiYXeXho3eRR1S/0fyjtpf5ahTcgnfPkPmzXykL3vlSmf+2l8jD+24hP9+zJd97185tCJ2y fiqEuoZoxyCkhxDb0ZCJiLaZ+2IyjBSQDHhcACpTHGnNYmWek2Pj8NAAGkjSwCV/u0EeeuI5 2eOMe+UVh/5EXn3kz+Q1R/2bvPaon8prjvypzDjqDplx9M/kVUfdKa846m552VH3yPQj740G IWx16N2yxaH3qhaqOxWAfirzFj4j+njmPIUf+28UJDoQuuTm9bJuwUPyT0fuId9+yyvktn1f Ld+b9Rr5zn6vle/s+xq5bb8Z8n2VfjBLjX7b9xXy431eJrfvPV1+tOc28qM9tpLb37SF/OCN LblNAWj1Y/Pkkq+paM4PQvqFRp0+oc7DpRpG+oHTKOnh1qqDLYqKNIxMUhGSjpJ00s12ackY z0RWfLYjzKakLG3lbJutbwF71dNeW1/yH3KJcu79/unIRB9HH89oodBj3/y8bH3hpvZIZNUn tPW56q2vN00+v5k3/6NrVb4VgLY+SQ39jvcJ6ea4qZFQB0J6/iA9i3Zn1uuJB1cvaA9Y2Opi BSSTIijZqT0SLimZkXFmqHaTh2YO57UxgirPCKrw92EYeePqsx4F1xmEoEfDRc8e6eHZZ25U nwpGOunvarh2FMGYT/Nd/zZJPdzaOkGNetOfZju7/0cPRogn0yeUCCH9rJCaRbU1+0FpHTFP tjjyIdnyqHaK3rjaSVucuFhMit7CqsGlJz41Sb+PyP5tvncmyIu2J2EDNBC+Bo7Wzw+SGmUD 7eP1jNm9yvUINauBfrWPTno2HZMOeWJymVmvP81y/anniNNJz0dq5ovT3/WUPZoxXhBSAIog 1AGRDSMDpaRPvd1EsvePHatrO3sfvk/ar2a20HohNc8GkQ8gNc4GldVVM23PlNFx282TaQc8 ITPnrpPpc5bI2lULSdgADaABNIAGCtVA61jVP3SwipZ2+Y7qE7qhPXIu+g8IFWpoIM5NDBpA A2hgqgaAEHc1wBYNoAE0UJkGgBDiq0x83BUSGaABNACEgBAQQgNoAA1UpgEghPgqEx93wdwF owE0UDqE9IzaCA2hoQE0gAbQQJIG+oZQ/LUNBjrxz6IEGIdaWedx5Tftul379bseqFOR+9UQ +6OhkDRQCIR6XVDRTjMNQoM2atHX5Zv/qs7rmz+2w8GhATSQRQOlQSgpQrGjhyyZtLf1iYSS zmPvl/Y9S556waDX+W27mO30ee3vJh9px0naNkve2RYngQbQQCgaKARC8aYp41STPm0Hm9cI aYCzzxc/TxkQ6nXdSef3yUMa3KpqdsxbRuyHk0MDaMBHA4VAKOlESX1DSU7bJ5PxbVwQygLF vM1bLlj0gmAclr3gFI+G8uY3j53ZByeCBtBA2RoYKISKuhgXhHyhmBQ5+eaxbAj5NDv65pXt cCRoAA2EqoHKINTvHb2vk+7V/9NPHoAQlTrUSk2+0GadNNATQi/1mEXb5YzjECiqUz0NQia6 SevotwunDAilnd+V36S+srTmy6JsWCehklccKxpopgYiCOl3E+14y9RZtH0ghDCaKQzKlXJF A2hgEBroG0Lxu/Wy79IHfb6iCqGoQRlF5Yfj4GDQABoIQQN9QyiEiyAPVCY0gAbQQD01AISY wJS5/dAAGkADlWkACCG+ysTHnWs971wpN8qtSA0AISAEhNAAGkADlWnAG0LCHxbAAlgAC2CB gi3gDaEiwy+fY932/26OLtVnW7YJp3mAcgunLKgXlEUdNACECMMLBT0QwvHVwfGRx3B0CoSA EBBCA4VqAAcfjoOvQ1kAIRxQoQ6ISAgHVAfHRx7D0SkQGjIItfa/WYpIaZUYCIVTuXG0lEUd NNATQtNnLZKZc9fJ9DlLvO6WL7nkEumVshjEx5m1Wtcl5ivr8iz5Knvb22+/fYoN9bKizlsE gPQxgBAOrihNcpzh1lLhEEoavafBpP/2339/b2fqA6EmideGT9yGBuxFwEgDRJdDPwkIDbfT aFK941qq1/JAIaSdq3aoPgXfC0Im0un30ycfepu80YPv8fV2BtS9huD72q7XefW19PvXL4TS JqF1Lc9iT7at3rlQBpSBjwZKgZDdJGfAYy/zyVhIkVCe6KGXo45fv4mCbDiYSMU8K2Xs2G80 FAqE7GtNgk8clP28+8lHb2yDw0QD1WigFAgVcTfvA6GsfT9p27vEl+S4b35wnTw4IlHS3+Mp C4SSoiAbQrY9+42G0iCk4RZvotPLkv6IhKqprC6dsp5yqaMGSoFQ2uCEoprjBm3oXtFDGozy Qiitr8bAoAwI6WMefvjhU3ijlyUBsl8IxcvP1QxX9juqBq0nzgcs0MCkBkqB0DBEQvFrNDAy EVFdIKSjnSQA6UpiBpPEIyIghBPFiaKBojRQCoSGIRJqJfTv2yDKCyEDt0E1x+nzpP3ZIOrq wyl4iLaOdFx/9Anh9IpyehwnLC0VAqH4QARXJBSHVJIoQhsdl3ZNcRiZPqIsELIHJtiOPw4I bbeiByaEBKG7775bRAFJf1533XVRMn9AKCzHgSOnPIrSQN8Q0o7x8fm/ipLvMGN7+7Q+Dp+B CUUZwXWceJ9QHDzmd0t9ydMcV+UQbQMhA78k2MZBVUZzXHReHRGlREVACKfnqqesr6dG+oKQ DSADFt9Pve/NN9+c+tyQD4SqHB0X+UyrSS4CkLqevBDyeVh1bHyZXH7QW72es0qrkHGgBgOh DoCSoqA2n1p9XTcOqp4OinJrfrn1DSHXVD291vcLoUEJtFckpEFkAGQP187SHGdfR69pezSA /vm7Z/cFovi12AMTkqKhpOa6oiOhXhEQzXHNd0KDqsecJ0wt9Q0h38gnvl3dI6GuJjgVAcWf F8oLIVdF6RdEScPNdVkkwUYvM9AramCCBo59jTaATD+Q/QmEwnQcLp2ynnLz1UAhEGrd3BLV sBY1rWnY/HqHl0SpV3NdERDyuUjt0OLPoehlPvuabdKeE0qKgPI2x2XJjwbR107dNVdElOVh VQ0AG3oTQOhjdJyBThR1dZrgGB2Hw8qif7Ztll56QmjarIU9Z9E2kNEQ0sn8vlk5F53KgpD/ nHEqXyofUdIwigHJV8xxx/3L+34cNcHpSKGIGRN882FvlxdEeabtsc8V9c/0ASEbPiYq4mHV ZjmVPHpmn+HVwASEdrpFWjNuaI9Riv7bbp74QihPk5zpK9L9QkkC9BmY0Eu45u46ioRiyQz9 9e3sDhFC+trzgCgPhExE5BN9+ZZbvFkOJzS8ToiyH+6y7wtCWjz9DkxIE6CPM+s1Os40HfWC kN7GpwJox50n+Ry73200iLKMmMtzHSby8YGeT7n1e83sP9xOi/JvVvn3DSEtiGhoco7US0z9 OjPTxKOH/Mab4yaWMezXC8LxZsBe0Ou33HAwzXIwlCfl6dJAIRBynSTP+qKcWVp/Q548sY+7 QhVVbtjabWtshI2aoIHGQ6gJhVSnawBCOMY66ZW8Vq9XIKSaExFicTYAQsXZEl1iy2HQABAC QoVCGAjhOIfBcXKNxekcCAEhIIQGCtUADro4Bz0MtgwWQsNgfK6RyooG0MCwawAIcRfMXTAa QANooDINACHEV5n4hv0OkOsnCkIDCwUIASEghAbQABqoTANACPFVJj7uAokE0AAaAEJACAih ATSABirTgDeE9t9vHyFhAzSABtAAGihSA0AIuHJzgQbQABqoTANACPFVJr4i76Y4FnfnaKCe GgBCQAgIoQE0gAYq0wAQQnyViY8713reuVJulFuRGgBCQAgIpWhAv+m+yMo2iGPVMc+DsAvn CBecQAgI1c7RGoeiHW48FeVsbGee9zx59+vnGoBQuM62n3Jt8r5ACAjVGkJ25TROv4gKG4dQ lmP2ykfZkCj7+FnswLYA0UcDQAgINQZCWvBFOeF+IeRT+crYpqjrLyNvHBMoJWkACAGhxkAo HoEYh5wUmdhNZfGKEXfkWRx7lm1taPbKYzzaM/ul7dNrPSAABKFpAAgBoVpDyAWTJCi4IJO0 3rfvKQ+EXPsk9U/F+8V8f4fmgMgPUARCQKjWEOrlxHwAZDvvpO9Zm/iyAMV17CTAuq7JtR6n j9MPTQNACAgBIasvqV8nXgSE0poV06Dl6r9y5Sk0p0R+hguUPSE0fdZCmTl3nUyfs6S2jgpB N1fQLueaBSh2/5Grj8ilqV75cjUFJoEmC2SyXLPrOljf3LoTUtlGEDpksbR2vFVaM25Qg4va t2HS2m6eACFEGJJYs8IhDQa9QFCEE08aMJClqS9rH1DSwAXXspDLlbwNl98BQjTH1TbKzRMJ xTvwXVFGfKRZL8AkQdI1oKEXKO3oLB6pJfUX+TTX4eCHy8HXobyBEBCqLYTqUMGKzqMLvEWf j+MBrbI1AISAEBCqkQaAEFAoGwqDPj4QqpEDGrQ4OF94Dg8IhVcm1JP+ygQIASEiITSABtBA ZRoAQoivMvFxB9nfHST2w35N0AAQAkJACA2gATRQmQaAEOKrTHxNuIvjGohG0EB/GgBCQAgI oQE0gAYq0wAQQnyViY87yP7uILEf9muCBoAQEAJCaAANoIHKNNATQtOYwLSygmnCHQ7XwJ06 GkADLg20Z9FeIq2dEiYwBUIIyCUg1qMRNIAG+tFApRBKms04bVnSzMKuyR+z7NOPEdmXSogG 0AAayKeBSiCUZwZge/bipNmFbQH4zD6MYPIJBrthNzSABorUQCUQMhfgilR8I6UkANnn8HmR WJFG5VhUUjSABtCAnwaCglAcTkDIrxARO3ZCA2igrhoAQgzNZAQgGkADaKAyDdQGQkn9SElv ufRp4mM6fO4a63rXSL7RbtM0EAyEtGHToBJfngakeD+QC0jdfUnq9Bn+/vob13fdOfAbe9h6 Qg/oYZB6qDOYKoVQXQ1nsyqUa4g7varzRX7cd+zYqLeNsE+97JPX5wChHG3BIUIorwDYzw0L bISN0EB5GgBCQKiyDkkqdnkVG9ti27poAAgBISCUQwN1qeDkExiFrgEglMMBhdgcR/t5/drP KbN6lRnlVQ7Qe0JoOrNoJ0YJIUIo9Lsd8ldOBcau2LXuGmhDaLG0drxFWjNuiNxrK/pvu3kC hJIFDoSo+HWv+OQfDYeiASDUkOa4UARFPnBuaAANZNEAEGoIhGivrlf/gq6klFm9yozyKgeu QKghEMpy58G25VQm7Ipd0UB2DQChnBDSHWckbIAG0EDZGmg62ICQA0Ku6eSaLhCuL/udHTbD ZkVpQAOuqGOFehwglDMSMnAKpWBpr65X/wJ9Qm5Qoel9otaWNB8Tmn3y+kIg1BAI5RUA+7md ITbCRlVpgEiIh1V5WDUHpKuqsJwXWDRNA0AICAEhINT4NvmmOe6mXU/TQURzXA4nG+KMCaG1 D5Mfd1SCjerVj1dVeaVBqKr8FA35SiGU9Jrt+LJer/VOe013nn2yGDZECGXJP9u6AYGNsFEo GiASmrtOps9ZUmiTRBIkdIGnvd47vs7AJ2l7s23WfbIIDgjhoLLohW3RSz8aGHIILZKZJUDI FEha1OO73gZOP/tkFQgQwqlk1Qzbo5m8GhgaCO2UOIv24CBkRzf9AMUFtiRwZRVHiBAKrX2Y /LidLjaiT8jH9wxNn1CVEEqa+CMtykmCjF2QwwohHzGzjRsM2AgbhaYBIqEBNsfFwWMDpddg gzQI+e6TVXQhRkJZr4HtcbZooB4aAEIVQsgeXOADJLsZLz5oIW0wxOQ+rlniutfrphT9Z/aP N63w+/quwSzYA3vY0EMP2fQQB1FoTbn93NBMDNGuojmun4xXuW+IkVBooiQ/7rtsbESfkK8f S4qGQtOP77XEtwNCDXlYNa8A2M8NC2yEjarWQJOb5IAQECr0GbCqKyvnBxhN1AAQKvhh1bqL JMTmuLrblPwDDzSQrgEgBIS6ooUQIRRa+zD5cUMFG9En5Ate+oSAUPAQ8hUz27nhgI2wUWga IBICQkAoR99ZaBWZ/ACXumoACAEhIASEGMCBBirVQFNB1HN03LT9yp07rq53JfQJue+o6e/A Rv3WbzTUraGmPrDahtASaSU9rAqEkh1JiBDqt8Kzvxsa2AgbVamBZkdCQChTmA2EcEZVOiPO PZz6A0JD2h7smlEOhzCcDoFyp9wHrQEgNKQQShJaiJEQ7ef1euZE64oyq1eZVV1e9AkBoYkm uxAhNOi7Ms5HJIAGBqsBIiEgBITQQKa+Q5z0YJ100+0NhHBAQAgNACE0UJkGgBDiCxpCVbdX x+9CyY87CsBG9Alljd5sEIWmn6zXYrav9Dkh19tSdSZ7vaLb3t82QJ59shiQPiG3g81iT7bF nmjATwNNjIYqgVAaJAx04kCxYWRvE3+Ft9nPwMlen7Qsr/CBkF+FyWtf9sO+aCBZA0Co4Ca5 pEgmHh0lRThJkIoDyP4dP09aBOUrfCCEk/TVCtuhlSI1AISAUNQvFCKEQmsfJj9u54uN6BPK Cij6hEqGkCtiSWp+K2KfrEIIEUJZr4Ht3ZDARtgoNA0MXSQ0fdZCmTl3nUwv6VUOvZre4v1D vQYbpDXP+e6TVWhACOeUVTNsj2aK0EBzIbQ4eRbtQUHIhkVSZBOPgHoNbLAHMfiMvpvsO3LN Ete9Xjel6D+zf7xphd/Xdz1PgT2wh+2E0UM+PRgIhdaU2w9ge75PqGwI9ZPxKvcNMRIKTZTk x33nj43oE8rjx5oGIiCUo58rRAjlETP7uEGBjbBRaBpoWpMcEAJClU1DElrlJj8Apw4aAEI5 nHYdCjZLHomEcFZZ9MK26KVIDQAhIMRzQh4aoL/D7XixEX1CeeBEn5CHA8pj2DrtQyTkdrB1 Kk/ySnnWSQNEQkAoyEioTpWIvOL00UB+DQAhIASE0ACDOdBAZRoAQogvSAjRv1Cv/gUdCVBm 9SqzkMpLgyik/PQT2TJEOwdU6RPK35TQj1jZF7ujgbYGmhQNASEgVFmzAg4FqKCBfBoAQjkc d13F5ppRrq7XRb7zVX7sht1C0MDQQGjafotKnUU7hMLMk4cQm+NCax8mP25njY3oE8rjf0xz XGj6yX0txz4nrdkps2gDoeRKEiKE8gqA/dywwEbYKDQNEAkNUXNckviAEE4pNKdEfoZLk0AI CE1wiMo/XJWf8qa8Q9AAEAJCwUEotPZh8uN21tiIPqG8QBua54TK7hPyefNpr1d0x9/Cago0 zz5ZxEBznNvBZrEn22JPNJBdA02Jhno+J1QWhHq9njvpVd5aoPZyA5/4tjaEsu6TpRIAoewV Jot92Rb7ogG3BoBQAU1yNkxs0fVaHo9+fH67tskqeCDkriBZbcr22BQNZNMAEAJCEYtCqTj0 L9Srf0HrhjKrV5mFVl5ACAgFBaFQYEg+st3NYi/slVcDQKgkCCX1/dj9O0mDGZKa8rLsk1UE NMfhOLJqhu3RTNEaAEIFQigNGC6QxIHUz+g41xxx8fU6NLeb4+KhOr+v72qqxB7Yw3bC6KFY PRQNuEEer5LRcYO8wDLOFWIkFFp7Nflx3/ljI/qE+vFPoekn77UAoRwRXYgQyisA9nPDAhth IzRQngZ4nxAQCmaEHxW9vIqObbFtqBqIIHSInkX7VmnNuCG6x9f9XdLabp5Mn7WQVzkkQIpI iAodaoUmX2izbhoAQg2JhEJrHyY/bmeIjegT6gcYoekn77UAoYZAKK8A2M8NC2yEjdBAeRoA QkCIPqEcGsApleeUsO1w2RYI5XBA9AkNVyXBKVLeaKA8DQChhkAotPZh8uOutNiIPqF+4Baa fvJeCxBqCITyCoD93LDARtgIDZSnASAEhOgTyqEBnFJ5TgnbDpdtgZDDAbnmlKPCDFeFobwp bzRQrAaAUI674BAHJoTWPkx+3BUVG9En1A/QQtNP3msBQg2BUF4BsJ8bFtgIG6GB8jQAhIAQ fUI5NIBTKs8pYdvhsq0DQouYO46544AUkEIDaKA0DQQFIfNW1aS3p7qW2XdPvsfJe8dFn5D7 Ti209urQ8qO1F1qeyA99VHl9Yj/7BQMhGzL6gsxv+7PXsjiEzDF898lixBAhlCX/bOuGKDbC RmhgMBoIBkI2NOLgMGIwEU4ScOxtkqKiXvtkFRsQGow4s5YL21MuaKB+GggGQkmRkO8yF5TS oqy8ggVC9RN63rJmP8oaDZSrASCUo8MxRAjRnl+v9nz6hNyODU3XT9N5gF0bCPUabJAWCfnu k9VwIUIo6zWwvdsJYiNshAbK10AwEErqE8q6LN53lG1EnWuCnu71+i5N/5lzxu/a+H1915BO 7IE9bIeOHorVQ51hGRSE6mJIIqHy747qogXyiRbQQH8aAEL0CZXyEBrt+e6KiY3q1edBebk1 nQfIQKghEMpT+OxTTqXCrtgVDfhroDQIxZ/piQ+TrnMh0RznL7A6lzN5p5zRQPkaKAVCSQ+b AqHyC5MKg43RABqomwaAUEOa42ivrlf/As8JuWGBpuun6TwAHAiEkqbbyZPZUPahOc7tQEIp K/JBWaGBsDVQCoTiz/c0qSmufW2Tfwg8bIFTPpQPGghbA6VAqGnQiYsYCIUtapwO5YMG6qOB UiBkIqGmCiFECNF+Xr/2c8qsXmVGeZUDtlIgZM/ZljR/W93hFCKE6m5T8l9OBceu2DV0DZQC odAvOkv+XDPKZTkW2+IQ0AAaQAPdGgBCDRmijbBxbmgADdRRA6VAiOa4wVcG2qvr1b/Ac0Lu OoKm66fpPBAsBUJJGWnSiDn6hNwOJI8Y2Qe7ooHh0wAQojmulFm0cSbD50woc8o8jwaAEBAC Qjk0kKeysQ9OGg1M1UApEErqE/IxftL0Pr1e0Z3WxJdnH5/8mW1CbI6j/bx+7eeUWb3KjPIq 5yaiFAhlcej2tklQsWfkjs/OnTYnXZ59suQ5RAhlyT/bllOZsCt2RQPZNVAKhGyY+E5emha9 xCEVB5XPb9c2WYUDhLILLauN2R4bo4Hh0MBAIKTF5BodFwdX0j5pzXW9oimffbKKHQgNR+XI qgu2RxdoILsGSoVQEljSCgkIZS8825a0V9erf0GXHWVWrzKjvPrzUWm+vxQImSimSAj1GmyQ Fgn57pP17oVIqBwxZi0Htqcc0ED9NVAahPKIo5/RcUn9UK5l3fByzRLXvV7fFek/c4z4XRK/ r+8a+o09sEevyB199KePPP42lH2CglAoRnHlg0io/ndfrjJmPWWMBgajASCU40HFECFEe3W9 +hfoE3I7ODRdP03nAXcpEGICU3cFy1NY7INd0QAaaJoGSoOQMVT8AdMmGDDESKgJduUacLBo YPg0AIQa0hxH5R2+ykuZU+ZN0EApEIoPmfadNaEuBg0xEqL9vH7t55RZvcqM8ioH+qVDqC5g yZLPECGUJf9sW05lwq7YFQ1k10BpEIpHP65pe+pUeEAou9DqVL7klfJFA4PTQCkQShqMAIQG V6hUIGyNBtBAXTQAhBoyMIH26nr1L/CckBsSaLp+ms4DvoFAiIEJ7gqXp/DYB7uiATRQdw2U AiFtlKQHVutoLNeMcnW8JvKM40IDaCAUDRQKoaaAx1U4DEygArs0wno0ggb8NFAohEwE1HTj hwgh2s/r135OmdWrzCgvP6hk9f+FQ8huisuambpsHyKE6mI78llORcau2LWuGigFQsYYSS+V q6uh7HwDISp8E3TMNaDjEDRQKoSaGhUBISpvCJWXPKDDJmigNAjlHZYdf6i11yu60x6AzbNP lsIMEUK0V9erf0HrjTKrV5lRXuVAv3AI5YVPWtRkz74Qn4kh7Vx59qk7hLLkn23LqUzYFbui gewaKBRC/QAoCUJpUVF3/0xLXL+TjtOPWEKMhPq5HvbNXnGwGTZDA8VooFAIJQ1I8B2c4DPf XBLkXIDx2SermIBQMeLLane2x+5ooHkaKAVCWYWS9pArkZC/4Givrlf/An1Cbm2j6fppOqvv 19sHAaG05jQbQr0GG/TaP+mVEv3O6E0k5HYgecTIPtgVDQyfBoKGkN1P5AOkpObAXsu64eWa Ja57vb5L03/mGPG7Nn5f39VXhz2wh13f0EOxeqgzvIODUB2MSSQ0fHdrddAleUSXddQAEOJ9 Ql0RS1Eipj3f7RCxUb36PCgvt6bz+A8g1BAI5Sl89imnUmFX7IoG/DUAhIBQKZEQldC/EmIr bDXMGgBCQAgI5dDAMDsNrh1oFqkBIJTDAYU4MIH26nr1L/CckNuRo+n6aToPnIBQQyCUp/DZ x+0IsRE2QgPlagAIASGa43JoAMdUrmMK3b6tlnpycUApdFv0mz8glMMBhdgc168Q2H+4nWoo 5T8ox97veQZlL53PQZ2rqvMAoYZAiPbz+rWfl1Vm/TrYKve3HWFZ9snrbKvITy8IVZGfvLbr tR8QagiEyhBH3Y9ZpTOt8tx1Lzfy331D1fRoCAg5IJQ2o1yVToZz+7XH48xoYmyCBoDQ3HUy fc6SxrdLZhErfUI4tyx6YVv00o8GgBAQmgLgECEUWvsw+XE7XmxUr368qsorDUJV5acfoCbt 226OWyKtHW+V1owbIveqxmOo/7abJ9NnLZKZQKgWECpaGBzPDRFshI0GoYHhiISAUKbmxhAj oUFUBs6B00UD1WigySAiEmJ0XCYA44SqcULYfbjtDoQGMDAh6fXduuL1eq132mu68+yTpZK3 2yyb8y/LtftuG1p7dWj50XYMLU/kJ9w+qiQIhVZevr4hvl0wkZABShws9vL4NgY28YvKs08W AzatOa45OK3XlWTRHNsSCTVVA8FAyBjYhlASkNIglbS/HUnZBZgWQfkWctMg5HvdbFesI6wX MvPnFt30rxua4wbQHAeE+hcqlR0bhqiB/PgKe89B27qpIAoqEvKJcny2iUc9rn2yiinESCi0 9mHy4wYiNgq3DybJJ8TLa1CINHmJQyg0/WT1oxPXFcpzQklNZPGmuXgfUFKfUJ59shovRAhl vQa2d0MCG2GjqjWgQZcGoarzVtT5g4iE7NFsaf1APnCxm/TSgJU+oi5tlrjk5fouRP+Zc8bv Svh9fdfQb+yBPWynhR789aBBpO1lR0JNiYK0JoKAUFFEHdRxiIS4Qx6U1jgPWjPREH1COR7q bGoFChFCod0ZkR+388RG9e4TGpR/S4NQaPrJaw8ioRxwDRFCeQXAfm5YYCNsVKUGmt4vFEFo 9mJp7cQEpt7T1wAhnFKVTolzD5/+mtwkB4SIhLzhi/MbPudHmYdR5kBogA+r1kH0IUZCobUP kx+388JG9An5+rskCIWmH99riW9HJEQkRCSUQwN5Kxz7ueGMjabaiEiISKjLUYcYCVFxcW5o oNkaaCqIiIRy3AUDoWZXdpw55RuiBoBQDmcdYkEWkacQIRRa+zD5cTtybESfUBZ/FIdQaPrJ ci32tkRCOeAaIoTyCoD93LDARtgoBA0QCeVw1iEUXL95cM0o1+/x2R8HhwbQgK8Gopm7W5Nz VvruF/J2REI54EokhNMIuVKTt+bqs4nREBBqCIRCax8mP25HiI3oE8p6w2BDKDT9ZL0Wsz0Q agiE8gqA/dywwEbYKBQNEAnlcNihFF6R+aA5DqdUpJ44FnrKooGm9Qv1jISmzVokM+euk+k8 rMrDqtyAMLMEGghCA0AoACHab2JNuoNIWu/aJ8udSIiRUGjtw+THfXePjegTyuJ3JvpQOq/8 bsoouVpGQuYV3fFXeJtCSlrv2ieLGEKEUJb8s60bENgIG4Wqgab1C9UOQgYmceD0+u3aJ6vY gBAOKqtm2B7NFKmBJjXJAaEczYtACIdSpEPhWOgpqwaAUA7HndXIadu7opqk9a59suYtRAjR v1Cv/gWtOcqsXmUWUnlpCIWUn6w+1N6+1pFQUp+QDZxeAxTiRnNNzxNfrwWg/8xx4oLg9/Vd I4mwB/aw6xx66E8Ppl+oH+cfyr61g5A2XBpc7H6hOKCaPjouFEGRD5qW0MBgNNAUENUSQlWL PMTmuKptwvkH43iwM3Y2GgBCFfYLVV0RQ4RQaO3D5MftLLERfUL9+LLQ9JP3WoiEcsA0RAjl FQD7uWGBjbARGihPA0AICAUxFQmVvLxKjm2xbcgaAEJACAjl0EDIlZq8AZ06aQAI5XBAITbH hdY+TH7cjhAb0SfUDyxC00/eawFCDYFQXgGwnxsW2AgboYHyNNCG0BJp7XiLtGbcEN3jqzeY q/+2mye8yiHZ8CFGQlSS8ioJtsW2aKA8DQAhIiH6hHJoAKdUnlPCtsNlWyCUwwGFGAmF1j5M ftyOBBvRJ9QPcEPTT95rAUIOCLnmlMtrePZzO2lshI3QQPM1AIQaEglRWZtfWSljyriJGgBC QIg+oRwaaKIz4JqAXBUaAEI5HBB9Qu7KGlp7dWj50ZU9tDyRH/qogFAOIFRhtBAhVIUdOKcb xtgIG6GB3hogEsoBPiCEY8GxoAE0UIwGgoFQ2kvner0dNf7abiOKPPtkERQQKkZ8WWzOttgc DTRTA0FBSIssDhbz235TatIyW6B59ski8BAhRHt+vdrz6RNyO1Q0XT9NZ/GjZttgIGRHMUnf DaDSINXPPlkNFyKEsl4D27udIDbCRmigfA0AIfqEGKKdQwM4p/KdEzYeDhtXCiG7ia1XU1y8 ryep6Y1IaDgEi2OinNFAszQwAaGdKp5FO2mQgb2s12CDNCj57pNV1CE2x9F+Xr/2c8qsXmVG eZUDvyAgZMMiqc8nKWLqFUXlGR3nmiMuvl4LUv8ZgMUFyu/ru5r5sAf2sG/20EOxesh6Ix3S 9kFAKCSD+OQlxEjIJ99sU86dHHbFrmggvwaAUI5OaSCUX3BUVmyHBtCArQEg1BAI0V5dr/4F XQkps3qVGeVVDjyBUEMgxN1lORUEu2JXNFCuBoAQEOI5oRwawDGV65iw7/DYFwjlcED0CQ1P BcEZUtZooFwNAKGGQIj26nr1L9An5HZsaLp+ms4DbCDUEAjlKXz2cTtCbISN0EC5GgBCQIg+ oRwawDGV65iw7/DYFwjlcED0CQ1PBcEZUtZooFwNAKGGQIj28/q1n1Nm9SozyqscGEUQOmSx tKqewDTUuw3XnHKh5pt8lVNhsCt2RQPFagAINSQSomIUWzGwJ/ZEA4PRABACQgxMyKEBHNRg HBR2br6dgVAOBxTiwATaq+vVv8BzQm7niqbrp+k8Nw1AqCEQylP47ON2hNgIG6GBcjUAhIAQ zXE5NIBjKtcxYd/hsW9wEMr7ZlVbtHnerJpF9CE2x2XJP9sOTwWnrCnr0DUQFITir+zWxjNQ stclLYtDyOxrbxtflrdwQoQQ7ef1az+nzOpVZpRXOUAPGkJpUVEScMyyPPtkhVGIEMp6DWxf ToXCrtgVDWTTQDAQikcsdhRkAyYJMi4oufbJKhoglE1kWe3L9tgXDQyPBiqFkN13E/8OhIZH hDgcyhoNDK8GKoVQkvDsqCX+Pd5n1KsPye7/STpOP6J3TeVTxXrdXh3SH/lxlwY26m0j7OO2 Tz9+LJR9g4aQCyR5gBVvmpts6nM7DbbAAlgAC4RkgVBA0k8+goNQPxczyH1DEiJ5wQJYYDgt MEifV9a52hBaombRvlVaM26ICrIV/bfdPJk2a5HMnLtOps9ZwgONsQcatY2KKBSO07stvKn2 aUf5aKhXHcI+g6kbRfixfo4BhHI+LU8FGUwFaaqdgZC7I76pZV/UdYX23FJeEAEhINQV0RVV QTgOTjavU7L7afs9BrB367AIG/dzDCAEhIBQBg0UBVeco9s5FmVrjuO2dT8Q6XdfIJTBAdnG LkrY/RZg0XeN5GdwFRYNDaZJF00PTtN5bA2EGgKh0NqHyY+74mMj5o7L47TNPqHpJ++1AKGG QIi76nrdVRfZHJe38sf3Q0P10lBo5ZVXh0AICBUy1ByH5o58sFE2G4XmZMlPtvLzhRIQAkJA KKcGfCtZ2nY4NSKPfjQUmn7yXgsQyumAQhNAaO3D5Md914iN6BPK67j1fqHpJ++1AKGcEMpr cPZzO2dshI3QwPBoAAgBoVKa43Aiw+NEKGvKuh8NACEgBITQABpAA5VpoCeEpjOBaWUF08+d BftyZ4oG0EBdNDABoR1vmTqLNhBCyHURMvlEq2ignhoAQhnDcPs15Emi77U+vs51LJ9K5TpG 2vqkV6u3H6DUb/JoJ5/zZ7WBvb3vm3P7yUuWa3LlJ8uxetnO18bx607az/dYZefH1ky/eXLt 76Npc72uY/lq3HWcLGXjOpZPnlzH8LWR6zg+eel3GyCUA0K2M4oXgHEcSY48yan0OpZP4fY6 nzm2zzns4/ic1+XUXDaK2yfpOlzX5ptP13HSHIhtP9up+Z43bbs8+UnKS5byLbq80m4+0vKZ xWY+9ulVNnEg+ujflb88eUqrU/3eVPmUu++5XdflsksR64FQBgilQSTNQfXa3nUsn8J1HcO1 Pinf/VYQ33PGK5J9vT4A97FPVogkXXuW6/HJU5bjubZ1rS87P/EyKwLUWa7J3jZpvyzH8oG0 z/XVSUNF2cdHZ722AUIDhlDSXXfeu0eXiFzr05x0EgR8heZzznhlrpsDGbR9bHsl3eX7OMe0 8stTXvFjpZVfnhuavPlBQ8n9Qb3KJoutfet/nu2A0AAhFHcmaXeSvgXpEpFrfS/45XEgeSOP UB1ILxsM0j5pTt+nfF1aynKMtGvOuryIqMOV76QbhbLLzCcK6rfOZ6ljLv26bOjSTlHrgVBO CLlE3utuOb4u7521LaI8+XGJNI/IXHlKqoRJ+2Q5jq9Tc9k5fk7f42axU5brcjn3LMfyiYSy 2Mcn+srj9H2uyeXszXX4HMun7HyO48pT0nny2CcOobQycx27KB/kYz/XNkAoA4SMAHo5/KQK kLZf2rauQos78rz5SbrDdjkin7ylOYG0O/oy7dPr2L0ijF6OzFXBXTYqyj699OjKQxYNpQEn zfH2qyGfOpSm+TTnWmaZ2fk150laVlR5uTSd5dxF+KAsWkvaFghlhFC/Bmf/ej7LQLlRbmig HA0AISCU+3kgKmU5lRK7Ytdh0gAQAkJACA2gATRQmQaAEOKrTHzDdLfHtRLdoIFkDfSE0LRZ C2Xm3HUyfc4SHBWwQgNoAA2ggcI1EEFo9mJp7XTr1AlMgRB3b9y9oQE0gAbK1AAQ4s6m8Dub MgXLsXGIaKBZGgBCQAgI1UAD8Wc/4s939PscDI69WY69TuUJhGrggOokKPJavjMDOOXbGB0P zsZACAgRCdVMA64pYuJP7fd6wr7f2Q1w1oNz1k21NRCqmQNqqhC5Ln9n5gMhe5v49r2meaIc /MsBWxVjKyAEhIiEaqYBHwjZDjINQmlzjOFci3Gu2NHPjkCoZg4IYfsJu8l2KgpCTbYR11af egKEgBCRUM00UBSEGOBQH0fdZKgCoZo5oCaLkWvzc4pFQCg+WAEg+dkejRZvJyAEhIiE0AAa QAOVaQAIIb7KxMddZfF3ldgUm9ZNA0AICAEhNIAG0EBlGugJoemzFjGLNuKsTJx1u6Mjv0Qh aCC7BiYhdMvUWbSBUHaDIsKpNqPTGx0Ne72Iz/U37Pawrx8IEel4RzpZYULFAz5NdbZ56oIZ kdhUm+S9LiAEhLwglDSLc9pT+UlP6OcVKPsBstA0QF0oVpNACAh5QSjpLi5tfjIgVGwlDc0J k599pJfGXfP2Yb/u+gGEgFBmCCU1s1HxAM8wOdf4TOU+N2RZm/CGxZ5ACAhlglCeykblA1BN c6jxmchd9YI6kF4HCodQS/gXggXKqPS92sJ7zcg8rBWwFTXakKq2QdV1oVfdKCNvdTtm4RCq mwHIL3fpaAANoIHqNACEaI7zbo6jolZXUbE9tm+qBoAQEAJCaAANoIHKNACEEF9l4mvqnR3X RdSCBvw1AISAEBBCA2gADVSmASCE+EoTH6OC/O8GuXPGVsOqgZ4QmrYfs2gPqzCSrrufodb9 7EsZ4KDRQHM1EEHokMXS2vHWqbNoA6HmFnzWSt3PfFlJU/5kPT/bo0U00EwNACGa47yb4/LM lxV/shxH0kxHQrlSrnk1AISAUGYIZZ07jkgIB5XXQbFf87UDhIBQJgi55shKAw59Qs13JgCD Ms6jgcIh1FITRZGqt0EeMbj2yTp3HKPjcEouTbEejRQOIUSFqNAAGkADaMBXA0CI5jjv5jhf UbEdDggNoAFfDQAhIASE0AAaQAOVaQAIIb7KxOd7p8R23FWjgeZqAAgBISCEBtAAGqhMA0AI 8VUmPu5um3t3S9lStr4aAEJACAihATSABirTABBCfJWJz/dOie24q0YDzdVATwhNn8Us2oi/ ueKnbClbNFC9BnifEJEQkRAaQANooDINACHEV5n4uAut/i6UMqAMqtaAN4TWrlooJGyABtAA GkADRWoACAFXbi7QABpAA5VpIDOEvv1/bpL//Tc3yre+ef1E+uZNfyF//fU/l5u+/kUSNkAD aAANoIEJDWg2aEZ8638qZnTS3/3tX4lmiY6oMkPo0fmPyG8e/LXc/8tfTKRf/OIe+fm9d8k9 P78zSnffk5TuUMvb6a672+nuu/81ln6qfqt017+o9BO/dOftcncn3aU+dbrzzn9Unz/unX72 D3IXCRugATSABvrUwA/V/t3pzjt+ICbd9bMfyD13/VB+8fMfTaRf3/9P8tC/35EPQitGlspT S5+QJxcvmkiLnnhcFi5a0EmPycKFj8njCx9Vn+3U/v5QSpqnlnfS4+rz8d8mpAfVssn0+IIH ZMH838jC+Q+0k/odpfm/itLj83+ZnB67Xx5/7D4SNkADaAANFKSBBY/+Qtny3ilp4Xy9/OdR Wjj/Xln0+C8m0m9++U+i/3JFQmvWjsvqNWMyvmp0Mo2PqO9W0r/HV1jpafXdTsvUbzstVb91 WhJLi9VvlcY6aeWTMq7T2BNdaWzlItFpfOXjvdPofBmfSI+p7yRsgAbQABrIo4GxkUdlanpE LZtMK1c8Iu00T1aOPDSRHrj/J/kh9Ozv1siU9OxqefbZ8R5pTK1LSOtG5dkorUhM655ZLu20 LDE9s3apJKV1axbL1PSEWmbSIvWdhA3QABpAA/1oYO3qJ0SnZ1YvSkgL1LLutHb1Y2r7x+QB 1RyXOxKKw2bdunHRqb1cgWYCLAYwUz/XPTOioGInA5tu6Kxd+7ToFAfN2jVPSWJavVhdoE5t w8QNtEYZyqQihxhyLIasogE0gAa0BhbE0nz1ezKtGX9MdPr1/bcDIQSD00ADaAANFK0BPwj9 8r5/HAyEWq2WmGRHSGmRkN7Wbn7LEwnpYxAJFS0sjoezQgNowEcDvhD6cfkQ0jCwwWP/LhpC EXh0E12JzXHRORwPtPls4zoG632EzjboBA2EqYE+ILTjLdKacUMEp1b033bzxJ5F21ywb59Q HEJlRkJAiAoZZoWkXCiXYdOAJ4Tu/dHUSGjQELKb6swoOLs5zl5vD0ywl5vBCWaZjoTs5riu Y3QGJehlenDCxD4p0U18fdpvO/qxt4lHRWnbUUmHrZJyvWi+yRrwg9B99/ywfAjpyCetT6gN m8nRcQY+3Z/LopFxOunlGkTm04aP/m5HQgZCNoz08ME0+CQ1ocWBET1Q1aM5zqxL2s9UOJ9t qJxNrpxcG/oeBg34QeieO7+XH0J6OPYz6oFVk9ap7+vWrpxIz6wdVeu609q1KzoAaS+34WS+ P7NmeXubzmd8Gxs2a1YvUdHMkok+oDZgnoyS+R59rlJDsjvJ/G7DYIEaJthO0fLOd/szvjzp t53H+LF67Z92zqR8sGyyrLAFtkAD4Wtg1dj8aBh2lMY6afxR9VulsUeidMe/fjs/hJIgkwQd DZ7J1I5m7Mgm+r5GRTtWMhFNGyQKMp3ngQx02tHN4gngmIEIJsrRo+LsSKgfCPWCShpg7OU+ EKNChV+hKCPKCA34a2ASQB3oGPjEIJQ4bY9vn1A3XCZBoyMYAxnThJb02zSracCsUQDSyYaP iXiSIp3JiKf90Gk7ummDJy3iMVGPiYAmI6E2qduw6FC782kvM9+Tlpn9XNuYiCl+vqRzx/PC 7+6ywR7YAw3URQOTkY+JgFaPPSw6JU7b4wuhNauXKwBYqQMSO6Kx4TLhgFcvjaIbO6qZWLdK RTcqtWHSjnS6mrpizWpm3aqxhaLT6rHHJ5rV9LrxsQVRso+hCa2TXqY/V698NEr6t/luf5p9 48vs/ezjJx3PPoZ9nvix4+tceUvKL8va5UnCBmggIA2MPiSrderAJ/quUuK0Pb4QWqUgodPq VU9FaeL3+JOyupOi9bHf0XZq4tGpqQ2SXslAJfWzMynpmJqQtDupCfZGE9LIw2qSPRI2QANo AA30q4HxaMLSh2VcTVBqjqW/t9O87rTi32VcpcRpe3whNLpigURp5HErzVffVVoRT51tO/uM LH9MktOjavlkWrH8EUlKI8sfVts9LCue7iT9XS97+qFOmqc+58mKZZNJ/zZpYvnTv1XHIGED NIAG0EA/GhhRflSnFct+05VGlv5GdOpe/mv1u50Sp+3xhdCyp/5ddFq6ZJ489dRkMsv0cpMm 1i/5rTyVIS1d/IBkSk/+WpbqtPhXyenJX6r13WmJ+k3CBmgADaCB/jTw1JP3iZ2WPPkL5Vvb ySyfWPbEvbJEpV/elzBtjy+Enlz0gHinhb+WJ3ukJxbeL37pPrWdldTLkZ5ISgt+Lk/oZNaZ 37HPRer3ogV3k7ABGkADaKAPDTyx4B7lcyeT06/OV353/p0Tqeuldr4Qakc5D6lo6GGVHrGS /p2c9PZPW2mZOkZi6kRZJtqa8jmx34Nqf4+0+DeyLCFlirKyRmVsny2KxV7YCw00VANWy5Rp rXrygagF6qlF98uSRfd1v1nVF0I89TwMTz1zjegcDaCBwWigdexz0pqtRkenQeg1p47KzLnr ZPqcJTLtvau9UnRQEjZAA2gADaABlwY0gPa+Mx1CrzjmCXnV6UvlZe9ZJC85bKFXah2yRLyT zkBV6RB1bp80W12Pdyr6ejKc2+daom0qLJ8yzl3GMb3LO0P5FK7zEs7trSGtc9/zF10nanLu Sm3pWzZ6O9/yyXJM323VuQ98SFp73SGtnf4+9iqHmT9QC9X7HaJ0q/XdLCvqUx/bJxV1Pus4 OvwrOk3YzJFf3/N62aZjvzKO6X09Kg87eiTf403ozkcbGbbxyWOWbbJcj+9xs5S597Yl1J+h PXcJtvTWhu+5M9QJ73Is45j6ehR8dB62/5sYhF57c7SAhA3QABpAA2hgUBqYeKldNMUpf1gA C2ABLIAFBmyB/w+lUFhpluw1ggAAAABJRU5ErkJggg==</item> <item item-id="331">iVBORw0KGgoAAAANSUhEUgAAAJMAAAAVCAYAAABCDNzQAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALcSURBVGhD7ZnLkcMgDIapyz2kDVeT g6txHblmXEFu6YC1MGBeQlh+hPXgmcxsEgdLvz4JiRWyXU2BgxQQB63TlmkKyAZTg+AwBaqH aZqmw5ytYaH/7k/O/qpgGnsh+9GEfJJDJ2Q3GJhG2YtO2renkgHPcm3hPawaf8ZeitkfeK16 0j5ttb8amKahk2IlafY0hAk+GmTXDfM3Z1/7YarJH4DC15bWj2N/JTBB8Hppi5IGyWSTKwQI syW7aNlSdwQwAcSQ2R7suZXr8UeBpKuS8DQ+3v4qYIqzABxNVCb4GEp2tjotIOwDzoFJg1TM kSqgYZXd4w8vHdxfba1MXPstTK/XyyF4pfn5fK52mQzVpG8RGJcEgQaDaa5f5/dOBiYCTKWH W1Ez0PzQnwimbBz58VAwfb9fBRIABa/H42H//nw+moMgiMqgIxpirD/JO1UCsl/i3XJPbVmL Tcv2gPhom9oQpvP84dYoHyYqjnz7LUwAlLlAxOgC8YII2m5fN8aDsz/7t7rBSYmfCtjWDOFK TfRMiW11gXS2eUxVJqxyMv0httmShPFgysVRScG3P6Lm/X6rjKQv56HaYdunBAFwm+Z4P+Zn AmVjidDpNVybMAhUc5TY5s7zh/IX+z7fM4Xw8O2PqDG9U97wQOBQVO99yth4cosbZiyIV/ZM ZoeHc5pE9fyvPZMNbkrjrRV0jQejMiWaUhKmoF8JApOeHvRUFI7kV09zlqfZh3CKTMKETXNc f7j1aP1dujLhwwU3HiX7WTTNRc0vCVPYJ4UClVeba86ZCgOIwIT3HalWdO8xRqGt7m3kcQcv HuUw5QzIwgRHQ45gSGXBssGT6rIT8MIAoTDh1enn/pAgLRZy4lEMk1rcjsvrtqWqFAHTkqnE qK3PYfCRvzxbClHYf1sGJnPoWps/2Tj6pKv/jW6xvxim/cq3Fe6uQIPp7hG+0L8G04Vi3/1R Daa7R/hC//4A7guS6e09aGsAAAAASUVORK5CYII=</item> <item item-id="332">iVBORw0KGgoAAAANSUhEUgAAAJMAAAAVCAYAAABCDNzQAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALhSURBVGhD7ZnLkYMwDIapix7SBtXk QDWpI9cMFeSWDrzIxkaWH7KNYc2MmcnMQsDRL316mB1EP7oHKnlgqLROX6Z7QHSYOgTVPNA8 TMuyVBPbwkJ31xOzvymYXtMgppcO+SLmcRDjrGF6iWkYhTk9lQz4LWxL2Y81o+c1iWHVA5/d n7ymXPubgWmZRzHsJK1KKUxwaRbjOK/fnH0ch6klPQCF7VvefyX2NwITBG8SpihtIOlswo4A x+RkF+823x0EJoAYMtuCPbZyO3okSFtVGiwf17e/CZjcLAChnsoEl6FkR6uTAuEYcAimDaRk jmQBpVX2iJ6ydMBP5VamUvsNTO/3GxG80/x8Pne7UO9Np5xzRgCaEExr/Tp/dtIwBcDUlWrL eBu09vQ4MEXjWG6/hOn3+0mQACj4PB4P8/f3+1U0SAfurchPLwdOQksxt8RFpVQKu8Tjcs+1 LAWRag906CcwS7/ge0Lz1nE9Jd5VxRzpZeNYbr+BCYDSBziRPbBR22A8o/5sBxsHB89GUmqg 0uRmCGtxxg3IobStwjkh2d71VNbDtNmUhIm2OQLXkXg41Hw+H5mR3GFVpk2wmVNIAPDQ7Fa0 8kzgbExxtH8NbFMIav0khec8PZze0PcxmGrGw6FGz05Bw828gEo7pds69znb3bm5A3MoiFfO TJsX5Izhe8flszG3op6vxwuTL45qniHv9zQJfDyKK5NVDlmYyLxCAhOav+R1uiW/ejdneFo1 WLvI8K6xrp7SerQ/F9/NuTCX2s/3s4gWMyuwMNE5iS6anp3XvGdiAsi+LriXHnvmi82xrl9w PNJhcioCclgUJrWbCM1Tpoh6380Q4y97Ax6BiQVJPZu02/0PPbE4Itkl9qfDpB3k2zIzMKmW GNpq2z05vOVPz/bjjSG8gmm9Ro/S5dqtZowW9dgaQv/vzLc/C6Yzg9TXvr8HOkz3j2EzCjpM zYTi/oZ0mO4fw2YU/AE1A4s/ipVt+gAAAABJRU5ErkJggg==</item> <item item-id="333" content-encoding="gzip">H4sIAAAAAAAA/4xT3U4TURCes9vtbreFUqQVupUiRVAp2J6iEa4qIYZE0QQfgCztCjVCsSyG yz6Br+CNj2C8N3phjPGV6ndm2oJeeTaz87PfNzNn9pwMESnIK4jPto23F73bj4463VOHzNqA pNrdlsQSHNs0sJPWy8M3USvmCO0z38I7eX58tt29lPBziIvA/hi4B3kM+fGMKAP8o70r3yzt SlMWWTYb0+PiT+K41zm8iCPFyC1Ilq6vxNbiX77DCRJxL4oCSQ6ZOGMzqee+EvUdV3+EbiY9 0W5KtOeLTqV18ifRtp/RForFaTCVU6d1ekh1aiCddn4hT3pSvk8Q2cqqUw29ceQzIpZSDTOf KY58waw95WpgNpFHI5MZQI4L9lPT2uyqmUPoBpv9HDc8o/1vcLw86+ZMQU//hs7f5KTtAhpz vtvr6OqUIqJZ/QEb7Rdojr9/mjVt8D8oMrGfD4RYHBG1EEtCLNItIZbGRJoX5kxZmPMjZkOY C8Kcp9vCXLhi0qLszq3IWBeXRFfuMPT9Eg8JQ1uWEY19WhFi5a6MZQWhezKWFU58Xxz58asC TlYl++qa6Oq6VFnDYVB2jYdOD6TS2rhSTcjVulQyIS3Ja5y8IbtaHe1qg497tq0Pjnrh2fHB 627vJIxdxubNreHwThiHMoLi8FRamAvfNHM4q5Blto3nh5ed86ecR25aydwhNcTKGuAhVfr/ 6Ci5G/fCVqR3bP4UDIFlNUUqUANjKRVgS4OyslRgg1pWtgoSAxNJAEMDGA4w/SY+JQ3GsFzG wPAMxoBTJo+h+8AwPQ0M0zPAMH2Ca8GYZAyMrMEYsLSbfXFxEvU6rfCtDMTjtnchbergMcXN 9feH0/xnZa47fwAAAP//AwCatWxU6gQAAA==</item> <item item-id="334">iVBORw0KGgoAAAANSUhEUgAAAdQAAAFuCAYAAAA4dul/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACQySURBVHhe7Z3btdpIFESJSwERhUPw B9Hw5xz860USk4EGiSsQQk/UKnXp7Jl1l+2L1F29uzhF68Wp5D8IQAACEIAABFYTOK1ugQYg AAEIQAACECgJVEwAAQhAAAIQSECAQE0AkSYgAAEIQAACBCoegAAEIAABCCQgQKAmgEgTEIAA BCAAAQIVD0AAAhCAAAQSECBQE0CkCQhAAAIQgACBigcgAAEIQAACCQgQqAkgbtbE9VyeTqef n3N53awjGoYABCAAgbUECNS1BLfa/3Ypi9MrRG+XojydidStcNMuBCAAgbUECNS1BFX7dwJW 1S39QAACEIDAPAIE6jxOu2/FCnX3KUAABCAAgVECBGruBqlXptV51KK83HIXiz4IQAACcQkQ qDZzfy3PhKrNbCEUAhCIR4BANZrz6/lUcl2S0YQhFQIQCEWAQF0y3c/Dr49bWRaHW++FRbfy UvTcGlPdMlNcytdRXlaoS6aKbSEAAQioCRCos4lXgdYK0foe0SXnNR/7n1q3wlRdV6vO5naY 9t+r1+oLkZ73oS7pa/ag2BACEIAABBIRIFDngvxYMT5WlnNWqU0wFufz272l9zh9Py/KrTFz Z4PtIAABCGRHgED9eko6K9aRdm7X6+PQbTcwPwKUw7pfTwc7QgACENiZAIH65QTUq876HGcV gp3HAlZB+Xb+86eTxIH6OhzcnIPlT5jgATyAB7oe+LLML96NQF2MrDm32Q7RVqgOhekGK9TK NPy3ngAc1zNsWoBlGpZwTMOxakXJkoq8cN4e50P7LhD6ueiob2Xa9LHBCnWhfDbvIaB8wx19 AmCZZobhmIYjgZqOY/KWHmE69K0vXwTqyouSeNOlmWI4puGoLl7pVOfXEp5MNydKlqxQ585b vbocunXly0O+977HbpuZkqY0ypQW59fhmG72YJmGJRzTcFR/yCNQZ85bHXzPe0Jffz/fr+D9 +qKkuu/m/tTPe1SnpPGmmyI073U4zuM0ZytYzqE0vQ0cpxnN3ULJkkCdOysZbqc0SobDRxIE IACBSQLKOkmgTk5HvhsojZIvBZRBAAIQGCagrJMEqrETlUYxxoR0CEAgMAFlnSRQjY2mNIox JqRDAAKBCSjrJIFqbDSlUYwxIR0CEAhMQFknCVRjoymNYowJ6RCAQGACyjpJoBobTWkUY0xI hwAEAhNQ1kkC1dhoSqMYY0I6BCAQmICyThKoxkZTGsUYE9IhAIHABJR1kkA1NprSKMaYkA4B CAQmoKyTBKqx0ZRGMcaEdAhAIDABZZ0kUI2NpjSKMSakQwACgQko6ySBamw0pVGMMSEdAhAI TEBZJwlUY6MpjWKMCekQgEBgAso6SaAaG01pFGNMSIcABAITUNZJAtXYaEqjGGNCOgQgEJiA sk4SqMZGUxrFGBPSIQCBwASUdZJANTaa0ijGmJAOAQgEJqCskwSqsdGURjHGhHQIQCAwAWWd JFCNjaY0ijEmpEMAAoEJKOskgWpsNKVRjDEhHQIQCExAWScJVGOjKY1ijAnpEIBAYALKOkmg GhtNaRRjTEiHAAQCE1DWSQLV2GhKoxhjQjoEIBCYgLJOEqjGRlMaxRgT0iEAgcAElHWSQDU2 mtIoxpiQDgEIBCagrJMEqrHRlEYxxoR0CEAgMAFlnSRQjY2mNIoxJqRDAAKBCSjrJIFqbDSl UYwxIR0CEAhMQFknCVRjoymNYowJ6RCAQGACyjpJoBobTWkUY0xIhwAEAhNQ1kkC1dhoSqMY Y0I6BCAQmICyThKoxkZTGsUYE9IhAIHABJR1kkA1NprSKMaYkA4BCAQmoKyTBKqx0ZRGMcaE dAhAIDABZZ0kUI2NpjSKMSakQwACgQko6ySBamw0pVGMMSEdAhAITEBZJwlUY6MpjWKMCekQ gEBgAso6SaAaG01pFGNMSIcABAITUNZJAtXYaEqjGGNCOgQgEJiAsk4SqMZGUxrFGBPSIQCB wASUdZJANTaa0ijGmJAOAQgEJqCskwSqsdGURjHGhHQIQCAwAWWdJFCNjaY0ijEmpEMAAoEJ KOskgWpsNKVRjDEhHQIQCExAWScJVGOjKY1ijAnpEIBAYALKOkmgGhtNaRRjTEiHAAQCE1DW SQLV2GhKoxhjQjoEIBCYgLJOEqjGRlMaxRgT0iEAgcAElHWSQDU2mtIoxpiQDgEIBCagrJME qrHRlEYxxoR0CEAgMAFlnSRQjY2mNIoxJqRDAAKBCSjrJIFqbDSlUYwxIR0CEAhMQFknCVRj oymNYowJ6RCAQGACyjpJoBobTWkUY0xIhwAEAhNQ1kkC1dhoSqMYY0I6BCAQmICyThKoxkZT GsUYE9IhAIHABJR1kkA1NprSKMaYkA4BCAQmoKyTBKqx0ZRGMcaEdAhAIDABZZ0kUHM22vVc VmZ4/JzLa0er0ig5Y0IbBCAAgSECyjpJoObqw9ulLFohersU5en8HqlKo+SKCV0QgAAExggo 6ySB6uLFTsBWspVGccGETghAAAJtAso6SaCaeI8VqslEIRMCEMiKAIGa1XTsLKZemVbnUIvy cnvXojTKzhToHgIQgMBXBJR1khXqV1O0x07X8twJVaVR9hgxfUIAAhBYS0BZJwnUtbMl3P96 PpXt65KURhEOk64gAAEIJCOgrJMEajNtPRf9fMzo8/Drz60sxaXsHIUdN0FvH7fyUvTcGlPd MvPWPivUZO8wGoIABMIQIFDlU12FVf+9nm9SqpDr3LoyX2p/H9Wqs2mz/feq3fpCpOd9qJxD nc+aLSEAAQg8CBCoQic0oVWcz2/3ffZJqAKv6F4ZNEPrcB+dVeecVXKrv3vW3s3yKYDfN28k +DwKChzg8KoT8fygOxCr62lG8Oyxye16fRy2nQyz6tDs5ypxjubBPj76/DysO9a+8pPXnHGy DQQgAIHcCCjrZPhAfU7+ZKA+wq54nu9swrX6feexgFVbfedXu30kCNTXIeHmPCxTmtsbGj0Q gMD2BPpqYfO77Xv/OSqm6ij7fqYCtX69vUJtB2nr70Nh2rcKThCo2XNFIAQgAIEdCbBC3QP+ VKB+aOoenv256Gjsyt8NVqh7oKJPCEAAAi4ECNQ9ZmqPQL1/f8zbwxoWalAaZY8poU8IQAAC awko6yQn3JrZmgqz+qvUWudK3w7tfnnI99732G0zU0ZSGmVKC69DAAIQyJGAsk4SqCOB2r1N 5v2+0CZcV1yUVPfd3J864z7YjluVRsnxjYImCEAAAlMElHWSQJ2ajYxfVxolYwxIgwAEIDBI QFknCVRjIyqNYowJ6RCAQGACyjpJoBobTWkUY0xIhwAEAhNQ1kkC1dhoSqMYY0I6BCAQmICy ThKoxkZTGsUYE9IhAIHABJR1kkA1NprSKMaYkA4BCAQmoKyTBKqx0ZRGMcaEdAhAIDABZZ0k UI2NpjSKMSakQwACgQko6ySBamw0pVGMMSEdAhAITEBZJwlUY6MpjWKMCekQgEBgAso6SaAa G01pFGNMSIcABAITUNZJAtXYaEqjGGNCOgQgEJiAsk4SqMZGUxrFGBPSIQCBwASUdZJANTaa 0ijGmJAOAQgEJqCskwSqsdGURjHGhHQIQCAwAWWdJFCNjaY0ijEmpEMAAoEJKOskgWpsNKVR jDEhHQIQCExAWScJVGOjKY1ijAnpEIBAYALKOkmgGhtNaRRjTEiHAAQCE1DWSQLV2GhKoxhj QjoEIBCYgLJOEqjGRlMaxRgT0iEAgcAElHWSQDU2mtIoxpiQDgEIBCagrJMEqrHRlEYxxoR0 CEAgMAFlnSRQjY2mNIoxJqRDAAKBCSjrJIFqbDSlUYwxIR0CEAhMQFknCVRjoymNYowJ6RCA QGACyjpJoBobTWkUY0xIhwAEAhNQ1kkC1dhoSqMYY0I6BCAQmICyThKoxkZTGsUYE9IhAIHA BJR1MutAvV2Ksrjc+q1wu5TF+RrYJmWpNEpo0AweAhCwJaCskxkH6rU8n87lMzKrAG3/+z69 1/OpjJypSqPYvpsQDgEIhCagrJPZBurH6rQnUO+JWp6KSzmwhj28iZRGOTxMBggBCBySgLJO Zhqot/JSFOXraG+1Wj3VhzhPp+7v2/8+pB8GB6U0SiyyjBYCEDgKAWWdnAzUf//+/QRZE2iP P3///v3Ou28F+e2M9LXV234VvHEP+yqN8u1Ush8EIACBPQko6+RkoP769av88+dP+ffv3zpI qz+rn//+++/FqDr0Wq8eW+c81xCs2+u0NRDY1XnUwQuX1mgw2FdpFAMcSIQABCDwQUBZJycD ta2uT1gVaPVh2GvnoqEqAO/nNy/164+f9wuI2odxO+HZd26UQN3VKLxPIQABCDgSyDJQqxXp qLBu4NX/bq0eOyHZXllWFyCd2mk7+5Dv40pfVqiONkczBCAAge0JZBmozSHfweH3BurQbS/V 6rR7cdH4LTJl3X73AiTOoW5vR3qAAAQg4Esgy0BtLk5KF6jvFzm9X73bF5SP370fOu4Gs++k f6NcaZRv9LEPBCAAgb0JKOvkonOoo2AWr1DHL2AafUpSI4T7UPf2Kv1DAAIQyJpAgEDtnPvs DcbOk5J6pownJaX7PJT1OwJxEIAABL4kECJQ75E68LCGF7XJZ/kGfkpSRUlplC+9zG4QgAAE diWgrJMscXad6nWdK42yTil7QwACENiHgLJOEqj7zHGSXpVGSSKYRiAAAQiICSjrJIEqntyU 3SmNklI3bUEAAhBQEVDWSQJVNasb9KM0ygbyaRICEIDA5gSUdZJA3Xw6t+tAaZTtRkHLEIAA BLYjoKyTBOp287h5y0qjbD4YOoAABCCwAQFlnSRQN5hAVZNKo6jGRD8QgAAEUhJQ1kkCNeXM idtSGkU8NLqDAAQgkISAsk4OB+r9m2LuTw7Q/yRBGKMRpVFiEGWUEIDA0Qgo6yQrVGP3KI1i jAnpEIBAYALKOkmgGhtNaRRjTEiHAAQCE1DWSQLV2GhKoxhjQjoEIBCYgLJOEqjGRlMaxRgT 0iEAgcAElHWSQDU2mtIoxpiQDgEIBCagrJMEqrHRlEYxxoR0CEAgMAFlnSRQjY2mNIoxJqRD AAKBCSjrJIFqbDSlUYwxIR0CEAhMQFknsw7U26Uoi8ut3wq3S1mcr8e2yfV8f7bG6efnXHZH qzTKsUEzOghA4KgElHUy40C9ludTK0SqAG3/+z771/OpPGymdsZbfbg4dQarNMpR32yMCwIQ ODYBZZ3MNlA/Vqc9gXpP1PJUXMqBNeyxXNIzfqVRjgWT0UAAAlEIKOtkpoF6Ky9FUb6O9lar 1ebQZ/f37X8f1yKsUI87t4wMAhDYjkBWgfrv37/Webwm1E7l79+/HwTqldPr90kOwfatRvt+ d1+bXooDH/Z94/v5wUFplO3sTssQgAAEtiOgrJOTK9Rfv36Vf/78Kf/+/VsHa/Vn9fPff/9V ZzHvK8dWoa9DL8GKsb4Yp3MRTm+gPs6jDl64tN0c7dByh/VdgdIoOwyYLiEAAQisJqCsk5OB 2h7Nh7Aq+DpL0ueFQlUA3s9vXu6B11yp+r5p+zBuJzz7zo2GD9TPi7CURlntahqAAAQgsAMB ZZ2cHajVinRaWGsV9XMo+Ll67IRke2X5cX5w9iHfnVaoA+E+6ZWRw9aPDx2tDxYfHypYoU7y ZQMIQAACHQLTuZUO2exAbQ75Dnf9OJ/5DNBueLz9uxsO07fIPM7Vdg8n73EOtVlZf94XOj4t /ftVHyyaVX7771Vb9QeN3ouxHj0pjZLOcrQEAQhAQEdAWSdnB2pzcVI/hkdYvJ3LnAzU16Hg R2i0w7IvKB+/q7Z9HTr+XLVtOU1NwBXn88c9sWP9Du/Xdw56flArjbIlV9qGAAQgsBUBZZ2c HaiDg/05tPtxde9koI4Hx+hTkhox4vtQb9fr457XhYd8B/f7aGfZBwSlUbYyO+1CAAIQ2JKA sk6uC9ShMO0LnU54vF2d2xuMncPAPcR3e1LSx+HrniuS+x44Mfohoxrg8kB9HRJ+rfi3NCdt QwACEMiRQF8tbH6n0rsqUN/P8XWu5p0VHn0Pa3gNffJZvns9Jal3ZfkTqj9XN/c+vWkWk/m3 HSk/eakMST8QgAAEUhJQ1slVgZpy0FZt9R7y/bnoaCzkCVSraUYsBCDgT4BAzX0OUwVq74Mx uCgp9+lHHwQg4EOAQM19rlId8q3Omo7cNjOFQWmUKS28DgEIQCBHAso6ySHfbxyQ6qKkuu+R J0ZNaFMa5RtM7AMBCEBgbwLKOkmg7j3bK/pXGmWFTHaFAAQgsBsBZZ0kUHeb5vUdK42yXi0t QAACENATUNZJAlU/v8l6VBolmWgaggAEICAkoKyTBKpwYlN3pTRKau20BwEIQEBBQFknBwP1 /sjc+3NzP4e79e8VgI/Sh9IoR2HGOCAAgVgElHWSFaqxt5RGMcaEdAhAIDABZZ0kUI2NpjSK MSakQwACgQko6ySBamw0pVGMMSEdAhAITEBZJwlUY6MpjWKMCekQgEBgAso6SaAaG01pFGNM SIcABAITUNZJAtXYaEqjGGNCOgQgEJiAsk4SqMZGUxrFGBPSIQCBwASUdZJANTaa0ijGmJAO AQgEJqCsk1kH6u1SlMXl1m+F6htfztfANqkevJH19IWeGwYPAQjkQUBZJzOuyNXXmrW+bLvn S72r7xKNnKlKo+Tx1kAFBCAAgWUElHUy20D9WJ32BOr927nLU3EpB9awy6gbbq00iiEeJEMA AhCQHsnLNFBv5aUoytfR3vaXcHd/3/53LPcQqLHmm9FCAALLCSjr5GSg/vv3r0747s/v378f I6tWic/XW4dol4/7tUffarTvd/e16aWIe9hXaZQ108m+EIAABPYioKyTk4H669ev8s+fP+Xf v3/r4Kz+rH7++++/suyEXHWY9pTipGYd0p1w7g3UKs9Pwxcu7TWDon6VRhENiW4gAAEIJCWg rJOTgdoe2aSwduhVf7+f37zcA69Zwb5nbfswbic8+86NEqgfJpucj6S2pDEIQAACfgSUdXJ2 oFYr0ilhbyvUOgBbq8dOSLZXlh8r29mHfFmh+tkbxRCAAAR0BKZyK6WS2YHaHPLt7fwnPE+n 1gVC3VB8+3e1Ou1eXDR+i8zj8HL3AiTOoaY0A21BAAIQOBqBLAO1uThpHHYrKCcDtXuhUzss +4Ly8bsKzuvQcTeYj2aF8fEojRKLLKOFAASOQkBZJ2evUOfCfT5sYTJQx68IHn1KUiOG+1Dn TgvbQQACEAhJwCdQPwJt7gq1c+6zNxg7T0rqsQJPSkr+eSjkG45BQwACxyXgE6j3OagvKHre hzr3HGo1eUMPa3hN7OSzfAM/JamipDTKcd9ujAwCEDgyAWWdZIlj7CSlUYwxIR0CEAhMQFkn CVRjoymNYowJ6RCAQGACyjpJoBobTWkUY0xIhwAEAhNQ1kkC1dhoSqMYY0I6BCAQmICyThKo xkZTGsUYE9IhAIHABJR1kkA1NprSKMaYkA4BCAQmoKyTBKqx0ZRGMcaEdAhAIDABZZ0kUI2N pjSKMSakQwACgQko6+RgoN6fmrv6/7E57Gs98Jx/NXSlUb4SyE4QgAAEdiagrJOsUHee7DXd K42yRif7QgACENiLgLJOEqh7zXKCfpVGSSCXJiAAAQjICSjrJIEqn950HSqNkk41LUEAAhDQ EVDWSQJVN6/Je1IaJbl4GoQABCAgIKCskwSqYEK36kJplK3GQLsQgAAEtiSgrJME6pYzuXHb SqNsPBSahwAEILAJAWWdJFA3mUJNo0qjaEZELxCAAATSElDWSQI17dxJW1MaRTowOoMABCCQ iICyThKoiSZtj2aURtljfPQJAQhAYC0BZZ0kUNfO1o77K42y4zDpGgIQgMDXBJR1kkD9epr2 31FplP1HiwIIQAACywko6ySBunx+stlDaZRsBo0QCEAAAgsIKOskgbpgYnLbVGmU3MaOHghA AAJzCCjrJIE6Z0Yy3UZplEwRIAsCEIDAKAFlnSRQjc2oNIoxJqRDAAKBCSjrJIFqbDSlUYwx IR0CEAhMQFknCVRjoymNYowJ6RCAQGACyjpJoBobTWkUY0xIhwAEAhNQ1kkC1dhoSqMYY0I6 BCAQmICyThKoxkZTGsUYE9IhAIHABJR1kkA1NprSKMaYkA4BCAQmoKyTBKqx0ZRGMcaEdAhA IDABZZ0kUI2NpjSKMSakQwACgQko6ySBamw0pVGMMSEdAhAITEBZJwlUY6MpjWKMCekQgEBg Aso6SaAaG01pFGNMSIcABAITUNZJAtXYaEqjGGNCOgQgEJiAsk4SqMZGUxrFGBPSIQCBwASU dZJANTaa0ijGmJAOAQgEJqCskwSqsdGURjHGhHQIQCAwAWWdJFCNjaY0ijEmpEMAAoEJKOsk gaow2u1SFqdTWU1s/VNcytuz31t5KZrXzuX1Tc/Ya2XdFv9BAAIQgMAwAWWdpCIrnHg9l6fz e1Q23V7P9zD9ea399+r1sdeq15VGUWCiDwhAAAKpCSjrJIGaevZ62quCsbi81qSvTa7l+VSU z5fqlWyzSh177dGC0igCTHQBAQhAIDkBZZ0kUJNPX7fB6rBtKzTbL78FaL0mfQXs2Gs/bSiN sjkmOoAABCCwAQFlnSRQN5jA9yYfIVk8z5MOrUi/C9TnednWOdrNh0QHEIAABDIj0FcLm9+p pBKoW5OuV5rtFWoVsD+HdVmhbk2f9iEAgeAEWKEe2gAzD+tyyPfQLmBwEICAhgCBquG8Uy/t i424KGmnSaBbCEAgCAEC9UgTXd0y87xy9z6wauXZug+V22aONNmMBQIQyI0AgZrbjKzUc7sU r4c6tMO1brdapQ492GHsNW6bWTkt7A4BCAQgQKAGmOQUQ1QaJYVe2oAABCCgJqCsk1zlq57d hP0pjZJQNk1BAAIQkBFQ1kkCVTat6TtSGiW9elqEAAQgsD0BZZ0kULefz816UBpls0HQMAQg AIENCSjrJIG64URu3bTSKFuPhfYhAAEIbEFAWScJ1C1mUNSm0iiiIdENBCAAgaQElHWSQE06 ddrGlEbRjozeIAABCKQhoKyTBGqaOdulFaVRdhkgnUIAAhBYSUBZJwnUlZO15+5Ko+w5TvqG AAQg8C0BZZ0kUL+dpQz2Uxolg+EiAQIQgMBiAso6SaAunp58dlAaJZ9RowQCEIDAfALKOkmg zp+X7LZUGiW7wSMIAhCAwAwCyjpJoM6YkFw3URolVwboggAEIDBGQFknCVRjLyqNYowJ6RCA QGACyjpJoBobTWkUY0xIhwAEAhNQ1kkC1dhoSqMYY0I6BCAQmICyThKoxkZTGsUYE9IhAIHA BJR1kkA1NprSKMaYkA4BCAQmoKyTBKqx0ZRGMcaEdAhAIDABZZ0kUI2NpjSKMSakQwACByVw Ksf/r4atrJMEqrHRlEYxxoR0CEBggMCcQBqCN7XvnNfHJmbt/k3byjpJoBq/1ZRGMcaEdAjY EpgKFUUg2cL7Ea6skwSqsVuURjHGhHQIfEVgKszmvE7gfYU+6U7KOkmgJp06bWNKo2hHRm+5 EJgKjbWBkXP7ucwBOtYRUNZJAnXdXO26t9Iouw50w85zLuhT2ua8vjbwNkRP0xCQEFDWSQJV MqXbdDKnoE5ts7bgure/zczQKgQgkAsBAjWXmchch9IomaNAHgQgAIFeAso6yQrV2IRKoxhj QjoEIBCYgLJOEqjGRlMaxRgT0iEAgcAElHWSQDU2mtIoxpiQDgEIBCagrJMEqrHRlEYxxoR0 CEAgMAFlnSRQjY2mNIoxJqRDAAKBCSjrJIFqbDSlUYwxIR0CEAhMQFknCVRno53u08dPGgbO PkA7BCAwSIBAxRyzCCiNMkuQ80Z8MHl8MOE/CByMgLJO8g4yNo/SKMaYkL6EAB8s+GCxxC8G 2yrrJIFqYIghiUqjGGNCOgSWE8jhg8Vy1ezRQ0BZJwlUYwsqjWKMCekQ8CSQQ6jnoGHl7Cnr JIG6crL23F1plD3HSd8QgEBgAitDXVknCVRjnyqNYowJ6RCAQGACyjpJoBobTWkUY0xIhwAE AhNQ1kkC1dhoSqMYY0I6BCAQmICyThKoxkZTGsUYE9IhAIHABJR1kkA1NprSKMaYkA4BCAQm oKyTBKqx0ZRGMcaEdAhAIDABZZ0kUI2NpjSKMSakQwACgQko6ySBamw0pVGMMSEdAhAITEBZ JwlUY6MpjWKMCekQgEBgAso6SaAaG01pFGNMSIcABAITUNZJAtXYaEqjGGNCOgQgEJiAsk4S qMZGUxrFGBPSIQCBwASUdZJANTaa0ijGmJAOAQgEJqCskwSqsdGURjHGhHQIQCAwAWWdJFCN jaY0ijEmpEMAAoEJKOskgWpsNKVRjDEhHQIQCExAWScJVGOjKY1ijAnpEIBAYALKOkmgGhtN aRRjTEiHAAQCE1DWSQLV2GhKoxhjQjoEIBCYgLJOEqjGRlMaxRgT0iEAgcAElHWSQDU2mtIo xpiQDgEIBCagrJMEqrHRlEYxxoR0CEAgMAFlnSRQjY2mNIoxJqRDAAKBCSjrJIFqbDSlUYwx IR0CEAhMQFknCVRjoymNYowJ6RCAQGACyjpJoBobTWkUY0yT0uE4iWj2BrCcjWp0Qzim4Vi1 omRJoKabN3lLSqPIByfsEI7pYMMyDUs4puFIoKbjeICWbuWlONWfsE6nc3ntjIg3XZophmMa jurilU51fi3hyXRzomTJCjXdvCVv6Xq+B+n5EaPtvzcdKY2SfHAZNQjHdJMByzQs4ZiGo/pD HoGabt4St3Qtz6eivNx+mr1dyqKzSuVNlwY5HNNwVBevdKrzawlPppsTJUsCNd28pW3pI0A7 AXvvTWmUtIPLqzU4ppsPWKZhCcc0HNUf8gjUdPOWtqWZgfo4v8oPDPAAHsADQx5IW5yHWyNQ VaSX9jMjUJc2yfYQgAAEILAdAQJ1O7brWiZQ1/FjbwhAAAJiAgSqGPj87qYvSprfFltCAAIQ gMDWBAjUrQmvaH/qtpkVTbMrBCAAAQgkJkCgJgaatrlqlTr8YIe0fdEaBCAAAQisIUCgrqGX xb7jT1PKQuLuIpYwGtm2Pq/dupKyuJTNbcK7D3E3AUvY/ojsuad6N/m7dZyIG57smcEFbDv8 fp6j87UrCNSv0eWxI4eFp+dhCaPRba/n55OrpnuNscUStg8izVGXz0dpxiD2Q2HiKWifLAa4 4ckPVPM9+WD6DNGKZfthOl8YkkD9Alo+u3Dh0vRcLGE0vm31Ri2ej66a7vn4WyxhW5a3S1Hf M12czx9P/To+q/YI03HDk13nLGBbBejbUabHynbNKpVAdX4nc2vN9OwtYTS6bfVmaz0Kcrrn 42+xhO2dxu16fRwij37INxk3PPnxJlvI9n3/zor1i3cwgfoFtGx2WWWebEaxrZAljEa3fXzy LZ7f/kO4fgbj5+MxeyeXQO2s0L/lhidTBmp9BGXldREE6rblfNvWl4TFtkrybX0Jo7Ft69fa IVoVs9jnAQnUL22/xJPtLrr74cnPCfiS7eN0xPr3M4H65Xsii92+NE8W2lUiljBasm19cU3w VeoiXq0JZ4WaaIU6cf5Q9R7LqZ8vPPkI0zTvZQI1JzMs1rLgBPzito+ywxJGK7Y9Cq5F41jC i0B9EdiKGx/yHleRj3/t5fuiP83KtGmTQF1UQPLbeP4l4vlpVylawmhw2/qS+tYhoeqT8Mrz Larxb9nPErZPHdFXqHcQSbjhyV5rz2b7cch8/TuFQF3PcOcWeJrS9AQMM/q87WB42+a2j8dX RK0/3zKt22GLJWx/xkOgVpE6+BS0wVtherjhyb73yDy2dfD2fPUlt8041B00QgACEIDAoQmw Qj309DI4CEAAAhBQESBQVaTpBwIQgAAEDk2AQD309DI4CEAAAhBQESBQVaTpBwIQgAAEDk2A QD309DI4CEAAAhBQESBQVaTpBwIQgAAEDk2AQD309DI4CEAAAhBQESBQVaTpBwIQgAAEDk2A QD309DI4CEAAAhBQESBQVaTpBwIQgAAEDk2AQD309DI4CEAAAhBQESBQVaTpBwIQgAAEDk2A QD309DI4CIgJ8E0yYuB0lxMBAjWn2UALBNwJEKjuM4j+FQQI1BXw2BUCEGgTaH8PZVFebtCB QCwCBGqs+Wa0ENiWACvUbfnSetYECNSspwdxEDAjQKCaTRhyUxIgUFPSpC0IRCdAoEZ3QOjx E6ihp5/BQyAxAQI1MVCacyJAoDrNFlohkDuBOlC5ICn3aULfNgQI1G240ioEghK4lZfiVJ5O p/J8DYqAYYclQKCGnXoGDgEIQAACKQkQqClp0hYEIAABCIQlQKCGnXoGDgEIQAACKQkQqClp 0hYEIAABCIQl8D9MqHjhbEEKCwAAAABJRU5ErkJggg==</item> <item item-id="335" content-encoding="gzip">H4sIAAAAAAAA/+xXaWhTQRCelzTpS5u0SWyTtlatsYdRY+2ztl5ItfpDtC2mVRF/aNs8NZom tX0e/SNRUFTiAaJF/OGBiCCK+seCigeiFEGrf0VpwT8eFMULFBtnd16fL0G8/4idMHvMzuzM fm+zO2sFAAG5HjmNtw1YpihtsjwcGEnIYktzXdNauVnhEvAjz0SjKqNk/ggQTZHO3MSeSXJh FTVLsRtYpUq2Kq4tqn2L5LyHWmKaZMgECFgAzKZbxolQBmGQAdKlva2oZgErHz+ZDmAQuEMb zStmkBtbpgSoUJWBQ3YKIMMh8XjsAE4ev6V6Sf289fMVuUXgMViRzXqBDXkYVxXl9X55dTAS NvGBcmYdiDSTLIXLpmm4mNvXtM6JbCYYFiKnosCvAVODvBJ5HTa6sF5cC7AR6801NF6RSmAb wJDFG07N02xFaQs2bVBkim86ciboKXu6J6HvGsTXTfi6cghfdy7hm5OEbx7hmwPDCd88Dd98 6dAtHHGPIFzzUTSSN6P5CR5HcQisCG11pKUpwsCkATsDAsVfJSz0mbidmrDeioufi/Vt5Hic aaNqXUiuDgXlsMJtBMKdls5LtO257+g9fiGvD5JoFhhhIG4Bs04maNYUjkHtD8SZR6L4EP1T 9Bl5QMdD9H+RHyL4U6AA5uEJpkAbdCQfBd8lF5i0/zw7C7bBFMHjeOQ4EAXbktumPL1ub+Wy IrH2rmDE9nX1IKlG78yvzMv2X/LNCG8iQb+en7XbKfxY52fpd/z/TfoT/3RRArBvwu5hdj+z M3/oLPg/yIRJWiomTJuyaD+kJeyMhA7mijzFcJLIpTYDEOS7J1O1NqomQZ05ywxZqvY2nrhD 95OTflbUYHZcgLwGz4IQ/grQWQhWYy0l7Nio4ds7+f0fzm0//87NajFG9SCJMcyyWKMh1l3W 3OM4tQeOFd43PRjMhsRkrFRKxI8FzXNbZAY1XrYJPLboue/8C//r3O7cl58qXf1H3Y8OH/9w 5FzPvkszaj5Pfla8q7Pz6aSrGU9mt/adzX5zDXxHsxsC7w5mvZr1+EraxQWrVgmN47oXxR4u 7b+6I1054V1+OeIVj5wsWXy469SWhhmOnu3WO70ju8KBiqBzX33Y23d6d8W6DvpaBZSI2lmM AqXM9XJbsDG0Ym6wvTXU2FEbCci0kDq+mtFkYCOZR31zjKGc2JOUExdSTuyBIsqJC7WcuFh9 c5TQm6N4LOXGJTjkpTdHyTh6c3jZXhtPXr08zKo6ECaQoJhH4VMnmUiT+FBUSpP4JtEkpWyS MrIp1SaRdJNM/mpbrtpOIdtyZltBquWabaVucKpukPW/AAAA//8DADQKTlv0DQAA</item> <item item-id="336">iVBORw0KGgoAAAANSUhEUgAAAFgAAADqCAYAAAAml4JKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAwtSURBVHhe7Z3LcdwwDIa3ru0hbbia HFyN68g14wpySweb1ZsE8SIlKIQEz3gm8UrU6iMEkfgJ8PGKH1MCD9PWo/FXADY2gu4Bf39/ GyOwbb4rwF8fj9fH13LD36/P5+P1/FwAf70+Hs/X+l9bLoe13g3g78/n67HRfd8gBDz86fP1 fH6+P/Hz0wngwTo/XqvxznAfj8dr/E3AD1a+WXX/oLsAXFrvAA6x4OHPXx+vhyMrXgH/+vVr shbw+/Pnz9JMhkc1s7g9lkSApAC/7dyTLx4B//37dwQ7QB5+f/z4sf77z58/Ob3BgsZOSB/p PYAHYOnLjXrJ5X/P3DVy+cGVYAYDXc6eb645dwU8QF5+hi+B/Uxf+v0m/wIWPL98PpObygFM EPGOoSyy1rI1t3v+MQXJ379/jyDYH+gixv8nLx/gJ9MXU+lvb2DBKczFF9cDTlxG1gHQQvER QzkyoCzYoQ9OYbZbMAcY+sN8woCPIoZh73tsDIZpbkcRVd4JdREcYOmFqLfKe4yDqwAPQ1fa P69jg2Imh3T5bWZylYDfiJNRBBVPmHwuPfzSW3nV02h8cBczOeN7/K/NB2Bj/AE4ABsTMG4+ LPgswGRgBImw3eHYo7ivFizGH466ooN2jmQRgJEOD8DGT0EAvi/gdErMqB6jKpIGgOB5nDw/ Tanhi3adYq+KyywOQAk6/ZzQ9vq14HeM4iNZuDCGG+FNzMH5DDB2HilJMTGLse2tc6Zw59aR 6Pdx7YMLcXQJ2MCgO7hLVlSlAVNrKybrFq6ZfIV+LbjglFpwCoa/WT7mW7qIxT2wi1dGGes5 SluLe6HWVzgBnGttOTQc8Kpg1CjWo0+d3ULh2xPZifD7WHjUAeAJ7mYh+ItpBQP9YNW6i9xl bJ20WeoIEVmwQj0pnQOmVOKUouQPa4Lr3PWS6xQWDJQWHz5YA7d84QxWlz2qAMa4HmMZjQyf JQfTIwNsdWbyVIERR9r9/VpwNgYFj2jmBoAFr0M3fHFKBpg9NndFpX/Nx9uUPNUvYOMZ1lnN B2Bj0gHYK+A7BNK193hUH0Y82HUs4igzOLmd8MHGwANwAMYInBGMX66LTcWV13834dOCTwnG T/EFNFVBc/25f3wCFiNmRwTjOQvWB/UvATgP0hwVjNcD5uSjCwC2DsZrwqH0WmTngM8IxnOA 4fXLF7JjwJp4scb6pKx7qg3N9b2OIuY0AilDE6q/VcH41RjpYZp8fa+AzwjGj9Jbvihl1QXV 1/cK2Hj2dWTzjn3wkRjs2grAdmzHlgOwV8DaaP8djjuqD0PRCEXjKFvStxM+WM+q6cgA3IRN f5JTwEpFAVmkN6GRYhRJAY8stw/GLeR2fALWKApYekE2/ZUKe/BBdVLtAKf5BLxb0ZAtD14C X/8rt3MJwPWKhgwmA0wu4pbbuQDgekVD44NTwHSex+UBtyoaMpgVMJuCILfj2II1igKnRuhe cnyW0mUBa+BywzEcTLb6fThdTKC5KmC1olACIFWKZQi3ZpNS1QLnkTSldlxymKafWJ1+pGMf fDqrpgsG4CZs+pMCsJ5V05FmgO+gVGjvsalnkJNC0cCgSAWqK+gH4ABcYS4HHWrmgw/6fu6b 6Rgwp1rAz4DSIBUzwrqtVv0As0l/yeCcasEVPhKKGaGPRK36AcsXuCxnIKoWyQFJUIYvZoSa 7rwbTEXkjSg347SkzASFy4Pg99bggjaafA4M/FxLIi3s4a5uWmZseHgSLXzEFTMCBqwprkSp H1OHb5Wn/PngFYacBwHjtmQxowywtrgSYsFFUSQ6Pt3xKGKgURNYp3It5KD4xF3vg7HNUBxW naLhSrkWm6GW/rdQLbInBZOREPDFqMGjBXOqxY5iRjWAOfVjrJ2WrPpx7IN9T+Y698G+4Q7f PgAb92EA9gpYG+2/w3FH9WEE3BGS4SKOMi+inQAcgI0JGDffsQXvUDTG0EIy0yK3V+eUkdbP 8h7rF3CroiHEjvOAGrKVxFLzXVBNii0oiFrx/QKGjy63lDT7TBs9Q3yD+hrgXOY8N4C1isZU wF63BQNEzC22bv3MCeA9ioYcU+a2hGj9bOk8B4ArFY2KLRgKJ3E/FyFb36ZGUBuM0FswlF54 uB6njNR/1rEFtyoawOKB+pAG3DllpPUz2Gn9Am5WNBZ9Dd8aQr3NA6eaCFtJpJD7BWw8wzqr +QBsTDoAB2BjAsbNm1nwHZQK7T0e1YehaISicZQt6dsxcxH6r3DtIwOwcf92DLhV0eDOK4LM 5MbV2BLYct9QOfbcL+BWRUNTkWrlzGxcLQT8r1d1yiCU+E5MGC1YUyr88lWn1IpGoeYgW7YD CxaXoV6/6lSFopEB1saT55PSjauTdi5edapS0VjBKM4rJY3SZVy76pTWAqESoT2vkD3HXchT n3zhqlP7FA3qxVW1cfWlq061KhpCRSq1ojGPMNa9M4Cxs/kbybH9joONZ1hnNR+AjUkH4ABs TMC4eTML1kb773DcUX0YikYoGkfZkr4dMxeh/wrXPjIAG/dvx4BrFA1QhkCZCb/Uo9hetFs7 nKKhUzumnusXcK2isSS6VFSEGiqlFLkWVMJMY8C/X8CCZJN9nN58RUWoMlr5+XoSySwXTyHg q05h+2g8FBWhyj4k1I9G6+3bRaiViTKsqa0IlQOmw6Ot1usEMKdMIJ9VVITaADPX2GG9DgBz ygSj04Fou6xK0MryHuvtHHA93NEihYpQeVEkQVraab19A+aUCWkfDWYcXEhG2X5xU17H9ADI JRkptSP17X6GacYzLqvmA7AV2bndAByAjQkYN29mwXdQKrT3eFQfhqKBkDSz4KN6zXs7Adi4 BwPwfQG3KhpctSiCJluhqszDuL2ioa0INYUu6BXw2jwMbu9PPy6iNfCycwG1Zg9mLuLmBjBn aZIVkkEZVYUqIVVLWEPsBHB96JKrFrV64kK/w67DA+ZjzT2ryhuFcVk/boWKPAzOwlQVqhjA 4gr47gHXW245ToD5G8kRyA5cpUXSgCXr7Tvgzm5S0pq/MZX4WhXn+Rrr01GoIQMiArDCevsG 3KpoCBWhyn008nEzzDBKAzqbm+J3DQ9Fw3j2FoAD8IkEjC/lZBxsTMGweTPA2mj/HY47qv9C 0QhF4yhb0rdj5iL0X+HaRwZg4/51CphTOxZixBRXmb9x/RwNzrKE3ApSiajJ34DXbwz4O7Vg cPfozSMWvCN/o3Wd8CUA44oG5iL0O3pnXdhovX1H09QvHyp0ifvglvyNVuu9AGApfwNJUMzy 4IQV7gOhHdbrHLAEh1jPUJW/we/B4VzR4HyEBJdQIqryN/Zbr18L1lSWSnIvMsFUm78RORrq t+B/PfASw7T/SlC4eAA27p0A7BXwHZQK7T0e1YehaISicZQt6dsJH6xn1XRkAG7Cpj+pY8Ct qkVljkY2s0v37GzNEcnh9wt4h2qhztEAsYlJJpojcK1Vr4Bx9wtYJdkIy/uFcOMINIuuMftq NIYt3QDWqxZ5z3AhRQowtpq+NUfECeA61WIy3OFxHyqYgKB7yp/Q6ErA7SvtHQCuVC1UrmU7 CJPn85i8dH0qf2S6RueApcC6wgePKQDUjt6wN2B77Za7tNwxYAnucAu4LJRZIHADZQrBggKm BeyH27cFt6oWVTkas4w/qx9lx2y7iy+BnfEYqepV8mB0bMH62VLPRwZg494JwAHYmIBx82YW rI323+G4o/owFA2EpJkFH9Vr3tsJwMY9GIDvC1hSNNLPuX00uDgEd418lpfN5MZZ+sccrUtr Dpe91a8Fs4oGCIwPN7vMczmVAom00ftoSMH3pOPQOhMuomkJkUxRAEGe5LMqlYINbTKAK3I9 +rVgcPOZogDlGwVgTTlwdD+OZBnsFgzS53o4AQxCh4U+lsR81SoFFgtm9rkHu4Zrcz0cAEYU BcaCB2yySoHD5a08cRkVe3V0Dlipxe2q7qcJ7C/B/cnCSz9P53J0DJi7cWYUkRlnWbxIvY9G OjJZngpqxy+mQla/gEXVgBoHMyrFOHxNynq17j5+iXGw8QzrrOb7teCzCBhfJwAHYGMCxs2b WfAdlArNPR7Zf6uicWSj0dZGIAAbW0MADsDGBIybDwsOwMYEjJsPCw7AxgSMmw8LDsDGBIyb DwsOwMYEjJsPCw7AxgSMm/8Hs09OUBJdvFQAAAAASUVORK5CYII=</item> <item item-id="337" content-encoding="gzip">H4sIAAAAAAAA/+xXzU8TURCfbdl2Cy39EFssqLXyISgga0FFNNXCgUSoKYqJFwPtBoqFQlkj 3ConD2hMTDxrYrx48uZRDSExJoJnE4L+AcaDcjCROu/Nsuw2UVGMiYHZzPuYN/Nm9rdv35vn BAABuR+5lLctWJaoOUWpAkYysjSWjA+NKkmVSyCB3IlGUats+wqQL5GfvMSeKPuxytvkuRdY 2WVXlGtLWt8h+96gllQqW9wAKQeATZy3NqODcVAAyuQ7E6jmACcff1QGYBG4QxfNK5WTG5db BlSIluOQhwIo98o8Hg+Aj8fviA30d0/2qMqYwGNwItuMAhfyLq4qKZMJZTidHRf5QIRZp7JJ kpVw2UkdF9vUyMS57DTBcB7ZjoKEDkwv8gryNWzE0NGlPoBV7E/30vgpO4FtAUsFb/h0T2dV NZceuq4qFF8HshuMtLsjbOr71/ENEL7+SsI3sIfwrSzCN0j4VkIV4RvU8a2W78/jSGAv4VqN on28ma82edzPIXAitLHs2FCWgUkDHgYEijckLPROXE4fsL6JLx/HegG5UGDaqBrPKLFMWhlX uQ2+c7u2DrUSbZcWvSsPnwbfQxGdASusFRxgM8gE3ZrCsWj9tQLzSFTYof+KviGvGXiHthcl IIuPCiHoxh1MhRzMFG8FPyU/iPo/z/aCWWgTwt533nt5cA0siEGj7oWeK7VS32vBiu3n2kYS Q+/Mr8LLqd/yzQhPIsH4Ppu1uyX8Wmez9Cf+/yZtxT8dlADsm7BzmJ3PbM/f2Qu2B4mYpDVK ADcqaD2UmlaGqYO5Ik8xfCTya80UpPnqcWvWVs0kbTBnmeEz5M8F8wq9S04+sqIXs+MQ8gju BRl8QtCF5TDWsmnFnv7BSl7d4tyeT18CrA4tU71OoWXMsljj4tyr1uSS9/FteFCzKL5dz4ak Yqw0MuPH/jGe2yIzqPGwNfG/pDnPZXEUZvlvz79WiBJRD4tRoJS5X8mlBzNXu9JTE5nBmb5s SiHbOH+bA2TgIllYu3McpJw4XJQT11BOHIZayolr9Jy4Trtz1NOdo+4Q5cb1ONRAd476Rrpz NLC1dpi8NvAwo3EQjpCgjkfRpE3STJM0oaiFJmk6SpO0sElayaZFn0Q2THJswzai2baRbYTZ tpNqRLc9bhg8YRhk/e8AAAD//wMAXXYHiPQNAAA=</item> <item item-id="338">iVBORw0KGgoAAAANSUhEUgAAAGMAAADqCAYAAAC2hPuFAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAiISURBVHhe7Z3NceMwDEZdl3vYNlxN Dq4mdeSaSQW5pQOtKdn6oUgRYAQZdJ5nMrObiBSMB5AUPlE6dXzceODkxhIM6YDhKAjcw/j6 +nLkLltTXMF4v5y6y/vjC3911/OpO18fMN67y+ncjf+19ctTencD4+t67k4TiZszYhjhV9fu fL7e/vKaHycwQtRfujEp7iBOp1PX/8wgheyZsuW1oLiAsc6K4OREZoRfv1+604tmxwjj4+Nj iMLo5+3tbQq/MEzM/r4YVaqDNOP0HIxb/rzq3NHD+Pn56SEEIOHn379/47+/v7/vbo6c0IPZ Y0IN/c4n7twEvvx9KRDCcJYKrnjYq44hg4YjjADk8QkGrz5heIg8MK5+7hPrdeaA5aGDwwfn zOeGftzJRLo2Ywy8c3CXK69/fn72Tit/Zk68D1/jxBqN6/NJdz0/kBljEsROf8wd2zCiqO1h zCJ+8f848tMrp/UKKZcZLz5nzB1fzowhkhfOK8KIx+/lXJNeTYXLitu1R7S0/ROrqfKwdL/o Sk22RRjxPBGfTR7tXGf0y/5hWZtcxWzCCJcGs0zKXCfksmOBjSvwwR3jkBFdh/RwCjCGFdNj qMoth4c5Ir9klWePKMsdHiRZNjk0+zVNAoYjrsAAhiMPODKFzPAII1tUS1RyOXZ5EbsXzzEz ZPWovU77Ov3s6Tdg/DIugPFLB+7ZHBh7enOrr1C6yeowQ8OGYMTl8tQ3H8og8aJgLU6lRKl5 O4nqmLNnS/wabM4VKJuAMcmepYrtdk0q28+tHnaZ3UQ11M7y58rbE50/oWgOMNKwm4Bxj6fo Fpx8Zmxr2oIMi4qVvfNXd5Gk+ol+lyx6puTiPzJMrcGUYcTDiBhGseI8OD1kXup+rRfLjChb +kkzHhLyMKbSfmk47AebdabGMDI3SDQ9Z8iHqXjoSs0h5cxYaSrJVZIAxgzOQsPJ3Dj32plx F6LKq6nY2xLxqWLOKCyjm4exGM+j1UsfjYKJNxy3ANYPb6WhKgVDtprKMWkCRnxH33zyW8CI bhmNHZrtp9BulTfRHYbLybh8ndE0jKMukp99niYy49lOOur8wDjK04LzmMFANNq4c31DZBMw Ex2CniFyU/4gs8z4pV1/sjkwHGEHxlEwEJeGSbRcDplfqIU2iEvZGEVc0qev8WpKUG2972pF XLrp6Q9+e05EU0zIYcyvcRCXRJsqtakngYG4NCbE8zMDcckxjNRWZEmGIS4Vxq20ExGX0m4z m8ARl7Tzq/lqSm9Qay32XIWaZUZrTq21Fxi1njNoBwwDp9Z2aQYDpQ+lrzYoXbQzywwX364x I4DhCBgwjoKB0ofSt+tGwRC4KH369DW+ApdUW0vPmerRlrejsY2sRF/gxPhR28mnvZX7YRtZ iYUkouM+2Ea27+ZynQaO0ofSN8ZAYetxIfsbus5A6SuO5LMDzFZTKH0aDMOxZjD0prTZoqFh qk0Ha6wGhsZbxscCw9jBmu7NYKD0ofRpAtHdsWaZ4e6bNmAQMBxBAsZRMFD6UPpQ+h7vMuWB kVtvlEHp22lULit0j3e4sqfPvFAogRFxR+lD6ZveCT+9AJIHRvLAyGMzgz196SnZTFxC6dOv gcxg6E1pswXlEEfcgAEMRx5wZIpZZqD0ofQ5inO9KWaZoTeFFsBwFAPAOAoGSh9KH0ofSl8Y b9jT9xh1jWtTEnFp/QZLnt7J0zvvAZp+1iGvhhtXTYIMW71vL7Xk4tVwN+1O8+Hpnbuvpgb3 s6dPE4ZmEzhKnwbDcKwZDL0pbbagHOKIGzCA4cgDjkwxywyUPpQ+R3GuN8UsM/Sm0AIYjmIA GEfBQOlD6du9NsXTO/Xpa1wOEZS+UfpGam5gsKfPvFAoyYwondnTd+zOpe3RNHWDggAqSl9p khI4cdUFSt/uqymUvlKgrv9uNoGj9DmCoTelzRaUQxxxAwYwHHnAkSlmmYHSh9LnKM71pphl ht4UWgDDUQwA4ygYKH0ofbvXplD69OlrVpvaKhQuzWRP38MfbmCg9KH03TbbTg+InLL53F2/ lvnLnr7RHwKRCqWvNEkJnIjS99y7Q3h6ZzqIzSZwlL7SqHGg7Ko3pc0WlEMccQMGMBx5wJEp ZpmB0ofS5yjO9aaYZYbeFFoAw1EMAOMoGCh9KH0ofTy9M4w3KH0ofQ8PxDpIRhcJbyY7x4rT rY+GJvAKPYM9ffsSnhY7FTCSw5agH5S+0hpT4ESUPpS+KQaiBUTmrce5sGtizkDpK40aKH16 DxVaNJEZu39rpx0CwxEYYPwFGCh9KH2O4lxvCsOU3mdmLYBh5lp9x8DQ+6yuBUofSt+udfkQ huzp0yej2V3ogymSqi1KH0ofSp8gdVH6UPrG19fNFMOge49VifP1pkEmyt47vmzSwZwRf0Ge 3rn7amprAmdPX3q4NssMlD7B/BgdYgZDb0qbLSiHOOIGDGA48oAjU8wyA6UPpc9RnOtNMcsM vSm0AIajGADGUTBQ+lD6dq9NofTp09e4HILSp0HiBgZP7+TpnTy9czt1eU/f7hO4/O4QlL6n 3h2C0ofSN91ccLuJYLnBftDdh0XE5Xa3l/zDFbjcV+ZHAsPcxfITAEPuK/MjgWHuYvkJzGCg 9KH0ycPQ4ZFmmeHwu7o3CRiOEAHjKBgofSh9uxcKUfr06etGXLpsFoQEimH0WLxFMXL0S6qf 6HfJB0jma1YNzRkCJ96fSYjSh9KH0ofSd7CegdLXyASO0ndwZrCnz11m6A1qrUVDS9vWXKu3 Fxh6n5m1AIaZa/Udm8FA6dMrfXp8+RZjbWrPTumrzgPAqPObSStgmLi1rlNg1PnNpBUwTNxa 1ykw6vxm0goYJm6t6xQYdX4zaQUME7fWdQqMOr+ZtAKGiVvrOgVGnd9MWgHDxK11nQKjzm8m rf4D1wCdA/GkMsMAAAAASUVORK5CYII=</item> <item item-id="339" content-encoding="gzip">H4sIAAAAAAAA/+xXzU8TURCfbdl2Cy39EFssqLXyISogS/GDEFItHEyEJkW5eDDQbmC1sFDW CJ6qJw9ITEw8a2K8eNGbRzWExJAInr3oP2A8GA4mUue9WZbdxigqiTEwm3kf82bezP727Xvz vAAgIA8hV/K2A8sKvaAodcBIRpYmsunRq0pW5xLIIPegUdIpu74CFCvkp6+xJ8phrIouef4V Vm7Zl+TaktH3yKG3qCVVyg4/QM4D4BIXnW3QCZOgAFTJC1Oo5gEvH39cBeAQuEMfzStVkxuf XwZUSFbjUIACqA7KPJ4AQIjH70kND/VPn9eVCYHH4EV2WQU+5D1cVVKmM8qYqk2KfCDBrHNa lmQVXHbGxMU1Mz51TpslGC4gu1GQMYEZQJ5FB9ewsYr1pUGABaxnB2i8101gO8BRwxsh09NZ XS+oo9d1heLrRvaDlfZ2x2398Aa+EcI3XEv4RvYRvrVl+EYJ31qoI3yjJr718oNFHInsJ1zr UXSAN4v1No8HOQRehDalTYxqDEwaCDAgULwpYaH34HK6iW9zC1++D/tLyKUS00bVdF5J5VVl Uuc2qNVlrEOjRNvVleCHR8+jH6GMesEJ6yUPuCwywbSmcBxGf73EPBKVdum/om/I6xbepZ1F GdDw0SEG/biD6VCAufKt4KcUBtH859lecBu6hHjwffB+EXzDS2LUqvus83KjNLgsOLH90thI Uuid+VV4OfNbvhnhSSRY32erdneEX+tslf7E/3bS3/ingxKAfRN2DrPzme35u3vBziARkzQ3 Jkw3amg9VNpWhq2DuSJPMUIkChvNHKh89fgNa6dholrMWWb4AvlLyb5C75GTT6wYwOw4hjyO e0Eenxg6y8MY1rJ9xbrgh7S2DXMz+uxfi9j7mGWxxsX5Nx3Z1eCTu/CwYUV8t5ENSVCG1Uac tg77x3hui8ygxsPWxv+K+NeKUSIaYDEKlDIPKQV1JH+lT52Zyo/MDWo5hfTTrBAOkYGPZHHj znGYcuJ4WU7cQDlxHBopJ24wc+Im487RTHeOpiOUGzfjUAvdOZqP0p2jha21Y+S1hYeZTINw nARNPIpWY5I2mqQVRe00SesJmqSdTdJBNu3mJLJlks5N24Rh20W2CWZ7klQTpu0py+BpyyDr fwcAAP//AwAbq6Fv9A0AAA==</item> <item item-id="340">iVBORw0KGgoAAAANSUhEUgAAAFgAAADqCAYAAAAml4JKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAxLSURBVHhe7Z3bkds6DIZdl3tIG1tN Hraa1JHXzFaQt3TgY4mWBIK4kUv4kBJ2ZmeSNQ1JHyGIwk+Qt0f8uBK4uVoP448A7OwEwwP+ +vpyRuBrfijAvz5uj49f2wV/PT7vt8f9cwP86/Fxuz/2//py6WZ9GMBfn/fH7aD7vEAMePnT 5+N+/3x+Ms/PIIAX7/x47M77gnu73R7rLwC/ePnh1eODHgJw6b0LOMKDlz//+njcJvLiHfDv 37+Tt6Dfnz9/Hm6yXNz+OfS473gSA5ID/PTzmWLxCvjfv38ruAXy8vvjx4/933///k30lvgH bmPa61pAL8Dgw417yOV/z8I1cdgllFAOg0NOyxnXfGcHvEDefpaTUH8g8NfD5xNcVA4gQUwX jD2f88haz1bP+H9pUJD88+fPCkL7yTx4hQ0ePihOwgdT6fkX8GAIc4vFLOAXzBsck6LwkYcT 7KH0iKEcGXAePGEMhjCtHvx8nB8PGxUwjof5CwMXz9e/o2HatKMILSRQn+9vXipgbcRh98rz joOL8afVg5ehKx+f97FB8SZHdOnZ3+T2W3YdDYDbXPTg9e0AjCK4fEKKufzwy+7lLXej13f0 4YLXkS9iNwA7d3QADsDOBJzNhwe/CzCbGCEybFdo24v77sGW/EOvg45upyeLAEz0dgB2vgUC 8HUBw1diIrmeSU7wlTm9JuOHJ/3aLLW12MHp0rK3xvXgZ07iA0xcWHMXm0C55isOqCmvsWXZ tDwEhCC1le0cMpKc3RsXMHYGkATi5j0kL30P4HR6M3swAgw9WJ5YUt7afFZNamuxcxrASGtb 4285uYScRLK2NU6TktqSn50CcIKL4eX55PRQkx5kmjSfbpjamDw9YE4lxgFaulCrjSOZT3cG ZWdqwFYwSDFebmVAKBt9LI+lZb7FNhqR2ip25n/IZePcY1wLRwrbWDefSJnmVXDTsjLA+7QB YiKL9NnWUeA43CTCeYZpzm9cXuYDsBfZl90APCvgKyTSrdfYqw8jHxz54F6+ZLcTMdjOqqll AG7CZv/SwIBbE+6vi4cvKmKhizRjfn2jOF5adjv43Phk0riAmxPuSwkISM6LzoaSO6bX4yUn RIgBRTlDOvC4gDEYc8JdT8AcplHbbGZnhR08IxSc+zSAzQn3de7xPctHsMWG0lTZCjvSRO5J AFck3ItkvJCVKzwPzBs22Dly0rwuNwHgyoQ7Ub3JepjqwXkts9nOPCHCmhMG8bLwPFR2kMV2 IQZX26FHEgN7sBUutVQBkJiQxJ/lg7FElI0i0J0D7CyhIctBE52x9eO4gFsT7uuV5eNUCCMH jNtSlaM42Z+GaVJSH94k4wK2vywN3TIAO3dPAA7AzgSczbt5sDXbf4V2vfowFA2CpJsH9+q1 2e0EYOceDMDXBdymaFCzLvnpq0qZAHqbPN4IlXObItnzDUUjc0ohGS5OV0U5jPR6/EroSOeG 7oh5QoRZ0civUF7VRJgPzEzyJqe2XkrRgHxF710aGkoI4FRXRjyVNMBJPLhC0QCAq9fkQWUC CdwhP9knZh8nMQHgSkVjuzbVe6nhAwgZ5LpCuEyBPreJ0pXWpHupAFd7L8gjL55KLQ+W27Sd 28AebLsAdm1gZp6CuYQAjyJeSfwUJqznNvK8iGZFg1vlL9245hKC1Dgryd1jsHhueegZ2IOd X7HeZD4AO4MOwAHYmYCzeTcPvoJSYb3GXn0YigZB0s2De/Xa7HYCsHMPBuDrAtbqIKTaCqXu IoMaNRorDnHho2xWpFx3kTts1GgcPKT6CfNnOB5EjcZOJEsVSjPT1SXKAWR1hrut1mPqGg2y DkKqrZA+ww4cNRqMt73Ng09fowFdDlQA4QXhPGLw2Ws05DoI6ekvjwyiRmNzWrUOom0cHDUa zm9W7zYfr8rOxANwAHYm4GzezYOt2f4rtOvVh6FohKLRy5fsdtxChP0Uzt0yADv376SAW9UO 7XsMbWb1k+MBPeOqU5Jnias+CbmIitWi9sPvr+xgqYMKO5N6MKLfmk1TJ2lvGTxlBaoz1GhI Dm1WO5ARe4GMDHhqRUOOFK/NqOFka4OiYVktqpzNXq4sZbFzvhDxHU3uCLzkfkhsQePZQ0S2 dbuodlCqsmUTEyUGw63j0SGm9OBWtUNbLapMxm+0csCaHch4SsD6qk+M2qGoJFbA+vEPxHMC dn776mk+APekGdk0Z5oB+ESAr6BUWK+xV7eGohEhopcv2e3EKMLOqqllAG7CZv/SwIA19YF+ W/t/Vp2aUdFoVS2wc71r1akz7aNRbBgtQLQn1YtsPLm18GlXnWpSLVRJqM+qU1MrGtU1GsAR q9ftqVx16lyKBvRGi2qhei81Eqhddepl4xyKhrVGI110tfemb627kNtWnYIdBM8t77hhh2mt qsV6ecpDz7RxtbDq1DkUjeYajTesOqWe2+HFw3qw/V1p7JYB2Ll/AnAAdibgbN7Ng63Z/iu0 69WHoWiEotHLl+x23EKE/RTO3TIAO/fvwIA1RWPLHci7GN6YRHjBldw2kqvoP+s+GgDWOlHv mZgpAFJKiLj1+pa7wLYqaz2YYwzswcjHyASONm9XTvy88m7PDNqiqWFb0opUlnNLbaYBTKcf dcDyPvfQSxWgQoZu6n00ZNVAAywvZi/WYRhqPY47AG//MGM2rTpEJLjsvvbELjApph/7Fd3F 4prtISsdY6IQkddhbB7CebDsufTIrDYG244xbAy2qQYUYD0s7IpGRhrbklavssEd+yFnqadY b+n0u4cCZY8Lcx3GCp8ZB8c+Gs6vZxXmhw0RFdcwdNMA7Nw9AXhWwFdQKqzX2KsPQ9EgSEaI 6OVejJ0AHICdCTibH9iD2xSNmhoNuS2/a3jNMcYFrKzsxCoa2CNr5glnbYVNrSuOMS5g00Vo +eC6ecJ5ftgOeOoSgj0x+dTgytxu+3JbRegtPF2q3wDfVu6Q4T34O4pGzSx3tS2q35A7/gqK RnPs5YYVRMgwHGN4Dz4ul6qD4EOE6pGAo61tmWS3fG9YwO2KxpOctUZjgcy1zXb4eu0GBuc+ GLz3nIrGS8zkxE5qoxKyraioyHUgMMgM68HOL1hvMx+AnVEH4ADsTMDZvJsHW7P9V2jXqw9D 0QhFo5cv2e24hQj7KZy7ZQB27t+BAUuKhlQjYVFCNqq8apFacDUar+/DOWrTlRBIioZUh6Eo IbnDSkn1xl3D0R0xsAejM5WSK62fvfIW5EpSNTvfCmFmGsBSalCqkbAs6wXH4jtsaV2gJTTc bbuGDw9YX9mJngytf49wO6haSDUazN5G1J0wPOAdA1ujIddISLnhEjGIu6oH23YNnwdwsVeF dRo/pYRwQRPaFMq6KnYNHxawrGjwcDUlJEu4i6qFXqOxJ+qLFaqODhwWsLhXhVQjYant2Mas 6upR0jg4H2/TI5GpyricX7mczI/rwU4X/G6zAdiZeACeFfAVlArrNfbqw1A0QtHo5Ut2OxGD 7ayaWgbgJmz2Lw0MuFXRWISIZzpxr8SX9uz8hqJhPMa4gL+haNy3VUuerFPastyyN/lgo6KB cg/SMcYFjO9Co2qxXmyWGKiAmB2Tz6bVHGMawFZFg7t4ejqrUIch5INrjjE8YF2ZQKnLIldr n8ubYjezKBLMR1ccY3jALYoGVSjIpRNZlVlSNPbYfixps4CcWzL6lqLBPeRwoDcqGsUoja8V GdaDWxUNyiNh/O2jaMCjyCFoWMDNigZacA7fthngZkUjfzhK4WdcwPaXpaFbBmDn7gnAAdiZ gLN5Nw+2Zvuv0K5XH4aiEYpGL1+y23ELEfZTOHfLAOzcvwMDrlE0oGqhqRQEUbLWovX4uf1x AdcqGrtqYV/MaNU0lgQ9VcDSfPxZADcqGrIMRGXPjJk2o6KCjzCuB6MzlRQNajkuOL5mkzEV tRb240/mwZKioasdz4tlVotaMRhqLb57/Gk8WKy1ENfPEWLy6sG2WovW488DuFA04K0o1WEI tRwVtRb0Ph7bOfDHHxawpGiIaoeyWlS+KFKCT9VaNB8fPTuGBSwqGpISUVOjkQLxCnl7KOaF iFDUBKMNVQk5KI8L2PkN613mA7Az6QAcgJ0JOJt38+ArKBWWa+zZf7ui0dNo2AIjkoDhSyA8 2JfvIwAHYGcCzubDgwOwMwFn8+HBAdiZgLP58OAA7EzA2Xx4cAB2JuBsPjzYGfB/YOILc0Gs Iy8AAAAASUVORK5CYII=</item> <item item-id="341">iVBORw0KGgoAAAANSUhEUgAAAIYAAAAVCAYAAACDi5Z8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJ3SURBVGhD7VntcQQhCLUuC7KerWab uWKM3yKi6M1e9G7MTH5sRFB4PMAIfX6OBwgPiOOV4wHKAwcYBxekBw4wDjAmgPG6tBRSX68N vebOJrSAv/LS7aPeWkFZdedL3arUA+Sy2EtfMtuTlVOQfqE0sGBsdey7k3D616zTjLEzMGww YXC72A1OTfL+uw4uxIoBQQIa3u+DnPfjbxPmSxqwRXBw9jn969a/Dhi3EnoYFyFbobwLXEuB YxCQ8VSCWJkIHCzv8GXBEtnWA6dpn9O/cP0fgVFn13yhshkktQTUnrOb0sZlLNxDsAkEQRR1 wcLlAugpgsnY5/QvXH8OGJzD5lFA7CDAZe12ewyTw4ZlYk/SZBsi+x27YN3dMouB4K/Qss/p X7n+DDBSE9fJJBBm6KiiibTN33idCBprugYdA+oJQpAqG3TvwQWmRC4FihrI7u7BPqd/5foA MOzllL5cU2Uzr5xWfJDN326GYh9hjHa5IPHUpGI0cbVYgKPyorwQTS1nn9O/cD0BwwY4dduF o8K41W247NQ1Doy3GYNt9hBwuMBEcUrOTZLEnbCsO1NjtOfsc/oXridgFLRVXAhTtW8Aq3F+ Ahjvk4en64IdWkFNE0KZyQ6UqG+A9N4vD6g0sGN9o5QMj8NbjKvwIQUGHo5fuZmqyzTHGE9M JXEcBA9cRJDLdwr0wEQ0qgVbVqhtPzD5Nwv02Ba+s384+2sesPI1afsDT+IYGCsZ432uOTvn PDAIDDAtzNTjubMc6Y08MAgMqZWip5J0l3/pMTby3I8fZRgYW/5D7ceDs/J6Bxgrvb+x7QFg bHz6c7SPeeAA42Ou/W7Ff9ZiyXl798ujAAAAAElFTkSuQmCC</item> <item item-id="342">iVBORw0KGgoAAAANSUhEUgAAAHUAAAAVCAYAAAB48KHmAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJWSURBVGhD7VjbccQgDKQuCqIeqnEz LkY58TACJAwm8fgcMnMfsS30WO0iULD+XlcB9bqMVkKwQH1hEyxQ/w2ouwWtNNj9WzPewWoF ZhuIv8x5M6CUYn9p3Q0M/aZy6OOI6+iqoLP2/Po8U78a1JRoP6jRpt3Im/kApC34Xg82hxP/ fwKufO8BlN/P2qf1XwXqbrVnhTZgBpiKdtqYtjo55hpI5PdFpI3j/McHHDFwjaMpJu0b6z8E 1LKLB2STfLpbG4o+IL9YHCx0U51KFnUwNQMwBOl8xMY4YfqZfeP9PKgu0LRvsJKXJXMNsDGr XlDxuyC5LVArlqZonCSH/CvWHqykoOYSf9XeqYKw/iSoyDASpCQJLmkqXTJENMlqUOneJPtA dbIbhxcRVI6lGH+tLi72EGOr6N7lnP0kqOjcgI37FQURO7goNCYWH3mAPqBvVHbGOHft6w5Q o+xGBxKo0nNR/kKTX5bPWfsPJjEnBIDv2jB2R6o3pMh3HzNBDsjvXUw9hirm2JL1KQeOIxod ehh55XKmNrP2jfUPUDM6N6c0sg9lNJJkCqf/BzK1lACBkVRScxNBPsUjT/n9rL18ZCJ7Kj3I UrbV7KMS6xM9mV5PQf2d6TcVnZffTI0GQK0vDQ59yy8fysElnmWDGpxePgzbj1w+ZAmXoBZM DdNvc4Y5BfXazrms+Ap03P2GPTVNP2mU7gEU/S5Qb+2/TlA1GBNua8ggJA0b9RXo3XvqrTV8 nLNuUL/3cv9xNf/zgBaof17i+x10gHp/UMvjXAUWqHP1e6T1D781BppZ3eM0AAAAAElFTkSu QmCC</item> <item item-id="343">iVBORw0KGgoAAAANSUhEUgAAAFEAAAAVCAYAAAA+RgJMAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHCSURBVFhH7ZiBcYUgDIaZi4GYh2lc xmFSAoIYg0SJXnvFu16fFsOfj+SHVwPzGiZghiPMADAhKhTBhDgh3iCwerDGgl9vvCMc+n8q 8ROIeRLvwBiTftwCsJB74er8umHfQdzAIYEMD0Hi9aIIHvgCLiyk1eq/F/Xv7RwnMZCZBYox ifa9oNZiTBciVdc2T672Pb4g3siQOxAlGqvcCMTaeBEiva+hdjIqNlBDJDGFiS1us5dsM/Vv 6SoI50rFU+XNvUdyewgRJ3Lgvd3887jrpaTDs4VUIk5OksaxUg4jhXi0owv9HY1cbgMQAyjr IZ4Y4sqQti0+yjwvNGi1N9zxYSViwsVTDxWVrKqrP8ppaBxvZ+qXK3jLnME4Tyyc8B3FjYPh v2Kn1AudP5/8vqE/lEhTow7Ecwuf2rIJUbLzSsb0GjxBSJvYld9jM1Fb6czPQuzpOfydlviN SjydAm5NrDS4o1+iUQciOVOWVqHHmcoTJeKUMF2H2Twxtw56etYv1agD0YJz/O68295xd44e xRxTPtmdmU7i9Is1akHU+jLxSfFd2tGYgof/gJAdTcakvfm2rv6HEN9M8O/FnhAV1uwH619x d7dRAd8AAAAASUVORK5CYII=</item> <item item-id="344">iVBORw0KGgoAAAANSUhEUgAAAIsAAAAVCAYAAAB2dR3MAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMiSURBVGhD7VmLbcQgDM1cGYh5Mk2W yTA0/O1nO+SSXBWdqFSpV8AY+/H8zE1+/IwInIzAdHLemDYi4AdYBghOR2CA5XSoxsQfA8vm l3nybsXErt5Nk5/qr/N8SlpXx6UBMMjnz8sG47Cfae+qv2S7bfHzNHt0YXX0vDje8S/apOv3 v+fll8pQSyDPTQoMTei2zDswGmBiYOuiZEcCoCQo71Pno30cx89gZ/ftU38bVMqZORjCeZj/ qyPn1f0T8xWAN2YpCF2C4YyqsCBuRD6/kI1T8gP6nXfILCxQxfmQ4Bxg5WZGe/tNQr6Iq7Wb HPYo87X9YM0tfxmpzH52jjOLwTRtWQI3xUL0h/wjgE0jQwALuWEFJGVV14krKJK3/oqVbVly WbFoHauITt1pVodZKDAqSQR7ial0oPEEPeJvyEcAKOZF848dv8csYXwHIS3L+SIIsDREIQIl Is3EQs3rSoArCFHXnAFLvyyYrGKBgSbMZBbttl71NyU06hSNtfbkroVtY1VAjRYKRtMkvTIY 92CaRTAHoeqYmLNggXUnGYkLMhBXp9HWC74FFNSntMbzMZU52BmzeARaD2VSHuOav8GHqjGM EmdrFsnmXLNptzCfqQ59BJaw2PmlopcIrHCzICpWDXyMUNohjG6o3MAj4Uq9OUhipwwlK7zb cKtl72CfzM5CaJfyw0pgi79eBsk+pv+yo2oRyZfsOlhSOxVFoCoii2VkKB0iX2WW6J8RDFMA 6yIv0T7Qek8naGtiGAywHPhbxTG2toW5VF8+AMtBQyC7odoCHJUhLEmkhipiym5Dn+YWJfjd MqisOUx+p3UW+x0J5iv+QsyM/Ri5MwAYZah2f3Y8boBF9vZdoSSw8Uw3hHQp2kLlFnIN0d5o UgvO22bxbpEZoTwpiMtAnxvgjQcUkCibXebAGKqXAc4jBC48yolnAn384gsusg4wS663p3Xp 0wQz7H0lAjfAAm8yBZ0DKF9J1BuM3gDL7J3LL6dEPFo0OljmDem+58MtsIjvz+75Mla/PAID LC9P0JvcuwiWNx1h+PJfERhg+a9I/8A+f22dXlN/DvU5AAAAAElFTkSuQmCC</item> <item item-id="345">iVBORw0KGgoAAAANSUhEUgAAAJMAAAAVCAYAAABCDNzQAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMkSURBVGhD7VnZkcMgDHVdFEQ9rsbN pBjW3LpAYHsnx7Az+xOCJJ4eT0LZ3PpbCDyEwPaQnWVmIeAWmRYJHkNgkekxKJeh3yDTa3dm 29wG/83uXiy/L7ebzdlDSXzP3mGxH+Cz2L0dz+EsPAsLmKxv1tEjHRbiYdyOwIg4ZLwMXjzB 0fzj/VuK7zfI5BOsM6QAqH51yF4lZEgcJO/Q/poQHE/6vDIzxF0THhMNCfDazUmMSigfDyJI uAB5ndqn9jT/J9X8eYX4KpnCbToZvIOb5zfAm6hm4T1S7w/XCy2C7RNunR1QJs0eOiVKVFzR 9vfjicmF5wnfzx8I/qKSJPXJeeSyHIOT1r3NchkU/8L+EN+5n5AJMC6TKB9CC/ISj/gtmzfj b5JxBsg2UomA357KwEiZ0+3VGKM9XCb0/f14dGXg1TsJgScQIoaAprQecttSLumM0G5dZ2Sq N4IylDO2mXjUV/B6Pk+Y3g6BkB6cyz3ThL2mShCCXYgH9jz9goDJl1XiyGoceq+ag7yOWyhA xgS17h/0TQlrXuaKFyCdUbyZ/IopRiz3qgAkusMJ3DCSZnq6vLZiHVEmKUjJnnZjoZ2ZeDiZ cY/CVQH2i7mEtnomnUwz/gvzAmEvksk7tGd/lXqRXK+lPBByPatKLWst0lwlk7BvquxPxNMs Q+RFll6M9CUmkuV815ZXrFbmRv0j6JNKlc8YOD1lSk/HXEpEuc/93j8rk9aQCofuCt2ovVZv Mro/dsN8VDGSzOCDPveBSrASD/xIlxv61Px3SvsNZYIvjth0onFFmbU0Dv2YRA0mpJU83s0O JVgrPYiwzaZYUqxGmckEURWxgcfwaEDx37kAN8iESdJ+DlOF470EH5rNMo0M2cTmu6EEvhuk cxk6tBPs8T38XGWIOhkPGxqC/WWsQIe0aJxAhopsqDk5tGwoHT3fxaElJYigTABbbe4yS531 /c9E4AaZyEwK9k+IyT1l+kxQVlTXELhBJuOslV9zWIr/u2e6dvC163kEbpGJ/T74fHzL4hch sMj0Rcn69FAvkunTj7XiewcCi0zvQP1Hff4BaCnOzNYQ4ooAAAAASUVORK5CYII=</item> <item item-id="346">iVBORw0KGgoAAAANSUhEUgAAAUcAAAAVCAYAAADVeCwjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAUHSURBVHhe7VvLccQgDHVd20PacDU5 uJqtY6+ZrSC3dOCYr/kJhDA2TuSZzGQXbIv3pIcQ7LTyxQgwAowAIxAhMDEmjAAjwAgwAjEC LI7sFYwAI8AIJBC4tTi+328mVSPAWFzvCszB9RzUWpDj7Dbi+JyndX6aob/X5TGtj8WI43Od p8dqP9YidLP+Q2DxXtbHCJg/53Wa5tW6RshlqZ3I/RAcEG2//LYSJ6V24gBqObuFOL6Xxzrt yrhBE4qj+GoL1seytfztaxgs/rE4DsPBXV29JH6ldsK4KZzdQBxFVuhmBkoYp0n/OaIpZoY9 myQgOPwtA2FxmTgKDAz/22phCTPHyvanyIAzmWfkExdzYHCX43ZiQApKHBNjuHQlJyVOT+Js eHGMFV/QncgcxdfCQbLZoyLprgJ6LBZO2Gy4eYk5JqIuEcdUOUUIghG31vbywLtxUH616iFx 38ZsCDOiaD5fwkvO+FZOSveXgaNyZsXx9XrtM4+dmaf18/MzfrskoGa2LQ8g3QMQQUgct8pT 79rjdTh1xOIscWz1m9Ryy/2O0C4DJ+XLSVs7coANES2O+2SmJnz4M+LBqbEaEdZaUD15mtcS OJFJjuEkcX/EWdZWOmdSHH9+fqQwisAXfx8fH/b/7+9vH12bvp8hjiHxxpT8gDFEiiW4XYY4 k4H8DnjAtTj1w0I4IwYzzxFqM5QD/EYGRbgycAK7td2OD7S1IwcIDdszR3fzMUwIIBuBFyTH GjyzlmvnVa2clO7flot+QhTZSufMiqMIfHMJgUhdSlA2YsI1v94MWRzB8YPNrTm4oqrqN4uc vfWzvR0VKBOsnQ2wnpfvJzC6Bidh17FYUCYHWBzzPIJ+E8IdZUV+h1KgtLZLlCEfl6YMwEEy +EOxNJkkkRchmMFs6e/0euonl/nQ5NrKSel+mWVmbaVzFqng19eXFKrsFabh2qltLS+o/bkb Jf76X4umyQaiFJqu+iU5bBWHc3EygZlywvYsGps5ehteXpCWeNRsDLis9pZwrtMkbe3njyV/ te3V4rglHWB8YXlpKFd1WFaDnCUnMDpnkQqamlq9ODoZoedYqbTf9A0NF4HuzoK1GWIDiWjv VB3PxUm8sSMWyGW1N4t7E2CJR2wQlkjQJxVspmBWJP6GzJ5J1LaHGVFYOurIQWnopp0gjv75 4MR54OykBY0ZbbA6XXIGZ8kYoXN2YOaYE8ewvmcIisUsTN/TO01i004vxd2U+sTdanrmSMFJ OeKxWDjOjRRHI9BxCaTMox7AARt57lGu1FGemvYtE5+BQ+SAYHTjAK014eH7XM2xlRc1ubSf 7qjhpMQpxBlsK5Uz2lGe5LI6F/TQ5k1IXpg5muUk7tcvw51zPAwnEzn4zPhcLDA8SnU/QByx KoLsBx04Bm0dlYPUeBt4KdR/kej26RZyVrSVxtkJ4qiK3Ol6pF72uGe2EucUIeX3kNebQkP9 QqZKHHM47SMdEwscj39DHOEMfjx/JPJSFJs+mod+qiuOSFspcXOKOKpdPudXDVbBlKLPM7Rb bQstsm4BHzfBzwxoAo7oWCmOME6uMWqJMhYWSB7/ROa413/H4gDOHIvxFfBiS1bBEbfq415H xFByWHspBG9rfdzQxPGwQQ8qaoeN7788iHkck2nmpYUXFscW9PhejQAH4ZiuwLy08HKxOLaY zvcyAowAI9APARbHftjykxkBRuDGCPwCrcnThC33UKoAAAAASUVORK5CYII=</item> <item item-id="347">iVBORw0KGgoAAAANSUhEUgAAAUcAAAAVCAYAAADVeCwjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAUVSURBVHhe7VvZccQgDHVd20PacDX5 cDVbR34zW0H+0oFjMGAhDnEaNiPP7Ex28SG/Jz0kQZadD0aAEWAEGAEHgYUxYQQYAUaAEXAR YHFkr2AEGAFGwIPAW4vj6/ViUhUCjMWcrsC8zMmLtirGz9uI43Nd9vVpXmnfHsv+2LQ4Pvd1 eezm69x8VFvHWBAQPtd9WdbduAs+nRovZGgKXl7b/pg9Fij8qfGb+HkLcXxtj325lPGA5oXE Ufx0OMVjO0b+98FYJPBLBRc1nvAIfMo0vLA4etkr4ecNxFFkhTALOIVxWdQHiKaYua9sssDD p79kMBY68DaRmQH8pdi4fNwHp8BF+8RRQUj7oM9kjj9F9hXJPJ0XG8wLtGdKcczEn+LvJn6m F0dX8YUneDJH8bMI0mj2eJL0rgLaFgsQUQduVmIeUjUZeIcI6ZO1KOrvQwIT+4IORC1uteO0 xHfjhX60e8YQDmKG1uJPXU+DVMqPEcevr69r9jez8LJ/fn5eT9fBocaTAoq2PXJGQARD4nh0 mXr3Hsfh1BGLTHG8eD+FKPw9Rq0S2lpf8pXI8LeCcRlMMHOM+n1HXkpiJ0ccU+JZnpOTRSOj C/CXSY5+pud6hx/9SK+t5fxIcfz9/ZXCKAJffD4+PszfPz8/6tFIeHJIKCFZXoODz6Dg9hzl 0AlEimiLEtyUgmAykL8FbjAWp35YCGdMwUz2da1mP56MQjZiB2jnSzJQcLUAgqR2/PRBsNjn xcDnc/GgTMK7JG6S45J6L1WJydgoF8da/KnrDUSmtYNtLY8bI44i8PUhBMI5xMMRo2Z1Ti2G bEBw7FNhzwH3gtajRyRmakECXnEOZYK5s0GJl7nXCIzG4KQnCt+KfBkWJZNDnjiefTgvtzFf wrCr7CYkJlTw1I7LLCbk92YCH8wLxMwSx3IOTv843ovq743mR2p4zNZyDXFU8Pv7WwoVfYCH KoBMLw/1/uBCiV3/K9HUM7+TQperPmV/kTiAm96LU98suk/mSHELGapoh3Qo26yyzs0SUOum n49SPqzHrYVIRxwP4QjGVwIHE5bVQX68tpbz46ig7qnFiUHZCjbK+u4rvXT2iA0X94WzcG5W VBFkqZ6ozrsXp6tl4C4mhTDKwKJLWU1xqwEP2Z9KiNq9YLI7/4LMlf3ljltpmaedM95HrezY SkwacFArjqrVVY4/xS/gp0fPEdJPZ0Qn4FaQkuKI+3taAN0AtjfSiu2LeI/jae3ZlEX9wRtX q+/FCbyzp74swwKw3k0c7XITc6t7yvW7B+D2Lt9Wnpzxo3+4+jaRe/xeQdjWR1MnBVe03dYU HV8kB9XieE3sxj5nq04LfqQoeBePSvlJqZ8vFkL9BVIcQw1dTB7OHHU5mfbfL9Psc2yOkymg klfjx2NBcEv0qkokotk1uFQnbU3P0u/lpQEHTcSxGTPnjUKb+IO2lvGTLo4xB4mK49kw9fcj VYkD98159imGlN+CXC0KDf8PmS44wfnJn0nPh0WEW1JsGgdT7u1g8CXaOqePNuDgX4hjuAKN xU2yOJrSDW17kbpGiKNO3UNp/7qGVqu16dQWnfSZITdOcs/vg5NbQoW3gsyCxWmHj9soRrmA 9zgfiGO6rTP6aAMO/ok40tv83LhJFscePujsIevzEL7rEARmEekhLz/JQ5mDGiJYHGvQ42sj CHBgjncP5qCGg8HiWGM6X8sIMAKMQD8EWBz7Yct3ZgQYgTdG4A/eEJKwzVz3gwAAAABJRU5E rkJggg==</item> <item item-id="348">iVBORw0KGgoAAAANSUhEUgAAAN8AAAAVCAYAAADGijv+AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPtSURBVHhe7VrbsesgDHRd7uG04Wry 4WpSR34zqSB/6YBrYYOFeAhk/EgunjkzxwYbWGmlFaRT7WoINAROQaA7ZdQ2aEOgIaAa+ZoT NAROQuCryfd6vU6C7XrDNiyuZxOYUcouX0O++9Cp4W4Afqmx71Q/GvLd1dD1yt5e0w7VZtWw YKC8D6rrBmXdhXbn2oWWKrXLV5DvNfaqW5kH8YSQDx6Nqu/HqeW3r4ZFhn05cnHtGUPQLhK7 fAH5IKvhKDYTr+uWP0RKiDxrNhQgePlXTsYCAhwojBEyC8JfO7Nvj+PgBFyMT5j5YZ8pbL/D OhOZ01uYzC6XJ58fUbSS9jMfPAYnSGa/2QjfStC6WCAPmnBzhEWMNZp8k5ObzoZ05t6Q81D5 ESpBgIiGPFvb+RAitYsl3+PxWKOXjSKdut1u6+g4whVFBn4B4R4RksXIN6n8vWu/83DaEYtC 8q1EnYNZ/D5h91q+FJKQ+JmgXZMJ+3dyrnK7aPJ9Ph9NPHAs+Pv7+7P/v9/vGUEd1dZUHGa7 lGSx96hxTb/0gnOiOEhUK5VQsNHPIh84F6f9sADFkIPZ7AN4Y4sGu9gciX0r+pL2Q6p20Pe3 tvN+L7eLJR84lrnAAdkLA7hsdozIoV1jYs1Ntfgw1RAQaYAMdMcylslKow27mqwOgNE5OGlN HcnqMiwkwaeMfHMdFLctgpyQ0THGInVjwWErubj3Pcfw5iq3i8ey5/OpicBdTuZbALK1FKm9 8EaImzEXUprI5UkEeVTh5i9yPvTRY3Ey5MMSr54K2CfzcbZdwdykogSyUu8NGBXHve8lbbrz LvdRj2Wmpok6rym6cZai0cC5D0kTk/3oxCGK4+xXGtX3r/kMLsfipHV/eJOpRv27i+zkbGtK mZDi4UInbl92v21qNCrL3XBZS4nS9mWskN/rJrldxJnPkUEs+Wh9ZQjmk8U9qIRSk0aaGYy5 KCb12YG7nbmZrw5OaM0B/SXDAjnwbuRzywhq23UGW4MmPn4KHTWUtE/qYkgd0vtzlfoory8T QciCyZIvdmZCF0IzX6rW8Sd21XO+7TiZteY76flY5NgW0c/5BVNJ5tuhL3MI7wcRmV3yyedl FTRgknxw/IbO1pzvLBIAnxsFzumyaoKr/MJlF5wK66NLYJGwbQqjHbhU/ElaEzo+GSaaxEfz yYelHt2ZZMg3Sy/0CwR7CDsvZBhiu53upkJ8Ozw/8hQbQvCClYHVcPJrnOtjkbZtFCMB3tVf IZkvb66ztC2xSxH5qi/ygEPx+nNuX8xD4FoBMW/Ox/Zq5DsW7/9otEY+ztgnk4+bXmtvCPwu Ao18v2vbtrKLI/APNBk5QwM/o3MAAAAASUVORK5CYII=</item> <item item-id="349" content-encoding="gzip">H4sIAAAAAAAA/+xXWWxMURj+70xn7Uw7M9qZtooaXQxG26tqjZTyYKkyLSIepO1cDNOZaq/Q F5lIiKWWRGzxQEVEItYXTRBLhDQSyqsQTbxY0hBbQnT85/zXdW+J/UX0n/xn+c+/nPPdM+f8 xwEAAnINsp23DVimyM2SNBAYicjWxobq+pVSg8wlEEKejEYVRtH8HiCRIp64hj2T6MUqYRbb rmJlEZ0VXNuq9G2i5zZqWe2iIR0gbAOwmK8bR0MpxECCJoBUcQeWCRs4uMbRVACDwEM6ybM1 jQI500VAhYo0HHLRFNLcIp+RC8DDV2CrXFgzY/VMWWoU+CwcyGatwIk8gKtapdUhaXkkHjPx gTJmHY43kCyFyyaoyJhbVjRNi68jIOYgW1AQUqGpQi5B3jYPYDPWa+YDzMJ6/zwaX+wiuA1g yOANjxppqiw3R+rXyBLNbyJyOmgpc6Jf1/d+RthHCHuzCGFfNiGc9RXCOYRwFgwkhHNUhHPF vddxxDeIkM1F0WDeTOTqYg7hIDgQ3Mp4Y32cwUkDLgYFir9I2OQn22kDtePyp2N9AzmZZNqo Wh2VKqMRKSZzG4GQp8XzEm277rgftZ/N6YY+NAWM0Ju0gVkjE1Rrmo5B6fcmWUSiZD/9U/QR uVfD/fR/UQji+JMhD2bgGSZDM7T2PQq+S14wqf95dhZsgLGC333fvTsBzoU3TDla3cThpQXW ubcEI7avKAdJJUZncSVetvxSbEZ4Fwna9fys3Wbhxzo/S78T/2/Sn8SnqxKAfRN2E7Mbmp35 /WfB/0EmTNMsFoC1GbQf7LqdoetgtshTDA+JvEozDBG+e9IVa6NiEtGYs9ywA/l1Ur9Dd1GQ HlZUYYach7wCz4Io/vIwWBSWYy3qduxpI3yT3v4F34wS9W99+j5mWaxR29ZZ2tDlPrYdDuff Md39nA1ZoQ9WCunxY/8xnt0iM6jxstXx8IKnwTPPQi+zO7Offxjn7Tnku3+g/d3BU107z0+q +jjmSeGWffsel1xKezi1qftk5qvLEDyUWRt+syfjxZQHF+3nZi9bJtSN6Jzfdm9Rz6VNqfKR wJIL8YD14NGiBQc6jq2vneTu2ui4+WhwRyxcHvHsrIkFuo9vLV/VSl8rjxJRF5ujQElzjdQc qYsunR5paYrWtc6NhyVaSDVfzVAycJLMr7w7hlFW7P8qK86nrNgPBZQV56tZcaHy7iiid0fh cMqOi3AoQO+OohH07giw3TaS4gb4RCuqQRhFgkI+j6DiZDQ5CaKomJwES8hJMXNSSjbFqhNR 42TMF9syxXYs2ZYx23JSLVNtx2kGx2sGWf8TAAAA//8DAPLk2hb6DQAA</item> <item item-id="350">iVBORw0KGgoAAAANSUhEUgAAAFgAAADqCAYAAAAml4JKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAx3SURBVHhe7Z3dlRstDIZdl3tIG64m F65m68htzlaQu3TgDPMLQhICI0fMaM/J+b5dY+F5kDWMXhC3l/+oEripWnfjLwes7ARDA/7+ /lbG8775YQB/PW6vx9d2wd+v5/32uj83wF+vx+3+2n99n0s3C0MA/n7eX7eD7nTxEHD40/N1 vz+nV2z9DAA4eOfjtTvvCvd2u73mfxH44OWHV9sAbR5w7r0BHOLB4c9fj9fNmBfvgH/9+rV4 BPj38+fP3BXC1zHxKi1vIUBSgCc/txaLZ8B///6dwQbI4d+PHz/2///z509KL3jJPAjx11YL cAAW39yom1z69yRcIx8thBLMmWDI6XFVO+AAefsJHWE/yweb7tZfwIPXG8wz+uDpRS6g8oFZ 4usz3MTm1+FMgPLIWs/ugarNRkby9+/f88WyPzBEzL9HNxgQC+ObTxpTV/Bb3Jy/HfE34yQe HMPcYnE94AhMMgDQC+NZAQQYPDP24lpPNRqDY5jtHswBhjFvg5gDSR8owvQWzoGXTzv/HUzT TM8iqiIMGiI4wNQNEQKGHjzPvcQzg/PMg6sAh+kpFZ/XGLzdEYl5LOXFiVOc6kmuEvDihVuY iGPs4p2PBzWLkE6/5F5e9U3t0Pg/P8nZBdOB7WzCAfciSdj5z4CVr86AeQesPAgO+FOAyeQH kmG7Qtte3HcPLuYfevU4gJ2eLBwwMuAOWPlb4ICvCzh+JCZUj10RmV7f9bMlLQlvnrgy0dbH nn1Lbtq41G/Xg6ccxSNanDBfVCRCwt8PR1wAl6SeNU/Z2Adwe0ZXtAsYfnWzxDuVtqwA3NxH +kYutTkM4MRj51TkfZaWtlBwrGHIQ4TIm7fEeyw5kX1EgAuq+CCAgRwk1ttCjj1oc5KlUG19 lBLzAwBeLjxZZYMk0+kLlYSMxj4EazqMAyaU4MyDgdKRhEhKTd4atfdR8t45h1tS1SumiZ2f 5DgwwONmT1rDQIAfBV0425jXY+yzkcY+AhSB99oGHM9xo5vZwS6dw+5/X9dVHPPgdLaRAG7t g1xulbujYQ+u+O4YbuqAlQfHAY8K+AqJdOk19hrDzrOIXh/r/9rxEKHM3wE7YGUCyuYNe3Bb Mjx9SoaLsAmaaOI+fpSGqVH42ehkkl3AzQn3Fcz+RMfv/6AT90t+I9+qsDwmZ2IAsc/ELuC3 kuHbQsB4BTzmvaXXw3sEbc6gaNQm3JfcRAEOm7jnQkQ6WCdQNOTJ8PRiBYCLG2VoG4f4SYeh AUJETTL8C1WUSUVDlLg/dYhoT4YvX+JaD8YS9wLAzN4Pwx78RjJ8D5E5HCzhvstRceKesRFC QyKkIgrL9na7gJuT4fENqAR48/JDnY7BwW2y6UDEi1uGjsHKj1rK5u16sPKFf8q8A1Ym7YBH BSzN9l+hXa8xdEUDIekhopd7EXYcsANWJqBs3rAHtyoagvdBqIiiwW8TuLKiUVBC8jx+ujWB dOg4qe6KRoSJXQUpyZSteTmuEuC1FI3UBznNbanLQ21FkA4StzbZ9PpgmBWLdg6JtxAUFl8L 7VCS0AUVjbheKqKEYDc3UJ8ygylZaD1uiGhVNErbBlbSgq0Ikm0CXDUr89M0bocmrkTwcKsU DcIzr61oFJSQFDCnaFCVAqf3FLYpxJHIsAcrP2J9yLwDVgbtgB2wMgFl82oefAWlQnqNvcbQ FQ1XNHr5ktyOWoiQf4Rzt3TAyuNrGDCnTBQKHyVPc1wxDkkBJS5nXM4n2wXMKhNMkQ2wQnJJ KbbV9yH3aExez7025qNyknihAVOHQeFJI2k1FK5uPL/Jxq4Hg9iYKhN04SPRaVu7bUkBpbOG iASwRJmIKp4gJ26JTtZCCyidHrBAmVgrkGxhAJPcZaW9sJBxasBCZWI9mYBOzksPo8L6Oy1g Bm6h8NERXfKkeVazhymgtAr24JA/KMaOepPjlAlWUUhvXNCrE8CSAkpodcF4mrbs1aBi/DCz COUHLjXzDlgN7WLYATtgZQLK5tU8WJrtv0K7XmPoioYrGr18SW5HLUTIP8K5Wzpg5fE1DLhV 0ZCoFBtVrg9uH4a8D7uAWxUNkFljHZTrg92HIUnUj/agIVQ0pqWP8nM0IH1usbW4/9SoXQ9u VDQ2wPH8WpYLXs9XBive92CSbIKRKCFDeXCFogG9svWYh9WOZB8Gd5TEAB5cr2ikjCUhQ9AH u1eD7sM44F6KBne2UU0f1BoL2oZhwI2KRqdjHth9GGJFxXK6slXRkKgU8XlFyDmj802Rs+N7 NJQfzyrMGw4RFVdhuKkDVh4cBzwq4CsoFdJr7DWGrmi4otHLl+R2PAbLWTW1dMBN2ORvMgxY WD0KK44s3qMxgeLagqfJvCjzVkP4hOdozD6EnZVRs0eDawurYce/V/Rh2IOzjPt0bme8VDR4 ePCcdP1uzR4Ntm32zThSkjV9DAMY26OBnZVRs0eDb7uqFslB1s9JkFqVjyRe0MU7BgGcpi7Z szIIz0PX7xbaLoN6lP3amVb0MQBgqDbgknl8VkbNHg2ybXbGRjrI0j6MA5aoDaXdlqXX41h/ tM3DR+lwbHwrgWHAErgBDgewsEcjuY+CttmZGtTnYYonTfbtAi6eo7EL6mCTSsUejXUNxZa0 yeR9ch7M9xGPm13A8ocl0y0dsPLwOGAHrExA2byaB0uz/Vdo12sMXdFwRaOXL8ntqIUI+Uc4 d0sHrDy+hgG3Khrc3gqEpkT9eEM1sQtYch4GoWhIT+1eFJFD7kErVL2pmtgFDJ0tWwCNKxqZ jzILp8vKxPuqyTCApYoGBMwVuZcoGu+qJoMArlA0VsLyvRVxHvdIPfZSTQYAXK9opGneEGfp ujq4MtFPNTEOWJJ0LykWWxyVzMcoW5I+LqJolM64yI952MBzykSdajJGwr1V0ajZo1FSNHZS ELArGpJ48JE2xmPwRxioduKAVfFaVpWVL/xT5tU8+ApKhfQaew2mKxquaPTyJbkdtRAh/wjn bumAlcfXMGBO0aBVC/5E7yyZOa1r2/ZZhP/Gey1q+qeTSXYBN1eEAhALhY5I9aO2f6LWj13A RUUjasBAlJ0quyeR6dSmuCJV+sGHAcyd8E1CZOvs5MG3qH4QXsp9tkEA43nhkmoh9d6SnWWR N1X3h89ZDwAYKhrIbR/z1Ervna2i7+H6L38244AlikYgk6sWUu9Nhwvaaffcza5hwPTFlVQL 3BOXS44VDd7O+3BDf3YBt1adWlUK6lwL8TkaXP9itcUyYOUnrE+Zt+vBnyKg3I8DdsDKBJTN q3mwNNt/hXa9xtAVDYSkmgf3GrXR7Thg5RF0wA4YI1CjNsCKUPF7ueMiub0e8n0gY3pwrdqw rw8GtdZBJetkKLlzNLjXgD+MCRg6tVhtAKska1Ka4j7SD3cKwGK1A0KqAMylP7nXTgC4Qu0g dyrRdzpO7SgrIcNn08qKQpIbfsODuRwz99rAHtyidrwRgxHV5PB7eh/IoIBb1Q5+FiFVO4qK ShRxxgTcrHZs+t22miedB4vVjsI+kDiijwlY+emrp3kH3JOmZ9OUaTrgEwG+glIhvcZew+qK hoeIXr4kt+OzCDmrppYOuAmb/E2GAdeoFvB0AmrfBQTD9cE/9bHnbwzxqFyrWmyrzyvUhpAF y/Zo7KvYmbyFpFrVCtmwBwNva1QU2DQjq4zQmbdytarD8DCAOdVCrGgUQmdih8kd15zVMQjg +sXQErUh5Q364NSPc5+jEWOpVDRID0bsFNSPC5yj0aJoYIQpOzXqB2g7xCyicetUSW1Iq05x gyRdQ3HGczTeUDQSwMW9FtQqIK86JX/UUm45yCxCmYKieQesCDeYdsCjApZm+6/QrtcYuqLh ikYvX5Lb8RgsZ9XU0gE3YZO/aVDAJSViUyOIPRjxExxRJuZASOQZJOdvDDtNY5WItSbEXK4r B8zljjNB6YEvEhSdvzGcosF9K8lSMBAwnfWizefvOaWiwfMNB0wvp3azX+35rOTjIOoQH6nC HZydEyoaHF5hPncOyxPgJGxIcsqI159L0SjDxb2QAAM8vVw8CQ8rJ1E0ynCzs5D3t0g8jzvt ezMkidtDKhrvwKWmaUB7A+sb8DM2SoBHVTRYviGWxqt3lv/fvHkGFb2ehpB0Dh1/AyBg2o4r GvJHLeWWgz7JKVPpaN4Bd4SJmXLAowK+glIhucae47crGj2Nuq2DgANW9gYH7ICVCSibdw92 wMoElM27BztgZQLK5t2DHbAyAWXz7sEOWJmAsnn3YAesTEDZ/D8sAyyJ2KDOKAAAAABJRU5E rkJggg==</item> <item item-id="351" content-encoding="gzip">H4sIAAAAAAAA/+xXzU9TQRCf1y9eoaUfYosFtVY+BAXkWVAJMdXCwUQoFoMHDwrtC5QUCuUR hVPDySgaExPjURLjxYN6M57UEBJjIujVC/4DngwHE1tndx6P98AoijExMM3sx+zMzu6v83Zn HQAgIPciF/O2CUuLkpXlCmAkIYsjidjAsJxQuATiyO1oFDFLtq8AOYv0+DX2rJIPq5xNmn2F VZHkjHBtUe3bJe871BKLJZMLIGkHKLLNmxvRwSjIMAZQIt3GMmcHB9d4WAJgErhLJ80slpIj p0sCVIiU4pCbllDqkfiK3ABevgN7tK+3c/ysIo8IfBUOZJte4ETexVVFeTwuD6Yyo1Y+EGbW yUyCZBYuO6khY5sYGjuTuUZAnEMuQkFcg6YL+TnyzR6ACnQ0eR7gA/bv99D4JTfBbQJTGW94 NU+nFSWbGphUZFpfG7IL9LS7LWTo+1YR9hPCvnJC2L+HEC7fgHCAEC6HCkI4oCFcKd2bxxH/ XkK2EkX7eDNXafC5n4PgQHCjmZGBDIOTBtwMChSvSdji2zGkXmA9h9uPYb2AXCgwbVSNpeVo OiWPKtwGd92qxqJaou3Somd57lngE6yjU2CGfMEONp1M0KxpOSa1ny8wj0SFHfqv6BtyXsc7 tL0oDhn8KRCETjzDFMjC1Pqj4KfkA6v2zbOzYAZahJDno+duDpx9C9aAXnf5xpVqsfutYMb2 S/UgiaJ35lfm5cRv+WaEd5Gg389m7a4Lv9bZLP2J/79JW/FPVyUA+0/YTcxuaHbm75wF24Os mKbViwBXyygeig2RYehgtshTDC+JfGozCSkePS7V2qyapHTmLDdkSduXgjFC75CTz6zowgw5 iDyEZ0Eaf0HowHIQa8kQsU8sP47kla3O/XTFz6rcNNWrlJvGLIs1Lsy+aU4seR7dggdVi9b3 q9mQuB4rlYz4sW+MZ7fIDGq8bA38L2nWfdE6DDP8s+f/VpASUTdbo0BJc6+cTfWnL3ekJsbS /VPdmaRMtjG+mwNk4CRZSH13HKSsOLQhK66irDgE1ZQVV2lZcY367qild0fNIcqOa3Gojt4d tfX07qhj0XaY/NbxhUZiIBwhQQ1fR4M6SSNN0oCiJpqk4ShN0sQmaSabJm0SSTfJsTXbsGrb QrZhZttKqmHN9rhu8IRukPW/AwAA//8DABW9vyH6DQAA</item> <item item-id="352">iVBORw0KGgoAAAANSUhEUgAAAGMAAADqCAYAAAC2hPuFAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAonSURBVHhe7V3bceMwDHRd6uHacDX5 cDWpI7+ZVJC/dKAzJUsiIZIAH6BJez1zMxebBKldgg+sIF1mfLpB4NJNT9CRGWR0NAiGJuPn 56cjKMu7MgwZn9fLfP3cLvhnvk2XebptZHzO18s073+W4/IUC0OQ8XOb5svBxB0oSob56jZP 0+3+y7ifAcgwo/46707xIOJyuczLP4sk4z2Ht4xHSvdknL3CgOzxDPP153W+DOwdOxlfX1/r SCP/Pj4+jiFmpgLrd2fmUBmIAdBDZNz9Z+S1YyHj7+9vIcEQYv79+/dv///v7+8DZnKhCzHa i6Zp0164Qwu4+z03SMx05ht4dNpTGV8RozsZhpDtYzp1+pgpgFzlvsN5LJ436yLdoiuoKwD2 /L+uBzezQC+/UXJDIz3VY1rDmtfeCfXv7+8FGP5jAfWYvvbFk8zd9sLqrgEPkrZ53tQ7kfVm nmEDv60dcTLIyFzIsEa88zcd3fbuiE5Dxq7tHake8AJrhg087xkrgM4WkiWDztEb4Gfw3MOd OT7QM8ba2+V7srV9md0UPy0tCCy7qdMCyZJhrxN2S5QM6hnLflW8Q3qfc0aIiHWYRqYps/23 PMlZTx5rxsZu4JwQ8g5nAL3TCXyfFsg5ZMGRIWMd3dtUZa8J66i/XkO7KemWVe49ohngSYUk 2ybFrr0GiLUAAhm1kKxg58lkVLiCFzIBMjoiE2T0SEYwcOaJ5KKse4itxefuGbJ4VK1mX8dO TdxARuG4ABmFANasDjJqohmztYT0fTrMUWkAMuzwBxWUQldPbzzYgoT2YukLOPrqpbRB2/EH NUNByP7JuMeqrtZNTEtcK3KjwCGDEiAYO8F6Hi7CZVfNZI9EexTNha57/Mx3X1b/ZFAwaCDR O3AFI9xrx19vAf80AELeFxLGtiBo2LuHI4PzjJUbngy/nUIy2Ijz2jvTtu+erMHICN3hQd2D IyNkh6tnt+Mpe/I2fyR53DVjv36PRBvcvcRAjdmpTIZFjqPhBNa8QTxD6hEbOyFQOTuFZNDp UbS+Dbi1Dd1Mlra4+m7VYaaeJO+T7aZCJvv3DOewdJwTDqnb3enQO/yc+688gUrHjvV77Kbn YBv75iF+uBuXjFYn5A7a6d8zOgCpVRdARiukBe2okQHRKHJ3ekRkE3AmKgI9QwRTuJCaZxT2 6y2rg4yOaAcZrciAuERP1xCXysYexKUs/NrspkTBN0HAD+JSFslOJYhLMgwbeAYXAudC6Pbv vgiuwKMcfeWsszv5iIFMKYhLIpGqMhkQlwzqEJeUpqn41ARxyb+G6JABcUm2YpNSOmRkdWXM SgiHdMQbyAAZHSHQUVfUPANKH5S+jsZ5elfUPCO9K6gBMjoaAyCjFRlQ+qD0CZ9LKBySUPqE QLnF2oRDoPSJyGlCBpQ+ERfH+zNq7grcpqH0yaiYtclAGpmUCFNOcZqSegSngXN2CmVXpJGl 5GgjjSzFu85lofRl4ac4TWX1Z7hKNTc+IKOQfpBRCGDN6iCjJpqFttTIgNIHpa9wbD63uppn PPeyxmwdZHTEG8hoRQaUPih9UPq295XigZHGGwTRV+T0lU/QUPpkGDaITXF6BKdn2L8jp09G q7cUlL4U8BQ9Q+oRnGdwdgRrzY6Iryz5TnQnywHxAOcM5PSleMRWVsczoPTlcKF5Q0JWf4ar NMA0NRym2R0GGdnQ1a8IMupjmm1RjQwofVD6skdlDxXVPKOHixutDyCjI8ZARisyoPRB6YPS B6WPeoH/hYV7KSh95RM0lD4ZhjpRW6dtTo/g9AwofTIq2VJQ+liIrAKKniH1CM4zODtQ+hjC ofSleASUPucVxuvgWQOlzI6OoIwTeM6wU6oDMpSAzTELMnJQU6oDMpSAzTGrRgaUPih9OQOy mzpqntHNFQ7UEZDREVkgoxUZUPqkSp99apaenONvr4mdwMd951KLp3fWamP+mW+TlYSDnD7j DYLoayx3gvyW9iohKx5F21j+DnvecGuGrtK3Tmu0DTEZXvDPwUJjf3KCi2u7g5HB6RGcnmH/ HnpEXkEbJ28ztqaZ4j7umrGvwa2Uvot31J43XZ6pMOIZi7dtofXpdl9dzp9BPEM6WjnPiNmp 0QZy+ubLaaSFkh9Lpya6VabrgWw3FTra9O8ZLXL6mDYoeMuCvqt5dFqD0tfqHK3aTv+eoXr5 fRkHGR3xATLegQwofVD6Ohrn6V3BNJWOmVoNkKEGbbphkJGOWV4NKH00fGEvqnYoA0qfbITV UuFidmq1AaXPxymUPsVkmQNwKH2yCaUBGVLNgfOMGrqGQFxatHgofXcQQokqMcWwUE2E0pey ZtTwiJiaCKUPSp9PT9++q3mSnKH0yVZsUqrBAp7Vr2Eq1RzEIKOQdpBRCGDN6iCjJpqFttTI gNIHpa9wbD63uppnPPeyxmwdZHTEG8hoRQaUvlyl7xxpPXOGnL5TVhEF6bgpmURtU5W+yOOJ gm1A6UuJ2lplkdNXPkG3UPpomhdy+ry86Sp9R6qX5AlqUPry8+12cgVqnuiVbgIyLDvI6Tt5 V4pncTuqUKpaJA+cmaUHOGfEARTP58vNAf6cPjNqr9vzyw1gy5mAm6p8ZCCnz5Fdg/l2McVw f3KB7KmbyOkr34h1b2GAaap7DKt1EGRUg7LcEMgox7CaBTUyoPRB6as2Sp9hSM0znnExo7cJ MjpiEGS0IgNKH5S+qs/au0t789V6rhynZ0DpWwdgm3ttc8PbdDqC0lc+QXOesbbApZGdn9Dp TGj3h3vZT9cUR4bx9E4fwRwZ/nA6lD6xswgUut1WjAyBndypEDl9KZ4BpU889v0FofTlAKiz m2qR0welL4fv166DcEhH/IIMkNERAh11Rc0zoPRB6etonKd3Rc0z0ruCGiCjozEAMlqRAaVP qvRZ5UQ3PcfC9Pz7M8Z951ILpW/jgnl121YMOX0OYDm365P5KPjmsHP4XSwuUVEL7+nLUfrs vIoCMqD0pegZ+0TjJM64czinEto2zunNk5Nkg6d3Mho4VfpWrzhHDDLSyKD0pXiGROkr8Axu zWC20QOcM/SVPhejEjKQ01ee0+ewwZOBnL5WJ+UntjPANPVEdBo3DTIaAx5rDmS8AxlQ+qD0 dTTO07uCaSodM7UaIEMN2nTDICMds7waUPqg9I2X0welL8/bTcKlqxmkRG2tslD6MglwMJw8 71iidvlgn5sbCKUvgxmJHmHMcmS4dqD0JVMhyMXbbabk9EHpS6RC6hGb2RAZEjucV8XaIHVF 69sBxQDnDCh9iSN3KT5uTp9ztbxnQOnLGR6D1RlgmhoM0YLugowC8GpXBRm1ES2wp0YGlL50 pa+Ax1PVfTdV0yhs5SEAMvJwU6kFMlRgzTMKMvJwU6kFMlRgzTMKMvJwU6kFMlRgzTMKMvJw U6kFMlRgzTMKMvJwU6kFMlRgzTMKMvJwU6kFMlRgzTMKMvJwU6n1H1pmT12eD3wBAAAAAElF TkSuQmCC</item> <item item-id="353" content-encoding="gzip">H4sIAAAAAAAA/+xXzU8TQRR/29J2Cy39EFssqLXyISpfS/GDEFMtHEyEYjHEmBgD7QbWFBbK EuXWeCAkojExMR4lMV686M2jGkJiTATPXvQf8GQ4mEh9M29ZdsEoiokx8Jo3H2/ex8yvszNv PAAgIPcjl/K2DcsSLS/LVcBIQhZHM6mh63JG4xJII3eiUcIuOb8CFEqkp6+x55BCWBWc0twr rFySN8G1Rb3vloLvUEsslWw+gKwbwOVcsDdBG4yBDOMAZdJdLAtu8HCNx2UANoGH9JJnsZwC eX0SoEKiHIf8NIXygMRn5AcI8hW4kwP93RPnNXlU4LPwIDvNAi/yHq4qyhNpeVhRxxx8IM6s s2qGZCVcdtpAxjk5Mn5OvUlAXEB2oSBtQNODfBkD3O4DeIb11EWAPNYP+2j8qp/gtoGtgjeC RqSzmpZXhqY0mebXgewDM+3tiFn6oTWEw4RwqJIQDu8jhCs3IRwhhCuhihCOGAhXSw8WcCS8 n5CtRtEB3ixUW2Ie5CB4ENykOjqkMjhpwM+gQPG6hE2+E7fUFVzPPC6/C/uLyMUi00bVVE5O 5hR5TOM2qNWu70W9RNvlpcDH+eeRT7CBzoAdVotucJpkgmFN07Hp/dUii0hU3KX/ir4hr5p4 l3YWpUHFnwZR6MYzTIM8TG88Cn5KIXAY3zw7C25BuxALfAjcL4B3YNERMeu29A7Wir1vBTu2 X+oHSRKjs7gyLyd/KzYjvIsE83q2ajcr/Fpnq/Qn8f8mbSc+XZUA7D9hNzG7odmZv3sW7Axy YJrmcgHcqKD9UGrZGZYOZos8xQiSKKQ3s6Dw3ePTre26iWIyZ7nhC+QvResOvUdBPrOiBzPk KPIIngU5/EUxWA6GsZYsO7bJDj+kle36frYSZtXsDNVrNDuDWRZrXJp705pZDjy5A49qlhzv 17IhcSNWOlnxY98Yz26RGdR42Vr4XxEHM0qJqJ/NUaCkuV/OK4O5a13K5HhucLpXzcqkn2KF cIgMvCSL6e+Ow5QVxzZlxTWUFceglrLiGiMrrtPfHfX07qg7QtlxPQ410Luj/ii9OxrYbjtG cRv4RBMpEI6ToI7Po1F30kROGlHUTE4aW8hJM3PSSjbNhhPJ5KRt3Tau27aTbZzZniDVuGF7 0jR4yjTI+t8BAAD//wMAEmZzQvoNAAA=</item> <item item-id="354">iVBORw0KGgoAAAANSUhEUgAAAFgAAADqCAYAAAAml4JKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA0gSURBVHhe7Z3bkeO4DoYdl3OYNBzN PDiajqNfpzqCeZsMvKauJIibJEILWuiqrTpnTFPSRxik8BPg7RV/pgRupr1H568AbGwEXQP+ +fkxxnO8+24Afz1ur8fX/MA/r+f99ro/Z8Bfr8ft/lr+73EuzXroAvDP8/66rXTfDw8Bp396 vu735/sTX38dAE7W+XgtxjvBvd1ur+G/DHyy8tWqfYB2D7i23gQOseD0z1+P182ZFS+Av7+/ R4sA//3+/Xs1hfQAy+e5VVlZCwGSAvy2c2++eAD879+/AVyCnP779evX8r///v070ks+Lvup 4pbVGnQClk9u1CRX/nvhrpFbSq4EMyboclo8zQI4QZ7/0oXEvxz4NME8sxsvH3IENT5Ubvmj f32mSWz4DK4EKIvcatni05g1qEj++fNneFjpr7DgAXY2wQBfmE8+peVP4Ge/ObggOAAfYME5 zNkXk4AnmIW1AfdRuhNohfmqALqAZJm5FW+1VKc+OIepteD3lL1OKCJg6PNmiDWQ8oUiuX64 Bp6nhMmt5L7I8ypCcgnY5wsMETC14oCAoQUPay/1yqDvdXBlHVoLTstTyj9PPni2QsICVSuW T3iTGx50WQ1kvpK14NkKZzeR+9hxkB4PahWhXX7prXzPL/XId+TlwpHexe/6BSPeurJBAFaC 2tvsfwa897b7+V4ANh6rAHwWYDL4gUTYrtC2FffFgjXxh1YX9d5PSxYBGBntAGz8EwjA1wU8 hhfhJJhCDeVrNvXajAXl0TATE8DPr1/HltFXfXAJxxY8ApYkm+F5ivgF+F4K+pCdMG3ffT6y zRHDoM7BfOyzIri/Uv4IwGVoEUjzMHhUWNiGtlw/zGfuAecuAjVEKfq2BQzTtrBg4Aa42LFj wNVTIEImiA9X7kIIsldAqYgcrkivcwG97aAfwNP+hXLXUyn/1/4Y+mcwaJL1D81HuOwunz5d BJzxayvCf5ob/OoAL7M+1KI1Ey0di/ZrwWD2r3wgaTX8KmLYKLJsieLaUhtVxmVi8Uuqtgj0 sIpYJH1sPUtJ8PODUZtTRp9d7jkj2hZbu9b18ACWvbfyl+fXgo3fsM7qPgAbkw7AvQK+QiBd +4ytxjDiwREPbmVL+n7CB+tZ7WoZgHdh03/JMeAjAfc5hqDN/YDZRxPA4mVj3QcnB/x7eJPD gjuU4YDX5jVvQgZMth36hFCJ/voM9ugVDVXQh/1V1xZMJSxiMelO48G1i1AF3BeQxM8eBa0H XIUtWcXkpcpR0Xp023Xw4A/rHGLaeo4BHhIRkaxQCFjaCe94koPjiriMLXrbRheRmmOTmRjw B9fpCLA24J6HLOVJbmytsfa6jWS9qWe/gHcH3HnAdTxYA5jIyCek+tyI/QI+EHCH6a2534SA 6bblJFtOsFLAv4t1sHZu9d3OrwX75qa+uwCsRrWvYQDex039LTPA2mj/FdqpR0NoaPsm1+ou T+7HzIJPfg63lwvAxkMTgK8L+KiikUIMMCJG0MyVi7yUF9g+tb7N5dutsPpAXbzJ6QPusIrV 8HjLqzYf8CE3VgNFY+xvCpdeO4VgDt4kGFKUjPmciAdvC/p7jqbBsodozbPZUutyiSMIAfBQ FeU+VLma1+NrYGhyUXkVK6ISYKeSEfCXSkWDTYiBLlgo/TW6j3UAoPVeMIUAnxgxqWlgjdT1 WQYIrStE7HbvU1WuzK0qjSgrCgoXAYLmc59Y8SRe/8NrDvtdBx9WNHAfXAbcQYILWCnk+yLm ZJg50/TiKQSz9eM6Gp1CAFwAtQ6OFALj17MN3ft1ERsewnPTAGw8OgG4V8BXUCq0z9hqDEPR QEiGi2hlXkQ/ATgAGxMw7t6xBdOKxhKoycKMupMK8PjGOllp8zA+XdHg1AaY28EVRdqgTBSq yYbvubdgVEFg1QapyAbjE5iwIxu56zNcyeVoMGqDqkwMDpmEKORhfKSiQaoN6kJHK2RJmaAA St9LV3DsIqCVZSozpzYcsGBanRZSEfp0EbSiwasNB3wwcs6GrJrMgf1PUjTgKmIqvTVOiPqi SGJxI8Iyxe9ltuHXRUiqAbnrZrYovDhoIRntzQOR7q0LwMZvWGd179eCzyJgfJ0AHICNCRh3 b2bB2mj/Fdq1GsNQNELRaGVL+n7MXIT+Fj67ZQA2Hl/HgA8oGuxbHqdqgKAOUXVq3gi4TtBd lhhncjSE/IliV2QVt8gB88c8kFWnMEWD2P3u3oI3KxpbciuYEuNbqk6hYc5pHN0DztfJK2wu f0KfW1GByaJnFGCsWD53BIRjwMBXghwNLn9Cyq1YeubUD2XVqXxjNjZf9gM4j/NyisaR3AoA XKw6pTgCoiPAa9UpTtHYnlvBHfOQ2yTcLU+fUpB/yy9gLkeDUzRYtQOeQqA9WAoWQdLB9S16 SqoBt9ZlPlMf8wASIeukF/woNuiH/Vqw8RvWWd0HYGPSATgAGxMw7t7Mgq+gVGifsdUYhqIR ikYrW9L3Y+Yi9Lfw2S0DsPH4Oga8RdHQ5lYQNKmqU1MwZ5zMOLWDPpbSPWC6CNHxMy4SbjqW q1c7iopUYAy7BLxFbeD393IVUZh9xhtUE/eAMUVDrTYIuRVjzR6i6hS7U16vmjgGzCgaSrVB 3J3OVZ0Scj20qkk/gMHOdVFtkKw3jR9XdYqz4A2qSUeAuSD3vjMusNqWq9XTPniLauIXsFR1 alUuX887OBpdSChciyIxVae4XA9BNelDMlLkT8wT4JYzLnhFA65n6QOwR+sHB1pHLML4tS0A B+DzCRhf0e8kZ/zgZ3VvBlgb7b9Cu1aDGYpGTHKtbEnfj5mL0N/CZ7cMwMbj6x+wodqwsCWv MbUgom7rBI3Xikjfdg3YWm3gFY0J7vLKXm5zfTx/1mhIKqZPnO/pGLC92iAeA7FUQBFqwXdZ UuYEtYFVNIpoGg+4z6pTJ6gNdTx4jTlrzuPou+rUCWoDrWh8DTHm+i2TmMy6dRHEGReV72TT r8a0ASz9ilc08vWb5kyk3qpOwQyeQkXYsGehqEgFczQ4RYMG/BlVp4bnK6ucqius7s7RoHbo YPpc7kK6zFU2fsU6qXvH6+CTCBhfJgAHYGMCxt2bWfAVlArtM7Yaw1A0QtFoZUv6fsxchP4W PrtlADYeX/+AUbUBnmMB36SYPWUQ6M6s/fFFM9uf1l9RJCZ/gq36pK0B8QZ0oHoVV6cnH0PH FixFsLLHKMKFG2q4c7kWbB6G/t78AuYUDfAzL6xp0ykEO6tXbbg334CLeDC1wx38u5BbAV3w rupVnNoCLuAbMJg46sA5iOeOMvH7rHploaO91as4taUrwKSiscaK60RFvQ/eXb2qsmBaNfFr wayiwSXE6M/RqDM0s37ZPAytEuJ84wmpaIC1a52rQa+DqxyN3etgTm1Z/YRjCzZ+xTqp+wBs DDoAB2BjAsbdm1mwNtp/hXatxjAUjVA0WtmSvh8zF6G/hc9uGYCNx9c/YJWiQWwrRWIGNU9O /cA/w4qB3G7d7a7cqGjAHAkst6Kiy8Uttioj+AZAxxasVw3qcyzSd5NFSX1wkTd9VK7fFAKq IhSwxPIBc8vbmLySx5K1cWWhNpBfC1aoBliOhCa3YhkfTv1QKiNSZSvfgEVFY0K1wMDLMVIT EKt+aCxYUdnKN2BW0cj9xOxz4Sxm64Ml60134xcwo2jocyRqwGXA/cAqQmG9zgGvululWEhn bCyGLAGG19DuEIIHl9BvK44t2PgV66TuA7Ax6AAcgI0JGHdvZsFXUCq0z9hqDEPRCEWjlS3p +zFzEfpb+OyWAdh4fP0DlvIgQNRti9qwvvDVuRZ8PzBH5OOqTuVRNOQQkdwqhZiBNteiiLxh OSKfVXVqjiHIqsX+czRK38H2021JGVLRUKoWUsRLm2sh9NOvZETkaGhVCzFeq1BNht8KUfPn Q6tOKStCSdY7knufBPN8V0hb/yqYmn66dREqRQNXLUTrnQEL11D1s1QIrNd8jpdp2jwIBDBj UaWiIVyD6EevqLiWjBhFozAUCJhXG/TnaDD9qBUV94CNX7NO6N6xizjh6U+4RAA2hhyAewWs jfZfoV2rMQxFIxSNVrak7yd8sJ7VrpYBeBc2/Zf8A+YUDVbtkHZWJkjC6eNLvGKqFVxVlpKv 4RowpzZwnw2vw9hx6ZXhgd2V4PMW13AMmLMO2XLkMzJWC0aPdx8iZHRl63Es5DZ+AXNqg0qJ kB8ecxEL7EbX8A2YqjqlUiI0gIFPGPqdFOJG1/ANmFIbNEqE4udbrwUyn9zoGr4BU2qDqurT DgvOj4RodA2/gBVVp5bDR6oKUfQEVATcE8RshitXDRpFRR5Ex4AlRYOu+rQu08blWn4KTAFY VCb2XSN3Pc4B69+YvLYMwMYjE4ADsDEB4+7NLPgKSoXmGVuO36JotOw0+loJBGBjawjAAdiY gHH3YcEB2JiAcfdhwQHYmIBx92HBAdiYgHH3YcEB2JiAcfdhwQHYmIBx9/8BTglHewxM5PcA AAAASUVORK5CYII=</item> <item item-id="355" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTURCebekvLW0RWiyotfIjKn9rESTEVAsaE6GhGOLN0HYDNS2FsgS5 FU8c0JCYeNZoTIyJ0Zve1BAToxE8exBO3rgQL0Zb571Zlm1jFP9iDEwz72fe/O3Xt2/n2QBA QB5EtvKxDtsSOSNJ1cBIRDanYuHoJSkmcwlEkLvRKKgXjZ8AsiXi/ec4M4hu7LJGcf4ZdibR HuTaZmVuEcvfoJbZKuocAHELgNGwqG+GNhgDCaBUvDaOahaw8fU7pQA6gQe0k19zGYWxO0RA hWAZLjkpgTKXyPNxApTz/C2hocHeibOylBJ4DjZko1ZgR97FVc3SREQaSaTHDHwhwKzj6RjJ SrjsuIqLcXJ0/FT6MsFwDtmEgogKTB9yK/LtAYA57B8gUqexfzhA6xecBLYOdBV8UK5GOinL mUR0SpYovy5kB2ipsstfMHdv4OshfN1VhK9nN+FbVYSvl/CtgmrC16viWyPeWMQVzx7CtQZF e/kwW1MQcR+HwIbQhtKpaJqBSQtOBgSKNyUs9W4rbZ4n+PA92H9AzueZNqqGk1IomZDGZG6D z9yh7EOlRdvlJdfKrUfeVSiiE6CHXN4CRo1MUK0pHZ0yz+VZRKL8Dv1X9AU5p+Ed2l4UgTT+ ZPBBL55gMmRgpvgo+C65waC+8+wsuALtgt/1znU9C/ahFwavVnehM1pn7n8l6HH8VDlIQhid xZV4O/lTsRnhl0jQPs9W7eaEH+tslX4l/p+k34lPH0oA9p+w7zD7PrMzf+cs2B5kwCLNZAJY 8dB+sBbsjIIJ1oq8xKgkkVsZxiHBd49DsdYrJgmNOasMHyOv5wt36AIFWWNNH1bHPuRRPAuS +PNhsCSMYC/yPf56dXZafD87naRyEVj/eS5lXVhfg84z96Y+/kXf3Ux4fv5lW2zZdfcq3Kxd MrzdqIbMxVh9Ez+d8p6xd6uCxczlC/hfEf+3fFSIOlmOApXMg1ImMZy82JOYHE8Oz/Sn4xLp h1kj7CcDO8n8yp3jANXE/qKauJZqYj/UUU1cq9bE9cqdo4HuHPUHqTZuwKVGunM0HKI7RyM7 6Q9T1EaeZjAMwhES1PMsmhQnzeSkCUUt5KSplZy0MCdtZNOiOhE1To5u2gYU23ayDTDbY6Qa UG07NIudmkU2/woAAP//AwBuyCV79A0AAA==</item> <item item-id="356">iVBORw0KGgoAAAANSUhEUgAAAFgAAAELCAYAAABd+EHZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAz6SURBVHhe7Z1dktsgDMdzrtyh18hp +pDT7Dn62tkT9K03SA3+CAhJCGylyNbO7Ey7xnL4IcuEvyVuL/9RJXBTte7GXw5Y2QmGB/z9 /a2MQNf8UIC/HrfX42vt8Pfreb+97s8V8Nfrcbu/tv/qcjnM+jCAv5/31+1Nd+ogBBz+9Hzd 78/piJ2fQQAH73y8Nudd4N5ut1f8TcAHL3979fighwBcem8Ah3hw+PPX43Uz5MUb4F+/fs3e An5//vxZukm4VTOP2+NJBEgK8OTnlmJxBPz3798INkAOvz9+/Nj+/efPn5xe8KA4COktvQdw AJY+3KiHXP73LFwjlw+hBHMYGHL2fHLJuRvgAHn9CR8C+5k/9PQk/wIevDx8nkmncgAzRHxg KI9s9WxJdz/fpiD5+/fvCIL9gSEi/j95+IA4mT6Yynh7AQ9OYa6xuB1wEjKyAYAeis8YypkB 5cEGY3AKs9+DOcAwHuZfGPBZRJj2TnNjME0zO4toik5oiOAA1x6Icq+8xjy4CXCYutLxeZsb FN/kkCG/zDe5RsAT4mQWQa0nzDGXnn7JvbzpblRuPMQ3OeU+/lfzDlgZvwN2wMoElM27B38K MLkwgqywXaHtUdw3D66uPxx1RQN2jmThgJEBd8DKd4EDdsDKBJTND+zB6ZrDon5gGnuUndI1 iXkd4j074d5/gG3n87Y1jGXxn5S1NslrOo8QT8cFHDqXrNbE9VzYiQ1AAlFy3ua13KJQro5E iSu9foRbWzp91RWdhjtIdxZRdGhdEausjLGqNQMYXi/aWQeytlr3pjauB4ORzT047SAPmF9U L0PEdtNwgBfY9yQUUUujNgAvoWDtRLxd3yTQdxs2iajhHbT5nMVLwTXjq1brMRj3mXBhAPAc C99CJv5gyh5OqfcLY+V8ClCl04dY/Jq/wEfDFb7APzhgCBd7IkhisPRNSkr2D+yT16yyeLwO DH6NgQFL4CKdm0Ck8RCL3Vt4wWYc2MwAhgvwKtYcWvAZxbiAi9tznqOW7zwAD87mrvC1rCW8 ZPE7nTOnkGraX+34fLeNC7hhfjhyUwesPDoO2AErE1A27x5sFfAVtDZpH48aQ93FnqM+5Yft eIhQBu6AHbAyAWXz7sEOmFpBE+huu/S69brYap1QLzS7FiHR3XbrdfPb9PNUDCxFSq6/jM85 QoSKXsd5MLirbCsa9SCpo9fJAaOK92k8WF2vkygmdD6I8RDxCb2OA1xXXQwDrnduFjEZPa7Q 1lo0P8n1zSoass4VgFv0uo01PU2TFPOw6cEf0evSadoyXVtfnRJf36wH12cWo7Sw6cGj0BN8 DgcsgLSniQPeQ09wrgMWQNrTxAHvoSc4Vw2wVBC8QjvBOIiauOiJYFLzYNGQXKCRA1YeZAfs gJUJKJs36sFC0bEQPeUqRUwZwMovZOlE9eJKNgFLREdM9Jz4kkJm1ZPz6oFSOzYBQxjNomfd 8wreqLBZt3MKwO2iZx1MDri/9qV9wB2iZ1VKqt4h8lhuHHCv6NniwUzuXE3zm8bBMGCJLkeB lAPm3nmQ3AlGAUvghtu4BTDMoVvP31cD0yZgsehYAi7qsW81IErARY2IJDbTdvIAbhNwdc46 TgMHrDwWDtgBKxNQNu8e7ICVCSibV/PgK4iZ0j4eNYYuerroeZQvye2ohQj5Rzh3SwesPL4O +LqAOWGzUmG1VjUVg9oqkGbXoPNAxvVgTthkRc98gZxbEds4Nwuk+TVs1k0TyzZTw7TCKls1 FXXdJROpZe0Yq9VmrTAdYMEpC8UOXWkVPjZVS1LFFQc/rwfPUKk97EIXxg0RKeCitOF8EK2w ylVNBYMmqeJKqiLhTnk8tp3BDJe3FchDMCxQVVMzwNIqrogHw7uCfEAO78ECuLMrJ9WpCzcV bk7dEIPPUd6WgctmbCaAiaqp+b73a/sGwNCuyXIGnLDJVlhN589wfoopxzRgVtjMPp/FebDy N6xPmbcxi/gUDYXrOGAFqKlJB+yAlQkom3cPtgpYKgheod1RY+iiJ0LSQ8RR7kXYccAOWJmA snn34OsC3iF6BmjpYgyxHeS0zslsT9l7LB+xcT24W/Rc4da3g4zryNS2lr3HwB0xLmB463L7 wqWi5+KVlITDRoTMDmjZecwMYLHouagbku0gyzHEdvuaW3FbV3LHbABuET2hPibYEZHbnrL3 2Dp4BgALdLkUYoNeVoQLbjA6jw0OWAA3UEpFz0IAlWd1suIpJ6wyxwYG3Ct65pnx+WtNQJPj xNPeY2ZmEd2iZ3wkbS+EoNuyr1MMTjztPWYGsPI3rE+ZHzhEfAqB7nUcsC5fIy//KUPQNO8e rEl3su2ArQK+gpgp7eNRY+iiJ0LSQ8RR7kXYccAOWJmAsnn34OsC7hU9ufMgTTwRJq4Fnb68 ba/oKCl9u3FO8+Rqrnz28rZi0ROAYiWjBsBnL28rFj0BX772ZBkicDX67OVtW0TPFDBxHhUM ZvUDyRgi74K6HGVgFiHQ5cjbl5bhcchYKdtTl7cVwA2kUKGzFe5bakrDxInL2/aKntygANET m3GkmfqLtke/JWQ5RPSKnmzpW5jpCefM+ftsXt62NnUd4LiBh9wAlHZ8BAe8A57kVAcsobSj jQPeAU9yqgOWUNrRRg2wVBC8Qrsd45Od6qInQlLNg48aNet2HLDyCDpgB6xMQNn8wB7MiZcV YTN7O50uuZW/CR9qUSZtOdFTJIjOIzcu4F7REywxcqVn2UzPwrMp2SguSMeU3PvzuzhrXMDw o4rTqOSlZwsa4muAM01W/gN94JQFeExaehYCpq/R571jh4i095x4iR0LHvWol57NAHPX6PXs oWPw1ntOAkKONZSefQOuXwOXjThBdPSHXPx89Y4XD5bmVFpeWG0JTdiMb+CHXAfc+EAPtYST fTgz4Lgmhz39Z1g1yZ7b73N0D+bES1bYDFzSfenTeXCZSout5q3Aq6InWUnl7csDezB2w9n7 mwNWHjMH7ICVCSibdw92wMoElM2refAVxExpH48aQxc9EZJqHnzUqFm344CVR9ABO2BlAsrm B/bgXtGzst8nBpQthYukCVxa9GzK9FxX3vBSuO/NojhlOq6RXkn0BC7KlaUVlcKtJ7rMy6Mn 3tOzNwt0Tf/iS+HWAHOC6MjvRaSO2Cp6RmEjZG2Cl0lg/I2eB182gZ5YAczmQpsA3CkdrTCb FGEq05OKwVcUPaGXNpWlxbyV9mA+C3R0Ta5HUQ594srSrrsObBo8Vwp3uwWWja2L+BIrvNZq xY87D+4VPdn9PrE9PdP5dh4KuD09RVu6T2MyLmDlb1ifMu+AlUk7YAesTEDZvHuwA1YmoGxe zYOlguAV2h01hi56IiTVPPioUbNuxwErj6ADdsDKBJTNG/XgSqZnhEYsM0qzQE+f6cl5VkXY pMXKfIGczQItrt+XK2fUg0HvxaVnP58FegrAuLKAh4i+LNA+7w1uYB8wKYgSMbgnC7RJ18vv LuOAa4IoECt3ZIGeNNOTe9LxGZroLKI5C3SR/4l8OOOi5x64xDStKQt0tUEJm3XJ3m4MrmR6 cmKlOAs0zKQf04srhPe66Kn8DU1q3vhDTtrN/9fOASuzd8AOWJmAsnn3YKuAryBmSvt41Bi6 6Omi51G+JLfjMVjOqqulA+7CJj/JActZdbUcGHCvsNmY6ZmJoGmGUW+mqZUF915hsynTM19y zFbIusvrWgEMb0ixsAlO5DI9oU0uI6lTNho4ROSgWoTN9MzglWTpxAbAvTUsbQBuFTYnwqJM T2iX8uCOTNN1kA0AbhQ2RaElaVSoIzCrs3Z9fmvLwQF3CJsQMBdXscHIJKJ9cIP5gQHX4IaP jxfLoDc9xRIRF8pFGNgPd2zAvcJmU6YnneVJ7W0fH5i18rrJnTGwB3d9cRruJAesPCQO2AEr E1A27x7sgJUJKJtX82CpIHiFdkeNoYueCEk1Dz5q1KzbccDKI+iAHbAyAWXzA3twRfQkxcq4 2h43jJpnKHjRzpkrdw0ons723iXX0mvQ1VnHBcyKl3Pnt86G1a1tHZcRMrG14mRtM5eFwDWy c+UZo+MCxhbDV2+Ei+ipsNmgsxXRAdkajU7fSryWEVbNAM68C3YoBb4DMObB6RehFLY0Y9QG YDb9CigbUiETCxdMLcpZRAWlcAX7hhoAjEg3nAdH3umGfZUawsnDjt4Z8f1AjF7ckDE6OGBC F+NiMBa72Z0LJdofANyQMTowYK7j3CwiIVwImQ17emKzmOwhS+0bmo/wuICrwmI6h6Ve2oPz 05Y9PeEcGcynyX1DrQBW/ob1KfPjevCnCChfxwE7YGUCyubdgx2wMgFl82oefAUxU9LHI8dv Ez2PNOq23gQcsLI3OGAHrExA2bx7sANWJqBs3j3YASsTUDbvHuyAlQkom3cPdsDKBJTNuwc7 YGUCyub/AULOEyekOR6QAAAAAElFTkSuQmCC</item> <item item-id="357" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTURCebWnZlpa2CC0W1Fr5ERSQtSgSYqqFGBOhoRgOXgy0G6hpKZQl yK144oCGxMSzRmNiTIze1JMaYmI0gmcPwskbMSFejLbOe7Ms28Yo/sUYmGbez/y8mf369u08 GwAIyP3IVj42YFukpGW5ChhJyGIyGh66IEcVLoEIcic6BY2S+RNApki6+wxnJsmNXcYszT3F rliyB7m1qM4tUtlrtBKtksEBELMAmE0LxmYMMAoyQIl0ZQzNLGDj+lslAAaBB7TTumIphbE7 JECDYCmqnJRAqUvi+TgBynj+ltBAf/f4aUVOCjwHG7JZL7Aj7+CmojwekYfjqVETVwSYdywV JVkRlx3TcDFPjIydTF0kGM4gF6MgogHTg/wQ+WYfQBUGuodI4TPD/T7Sn3MS2AYwlPNBmRbp hKKk40OTikz5dSA7QE8VHf68uXsdXw/h664kfD07Cd/KAny9hG8lVBG+Xg3faunaAmo8uwjX ahTt5sNMdV7EPRwCG0IbSiWHUgxMUjgZECjekLDUO3E7Pcb+ET58GPv3yLkcs0bTcEIOJeLy qMJ98Jnb1X2otui7tOhavvHAuwIFdByMkM1ZwKyTCZo3pWNQ59kci0iU26b/ir4gZ3W8TVuL IpDCnwI+6MYTTIE0TBceBd8lN5i0d56dBZegTfC73rquZsA+8Nzk1dt+8Edrxd6XghHHT9SD JITRWVyZtxM/FZsRfokE/fNs1m9W+LHNZulX4v9J+p349KEEYP8J+w6z7zM787fPgq1BJizS GkWAZQ/tB2vezsibYK3IS4wKErnVYQzifPc4VG+j6hLXubPKkJVsa7n8HTpPQVZZ04PVsQ95 BM+CBP580IXtMPYS3+OvVmampHczUwkqF4H1n2eT1vm1VWg/dWfy419cu5MJz869aI0uuW5f hus1i6Y369WQWIjVN/EzqO8Ze7fKWcxsLo//FfF/y0eFqJPlKFDJ3C+n44OJ813xibHE4HRv KiaTPdsAIOwlBzvJ/OqdYx/VxP6CmriGamI/1FJNXKPVxHXqnaOe7hx1+6k2rkdVA9056hvp ztHATvoDFLWBpxkMg3CQBHU8iyZ1kWZapAlFLbRI0yFapIUt0ko+Ldoikm6Rwxu+AdW3jXwD zPcImQY036M6ZbtOyeZfAQAA//8DAD7bM230DQAA</item> <item item-id="358">iVBORw0KGgoAAAANSUhEUgAAAGMAAAELCAYAAADN6zgWAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAnUSURBVHhe7Z3bsdsgFEVdl3tIG64m H67m1pHfjCvIXzpwLMl6ITDnwgYhZXkmM0kkjtBeHECwLV+efJpR4NJMTajIExgNNYLmYTwe j4bkKluVpmB83S7P29d4w4/n/Xp5Xu8jjK/n7XJ9Tv8sq8su0ZuB8bhfn5eZxEsMF0b3X/fn 9Xp/HTnnpxEYXau/PaekeIO4XC7P/s8CUpc9c7acC0oTMLZZ0YnsyYzuv79uz8tJs2OC8evX r6EVOn9+/vw5N7+um1gcX/UqyY00IHoIxit/zjp29DD+/v3bQ+iAdH9+/Pgx/f3Pnz9vmR0R ejCKAbWLuxy4QwP4+v9jDaHrznyNy+32kttQgYITjA7I+OkqvPl03YOjwDT7eQ+s94UA61MH wQdxlmND3+8EWvp3M6aAOpVDblT//ft3L1r8sxDx3X1NA6vTry8H3e34QGZMSeCKPo4dn2E4 rbaHsWjxq3+7Ld8/c9rOkEKZcfIxYyl8PDOGlrwSLwrD7b/XY41/NtU9VryePZyp7X8xm4p3 S++HLt9gG4XhjhPu1eytneeMfto/TGu9s5iPMLpHg0UmBZ4TQtmxwsYT+CDH1GU4zyE9nAiM YcY0dlWh6fAwRoSnrPbsMWV5gydZpk0NVvucVQJGQ1yBAYyGFGioKmRGizCCi2qelVzOXT/E qnhOmWFbj1Jd9jxxlLoBI7NdACNTQGVxYCjVDMZarhqs9+GXRYBRA8ZrDW1tG/Iv4xwAhmUd aViLcmdm2x1CVwS3nHXrN1Cn1b5+aHXZ3YOZW0PTMOa955hInxcGg3E68RbE+gXMiFskXCen DpsV5RF8eAugaRhDm7FnxmdjgSGOd8XYt/rrieWaKtxYUwKE63EqGMtuagsmDmOz2RTcdwnB cLeL/Rm9tp4epJuyZ8Z6FB72S1whwjDm/ZVYdzhexxOr65ZWbpX5nMf9tvD1nj4z3CmRzyUS z4x+T3xj//FNt76ZGX3ceYIR6k5P0k2JYJjNdDljRngufVAY75nJ2MR8syKLwW01/39vB5u8 t74si82m4g80TcPY2ConoRwYq33xrdMwGMfx+1q6qHCdxplfyO14cBjx6p/rjKYz41xSx+8G GHGNqp0BjGpSxy8EjLhG1c4oBoO97Q9fsPngBVCRZ9s1U8limZFZr/+yODAawg6MKjDYA68i s+ki7IG7O3Thxb155pexn9FRYQ+8V+Hjl2PYAzflr+Ukw6ZQBMZwFUMc9sBjQAwiui9r8X5f MB6HPfAYC0uLdmKwB/6cX4unnC+bupcNUPbACy2HxLuXbXIlwmAPPNZPfZiSsgceFE+eGeyB xxpq+LgcRnpVjllSOdYCI7MNACNTQGVxYCjVzIwFjEwBlcWBoVQzM1YxGBgSMCRkts19ixfL jH1v65hXB0ZD3IBRBQaGhCoymy6CIQFDQt9QVH0fX8o35Z33pEILhZbNpdirU7v6GuJgSIjR N4iIIWEj4o6Zsa4LhgQMCZ5fN3g7FPlSvmU25WQ3hoSUMYMv5cdUk48ZGBJikoePy2GkV+WY JVXPZ/2z3iiBMugxZU2rtVI3YKQxmEoBI1NAZXFgKNXMjAWMTAGVxYvBwJCAIUHZUKvHKpYZ 1e/kBBcERkMQgVEFBoaEKjKbLoIhwbKEzq8EmBpTdxKGBLNUmxMLrU3Z98D5lYCZye4wlg+a /ErAG4xyimay2DhJiiGh2H6GpZtyu8zEL+XzKwGxQaoiDAwJKTAwJMRUkw/gGBJikoePy2Gk V+WYJZUTH2BktgFgZAqoLA4MpZqZsYCRKaCyODCUambGKgYDQwKGhMy2uW/xYpmx720d8+rA aIgbMKrAwJBQRWbTRTAkYEjoG4qq78OQYMo770mFFgotm0u8IcElsjsMDAkzkh1hrNsFhgQM CbwhwT/EJbpDMCTEZgz8ZENMId9x+ZiBISEFw1BGDiO9KscsqXo+A4aAPzAEIqpCAEOlpCAO MAQiqkIAQ6WkIE4xGBgSMCQI2ud+IYplxn63dNwrA6MhdsCoAgNDQhWZTRfBkIAhYVgxfP1S veKDISFdxUKrthgSUpDsDgNDwoxtRxjrtoMhodjmkqWbchM5cQ+cNyTEesSKMDAkpMDgDQkx 1eRjBoaEmOTh43IY6VU5ZknV81n/rDdKoAx6TFnTaq3UDRhpDKZSwMgUUFkcGEo1M2MBI1NA ZfFiMDAkYEhQNtTqsYplRvU7OcEFgdEQRGBUgYEhoYrMpotgSMCQ0DcUVd+HIcGUd96TCq1N WTaXeEOCS2R3GBgSZiQ7wli3CwwJxfYzLN2Um6QYEprJjOEHUCyzKQcihoTYjIE3JMQU8h2X ZwaGhBQMQxk5jPSqHLOk6vkMGAL+wBCIqAoBDJWSgjjAEIioCgEMlZKCOMVgYEjAkCBon/uF KJYZ+93Sca8MjIbYAaMKDAwJVWQ2XQRDgmUJ/f11tNdy+zD7uz7vD4u8gT2Wfgl+jHV7LeT7 Pl1Z/7GmuykMCZaG4T+n0KqtZacPQ4KLZHcYGBJmJDvCWLcLDAnFNpcs3ZSbpIl74LwhITZI VYSBISEFBm9IiKkmHzMwJMQkDx+Xw0ivyjFLNv3Qd0xJ02sNjHTt5CWBIZc0PSAw0rWTlwSG XNL0gMVgYEjAkJDeLBsoWSwzGri3w1UBGA0hA0YVGBgSqshsugiGBAwJfUNR9X0YEkx55z2p 0KqtZXMJQ4JLZHcYGBJmJDvCWLcLDAkYEl5uwoVTcLmf3hsd5uWRm99qKBtr+3F7bJ+qAXyI Zxkz3B4z0R2CISE2Y+ANCTGFfMflmYEhIQXDUEYOI70qxyyp7N6BkdkGgJEpoLI4MJRqZsYC RqaAyuLAUKqZGasYDAwJGBIy2+a+xYtlxr63dcyrA6MhbsCoAgNDQhWZTRfBkIAhYVgxfG2k KD4YEtJVLLRQaNlcwpDgYtsdBoaEGcmOMNbtAkNCsc0lSzflJmniHjhvSIgNUhVhYEhIgcEb EmKqyccMDAkxycPH5TDSq3LMkqrns/5Zb5RAGfSYsqbVWqkbMNIYTKWAkSmgsjgwlGpmxgJG poDK4sVgYEjAkKBsqNVjFcuM6ndyggsCoyGIwKgCA0NCFZlNF8GQgCGhbyiqvg9DginvvCcV WpuybC5hSHCJ7A4DQ8KMZEcY63aBIaHYfoalm3KTFENCM5kxvFXBMptyIGJIiM0YeENCTCHf cXlmYEhIwTCUkcNIr8oxS6qez4Ah4A8MgYiqEMBQKSmIAwyBiKoQwFApKYhTDAaGhO8bEgQ8 pxCaL/Ipa/QfxwJGQ/CBAYyGFGioKmQGMBpSoKGqkBnAaEiBhqpCZgCjIQUaqgqZAYyGFGio KmQGMBpSoKGq/AMeAoVTbQRwxAAAAABJRU5ErkJggg==</item> <item item-id="359" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTURCebekvLbQILRZUrPyICshSFAkx1UKMiVAphhhjYqDdQE1/oCxB bsUTBzQkJp41GhNjYvCmNzXExGgEzx6EkzcuxIvR1nlvtsu2MYp/MQammfczP29mv759O88G AALyALKVj3XYFskpSaoCRiKyOR4ODl+WwjKXQAi5C538etH4CSBdJD54jjOD6MIubRTnnmFn Eu1+bm1W5hax7A1ama2irhQgYgEwGhb1zdAGCZAAisXrY2hmARvX3y0G0Ak8oJ3WNZdQGHup CGjgL0GVgxIocYo8HwdAGc/fEhgc6Bk/LUtxgedgQzZqBXbkHdzULI2HpJFoMmHgCh/zjiTD JCvismMqLsaJ0bGTySsEwxlkEwpCKjC9yOcxwJ1+gAXsHyJSCewX+kl/0UFg60BXzgdlaqQT spyKDk/KEuXXiVwKWqro9ObNXTl83YSvq5Lwde8kfCsL8PUQvpVQRfh6VHyrxZuLqHHvIlyr UbSbD9PVeRH3cAhsCG0gGR9OMjBJ4WBAoHhDwlLvwu10AZ/mCT58N84/IGezzBpNgzEpEItK CZn7CDmMIdei7/KSc+X2I88qFNBx0EMmawGjRiao3pSOTplnsiwiUXab/iv6gpzR8DZtLQpB En8y1EAPnmAypGC68Cj4LrnAoL7z7Cy4Cu2C1/nOeSMN9sEXBo/W9qw9UmfueyXocfxUOUgC GJ3FlXg78VOxGeGXSNA+z2b9ZoUf22yWfiX+n6TfiU8fSgD2n7DvMPs+szN/+yzYGmTAIs1k Alhx036w5u2MvAnWirzEqCCRSxlGIMp3T6nirVdcohp3Vhk+Rl7P5u/QeQqyxpperI5rkEfx LIjhrwaDxWAEe5Hv8derM1Pi+5mpGJWLwPrPs3Hr/PoadJy6P/nxL67dxYTn5l62hped967B rdolw9tcNWQuxOqb+OmU94y9W+UsZiabx/+K+L9VQ4Wog+UoUMk8IKWiQ7FL3dGJsdjQdF8y IpF9kDXCXnKwk8yr3Dn2UU3sLaiJa6km9kId1cS1ak1cr9w5GujOUb+fauMGVDXSnaPhAN05 GtlJf5CiNvI0/UEQDpGgnmfRpCzSTIs0oaiFFmk6TIu0sEVayadFXUTULNK24etTfNvJ18d8 j5CpT/U9qlF2aJRs/hUAAP//AwDEc7IH9A0AAA==</item> <item item-id="360">iVBORw0KGgoAAAANSUhEUgAAAFgAAAELCAYAAABd+EHZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAzqSURBVHhe7Z1dkuMqDIWzruxhttGr mYesZtYxr1O9gnmbHeTGf1jIQgiCcsE+XdVVMx0s4g8hYw6C2xM/rgRurtZh/AnAzk7QPeDv 729nBL7muwL86+v2/Pq13fD383G/Pe+PDfCv59ft/gz/9eXSzHo3gL8f9+dtp/u6QQ54+tPj eb8/Xp+M89MJ4Mk7v57BeVe4t9vtOf8S8JOX717dP+guAB+9dwInePD0519fz9tAXhwA//79 e/EW9vvz58/dTaabC59Tj3vHkxIgU4Bffj5SLJ4B//v3bwY3QZ5+f/z4Ef799+/fhd4U/0g3 lr2uBvQEjD7cUg+5+O9RuBaqnUKJ5DA85NR845JrAuAJ8vYzfYnsDwW+Pnwe5KZiAAvE5Ya5 56c8stSzs9/4fylwIPnnz58ZRO4n8uAZNnn4sDhJH0xHz7+AB1OYWyxOAl5h3uiYlIWPOJxw D5VHDMeRQcqDB4zBFKbVg1+P8/1hkwXM42H8wpCK5/Pf2TBt2FFELiRIn4c3ryzg3IjD7pXn HQcfxp9WD56Grun4HMYGhzc5oUnP/iYXuuw8GiDdXPXg+e2AjCJS8wlLzE0Pv+xeXtMbva7J Dxe8ar6IXQB2bmgABmBnAs7m4cGfApycGBFm2K5QthX34MGW+YdWlfZupyULABZaG4CduwAA A7AzAWfzHXswnXNg8xUTlDCXzJWNZR6Cj07keQmtrMVOfk6jX8ATQEJlnhwKCnCsXMyaWfgs N9FDXVYrq9vZdTp9AUu/gHnXnVXodS6Y/jt483ajnwG8fL2RPZgBjjzYAJiGiPS05TEM8OVW up2zAF7jbbh58f9yV13mnW3r0LSy8menALzE24OQGS1cER6CoQeklGZp+KCVlT4bHnACrhSf k0ugADgxEjXClcIFH32EBSprzN0+l0YqW1nts6h3jDqKOISAZWy7hApNl+PjZ2GlZWgAraz2 2SK+RmPtRA8aZ5jm/MblZR6AvciudgEYgJ0JOJuHB48K+Apam/UeW7UhJCNIRq18yW4HMdjO qqokAFdhs18EwHZWVSU7Blyrya0c6FyGlmyY1PY0O3yiPj3h0y/gak1umgsi8pLqd0xe4ivv U3bU7xZX2C9gac63tSY3e29qdX2BtsdX5ZPvPgxgsya3QrsT6T6pyYnpCivwAjtaMs0YgEs0 ublbE6/UwsXhMyIBGezseSYjxmCmqZk1ORFaIiFG8+ASO0ojdu7BRtmIPpx4XNXWLmgx+B07 Y8RgI1wePtjWBUs33mQjpsmtZXcFie4fEaffRnZeDUrjerzqaJRRRLUmN91gSrPjgHlZKXt/ 0974aINqcuns085DRNXLU1cXAbBzcwAwADsTcDYPDwZgZwLO5t082CoIXqFcqzaE6AnRs5Uv 2e24hQj7Vzh3SQB2bl8Avi7gStEzMUkU7ye8Uc0kG0aCKJ1Uz3y3IaYr3xE9I69M7fo3FdJ0 tzi3I5quvLboyfq8qjDnACvbjdFqxlU09rswi55m7909OJVsuORhLHO92ha8Y064U1AloqfR s6Rn2yHZcPLMr5d6sW6FI6rTB0UltjzAKKI2EbEkP26DQq7hmhxXmedL8rJW54DzN7Dc53Ev dq3bpkdmBHBWVbZ9t44B225g2zdC2iX72KULExHpduURcON3e7Vkv4DfED3j/SOiYL5s1mFK RFx7RtiKjC9mOW76IR0Z0S9g5zesT5kHYGfSAAzAzgSczcODAdiZgLN5Nw++gphpvcdWbQjR UyDp5sGtWm10OwDs3IIADMDOBJzNd+zBmWxKLUMzl70pTOYvIwJhpbqYMXr6TE8tQzOTvRl5 LDI9dxw05aokO0jJwlzmkpHpuYoWZP/KbIYm6eqHdCziwlk799fZy/u8bypjdOhMTzGbMpuh SWOpsoFn1o6eMXqSTM/V4yiMrOc18OCsJkd6whnWRUTx8hMx+PSZnmo2Ze0oApmebNSgZVPS BXhahqa2++qs+WfOaUamp/O72HvmO36Te+/GerkagJ1bAoAB2JmAs3l48KiArYLgFcq1akOI nhA9W/mS3Q5isJ1VVUkArsJmvwiA7ayqSg4KuFYQtYuVEc1DAozdzpiA1UxLZSqzIEMzAA4K NdPuksdhxo4+JmDeWa2CqHadGAA2uSlzbtwZtrfVAmAkOmpyEjOiiZVxHrMOeGjRUwNbLIiu xixi5ZypFGUjHbewtdg5R4iwCqK8tZJipbzNwQRLlO5PIXrqrrwvIFEXkzAj2pqJeBjxkpWU kw8VO2N6cK0garhO3riDxeBTbG+b9dgKQTRaFJg4sl2OAbEHq3bOOEyresf6zEVjhojPsGlS CwA3wZg2AsAA7EzA2Tw8eFTAVxAzrffYqg0hegokESJauVfCDgADsDMBZ/Pw4OsCrhQ2P7K9 7RlEz1ph8+CR2N7W1klrhc1PbG97BtGzTtjUvHdq16M0RKeDrdvbDi161gqbc7dQvffYcUq3 tz2X6FksbH5ie9u1kU4helJh0SBs+m9vS3rAkKKnQaCUz+KcY8OcXOi2ve0pRM+ssJjO0HTf 3jb73XbvxpucbZBYXQqAq9HZLgRgG6fqUgBcjc52IQDbOFWXAuBqdLYL3QBbBcErlLM1Rb4U RE+BkZsH59vjGiUA2LmdARiAnQk4m+/Ygy3CopReZT9vM2IrHWeW3CbXXke/gDNZmYucM/2y 5JRW2Zz8vE96pFpBHf0C5l1XFBYzGZgm2SiRzWmY1A9f8QyKhiws5gHrygbNa2a2CjJGhz7T UxcWLTnEieTBWRNVsjm1rW9p71rjdGpv4XFChNgNNcC5Uwsz2ZwmD87V0fOJiGIM5tmWKcD5 Gz+OzqQQoZ2rbKujXw82CYvpYZp0/GNYaGJJNtRGEYbTaLcG7BdwRljch2nrcO3+eCGZA+s6 fIvP3FyA8/2DqR/nxtRkm1y1jrhv9AvY+Q3rU+YB2Jk0AAOwMwFn8/BgAHYm4GzezYOvIGZa 77FVG0L0hOjZypfsdtxChP0rnLskADu3LwBfF3Cl6FmS6amWleeL54m4gjr69eBa0fPgkblc uUieeD5eJyDSmbeUUhFXk66jX8DihLt06pay5WGYvhROm5VCQ6SasH2ItVByXdGz1nsnmnoW 6M5br6N7D35L9CzJ9MyUPWSBboQz13UPOHhKpehpi6GWrFCpTP66cQCL2ZRpVbkk09NW9gjT cl2/gKtFz/nJZsv0nLtHoqw0iomOZs9772S9X8C1ouc8TH0JnpsIGj39j6Jnuixf4BePRNLX xcONfgE7v2F9yjwAO5MGYAB2JuBsHh4MwM4EnM27ebBVELxCuVZtCNFTIOnmwa1abXQ7AOzc ggAMwM4EnM137MGa6KllWlrE0o2qImxORZKZnuv1VPwUJ5d6n01LnZupCaIFWZjxqYfclZWz QedZzilVIa/1dezB7IaVLWTVm9Wu44kutEo109MuiA4DWNtCVlMWLOd20ped0Gm0PLkV/v0l 8W/XDpuImN1CNpFpmb1OeLhFwqaW6ckz888g28thwJAMaIyVC28iA2keLMKXU3aHCRHLE50u MjHADSOBzOKU4M0ccCLTU/wuch39AlZFTwWuYVvccG6nKmxqo4h4sckSWuQRRb+ANdFTy7RU xVIueurC5hYylgeZtGwrsSkIie/9AnZ+w/qUeQB2Jg3AAOxMwNk8PBiAnQk4m3fz4CuImdZ7 bNWGED0Fkm4e3KrVRrcDwM4tCMAA7EzA2XzHHlwrehrEygD1DdEzJ4iudfQLuFrYjHMn9KX+ mramTVfa6+gXMO+6VtGTqw1idtJmXAGsiZ4FdQwD2Cx6Fty8ms1ZIhkpjdg94Kx4yUVP8f82 ycgsehbU0T3gXS6TFnokpKOD4mEDbBY9Z32U75E5miYnxuAK0ZPuvZ4dkhlFT25HqaNfD64V PenNH9ZMME2uWvQklSTWZWwl+gVcK3quaxuWmS7ebVuJnlQs1cNPv4Cz3XmMAgDs3E4ADMDO BJzNw4MB2JmAs3k3D7YKglco16oNIXpC9GzlS3Y7biHC/hXOXRKAndsXgK8LWBM9Sz5bVqGr OwCKGZsldaQnfPr14GrR054kODtvKgupuv64S/QLuET0jPSzEsAFZTXRVflsGMCa6Bl/Zt2W 9tWCBRmb9voH82BN9MwKojPDKcUqESMNGZvv1j+MB6sJ32o2p7KJZ0HGZm394wDWFpCoi0sU wAUZm8dMU67LjaYqa6Kn9plByAyZnut2Btv5n1HGZm397OHcrwdroqeazallb0pneiYEzOr6 B3vIOb9ouZvv14Pdb/0zFQCwM2cABmBnAs7m4cGjAr6CmGm5x5btF0TPlkZhaycAwM7eAMAA 7EzA2Tw8GICdCTibhwcDsDMBZ/PwYAB2JuBsHh4MwM4EnM3DgwHYmYCz+f8AIc7zI8RbFsQA AAAASUVORK5CYII=</item> <item item-id="361" content-encoding="gzip">H4sIAAAAAAAA/+zdCZwU1aHv8QKDS/I0iSQ+jShBRQliK4sbOijKosAQdkEWEQURWWRRFImg XuON0RsTNb4xNy/6yfvkvSQmuXrNYq4i7ntAEBhg2GZfWASne0Zvknmn+vTU1FRVV1d3V3dX nf7V52t7urqqTp+u7j+nTnXXdNGO07Sjjr3hS5qmHZml33YT/32lq5Yo/Y+ut59f3Vd/5Oqv flv7UMz5oMsvuuiP6vP1//cR/+lzPhD/ddFO1mdpz7xyrGadyr6hPdIdAFQjpt+fpD1zuu7Z 0xOFbDzrKtvtn5adLDbu3q5ns1/d/VU9zU2WOyU119qzfW7uW8jumQf5zZzbT0qWzy2LfZrt my3rPf7LeOFnpybybcMp2vb+x+4YefyeSV/bfu2Xy4d+ycWuIZq7ipJcGuJmV0kK2VSdeuPu zy2Xr1uWG8929ezkdqdk8XZK+Y7K8s1cyI3nsuFZ7pTs304bL9Ze7qennDnfaiaceHDBSbsm H9v43WNcHL5GA4DAEhG37jz9oMmcbzLcyhv2A0B4yYhzybcNu/Zs3LXn4917N7X72MlGfbF9 0oZdey3+ttuZfPRDVx9UWL1fsQcAhHfbvbdT9/7OPe/s3PX29t1vbd/lJd/e377T3Xvlzt4u 3+HiLZM3t1m9vlVnLne2fT2AIvPa1h2GpItt2b6unZd8a+9o7dmwe7eUuGuIz/xoV2pe0liG 8LsVVu/stNgFoNi8tXO34c2duyTz3Td26F546522tjYv+ba1qkbYVp2wRarqsNXkk8pqi80m myqrLD6urNbtq9Lpd6s27qsWNkh7qxI6z/loH4AiVC18sLeqw55qXfvd99r9p+d8q2hoEHY3 NAqyvLO+UbKUhR11nZQnt7Wu3tGWGt0nNXWGzTYfVwMoRpuq68XtxvitLAgbTP5WpXvx7fc8 5ltlY5Nhb5O0v51+1/jtw57Gpl3tjJkVDU2CLOw0zd/e0CQZc2TubatrFOWt9fp8mXjGAlvq GgRZ2FzbKIiyLBjkkua75vnmRy0POc6xzExWKYAC2lij+7hOJ8t/fPt9j/lWtd+qsunAvv37 JbGKpbxn/wFR2G1KP1E2bkX0VTTuF0RZxp243R4nyjvicWfknrzdKo6RhfpEWd5+Ut/0SXyO LFjuyoLlrvtDMtOSrQUgmDbXN22q6yBT7k+e861m/4FkzKFnzjpZMHXzOuWbKAhGN09knYi4 nabcE1m3I16Qt+aeXkfi1TclEi9eMDNm2gtG2eUhly0DCAhxECfDzUKm3B/f+cBjvtUfPFi/ /0C7g7Xt7FknVpdlrfMk+nvGrXky+nUy68z9OqNrl26+ueSVMW1NlW+EGxB8MuJ0dTpzvv3q ry97zbdDhzqIrBMOHao7dKjmYIKRG+Y51QcOSnqymW73Hjho9PHkkay4lT06c+JVmPpv4lbY 3nhAdu1kXfK5GQXLXVmwPOr4kHkZl4cABMpWky0mMvF+u+41X/LNHGsGGWuJztuBg0a+7TXN F7EmmbtzMt+0+EGrkWzGAiLiZL5ZUs7Mkn6Wsv0he75ZVgQQQO759ofX3sppvhks+Wb034x8 M/pv5l6cPFbdYRIPtwPb209GeHkFXDKK+AJCzT3fnn/D6/ffvOebUSbfAOSUe755//1CBuNv 2eSbZD4+zTjfAKgqvXw7PfN883J8KqWVb9n33wCoyj3frL/PIt8AhId7vll/n5U835o+PWTW aI47kzobmXVVNuasMzMnnlTRdNBsR7vtAIpP565OwtbOPmncL1h/n+XSf9vfVNfUWNNQL1XX 11c3tKuvr2q3z2SvyZ64XSYVUp1uZ61uR12H7bV1wrbaekfy1/fxH+ADKCKbq+vMNplV1Qob qmo3VidYf5+VPN/2VFft2LN7e8VOaduO7Vu3lwufCOXlm8u3bdZv9cLG8nKLDYZt5R919qHJ +1u3fbBl6/tbynVbde9u0b2zZZvF259sewtAsXpz89Y3Ptlm9uaW8tc/2Sa8saX8zW3bJevv s5Ln26Ytm9/78IM333lbeu3NN1994/V1r7+me2292cuG9a8Kf12/3vBS3F9eXf8nVy+uM7wq /Oe6dS+se9XRf7wCoOj8obPfv7wuQdx99bXnX39T+uPb7738t41e8u3J//OrR3/2vx9+6mnp X5986vuP//TBx58EgIAQoSSi6eH/9bT0o5//QgSXl3wDgJAi3wCoyiXfIgMGAkB4kW8AVEW+ AVCVQ74NOIZ8A6AAPd+GaM+eRr4BUA35BkBV5BsAVZFvAFRFvgFQFfkGQFXkGwBVZZxvbZqG lLLcO1pbm5njTMujAAz034LMEmuOBZINSIZ8CzIjwbwEHQAL8i3IzMHlHmtEHGBHvgVWsuE1 8g3wiHwLMi+pxSgckIxDvnF9pFDh/CmQDNd/A6Aq8g2Aqsg3AKoi3wCoinwDoKqM863wv+0M gyz3Tsrfn9rvhk6SX9Oikzy8kYyZBX9L+Ij+W5BZ3o3JCo53AYP3N5Ji7yLyLcgsPTTzzAj5 Bs+8v5EUexeRb0Hm+MZzLCj2toS/PL6RIuQb8sVxzCRC/w1pSuuNpNi7iHwLsrTebIq9M+Ej L+8NewAqgHwLO8d/moHMKPYuIt8AqMqeb+X9uT4SABXIfHuWfAOgHPINgKrINygj2fcc3Muc oFEY+QZlZJBvxJrayDcoI7N8K/jTRu6Qb1BGxv03OnKqIt+gDC/9NJf+G/mmHvINyvByHiFi G3aj86Yw8g3KIKNgQb4h7OzDaPTHIJFvAFRFvgFQFfkGQFX2fOP6SADUIPJt1xDtmdPINwCq Id8AqIp8A6CqIsw3l78C6fK19gy+VeW9IvcVs6krrTZmUFEk+S8F7IuFulHJnoMvjbK/Yjlq lEtFvr/Vc9GodBVbvlle25TzLXO87460Kkq2zSzrsizg/jbzsSL3Z+57XTnaU8kq8vhk0q3L 5U3ib6McX7cc7SmXLWfQqAwUbb55LNtf/3R3emaV+lKXZab9n/IcVeS+zVzUlbdGeZ+TQV2O /zrkolEen3+O6sq4URkg31zKxr+e+c83e70Z1GWZmed8y0+jcrenXGY6Vh3qPZWHRmW/pzJA vrmUk/176ntFGdficcXg5JvvjcrdnvI4U409ldlLl+c9lYFiy7eI6S3k+OnTOo8MpFzLl4os D0XS3+MuddlbZMzxt1GOFTm2zt+6crqnXLbj2MZs6rK/AXK0p5K9YrnYUy5bzqBR6SrOfEuW LfZPjfkNlu6O8FiRcddxZpZ1GY+6V519o9wrymmjcrenXCrKuLp03xW+7yn397m/e8r3z1S6 ijDfABQJ8g2AqpzyjeuHAFCBzLfO1w8h3wCogHwDoKrizLe2XJ6ysXj4iZ8qVhGNCktFqjbK O/JNmbpoVFjqolF5Q74pUxeNCktdNCpvyDdl6qJRYamLRuUN+ZZrSg6A0KhQVKRqo7wj35Sp i0aFpS4alTfkWwDXCvjTo1FheXrBfylyjXwL4FoBf3o0KixPL/gvRa6RbwFcK+BPj0aF5enl cy3G34Ij4G+VgD89GhWWpxf8lyLXijbfmJiY/J0K/rkuYL55v3CffQGPKxJfTEwFnAqeZo75 VjFEeyZf+eYeVvYFPMZjWs8kzzv94Sd+qlhF+ayLRoWlrsCOv+Ui3xyvTW2OqWQJ5phpXlbM IN8K/uIDyKlC9d8i5BuAHCPfAKgqD/nmeL7AMuDmsoB5O+4repTnfFPyB4A0KhQVqdoo7/Lc f4ukf/402fyM/7gY/TegSOQt34KDfAOKBPkGQFXkW64pOQBCo0JRkaqN8o58A6Aq8g2Aqsg3 AKoi33JNyQEQGhWKilRtlHfkGwBV6ddHKiHfACiIfAOgqiLJN8crVuWnaiUHQGhUKCpStVHe FUm+mdF/A4oE+QZAVeQbAFWRb7mm5AAIjQpFRao2yjvyDYCqyDcAqiLfAKiKfMs1JQdAaFQo KlK1Ud6RbwBURb4BUFUi304j3wCohnzLNSUHQGhUKCpStVHekW8AVEW+AVAV+QZAVeRbrik5 AEKjQlGRqo3yLv/5prW1SY53HRfwuKLBfilLx8m+XyhTppx9OTgK2H+zh1XElmbmhc3zky3m BcenQJHIT745ppBjgjlmmr2c7CEvyDegSBSk/2b0wYoh35QcAKFRoahI1UZ5V6h8sxQi6uYb gEIpbL5FTLFmCT37Ia1lfrLFUiLfgCJR2ONTS9n+aLK1XBZLiXwDigTff8s1JQdAaFQoKlK1 Ud6JfKso0Z7l+kgAlEO+AVAV+QZAVeRbrik5AEKjQlGRqo3yjnwDoCryDYCqyDcAqiLfck3J ARAaFYqKVG2Ud+QbAFUVSb7ZL25JvgHKK5J8MyPfgCJBvuWakgMgNCoUFanaKO/INwCqcsq3 Y8k3AAog3wCoinzLNSUHQGhUKCpStVHekW8AVEW+AVAV+QZAVeRbrik5AEKjQlGRqo3yjnwD oCryDYCqyDcAqiLfck3JARAaFYqKVG2Ud+QbgOy1tWkFfw525BuA7JFvHmnilYoz7iabb77b +aX2NMmFzf1qypQpZ1AWH0SOT72wxFey+ckW84LxtxDVRaNCUVeQ823XEO3Z0wKXb+7lZA95 2xccnwK+CeaRqUS+AcgG+eYd+QaEi8w3LZApF7R8i7TnlX1gzTI/2WIedgfjb6Gpi0YFvC6j 80a+eZTsxKj386ep9gj9N8Af5FvQkG+AL8wjb+RbQJBvgC8C3nmLkG+5x6hOKCqiURkw5xvf fwsI+m9A9oJ/cBoh3wBkhHwLJvINyJLlO73kW3Aw/haiumhUMOuy5xvjbwFB/w3IUigOTiPy +iFDAnT9kLzsGvIN4db+3faCMT8Z8i1QyDcUPB98jJeCI98Kzn5xS8bfnF6lwn9yC5gPIdpT gapL5ltgx9+KId/M4tlW+I9YABV81yCM6L8FCsengI/It0Ah3wC/BDncIuRb7jGqE4qKaFRm jHxj/C0g6L8BfqH/FjTkG+AX8i1oyDfAL+Rb0DD+FqK6aFSQ6zKHG+NvAUH/DfBFwDtvEfIN QKbItwAi3wBfkG8BxPhbiOqiUUGuS+3xN/svGAveHC/ovwG+ULX/FqI0syPfgOwFP9wiWfTf whtx5BuQPbXzrb2N4Us5xt9CVBeNCmxdlnxTb/zN1NI0Us4yWGcfu7Mv4HFFg+PVLO2Tfb9Q pkzZY9nyN2VUzbeMTy7YwypiSzPzwo7VZVA1x6dA9pQ/Ps3y4NQxwRwzzV5O9pAX5BuQPbXz LftkK5J8Y1QnFBXRqLTYw02l49Msv/ZmH1uLqJtvgHpC0XmL+HT+NN2gc4w1S+jZN2iZn2yx lNr0VTRkoOBvVwREWN4MWY6/RTLKGXMepjx/mmx+xr1H+m8ZK3jAkrQBEZZd4Fe+RdI/TiwU xt9CVFeyikIdpArsKfsro9L4W3sbyTcoLqQRmoeXpeDPwQsff79AvgEZCF14hiXcIlwfCVBa iGIzF3z8fRb9N0cFH6oKdV00Kix1qTr+FrENxAUc/TegSJBvAFTF9XsBqIrzC7mm5AAIjQpF Rao2yjvyDYCqiiTfXK5vCUBVfL8XgKr4fVauKTkAQqNCUZGqjfKO74cAUJVf+RaWcIuQb0DR KJLzC2bkG1AkfPx+b8Hb4hHjbyGqi0aFpS71xt8swhJx9N+AIkG+AVAV+QZAVfy+PteUHACh UaGoSNVGecf5UwCqIt8AqIrjUwCqyv739QVvQroYfwtRXTQqLHWpN/4WxnCL0H8DioYv10cK 0cFphHwDioZf10dKGXGWH+Mnu+u4gMcVDfZLWTpOcmFzv5oyZcrZl4Mjb9d/sy9sDyv7ApbV XVb0jvG3ENVFo8JSV5sWxD/6XKh8iyRJMMdM87JiGjuC41PAb+rlWySd65OTb4DClMw378g3 QGFFm2+O5wssA24uC5i3476i1x3B+Ft46qJRYamraPNNyvj8abL5GX8vhf4b4Lsiz7fgIN8A 35FvAUG+Ab4j3wKC8bcQ1UWjQlGXCDf1vt8bUvTfAH8Fs/MWId8AZI18Cw7yDfAX+RYcjL+F qC4aFYq6GH8LDvpvgL9C1H8rJ98ApIN8Cw7yDfAX+Vbg199pyk/VjOqEoiIalY0Qjb8pmW+d 9gX9N8BX9N+Cg3wDfBTYcIuQbwCyQ74FCuNvIaqLRgW/LplvjL8FBP03wEf03wKFfAN8RL4F CvkG+Ih8CxTG30JUF40Kfl2MvwUK/TfAR/TfAoV8A3wUrnzbPuAY8g2AR0HPtxLtGfItZxjV CUVFNCpjQR9/I98AZCTInbcI+QYgC+Rb0JBvgF/It6Bh/C1EddGogNdl5FuRj79p7XkiCpLj XccFPK7Y8Zp7m+z7hTJlymmVyTfJHkT2sIrY0sy+umPKpfVMOD4F/MLxqeSeb8YCjplmLyd7 yNMeId8An5BvkuMRaDHkG6M6oaiIRmWG41Mp2cGmZaZ6+QYojP5bsq6auWw/oWAfWLPMT7ZY 6j1CvgE+Id+kZGdIU54/TTbf5fxpij1CvgE+Id+ChvG3ENVFo4JclzncwjL+xvWRAHgR8M5b hHwDkCnyLYDIN8AX5FsAMf4WorpoVJDrYvwtgOi/Ab6g/xZA5BvgC/ItgMg3wBfkWwAx/hai umhUkOti/C2A6L8BvqD/FhD2i1uSb0A2gh9ukaLJt077hXwDska+BRPjbyGqi0YFti5LvjH+ FhD034Ds0X8LJvINyF5I843rIwFIKSz5tot8yyVGdUJREY1KV1jG38g3AOmi/xZM5BuQPfIt mMg3IHvkWzAx/haiumhUYOti/C2Y6L8BWQpF5y1CvgFIH/kWWOQbkCXyLbAYfwtRXTQqmHXZ 843xt4Cg/wZkif5bYJFvQJbIN0lrazNY5jjedVzA44odL763SS5s7ldTpkzZS1nmW7JlgiMP /TdLdhkFe1jZF/C+oneMv4WoLhoVzLpCPP6Wg+sj2TtjkSQJ5phpXlZMY9dwfApkJ0THp9br I+Xm+m+O8UW+AWFEvlmQb4AyyDeDfWAtYhtws59QsA+spVzR665h/C08ddGoANblGG6BHX/L Q75lc/7U43bS2Dv034AshKXzFsnj8WlwkG9ANsi3INOjTdMAZKzgn2LyzS3fGH8LSV00Kix1 Fe34W9BwfAoUCfINgKrINwCqIt9yTckBEBoViopUbZR35BsAVdnzrZx8A6CERL6dRr4BUE2R 5JvL9S1zTckBEBoViopUbZR3RZJvZvTfgCJBvgFQFfkGQFXkW64pOQBCo0JRkaqN8o58A6Aq 8g2Aqsg3AKoi33JNyQEQGhWKilRtlHfkGwBVkW8AVEW+AVCVU74dQ775SMkBEBoViopUbZR3 It92lWjPnk6+AVAN+QZAVeQbAFWRb7mm5AAIjQpFRao2yrtc55vW1mawzHG867iAxxUN9ktZ 2ifH/UKZMuXsy8GRh/6bYwRF2gPKUrbPsWzEMeUK/jICCKD8HJ86RpBjgjlmmr2c7CEAMORt /M3xCJR8A5A7hcq3ZDPJNwB+ydv4m3tw2U8o2AfWLPOTLQYAUn7yzeUMacrzp8nmu5w/BYBI UX7/DUCRIN8AqMop3xS/PhKAIqFfH2mI9mwxXf8NQJEg3wCoinwDoCryDYCqyDcAqiLfAKiK fEOo8QMWuCDfEGrkG1yQbwg18g0uyDdILpdZdpzpeA15+wIpr4HgsmSyzUaSXEbG5apZxGBx It8gec+3lJfyc9maZRmPG7fXlayccl0UFfINksd8S5ZImeWb+0yXbabMVfINEed84/ohxSjP +ealOvs27fFFvsGFnm8l2jNcH6noZZlvEddoyqy6DIb+yDeYkW+QXAb5vRwn2svu5xcyHqCz rO4yFudYRlEh3yDZ08k833520nvupazOfRnHqh2X8TIfRYV8g+TLAV2yw0MvNea0OShO5Bsk lz5SBhvx5fshfjUHRYt8g5RyxMzjRtLdmi/1ujwTFDPyDf4KSLAE5GmgsMg3AKoi3wCoinwD oCryDYCqyDcAqnLJt/KG/QAQXuQbAFWRbwBURb4BUBX5BkBV5BsAVeU538r+33NtbW0Fb7UC eCWBlMi3kOKVBFIi30KKVxJIiXwLKV5JIKVQ5Jtmmwr+uhVcZq8kUFTSzbcyz5Pz6ml+KmWa rV+/XtyuXasz7hZJyp0/eLGQ/SsJFKG08m1eOpNjxJUl/1SuteWVmNMWn9bqk2ayVs53aVfZ QM0jH1/MZFmU8RMTWztzwk/INyAz3vNNRNa7W7Z5lCziytLvvyXLN/f+W9nARDaK6YW33inT tIEDB7ZVf3jwwzIzH/PNJYuSPTH3yX2D7q+keNkK/tYCCi7dfNNEUpRpiXL8jmPuyXATt5aN lDl9KmXPLdmtMeZmHJ96OTjNc755DLdyz/lmbFCUHZ+k4yspiXCTyp2GLhnGRPGw59v2/se6 59u8tkSmfanHe0L2+ZbSWnOu6UG3NuUq9hjRs7iszBJxvuSb93BzfGIvvvjiQNMkw236b/4s wy3dfDMlm0y5pHFKvkF5iXw7zWu+eT8+TTffHMffUs5JxhojZZpjxGWfb0YWZfbExEskM82Y xF1zuGWQb+ayjLe1nSfyDUUirXxL9/yCX/23DHSKkTLNKFgiznu+iV6WuXXibnn64WZ5YmIj V111lXxBLBHXKZvTPD41MyKO/huKULH030wpJyPOe74ZyWbpd4lpb31dWuFmeWIyx8o7h5s9 4rLLN01G3Pr1682dN/INxcB7vpWbIs7yYbd88M2nUC1bKCts/62t40DVe765NzabJ5affItH mUMvjnyD8tLKt3LTUarLR948WVYvS//8abJbd86nKc1BFz9ETZlvsvNmpJBxCsBorDxQ9c6e b5bJqMjHfIt/I9rahSPfoLx0802SH3n7mFtbqi5NWUH6b5Zka2sTyeYx3yxJbsm3lO11f2J5 yzfHiXyD8rLJN8cp43zL+fibLdzSyreBtin7fDPOL9jDTTzkV77x/TcUrWLpv5mSLa3vh+Q0 3+TqlogTdy3/fJBvQGaKpP9mT7Z0882cct7bm/KJtdm+32vuuWWWb+6ZRr6hePjSf2vr3Jdz WbEsj/03e4/LPnk/v2DJt/L4gWSW5xc8Thnkm7GuJdDMmyXfoDy/+m/GnAzybW1uzp/6df2Q 3H0/JHf5Rv8NKPc730Tfxr26shBe1cfl+73pdt7KPXcsU3Yyw/hKAnmWcb45TimrK8vX+Jvv HH+flQHvHUv3TqbLKwlAsufbjkHHBe365Coh34C8Id9CilcSSIl8CyleSSAl8i2keCWBlMi3 kOKVBFJyybd0v6bFxMTEFKgpz/03AMgb8g2Aqsg3AKoi3wCoKq18y8UPtIPzo+8gPAcAPqL/ BkBV6fbfHOcY8zPu/5hXcdlasnJa2zfPNG8/2XNI9qwscwq+KwFYOOXbMZnlW8bh47iue9qk W0WyZ+69xmTLkGxAYIl823GZ9utePudbWuydQI91ea+RfAOKkL/5ltkQfbJ8s2wtCPlmeWJp PQcAeZZuvqXMHGNJ788hZf/NcYG0akn2zC3bd48196cNIGh87L+VZ3R+wT3H0s0cL7WYZ9q3 b+k9lnfOPce10m0ygPzIMt/c53uRca8v41rCsmUAWfLx+DQzLv03H9mfuY9bLvhOBOAorXxL hs84gADyJd8AIIDINwCqIt8AqIp8A6Aq8g2Aqsg3AKqy5tu3tL2XxY3WNlwtddk4LG5416SG JZYRC8vljQJyrX03IXe6IMdyte9ElFVEtNcGaD/5pjXfPizRFzCSrXyUJlWUdpH2jtOqSrXK cQn7JnaUJfEoEHZ7RyCXRmtVo50fqrhaq7gyriRhx5D2u1cmyDnidvtgXfkl8dsL9YK4FVHW eImebz809d+aRsf37CStdqquaaq2f4Z2cLZ25Abt8NyjpOb5Hb4QFnSx+Mdc7fObu+hma8id vyPHCr6LFTcj/iLP0FqnadHrtc+marHrtJapOlFonqw1j2+/lYV2n47XDo3Rb+Wjn43RHRpp 5ZhvB6dqR6Ynbg/PPkqI3ZiIss8XHC39fWHCf992lN0/F3QVvpDph5wR/44Afvnved2afzYv 3T+j/PcDNWItsW6WGzlSNq/lxm4y9FpmdjvyZPob2V/z6U/mHR7bTWZd4whrvlWa8i06u4uI tc/ndhVksok0+8eSY3TLEv659GhD27KjEhYnyJTL0gMnf1nwZVMAXER/Pu/wjo1vTOnzpyuO f2XY1/9r+IkvDf/GS8NOfHl491dGdF83/Gvrhx//2vAvvzHs2PVDj15/xVFvXNFl3WXaS2N7 HijfINbNfiMiGEVCih5dc9m8jVsP9hn2x+PP/dXXL3juxP6//caAX594wa+7D3iu+4Dffa3/ 74+/4PkvR1449rwXj+77/FF9nu9yzovaWb/veflzGz5pFBEne3T2/puRbyLcZL7JfoIl2f65 wiZJxGUrPol8822Dain4JwIqEZ2oPbP67Plu9z2TT628vte+Gb33zjx734yzKmedWTmrV+Ws 02tuOLVm1km1M7vXTD+hdupxtZO+VDm2y+bh2l/G9hSfU182IvNNbKTPtR91v+TDU4d82GvY ht4jN5w9csNZIzacOXJjrxEfnz5806nDt5x01ZbuV249oWTLcZdu/dKFW7pc8LHW9/Wel/9W bMRLvsnOmwg3cbz5xRI932SIOeRb8nDL8gU38q3gux5QnvisHRh3wqHpPT69qc+n888/fNvA wwsHHVnY/8ii/keWRI7c3vez23t/tqRn86JTmhd0b553/Gezj/n0+q6VpdpLgzUj37LciBz2 FIUTLi7vcfXOPmN2nT9h98DJewZdt7f/5L39p+yNTNnXd3Jl74nVPcdVnzKmpvs1NcdfXXPM kOqul+zVzv9YO/M3Yl1jOE7mmzx/uqmn6fj0Bj3iRL6tXbtWSzUl8k0G2sIuOtOLJg8wDZb5 7ksa+ea+esqHHBdI9gQK/jZDcBR8TCyf9GSY8o3mOb2bb+vfvPTS6IqS2IqS6B2XRe+8NLry 4thdA1ru6teysnfLnT1blp3SuvjrLfO/0jy7W+3ErutKusiuV/YbkacbROEbl+/qPXpv/0n7 Lp1eVTKruuSG6stmVV86q+biWTUDZtb2m17X+7r6npMaThnX8PVRDV8ZVt+tpLrrwK1dzv6D zDdj/O3t/ol823qmfn6hbrR+zlTmm+jCiXwTy2vxnHG8lQFodNWM86f/iJ9CtQwAygAx5suy ZF/S4+qWTcm79m1a1rXMtKwISAU/gZtPejJMO7l5fqR56eDoyqvanKbW1X1bV53VuvK01uXf bF14QvNNx9VN6fbqFV3NXa+UG+m0wc4bkedSReHkK3dHxu8bPKPqqjnVL77WLOZcPbd26Nza kptrL5lTN2B2fd8ZDWdNaxTzn/1L7IRrGo67sqbbRdu6nvMfYo48eVo/VM+3d/t1yjcRek3j 9XyTEafHV/xpJLvVF4hHnH4OIn4yIvHemK0lEqP9XHBHEHUuuzzke9nLwkBx0qNp5unNiy+K 3nlV9J5rHeOo5Xvnta7q3bry9Nbl/7Nl0dfFAWbdtK+sH3q08Um3b6Tl3lGxe6+JrRkeWzs0 tuayljUXGhvRH+28kc+m6l/5EIXTh++5aGqlCLdrb6kxah8+v3boLXWX3Vx34Zz682Y1GvNF F+74YbVfuWzb0ec+L/NN5JjIN3FAaj4+FflWLTp1k/XvvMmIM/pvyQ5U18YnURDJJvp7kghG IzHkqQrLHMujyR7yvexl4TC5XgP8oseLOK5cXhK955rY2rHO+bb6vNa7z25Z+e2W5ae0LDmp +dbu9TO/9uow/ZOVbCOx+8bG1o6OrRkZW3NVbM3lLWsuMjaib7DzRg5P1g7H800cnJbMqrrm lpqxC2vHLao1nsBV8+sun1t30Zx6Y444RD1pTH33kdVfu6L8y+fp+SaSTYZbRUT7c9+OfKso 0fOtZnLia70y34x+2vr160XUWW7b400zks1opkyMI9M1yTzH8qhx1xxBLqtkXPayMGAQ3Yni IT4CzfPOjd41LLZmbOz+CbEHJsbuH99yX2lsjeh9XR27tyS2+sKWVee1rDy7ZUWvlqWntiw+ uXnByXU3nLR+5Ffb4l0v+0b0fEu+ET3fOm/kcPy7u6Jw7nf3DbupeuxttROW1E1cUjd+cUfE lcytk4XDzf/oNan+1HH1J5fWnTyq+qSrtn21/wsy3/Zdmfh9lpFv735b/12Dnm/jO362YO6/ 2cNN3Br9N/lNYPmuODi1IzFE2bgrJvNd+ai8bes8mWf6WPayMFCc9Gi6bUD0e6NjD0xq+Zcp LQ9M1lNubWnse9fEVl8VW3V57K5BsTvPa1l+dsvSXrElPWKLejQv6FF7Y49XrznR/NE2bySe b0k3oj/aeSNN4/XxMVEYMKly9K01k26vm7K0bvLt9SLlShd2RJyczp5c12tCXY+xtT1Ka3uM qeoxYuuJA/Xxt8r470zLL9TH3ES+ye+HmPOtsb0L573/tn/mUQkz9HWNxGiK/8jLwhw4xjLm /ptlsYznW5ZJuaLjsw0ssZsAv+jRtPji2H3jWx68ruX708Rt7L4JsXtLY/eMjN09NLrysuiK QbFl/WJLzo4tOiN22+mxBT0/W9Crdk6vddeeJNZ13IieYMk3oj/aeSMi3Gri+XbxtKrxi+qu W1Y/bXn9dUvrJiyuLV1QO9I0FtfvupqzJ9acMa7m9NKanqU1vcZW9rp260kX/kE8JI5D5Q9R N35He+7sRL69/C1t00X671Urx+m/PK2fpjXMSKP/Zg63+mkdiZHslTSmZHMsM1POz2CblpnJ ni1QDPRoWnZ57KFpLQ/PbPnBTJFOsfsmxu4dG101MnrX0OiKwdFlg6JL+kUXnhNbcGbs1m9H 559x5NbetXN6rxt9Sqd8M20knm9JNyIetWxEXtZAFC6fWTVtRf3MlfUz76yftkwcotaOva2m rfN0zvjqM79b/e0xVWeUVvX+7r7eo7accrGeb/L39SLNRL6J/tv3TuiUbxWj9AitmazHVLr9 NxGJYi1zvgliU5LlbsaMjXucn/EGgeKhp83dI1oemd366JyWH85ueWh6y/2TYqvHxu4aGV0x NLp0cPPiQdHbzove2id6y1nReWdEb+l9ZP53qm/6ziujTxXrOm5E3HXZiL5w543olxMZrW9k xNya2avq56yuF7fTV9RPWlxnxNrgGVVG+azSyjNGV/YurfzOuL3fGfPJqZf+3sg3EW7imFT0 3+z5VjVJf6oy39q89d8aZnaVySbIa4+YI844HvRrR7jkm48bBIqHjKbWn8xvfXxB64/mtvxg VssD18XuHRe7e1T0jqujS0v0b33cdn701nOjt/SJzjsnOr/vkVv7Vc/p+8qYHpZ8MzbSlmqy bES/JlV7vs2/r2HBA41z722YtbLjbOnVN1aXzKy+aGpHxJ0ztrLvuMp+4/f2Ld3c49LfyXyT nTdLvn1wsbbpMj3f9k3Un2rd9Zrstsl+2nqnyei/iYUlGW5GY82TjzvCx63lYoNQxPgiIj4C sXtLW59a3Fp2u55Oj8xp+f70lrWTYveUxlaOjC67MrpkcPOiQc23XdB8q+iA9Yveet6RWyM1 N/V7ecxp+sfHaSOp863zRox8K11Qu/ihptsfbhIRZyxcOr9m5M3VV95QPXh61aAplcb88yZU Ribs6Ve6+bTBer6JcBPe7afn26/OSuTbb0/Wf8uw6Qr9Opb65SsnJfJNfvjbu3AOkww4x3wD EBZt8XOdrb+4u/XZ1a1lS1t/fIt+lPpgfBTuntLoyhHR5UObRcQtvqR54aDmhQOab+t/+NYL que055vTRlLmm2UjRr5NWFJ394/3r358/9KHm17/MCbm6KNwi+pExI24uXpoPOIumab34p77 62f9J1deMHFPv7EO+Wb03xzzTZ5iMH+bN9mvUMk3INT0aPr+1M9/84PPf/do6y/X6BH3+IKW f7u55eFZ+rmG+yfF1o6Prh4dXT0qetew6B1XNC8bfGThoKob+/7XNSd3yrcsNmLk29QV9T/4 +cFHnz205skDS+O9uJu/1zDrrvppy+smLakbv6h29PyaUfNrht1UfcXs6sEzRHdub98xm06+ 6DmXfHttgH5l8m0jtR0TtT3Xa9Uir2ZpDbO0xhu7GJpuPEoWGmZ21W/jC+hmdMo3Ii4PxL9B yKl9E4uISIaWx+Z+/uJTX/z5aRFQrc+san16WeuTi1p/Mr/lR3Nb/m1Oy6M3tjw8M/bQtNgD E2L3jomuvPrI4ourbujz0ohvinV92YjoWcl8m7um4alff/r0c4dFyq368f5lP2xa9GDj/Psa 5t5bP2d1w433NMxcWT9tRf2EJbVjFtRcfVP1xdP29Rm16ZsD9euHfHCxPtRmPz6V+bZxeFeR b+aI03NsTuK2aW4XIRFxcqYp3Mz5VvA3J5ClgmdOnvOt9d/v/PwPj33+whOt//fB1n+/o/Wp xS0ilx6bp+fSIze0/HBW7F+nxR6cErt/XHT1taL3deS2AVUzznxrxgX/vb/Gl43o+TZO38id j+5/7JeHnvjVpw8+ffCOR5sWPyTCrXHemgYRbjfcXT/r7vppd9RPWVY3bnHttfNrRBduwOS9 Z47YeMHoP33eWCPCTRyKinx76YyOfBMFkW/vD9U2juliyTeRY0aymcn5MuLqJI5S6b8ppOCZ k0/1j8/7R01F69PLWx6ZHfuXybF7S6OrrtF/Ji8OJJcP0S29TGheOFC34ILmm/scmtlz7y2D juzcJNb1ZSOV8XyrfWxexb4vlv+wafY9DZOX1pUuqL1mXs1VN1aLo9EhN+gum1ElDJxSKVww sbJP6d6ewysGTdy4qfzQ7ofmiXATRJqZ803ctefbniT5duAWzWBkXcfhqu1YFUDA1Uzr1vjk PNGJSnlSwDKJtcS62W7kiXmVU7qJf1NExO2Z0E1E3BdNaW9EhNuHg7vJ/ptIsz/31cffnvlm It8qRmkfjdZkuDnmm5FpR27tYMm6g7M1af8M5FYDEHLGEZ/50E8em8gOoTxiTfxl0lGaVG6y baRu89W6TVfoI2ySSDnZZ5P5Vt3UJDpvIt9krJnDTSbb4YVdpejio5IRj5r/eqDxJwUBIKX9 N+nkScyGmV0F+2CXZfSgIwBNcScKIu5ExP32ZD3ZjHwTnUPRc7MchMpM+2LJUf9cccw/lmvy 7yzIsvwTDHKmLCRmxv9SQ8cfZQBCKHG9feSGfIVlesjokL5YoP9xBNlBis7uol9r9/r4FSmn J/70lSibjxPlH2hunJy47oQ8uhEBKCJOv+Zbe74JG8fosdl8y9Ei00RMta3qrrv/W7of9NI9 ek7bY+d2eKJ/gnkmAKQkwkQy333wzARRlpljEDPNd2UuGWRYreou/9jfZ1P1X2PJWDPyTUac ICJO74AZ4SareyQeZT8erHuyRPfUFUnJBZA7Li8+fFHwXaw8+wsus8W4TUZkkYVMxVXd/77w 6E1X6KcYjEwz55v00WhNBp1xPCuJQ11xzCu/N9Lx7bhZiR87yJOnUsEvj6a8gl8RUXnGJSOQ C5Y3s/UdHr/WZU38tm504key+h/AGq//mT9RqBqtX69SqIrf1R8arf/lBRFuljQT+XZU/GdW /x8AAP//AwCF07StEL4IAA==</item> <item item-id="362">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEuhSURBVHhe7Z0JvB1Fne9PQEjUD44a zSMDBJFVBCQBRcGw7yHIFhAhbErEyCKLG+rIjOM4MjDjxvhw3ryBz7yP76koo8M44wxCEEFF nLBlJSHbvbk3C0EgG47O/1V1n7q3Tt/eu8/p6j7fm0/lnNNLdfW/fvX/9r+qursl/GEBLIAF sAAWqMgCLX3cDRsGxqTWjN/IuDOe8FLrlEV+On3xaDprpbTOXSWtDwxI65Khkc9xl69Xv9ep 32rZxepTf9efJr1/g7RIDbTBJnVOpMbZ4MJhaZGaZYMx/le32xC/fLZa5qVB/3OG8uned5W8 73pZe/mMNdI6WbFAJ/1dr/eSWn+yYsIxT4VyRvNnDIQMeHb+8GYZf8MfZOLNIn/8Z37a+4si +98uMvU2lb4hcuRX/TT9Dj8d883kZLblc9RuTbBFmrpnm+T24ZqNmqBNzmGsrwnTmbaT8ef2 p/HzUZ8eD0KS5oVOmiE7X/17D0StqY92wGgMhDSAdpi9TjSAdrj6RRl/0397Gdgg2uvLIjpp GL39K51Jg8mk4Dp+j7UXNsEmaAAN9FoD2nebZI5tfhtwmIDD+Hv7U68LLjeBiv1p2KE/x1/3 By+13v+ytI4ajYo6INQ67jFpnbVadbEtlXFXbvBS68PPjyQNpR2v3SI7Xvc7D06tG/8gO94g XjK/9ae9znzX2+rvO1+v1qvoyuzHp28/EjZwVQPjrv5vITXLBlpruk6ND9efdho393eyw5Wv yI5XbZYdr3xRxl22RVqXvqSGWNqfF73kLRtZfpnqzjPp4o3+d739LNUNZ7r59HKdzlNddSc8 La3py7yIaCyE1DhQ6wMrOpMe77li3QiUNIxM8qCUkDx46ZOxkzoxfXIkbIAG0AAacEQDH9wo O+p0uQpC1Ni+7hXTyRvff/9aP81S40EmaaCYpOcH6KTnCqg0buYyNX9AJzWPwJ5ToAF0xK+l tev3OiHUmvaQv4OGkIqERpIBUhtENoxGoqSPKOLZyYqe9DZeRBUkpaEin/7VQSNSYAKKPRmF 752Tc7AH9qhaAxosYcmARsMlBCyjcLEgY09YM8DRsNFJjwNNf3w0aQBp3uj05rtGI6GRhapL zpsNZ0AUASHTXRfssjPQ8Zbr6MnMlDMz5MxJG6ryOXqFgS2wBRpolAZ2unBQ5tyxXgY3/lfh yc86H52fiUhKzfsbKu/z1VCMBo8aktnpnBUy5ytrZXDD74qX+0vPyU5HKghp+KhJCR5rDvxX ae13TwBC+3zbXxkKofYUbAUVEwnZEBoZPzLrR8CjSOtN3bZSWEhnh3d87wx362QPOzTn+2g3 Rd1tYa6G+RyNDFLaYs7Xh2XZ4B/kxm9tl8tu2yaz/nyrzPyTrXLqzVvk+E9skRM/tUWOvtFP R13vp8Ou3uylQ+dulgM+tFn2nP2CHP7hlfLUsy+Jzs9EJ13JW88JUF1pGkC/W6XGbP7qRln3 mctk6PpZsnbuTBmcc6oMXH68DHzwRBm49Ggvrbn4KC+tPv8wP517qKyceYAsO2lPeeLcw+WF xU/JHAUiD0AGQm/9ibQ0c173OSsSUv1zHoRU2LTDScFIyIeQF9WY6KY9RuQBSC3vWBeMeuz+ RA2hujdKyk8d9pMGUjrcka4bth8Bhfawn/hf2+Ur974i3/jRK/LF/7tdPq5+X/vN7XLV17Yp Z79NrvjrbXKpAtQlf7VNLvzLrXL+F7fKWX+2VU777BY55uNbZNpHX5K9L14jh178iBdRGTt3 Je/2eI7Oe+Ptn5AX/vEr8ttvf0M2feuLsuH2j8v6L10r6//0Kln3+Tmy7rNXyPCnL1XpEhn+ +IUydMP5svbas2TwqtNk4LJjZOWsafLEyXvLj2ccKoPrXxmNhA76pbSSIOQNIunuOK8rrh0F KbAY2JhPM3hlBrA6ut7iut/qdHVPWdNHZv3kmPvpXIFK5gjIBsWVCjTfvO8V+da//k6+/N1X 5Oa7tssNKjK65g4Nou1y5d/4ILr89m0y+1YFoi9tlXO+sFXOUBHTCZ/cIkdc+5IccOkaefPJ P/GjhnZ96O+l560hNGOld5x1n79Sfvudb8qL93xLNv39l2XjV29WkdENsv6L18g6BaLhP7nS A9G6z1wuw5+cLcM3XShrrztHBueeoSKlE2TVhUfIU6cfIN897M1+uXV3nE4aQm9RKTQS0qGS HkTSg0y6MLqhtZ96cMstt0ir1RpJwd/2upHvdMOld+DADluhgcZpQDvf9//FVg8+t3//Ffn8 P26X6+/cLnO/vl0+pMBziYbOX2yT81Tkc/YtW2WGin5OV0l30+ko6MgbNsvhV78kB16+RnY9 9T98Z97WSVfynqmfdOBDaPim93vweeHu2+X5Oz4vG269XtZ/Ya6s+9yHZPhTl8jQjSr6ue48 WXvN2Sr6maHS6X43nYqC1lx8pKw8/3B56owD5Z537eqX+12KLToZCOkxoTHdcREQ0sBpP1jB +/R/R/+NAAoINa5RdUzPxGlSv2ggVgPaS56jAPPpf9gun73bB9CHv6rGh3TX2xe3ybl/qsaI PrNVTlYRz3FqXOjI6zbLu6/V4Nks01Sa+lE1NvSRF+WgKwZkjzPuHwOhYN6xjjmwMjRvC0JD KqrZ+NVPy8avf9YD0NbHf+blMHSDgs815yrozJSBD52sxoWOkzUXHSlrLny3t/7lf79HVs+a KivU2NDTZx4k3z9yj5QQ+uP7/VBJ3cnqTdXWIZ8WmAKJhsq8efO8ZH83y+xPD0AmaoqBUJix uu3gzDG7fRydfy+P1Yvz4RjWvRH95njNs8L4HH1uWkpbaD+gJyLoMaCPtSOgK27bLhfp6OeW bR6ATvnkVjn2Bg2gLXL4NQo6CjwHf2SzHPSRLepzixyibn856IODoxBqHzss7ywQCs3bgpCe iLBBjQFtuPVjXgRk//kAOkUB6FgPQKtV1GP/rT7nYFlxziHy9MwYCI3pjtMQ0qHSse2537or Tjc29eDC0cjHj4L0w+Y0eMI+9XoTCXk3OdkPPmzPjDOFfc2uXxCTeuG07eOGOdUyy5B0LJx6 Hzv1foNYH5+v9gMnf3qLN/aju+Cu/JvtcsmXt8kFX9gmZyk4nf5pNe6jut2mq1lx71IR0Ds+ ukXersBzwIe3yP5ztsiBV21RMFLdcSoS2v2Mn46JhIJ5Z4FQaN4WhAavPNkb+/G64NT4z/An L+nIfuDyE2Rg9nRZ8/53dQLozP1l9VkHysqzD1IQOlC+/57d/XK/Ww3zaMa8TU1802NCY7rj ghDStO2AkPec05FIKApEdiS042x1561K3tOz2zAKAsh2xgZI3XLQSWBIWp+lXGXmleW4bAvc 0IA7GjAQ0tOzr7jd74a76Et6DGibnPlZFQV9aqscd5OKghSEDlcQOlhB6AAFoX0UhN6qILSv +nzbVS/J2z44ILvNCIeQnbc+Xpq89XaheXtPv/bHhDSEhm++TIb1LDj9edNFMnTteR3A0WM/ 9t/qmfvI6hlvldUz95WVZ71NnjnjbfKD9+w2CqF3KhClgpCeK66jFg0OBZC8kdAohBSI9POD VH6dzllN+dbPFgpJQaKbbaKW6/Vhf3becevLOF7YsTRYo86R5dH1j22wTRM0oP3Ke9XkAj3j Tc98m62iID0RQY8FnakioVPU/ULHqUkIRyoQHa665A5SXXL7X71F9p67Vd7yka3yVhUJ7asi oX2vWCuTZzzgO/O2vwzLWy9Lk7feLjRvHQmppP/WzH6vN+PNm/n2idneWNDa69RY0EfPDPW1 A2fvLwPv21vWnPEWWTPzrbLqffvKgtP3lXuPmNwJIRMN6RtWOyYm6PBIh0v6XRBeFNR+8Jx6 nIw9McGMCWWJhPxoyAdRB4Ri3ilkb6e/e868vf2YLrz2cnsfvY35M/vlXR92vCx59c27kyIu KJrgTDgHoJhHA9pPHKEinLMVdC5QExE0gPTnOXpCgoaQGhM6TnXJHaUmJhyuQHTQDVtlv+sU fK7ZKlM+ulX2VDDaa+7LspeC0KTTxkIomLc+Xpq89XahebffHeRBSE2xHlIz34ZvuECG9Uy4 6y9Q9wGd49+0+uFTOkA0eMFBMnjufjJ41ltlcOYUlfaU1WfuJQtP20vufeckH0LqgaWtI5dI y0RDujtu4l/567z/ghDSjr39NNTckdBl6qF8KrXUE1e9pF541gkh/wVo9p95IVhwOx9CndsG t+nl76zHatyLznh5HS/wQwOJGtB+YpqaaDDjc1vkPHXvz/l/rp6aoMaD9Ky2mWpK9qmf2yrH q2659968VQ5XXXMHf0JB6MZtstf122R3BaPdFYx2V09O2P3ytfLGUx/0HXbb7mF5exBKkbfe LjTv9kvs9PrV502TwY/MkKGPnacAdL4Mf2yWmpKtIHT1zA6fbX4MzdpPhs7ZS9aeubusnbm7 ioh2l4Un7y7/dNgb/XIfpXrYjlK3/mgI7b3Qf3RPB4T21A+ZU6TSkZAeCzIQUo/jzh0JXb5V PY11q/+4b/0IcJU6nLeBk/oMLg/bzl5mRzoeoFLkkXSMLOuzbDsCYet8Wda+MMEmoxdprtpC v/+FlMsG2k+8fc5m776fMz+vbkJVgDhXwehsDYo/3SanqmUnqDRdRUXvVDA6+OZtst8nFYRu 2ia7KRDteq1KCkKTLh2SPzplXhtCfn2E5a2Xpclbbxea9ywVNJz9Wy/vVe97u3ffz1rV/abh M6S64tZee3YHgIaunD7y+w+bX5Th8/aS4bN2k6GZu8rA6bvKouMnyY+m/pFf7uPU8M6xata1 BtEhijUaQm/+mr/O+09DSK/0IKRCbx0F6fdBjEDI3zTpJtWO2XH6fRRtEBkY2c7bvI9CfwaX h22XtE0v12c9ln2uTf1uLjT4HL3owhb9bQvtJ/a94mWZfuNmOfUzCkQq+on7O/izCkKf3i5v USCarCKiSddtk4lquvbrZw/La0580HfY1gV9WN5nqq6+Geo4pyi4Ha/Se1V61+e3iZ23zic0 bw0hlfTfyhn7yppLpquut1NV9HOmuin1rI6iD111vAxdqcaNruicHbfurMkyfMYkGThloiw+ 5vXyw4NfMwohDSIdEYVCSIdHHoQUgHRI1gaQdpjBm1X9kviz5YKfPoT8JyvseJX/YiSdxn3I T63LXhk5Ef3dJNup29t4UU57u6Rterk+67Hsc+X7aL1jC2zRZA1oPzFl9sve9Gv9wNLTFIhi IfS5bbLvzdtlyie3y/+4cbu84ZptsouKpF574ZDsfFw7ErL8YVjep/+JirBUZHWSgs9xCkZH qc93aghZeesyhOatI95Zm70irjhpiqxW068Hrjhegei0jmKvveokGfrwcTL0oaMUhN4p6y85 uGP9utPfIGtP3EUWHfVa+eHbd/ZJccoLPl8MiLxXOdiRkIHQDP3yIh9CGkA6grHHhOIAZEdK O14rssPc//aSfkufTq0r1dv7VNIwCvszEwDs9XqZAVjcfnnytEFijmGWBX/b25oyBc/BLr9d Hrv8fB+9IMEW9bBF67LfqwtBUh4baB+x64UvyyHqhZ5HXq9ApCYgxP0d+Nntso+C0B4KQm9W EHrd1dvl1R/crF6zMCQ7HPOg78zbdZE17+BxQ/O+WF0UXbjd2/S5Y3eVVWcf4j2CR4No80P3 ecvXXnmCSsfJ2g9Nl6Er3i3Dl02TdRcfKOsv3Mdbv/Xf7pZ1p75OBo99tSx6107yT/vvMAoh DSINoXcrGOnH94ztjlNh0gwFID3w1YaQjmKSuuCCz43Tr/DWSYNIJ/NqYAMl82nfrGq+29uE LdPro/YLgiJNnlm2ids2qazBc+e3f4FCct8G5uKRT/8iOkvSPulN57+suuT8R/C8R4FoupoF N/0mFaGom1Tfo6KjIxSYpqlJCQd9SkVBqhtuz0+orrgbtskbrt0ur71qm+x02WbZ4dy1Mm56 e3ZcuwxdyVsDToFI/y1/75u8LrlV501VT0V4jwyorrmBS1W65CgZvOQ9Kh0ha2dPk6GLDpLh C/aVdeftKborTkdBwye+Vgam7yQLD9tB7t1vnA+hM1SUZaIhDSH9mLgOCP3xfL+vrg0hEwX5 7xn/nez40f+Sna/7nYy/7g8eYHQaf8MfZPxN6jOQRiCk3mOu32XupTaQzGc3nI8NoW7kT57u O0zqiDpySQPaJ73urOdl94tekAM++Ft5x1W/lcM++qJ6NtyLMlU9mHTqNS/JIdepJyJ8TN0L 9LGXZc/rXpbJ6tE9E9VkBN0NN/6yl2WHD/xW3bujfPOR/lO0zfl1I287ylp8xOvk2RN2l+Vn HCDPnfMOWTHrMFl5weHqFQ1T1cNJp8qq8w9Rz4g7UAbO3VcGztpTBs+YLIOnTpTBE3aRgaPH y8p37yBPvqMl393bH7rxIGRApCE0pjsuBEIGRB6EVNr56t97EPKSBlAEhDSU0oAoCKaiv20I Fc2L/cdeOCTZxKXGT1mAkQsaGHz+93LAJStk4vtWyG6zVsheH1gt+168SvabvVL2UZ97X7Ja 9lJpikq7XTooky4ZlImz18rrLhqUV6sHBrzqPBUBnakAdNLTsueZ/9YBoW7k7UV5KhrSef/m tAPk8XdPlMeP3k3mn7iXzD9lX5X2k/kn7yNPnLK3PHnyXvKUGjdacNJuskDNglt47ERZMP11 svA9r5YF73yVPHnoOPnZgS353nv39CF09uaxEOqYoh2AkJ5CbEdDJiLaee4r4TBSQDLgSQJQ N8UR1S3WzWOSNw4PDaCBMA3M+fst8sTSF+WA8x+WXY75sbzhxJ/KG0/6D3nTST+RN574E5l4 0v0y8eSfyutPekB2OWmevOakh2TCiQ97kxB2PGaejDvmYdVD9YAC0E9k/uLnRednjlN63n+n INGG0Jw7N8umhU/Iv5x4gHz77bvIPYe+Qb439Y3ynWlvku8c+ka5Z9pE+b5KP5iqZr8duov8 6JDXyH0HT5AfHriz/PCAHeW+/cfJD/ZpyT0KQOufmS9zvqaiuXQQ0i80ao8JtW8u1TDSN5x6 SU+3VgNsXlSkYWSSipB0lKST7raLSsZ4JrLi048wm5Ky9JWzbbaxBexVT3vtNOe/ZI5y7kX/ dGSi89H5GS2UmvedL8lOl2/zZyKrMaGdZqu3vt4xev9m3vIPblTlVgDa6Uw19Ts4JqS748ZG Qm0I6ecH6adot596PXLj6mX+hIUdr1RAMsmDkp38mXBhycyMM1O1mzw1sz/PjRlUeWZQub8P 08gb1571LLj2JAQ9G86790hPz75gq/pUMNJJf1fTtb0Ixnya7/q3Serm1tYZatab/jTb2eM/ ejJCMJkxoVAI6XuF1FNUW9Mfl9YJ82XciU/IDif5yXvjajuNm7lMTPLewqrBpR98apJ+H5H9 23xvPyDP256EDdCA+xo4Wd8/SGqUDbSP10/MjqvXE9RTDfSrfXTST9Mx6eilo8vMev1plutP /Yw4nfTzSM3z4vR3/cgezZhUEFIA8iDUBpENIwOlsE+93Uiy9w/k1bGdvQ/fR+1XM1tovZCa ZwPPB5AaZ4PK2qp5bM+Y2XGT58v4w5fKpLmbZMKs5bJx3WISNkADaAANoIFSNdA6VY0PHaWi pb2+o8aEbvNnznn/AaFSDQ3EuYhBA2gADYzVABDiqgbYogE0gAYq0wAQQnyViY+rQiIDNIAG gBAQAkJoAA2ggco0AIQQX2Xi4yqYq2A0gAa6DiH9RG2EhtDQABpAA2ggTAOFIRR8bYOBTvCz LAEGodat4ySVN+q8k/Yruh6o05CLaoj90ZBLGigFQnEnVLbTjIJQr41a9nmlLX9Vx01bPrbD waEBNJBFA12DUFiEYkcPWQppb5smEgo7jr1f1PcsZYqDQdzxbbuY7fRx7e+mHFH5hG2bpexs i5NAA2jAFQ2UAqFg15RxqmGftoPNa4QowNnHCx6nGxCKO++w46cpQxTcqup2zFtH7IeTQwNo II0GSoFQ2IHCxobCnHaaQga3SYJQFijm7d5KgkUcBIOwjINTMBrKW948dmYfnAgaQAPd1kBP IVTWySRBKC0UwyKntGXsNoTSdDumLSvb4UjQABpwVQOVQajoFX1aJx03/lOkDECIRu1qo6Zc aLNOGoiF0KtTPEU7yRkHIVDWoHoUhEx0EzXQb1dONyAUdfyk8oaNlUV1X5ZlwzoJlbLiWNFA MzXgQUi/m2iPu8Y+RTsNhBBGM4VBvVKvaAAN9EIDhSEUvFrv9lV6r49XViWUNSmjrPKQDw4G DaABFzRQGEIunARloDGhATSABuqpASDEA0x5th8aQANooDINACHEV5n4uHKt55Ur9Ua9lakB IASEgBAaQANooDINpIaQ8IcFsAAWwAJYoGQLpIZQmeFXmrzu+X93eqeaZlu2cad7gHpzpy5o F9RFHTQAhAjDSwU9EMLx1cHxUUZ3dAqEgBAQQgOlagAH746Dr0NdACEcUKkOiEgIB1QHx0cZ 3dEpEOozCLUOu1PKSFGNGAi507hxtNRFHTQQC6EJU5fIpLmbZMKs5amulufMmSNxKYtB0jiz VuuW0HJlXZ6lXN3e9r777htjQ72srOOWASCdBxDCwZWlSfLpby2VDqGw2XsaTPrvsMMOS+1M 00CoSeK14RO0oQF7GTDSANH1UCQBof52Gk1qd5xL9VruKYS0c9UONU3Fx0HIRDpFP9OUQ2+T N3pIm7/ezoA6bgp+WtvFHVefS9G/ohCKeght0vIs9mTb6p0LdUAdpNFAVyBkd8kZ8NjL0hTM pUgoT/QQ56iD52+iIBsOJlIx90oZOxaNhlyBkH2uYfAJgrLIu5/S6I1tcJhooBoNdAVCZVzN p4FQ1rGfqO2TxBfmuO98fJM8PiBe0t+DKQuEwqIgG0K2PYtGQ1EQ0nALdtHpZWF/RELVNNYk nbKeeqmjBroCoajJCWV1x/Xa0HHRQxSM8kIoaqzGwKAbENJ5Hn/88WN4o5eFAbIohIL1l9QN 1+13VPVaTxwPWKCBUQ10BUL9EAkFz9HAyEREdYGQjnbCAKQbiZlMEoyIgBBOFCeKBsrSQFcg 1A+RUCtkfN8GUV4IGbj1qjtOHyfqzwZRxxhOyVO0daST9MeYEE6vLKdHPm5pqRQIBSciJEVC QUiFicK12XFR5xSEkRkjygIhe2KC7fiDgNB2K3tigksQmjdvnogCkv685ZZbvGT+gJBbjgNH Tn2UpYHCENKOcdGCX3op7TRje/uoMY40ExPKMkJSPsExoSB4zO+W+pKnO67KKdoGQgZ+YbAN gqob3XHecXVEFBEVASGcXlI7ZX09NVIIQjaADFjSfup977zzzsj7htJAqMrZcZ7PtLrkPACp 88kLoTQ3qw4Nr5Rrj3xHqvusohpkEKjOQKgNoLAoyOdTq9B546Dq6aCot+bXW2EIJT2qJ259 UQj1SqBxkZAGkQGQPV07S3ecfR5xj+3RAPrX715UCETBc7EnJoRFQ2HddWVHQnEREN1xzXdC vWrHHMdNLRWGUNrIJ7hd3SOhji44FQEF7xfKC6GkhlIURGHTzXVdhMFGLzPQK2tiggaOfY42 gMw4kP0JhNx0HEk6ZT31llYDpUCodWdLVMea17WmYfOr3V/lpbjuujIglOYktUML3oeil6XZ 12wTdZ9QWASUtzsuS3k0iL52zt65IqIsN6tqANjQGwFCgdlxBjpe1NXugmN2HA4ri/7Ztll6 iYXQ+KmLY5+ibSCjIaST+X2nci46dQtC6Z8Zp8qlyuElDaMAkNKKOei4f/HIj7wuOB0plPHE hLTlsLfLC6I8j+2xj+WNzxSAkA0fExVxs2qznEoePbNP/2pgBEJT7pLWxNv8OUref5PnS1oI 5emSM2NFelwoTIBpJibECddcXXuRUCCZqb9pB7tdhJA+9zwgygMhExGlib7S1luwWw4n1L9O iLrv77ovBCEtnqITE6IEmMaZxc2OM11HcRDS26RpANpx50lp8i66jQZRlhlzec7DRD5poJem 3oqeM/v3t9Oi/ptV/4UhpAXhTU3OkeLEVNSZmS4ePeU32B03soxpv6kgHOwGjINe0XrDwTTL wVCf1GeSBkqBUNJB8qwvy5lFjTfkKRP7JDeosuoNWyfbGhthoyZooPEQakIl1ekcgBCOsU56 pazV6xUIqe5EhFieDYBQebZEl9iyHzQAhIBQqRAGQjjOfnCcnGN5OgdCQAgIoYFSNYCDLs9B 94MtnYVQPxifc6SxogE00O8aAEJcBXMVjAbQABqoTANACPFVJr5+vwLk/ImC0MBiAUJACAih ATSABirTABBCfJWJj6tAIgE0gAaAEBACQmgADaCByjSQGkKHTTtESNgADaABNIAGytQAEAKu XFygATSABirTABBCfJWJr8yrKfLi6hwN1FMDQAgIASE0gAbQQGUaAEKIrzLxceVazytX6o16 K1MDQAgIAaEIDeg33ZfZ2HqRVx3L3Au7cAx3wQmEgFDtHK1xKNrhBlNZzsZ25nmPk3e/IucA hNx1tkXqtcn7AiEgVGsI2Y3TOP0yGmwQQlnyjCtHtyHR7fyz2IFtAWIaDQAhINQYCGnBl+WE i0IoTePrxjZlnX83ykaeQClMA0AICDUGQsEIxDjksMjE7ioLNoygI8/i2LNsa0MzrozBaM/s F7VP3HpAAAhc0wAQAkK1hlASTMKgkASZsPVpx57yQChpn7DxqeC4WNrfrjkgygMUgRAQqjWE 4pxYGgDZzjvse9YuvixASco7DLBJ55S0HqeP03dNA0AICAEhayypqBMvA0JR3YpR0Eoav0oq k2tOifL0FyhjITRh6mKZNHeTTJi1vLaOCkE3V9BJzjULUOzxo6QxoiRNxZUrqSswDDRZIJPl nJPOg/XNbTsu1a0HoaOXSWuPu6U18TY1uci/DJPW5PkChBChS2LNCocoGMSBoAwnHjZhIEtX X9YxoLCJC0nLXK5XytZffgcI0R1X2yg3TyQUHMBPijKCM83iABMGyaQJDXGgtKOzYKQWNl6U prsOB99fDr4O9Q2EgFBtIVSHBlZ2GZPAW/bxyA9odVsDQAgIAaEaaQAIAYVuQ6HX+QOhGjmg XouD47nn8ICQe3VCOylWJ0AICBEJoQE0gAYq0wAQQnyViY8ryGJXkNgP+zVBA0AICAEhNIAG 0EBlGgBCiK8y8TXhKo5zIBpBA8U0AISAEBBCA2gADVSmASCE+CoTH1eQxa4gsR/2a4IGgBAQ AkJoAA2ggco0EAuh8TzAtLKKacIVDufAlToaQANJGvCfor1cWlNCHmAKhBBQkoBYj0bQABoo ogFnIBT3QEb7oZFpt4t7mKRZF5VXEYOyLw0SDaABNJBeA05BSFdc0vtWwp4sbO8X9ZTjNE8k RjjphYOtsBUaQANlaMAZCNnRiX1icY/aj3oRWRqQJW1ThnHJg0aKBtAAGojXQC0glPTulCSg hK1P2gfh4DzQABpAA93XgFMQintCcFg3G5FQ9wVCI8TGaAANdFMDzkAo6RH1QQgFJysEJxvE denF5dVNY5M3jRkNoAE00KkBJyAU9QrksG64LLPjguNJUfCJj8DUXIkMf7bA/vYbt3bcZ8Rv 7IE+Rh0Q7aHc9lBXuDkBoboarzPaGiWVK+cTbORVlsulsmg7uFQel8qCbeIjNZfqyqWyFPEt QKikx3XYwVKRCmFfumvQABroJw0AISDEo4lK0kA/OQ7OFVCWpQEgVJIDIhKiUZbVKMkHLfWT BoBQgyHkUp+xS2Vh3INxj7xO3iUdu1SWvPbU+8VCaAJP0U7dVUUkxNVrkYbIvuinXzXgQ2iZ tPa4S1oTb/Ncacv7b/J8AULpGwYQSm+rfm1snDcaQQNjNQCEGtwdh+BxemgADbiuASDUYAi5 1GfsUlkYE2JMKK9jdknHLpUlrz1Hx4Tojks99hNlbLrjuOIs0hDZF/30qwaIhBocCfWrqDlv HDoaqI8GgBAQKhwF0uDr0+CpK+rKNQ0AoQZDyKU+Y5fKwpgQY0J5HbFLOnapLHntyZhQSQDS hmRMiCvMIg2RfdFPv2qASKgkEAEhnEi/OhHOG+0X0QAQAkKMCZWkgSINkX1x5P2qASCU0wHF vefOFTG51GfsUlkYE2JMKG8bdUnHLpUlrz0ZE8oJoDCD0x3HlWyRhsi+6KdfNUAkVBKIgBBO pF+dCOeN9otoIAFCS2TS3E0yYdZyxg0SYAWEaIhFGiL7op9+1cAIhKaEPkUbCKUVhosQcqnP 2KWyMCbEmFDadh3cziUdu1SWvPbsGBMCQsWuxFyEUBFhsG8xPWA/7IcG0mmASIgxIbpaS9IA Tied08FO2MnWABAqyQERCdGwcK5oAA1k1wAQajCEXOozdqksjAkxJpQXFi7p2KWy5LUnY0Il AUgb0nslunoxOgkboAE0UKYGijj4OuxLJFQSiOiOyx6G16GBUEbqtUoNaJhVefxeHNsZCKlr Jx1LeMmceNplfiQydn/bgFnyymN4IISzyqMb9kE3cRoAQlN7d5+QgU8QQjZgzPfgsrjlNtDS 5pXHMbgIIZf6jF0qC2NCjAnlaeNV6CYOQq61qbw2dSYSCoNFWCQTXGYDKJhH3G8bdmF5ZDWo ixDKeg5sz1U5GnBPA02PhoBQe0woCKWsjREIudd4s9Yh21OHLmoACPXw2XFhXXF2NBMVvSRF NWHrk/bJKkYghAPLqhm2RzNpNNDXEBo/rfdjQmFdaHGTCoJdacHJDVHrwyZApBFE1DYuQsil PmOXylJF336ctrBNNIywzSHebR9h+nHNNnn9p98dt1xaYc+O6xWEbMiUOTsub16d405xr68L X2f2D4qE37d2NCbsgT3stoYewvVgIJRkn7wQqHo/JyBUtRHKOL6LkVAZ50UedBmhgWo10B/d cRVHQk0QORCqtqE2QUOcAxoK0wAQ6uHEhDo3Qhch5FKfsUtlYUyI+4Ty+poqdMyYEBBK9dgM FyGUt6GxH1fkaMAdDRAJASEgVNLz9XBs7jg26qI+dQGEgBAQAkKpNIBjr49jr1NdASEglMoB udgdV0X/dVTjdqksjAkxJpQXQlXpOAxEVZUlr+2i9mOKdklX+S5CqGyxkB9X+migGg00ORoC QkAoVaSH86nG+WB37K41AIRmLcdRJcCKSAhnATDQQLc0AISAUCKEXYSQS33GLpWFMSHGhPLC oiodMyYEhGoJobwNjf24okcDbmmgbyOhCVMXyyRmxyUCSDdYFyMhHIlbjoT6oD7yaqD5EFoW /hRtIJS+0QCh9LbK2xDZDxv3qwaAEN1xidGQixCqqv86zFG4VBbGhBgTyguzqnTc/DEhIqFE yCSJ1kUIJZWZ9UQWaKAeGiASIhIaA6m4V93RsOvRsKkn6qkuGgBCQCgxUiISwqHVxaFRznpq takg8p+YQHdcImSSGq6LEKqq/5oxoWxOzqV6YrzM3fGyIIRc002Sj4xaD4R4bE9hAOcVH/tl gxX26m97EQmV5Kyb2pBcjISaamvOq7+dcb/WPxACQrERAxDCMfarc+S8e6N9IASEagchl/qM XSoL4x7ujnsEgYZuRuuKMSEgVDsIcYXamytU7Iyde6EBIiEgBITQAJM40EBlGgBCiA8IoYHK HFAvrrQ5htsRXV9CaPy0JTxFO6XjdXFigkv96S6VhTEhxoTyArdKHfflmFAVEBJpdVxt6t8m aeEEfxsxRS2PW5+0TxahugihLOVnW7evgqkf6kdroInRUOzNqr2EUBxc7AZoIGWDycDJhlSw 0YbtF5VXngYPhHASeXTDPugmiwaAUMquqSxGjYKFHcGEfQ+CJwxUcfuFRVzFyj2KoSL5sC9O CQ2ggSgNAKGKIJQUJSUBJaqLLw5cWR2Bi5FQlf3XQfu5VBZdNpfK41JZsI3b42U2hFzTTVaf abZ3pjsuKmqxl0fBBghx5Zi3AbAf2qmTBoiEKoiEoiAUnKyQBlb2mJENruD4Uh5RuhgJ5TkP 9sEpowF3NQCEegyhsG64LLPjwkCTtGzsGFXc6+vC15k8guEyv2/tmPmIPbCH3d7QQ7Ie6I7r AYTqehXmYiTkUp+xS2Vh3MPtcY84MFXtH6rWMRACQpF3zLsIoaobLMd3t1uHuqln3dAdB4SA EBrg0T1ooDINACHEB4TQQGUOiOilntFLmfUGhHBAtYJQ1f3X9O2nc5ou1RPjZe6PlxkQuaab vLB17j6hvCdS9X6MCaVzuFXXE8ennuqugaZFQ7EQmjB1MU/RThn9ASGcW92dG+Wvh4YbCaGj l0lryt3Smnib50r1Y6ulNXm+AKH0ogRC6W2Fs8NWaCC/BoBQysig30TmIoRc6jN2qSyMe7g/ 7hF1w3fVfsUFHTdyTIhIKP9ViWkULkKo6gbL8YvrChtiw6AGiISIhEJnyAEhnAXAQAO90AAQ AkJACA1wrxAaqEwDQAjx1QZCLvRf07efHB24VE+Ml7k/XsaYEBCqDYR60TXAMZIhg42wUZka IBICQkAIDVTWFVOmMyOvesIRCOGAgBAaAEJooFINNAlE3hMTmKKd/Yoo7lV3rlxhujTW4FJZ GPdwf9yDscT4OtIQcq1N5fV7QKikKzqmaGcHeV7Rsh+27ncNEAmV5LibJCQghGNskp45F7f1 3EcQWsIDTFMCFwi53WhxqtRPkzQAhFI65iZVetK5uAghl/qMXSoLY0KMCSW156j1rui4j8aE iITSitVFCKUtO9sRJaCBemmASIhIaMz0TCBUr0aM06W+6qwBIASEgBAaqPQ+kTo7UMpe/AIA COGAagEhV/qvXRuDca08LtUTtqnHeBljQkCoFhDiirP4FSc2xIauaqAp0VDCzapMTEgrQMaE cFZptcJ2aKUMDQChLkVDIq2RKEN/N8lUWtgyvS5qedx+SftkEQoQwrFk0QvbopeiGgBCJUMo Cjg2YMz34LK45TaE0uaVRxwuQsilsQaXysK4Rz3GPVyrJ9fKA4RKhlAYLGwYBCOiIHiC2yb9 tiMuO688APL3H/3Lmwf7cXWMBtBAWg0AoQQIhXWjpTGugUMYJKLAkQSULHmlKWPYNkAI55FX O+yHdvJoAAjFQCgMJEEQRBkdCNEg8zRI9kE3/aYBINRDCMVNUAh2pcV129ljQmETIIqI2MVI yKVxGJfK4lrfPraJBii2ibYNEMoAoTAwJEVCScCI6mILwsUea0o7065zPCnu9XXh68z+wQbE 71s77q/CHtjDbmvooZgeilxEV7lv1+4TsqOXtF1xVRqi6LFdjISKnhP708WFBtBAtzXQFQj1 A3SCFQOEaKzdbqzkj8aaqIGuQCg4TtNEw9UBQi71p7tUFsaEuE8or09yScculSWvPfV+XYFQ sCsuy5hQkZOpcl8iIa5Sq9Qfx0Z/ddVAVyBUV2MUKTcQwgkU0Q/7op9+1QAQKunJD0AIJ9Kv ToTzRvtFNNAVCNEd54YoXeozdqksjAkxJpTXabqkY5fKkteeXRsTCitQ02fMEQm5Ad4ijYF9 qUM00HsNdCUSAkK9r0gaDzZHA2igjhoAQowJjXlLbB2FTJlxwGignhroCoTCxoSaLhAXu+Nc 6jN2qSyMCTEmlNcfuaRjl8qS1549HRMqUsg67OsihOpgN8pYz6tX6o16K0sDXYuETAH74UZV fa5AiEZZVqMkH7TUTxroCYR8J91q9NgDEMJx9JPj4FzRe1ka6CqEol6rUFbhXcrHRQi51Gfs UlkYE2JMKK/vcEnHLpUlrz27OiaU9/XeRU6myn1dhFCV9uDYXCmjATSQRgNdiYTSHLju28S9 6q7u50b5cR5oAA30SgNAiPuEGj1W16uGxHFw2mggnwaAUIMh5FKfsUtlYUyIMaG8wHBJxy6V Ja89uzYmxANM810RFKlI9sXmaAAN1FEDXYmEwmbFMUWbBlLHBkKZ0S0a6K4GgFCDu+NoPN1t PNgX+6KB4hroCoTsirG75ppcYS5O0Xapz9ilsjAmxJhQXl/kko5dKktee3ZtTKhIgeq6r4sQ qqstKXfxq0ts2B0bttSTX3r9r+l12bVIiJtVu9MImi5Izg/dJGmg1xCwj5dUtrLX62OXnadr +XUFQmYSAo/twaG4JnjKU0yTVQLAHLvf6rDpIAJCDZ6Y4FKfsUtlqduYkAuOvyoAoJtDvO6/ MPC6Zpu8Fwc9gVCR1zkEJzZETXRImgARtj5pnyxGZUyo2BV2Flvn3dYlZ56lLHnPl/3c12Sa OiISmrtJJsxanrlfsqy3qwbvL7K7+qLuRwq7Jylsv6i80ggjuI2GUBbHwra9t0CeemWfZjjy OtcjEMoAobLAYwsmblwpbOxJ7xsFLpNvWGRW9GZaIiGcVZ0dHWV3V79AKAOEwgBQVNxBsIUB Kg10gvsl7ZO13C5CyKU+Y5fKUrcxoaxaLLq9S3XlUlmq0g1jQhkhZEBUNLIY293VioxwkoAS tj5pn6wN2UUIZT0Htnf3api66e+6aXI01JWJCcFurzKAFHbfUdRU8DjAxE1QKNLQgVB/O4ki 2mFftJOkASCUY2JC3PhLksHjIJZldlxwPCkKZHGQjHt5XdQ6U/5gVwK/b+2Y4II9sIftC9BD tB40hJLsk9avurZd1yKhsMF/106+zPK4GAm51J/uUlmq6tuP0hu2iY6EsI1vm7BIyDXb5PWn pUOo3+AzGrWNYihvZbAf3TJoAA2EaYDuuJTdcf0KIH8yBhDCgeJA0UB3NACEUkIobCwnagyn aWIFQt1pfE3TCeeDTvJqoKkgKr07Lq+B676fixByqc/YpbIwJsT7hPL6myp1HIRQlWXJa7/Q rsZTX5TW0cukNeVuaU28zXOl+oYcaU2eLxOmLpFJOe4TKrOAdcnLRQjVxXaUk+gADSRrgEio pKdNN1VsQCi5ETW17jkv6r4XGgBCQCj2Ia5ACEfUC0fEMfpXZ0AICNUOQi71GbtUFsaEGBPK C/MqdcyYEBCqHYTyNjT269+rbere7bpvYjTE7LiS4Ep3nNuNF+dK/TRBA0CoJIfdBDEEzwEI 4eSaqGvOyS1dAyEgFNkl5yKEquy/Djovl8rCmBBjQnnhWrWObQhVXZa8NgzuR3dcSWB1EUJl iYR83Loapj76tz6IhEpy2E1sRECofx1DE/XMObmr56aBiEioJLCaR034738l9coGOEt3nSV1 0526AUIlOe26CzTuZXeunJtLfcbdKkuvYNe048RptFt1ladduFQWV8YSDYRcs02e+tX7EAmV BFW647pz1ZdX2OwXXx9Ng2rW86mzPoiESnLadRZBWNmBEBBqmqabfD5ZoVXl9mNmk6kO/ybV DZFQSVAFQkCoSY6Bc3FHzxqAdn0QCZXktJsmchch5FKfsUtlcaVv37QBbBPt8LGNGjMJQMgb R1H/XLNNXp/uR0LLpbUH7xMqFOK6CKG8omA/d66CqQvqIgpCTdEGECopsgNCOIumOAXOwz0t N7lLDggBoUIRIA7LPYdFnTSvToDQrOU4qgRYuRgJudRn7FJZGBPi2XF5QV2ljm0QMSZUUvSQ Vwgu7ucihFy0E2Vq3lU6ddqbOg1CqCl2pzuuJKACod40xKY0PM4DvWTVQFO75BoDIftpbeE3 k47ebmbWJ+2TRSRACKeSRS9si17yaKCJ0VCjIKQr1YAlWMF6eXB92LI8wvDzHf3Lm0fZ+1XZ fx08F5fKwpgQY0J521rVOgZCJXVd5RVA1H4GJnaEY28btj5pn6xldBFCWc+B7bk6RwPua8CA qClPTmhEJJQEFCDkfsPC+VFHaCCdBsJuXq2z7YBQO7oLgiprpRIJpWtAWe3K9tgVDXRqAAg5 2CVnAyRsTChsfdI+WYXvIoSq7r+2behSWRgTYkwoa/s227uiYw0iV8qS15Zmv0ZEQvaEgyBc 7HGiIKDSzI6Le3ld1LoowQZFw+9bO26Cxh7YI+7CBX2M6qNxEJq+TFpTeIBpoadCuBgJFb1C YX+6wtCAuxpoSrecFwkBoeJCA0LFbYjDw4ZoIL0GgJCDY0NVCthFCLnUZ+xSWRgTYkwor69w ScculSWvPfV+REIlwdRFCBURBvumvyLFVtgKDeTXABACQoXGwmh8+RsftsN2aIBIqDQHTCSE Q8GhoAE0kF0DREINjoRc6jN2qSyMCTEmlBcWLunYpbLktSdjQiUByL9Pyb0HmBYRBvtmv6LD ZtgMDWTXAJFQSSACQtnFR4PFZmgADQAhIFTauBgOBYeCBtBAVg0AoQZDyKU+Y5fKwpgQY0JZ HaXZ3iUdu1SWvPZkTKgkADEmxNVfkUbIvuinnzVAJFQSiBgTwpH0syPh3NF/Xg3EQmj81CUy ae4mmTBrOeMGCbACQjTCvI2Q/dBOP2sACDU4EnKpz9ilsjAmxJhQXqfvko5dKkteeyaOCREJ pb9CIxJKb6sigmVf7IwGmqUBIqGckVDcy+5oJM1qJNQn9YkGuqcBIJQTQkFREgl1T6Q4AGyL BpqrASDUYAi51GfsUlkYE2JMKC/UXNKxS2XJa0/GhEoCEPcJNfcqrUjjYl90gQaSNUAkVBKI 6I5LFhsNEhuhATQQ1AAQAkLcA1aSBnCwOFg0kF0DQKgkB+RiJORSn7FLZWFMiDGhvLBwSccu lSWvPRkTKglAjAllv/opIlr2xd5ooDkaIBIqCUQuRkI01OY0VOqSumyqBoAQEGJMqCQNNNVJ cF4AsJsaAEIlOSAXIyGX+oxdKgtjQowJ5XWqLunYpbLktWctxoREWsq/+8kfe+n8bU4+annc +qR9shjWRQhlKT/bcrWLBtBAFRrwI6Hl0trjLmlNvM1zpdrLS2vyfHHhAaYGPjZMbBglLY9b HwRbkQoAQjTgIvphX/TTrxqoFYTigGRXYNR2wagobp+sggBCOJGsmmF7NIMGDpFaQCiuC85E RUBobIN2qc/YpbIwJsSYUF7n75KOXSpLXnuOjgk50h1nj/0ETypsnd2dBoS4qizSENgX/aCB ajTgfCQU1YUWnKyQtqstLKqKg19aYdIdV42A09YP21E/aMBNDTgNoThghI37BGFib5Mlr86o Ku71deHrzP7BcJnft3bck4Q9sIfd1tBDMT3UFbJOQ6hORnUxEnKpz9ilsjAmxJhQXt/iko5d Kkteezo3JlTkRKre10UIVW0Tju9m9wf1Qr24pAEioQY/McEloVEWHB8aQANhGgBCQIhnx5Wk AZwsThYNZNcAECrJAbnYHedSn7FLZWFMiDGhvLBwScculSWvPRkTKglA2pAuQqiIMNg3+xUd NsNmaCC7BoiESgIREMouPhosNkMDaAAIASHGhErSAA4Vh4oGsmtgBEJTHH2Kdl0q1cVIyKU+ Y5fKwpgQY0J5/YpLOnapLHnt2TEmBISyE9w2vIsQKiIM9i2mB+yH/dBAOg0QCZXUFQOE0gmO homd0AAasDUAhIAQY0IlaQDninNFA9k1AIRKckAuRkIu9Rm7VBbGhBgTygsLl3TsUlny2pMx oZIAxH1C2a9+ioiWfbE3GmiOBoiESgKRi5EQDbU5DZW6pC6bqgEgBIQYEypJA011EpwXAOym BoBQTgcU96q7blZYlrxd6jN2qSyMCTEmlKUd2du6pGOXypLXnowJ5QRQmMHpjuNqsUhDZF/0 068aIBIqCURACCfSr06E80b7RTQAhIAQY0IlaaBIQ2RfHHm/agAIleSAXIyEXOozdqksjAkx JpTX4bukY5fKkteeI2NCRy+TFs+OK3Yl5iKEigiDfYvpAfthPzSQTgNeJASE0hkrTlRAqLgN abTYEA30nwaAUIO742jQ/degqXPqvG4aAEINhpBLfcYulYUxIcaE8jpql3TsUlny2pMxoZIA pA1JdxxXoEUaIvuin37VAJFQSSACQjiRfnUinDfaL6IB5yAk0hq5b0V/N8mcZNgyPxIZu61t mCx55TEoEKIh5tEN+6CbfteAMxCKgoQNGPM9uCxuuQ2vtHnlEYWLEHKpz9ilsjAmxJhQnjaO brpzweAMhMJgERbJBJfZAArmEffbjrjC8sgqUhchlPUc2L47jQy7Ylc0EK0BINQeEwpCKato gBCOJqtm2B7NoIFDpDIIBcd6iIRokDRINIAG+k8DlUEoSmwmIkk7QSHYlRYGtyx55W0Ece8X qmqdHodx5c+lsmibuFQel8qCbeJbjEt15do4a17f6SyE7EkESRCJ29aOsNLOtOscd3LFjVMO LIAFsECnBfI6fpf2cw5CLhkna1loIFgAC2CBXlogq49ycXsfQsvVU7TvltbE2zzz6RtupDV5 voyfukQmzd0kE2Yt550zKW5q1XYro5JdyselsvgRrzs2dqks2CZ+LKWJdVXWOZXhs4rkAYRS wCWtgcsShUv5uFQWHG19HC266X5dNWtMiEiocRFMWQ4bZxLtTLANtkl7gRrcrgztlJFH3vKX uR+REJFQLIDLEnoT82niOXHx0v0IxjUblwmUPHkBIQchlKciw/Ypy0mWUR6XylKWEyjDLq6V xbXyoJvuR5tl6ThvPkCowRByqc/YpbLoxuJSeVwqC7bhuXp5YZJ3PyDUYAi5dBXpUlm42u9N l1Nep2Tvh26IhJiinQFSNJj6NBiX6sqlsgBoAF3GxUOWPIiEMkAmybA4EyCUpBHXx+6AEBDK o+Ei+wChBkPIpbEGl8rCuAfjHnmdpks6dqksee2p9wNCJUKoSEWwb/89PZg6p87RABAq5SZV hIQzQQNoAA3k0wCREJEQIEYDaAANVKaBWAhN4AGmlVUMV1X5rqqwG3ZDA/XSwAiE9rhr7FO0 gVC9KpPGR32hATRQNw0AoZLCcPPCPPsFfJ033ek3ZPgpbnlSPmkElpRH2Hp7WZ6X/8WVK6k8 Zt+klxemzacXZbHLHPWq+jLqKsw2/jTqTj1VZZtgWWxbFC1T0v5JOi6rjsLsHazbqLJmXZ5G M2WWJ8nGactTZDsgVCKEbHGEiTRsfRiU4vJJU9n2K9LDoJi03hw/ygGmKUMQtEm2CQNfcJ80 5U4qW1IeUY4taJMqbRNWlqTzSrKLnWcUVNM6LLssaY4btU3SOYUdJ2yfpHzSlDEpj6hzTlqe 5thh2xQtT1C/RS6k8p6D2Q8IlQChKJBEOSp7+6jvUU4vqcKLlCVNeZOOHwXfNE47rsEmnVea cmXJIw7eYYBNc/wybBNmxyznleTws9RTnHPMq988GnRdN3EXDXXXTZ7yB/cBQg5AKOoKM8wR JlV6kkPKut40oLxXSknHC3PoYftkyadbjjYKTL20je2ke6mbNOCNqrdu6LhOuomCUBN0k+SP 0qwHQhVDKOhU0jT2uIpNctZZ13e7PHVxJkmONGl9UtSQFDlE5R/myKosS5rzTOOYknSaNiJM m0+RNpUUPcbVRzfrKum4ZdgmTV0mbQOESoZQklOIuvoJLi/jKilrWZIaRNL6JAeUdE4mf/s4 YVf7SfmkiYSS8giWIakh9co2wXL0SjdJFyNJDi/JfmHnFXeBFhVdhEWKSfkklS1Mj3HlTbJV lvV521SSHsvSTZLt0qwHQiVAyDSIsIpN0yiSnG6aigwKO09ZogSf5LCTyhcFkjSOpxe2iXNo dtnDrhz72TZxEUBYnSfpJAqwYRcEUfUSd9GS5Jjjyhd1PsFyROm1Fzq2L+LS2qGMespar8Ht gVBJECpaEezP/R1oAA30owaAEBDiqRBoAA2ggco0AIQQX2Xi68erPs6ZaAcNdGoACAEhIIQG 0AAaqEwDsRAaP3Uxr/dGnJWJkytGogY00HwNeBCavkxaU+4e+wBTINR8AdDIqWM0gAaq1AAQ ItIh0kEDaAANVKYBIIT4KhNflVdfdT522L0pLtzvUWebUvbqokEgBISAUI01UOQGTBxvdY4X 24/aHgjV2AEhZJxI2FMcgk/PME+ECLuj3n7qQdGnP6BH9JhHA0AICBEJ1VgDaSAU9tibIHzC wJXHobAPIMqqASBUYweUtbLZvnkOIg2E4gATNb6EVpqnFVfrFAgBISKhGmugLAi56qAoV/Nh CIRq7IBooM1voEl1XBaEmOCAlpK01q31QAgIEQnVWANlQMieuMDkBGDULdhE5QuEauyAei0W joeDQgNooGwNACEgRCSEBtAAGqhMA0AI8VUmvrKvqMiPq3Q0UD8NxEJowtQlPEUbSAEpNIAG 0EDXNDAKobvGPkUbCNXvqsKlK8HgPSgulY2yoO0qNMAsxLG6A0Jc4aS+winSgIrsW4Wz4JhA Kk4DWfXMA2aj9QSEgFAqCIXdWR91J35YA83aaIEAEHBVA0XaAu2ASCiVw3VV/FWXK+6elKjn k3HfCTCpWrfdOH6etmDux+pGeeqcJ5EQkVBqMCc9hdk0BCIhwFNnp5im7HnbApEQkVBqh5tG iP22TTCqiYt+grah8QGmJrWXvG2BdtADCLWEfy5YoBsNPq4vPGwmXL/PjmtJmMVY1mu7uNAW 4noJulG+OuVJdxzdcUSHaAANoIHKNACEEF9l4qvT1RplpTsRDXRHA0AICAEhNIAG0EBlGgBC iK8y8XFl2Z0rS+yKXeukASAEhIAQGkADaKAyDQAhxNc18fGoEq7I63RFTlmr0WsshMZP4yna CHNUmFnvcbBv6MOO1TRw7I7dXdeAB6Gjl0lrj7vHPkUbCCFg+/6GuPt+om5c5VElaMh1J0j5 qtUoEKI7LnV3HM/Lqrax4iyxfxM1AISAUGYIhY31ZHmETxMbEucEINBAPg0AISCUCUJpYMNY UL7GiBPDbv2ogdIh1FIPhiJVb4NuiDnLs+P6/blx3bA/eQKpJmqgdAg10UicE40fDaABNNAd DQAhuuNSd8fRCLvTCLErdu1nDQAhIASE0AAaQAOVaQAIIb7KxNfPV3+cO9EPGvA1AISAEBBC A2gADVSmASCE+CoTH1eCRANoAA0AISAEhNAAGkADlWkACCG+ysTHVTBXwWgADcRCaMJUnqJN I6GRoAE0gAa6pwHeJ0QkRCSEBtAAGqhMA0AI8VUmPq4uu3d1iW2xbV00kBpCG9ctFhI2QANo AA2ggTI1AISAKxcXaAANoIHKNJAZQt/+P3fI//672+Vb37x1JH3zjr+Uv/36X8gdX/8iCRug ATSABtDAiAY0GzQjvvU/FTPa6R/+/m9Es0RHVJkh9PSCp+TXj/9KHv3Fz0fSz3/+kPzs4Qfl oZ894KV5D4Wl+9VyPz04z0/z5v17IP1E/VbpwX9T6cfp0gP3ybx2elB96vTAA/+sPn8Un376 T/IgCRugATSABgpq4F61f2d64P4fiEkP/vQH8tCD98rPf/bDkfSrR/9FnvjP+/NBaM3ACnlu xVJ5dtmSkbRk6SJZvGRhOz0jixc/I4sWP60+/eR/fyIizVfL22mR+lz0m5D0uFo2mhYtfEwW Lvi1LF7wmJ/Uby8t+KWXFi34RXh65lFZ9MwjJGyABtAAGihJAwuf/rmy5cNj0uIFevnPvLR4 wcOyZNHPR9Kvf/Evov9yRUIbNg7L+g1DMrxucDQND6jvVtK/h9dYaZX6bqeV6redVqjfOi0P pGXqt0pD7bT2WRnWaWhpRxpau0R0Gl67KD4NLpDhkfSM+k7CBmgADaCBPBoYGnhaxqan1LLR tHbNU+Kn+bJ24ImR9NijP84PoRd+u0HGpBfWywsvDMekIbUuJG0alBe8tCY0bXp+tfhpZWh6 fuMKCUubNiyTsWmpWmbSEvWdhA3QABpAA0U0sHH9UtHp+fVLQtJCtawzbVz/jNr+GXlMdcfl joSCsNm0aVh08pcr0IyAxQBm7Oem5wcUVOxkYNMJnY0bV4lOQdBs3PCchKb1y9QJ6uQbJmig DcpQJpU5xZC8mLKKBtAAGtAaWBhIC9Tv0bRh+BnR6VeP3geEEAxOAw2gATRQtgbSQegXj/xz byDUarXEJDtCioqE9LZ291ueSEjnQSRUtrDID2eFBtBAGg2khdCPug8hDQMbPPbvsiHkgUd3 0XWxO847RsINbWm2ScqD9WmEzjboBA24qYECENrjLmlNvM2DU8v7b/J8sZ+ibU447ZhQEELd jISAEA3SzQZJvVAv/aaBlBB6+IdjI6FeQ8juqjOz4OzuOHu9PTHBXm4mJ5hlOhKyu+M68mhP StDL9OSEkX0iopvg+qjfdvRjbxOMiqK2o5H2WyPlfNF8kzWQDkKPPHRv9yGkI5+oMSEfNqOz 4wx8Oj9XejPjdNLLNYjMpw0f/d2OhAyEbBjp6YNR8AnrQgsCw7uhKqY7zqwL2880uDTb0Dib 3Dg5N/TdDxpIB6GHHvhefgjp6djPqxtWTdqkvm/auHYkPb9xUK3rTBs3rmkDxF9uw8l8f37D an+b9mdwGxs2G9YvV9HM8pExIB8wz3rJfPc+16kp2e1kfvswWKimCfrJW97+bn8Gl4f9tssY zCtu/6hjhpWDZaN1hS2wBRpwXwPrhhZ407C9NNROw0+r3yoNPeWl+//92/khFAaZMOho8Iwm P5qxIxvv+wYV7VjJRDQ+SBRk2vcDGej40c2yEeCYiQgmytGz4uxIqAiE4qASBRh7eRqI0aDc b1DUEXWEBtJrYBRAbegY+AQgFPrYnrRjQp1wGQWNjmAMZEwXWthv062mAbNBAUgnGz4m4gmL dEYjHv+mUz+68cETFfGYqMdEQKORkE9qHxZtarc/7WXme9gys1/SNiZiCh4v7NjBsvC7s26w B/ZAA3XRwGjkYyKg9UNPik6hj+1JC6EN61crAFipDRI7orHhMuKA16/wohs7qhlZt05FNyr5 MPEjnY6urkC3mlm3bmix6LR+aNFIt5peNzy00Et2HprQOull+nP92qe9pH+b7/an2Te4zN7P zj8sPzsP+zjBvIPrksoWVl6W+fVJwgZowCENDD4h63Vqw8f7rlLoY3vSQmidgoRO69c956WR 38PPyvp28tYHfnvbqQePjk0+SOKSgUrkZ/uhpEPqgaSdST1gbzAkDTypHrJHwgZoAA2ggaIa GPYeWPqkDKsHlJq89Hc/ze9Ma/5ThlUKfWxPWggNrlkoXhpYZKUF6rtKa4KpvW17n4HVz0h4 elotH01rVj8lYWlg9ZNquydlzap20t/1slVPtNN89Tlf1qwcTfq3SSPLV/1G5UHCBmgADaCB IhoYUH5UpzUrf92RBlb8WnTqXP4r9dtPoY/tSQuhlc/9p+i0Yvl8ee650WSW6eUmjaxf/ht5 LkNasewxyZSe/ZWs0GnZL8PTs79Q6zvTcvWbhA3QABpAA8U08Nyzj4idlj/7c+Vb/WSWjyxb +rAsV+kXj4Q8ticthJ5d8pikTot/Jc/GpKWLH5V06RG1nZXUy5GWhqWFP5OlOpl15nfgc4n6 vWThPBI2QANoAA0U0MDShQ8pnzuaEv3qAuV3FzwwkjpeapcWQn6U84SKhp5U6Skr6d/hSW+/ ykorVR6hqR1lmWhrzOfIfo+r/VOkZb+WlSEpU5SVNSpj+2xRLPbCXmigoRqweqZMb9Wzj3k9 UM8teVSWL3mk882qaSHEXc/9cNcz54jO0QAa6I0GWqe+KK3panZ0FITeeM6gTJq7SSbMWi7j 37c+VfIyJWEDNIAG0AAaSNKABtDBD0RDaJdTlsrrz1shrzltibzquMWpUuvo5ZI66QJUlY5W x06TpqvzSZ3KPp8Mx05zLt42FdZPN47djTxT13eG+ild5104dmoNaZ2nPX7ZbaImx67Ulmnr Rm+Xtn6y5Jl2W3XsI56Q1kH3S2vKPwZe5TDpB2qher+Dl+62vptlZX3qvNOkso5n5aPDv7LT iM0Sypv2uKls07ZfN/JMfT6qDHukSGnzG9FdGm1k2CZNGbNsk+V80uabpc5Tb9uF9tO3x+6C LVNrI+2xM7SJ1PXYjTz1+Sj46DLs9ncBCL3pTm8BCRugATSABtBArzQw8lI77xGn/GEBLIAF sAAW6LEF/j99niX3RaDYeAAAAABJRU5ErkJggg==</item> <item item-id="363" content-encoding="gzip">H4sIAAAAAAAA/4xUzXISQRDu2YVdWCAEBExYhAgxqECEIWWVOWEqZXlQU4Xe4wbWBEsCko2V I0/gK3jxESzvlp4sKy/hg2D/AImeHKq3e779vu6Z3hniAKDQXqI5HJv4jPjvu/7xYHQaBho7 aNH+qCdYiLFHRBv2Do7e+r2AEeiy3sCndXYy3htdCPwMzUaguyQ+Jy3aa6z6G6tfvrqa0ziw ZVEGGCYH6WXxx0EwGRydB75i5i5aEq6P0G75r3mYE4SCie+7DGi0xJhDS69/A5iGbf0JfceK iLej4iOO+GhMWz8B9py4NrBYEEOlCmvYhhZmw+YkdPgX5omtyPsEgKmMFjRxbYx8QcRQqk39 WWXkK/baVpbGDA85D7UzxeWm0bSmPXVSCN3gcJri5Wa08x0nkSz7Tian05foszc5ZT+HKa0f JmU7BR9wi2v6Iz6nOVhnxuc1WgZ/gzxLp1lXpPmFVC+kBZHm4ZZIC0spFEWbKYm2uNC2F9oN 0Rbhtmg3rrRQlj3aFWlteVN85Q5TP2xyo7BxW9Km5RyqIqzcleZUEbonzaly4vsykY9fE7JV l+y1hvj6tlRp4IFQZhNov/BAKjWWlZoirrekEkFakjc5eVt2VVvsaoePfLKvD48n3vjk8M1o MvQCm7lZujkM73uBJy3Iz0+mgX3h20YHtI62xTHNHO9icPaE88htK9A9UnOujBn+QBX+H10k t4OJ1/P1vsmv3DmxpFZBuWpGkVIubmlWUoZyTZSWlKnc0IyQEHJghkEYOdMOvrKIQyqbORhE iEPkKOUhuYMclseQw/I4clie4FoYrDAHgyRxiCzLTb44H/qTQc97Jw2J8LKfovVhgD8qTn8B zryb/4z49ckfAAAA//8DAOixITDuBAAA</item> <item item-id="364">iVBORw0KGgoAAAANSUhEUgAAAdsAAAFuCAYAAADJfbLyAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACWySURBVHhe7Z3dlZs8GIRdFwVRRUrI havx3faQ2xw3kQ6IAWNj/gRGDGh48p09X7LGkubR+J2V+NlLwR8IQAACEIAABDYlcNm0dRqH AAQgAAEIQKAgbDEBBCAAAQhAYGMChO3GgGkeAhCAAAQgQNjiAQhAAAIQgMDGBAjbjQHTPAQg AAEIQICwxQMQgAAEIACBjQkQthsDpnkIQAACEIAAYYsHIAABCEAAAhsTIGw3BrxZ87e8uFwu z6+8uG3WEQ1DAAIQgMBaAoTtWoJ7vP9+LbLLO2Dv16y45MTtHlNBnxCAAATmECBs51A6+jGd 8D36cBkfBCAAgbMRIGwNZpyVrcEkIgECELAmQNimPL3VirY8b5sV13vKQhg7BCAAAW8ChK3F /N6KnMC1mElEQAACngQIW5N5veWXgmukTCYTGRCAgB0BwnZqSl/btPUtNpNh1jn2kl2LRTu7 gxc53YtrNnB7T3nbz0f7rGztPpkIggAErAgQtqPTWQZYK2Cr+1onzo2Wr3+9tKz7urRu5ymH Va5Wmzbbfy9fqy6Ket1nyzlbq08lYiAAATsChO3YlPZWj/UqcyxPyzDMvrhKqQnNLM8/7p19 RO3neVhu77H78CEIAhA4DwHCdvZcd1a6H+8rg/i71eX9dqu3m7th2gtXtopnTxUHQgACEDgY AcJ25oRUK9DR87B1EGav86tN8Jbf7zxKsQzRoXYih+17i7k558v/YYIH8AAe6HpgZgSsPoyw nYGw3uqdeP5wFZTtlW07ZFt/HwvaDVa2paH4s54AHNczbFqAZRyWcIzDsWxFyZKKHJi3OmiX bhF3t3yfF0BNXaG8wco2niXP25Lyw+hOGZZxZhiOcTgStvE4rm4puKId7SFC2K68QIoP5Orp rxqAYxyOsIRjPALxWlJ+vlnZjs1bb2t4YoKr24Ja28wf28VfbiM/upu69SdkN6WJQmNJ+XU4 xps9WMZhCcc4HNU/ABK2I/NWBd3rPtb335tbf7q3+nze99oE74oLpKpxNfff9u/BDdmND2SI 0LzX4TiP05yjYDmHUvgYOIYZzT1CyZKwnTsriR2nNFFiaBguBCAAgYqAsk4StqamU5rIFCGy IAABcwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwRIgsCEDAnoKyThK2pmZQmMkWILAhA wJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwRIgsCEDAn oKyThK2pmZQmMkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjr JGFraialiUwRIgsCEDAnoKyThK2pmZQmMkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknY mppJaSJThMiCAATMCSjrJGFraialiUwRIgsCEDAnoKyThK2pmZQmMkWILAhAwJyAsk4StqZm UprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwRIgsCEDAnoKyThK2pmZQm MkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwR IgsCEDAnoKyThK2pmZQmMkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiC AATMCSjrJGFraialiUwRIgsCEDAnoKyThK2pmZQmMkWILAhAwJyAsk4StqZmUprIFCGyIAAB cwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwRIgsCEDAnoKyThK2pmZQmMkWILAhAwJyA sk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwRIgsCEDAnoKyT hK2pmZQmMkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFr aialiUwRIgsCEDAnoKyThK2pmS6PmS2/un/4fk0EDnBofzbww1n9oItAXU+moXZUWcqf2I7K gHFBAAIQmCKgrJOErakXlSYyRYgsCEDAnICyThK2pmZSmsgUIbIgAAFzAso6SdimaqZb/jjv eHl+5cWto0NpolQRMm4IQODcBJR1krBN0Wv3a5Fd3gF7v2bFJf+MW6WJUkTImCEAAQgo6yRh 6+C3TviWkpQmckCIBghA4HwElHWSsDXwFytbg0lEAgQgICdA2MqRJ9phtaItz9tmxfX+qUFp okTpMWwIQODkBJR1kpWthdluRd4JXKWJLBAiAgIQOB0BZZ0kbE3sdcsvRfsaKaWJTBAiAwIQ OBkBZZ0kbGOZ67WlW9+O07k4ONzLwEVORXEvrtnA7T3lbT/Z9fFq84eVbRgwR0AAAhDY73Qb YRvFfWXYtQK2uge2fx51vKv6/ZfW7TzlseVqtbmlp/338rXqoqjXfbacs40yjTQCAQicigAr 29Smu7fSrFekc1a3TWhmef5x7+wjaj/Pww6ufMdBKU2U2nQxXghAAAIlAWWdZGW7iec6K92J Pu63W70d3A3TXrj2t4qnhq400SYIaRQCEIDAxgSUdZKw3WAyq9VqdU61DMjOoxTLEP043/oc wAZh+95mbs77Mt0bTDdNQgACBycwVAub76mGTvWNTLreFm4HbCtwx4KWlW3kWaA5CEAAAmEC rGzDjA55RB20QxdGPS+AGlrRNko2WNkeEhKDggAEIHAQAoTtQSZiyTD6K9r2u78IWy6QWoKf YyEAAQgsJkDYLka28xuqVenYrT5fbiM/JE3d+hNSrDRRaCy8DgEIQOCIBJR1knO2ERxQheLr ntf33/PHlcZfXyBVjau5/7Z/D25o2EoThcbC6xCAAASOSEBZJwnbIzogwpiUJoowXJqAAAQg ICegrJOErXx6NR0qTaRRRC8QgAAE4hJQ1knCNu7cHaY1pYkOI5qBQAACEFhAQFknCdsFE5PS oUoTpcSFsUIAAhBoCCjrJGFr6juliUwRIgsCEDAnoKyThK2pmZQmMkWILAhAwJyAsk4StqZm UprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwRIgsCEDAnoKyThK2pmZQm MkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwR IgsCEDAnoKyThK2pmZQmMkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiC AATMCSjrJGFraialiUwRIgsCEDAnoKyThK2pmZQmMkWILAhAwJyAsk4StqZmUprIFCGyIAAB cwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwRIgsCEDAnoKyThK2pmZQmMkWILAhAwJyA sk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwRIgsCEDAnoKyT hK2pmZQmMkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFr aialiUwRIgsCEDAnoKyThK2pmZQmMkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJ aSJThMiCAATMCSjrJGFraialiUwRIgsCEDAnoKyThK2pmZQmMkWILAhAwJyAsk4StqZmUprI FCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwRIgsCEDAnoKyThK2pmZQmMkWI LAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiCAATMCSjrJGFraialiUwRIgsC EDAnoKyThK2pmZQmMkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknYmppJaSJThMiCAATM CSjrZLJhe79mRXa9D1vhfi2y/OZtk1telEapv/Kiq1ZpIm/QqIMABFwJKOtkomF7K/J2wJTh 2gmcW34pbPO2o7f8wePSEas0kesHEV0QgIA3AWWdTDJse6vagbAtypVfdi1G1r5eDhrQrzSR F0zUQAACZyGgrJMJhu29uGZZ8d5BLle5zXZq9/vtf/vah5Wt79yiDAIQ2I7AocL279+/rXOD Tahdit+/f38SGFpdbsFoqJ/BvstQNt5KLtlWuss56f9QoTTRFtNMmxCAAAS2JqCsk8GV7a9f v4qfn5/iz58/VeiW/y+//v379+bwulinf6FOdFhVX51+RoK+PG87ehFV9IHt2WC5uv8MXKWJ 9lRO3xCAAAS+JaCsk8GwbYsYGlgZaNXK6ta5SKkMwMc502v1ev31eQ1Pe/u3HZ71xU/X8qKf oVXb0LnY04dt8ThF/clXaaJvjc77IAABCOxJQFknZ4dtuZKdHFg38J5bnK+VZSck26vOz3OO zxBuLm7qrmRnbyPXARRlZTtni/y1pfv84WLpxVkTW+G923t6P3Cwst3zA0vfEIBAmgQOGbbN NvIo0sGwba1YP17vhkP7Vp46bN+r4M4FUaNh2z1vGeucbbMCD2yRlwH49b1Gw31UuwbPNtt/ r0/XNit/ztmm+TFn1BCAwN4EDhm2zYVS8cL2vb38uV3cX6V9bpEOhWj9vc+t6n47Sye2CbQs z3v38Xbb+nYVPd5HZ/xzVtetQSlNtJQrx0MAAhA4AgFlnZy9jRwEs3hlO7ZS7IZk91afelUX 3B6OcJ/t/Xar79MNBl1/jEFezwNG++j1ueyHB6WJ5mrlOAhAAAJHIqCskzuFbed86kcwPrdU my3ZwdDsPEFqYPaiPkEqGLZ1EGbP1fX7VpyBcT4vHOs9bCP0w8rjgYzdK46nTPt+lOPnDsKR jM5YIAABCCgIjNXDU4TtI24nH0aR5yNXIzcrwtCzkZdeoDQ146GwrV7vPlCjWbm3AncsaIdW z6xsFZ9B+oAABE5MIM2wjTZhy1Zw0bpdE7a99w5dAPZYYU79ALDBylbChk4gAAEIJEqAsB14 ItKucxla2W4Rtt1t44VjUJpo17mhcwhAAAJfElDWyXjnbL8Um8TbQkE3dC/waxX75TbyA8zU rT8hbkoThcbC6xCAAASOSEBZJwnbOQ4YCNvurT6f970OnK9t+pl7gVR1/NhTtsKDVpooPBqO gAAEIHA8Aso6Sdgeb/6jjEhpoigDphEIQAACYgLKOknYiidX1Z3SRCpN9AMBCEAgJgFlnSRs Y87cgdpSmuhAshkKBCAAgdkElHWSsJ09LWkdqDRRWmQYLQQgAIGagLJOjoft45cBPEai/8IF UQgoTRRlwDQCAQhAQExAWSdZ2YonV9Wd0kQqTfQDAQhAICYBZZ0kbGPO3IHaUproQLIZCgQg AIHZBJR1krCdPS1pHag0UVpkGC0EIACBmoCyThK2pq5TmsgUIbIgAAFzAso6SdiamklpIlOE yIIABMwJKOskYWtqJqWJTBEiCwIQMCegrJOEramZlCYyRYgsCEDAnICyThK2pmZSmsgUIbIg AAFzAso6mWzYlr9lJ7veh61Q/mad/GZuk2l5ShOdGjTiIQCBZAko62SiYdv6HbHlNI/8Crwz 563SRMl+0hg4BCBwagLKOplk2PZWtUO/3L38he6vX+B+Pj8pTXQ+uiiGAAQcCCjrZIJhey+u WVa8d5Dbv2C9+/32vx2sMV+D0kTzR8WREIAABI5DQFkng2H79+/f6ikb3a/fv3/XxKpV5fv1 zbduh1axQ98rylC+FJuP5zi++RiJ0kQHRcCwIAABCEwSUNbJYNj++vWr+Pn5Kf78+VMFbvn/ 8uvfv38PEeWqsrV6rEJv49VkuT18yR89t/4Mhu1jdPll/CIqcxMqTWSOEnkQgIApAWWdDIZt m3FvYGXwdZaOZcBV3yoD8HHO9Pr4d7Mq/jy0vf3bDs/64qfr42rj+n2d8B46F0vY9j4KShOZ fg6RBQEImBNQ1snZYVuuZMMDa610n9vLr9tzOiHZXnWWFzy9Q/sZws3FTd2V7OxtZFa25p8T 5EEAAhBYRSCcaaua/zy1N7epZht5/Pj6HOkrXLuh+PHvzvZztR3drG7rsH2vgjsXRI2GbXf7 mnO2c+eW4yAAAQickcAhw7a5UGp4QuqA/HjIRDBsuxddNWHZDeJ6hfoZvt0Ln+pgLcG9j+u3 cyYzKU10Jq5ohQAEfAgo6+TsbeRRvM/t4t5Vv8Gw7Vzk9OqgG5LdW33K08ETT49q2uE+W59P BEogAAEIbEAgnbAdC9oSymTYds6nfgTj85xtk96Dodl5gtTAJHyuhjeYpYM3qTTRwVEwPAhA AAKDBJR1ctXKtrqwaeAe3NfVyO1bdHrnWqcfRpHnI1cjP5EFn4184qdHlYiUJuJzDAEIQCBF Aso6uSpst4F77nOtsZgqTRRrzLQDAQhAQElAWScJW+XMCvtSmkgoi64gAAEIRCOgrJMHDNto HE/dkNJEpwaNeAhAIFkCyjpJ2CZrk+mBK01kihBZEICAOQFlnSRsTc2kNJEpQmRBAALmBJR1 krA1NZPSRKYIkQUBCJgTUNZJwtbUTEoTmSJEFgQgYE5AWScJW1MzKU1kihBZEICAOQFlnRwN 28ezKh4PRuiT3vr75nMrk6c0kUwUHUEAAhCISEBZJ1nZRpy4IzWlNNGRdDMWCEAAAnMJKOsk YTt3VhI7TmmixNAwXAhAAAIVAWWdJGxNTac0kSlCZEEAAuYElHWSsDU1k9JEpgiRBQEImBNQ 1knC1tRMShOZIkQWBCBgTkBZJwlbUzMpTWSKEFkQgIA5AWWdJGxNzaQ0kSlCZEEAAuYElHWS sDU1k9JEpgiRBQEImBNQ1slkw/Z+zYrseh+2wv1aZPnN3CbT8pQmOjVoxEMAAskSUNbJRMP2 VuSXvHjFaRmu7X8/pv6WXwrrvL3l1T1i9VeLxdP2ShMl+0lj4BCAwKkJKOtkkmHbW9UOhO0j bYtLdi1G1r5pG6yjt+Rx6fxkoTRR2jAZPQQgcFYCyjqZYNjei2uWFe8d5HKV26zwut9v/9vY TgM/bChNZEwWaRCAgDEBZZ0Mhu3fv39b25VNqF2K379/11MQ2M6MPk9Dq9ih7z3WtNfMfCv5 CZeVbXSX0SAEIHACAocK21+/fhU/Pz/Fnz9/qtAt/19+/fv3ryhmbGdGn68q3DvnKAfDtj5v O3oRVfSB7dBgpbv8Aai/gleaaAfldAkBCEBgNQFlnQyubNtqggNrh17598c50+sj8JoLeT5P K7a3f9vhWV/8dC3PQw4FydC52LOG7WtySmafgRucq9U2pQEIQAACaRNQ1snZYVuuZEMD+9jO fK66XivLTki2V52f26DPEG4ubuquZGdvI59gZdvyeffq69Bcpf0RYfQQgAAE1hNQ1snZYdts Iw/KG9rO7Ibix7+7K7H2rTx12L5XwZ0LokbDtruVutM525FVdtAWE+ede7f39Fb3rGyDfDkA AhCAQIfAIcO2uVBqerZaRT8Ytu/t5c/t4n5wfK7ahkK0/l7Zzjuk++1s77Rma7x/32uYW/9+ 2VJ3c0tP++9lW9VuwOBV2HVPShNtz5UeIAABCMQnoKyTs1e2c2W+gjEYtmOB1A3J7q0+ddAE L3wS32fbhF+W570HbEyxG39fh8PCFbPSRHO9wXEQgAAEjkRAWSfXhe3UduZk2HbOp36081wd NkvUwdDsPEFqYPbUT5C63271AzQWhuLo+3rtLFupK010pA8PY4EABCAwl4CyTq4L26ntzEDY PuJ28mEUeT5yNfKTYvDZyHs9Pap3bnrgNqWhsc3iNf8hHe8t5s/t+rkm5DgIQAACLgTG6mFS YRt/Mpat4OL3v7LFwRXpM3Cft0MNPkJyg7BdqYS3QwACELAmQNgOPKQhmRkf3Ebu3M40JIaw TWaKGSgEIOBB4ORhm/gkxgrbapu9tW288Fyw0kSJzxjDhwAETkpAWSdXn7M96RyNy461jfzo YerWnxB3pYlCY+F1CEAAAkckoKyThG1sB8S6QKoa19gjLcODVpooPBqOgAAEIHA8Aso6Sdge b/6jjEhpoigDphEIQAACYgLKOknYiidX1Z3SRCpN9AMBCEAgJgFlnSRsY87cgdpSmuhAshkK BCAAgdkElHVyNGwfj0JY/d+U4qHWZxPiwCABpYmCg+EACEAAAgckoKyTrGwPaIAYQ1KaKMZ4 aQMCEICAmoCyThK26tkV9ac0kUgS3UAAAhCISkBZJwnbqFN3nMaUJjqOakYCAQhAYD4BZZ0k bOfPS1JHKk2UFBgGCwEIQOBJQFknCVtT2ylNZIoQWRCAgDkBZZ0kbE3NpDSRKUJkQQAC5gSU dZKwNTWT0kSmCJEFAQiYE1DWScLW1ExKE5kiRBYEIGBOQFknCVtTMylNZIoQWRCAgDkBZZ0k bE3NpDSRKUJkQQAC5gSUdZKwNTWT0kSmCJEFAQiYE1DWScLW1ExKE5kiRBYEIGBOQFknCVtT MylNZIoQWRCAgDkBZZ0kbE3NpDSRKUJkQQAC5gSUdZKwNTWT0kSmCJEFAQiYE1DWScLW1ExK E5kiRBYEIGBOQFknCVtTMylNZIoQWRCAgDkBZZ0kbE3NpDSRKUJkQQAC5gSUdZKwNTWT0kSm CJEFAQiYE1DWScLW1ExKE5kiRBYEIGBOQFknCVtTMylNZIoQWRCAgDkBZZ0kbE3NpDSRKUJk QQAC5gSUdZKwNTWT0kSmCJEFAQiYE1DWScLW1ExKE5kiRBYEIGBOQFknCVtTMylNZIoQWRCA gDkBZZ0kbE3NpDSRKUJkQQAC5gSUdZKwNTWT0kSmCJEFAQiYE1DWScLW1ExKE5kiRBYEIGBO QFknCVtTMylNZIoQWRCAgDkBZZ0kbE3NpDSRKUJkQQAC5gSUdZKwNTWT0kSmCJEFAQiYE1DW ScLW1ExKE5kiRBYEIJAwgUsx/V8pTVknCduEzTQ1dKWJTBEiCwIQiEQgFHxDr0/Wt0CQlu3N +aOsk/NGNGfUHHMoAkoTHUo4g4EABKIQCAXkkjCMMqANGlHWScJ2gwk8QpNKEx1BL2OAwNkI xAzDpStLF9bKOknYurimo0NpIlOEyILAbgRCQTp3m3Q3AYl0rKyThG0iplg6TKWJlo6N4yGQ OoE5YRg6JnUGDuNX1knC1sExAxqUJjJFiKydCawJq9B757y+s3y6FxBQ1knCVjChe3ShNNEe +uhzfwKhwJoaYei9bJPuP79nGIGyThK2po5SmsgU4aFlzQmr0DGE4aGnmMEJCCjrJGErmNA9 ulCaaA99ij63Dqs17Sv00wcE3Ako6yRha+ompYn2QrgmrELvZRtzr1mlXwjoCCjrJGGrm1dp T3PCJHTM2m3GrduXAqUzCEDAjgBhazelekFKE+nV0SMEIACB9QSUdZKV7fr5OmQLShMdEgCD ggAEIBAgoKyThK2pHZUmMkWILAhAwJyAsk4StqZmUprIFCGyIAABcwLKOknY7m2m+7XILo9L iZqv7FrcX2O6F9eseS0vbh9jnXpN+3sa90ZI/xCAAAS+IUDYfkMt1ffc8uKSf8ZoI+WWP4L2 +Vr77+XrU6+VrytNlCp6xg0BCJybgLJOsrLd2WtlaGbX91r2PZxbkV+y4vVStQJuVrdTr9Ut KE20M0K6hwAEIPAVAWWdJGy/mqJYbyq3gluB2m72I1yrtew7fKdee7ahNFEsGrQDAQhAQElA WScJW+XM9vqqAzR7nZcdW8l+F7av88Ctc8K7yqVzCEAAAjsQGKqFzfdUwyFsVaSH+qlWqO2V bRm+z61iVrZ7zgx9QwACJyDAyvYEkzwsceZWMdvIp3UIwiEAgXgECNt4LBNrqX3hExdIJTZ5 DBcCEEiMAGGb2IR9Pdzytp/XFcaPVsoVa+s+W279+Zosb4QABCAQJEDYBhH5HHC/Zu8HWrSD t5JYrm7HHmox9Rq3/vg4BCUQgMBWBAjbrcieqF2liU6EFakQgIARAWWd5GpkI+O0pShNZIoQ WRCAgDkBZZ0kbE3NpDSRKUJkQQAC5gSUdZKwNTWT0kSmCJEFAQiYE1DWScLW1ExKE5kiRBYE IGBOQFknCVtTMylNZIoQWRCAgDkBZZ0kbE3NpDSRKUJkQQAC5gSUdZKwNTWT0kSmCJEFAQiY E1DWScLW1ExKE5kiRBYEIGBOQFknCVtTMylNZIoQWRCAgDkBZZ0kbE3NpDSRKUJkQQAC5gSU dZKwNTWT0kSmCJEFAQiYE1DWScLW1ExKE5kiRBYEIGBOQFknCVtTMylNZIoQWRCAgDkBZZ0k bE3NpDSRKUJkQQAC5gSUdZKwNTWT0kSmCJEFAQiYE1DWScLW1ExKE5kiRBYEIGBOQFknCVtT MylNZIoQWRCAgDkBZZ0kbE3NpDSRKUJkQQAC5gSUdZKwNTWT0kSmCJEFAQiYE1DWScLW1ExK E5kiRBYEIGBOQFknCVtTMylNZIoQWRCAgDkBZZ0kbF3NdHlMLV8+DFx9ii4I7EiAsN0RvkvX ShO5MDu0jiP84HRoQAwOAssJKOskK9vl85PEO5QmSgIIg1xP4AiBf4QxrCdJCwchoKyThO1B Jj32MJQmij122oPAoQkQ+IeeniWDU9ZJwnbJzCR0rNJECWFhqBDwIEDgR5lHZZ0kbKNM2fEa UZroeOoZEQQgsDkBg8BX1knCdnNH7tOB0kT7KKRXCEDg9ARWBr6yThK2pm5VmsgUIbIgAAFz Aso6SdiamklpIlOEyIIABMwJKOskYWtqJqWJTBEiCwIQMCegrJOEramZlCYyRYgsCEDAnICy ThK2pmZSmsgUIbIgAAFzAso6SdiamklpIlOEyIIABMwJKOskYWtqJqWJTBEiCwIQMCegrJOE ramZlCYyRYgsCEDAnICyThK2pmZSmsgUIbIgAAFzAso6SdiamklpIlOEyIIABMwJKOskYWtq JqWJTBEiCwIQMCegrJOEramZlCYyRYgsCEDAnICyThK2pmZSmsgUIbIgAAFzAso6Sdiamklp IlOEyIIABMwJKOskYWtqJqWJTBEiCwIQMCegrJOEramZlCYyRYgsCEDAnICyThK2pmZSmsgU IbIgAAFzAso6SdiamklpIlOEyIIABMwJKOskYWtqJqWJTBEiCwIQMCegrJOEramZlCYyRVjJ gmO82YVlHJZwjMNR/fkmbOPN26Fa4gMZZzrgGIejurDFG/XxWsKT8eZEyZKwjTdv4pbuxTW7 VCuvyyUvbp3elSYSC5d2B8d4uGEZhyUc43BU/wBI2MabN2lLt/wRsnkdse2/N4PgAxlnOuAY h6O6sMUb9fFawpPx5kTJkrCNN2/Clm5FfsmK6/3Z5f1aZJ3VrdJEQuHyruAYDzks47CEYxyO 6h8ACdt486ZrqReunfB9jIQPZJzpgGMcjurCFm/Ux2sJT8abEyVLwjbevOlamhm29flcvmCA B/AAHhjzgKpwE7Yq0jH7mRG2MbujLQhAAAIQWEeAsF3Hb593E7b7cKdXCEAAAl8SIGy/BLfv 28IXSO07PnqHAAQgAIE2AcI2UT+Ebv1JVBbDhgAEIGBJgLBNdlrL1e34Qy2SlcXAIQABCBgS IGwNJ/UtafopU9bSZ4tbwmji2Oo8euuKz+xaNLdBzx6K3YFL2D7FD9wzboclKCgSNzw5QHoB 2w6/5zOEgrM3dgBh+zW647+RrebwHC1hNHnsLX890Svc6zmOWMK2JtLs1vQfP3oOYk8KgafD 9VmMcMOTPVTzPVkzfQVsybL9IKEvDEnYfgEtjbdwEVV4npYwmj62/BBnr0d6hXv2P2IJ26K4 X7PqnvAsz3tPQ/Nn1VYYjxue7DpnAdsyXD92p+oV8ZrVLWHr+knm9qDwzC5hNHls+UFsPT4z 3LP/EUvYPmjcb7d62/3s28jRuOHJ3odsIdvP93dWul98ggnbL6Al8ZZVxkpC4fpBLmE0eWz9 E3P2+i1MBG8/NPuPFB2cQMK2s7L/lhuejBm21c7LyuswCNv1JfuYLSwJkmMq2H5USxhNHVu9 1g7YstCd+7wjYfulfZd4st1F9314sj8BX7KtT3Gs/zwTtl9+Jg7/ti+NdXhdMQe4hNGSY6sL fU6+ul3EqzWprGwjrWwD5ytjfo5SaesLT9ZBG+ezTNimYpTF41xwMcDitl3esITRimNdcC3S sYQXYfsmsBU3fgCsr3af/tWkn5sFcVa0TZuE7aICktbB8y9zT0tXzNEuYTR6bHVbQGubqfwJ euX5nZga92prCdvXGM++sn2AiMINTw7afjbb3jb8+k8RYbue4YFb4ClT4ckZZ9S/dWL82ObW lfrXeK0/vxMedwpHLGH71EPYlnE7+nS40dt5BrjhyaHPyDy2VSgP/HpSbv1Joe4wRghAAAIQ OC0BVrannXqEQwACEICAigBhqyJNPxCAAAQgcFoChO1ppx7hEIAABCCgIkDYqkjTDwQgAAEI nJYAYXvaqUc4BCAAAQioCBC2KtL0AwEIQAACpyVA2J526hEOAQhAAAIqAoStijT9QAACEIDA aQkQtqedeoRDAAIQgICKAGGrIk0/EIAABCBwWgKE7WmnHuEQgAAEIKAiQNiqSNMPBCAAAQic lgBhe9qpRzgExAT4jT5i4HR3JAKE7ZFmg7FAwJkAYes8u2gLECBssQgEICAg0P49ollxvQu6 pAsIHIgAYXugyWAoELAmwMrWenoRN02AsMUhEICAhgBhq+FML4ckQNgecloYFAQMCRC2hpOK pLkECNu5pDgOAhBYR4CwXcePdydNgLBNevoYPAQSIlCFLRdHJTRjDDUiAcI2IkyaggAEpgjc i2t2KS6XS5HfIAWBcxEgbM8136iFAAQgAIEdCBC2O0CnSwhAAAIQOBcBwvZc841aCEAAAhDY gQBhuwN0uoQABCAAgXMR+A+0PDUlRlqsmwAAAABJRU5ErkJggg==</item> <item item-id="365">iVBORw0KGgoAAAANSUhEUgAAAL4AAAA8CAIAAABXbpcZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABQzSURBVHhe7V15QE3p+y+JLNnXjK+l RMgyxvhihi8SxjJZGktI37Hvyk5pQRRKsqephKyVkpBQ2ijSilBaaN9X1Z3f5zrN6Xa63Xvu Oedm5ve956/u8Wzv8z7nfZ/3eZ/nIfen7JFpgJEG5BhhyZBkGvhTZjoyI2CoAWmZzpcvXxhK JA6Nx+NVVFSIg5L9u9Q1wL3pfPr0ae/evVFRUVKSvaqq6syZM5cuXYINSYmFjCwdDXBsOmFh YTo6Ojk5OXR4s4G5evXq2rVrKysr2RCR4bLRAJemExcXN2HChPz8fDYC0cd1dXVdtWqVbO2h rzFuITkznfLy8jFjxrx7945b+URT27Bhg4uLS2NylPEiNcCZ6Rw+fPjo0aONrNmioiJNTc28 vLxG5itjBw1wYzqlpaWDBg0qKSlpfJ3CXq2srBqfr4wjN6YDp3XLli3fRJu5ublDhgyReTyN r3y6poO5yc3NCQ0JTvqYXF/KRYsWPXnyhI70oBMTE/P48eOCggI68HRgfvnllzdv3tCBFAuD iFFQUBDOiQgBiAWWKsDnz58fPnz48eNHqXJhQ5yu6byJjzPavEFOTu5VrJBJUlVVhZssVg5M zLx581p9fdq2bXv37l0ChcervnHNbczoUUOHDjXff/Bjcgpe+j/wHTZ06E8/j7M9bldcWiaC +JEjR86fPy+Wu1iAhIQENTU1CKaoqAhJEKAiUDLSP1kftsSbf48e43LRtbwC0U6eyZ4deDNn rq7HbW+xlCUFsLe3b9myZbt27Zo0abJr1y5yTQ0Jfqq3cD74TtaesmLFit90dfWX/Tfi5StJ 6XMCT9d0wOz0CZueffrV3xoyMjJ++OEHOtIcOnTI29u7uroa37Snp2ffvn3h55KImhr9Bg0d QdL39rgxUWtK2ud0sZTxdSLGIxZMNADC35gMWA/AINWePXvmz59Porx/E4vPZpeJeY2tV1ev Xm6wx8Ss4gv3gaVHjx4dOHCAcBwR7xgxYsSDBw9ISY4fPQxJYt9++PrJ8Sz27VFq0SoyOo7l 8BmgS2A6s36ZvGrdpvo8goOD9fT06PCmLL+nTp26c+cOgViYl62o0MTE/CBfI9XVtketTC0O VtLbNVJSUiZPnkxHABEwCEdRTmqzZ88mQ45urk6YsIhXsaCQl5u9csXyO76108mSNQWdoqUP Hz4gBkHCLPptTi/V/mQgPSUxAYJt22XMrQx0qNE1nbKSolYtmnv63K9P9ObNmzt27KDDjALz /v3706dPEy/dr12GCp6/jM7Oylz+XwPfB/70CWKCBw8eTB+eJuSxY8fIPUtfb/53vVWrebxn IUFLluonp6bRJMIJGKneqsqKTu3bCH7AoU8fQW8HrY5xwkgiIqJMJz83x9zM1Mra2shwy5ZN G5Vati4uFeLQ4DrJzMyMDtesrCwcxDZu3Ghubm5qagrf9uzZswTiCoMlKj37BD55hIlJ/SR+ k6KwU1dXpyOAaJjnz5/r6+vDt8Bwzp07h5sy7MVAqa6q7NapPSbM5qiV8T7zL1K+/cBuDl/H wMAAKsK+GRkZaWFhQUgeGsg3FHevGh8RO7/OjGlduvdIz5T6zU991TVoOvExUfBgYuL5TjHc 2O+6dZo6Q0eo6jH9cFTFzhzWmF69erm7uxOQ2CAWLFhw48YNPv3q6p7dO/dT76/YtGlYRKRY UvUB2JvO5cuX4XslJ9ecH0NDQ+FkEL5/eGggJmzgwIF91PqXlUv30h4u1/Tp01evXg2P8Kvm eSYmJjt37iSGbLJ7OyRxdHaNiIjw9HCfqj1p/ESt128bNYJPKl+46WRlfO7Zo7u3rx8B96W8 TLmlkt0p4acYOqYDFYwePXrx4sWCsw5f5/Xr13gTFREGjZx3dBmmOXDo9yMZ+J4sTQf+RIsW La5fvy4o3ubNm4mf5ia7FZo2Cwh40kyx6S7jGk+ZgX3TQcECo6KighArCQzXpyZMz+ONHD54 3ETtZ2FhV6+63bh5M+Hdezo0pQQj3HSWL1s8beZskuW1yy5ycvLvklKFCkHHdAICAmAcT58+ FaSA74k4Tx3ab9pEoWlGdm54aJBCkyYWltaSjpal6RgZGXXt2lXwHh5fP3ZVQozRI4ePHa+F P0z37myq2CwiMlpS8WjCg2mHDh2wYwrCI9waHc3nmJGWLC8vZ21rT5OatMGEmE5udkYzRQW3 G54E7+KiAnXVPgM0hzeUHUPHdPAxNW/eXDD/C4kZ5AXC+LGjRo39D8Fu2+b1zZRaxMS/lWjk LE0HW/OcOXMoE4ZNAW+y09MU5OUPWtng7/Ky0kED1IeNGCUld+fFixf4wMhwFyEPGddxvnCW fyx/8y1XGkEVCTGdJw/vQcQXUfxQAbyQ3Tt3jBg+xGjHnobmko7pYPz4rAUpIB0sOzsbb/Ky M3AsJ1eakqLCvr16jho7vrKKv9nTfFiajoaGxsqVK0lexcXFW7duJX5ecnaANqLiakw5JPBR E3k5i0PifTuakguCBQbynSp46+RLhMG8vLyIn/Pn/tpbTePvk98mxHRiI8MxgH0Wlikpydu2 Gj4PD1dq1vTEydPPG3Bg6ZiOn5+fgoICAjB8c+TxcILw8PAgNOJw5gTYhTx/SerrgNleIv5G PwuQpekgcDJq1Chi90QsDl4qcSzHm5nTtLr26C04YT8O12zWXCkwOIyBcYhGgcl27NjRwcGB AHv27Bm55GAraN1SyWDFGs6ZMiYoxHSgr93bjbp06TJLZ877xKSSonw11b7nHJ0b4kHHdIB7 /PjxiRMn7tu3b/v27ffu3cObyi8VV92uzJmtM2nSpL0mpjFx8XgZ+SJ88aKFeKOlpXXw0OHE JFqXOCxNB+HjJUuWLFy4EOfhbdu2Eees1JSP9nbHIYa29pSz5x3y8vmXbtfcLk3R1oZ4M2f9 +oeTcynXBy64g+PGjYMMxsbGtra2xFUa7h8MN28C0wWL9Lx9ak7mjKecK0S6IUER/GiaDlcS C6XD0nSkKtv/V+Iy02mMmcXh/5skM0l1bDLTkap6a4hjKwwPD28MTqx5IBRJXOcRj4jkE5np sFY2DQL/CNNBWGvdunVKSko4oxCPsrKyiMVSZjo0Zp41yDc0HRxKkFYg9Hn1qk6iD8JsV65c QcoewtmIMKGSTnSRQq3p4GAl6UOoVISbLClBOvB03GT4FrhbFfqQlaN0eDGAIcXDMY0UANdS yC8gf+IQToIxYCEWRVBFuMGFJEKfsrLaBDrsTenp/FtnHIQp4eyGPpwa00lLS0NeOiJj9B+U IhCleg2ZDmLHI0eOpE+QDiR5EUgZD+WEtWbNmlkNPEjcJHARf6PDUSKY+/drk1Jw6U2K0KNH j/Hjx5M/BYN+OPxLxEIs8O+//854lYSjg1teIvwm9pFtWGJVxAHAN9ywLly4sLuBB2szZWxI R0TxbkMD/vDubUBgEPmvMtPhwDLEkviGpoPFFXul0CczM5MiOZKEHB0d8RKlB/UH9cD3jvWx 4zLTETvdXAJ8Q9ORaBj9+/efOnUqsk0Et1SSQnFxUblAjxHZqiORbhkC79+/n6tyH4YS0EOb MWMGLtGcnJzqgwcHPmrVWrmopNazlpkOPaX+z0NFhodOnjZTUA3iTSc2OsrW1gY1AA2lONG8 w0LmG/JQccuIzN/6XVRQxJmaKjyVjM6ssb/DQv4rEr6WLVvm7OxMJHc2/oOgHDInly5dCr8W Z97GF0AER0tzk2N2NTUIBJh400EUATkrzZRaFhbXZj0K8qBjOjioYzFEzQ3S2pFpOmDAgMLC QkEi+FdKQo9EimNpOvHx8cj2QjEXTvU9e/ZEUFUi7pwAQ89IwNXV1TU0NMQlOc7zZByBE/os ifw8emT8uyTJVh1Ab16/Smtq7WKFUKOkpoMsSVSjkVjIKLCzsxMk4u/vj345jIfH0nQQSCUj 7kjAGDt2bGJiImNhmCEiESUkJITEPXnyJM3QHDN2EmHlZqX319CkVG/SWnXU+/7L5kTNYhUW HLhuY53OBHRWHYqgCOkinUoi6UUDszQdCnFE9hCS51A8BqQwT2yCeww4ikC56uq0yYhaateg 6ZSWFN/1ueP30P9tXBRuwt68/1hRXu7k6NCubZvjJ88WFNRuNzRNB7rApQnKPYkPGgsPKWth YYGnh8erqGjsa0RGsKQPe9NBVB7XNzAa9FGA14UiLFKGxA/vUfSTkZmFG+W4eH4Jh/QelIgg qZQ4jgmqqKy09I63V+iz57jKfhERLlH2LRtp09JSq6t5S/UWJnyg5twJzxK84uq8avXa6JhY z1vX1fv168dfrP5EfZ3uXJ0WrdqcOXs2KbnWpaVjOrGxsegVBzcZSZOojrOxsSHL0rw8bk2f MevFy8jLF51mzpj+H61pDIbK0nRQhYiLAtgHiqCRx4hOYcQBtaqyctd2o02G23ARCIEHD+hn Y19rUgzkFIGSlJSEmArSFFECBgFQj0GqKPCxv/aUqUEhoT5ennPnzB4weBi3rEVQ27plEzo0 PA6oU8pCwAsxnYPmJjNn61YRWeU8Xuf2rTdtrSkh05kxZdac3yicxJoOlhlEC9CfgEREqjZu dPHz1vUrvfuqZufk8VlVVTSVl7M6doKBXtiYzsWLF+GhE4WexLN+/Xq0QOBvGfp6C5cYEInJ Xu7XiNWXgXhiUZDhj/pGwaUO3xhKUYEY8OhBt+4qf32rvO+6djTcvlsswUYAoJqOz233jp27 Zn2dSzyJCfHQ133/APxdWlyAsnNHl8uSmg7q/uF4CmK9ffsWZ+DPaclt27S+dqsm4z8++iV4 xbxmUsvI2HSwPaEXCaUvGKrNET5wc/2jTbsOpCoO7d+nNkCTfqa9RJOHwx36swjmVeEqG4t0 UUHedypd7U6dI6jlZH5CPcaDR0LWAInYcQJcx3RQwzxQXRW1ECTpDWtWtG7bobyC3wrE2/06 iiAzc/Lrmw6W2YakwRygFoJynsLc4AJlh9HGPv00sJUSuLu2bRbs4SDR8BibDiwY9kppLoGw CmqlB6j1IX1DaGZQf7WNhvyVkvMHHh6a+oCpIGXsWTiT2lhbtu3QmUyeR4cU/nRIoTMLg0HV MZ0Xz4Khx7CImm7ZiD136dxJZ95Cgu5KgyXjJ02pzwMbFrH7CH3gPYAm2niR/4rYIOo+8VOj X5/lq9cT71OSPrRRbrV6A7WrXE5mOtoQVVSK6rEFgvhkGQweKGgi0b59e0FcCHzr1q03sa8g ttfdmk4oLo7n8NPXr3YUBIq3582de/YxY01i4QYbxN3c3Mg3WH6I9JKJ40ZP/3Ue8T4vJ0ul WxedeQso7L6Ul06erJWVS/2kWUolFr2O6Xi5X8cYor9uGYnv3hqbmPb+rvtZB6eU1DR8dipd O8JJfPnyJaWKDLuyiP46cJBBE/e3pCiwG+KQ1aW98iZD/pGvqLDAzHSfUjPF239NFQmMLhM4 5YneJrD9aWtrix2qUAA0QerUqRMZsUCgEo4OoslBTx5CbP+AYGC9jHimv0SvpXK7snLq/16A hl+RUWzriOHoyMvLC1a84xhBBM+GaKj/tmgp/qgoL7M8eKBzx3bnHKnNfiH8Qz+/qkaPgNcx ndSPH1ooNR8/YRIm0mjbjuSvbX927THJyctP/fr3IaujtzxuU+YA6v7xxx8bmjkMDNmNCPDj S0LYDQdOHx8fAnieznT4VZi8DRs23bx2pX4TltSUZNeLLiFhtdWQQrmgGhCNV5iZDtLnUOZN NNzAXQQaexHFe0X5ue3bKI8eO87YeK+d/ek1K5bNmK1LYRER/vzUyZPZXHzuuJ9BR0Q01sBj bW1NRkfXr17esrUyzlpr1qz1u39XTr5Jyqc6mRKZGemoZfPzpy6HzLQhERbVTQ4JCty+fYe3 jy+mHA0ucERMTuFfpqDczsLc9O494a2s0N1OMFuRIgE2FPg6WIEtLS0xPeS/ZmZ8NjHe63Dh D5Rwb1m/esr0XymIfLOb8HNgiJhaApgjm8bb2C+Q0YczOfpECaZ+hgY/xXaGcynE6NtT5dT5 P6jfTF5WN5WeVX/5ahLpnQIMdwftELHv445dMFemsCDfwtzshP2p0rLywwfMho4YVV9FSxfq XnevOWqwkUFSXPHRZDoUERoWzK2kg1IHhsfTUOuNSCMFsaKspHfvPmLDXz/99BPZF0di1jQQ XsdEotFHUkpNZiqJ4evtscRgBQ0C3IBM+PnfO42pLbDgzqur9c0rrE125oYZDSrcmI6vry+b qHlCfE3AmiKw/7078/X0RY8CN8woF6cxUuYgRywtNDS/r4+/ce3Ky9fcmdOVBDMnK12xqcLj IGqhe1zUi3HCzi6S0GYIy43pwI9BNz+ic4VED/ZBL6/bWhPGwZFyvnSF4utt3bzeyfWqaILY aBCelogpfeDPn9Iuujh369JJVV3jWXidGxLsYhrqatl5nHV/blAqHu/eXZ+5OrOgIhu7k9i5 BCGPHtp/6Igt/RFxCMmN6UAg5LQyaNhO1Br+9RQI3s3i78Ea6ulZuSJGi+AQ2raJcLNYagrX dqRwlGI2XO2NGTeRJX066NCDgIryyTAYgTtp/NhXsZL1IqLDlA4MZ6aDhQcnZNy/0OFKByYx IW7CZFH3WdApGniz8rHoyNEAjO0RS1t7qnPGgh4T1ILc7GHfj6TkQjAhxAiHM9MBd6Qm4RKR vceKBrMhYeFmJnufvxDVhxynPxzsGY2aFZKjw/ms7Bz9pUtL6u4drIhKiPw6NvreA3/740fv +T2SEJUzcC5NB0LBbubOnYsYHRsBE98nIDUMrX0aIoLvDLfK6P3+TT44f78HXl7exSXCcybZ DJw+bvrnNGQUSTsDRLQ8HJsOmMHzwBUVs7QbOrpDAi96FuE/AaEDLIORnga4Nx3pySqj/LfS gMx0/lbT8U8SRmY6/6TZ+lvJ+n+oous/tosXlAAAAABJRU5ErkJggg==</item> <item item-id="366">iVBORw0KGgoAAAANSUhEUgAAAMAAAAA+CAYAAAB9RBRuAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABXmSURBVHhe7V0HWFTH9reLvZdo/MeC KInG5PmMT030qVgSS7DFqLG92GPvFRULduzGEiP2FtGAilGxEAQVFEHADooo0hVQsf3+cwZ3 2XK33N17d5Hs+b79Pr3cO3Pm3Dl3Tpvf5IGNbBL4B0sgzz947Lah2yQAmwLYJsE/WgI2BfhH v37b4K2mAK9evbKK9N+9e4fMzEyr9G3rNOdJwOIK8OjRI8ycOROhoaFWkcabN2/w66+/Yteu XSBlsNE/WwIWVYCLFy/C2dkZSUlJVpf6vn37MGLECLx+/drqvNgYsJ4ELKYAERERaNmyJVJT U603Wo2ed+7ciaFDh9pWghzzRizPiEUU4OXLl2jatCnu3Llj+REa6HHUqFHYvn17juPLxpBl JGARBVi8eDGWL19umRGJ7CUtLQ3169dHSkqKyCdtt+cGCciuAM+fP8dnn32GjIyMHCsvUs4l S5bkWP5sjMknAdkVgJzNcePGyTcCCVpOTk7G559/bvMFJJDlh9aEyQpAIcTk5CQEBlxA9P0H Osfdu3dvnDt3TrRcqP3r16/j7NmzePr0qejnxT7w3Xff4ebNm2IfE3U/5R/8/f1B0TAKx34o 9PjxY5w+fRr379//UFg2mk+TFeBmZAQmjB2FPHny4Fq47olTq1YtkBMshmiidO/eHcWKFeO/ UqVK4fjx48om3r17i4P796Jpk8Zo0KABXOcvxP0HMfzvvid98AW79vU3zbFy1WqkP39hVNfL li3D5s2bjbrXlJtu374Ne3t7PpaCBQtyviknoqAncY+wdLEbv/6fJk2xfcdOvMykZOE7uMyY wq937dYDh//0NqV7k59Zu3YtihYtitKlSyNfvnyYNm2a2koZcOFv9OnVk/PXpm07DB48GD/0 6IH+A/6H4KvXTO7XUg+arADE4IY17qhWo7ZO0+HJkyf497//LXosixYtgre3N96+fcu/lEeO HEHNmjVBDqsq1Xesjc8aNFTr3/vwQbRyaofYx3Gi+qUvHOUF5CDKetPEICUgonHMmDEDPXv2 VOvu7s1w/kGZ5uKarexMBsMGDcQMl7nIfGXZnMWZM2ewYMECpf9GoeyGDRvi5MmTanyvWr6Y 8x1+6x6/Tqv3vNkzYFekGELCIuQQqWRtmqUAnb9rg6G/jNHJzIULF9CnTx/RzAottevXr8fR o0eVbT1LSUTB/Png4rowS+hsoqxcvgRz5i3EaxPMi5iYGLRp00Y0r8Y8QLkPoShTly5d1BJx e3du4xMp+Fo4bzYlORFDBg/CUR/1CWdMn1LcI/Qe7t27Bwodq1LvH7rik1p12MTPvhoTdZuP ZdK0WVKwIlsbJivAi4w0FCtSGEeO/aWTuT/++ANTpkyRhPm7d+9iw4YNyrY89+/mAr58NQyJ CfEY9L+B8Dnpa3JflBGuV6+eyc+b8uCKFSvUzKD+fXri4+q18JbNpEsB/ujbrz8ePIw1pWlZ n1F9p29eZ6J8mZJaH8LAv8/w97NwyQpZeTG3caMVIJU5vK5z52DJ0qWYMH4cxo0ZDbuixZmN rdu+p3qbuXPniuYxISGBR45Gjx4NV1dXzJkzhzuoGzduVLY1eGBfVKlWA37nzvCJ8vCROJNH iCkHBwfRvBr7wOXLl9G/f39uQ5NMNm3axGuSyEwkevvmNSqXL8MnkjtbyWbNdsUrK5dpkPlJ PsDAgQP5OyCzLSQkBPPmzVMOO9Ava6J7emX7aG/fvoFzx29R8aOqiIu3ftmLvndklAJEXg/l tvz1yCxnl5zQjyuXR/uOznrfP01Yci7FEH3pP/nkE3h6eiofIxPixx9/xMGDB7P6Z+ZOtY8q oLZDHRQsUAAXg0PEdKHzXrkUYPfu3dyHefAgO1oWGBjI7WlFgCAo0I9PpE8//RQ17OvgxUvr VqyS39KhQwcMGzaM+2JZ75055C4umDp1qlKGLtMnc763euxEcHAwjhz2RPu2rdGilRNu3Mp5 mX/Nl29QARKePEa1qh/B2+eU8tlXL1+gRFE7rF6vP2oiVgFIwE2aNMFPP/2kNUnJB7hx4wa/ Hhp8kQt989bt+KL+p2jwr0aSOIhyKADZzEWKFMGBAwe0xjR27FjlNVeX6chfoBDOnz+HQgUL YNqsbEdYEu0W2Qh95atUqQJKZKoS+QXKrD57X42+rIfmrdriEgvt7tu3FweZ2Xv7zl2RvVnv doMKMGjAT/i2Uxc1Dvfv3s4mYF7ciX4o6Qpw/vx5PrH//vtvrXbpy6MoX140fw7y5S+AJ4nJ CAr0R34WnpvnttRsKcqhABMmTEClSpW0qk7pC0vmnYKaNPoSzVo48f/OmTkVBQoWQnBImNlj MqUB4q1s2bLcXNMkSmyGhWXx9ST2AfLmzYOlK9ea0k2OeEavAiQnPmFfo/zYe/CIktn0tKdw qFUDdet/ySLU+knsCkBfncKFC0NzswyVT6uWKrRo1hiNm/1X2fmksSNRyK4IM9FumSVUORSA TMeuXbsKTiQyGYgS42KRP29e5jC68/+/fMHKR+o64IuGja3iB1y5coV/iFRzL4oBqOYBPH7b mBX+vPnhfPE1X4ReBTh3+gQf4JXQrFgu2d7Tp05Bwy8/x4QpMwxONrEKQMKlr6Um0QaaxMRE fjmFKSWFP1W/+Blpz1Dzk2pMKVqwEGiWvWoKyaEAjo6OGDJkiBo76enpmDhxovLaLo8tXM6h EdkKHMCcy3zs6zpvkTgfypRxaz7j55flj5DjrkqUm/Hy8lJe6tnte1S3d1QLf0rRvyXb0KsA 4SFBXBCz57khJuYBJk0cj8tBQbArVABr1m3AZQPOp1gFOHXqFPLnz8/6ysrqkslDUYjDhw8r ZbLl1zWcp4DLV9XktGDuTGUSydDKpEvAcigAxcwbN26sNN+oKJAcS0UWmMbY6VsnVKpaXWsi ffVlfRQqbAe/CxctOSdAClquXDls2bJF2e+lS5fUssBkHRRnfuDAwcMtypvUnelVAHo50ydP QMWKFdHZuSvuRkUjIy0V9rVqYtNWD4O8iFUAanDVqlVo1aoVZs+ejcmTJ+PEiRO8n9evMrFv 7x507eKM1q1bY6bLHFyPiOR/C7kShJ969+LXnZycsHDRYkRFi69bkUMBKOvbt29f9OrVi4cS J02apIwGPYy5j7WrV3Ge27Iygo2btyAlNavuaf/eXWjXti0fU6fO3+P3bR54bsHIEPlhzZs3 5/zOmjULK1euVNYvUfnD+LFjOG8/9u4D72PZIVCDkyKH3WDQCTaHX1MUwJz+zH1WDgUwlyfb 8/JKwKYAKvLNjQpAYdicvBdD3ultuHWbAuRyBSDTK4j5bbmZKFGnqLeimiv6GVtublMAmwJ8 sLpB9Vu//PIL7OzseABE8StRooTRq55NAWwKYHUFoGAHVeLq+127pr23gHJDe/bs4RuuKGtN +QvCmxIDvqClABT5MfenkKgxTrC5fYl9Xt/bFvIByIamQjx9P1WkObH8SHG/6pio3kiVV6rn oapc1WsU5lQlKXgQ04bmO6CCQOJb3+/FC/WNTWTmxMVlFUBS5FAoa22MZqspQGxsLN/ATskb U3+EsKAAvjKkAJTxbdSokcl9ieVRtYhLSDhCCjB8+HB07txZ74+2DCqIkkhi+TLn/r/+Ui9H p4pNVX6rVq2KFi1aqF3TTHBRGNYcHsQ8+/PPPxszL42+h+x/KiBU5I6MfvD9jTYTyGYCiZ0z kt//22+/Yfr06Xp/tBILEe1OI7RBQ3Tvzi2c9/PXus2mADYFMDR3ZP87rZpkpun7xcfHC/JB exW2bt3K/0YgCrropM9RLF2xyqYA+t5mbswD5PYwaJ06ddC+fXtQabmmaaf6rtPT0xjIgPYe C9sKkMtXgPnz58sO9yL7EqGng44dO/K6pW3btum86wIrLCxWvATSMrQRQmwKkMsVwJqTM6f0 HRIUiDbfdhJkR7QChIeFssIod45WYGjDhqEokBBHtAOJtlFSARntndUFpU5obg8f6t+QI/YF yGUC0TZP2hgzYMAAeHh4KLcYiuXPUvdTgol24PXr1487phQd/JDJzdUFK1ZnAyqojkW0AlC8 l+rXC9kVxbN09e1ymkISqwAUFqUljaBUaFM8bY+sW7cunj17piV/uk9o74A5L0oOBYiMjOT7 qQlziEKq1apV49nLnEr0fmlLag8GbjV+/Hhe8UmhVNVQb07lXRdf3zRphMg70dKsANTK2JFD 4dRefUmhLJy5CkDb7Qh8SZWoFHf16tVabfv6+oLw/aUkORSAspWqxWhUHt2sWTNERUVJybpk bVH5eUBAgFp769atMznRJBljJjaUnBCHOo71dYK3mbQCONT8P7ivyV5SLl7wwy+jtQFwxa4A QmOkLCttILEEyaEAQnxT8opS+B8K0aogdQLLUmPfx8DGxkzQjU1llAI8z0jH8WNHceq0L25F hPKio5t37yOTYX5u27oFpUuVxKp1GxmIrbqpYooCkLCp7oNQ4BRfSVoFVOnZs6cMfuMwroWG 8f3Dir215gpVLgWgND7Vq9DEJ6Bf8l0IE0iVou7d5bAvT+ITWGVjCiIisxAwrEWEwEFbIBWA wZrv4AXz1Y56eyHw0mVeeXklOMis7ahSjzM29iHztd6hX59euH1P9+YogzvC9uz0wNBhIxB2 PRxHDh2AQ+3aqM2XFHBQqh7dnFGkWEn8yjCAoh+oO6ViFSA8PJwfo0ROMG3BI/Aod3d3NSAm r8OH0KFjZ1y5GoLdO7ahU8cO+K/Tt5LITw4FIHAwKkWgyU1QkbTTjU6kUYTt3jCHcxrbdTdm /CRexEXAAPXq1ob7WnUFkWSARjQSHR3N4+q0e42wi4hXQq9QBcPyO+uLtu3awz8gEMe8jqBb 1y6oW+8LI1q33C0Tx43hAMNnz2sjjKhyoVcBFjLvuVOXHkzD3280Z7O+QpniGDMxGxjJuWM7 dO76g+DIxCgAfe0pnktAuKpEm7CpWpDo0IE9qF6zFhKTUvj/373JRAG2cXzJijWSSFZqBdix Ywd31BXobwomR44cyeHGuWnRvw969R2o3A/s5blfucJKMigRjRDwAIGSaa5O9DEiVDui82dO ovJHVVQ+du/wcaVyGD95uoiecs6tOhXg2J+eKFehEhLeTzZiOep2JH85f/me5yN4nv6U44Nu 3b7bbAUgoFhyDjXp1q1bPHT4mGHQlCpZHPsPZaMSRIZd5fxcvyENApmUCkCmDkGKC508Q5ig FN7du/N3lCxdVk3Gi+bPhn1dtsJaYY5QpIog3DU3k1DlJa3KaU9T8HGVSgwQbZOSu6T4Rxy9 4uQZ/V9aKwzHqC4FFYCwHT91qMXRIFRp1PDBKF6qLEspZ8F0e3se4Ghm8UmpOhWAllJDRJOB 0CCEoj00WagOZMqE0ahR25HbdQqaNmmsFiqxob70/V1KBSClJeUUQlim2DrBS9a1r6HmoJHc P6tjj9Hjs1Y8SxL5UnR2AfGmSWQGUXTOfakbSpWtoLY5n6DR+ZywMHS7VLIRVIArly7wl3cx OPswa0onV6xQHs7deyn7HsIAalu0bqeTFzKBFOaLPobJNqb+6DQYVaKkGCHCETnWroFBw0Yq /xwTfQ8lSxTDsFHCxy8lxcfxAxsyXxt3Egv1RV8/qYgQlMuUKaPVHI310KFDuBl+jY/Z63g2 9Pn2rZv4NZ9T6nJQNOJ95A9MnTFbKhbV2qFqS+p77969atdpNVCUkbdq3gQdvu+u/HtKUgKq VK7I5sSPgjy9evmcbXJxQkKy8AdSloGIbFRQAbzYl52EEfbetIhipaSzGAxJ9Y8/wsYt2xDD ILvpa1WF2X7krF29elUQHIlsR2POByDnl/qjqkBVosmviARVLFOCOYpZ4aw0FgWaO2c2wycq iD9VJpDqs4S2TFErY00JMrXaMhgSqYgOlihfvrxa/JkSemT/Uw27/7nTfMy+5y/wLq8GMzu7 bx8ULVGaAePSyTDaRKfIhLDIlxxE9n9ehk6niWFKQQhFjudzRwf80Lsf7z6T4cO6LVyACuVK M4gc4WNmycc5zbCe3rwH15WDb3PbFFSAh/cZoKtdYbRo2ZpPtAmTpuDB+wMPps1wQVJKKh6+ //+iJctx6PCfgnzQC//qq68M8kiCou1wVCpAXxxKHFHY7dixY8pnuzt34D4JTaxRo8bgj/17 dMKzP2QgXjt3bEfARXVkM32MEPgWwbFLRbS7ifA1FYjWVA5Bp8QoALHSUpNRpmQJNGnWnI11 Jlav3YDhgwegIws6CFFw0GWsZwmpRBm/plR+QmelEWI1/ZYyKHzVZOPIYYNQlBWVubJI1fDh I3Dqr+PIkzcfYh5plyrHP4njOE6nfIVXM6nkbG47Op3gAH8/Zr5MYaBHPvwrRojQFA57EJNV F0JAVfNc5+D4Cf2nl9DZUZrb2YSYJhOEfABabt3c3EATRpXiGUq1C5soW377neNljhs5DO06 fC84fq5QLb+BX4DxaAikcFIfmE1mBe3QotAnHe6huRUxkAFMkalEoTriuWa1Kli/+Xfhj0lK AipXqca+psauaeKnBvkBdE4ama1URapZX//saSp753OxZu16PH/xEosXzEUDhl8qRDSefr16 4IBndtBCPEfyP2FUIswcNiiLq7ltz5z2+LNMuI721XnyTYgyX2SgevUaohIzX3/9tRp+v9k8 imzgxvUQjrgdHZO9vVK1CR/vw+g7cLDIVuW9veU3/8HUWcIHoJCT72BfEynP1Pcfy8uR+NZl VwAfHx/J0+i3I7Oz0UJD9j1xFD379DdaGlTtSPid1qRlbvPgWP9fOlkYPWIIdu/3tCaLan0n sRqbggXy46y/MG5pROgVNNcTIMkpA5FdAcimp7O3FOjO5gyczC4vrz/h1LI5dyA9du0RdLAm Mrj0bTv3Gd0VmSiUdbYGPX4Uix3bPVC5YnnUcnDEpaAsyHRVInPC0cEeiSnyn5dsUAaMlxPH j6Gbc2f+DtxXr+PmkCYtXzQfi5atNNictW+QXQFogLRnU4rT4hUIYIQClvV7qlXlR5OlHotW xCUkGyVbyjHQUUXG+ClGNSjyJqqnyh5PqiCgE9VfNW3eSmTL8txO8lXll/6tmptR9Nq6RTN2 frR55zXIMwL1Vi2iALQKUIiRakvkpqjbEWjZxrjaIHqZdCC35D6KxINcucwNK9cK+zsSdyVJ c0/Z8a5fsGOrFCf6SNKoTI1YRAGId9pQQUVhqgfFSTkmOlY04GIQ5rrMxOUrxp1QTlEtCqvm VNq6ZTMSEpPQn+3MyhAwM3Ia3zfCw3CCHVW7dtVynDh1JqexJ8iPxRSAeqfJ361bN1DSSWqK unubHdK2j59hYIj4SeYslk0n0ufkr5TvqZPM5/FGeob+nXeGxmupv8c9juX7HKxdyi1mvBZV AGKMbG2q75Gqhl/MYOle2u9Khz34+2uDJIlty3b/hy8BiyvAhy8y2whykwRsCpCb3qZtLKIl YFMA0SKzPZCbJGBTgNz0Nm1jES2B/weE0SHyLmOSyQAAAABJRU5ErkJggg==</item> <item item-id="367">iVBORw0KGgoAAAANSUhEUgAAAKsAAAA2CAIAAAA3cv7TAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAyHSURBVHhe7Vx5XM3bFk9mMhO63qOR dG9StxIa1CUf0zX0cR8ul3u9NBqLaKS4odtAiYrLu89D82CqJCIklTS7UdJ4inOap3O6b2V3 Tz91zu+3+2k4dNZfv7Nba+211/7+1l577f1L5C8h9W8PiPTv4QtH/5cQAf0dBEIECBHQ3z3Q 38cvjAFCBPR3D/T38QtjgBABfeQBJpOJ2XNVJcvtt5NW1nb5r3O3bvnR0MQcU1DIhuOBPogB qampBgYGK1aswLEP8TjYHHA86vzH5f89eXjvu6VdEMTvot9y9jYCiouLb926NX369OXLl+M7 fd63Sg5Ozi0tLTZWFqfP+uELCjkpPdDbCEAGQQDARwCj5O2EiZMYFe9bWjjycjKFpeWUoxIy 4HugbxCwcuVKfAT88bvvbgsrGFL682cLtPWSU1LwhyfkpPTAZ4CAoICrL9KzYCQvUp7t2WdZ W1dPOSochjVr1sz8mBISEnAEPzsebW1t4kDl5ORevXrFHcVngIAe8riKikplZWUPKRdktRCA s7Ja3yhEQgQI8mTh2lZUWJj+MRUVl/ATFnQEeHt7b+0KHThwANdPH/PhxIDwkMCNmzbXNzTS 66LbpRwdbA87/dpZ7Q8Ga44e+3XPTlM5+a8vXLiw/eefvH0vfq4ISElJGTFihIiIiKio6OHD h0/zIRcXlx07dowaNWrSpEn0HI2DgMO2B8VGj2G8Y9HrotuldBaoa2jqdlBbW82Ke/gYGg9a 7jloexgeniclFJYwBB0B+vr6/Ez09/cfMGAAgEBXV7epqYnEjxkZGWPGjGlubqbhaxwEQAWC zebQUN5DIpxWauGjvGWOwsz7j55Sdi0Qq8CyZcsWLlxIYqutrS0gAMjU1JR8SIaGhgwGX7yT yOIggNKbgsPwNj937ATxpmY2pUmUCGi5ERG2QEMd9gwW+61y/swFjUlPnyjMlp+rrOJ8/ETF eyZlHyQMtbW1N2/eXL9+/dq1ayMiIuAnT2aAOuzWEAjOnTtHojAqKqqwsJCGSfwQMGfOHBj7 4sWLoXQND0BqamrwPH/+fHg+efIkZl/Z2dnADNswpMTS0jIpKQkaT5w4gVqA9u/fn5ycTKLw +fPnwDZ79uxVq1ZB1ERSenp64BwlJSV4jouLQ+I+Z04Z/OtHHNsoEdCqRE9rvsQ/JJv/DoBx sdGaWjr5BXQcjWMTT56qqipFRUVAwJAhQ+7fv99VPQ0NDeQi/BAwfvz4e/fugWxBQQGC4OrV q+FnY2Pj9u3bu5p4ysrKIiVEe6SlpVEj+RoHnT558gQ0IIhfunQJSXl4eMBPiHzKysq3b99G w1y9Yun5S5dxvESNgObGhnGjRxqb7wF1sBD6eHtaHbJpJF2PcTqmwfP69euJEyfCmCHdy8/P x9dQxWLu2r2XHgL27duHBDsgAFqqq6sdHR3xzQBOeXl5sH/YsGHgSa4gBAZohISX2MhTLSAA siL0pw4IgJa7d+8iBNTVVI0WG1lUWoFjGzUCHsZGg303Iu+CH02MdgSFRuDo7SEeeB0HDx4M 9kBwhgnA6aWinKGno0l5gMQvBhQVFfFDALSXlpbi2MDlQQiAySZKIQSIiYlRqoIz9JqaGn4I gBS4vLy8pLjY0d5GYto/78U94J8ntndFjQDr/XtHjhr7+FH8xo2bXuV14c2jHA89BqgQoOi3 bt06yA/IlcRE31ZVmSsyQPTfO4xS09ID/K8u+U53/YbNEM08XE9MGD/+z7wCpIEyE+wcA2jY /4kIIPbYOQbQsAdEKBHQoqwoLyklPWzokPCbUZR9mJmZwZ6NJ2VmZlKK4zBAqDQxMUEgcHBw oBQxN9qu9O08LpuKkoKLu+cFP58jDnZjxk1gVbXlnr2JgEGDBhkRaOzYsZgxoA8QUPw2D3bi zi7uetoLp0vJVNXwztW5lkE+AnkKT4LUicsGs0hJJFMLGZOOjg54bdq0aeQpXguHM2PaVHsn Z6SNWVE2aKCoj+/5ew/iwQDILtuRQXUu0I0xAPIAKMVzacaMGYKLgN99z4Bx6dm5uTmZw4cN NdttQfnO4TDY29vPIqXjx4+T63n06NHw4cOfPqWoeKQmJYD9KWltJx8BV/4jPuUrH78LnZXT jgEAR/z9Zy+sAjXV1QxGF+5MUKwC69eunCEzC+WtJ44dERUd+OAxmdNhs27Dh+AdwgEHDg+L xYI98eXL1LsdJwfrD/a3Jd7bNm+Qkp1Vx6uwTw8BLCbT2PAX450fbTSSnyWmZ7afthFHhI8A RlnJ7ahoEm/wzAMK3uSrqSgFhHyUrd+ICH/P5FvJJkNAU2M97ANNd7W9981NjXMVFWYqKPL0 ILI1JiYGtis8qaICa3NCiQDI/uA6CeZGXF1ZcZeFFdpnc9jNU8UnuJ7y5tkFPgLAZUQNv/y0 MeLWR1N13ufMFf8gnr2Q7AYhpBF3g8mJCZZW1jgIcHV1JSyvnJmy0syqtv0Cat9pZpyR/ZKf KjIE3AgNhBAaej2SK+znfRpadpjuoty5Uk4kbQaYe0AAm01d74RVX3SAyM3IGDd3D4gCSQnx AwYOKmbwBiIlAuAaBUo/tbS0uMZzOM3SkpKV1TWwEHB90tAAx4dtSQ/cg1VVVX3w4AESkZGR QUrq69svtkhKSqJGYkWIw2FzN37AvGTJEjj9IjrN19cXScGSym3PepGsradfW1PDKG8fJqQ7 /A4PQJA3AmAwwUGBBuvWQLl+z16LZ8kpwJqdlbF1y2ZoAbKxs8/MzqE9i7QFIfJD/IdVAEfD u/JSialTDI1MKz+8E1f/e2nD5q38BMkREB8fb2VlhcYOSShEYFQnSH4ar/CNks+5c2tXr9xj eQhaEhMejRITq2C2XTaBKs3QoUMDAwNfvnwJSyTSAHT06FEo8ebk5Jw9e5bYCIgBJfl5rzXU VPyD24I5XF2ZPHmysbExMh6iYFhY2KZNm5AglISDg4NRou3i7GTwwwYvL08lxW9CIm41NTZ4 e7qrqC8gcRflbhDH1b3Ek5iYKCEhAa7sif4oYwDPTp3srdEJbE5GqtxsRfSguWgxkZmyaNFZ M1yClZORZlW377xaDwEJZUR+HtDVmh91t/Vo4KynG4TqDw/udkeOCTQCysrKAgICQkNDyT8a KSkpgV1TZGT7ksRvVHAAQ+O+Fz0EzFdTfvWmtUoPldPl36/78BY6Ov/WWqj/FIItjJ5+F67P o74q35fDlRAElCN2h1zcveBhub7u0+QXgosAiGYjR44cPXo0rGfjxo2LjY3laSts+jU0NIgp D78hQTAEThrep4GA8tKir+coo752mxmhl09TQxU2zzQMIIo42h1yO+2N89ITpYKuXTb5sCuB HGKRthbjHbOK9U5SWpZNWjnty1UACvtwxJmb2+ovuJgL5z2w2hFTJDQ8cMS2bdvgqhilR+Do CA7uiJka/kzQQMD10AAjs93QxZ3Im26nWl84yD0nik8JCgqmNJXcMA1VJTcPz+LSrl102LvT 5FpQGIfN9nB1uRPbCsewoGu6i5dG37kroDEA0qu8vDyucV5eXhAJOh+Qu7u7Qzscn8DpMAlB fRDlxnBdDH/iuZw0EADTHHc/NiQ0NDMrG+lpbKiHJLGOkOfTsAREQkOC3nT98B16Dw8LDQ8P 524ECvLzQsLCyeHYlzGgg3cgbYb5g/eY2B4dHQ1VdDS1mOTm5kbD7zQQQKMXARQRIAT4+fmp q6t38BGkfhAbukRoWekqCRGAPNY33wugvmH95l5y6ur8fTq/EAF9jIArV65YW5MVQT99jsk1 AALg+gmUHLhEPDns6d57Uz9UoojD1NTU7PtvhsACOPKnUTnpRsfBeRZU2YjUXRcautHIblFl bm7eYaTce1B9swpA93CvhPImZwWjLO8N39PFosK3Fnt3P0kku2jbLe774pX0dh4A0w+QrKur Q56Fm24XL/L+vunSeR9Uf+VJ6Wlps2dKR8e2HcB88fPUcwPsVQTAaZuUlBQclyn8TeLi4seO kRWxSUa+eJGmEAGfjoxeRQAcBzh3Ivi/Mp2HkZmRNk9VJTEljd3cDAcEHQh9JrZEV0uIgM8M Afjm1tdWS0rJsDktzHfldp2orPydEAH4ziTn7NUYgG/0jbCgrduNyPmFMQDfnyScAooAw5+3 BIZeB7srGCVQ9u9ARR8+jRYi4ItFANz4/mrq5LCI6+T/ukF7gfqNyJhu8UJ/ViKIMaCFw7az tcl9Tfa50ovnKZ6ep6/5B7BY7Z8A9OeJpD12QUQA7cEIBWl4QIgAGk77okSECPiippPGYP4P d34Tg/MpoowAAAAASUVORK5CYII=</item> <item item-id="368">iVBORw0KGgoAAAANSUhEUgAAAK0AAAA4CAYAAACPBHizAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA3qSURBVHhe7VwJWFRHEhZjPOIdr2jc 9QAPJEECUYOKGIiaL2ri9ZlVY6KJq3jfSiIiihpUIhgxGDwSN+saBZTDm3hHo6LggYgGBQ8E AQVRFOT491XjDDMDzOv3HHQGX39ff+K87uqq6v91V1VXv0pQiqIBE9NAJRPjV2FX0QAU0Cog MDkNKKA1uSlTGFZAq2DA5DSggNbkpkxhWAGtggGT04ACWpObMoVhBbQKBkxOAyYB2oyMDFmK zXqQCZ8fVsB1njsSr8dj1JdfYOyEybJoKZ2MRwNGDdrz589jyJAh6Nevn2yNebjNhecSL/y2 +X84+edhfPSxfFqymVA6GlQDRgvaO3fuYM+ePWjRogX69u0rW+gP3reBx2IvFBYWws11Flav XS+bltLRODRgtKBVqYdWWbmgTU2+hQYNGyE1/b4A2gJYtrXA7ZQ049C8woVsDRg9aPv37y8b tL/9sg7TZrky5cScO4Nujs6Iio6WrSylo3FooEKDNjjwd1yIucw0fSH6DKbPnI3sx0/KVfMD Bw5Eu3btStRTp06V67imTtzR0bGEztq2bYtr166VEK1Cg/ZlTKSdnR0ePHjwMoaucGPSLnv5 ctGio1kU0Bp4qhXQais06fZtxMTElKhJd5JFNV+hQevv749Ro0bJrnPnzhVVIG8DqaAN2xGE 4SNG4klOLu8QRtXO02M+Fi7+vkyePh8yEEuWfo/pUyaireU72LhxI8Z8/RX81/0qKkeFBm20 4Fy98cYbqFSpEipXroyFCxdi9erVequ3tzfGjRuH2rVro1GjRqIK5G0gFbQL53+LWnXqIvVe Ju8QRtWuZ7cusHdwKpWn7IeZOPrnX+zZt7On49v5C9nf586ewu3kVFE5TBq0ffr0ERVw27Zt MDMzY8B1cnLC06dPRftQg0uXLqFu3brIy8vjai/WSCpoKX6cn18gRtZonxcUFKCgoFCEv0J0 tGqHIydOS5LDZEH7ySefoHv37lzCzp8/n4GW6sSJE7n6UKOxY8ciNVX8zechKBW0PDRNvc2t xHjUa9AYT/PyJYkiA7SF2BUeim72XUChh1lzXHHl73g26NnTJ2HVwRLv2drBa9lypN/PkMQM T+Ps7Gzs3r0bQ4cOxaBBgxAeHg76TV+ht55CTirg/vzzzzxDYf/+/bgtOAyGKGKg7dixI9Nn r1692BE1/U21c+fO7P9du3Zl/1+xYoUsduLi4lhfCrupaM+ePRtnz54FPVu+fLn6d3o+Z84c REVFcY117tw51rdDhw749NNPQTugagxnZ2emexsbG/bb0aNH1TQDfvoRQ/71BdcYmo1kgLao u3OPrmj2j1bI09jCjh6KgEOPnki8aZiJliyNng5ZWVmwtrZmwK1atSqOHDny3ORzcnK4aYiB 9s0338Thw4cZvZs3b6pfsAEDBrDfcnNzMWbMGDyvc9imTRs1bV3+zc3N1c94zSji7eTJkyC6 qhd806ZNajqrVq1i/NOOZWtri71796p1NqDfx9iwaTO3DlUNZYE2LzcH9evUxPjJ0xkdsr8C /P3g+p0bcjltRsmcGqDD9evX0bBhQ6ZQcrISExNlU83KzMDUaTO4+4uBdubMmWpapYGWHj58 +BCenp7cY5bW0NLSkslfvXp1Nm+ahVZhekbOq+4zfYMSaMl3UJXSQEvPDh48qAbt40dZqFOr JpJS0iXLIwu0fworKgm3a99B0ORNcBmH4JBwyYO/jA60mr3++uuMf9qSCQhSS3paKpx7OkhK shEDbVJSkihoqUFKSopUdrXaq0BLwNQtKtDWqlVL0hiUIvro0SNR0JJTm5aWhmQh6clzgRua Nf8nDh89xuGwabMjC7Tz5sxAzdr18NeJ4xg+fASuJchfsSRpx0CNKX6rsm8HDx4sKI3fSz8Q sRed7N5DJbPK+Pc4F5y/GIPAbb+j90dOGDpsJG07WLVyORoI2/3fCTfVHIuBVlO0slZaQ4hf HqDV5ausldYQ/BMNGaAthK21JVq1Nkf1alURtnu/JF4mTZrEQk/6amxsrCSaUhvT1jdhwgQ1 cD08PCSRmOwyBjbvf6DVx87GCt6+fti4PgCLPNxRt34DZGYVO4jGBtoqVarAxcVFq9arV4/p ROpKa/SgvXMrAWaCYF7evnB27I4WrS2Q9Ui/964pFBnkZLDrq+R0aBYCmZTKg0ByNHr27Mkm qXnz5uB1qgqFVbll86ZYIOTiqkpG+l1Uea0yAtZtwOFjxxmv5PhpFmMDLdm0dH6vWVu2bFkx QfvLup+YYDFx8Yi/Eosa1ath0rRZPDiR3WbBggVo3749V122bBn3OCdOnECNGjVw+jR/cPu8 cGpD8kdfLE7YCNzyHzR+620ErN9Y5tiGBC29cHJDccZgHjwS/IjUVPn5y5LNg6GD+qOlRXsy 3VhZvnSRcET6Go79xTfxFCN1c3PTW8mmK++SmZnJ4oqbN0sLuSz2mPdM/mLPe/TIYWjdpj0e 68kTMBRoMwWnZ/zYbzB+SsnIRdSZSMTElsx+0tSlXNCm3k3G3v0RXNOiz6a9eSMRne1sELij pOO+KzwM9zPEj60lgfZp7hMW6po4tXhlzXuai/esrdDOylrvpKmkPXDgAAuP6Kvp6dLDIFza fNaIHC+69SAn5tnF1hpThQRyVRyzID8PTRs3wMof/fWyIBe0NEG65ZuvhiN8T0kAbQj4CVu2 BevlgyfkRbuPbsgrKvIUZrvO41KzJmhXrlypY+oVoF0bc2RkFUcbVA2mTBqPS3FXRceQBNpd IUFsawzZuU+L8Hr/1ez3cROnSorviXJXTg0IrATa/Hxpx4dku1Y2q4Td+w7Ax3cV223OnjoO s9eq4E6q/hdNCmgpwVkV3ejRo4eWFgoK8mDeqhUePHzETARNcOXkPEGOhj9AF0A7deqEY8eO qWlYWFioaT95op343kqgqxpX93ChoCBfK6xFfXv37g1KMNIt69atU9Mh006zXL4QBUfnPsgW QmSpado6Iz9ALFuBaHGBlhSzPTgIQwYPZOf902fMwpmoaMZL3OVLwhXskex3qm7uCxAbd6Wc 4Pb8ZMkcILOAzAOp5V5aCpo1fQtjXSbiwbOV4vf/bsKwkaNESfGC9vjx43B1dVXrk5xFWrlU cdyo08dh9a4NAgQza9CA/pg++zs2duSpE6gtxFfTM4oTzSmYX61aNQQFBeHq1asg00w1T/Tv kiVLQEewV65cwdq1a0s8I9BTSUy4DvvOdti2vXhLp4T2Jk2aYPz48WrZaQcLDQ3FiBEj1LTo CHf79u3sRI+Kt9diDPl8GNas8YON9bvYEb4HT4XDKn8/X9h16SaqR27QclEygUaRkZFo1qwZ m8AXXXhBK8bX4gXz1Kl8Vy6dR9sO1qwL/e3wYa8S3aXEoMsamy5/trUwR+ZD7SgR0ZZyckb0 nYTj//0Hi/IP1vr5sN256G9fuC9aKiY+e8610nJReoGN7t69i8DAQISEhID3gx3JycmgkM6+ fdqmjRjblGRiiGsyhgJt1862uHajKLeDTib7fjaY/e3t5QmvH4rO+Q1dKGLi3Ef+dX0VPw/u p7GEbxXQF7l/J8S217DHffs44XTUBS7WTQ60tP3UrFkTderUYXZT/fr1cejQIb3CUgzW3t4e uk6BmIZoS6N+hiiGAG1aShLe6WirZmfaJBf1quVg34mFIcujeArg8lntL3lV1eUleOtmTHgW 9SAb+UPHHkKSe4aQCnAPrczbIJ/zZNKkQEt5ApT2Fh9fNDl0k5USX8i20nUqVAqjt3r06NHs yo2UrYySayjDStcRkgsKQ4B2Z0ggXCZNYyz8sW83fH4sWqXIQWzY+C0EB2+XJCOvLPadbOCz yg93Up4vt3jGlAnYGhyKAsEBXrXSG38cKjITQoO3wqnXx4j44yAXSyYFWnJSEhIStARbs2YN W3HLyv309fVlzykZhFITeSqdkKm8aLp6Y4hiCNDSS3f0yCHsEMyi2MtxarZyhagBOWuPdaIB huCbaITsCMYNA6SbEp9hoSEICwvTihzcTEzAjtAw7hfOpEBb2iSQh0wAo5VRt0RERIDO2FUA lPOvj4+PQebeEKA1CCMVgIjJg3b9+vXo0qVLqVNBThetxM9TVabI8861Atrn1WBxf5MHLdmc mlc4DKcaw1JSQGs4fZo0aLds2YJ58/iOFg2nMnmUCLSUgE6xYs2qmw0mj3rF7UWHH7o6c3Bw MM0vzFBKHeXEGiJ4/iKmnJKE6KRIt5Z37vCLkK08x5g8eXKpetO86aEa36g/i0QMUzI5bw4s CZWeehcJN8Szx5Ju38KsGdNwMpLvJmp5TphCW5oGjBa0BFh6+x4/fqyWiO4e/fqr/s/pbNoQ oD7+1KeKmIsX0aGdOSIOFSeZSFOd0vplacAoQUvZT61btwZlKllZWalr48aNsXQp37k1j0J7 feiggJZHUUbWxihBS/kGXl5epVb6rH1ZJfbSRXzQyQ6R0ReRL6zKlIdQWlV9Aqm3Uw8FtEYG SB52jBK0PIyX1uZJ9kPhIqaFcLZdiIx7aXB3dy+13k27x7oroJWr6Zfbr0KBdldoMEaNceHW qAJablUZVcMKBdqxX3+JoJCdTMHpqcnsU56l1aRnn5lUQGtUWORmpsKAlq58v920CULDd3J/ oNhR+LbqLuFKjVJMSwMVCLT5cJ/vhvjrfF/BuXAuGn5+q7F1W6BwJUf72wWmNYWvHrcVBrSv 3tS9uhIroH11595kJVdAa7JT9+oyroD21Z17k5X8//vlFN4A+IipAAAAAElFTkSuQmCC</item> <item item-id="369">iVBORw0KGgoAAAANSUhEUgAAAIEAAABaCAYAAACfWTW8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAVlSURBVHhe7Z3ZlaswDIZpYPqYGugi TdDH7YBq8pROUgzXhjAhbLK1JJKinDNv8CNLH/KC7GmG+H29BxpzHrh2Q9N0w9Wc4Z8y+D70 bTO0/f3QAEMQTI1pugg/Bqd73x6+PEYgyAC0wwnMGL984T3XodvJoiYguHbNcJwAHhmiSVki /Z2lPb6oT8+kJSVOuyu07v3Qtv2w7Bz0Q5DHAIfeXncRmXRpEJ4Ox0PAaXe9Vu4ali+Lcghy A08GgZnqZtVNZGhWpHNlgKlfTRkn2dRRMgGn3Sit125BNwS5gWev217AR6fIzB7uff+YlRC7 A067kVoZ6Nm1qiFYGrr3No9v5vqt33szuFLBnw4NAk670VqLF0wxBEBXkAKCdgAZCgcQpKHh 3NUqhiD1W1DfjkyFewzkGcjY3+/9bbokGgQDo90UrWs3jaf0QgCNB3Ik9/p/wYHhEx4iBJx2 E7Tm7tY2BGNKW64ivmOKONJHXCfgtBuvZQKCrmiJsGKhhDwWmAWoEDxBmrsf2iIXzgeOIGCL 7NcJBQRfF/JtgwOCgGCcYueJj96B4e0y/F5uESpBD9wuP8PvP80QpKlP2cBQ0EvOpfVngoBA HMGAQNzF+h8QEOiPkbiFAYG4i/U/ICDQHyNxCwMCcRfrf0BAoD9G4hYGBOIu1v+AgEB/jMQt dAgBx+fdtd9xn2jLosepjdNyBgHHXoADAP5KyzgLVvCFIDvfAtGFNW4gYNsLsGFAcE8Daq/A QX4haDmCgGkvwNrHnMWgktoEO91A8PQv75hAspydU5uiFRAAozeKc6GBIac2RSsggCJFSLOQ NGWvwEabYGdAAEWKUM8PSbPulyDYGRDAkUJPvUBp1v0S+OlmQABHKl2BW4QpkmbVxtnpEIIy 18dVi/mU+mrjqDEU53UnE7ymlOfu3A8dGBUQfA6CzS7s8dxA6iFNiPYEBAin1d1ymAn2TofZ XZCoe1791QFBvc8q76iCYJrX1nQLDF/cAoLKkNZfXgdBOq4pHw2HP7Kt3sAMXuxAQvit4pa3 QVB3DMyiBQFBRThxl9ZBsOwOxhMxp3P8RA+aDghwka24qwqCl4HhCER51xCZoCIqb760HIL1 FFHwsMgXH0QmEEcCv1hUBEHMDsQjyPAA/LeDIghYLIzZAYMbzyQCAmEHW5B3BAHuM2pZkKxo 4+zEQ1DmPfpVRQNDfEEFbKAVbbydPiAg1NyDEFjRJtjpAwJCkSUIgRVtgp0uIKCUW0MQWNGm 2BkQABRQnPtOwCh2uoCAtX5/HTlCmoUgYLWbYKcPCAg192CgrGgT7PQBAWv9/hoL/NQLBIzV brydTiDI7sYtlMCBsqSN84EjCMrCGVdtPRAQBBUGjrovWjaOSFI8EJmA4j0n9wYETgJJaUZA QPGek3sDAieBpDQjIKB4z8m9AYGTQFKaERBQvOfkXv0QxL/EE0ct/iWeuIv1P0B/JogVQ3GK AgJxF+t/gCMIcJ9Ry0JkRRtnpwkIWvBUDHxBBQyBFW28nT4gINTcgxBY0SbYqR+CfERO26e6 oZMfocgShMCKNsHOazedQ9WAzvjYBTnNdQmF4x+l3BpqlhVtvJ1P/yqGIFUPPo5dPQoY3gEQ AtOzm3Umqj7Fbf85nNpordyWx5hLNQTj0Xlng0NCKgQxsKKNtHP5gumGYKwkPukSCDX3IARW tFF2vvpVOQQpVJn0w2yAnx6BELDuDVg/jdPueq2cBdo8Inz89EMwcnB2WhpuoQSGIF9hRbvC zvEIwtdZlwkIpmDUHKtbFuLvuyofKLbtXo1AML+VAQIe3H0Asp4hCJbp+Xz9AO8oj3fOXcWx z4xB4DFIn2/Tf4pv6cdv5lwCAAAAAElFTkSuQmCC</item> <item item-id="370">iVBORw0KGgoAAAANSUhEUgAAAHgAAABaCAYAAABzAJLvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAR8SURBVHhe7Z3bkaswDIZpYPvYGugi TdDH6YBqeEonKcYHQbLhYhtjxUGS/8zszD6AIuuzZGELpXH4mLZAo2p0Q+eapnODKqVLKvtw fdu4tn8Ev0QJ4HkgTQe0PpKPvg1OfAWACW7rIpO0pIsokj24zhPdxAMeusaFHffp2c3o3eNf LFQdkzIg69G7tu3dMmDLBkxrbpDuNmzTDM6FbEcWhevlRBcMmIweSahotjab0E0TYjODjz13 vMKUrHWolguYjB5LqnwwJ1AZWbYxWeTFL9OJBbxUMpg5br3V54kJLjxloZZkLZxDKOCD8DxF VWNQPBMxf4xv+wkFPK4jR2upsbDqDTSMMQ7dnJ/IBHy0/pI1fOstK8narN3KZb2WOL2Ax6e9 9e4WHpOWUUA84C5p68rA5sRhEpg3RiOAD61T7QUAbBw9AAPwhRa439zv7X6hAvq/+n77cb// BD8mpSVZ+kGUGgFCdCnLCpELwEJAlFIDgEtZVohcABYCopQaAFzKskLkArAQEKXUAOBSlhUi F4CFgCilBgCXsqwQuUYA5x2l+RnYkmUAMA78Y8FCP2BTtcwBVIwx6gfMKEjbmdOgLPWA80tK 995iURYALzgD8LdT/3HtOTwPNhhWP7l0qPdg1EXHvU4/YNRFRwkbAEzjs7U58ckNGCOAv50c 6Pk+ANbDKktTD+B1uKOeF/PfBQ1QUrLorGHXc1MQ8O6l+qk3VawRSgGjATDbqOmAKZXxvWzN ViEiAIDZ1j0F2NukJKgC5zXOp1AA/jLgsXkgtSiawnduo5MzKgPwGWt5rz3nwZmAqYnZO1nb /B/roAPAXwb8dy45e/IMLaNdUaraAJxqqeB1pzx4lWSdCNHwYDanbAHpgLePSScAM7Q7Pk3K Fl7HjfkbHYeAkUVLmEL5W5WHgD8wPKzBbCMCMNuEsgXkA/47opOQRddwXPiaSPNYU5veMwB/ YeYmhega6qLXcM+cCegHzKgZ3k1RqbJe5wC07zD2zu6q8uAaiu4mwP3zV2YqC9EWS13jix8A +1vzJ6QMUifLWvXKALtKQvQbcm2Aa+gXvXLh2gBXURe9JFwdYBo8NjpCKYb+5+CE5KnmSwDY OH0ABuALLZC0F32hfgq+Gh6sABJHRQDmWE/BvQCsABJHRQDmWE/BvQCsABJHRQDmWE/BvbIB 42d12FMIP6vDNqFsAbI9GBsd7NkDwGwTyhZgBHANx4V5YxQPuD2s8K6hLjp/jPoBS61lFqKX bMDUUaDtx3qNyKeGojvGGIdubn/VyEwVKDTF332SWuoqQ6+3/YQCnls3xdt4tOPrHBsv94XH hBksA8pe0Wy9yA5P44kFPHXziRFmhK+dKY3JWjqHXMBTxWQkTNdQF501xrXdBAMe/Yw8K+jF +Y8QnmA4vXv7/i5OG4pr9SLvbSm7en5kA54Yx156ztsE8C/LBmSRx2/yEvGA5+L2CzreJiRn si6hqLNf0hQAJjMCcnwy+eHSPUoAvyAX7rAnyyUTtHktK+FkVBHghPHikp0F/gPJqjk+9Tqv QgAAAABJRU5ErkJggg==</item> <item item-id="371">iVBORw0KGgoAAAANSUhEUgAAAhAAAABjCAYAAADKKTnPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABeeSURBVHhe7V3bFeOoEnQCm8fE4Cwm CeVxM3A0/ppMHIyvJL8EAtFQ3Qih2nP27OwYNVD9KhokLk/+QwSIABEgAkSACBCBTAQume3Z nAgQASIgQ+A+PC+X4XmXtVZpdb/dng8VSYiQx/N2qzlrZKzus8QPwXLU+/XyvN72t0BkFjnP kkDkoMW2RIAICBB4BdLLUDeJPm7XZ+Uu41iM5OloiYT4CUxb0GTCsTZxFgzLpAkJhAmsFEoE zorARB6uz+qLsMftOVTs9PFIrzIft6E+DqVmR/xKkYs8d38OlatvyhMQiSOBEMHkNdqhNFsy zPrPnK+EVx/jtnu8D5ddqgCWydqdk2/jU6KIEKbKSflnGRtjiphPn/i9K2GXsRo2/otXhDLl jfq/XlvYUrOLGSQQWdjuU5rNGmIDjauV8EjkMrVtTPAmfeyyhzDNy+asxWzLzpwCGEYTxZjI D5FAesTPj9UTqUJIRJm8yX5w4pLp5hWbk0CIwd6pNCseX2sNLUt4JHKItm0IniAJTYn2vRq8 rBKru7rzf3+N+bWSvPgr/q0EvnzmPvWfQzR8G/bGuCAWU5VinShsY0Yck2UF4v3nee4nwm+2 Na8yNBHcUkJXLM8yDiJRQOdZEgghjrLS7CvAYIuwzDLZ5vg1ZU0dZcozKeHZBmWhOXTQTDmw TbreNPzXCvDVxF/Frwnh5G/fYO9XmkL/v+o7tNUwJVA5gVhXH0Jjf5tCJDnJ4kaBOW1i4hMI d94OtlPXwcrRwfEL6WMmAXL9O1oB5DV1OLXA1LYeIYGQACoqzf6SazmBKCuThaegKWtBHr6T k5UEtUt42wE5k+BIdJ9sc2DSqEjwkkFya7spGNgXhCOxVRVM9IFnopWXYP+x7Z7Y34fPHYQr E0mjSjfYxGRNIJyY5D3bI37znPxqQ6iKkEZ6bgHJS5Jr4SAabEYCkVRKujT7LSWO+7ADUoEo LpMFJqEp6+VBhSVBxZXuJpHTJkxJw3AqMkcljToET+gjsfJxcPW+TNQuMfSxDs0hHvC9Feic TEOViWXFZGkL28RCMjaJZaXbbGGSTyD87Zej4wcl/GA4RQhJ2j/S+m6zBQlESi8C9vgYP17z euMdXI0CZbLVNDRlTcIBecnVaUoHX2w3yo/FBEfU+apRP6RRg+ClDwsGA/oH1SSB+ME/l9+9 cxChFbQkAb5kjfvkwbMRsTcZ8ioTpQTtN8/PfBf/9VjKGpN8AuEffj06fki8CkYEIP69wucO rzaXhbasp0ggEnDlJT+MQGiyZk1ZrwIEwMAFJCxptSkZoIMn+/ca9EQa82w8uDxLnH94E9DY /nNqC2NN35wv/klL8HNSCY0hq/+8CoTZFsYmJjiBCGJ1JPxCOoUPUQaqV8JDmbCP5QaoSu1J IDaBzi09kUCE4czFcS0l5YAQwYGcrQOdp8hZCh/R8+6WgJv0Mw9R+tWmjUOAv5X1q385gcir NIxrzOD3IKodonQwySMQW4coj4uf9pYmJi8Vv1Iu1urvJBCbmkmXZt3HsWSiWnbTXpGD8rAS XpqAkEAgVaI0vts8W/gVyOVrnKtKgLun7x+A80v67qcZYh/s8c4JDDkViDeegcMt3+2r5W/R bRi70nUck0wCET1Me3T8tA9Vl8sjgWiVAlmOS7SyWg4AJBCaZTdNWa89jPUrUBklQcyBBEQO JDhLLebsP/dy7gUieKNt1PyMdKA+JfuQVFYJfupF/kXH6HcghiN8iVBIIIlfcbbB4l9xt+YP sgKxBXFtAvH5zkLmq5LxbYPlhUay1y7jcOxYwpPoASQ45Z7WB2mEAtzuBGLit4J7J7ITYLwK 4dhLbAXfAC5SuyZ+UqTK2kH+VdZlladIIBIEIm9lBSaTeSzlZbLwyux3ehv/pGr52CAHkhAI VfKV43uozjFiFtpC8/etJXpH9ZPnJzn4Stvexyu0ExdcFRCIdIUpXqUQJWXp9MzbET9LiCH/ shwYKJsEQpVAgNro+HHIgcQruXKCUw49SiDaII2Qfv79ff75+68cQqUnf2/GKAmExAgSMiRf /2Hip4/pR+K/v/89//zPTv5ekkkgSCCq2B6UoMQEospUuuykD/0IzspU0Z7wTEGVseR0Qvxy 0MppC/lXTkeV25JAkEBUMTnIgUggzHVE/ZhDzA5OjADkXw3jRgKxpZxGSrMN2494aFAJjwRC jHNpQyjAUT+lsPO5kyAA+VfDGJFAsAJRxTwhByKRM9cRCZ45xOzgxAhA8a9h3EggSCCqmCfk QFzhmuuI+jGHmB2cGAHIvxrGjQSCBKKKeUIORAJhriPqxxxidnBiBCD/ahg3EggSiCrmCTkQ CYS5jqgfc4jZwYkRgPyrYdxIIEggqpgn5EAkEOY6on7MIWYHJ0YA8q+GcSOBIIGoYp6QA5FA mOuI+jGHmB2cGAHIvxrGjQSCBKKKeUIORAJhriPqxxxidnBiBCD/ahg3EggSiCrmCTkQCYS5 jo6un/uthVsvxy9Q3u7murLogPhZoPqTCfmX7dAg6SQQJBCQAUkfhhyIBEIKc3G7I+sHGnsx YpEHxwu7JJeXaXeLyCN+CHqyZ5vCWDZkUSsSCBIIkaGgjSAHIoFA4U8+f1j9VLaNxyNx4+eI 9KFu4SR+Sd/QaAD5l8YAjGSQQKgQCItbIFu75XECqnyekANVDnJGvta02Db0E78aOwaeZbK+ D5fn8N2ReNn+r7qwMdYD2Wvf+JXHq7C9lcuD/KvhyEECAROIt1F9I80UWJaBpkT7P0P9BbBc OdrjwuRBDpQdkDXIl493efBIa05TdpmsuvpJIyJrYXfr5YTHxXE+n0DMpYbn9Ro6e9HKrZYp FHvGD4tXa+QweZB/pdS44+8kECiBmILI5fq8LSub4z7oJRhY0pqeA9dIQC7X4TmMK55iAqE8 rjlYAvOEHCiLQGiQrwh5UCWJnz6wwOSOtFxWPf1Mefdt45OdOza1XNW//3yf7G5q57dNJPDl M7OM4Sk/3jj1vWzvkrIlsZiqFOszD1N7LyakXT/eYva9NwaruOKNzfs9jnXn+IHxaqUMUB7k X4jtGD9LAoESiBBZmI0tJ2D9BvEYT5O/Ah24ilYe1xOUBzmQkECoka8Vf8DI06YPg4HJkQ3I qqGfeayTHS19w/l/n0BMSfPnR1Oydoj59OyKYYe2Glw5qZi6rj78/HFFFiKLBXf7I9Xj1u+v iuZrmv7cfMI4wbvAaBPrty56xQ+MVyuNgPIg/0LMx/hZEgiQQMzBxl8VhAJ5tiIxAqE9LlQe 5EBiAqFEvnxdgcFjU/WasgFZNfQTJBAOOGsC4eQ3LyEGE72fNOeF9lTxCBD6INEPbFUsCP26 2hA+CxGuTGQHgTXhWooIjn9BOAJYuI/72zQBgndQ/NB4tV5DYHEe8q8Cs6n1CAkECYTI1lCH hBxISCB+E8HIl3bw2DYxLDCtEkIhma2nH7fk7i6A8wmEn9DjduoRiDm5hioTyxW/g653iPLz W9jWpnFovM4ZnM+n62D1Y0mAtrB+Eate8UPjlXYMgPxLFKH3aUQCARIItLQf7x5MgsBqNDgm UB7kQCQQouiABM26+nlNZy63O2cb8gmEv4UhIRCvfsczCsGzEbG3K/IqE20QiJ/ZrLF+V2a8 LYxu8APj1crhQHmQf4m8f59GJBAogQiVEYFDlGqraO1xgfIgB9qZQNiRxHfJOFg1KDhDAwS5 uvqJrexxArE6Y/FiKhlbGDoViCa2MFaxzSVB0i2gQ+IHxqs1dIFzbRlxHvKvfbiBqFcSCJRA fL6NoH5CH6xAqI+r/IT/BDHkQHsTCO1g5O47rA/cZgQmx3yBcVbTj5/MnfNCeQRiTmyRQ4C/ v38Rgj3OQBS/QeUo1SU0btLPPETpn83qGj8sXq3TAiYP8i9RKt+nEQkETCDm9Djvj77Kseg3 ID4DQgmExbjK5wk50N4EQp2MrVfgfsIr2z8vD3I19fMrp7/85ZdoMwlE9DsM3t7/kFOBCJf2 PyR49vElM4ieQzB6jXN1GHT7Nc441jOrj3zHohf8yuNVOC2Uy4P8ax9uIOqVBEKFQIiwPnUj yIF2JxAWZCxAIlQIaFmQq6sfLVeY5irY6snawpj3PMaqhYwARL8DMbRwuVcKZ+KXQkjrd8i/ tAZhIIcEggTCwKwCBcDxxHdxSTebQFSZUledQAFuR/2IPsWcTSDiVQhH6bEV/I545Bol8ctF rKw95F9lXVZ56jAEQnKJjTpiBwoE6nNXFgg5EPWgrI2eCN59vEI7ccFVAYFIf8gtXqUQJWVz jUo7IH5SpJB2UPxDOlZ4div3bhOIhePNh3e+n4f97fd//q54dRmYYPElNgpg+SuMIRWctPvs VB7kQCQQ5lZxZP38vt5qDpOgA0FCFkip2YT42aMN+VdoeImPhJXOKDf3ignEqnQn3CPMncj6 1aLA+9fRwz+5vSXaM3GpAQo5EPWgpoeYoGPrp5XLq4RnCsy1mdsB8ctFLLc95F+VCERJ7vUI xOeVp/eHVm5bp5dlh4zygEYvscnrLdmaiSsJkbQB5EDUgxTm4nbUTzF0fJAIJBGA/GuWnsrN 3u+VLpBbEIiMS2hU7npYYx78sMnqApn3c8l35RWu1WbiSjqGtAHkQNSDFObidtRPMXR8kAgk EYD8a5UD/W+bZOTuyEhLc++PQIT2VDYPH4UrEKJb6IKXwOR9KjbnVaukduN13SfPQBSj5zwI ORAJhI4SNqRQP+YQs4MTIwD5Vyo373iB3JdAzAxE+kndjQpEkkAYX2ITslH/YyrOYdCt059M XGouDzkQ9aCmhzhX5mu25iCzg9MigMS/VG5O/f4F3SD32hCI+ctv/lfmPpfn2F5io2qhTFxq cG460ExIl18k9LqlHtT0UEQgqB9z/NlB3wgg8S9FEFK/T8haXSBnsoXxrWQEtyrG2QT/XucS G1Yg2nREhIFP9sKtJFu9Uj+2+FL6uRGA/KtgC6PWBWirQ5TyS2hkZyCCWxo8A3E6b4IciATC 3F6oH3OI2cGJEYD8K3IXz++CuPAdODUukPNe41x+R38kCAWvcd4Hl1jICYTGJTZLC+VbGC35 K+RAJBDmqqR+zCFmBydGAPKvGbdUbt7nAjT1T1mHvmS1vnE3cLf6DBJ6iY2yhTJxqQEKORD1 oKaHmCDqxxxidnBiBCD/KsEt+/PtZbnXhEB8t0GyzkC8UAq/j+oh2NyXKMtuQAzbhaasTw/o 1eBy42KCKvH2/Z+BAhwJ3v4K5AiaRgDyr5KZZROIstxrQiCG71sYka9VxojFolQTf7sST2Zi fYgCY3j/6Vp0h4amLJc8TG/FlN9XgmMOOZBID36Z7/Is00GUAo1XR//ugGlXdhkBraMfseex IRHoCgHIv0qQKCAQJRfIqROIkrk2+4wkcYW+iZH8SmZkxpqyPtWc6XXa6/AcxuTXN4GwIF8e CfsCqHC+5msCmuMulwUFOImfNOvkHBgRsEcA8i/74RX3QAKxBZ0kMIbIwmaFZaNDTVkzgbiN p0p+K/OuCYQy+XK0dBTZwDihACfxk+IQhTxYVo1Beuzj2d5wO/gWbsNGRQIBEoj4RzzyLxvT lOVOS9uBFhe3+F8vjRZXjL90qEy+nGkcRTYwzv4IRHk1puF4XWFoveH2I0OHXUBV0HppFyQQ JBAC21megXDJiOjQ63s7pdiBBStcO/L1PlwU/Mx7Pkn0wdYcNyKrOwIBVGMEDtFvk45wm/2h hy3chq2NBAIkEPMXv6R3iKQMQVOWW4OfDwAWJ3Dn9VrvynXhdo11gkKSZ0otR5GNjNNaPymM 1X838yX1kbYlsCPcutnCbctCnNGQQKAEIpRAoUOUw/vcwntgpbKsCMTqFVrZGxrmCcoy8B1F NjBOc/1UDoIImao81Ka66xO3g2/hNmUh7mBIIFACEfnMaNlrflb7j4oOtEpSjRAITSK33mcY L/uyIHbz3o6ebEAWCUTDUbri0EggQmDvvIVbUf+5XZFAwARiEqB5allT1mdyigSi1QqEKpFb MYjXNyD4GmfYWwRnVHIDE9weqMbAfR9ZQJe4Kca/eTt3sZiosYXbsD2RQKgQiIY1rD60HRxI nKAsyJdLwj7X1JdVmGLK0Bx3mazeKhCqlR11H2pYIFDFandWigRijwVUu8A+SSBIIDLN8+WM nwTaylsYmZNgcw+B7giEaUWqZ/Ox2kbdEzNFArHHFu6e0CX6JoEggSgwzwa/A1EwCz7yQ6A/ AjHNrawaQ7voDTdFAsEKhOMeJBAkEFXiZZ8Jqgp0VTqhfqrAzE4Oj8AOW7gNY0YCQQJRxTyZ oKrAXNwJ9VMMHR88FQI7bOE2jC8JBAlEFfNkgqoCc3En1E8xdHzwdAhU3sJtGF8SCBKIKubJ BFUF5uJOqJ9i6PggEUgiAPlXUvp+DUggSCCqWB/kQOLXOKtMpctOqJ8u1cpJNYIA5F+NzCE0 DBIIEogq5gk5EAmEuY6oH3OI2cGJEYD8q2HcSCBIIKqYJ+RAJBDmOqJ+zCFmBydGAPKvhnEj gSCBqGKekAORQJjriPoxh5gdnBgByL8axo0EggSiinlCDvTv7/PP339VxnnWTv79/e/553+F syfBKwSOj50FASj+NQwSCQQJRBXzhByICcpcR9SPOcTs4MQIQP7VMG4kEFvK4cpXzXS5wlWD 0kQQFOBI8Ex0QqH9IAD5V8MwkECwAlHFPCEHYoIy1xH1Yw4xOzgxApB/NYwbCQQJRBXzhBxI TCAsLwE6iuyycdbRTxVTYydEoDkEIP9qbja/AZFAkEBUMU/IgaYb8IZ7YpyW1xAfRXb5OCH9 cKuvig+xk+MiAG3hNjxtEggVAlG26gt33aqs5Wjzr8eFEpSEQExtLtfn7bEY5314Xq638VJn 8J+jyAbGiepncIAH8ebjRKAzBCD/ahgLEogEgai78i1fQa6noSlrTR4ul8szWRRYPIY50Hh5 TYoIhMjCnFCHZ6p2kfTPo8gGxnkfPPKVBMVR7pMEIgcwtj0bAlj8axctEgiUQACrvlXXrcp6 D3Rygok4XK7DmNBrEoiJDG0TgXlsPskI4Vngi0eRXT7ONL6bsInPqBSAz0eIQAcIkEB0oMT8 KVRe+QIryNXcNGV9CcTtvZrP38KAVrhj/ykHLE+eaas4iuzicUq2iBJEu80KhOZ2YNpO+mnR C25W88iPf6n4dVTbYQVie2lVdeVbnAACc9CUFdsekW9hgCvcaQCpJGdAmL7zPorswnHCwS2l m12io9UW3i6TqdhpL7hZzeNHSuTxL70Aqqhg1a5IIBJwpoKrZqJuVRZMIFQSTIKEhM47qB6i 9LZQWpRdhEEFcqcasoTCNLcDhV120awX3Azmsd8WbruWRQKR0k0q+RWu+oLdtiprNdi8El6K hKVU4FQCorTfasUxlz/GStR49uPb97i1NZ4Fuaq8eaApO1/WpBt8HoKtPrGSlRpq+pLSkA4h phfcDObxuO23hduq7ZBAJDVTceVbtIKMTEBTFkQgFFa4i/7vw9bhTas9zwWJmA6RqpGHz8Q0 x50ha7KR1NstSf/4YKPwtouoL1kjzWqerMc+WvWCm+088hZQrwVIW/6hZa0kEBIkJzZbZeWb v4KMD19Tlt+L3IF0VrjL/qe+gVcOJfo+RZupiqIX1NSqTErY2yYQpUE2KKYX3GznIY9/s4pT VewG7UA6JBIIIVL1Vr4ZK8jk2DVl+Ulc8Bqn2go3RGBIIpLqjzbQJQ9NBkmDEnY53gd6shfc TOeRRyBaI9ea1kgCIUaTK18xVHNDgyTlDOBDjvRW0XnzO2JrS8waK9OabuEdUffCMfeCm+k8 cghEY34hNANpMxIIKVKvZRbL5yK8rMmDaBBsVBuBza2+2oOx3MKrPZea/fWCm+U85ARCfwu3 pi2k+yKBSGPktbBcxWUPprEHiE1jCqk+nO2tvtrDsdrCqz2P2v31gpvVPIQEwmwLt7Y9xPsj gWhHFxwJEegAAVbpOlAipwAjcI4qLAkEbCgUQASIgIsASQQt4swInIM8TBomgTiznXPuRMAM AW5nmUFLwY0icD6bJ4Fo1BQ5LCJABIgAESACLSPwf5nhte3JjJuIAAAAAElFTkSuQmCC</item> <item item-id="372">iVBORw0KGgoAAAANSUhEUgAAAYAAAABgCAYAAAAU9KWJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA9iSURBVHhe7Z3rtesmEIXdQPq4NZwu bhOuI+nA1fjX6cTFKEIPGxCPYUBPf1krK7nXI8Ts2bBhQHDr+AcEQAAEQOArEbh9pde1Tj/v 3e1275615VQ8/3w8ulfF820efXWPx54otPHiiqXAjytGtdSnvn3+3LqfR7ynQACKMB0Bvd33 7fRej59u5yp8UOvFMEWwIngxboIA/GgC42UKMXyIDVgRAHGYTef/0yXEVFxSleHr0d03rMTr lZ9nvB73/XGpAFXiY0Xx2z4KP5rjfQ1+PLt7IGuBAAjp8rzfVhh1m6CUicqana3roz99TNR1 jU5npTSb2kchT/Y2gx91EdiGH1Mm4dZnE/p/62bQBWX17fTnx00dIwASvpjO6BA5FxPsddYe hmmi42Mgfxgg0AhfLw4esSSwJm1WEIA6H6s92qAA+FED8jb88NPIZmClFYHysoyPtuAgAFnG 1DeqMQc3qv3NGfHbo+rp/5+9Sgdt+4qmOmD7maGMEqHwp4fuqMIWBjNCWo5YWqTHxobwxqhP K7l5S+/3zX3MEkVuYOI4+7oQTg977/c4l+CHw5+j8mOIvTfrN4MdzQBKVZbb1hGAXLM1INeM /v2RrPNnXwBMB/jpuE1n6xAjOBMJpWrccvIu+qN/80RkB0GErHUpspwPud9zHhrtrPcx/xaJ xShkI6V8v5abDBwOJLlkJmKhmeoxsIMfEzdC7WfoyEsGbHVl2ZsEEIBMm63eUZFMZSwFwNEa 79lgJxYoP7rqHyRabKtY7O/DawHhmYGkQ5w6Lr8B2H4dxEehN2mzFB+C8bEEI5MWgx8f6Pdo AxJ+DPXyR/uhkbygMHVZ1qAWAUgCXZ/+mUd5cwrInUyUC4CffomTwBtRDJ1HaGZgj0htMNLC 4E+K/NyigL9vk5wPud/fBa3sY4lPMdugL7NxcHZlx8FND0licBTs4McYZHWnHSCUvqxPv4YA JFt1fnFzmKK/c9fe/3st9GM75wDLBcBfjJY08PG9/TuDedHY7p6ymUGygU8571gmLedD7ncT wi18lAhAjg91AvCpwZJL4TTXUbCDH3VpmyD3KtJJz/vYByEAqVZdm/8Plm13rPUCMOR9U+kT Z1AfyjW2mQFsnQIK+j0OsQL51DY+SgQga1OTAloU7oq0NAW0B3bwYwpeiJ9Vi8CBmb5gQXlO bSMAawuA3+CdfF+ZAKQW+T4zg3m3TGBRaeU1AP1aeXg720fYcr9bQVzRx2znLjJwxcjttAsX gf3ccWIRGH4kOuDYhofo35d/v/OhRvnWzTit9GUhAJLG2ugDJz8t8OkoCwUgug3Uyw3fI2cV RXYbhHfITCkFk96ye/Zonrrsg7Yl/LYPfVmLbaB7+yghjNDG3ga62P2R3gYa59I0+wmO/vbG rsU24Svxw43HZh+COeOk8TgZZgCZGcCWxy7kuw/honQszRDdbiYf0US/A7hvfDjd5j7mo7O/ Bfx4xwB+JOnIDEDSWhvNACSvktqIPvUvJn9sn7xXq9gMZA+ctvZRGqCd7eDHFAD4gQBUt8U9 OrZspZ99eiRzQJuC/PN21XgePz5LEHU6Wb8KDTb2sbB2O5rDjwF8+IEAVLfC37/dn7+/1cW0 LuDV3wWw74HUtkeCDqc1AJSXadzwA4qkEfj9+0/35z/WANIoHXIGMAxv2h++pmoxwpyzqmwe 0iMAP/TYfceTrAFI4nxYAZBUHhsQAAEQCCOAAEiYgQBIUMIGBEDgZAggAJKAIQASlLABARA4 GQIIgCRgCIAEJWxAAAROhgACIAkYAiBBCRsQAIGTIYAASAKGAEhQwgYEQOBkCCAAkoAhABKU sAEBEDgZAgiAJGAIgAQlbEAABE6GAAIgCRgCIEEJGxAAgZMhgABIAnZAAXj2x0BkTgKSeFZp 038B/DjOYRSVzlzqcfhxqXCu5gwCIIH2YAIwB01S9dVt+sO26s4xX72GX/cC+PF1IVc7jABI oDuSAGxcl9crP8/Y5RRQSdyENhIfhUXtbwY/msfgUvzw0EEAJHTZuFGlqrRmZ2suefkcA+1f Bp+4LGYNfFJ35kpiFrFR+1jxTv2j8gt65nfADz3a5slt+cGNYHXR2urpNTo4Vd3XO3VzeR2k LwB9haNXUa5w6uQKAlDnoypgGz8EP2oA35Yf+nt8lz7qy2IGIGFMqQDYd70u7mZN3/U6kNDc vzv8692vm+qA7Weej+5nccdsylEz0rQvj/fqaN0OE70K8qf2LuD5EvvJ78VdwN7vm/soIYrO Jh5z/67oHuPBb/ixvCv6ZPwY+givzQTv2RZwqqIsBECArxn5yu8EHok49pn+KNpX6nHKeZtF wh/1hv68uKorlKoxHYTdoaedDF8GH5gBjHPkT32tYt2pswRU2ybnQ+73/Pta+Jh/i8IiGXNf ANy4OtyZYwM/DEmHNrh1GyiKfqgdRe/qzpRcURYCIIlaiQCkUhfBAFuCkUl7BDuxwDPjiDIg AMH3Rzr6hXjNQIXz0uGZgQTcSVT8+tp+HcRHoTdlZsmYLwXA6d+9Z+HHB/o92kBJ4If6+dmB 0EheUGhNWQiAAOCSGUAwGO++MzR6tjtgN/XiD+ZM2f6Wy3jwPQEYOovQqMiesaRG5fNvYx0l dZNAO8yToo1h9CH3+/s9K/so9afMLhXzcgGAHxP6ocHOgfhR02n7/KopCwGQtNaCGUCdAHwq M0zvvXWA0AhP0jmOZc35Y39mENtpUjYzCInT25tpTSR20XzOh9zvY/ZjfR8lVPFtPnGc42n9 1wNkGfNyAbh5ZR4FO/jhMaMibbPgYUVZCICkVRcIwJAjj+XfcymgRV3cTlg6xY/Woej9aQHw O/OtU0B7+CihSr2NjXu9AARxinEUfnjhK2sDRbGPzVAWm0YEpVaUhQAI8C1JAc0LUHMH6Xba hYvAfk7QNNzIIt/n7xMLYCuvAcRG+HmIw9vYPkKa+916w4o+5v1QWPidsRPzMgEYOnv4YeaD 8UXgw/BDv3VzyTJ9WQiApM2WzADGpLa1Vc9PuaS3gfopA6c9R7eBennke2QWEtllEN4hM+Xe TRrKrkRwF5B5f+02UNuHvqzFNtC9fZQQRWcTj3mhAMCP9xbq++ZtQBN7l9N1R6roykIAJHEr FQBJmSobE2TB9s6iKf6QQe9HTLIOPPodwH3jw+k291EVsI0fgh9vwOGHiHunE4BdzuU4jACY Ufm9e+SO5ykm/zTaz+VwYiPMPfDZ2kdRc9rfCH5MMYAfIjLKBMACc9xfG9jRMP1drg8R1eod Q+XZNCUvkdju0cFF6/Xs0yMZBVCQf/5oLR6/+CxB1OlIcC6x2djHkqrtaws/Bvzhh4iGxQLg lKr8cEFSs2VeOrAiH815St5QYHMoATCj9cewP/4Y/wg6nGNU9GtqAT++JtTVjkYEIHcuy/Te 1QSg9myaalzcAg4mAEPOXrNdrDEs46xBsCbR/L0UmEYAfsAQGQIBASg4d2UlAQjvSik7m+bj /ihmVSvshxMAWXCxAgEQAIEUAksBCOXOkvm08O4R0eFgh9mTmyEJAkArAgEQuCACCwGQfDr+ xiExA8gKwA7ncpR8lu/EGgG4IPVxCQRAYF0BGD7GGHcMud8SHfPcligdEABaCgiAwAURWDUF 9D7uNPIF6vjFbOhwsuVpk8uz9edohE+nDMWKGcAFGYxLIAACagSii8Dys2VkawDBlBBrAOrA 8SAIgAAI1CIQ2QaaO5dlem1yDcAVBrkAxL9KfX+Elj2bxoaFXUC1JOF5EACBayIg+xBM4bvb 4UfSNLHUUPXZNIoKpx5hDaAxoBQHAiBwBAQWAnD79+bUS/vnId/ej9SH562O3imv/3vzZ/ur 1vn32AmVTuW+9EvgIxCHOoAACJwfAUcATOdrd9A1fx4EYCpvuI2qP74mVt4sAO7vucVd+QmW 1WFiBlANIQWAAAgcD4GFAJgqziKw938PAxcCcJhQUBEQAIF2CLwFoNXIfxaQ2vLaudigJASg AYgUAQIgcDQEggJgzwLmCmvXArTPHwooBGAKh+7WoUPFksqsgAC80IHaEjddWavtAtIBctCn EIA+MPp7Rw8aVarVBAF4oYOxJW76shAASfQQgGknl/fRX/B+YAmg2FwGgdC3QPAiH96WuFWU hQDkQzV0fvfcLVyScs5sE2rU0e84zuwodS9CAF4UwfU2bolbRVkIgCR8CECvgf1VoP4lNCvd ByEJCTbHQABe6OLQEreashAASfwQAARAwpMvtKnpfL4QrrfLLXGrKQsBkLAQARgv2Q7OALgS UkKhy9rAC11oW+JWURYCIAkfAuAc55HMY0rwxOY6CITWgVgEzse3JW4VZSEA+VCxCDxgpN9q JoEYm7MiAC90kWuJm74sBEASPWYAE0q6j00kEGNzZgTghS56LXHTlYUASCKHAEhQwgYEQOBk CCAAkoAhABKUsAEBEDgZAgiAJGAIgAQlbEAABE6GAAIgCRgCIEEJGxAAgZMhgABIAoYASFDC BgRA4GQIIACSgCEAEpSwAQEQOBkCCIAkYAiABCVsQAAEToYAAiAJGAIgQQkbEACBkyGAAEgC hgBIUMIGBEDgZAggAJKAIQASlLABARA4GQIIgCRgv3+7P39/JZbYgAAIgMBpEPj9+0/357+u u52mxntUlBnAHqjzThAAgZURYAYgARgBkKCEDQiAwMkQQAAkAUMAJChhAwIgcDIEEABJwBCA CSXdkbMSiLE5MwLwQhe9lrjpykIAJJEzN+7cnxLLC9voL524MCi4xkVBSg60bE/6shAASfgQ gOlKyJ/u8bIA4+o/CXuubTNcRwgvioPcEreKshAAUeSe3d2/EF303IWMKi6evhAKuOIjAC90 nGiJW0VZz/so3mwDTYbRTLHu3TcngcxI4eaLYGjkoWsOPHVSBOCFLnAtcdOX9enXEIBMHOep ki7c539KT7Lz+44HcQTghY4dLXFTl2WlthGAXBy/fR2gYpqZg5bfT4wAvNAFryVuyrLsQS0C kA3jl6eBhnSPlwZjETjLmssbwAtdiFvipirL7c8QAEkYTYf3tdtB9VvNJNBic1YE4IUuci1x Ky/LjP5/rC19CIAwis/7rftaDZj3fN9u3a3/1yaQED7MLomA7iOkS0JR5FRL3ArKMjMGb0MH AiAOnAHa2/csfhZDEAABENgTgX5Lu5/K7auDABTFBBEoggtjEACBAyAQ7vxNxRCA4vDMU67v /j6gGDYeAAEQ2BiBfF+FAGwcEl4HAiAAAkdB4H+Scvhuhz9wvAAAAABJRU5ErkJggg==</item> <item item-id="373">iVBORw0KGgoAAAANSUhEUgAAAqoAAAC+CAYAAAD9XS3OAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADn1SURBVHhe7X3bteuo0rUT6Bz+761j cBb77UTgPDoDR7OediYrGP9C8kVCIOqKAM81Ro/TfYyKYlYVTIrb5YE/IAAEgAAQAAJAAAgA ASDQIAKXBnWCSkBghcDP43a5PC6Jf24/AKo7BH5uky1vj5qm+7nfH7+nA/X7uN9rttquwcBP guVk7+vlcb2f73kS7U//5oR+4vQ2N62Avz//3NLj/GUa6EFUm3YOKPeYKM3t2gLRgC10CCwd Xeh0av793q+PylXmmzcNvr0RF+Cn89aAX+2JmU7js78+p584u9W91F/dn3/vjyuIqtA9MNvL AOcx6wJRFXppQ58Fv7g+qieXpk7uVrHS399y9uz3fquPg9QTgJ8Uuei7sCpUdxXBSPHKYk7q Jyq3sv/qKvoziKrEXTDbo6BmO+tiElVMIigmWpXxmFxsVQhLOmdkNT1J4bZNMYahI88Q88rk 72OJA51y005HUn0efs8+/LmVSJfhZsgKAy5Whg77Jlo/sWCu608YdmP2po9pk9G8cmTiX+zK nx/wY51dUy1/BlHlmgazPR5iVrMuKlHFJIJnn21p28nFSnaYOOhGFWGzgj/4ZLFmrDZtSpD9 bEdO9Wdhs80+GxG/uI9Y9r/LyCpfVvAbWV1mRm1XEKmf+JBAeZfCtxsdNE/ZdC3m7XK5iTJH TKFsFX8GUeVZrM/ZnvXsjinPZNZFGdgxieB5c6601eTiJZ9AdoKPvA7K7TJOW3+7RL8v5PqV vYgymEdEcf3NT6ifQ2hjjCIdVyNo6DP2xMTXV/OYrAev57/Pbf8i/GZfi/wkECRJplMkyzq+ bKL+fCnlfuLt19Pk86bJqIrsRkTIUzZRhaVYHaK61MPpO1mNWAqDqDJA63K2Zz27k8nTz7rK RPV4EsEk1wy3yBdtbXmKgYHJ5OKJzLOTyeO0ZLQWbhdnJfcZ8vlU6ItUxFs8Uv+9S7uklugD UaN3tvtsakr3Z4szJIg26RU44iEmMVHdtnuD7TzWpTLhneOXssdMLuj2f1tFKKupw2kCF3P5 pNhPBL5yf94UouxbhXYjtdtTNkmBV6FaRDXYxfmwKogq1fKdzvasZ3diedpZV4GoHk4iZOSa 6hnpcq0tT/Ex0E8uXpPhQid2tJ84SSBWxLawFzlJKBPfZLc8JOtPLPEv0/7MVUTpASOdadV5 3fz1ISZ7orrh8dG3I+I3tynOnqb6NYIpxLIIpIxQ/VBFeGRHR1TFdiMg7imbUP2qSNTvrFet 3okBnsRsaW9/BlElGopgiCZne9azO4U8XkcU2+WIqBYmEWJyTfSNqFiTy1MiDLSTixd5O85U JTv2d1IgtSS7JoTbLHGcPE2R7fxAEuk5k7ZUpnWdAV4b/5jAUnSTeVz81REmfKIab1voHT9L IiGXVU582PhCL1K4eIColi2b2ObzupBEODHL18m1X1n7TQkQVRpgPJLVThDJO9I0Lip5BLKf t8YBUS3JVZBrmndsS400YeH5fQqt8pYNHVH91Pm5KPqz/zCVEaQQrUXWJCe5dzW3pMbLtEoz 1tkLsQOpjtjwHhM+UY1l9o7fnHFOZlTrLf0vie8TrmqTdGhVvin3E1Evqzv1b+kDu5yKoX+p sF/FemLF0Xrrkas/g6hSPIE7WwBRzdBcxQnsfEdWIlMqck1xj2yZAfygNAko4UP5XrP0v6t/ SxapS9fZ5fLS1oPttD+z9J/2A7el/0NM9EQ1iVXOhi3il9JJdZgqkYknHMwq9Vul0Brqd0o/ kYg18al/Sx/YLWgk9jtL/Utl5KM9qvb7V139GUSV4gkdz/asZ45KefJZV84G5UkEiOqy2V22 L6+M72EEkQag7VL6llwyD1PFS1oHh4E+mcKl/uRhKuc9quKB9gj0mDRuMOER1aPDVP3ix9+v nYdbLst1YKcMay2VIfUTa4V1SYD3PafvAFz6AJtrw+Q+YWsS7sqPrnZXfwZRJRindhBZzvYs ZQWolPLkzpwjqoRJhJJcrz2Es+z66gzFZMRQb81yp3xysfgL6VWozUb/eAl2u+cyJtyxTbZX m+YuWI/2cd7CftTE0m+SqD6Jf8Kw7/3J69+S2ZRQv9/Sbx4TJlEN7U9mB3vHb6u/jqDIZMn7 QsKY1VsRaj/xbpeWqM6DmeOl/J6yqcZNEVVLQr7Vw9WfQVQJRq9NVF8BZDLbs57d6eTJnTlD SCm2UZJrgodkiig7U0u9FbLkNmMQVTnIhS+JGWHW0nWokr50lr1H9XafIr31P+DnZSFVXHkp dZZcNlE9S9GO630mA8SJk1JP63lFFYgqwfHYQaQkKLNKljMyS1k63eSds4KomhJ/gr+Yzfp1 k4JovrtkDwSTH7nNWiCqIft5e9xLjJBNVPNZ1Q3uuYwku0/h+J1tWeBni+dLmiqufFQ6T2pH 8XAeSIqanUnqzApAVBUGsvgUQWSB4kK/xc6cJ6qkpWVT4k+FY4wJi9xmbRDVkP28l5iqgKiW t3bks64k8kd1M/dywM8DYlVceSh0pkyMsa7ov7ckvV+gW16is8yuuvozMqoE/0AQEUCiFZE7 83+Pf//58/gbVwPb0IBXlJLbbKr075/Hv392VlNoI/v0c2WY7HvbrwjEz7ZCtTTgp4ZwJ+Dv n38e//5nL7dLiY30E11i14jSnv7887//9/i///08Lo20tU01QIbM7CInPdqMqlkTvk6Q3Gat ZFSDyQiH7qpYlrjns4ounEqAHwctSllVXFEq6KkMxtierJXU1dOfXwd6QVSP3ASzPbMgks+6 QFTNjMAUpOqAMAAx0Ubxb0FAFVejgYR+onuLevoziCrFPRBEFJRIZeTOnCGqmESQcNcUkk8u WsqoahDAt0DAHgF5X2ivy+kSMcaebgKtAp7+DKJKsQ6CiIISqYzcmZFRJQHsUEhuMxBVB3NA 5CAIqOJqEAzezcAY271FPf0ZRJXiHggiCkqkMnJnBlElAexQSG4zEFUHc0DkIAio4moQDEBU xzGkpz+DqFL8BESVghKpjNyZQVRJADsUktsMRNXBHBA5CAKquBoEAxDVcQzp6c8gqhQ/AVGl oEQqI3dmEFUSwA6F5DYDUXUwB0QOgoAqrgbBAER1HEN6+jOIKsVPQFQpKJHKyJ0ZRJUEsEMh uc1AVB3MAZGDIKCKq0EwAFEdx5Ce/gyiSvETEFUKSqQycmcGUSUB7FBIbjMQVQdzQOQgCKji ahAMQFTHMaSnP4OoUvwERJWCEqmM3JlBVEkAOxSS2wxE1cEcEDkIAqq4GgQDENVxDOnpzyCq FD8BUaWgRCojd2YQVRLADoXkNmuDqP7c749fB1x4IqcXqe4/vE8aKQ38fAyhiisflc6TijH2 POyNavb0ZxBVipEQRBSUSGXkzgyiSgLYoZDcZucTVZXu1lj+3B7X+/mUmdMs4MdBi1e2KWx5 qtuXxhhrj2lliZ7+DKJKMSY5iMI73pfH5bL8YzMoLTJvqmSMtV5yeXJnBlGluKpHGbnNTiaq 5Li1Qe33t0xCf++3RzdcFfjZOEZGiiquXDU7QXhlXzuhhcNX6enPIKoU9yEF0ZO8vRnlRKzU ZPVDCOVE1VovnTy5M1sRVQviHzuNnLiX3c9StkyW3GaWRDXE05VF8jxJ4c9tPXlccP1MTA90 JfUlZa+oUWJs/GSxkMZdJksVVzUcoGYd5LiQYW1pNx0sHuNPSSNLzPJ1efoziGrJxuF3ShBN Za7xQDot9V2usv1xwehzZvZ6e9w0GVVjvQIWmnbKndmCqFoQ/wxJNZ2gvOrQTQq2msplyW1G jB1KDLLLhPbeHqqFiINM2GUzc4yJ6tLuazL2M37Mbp/3ByPjJ4+FPepyWaq48jZ/bfmUMXba aT6vWJr0tZayqGB5jD+luuu109OfQVRLdqYS1RQpnUmdbLD8nQ6ALIOscgZmrNdDKU/uzDqi akb8dzxVR9wP3U85KdjIVsiS24xPVN92mrfPrDOo6yzl899/AvavrTZRtvWIKK6/mWVwYjTU vS6/zVasCWzIuu63/4TyvMxw2UeeGOyIcaRb9Hse6wLR7h0/RSzsbKGQpYoryrjVUxkKUVVg bWk3Caxu409JGUvMCnV5+jOIasnQRKI6O2I8UKSchFLflmGo9qha66WVJ3dmLVE1Iv6x/ZTE /dAdLGUrZMltxiSqQcc1Cdz8d0xUAzn7EMZACjfxF77d7ZdJLdFv5ZTCc/b/otynlMyKynbb QKnGo9+X7UWLOnHb4kzKY5pjrjA6xHoSNzJ+iljYWUMhSxVXGrdp8VsKUVVgbWk3CXxmiSdu 5ZaYgahy0a9cnhBEWgKXb5Euo2qtl1aevHPWEdUPvjo8Yztp8TjyZEvZGllymymJ6gacPVHd 8MWIeCUJZUzOZvXCFptERjW5GpJY4p91zP3/6b2q6UyroE9LtOctJan/itgeffvCJSbkg+Cn iQXL+FfFlcBdmv6k8hhr6QM8XG3Hn1LdNdvp6c/IqJYsPY9D98etdFTXbeaidGxrvZTy5M4M orpwosRWA4IPazosuc2IsfNhV5tbM7Y8iU9U42X3PAYRUZ0JWSrTus5grkE/JrAx3wt6WNwI kmzPS61kNnet53ZbAEXHUfDTxAKIKqGzkRQhjLGt2E3SPK9ESUkXS8wodckPfR9LB1EtoU8l qqkMhuIwlZljW+ullCcnPW0SVe2e3UP3U04KNrIVsuQ24xLVj8bzMvVmnyqfqMZL9BSitdQ7 7SFN7l3NnebnZVrbIKpHWD8zzdGoMwx+iljYxatCliquKONWT2UIRNW0r1XYLYb101d9rqZ8 XVGZ2ybkRegs/ZPrPp7+DKJKsQYliExPJO6zNXLHtj71p5Mnd+ZGiaqSuB+6n6VshSy5zeRE dcFlTQD1RHUe6OJl/twSeGnpfGM4Xka1iaX/neNt20DdOpHE9Dm53x9Ss8lIq/FTxMIetsRh PGKCQhVXlHGrpzKUMbYRu+lgVa6Qciu3xKxQt6c/g6hSDE8JotXAigv/86DKnblRouo2QfkQ tbOvY5HbjElUY9K42ebAI6pHh4FiPM/YoyqfeK5ja0v8tuSSeZgq3lJycJiqf/x0k+1t7yaX pYoryrjVUxnSGCvHeg+FpSwO0JWJquv4FEXCtKXJpl/b4wmiSvExUhBRBKGMvHNulaiuCKXp i2QvX9nuJdTtbZTJktuMSVSn4vEy2qfjYxLVQLyS95hGezNviSxrNiOYXhJfij/vPV731Nl9 ok7XU+0OhR1fT5XHerHb2PjJYiHdg8tkqeJqtKGEPMbKsLa0mw762kTVe3z6oOHpzyCqFK8j BxFF2HeXkTuzFVH9bvwlrZfbjE9UJfrlByHC/aispf9QE/2FrOw9qjfZIyB22FAkhQEV+FGQ kpZRxZW00la/wxjbqmXIenn6c3dElfKeNhlZakEEERWpYjm5M4OoFsF1KiC32ZlENSQFb+Un V9lENZ9V3cCfy0h21JcAP6eAeopVxZWvakXp5uNwR3FRBOdLC3j6M42orjrz9xLX+3WS7Uk3 yz0K4ve0rR0FQWSGqNyZQVTNjMAUJLfZuUQ1ZD/vlGvlyPeovoArLd/ls64k8se0j19x4OeH 7TLhsRwvswfblI2oMg5jjFVa6fzPzf151SQ2Ud1lDeL37Y3w2p86TZysze6jMlLiPS4R7lE1 rnJUcXJnBlE9yyfkNjubqAYy8HqR7Cz01vUSiF8Laq50AH5+BlHFVUqtwiMOkpZUG4dBVCXm aeobc38uE9XlNOn7HsNpCS1/MtbwYMBbMe172sb2QxCZASp3ZhBVMyMwBcltdj5RnfeUJg9V MUFQFyfu+VTXYy0A+Fkj+sl/aDOqpXE6+j15N/BR6yqOwxhjvdysmlzVOFHQMpFRjTOXL2fP PTNoT1T3s7jQisxdhcU76xb9VaelEURmzi53ZhBVMyMwBclt1gJRZTYWxYFAJQRUcbUbD+Nx mjGOZ9prOw4XQMUYW8nr/KrR+fOxXnuiyr4UO01Ut/taIiXmO/s+e1u3+3R4r7xwTuGKTYQg EkMXfyh3ZhBVMyMwBcltBqLKhBrFvwgBVVyVxunE78v5klzCKf7/K4/DGGO793yVP3MzqrMz x0tlyVdalkHomtmjmieq0UGDnQyb10tS7eY9dbaSgCAyCyK5M4OomhmBKUhuMxBVJtQo/kUI aOKqNE6Xfn/DPBPakDSKiarfOJw0McbY7j1f48+lxu8yqmQHD5JLRHW+THvJnL6zpokXT7ak 1uY97VLDWb8jiFhwHRU+dOZnpj19EhZE1cwITEFym4GoMqFG8S9CQBNXpXG69HuAeUncTCui yb2rxuPwYd+OfmIEt69KVPnvYeeX/t+Z2VxGdrZOHBB+MzlkVM8PB7kzg6ieZT25zTAAnWUz 1Ns+Aqq4Eiz9Z6+vSo7PfuMwMqrt+6ZEQ5U/FyrMHqaiv+dM26Oa3gqQ2gdTeW8MxSLIqFJQ IpWROzOIKglgh0Jym4GoOpgDIgdBQBVXmTfcP0v46bfssUd1EOdpsBk6fz5uUOYe1fV7uhMR FVxP9RL8qn5PVPOn8dOnDTnvaa8bjVP/Lfm03JlBVM+yo9xmIKpn2Qz1to+AKq7m5pXG6fXv 0/a7eSse9TBV/gW25VDWtG1gvUerePtOwR5IBrXvsEUTlq5biydPpf/+VEi78F8AYeo1i7df l/arqN/TFih89AmCyAxQeecMompmBKYguc1AVJlQo/gXIaCKKwlO7OeC8y+sxdWH8R5XQEqM Ms43nv7sSlTfM671HpgiSV0Ml8uqbsza3MtU2xmsKnA3s2VlJ/AGrfT0Yylo6B1XTpLcmUFU S9bx+l1uMxBVL5tAbv8IqOJK0nw2Ua04DiMZJLGo+Te/v79imZ7+7EpUl6WG58nCZ/vfywar e1Q3twKQSZWeNJEtQgqi9J4gGVm1lPVq5YdEy9+X1mMud2YtUbWcRMSe04tsmZ5ym4GokvsY FPw6BFRxJUFLQFRf2wvyY4Z+THhmph63O4UkyfqwY7i0CZyUdA89JUbPf5Na9f7wFb5dPf3Z jajaQnqyNApRTV3VJd23YynrlZ0OE4PrbXpOcnVVGBtWvvPuKN20v0lGlDVE1YP4RxOAz/1r +pfQoslafLCx9uRH1QFRYofth/gACPSPgCqu+m/+tgWkfsKjH7dI4GQSFy5jgo3h9yvWiUPs zBVrT38GUaXYnRJEKVJ6eC3XQcWWsmaiep92/YY/7cyxU6JqTPw3lutFtkJPVQdEiR1KDKIM EBgMAVVcDYZFuJO9mFFV9GHJnOfrUJg6gRNJN9Zzr/vrudyje3CPHCR8vz5Ut83+rg/JcfYe e/oziCol4AlBNM9Qki96pa/vOqrWUlY0bX3cTTOqq4CJ255poNyZFRlVY+K/aVovshV6ym02 z5LKAxAlBs3LtL80Z95kE4Gj4aadvH8SAK/HbagrHqq4MrFlQ0Io/YSiD0sTVasETiTdWM/U GL5dok+9LJa3bfr8T+ZaUMaqsKc/g6hSYpUQRJbk0lKWH1HddvCkw28zb6m/9O+H5/OwgdEE JXZFS701suQ2a5WoeiwhUjqS3suMhpvFsq8cE1Vc9e5K+86uOKHV9GHHcFlMVj41+Ok51ZHY Z7yc+1llSJ8H1nevgs4qZghp9v+nr6J6+jOIKiXgCUR1dqAkYUncW1eq01LWpi5tQK6dNlo+ IG5zkDuzPKPq2XH0Ilujp9xmjRJV96W5UoB3+vtAuC2Du8G+fQUmqrjq1IWyahPGWE0fNgpR zWPw4hkRsdz5p9+LY57+DKJKCXhCEIUlzmt8mTIjbb7lk4ayvIjqbqM1beYld2Y5UTWdRMT+ 4japeM6eG5j8yG3WKFH1tBmlP+m1zEC4me3bV2CiiqtefSinN2WMVWBdk6h6jjdFohowik4r b0/358ZpbqZ1j6inP4OoUgKeEkSZJ+2o+5W2asiXk3wDcuXku06jYaJqOYlILFmZTVA8ZSsw UHVApNihBKFdGb/MjJ2OLUoaEzfdKpMGE1VcteggGp0o/YSiD/MdFyPpbno+kxephFjqxbFZ rXhcRkZV46Ztf0sJorkFlgcNLGW94NV1yhun7ymjajqJ2LHJ+YCazRVSnrLlkx/VgEqOnXpd gIZc1NOyvZrGxE3XJ2owUcVVe+6h04jUT8j7sKpE9YTxJvk0bnLfKTdzSktAzexHfP6k7DrI qJYxavjkMkV5rzL97FFdEPAg/tsJAPfUL80ylnrLZKk6INIAREPCrJTbEqKZhm0KGhI3HVHV LPOq4qpND5FrRe4nZH1YXaJad7xZHlaKz8IsmdPUiu48uUpcZv7et73+jbF90dOfQVQpoUUO IoqwUcpsZ2Y559/lCMWzLsUe1VEgP6kdqg6oxdjxXJo7yUZVqh0SNyVRVWCiiqsqBq9YSYv9 RMXmq6qKbwJ4nvq3eE0M96iqLFP5YwRRBvBO7lGt7C6jVacaUJuMHa8lxNEsv5tmOm5zOQs7 JVFVLPOq4uosuLzqbbKf8Gqssdw1US2S1KVuUmJpt72vkJcWJ6HKeCCjWsYIS/8UjIhl5J0z MqpEiM2LyW0294jF+xHNFSYJ9FhCJFXceaHRcNMS1XnYXwh8uO4qs9yaMroqrjr3op36zfYT HQC9Iqrv5funL6bvUv34rEXW9YWQpz+DqFL8EEFEQYlURu7MIKokgB0KyW3WMlF1AAoigQAD AVVcMerpoijG2C7MdKSkpz+DqFLcA0FEQYlURu7MIKokgB0KyW0GoupgDogcBAFVXA2CwbsZ GGO7t6inP4OoUtwDQURBiVRG7swgqiSAHQrJbQai6mAOiBwEAVVcDYIBiOo4hvT0ZxBVip+A qFJQIpWROzOIKglgh0Jym4GoOpgDIgdBQBVXg2AAojqOIT39GUSV4icgqhSUSGXkzgyiSgLY oZDcZiCqDuaAyEEQUMXVIBiAqI5jSE9/BlGl+AmIKgUlUhm5M4OokgB2KCS3GYiqgzkgchAE VHE1CAYgquMY0tOfQVQpfgKiSkGJVEbuzCCqJIAdCsltBqLqYA6IHAQBVVwNggGI6jiG9PRn EFWKn4CoUlAilZE7c4ao/v3z+PfPX1LdKCRD4O+ffx7//if7tt17VIXtwWdAwAgBeV9opEBL YjDGtmQNkS6e/gyiSjEJgoiCEqmM3JmRUSUB7FBIbjNkVB3MAZGDIKCKq0EwQEZ1HEN6+jOI KsVPkLWjoEQqI8/OgaiSAHYopOqAMMlzsAhEjoCAKq5GAGDdBvQT3VvU059BVCnugSCioEQq I3dmEFUSwA6F5DablMEkz8EiEDkCAvJJ+witj9qAfqJ7o3r6M4gqxT1AVCkokcrISY+WqMre 4yY1SvjWd33ZMgzkNptaiNihmRmlvg4BVVyNhhb6ie4t6unPIKoU90AQUVAilZE7c56oXm8/ hbqfBO1dbpJ1uTyu91+SzseFepEt11NuMxBVAweDiEERUMXVaJhgjO3eop7+DKJKcQ9yEMky VmkVWpW11nbRscgTV5/InVlBVCf7XS/Xx4aX/twel+t9yoUq/3qRrdBTbjMQVaV34fOBEVDF 1Wi4kMfY0Ro+Tns8/RlEleInYZAvsjF5xmqvQquy9iT1MmUmi9B4EtVHhsCuVU2R0pm43aav lX+9yFbo+eokREg1OwBZTgRFyHT60Si4ebSDN3H3HNi7cy5yP2FpN0tZMeKesqXW5fkntxZP fwZRpViDQlQVGaudCq3KeioaHDIQ1Mv19ridnVGd94ceE85Z3zh7msKY4gtRmV5ky/Us43sI GyV2BLjrPrGcCOo06evrUXDzaMeHmFAn7p4De19+tay89JsMypBUl61mUsvy/ZNbk6c/g6iS rFE5a6fIfu2aYynrTVTvz0wkf4Ymz87lbVAKEDlJKztHL7LFepIGkAOctN+XTcAvYTkR5Nfe 7xej4GbcDunEvdRv9esoAs0p/YSl3Sxl7Xiq41YzEbTyxBKnOk9/BlElWaKcVRITgUT9rcra q8olqmUc8+Y4mCyUOjkHsv7WsxfZQj31nQ9hkkeKQcNCQiwMNehT1Ci4Gbfj9y6buMsn7X26 z7HWhH7C0m6WsuKGecoWmF7qn9yqPP0ZRJVojdKA3Sq5tNRLTVRLhPLQFkcdWYEAp/ajmh6m irYetChbhIFmYvEypoUMYpASi/nGBFGJDouNgptfOzgT9/bi4lyXLONhaTdLWfuEqt9WM52N OP7JralsP67EdXkQVSp6JZJlOYtqVdYOK57jl8i+asYdMMtuDvPYk7YmYtN+XZf9SJZ682UF e1lc4aWzOzVA6eU8Bym6Fv2VHAU3v3Yw+sPSeNKfe6g1LvUTlnazlAWiOiHg7M8gquTwqpi1 E2W/Mg2xlKUiqtoZV3lp6Od2dAOB5ynMXmQz9Ax+Y3F9V/AZ506MHMKvgpYTQXblHX8wCm5u 7aAT1RIp69hL5KqX+glLu1nKilvsKVuObuiI2ddJUqvz9mcQVaolQrlqWTt+9ivfDEtZu7kj 2fH12bkyUV0CMbovlWNflH0iEB5EMLi6642ndpJibBjXyZuxri2JGwU3t3ZQiUBj8dCMj3Wa DNqnVPdXH1ptB1PZiuqf3Er8/RlElWmTelk7Rvar2AZLWevKiI5vkp2jENU5fQeyWvSHowLW JPXFfY+2ZqgUFnzsOXkTqNPNJ6Pg5tUOWn+on7R34zB8RbtMBqUTOD7bwfiQfr6g+Se3hhr+ DKLKtQqIEBMxK+JDJaovsjrtGzXNCjKb3V3x12TGMpO6BeF4klcbMK/JW+121K5vFNw82kEg AiaT9to2r1tfn8mgDFkN942bPdettQPBP7lVVPJnEFWuYebyyNrRYLMiqaE2DlGlaYdStRFA 3NRGHPW1hIBlf9hSu6x1QT9hjaiPvHr+DKIqtqB/Bkqs2ukfemADonq6WU0UwCBkAiOEdIZA vUG9M2Ay6qKfaNuOdf0ZRLVtb4B2bwRAVMdxBo+JzDjooCUjIQBfl1sT2Mmx8/ryHJuAqHrZ E3KNEXAmqmETf+U9rT/Tiza/xijxxU0dz/2H/1kDXwA/iRGWgcbiflxJ7fimMgIn9GuVW9hZ dYg/icFAVCWo4ZsTEPAiqvEJ4DpN8753jtWKaTDrjbgAP5aFd4WX9+n9Ds7ptMPXegTO6df0 en+HBMQfz84gqjy8UPo0BDyI6kn7oKaTkrd7vVzq72+5rt/77VFRJZ0XAT8dfu+v6+4zM1Ia YooInNSvFfVCgS0CiD+qR4CoUpFCuZMRsCeqZ12X5EkKt22Kl5lCx5h5EKEy+fs404FOGY8b Ez/L65IYsryvl8HSc+TF/ku/tH7N4qoihp+xRw9P2VRl+H0TVfK7nHf8sRVq8wMQ1TbtAq12 CBgT1cOLpT3hDx2wz5LrvJx0W+83TQyK2Y7RGF83CEfEL16mDQOkdB8pX5bPhd1Yej4KAbel X1K/9iGBm+6CFbN8P6OL95RN12K+EjE3seeIKZT1iT9DBRsQBaLagBGgAgUBSyJFIDvzM4vL Zc2X3Zv329l+/PsyCD2/jTu6I6K4/uYn1M8htPEyUqTjakQKGZf9nlTf5cI8JuvB4Pnvc9u/ CL/Z16JMt/TJRZEs6yVIX1+i9BZ9lPHA/bjPeMfhNFm+TYfqxERV5GdEq3jKJqqwFKtDVJd6 OH09qxFDFAZRHcKM39AIQ6IaOsLDHnrJaC1F4qzkPlMUiN+brMZLnan/3tWdWqLnvay1z6am dH/6SYYE0ZYMBb52iElMVLft3mA7jx2pp1g7xy9lj9R79BTohbIsD6f1+bKQ5VIzQ5bl0m+x X5t6s+mmkWXNRbn0L/QzigvPMR4nB6TxQKowV6gWUQ12uconDao29vExiGofdoKWhi9TFTuF o311yQ5zRWwLe/KShDLxTXZpMFl/bt9b7v9Pd8DpTKuB6x1isieqGx4ffTsifnObkgNzZj/x gUnEsggkh+QJXb7VbrnUzJdltfRb7Nc2BtQRVbGfEZzIUzah+lWRqJ9cr7K9Exk8idnSVvFn pE5rYkBUW7MI9MkgYJVRLS/7JzvKl1bJbOSaEG6zKXHyNDUo5TvmaDloJm2pTOs6A7yG75jA UnSzcccjTPhENd620Dt+lgOzXFY5Lsq+UJBhuaQ7lCyLpV+u/UBUy/6c2Jb0ukAl5X9lgUdT TLezCyq1GvkYRLURQ0CNEgJWRLUsR0dUP+2Yl61nYvnJjKUyghSitcia5CT3ruaWqHiZVmlm 59POV3tX/xux4T0mfKK6PTC2LJuVlgpbxs90qVOxbPoaDEqRKM4KKXTb1TmYLF42NGWBcr+2 /UpHVE19Nm6OpW3Fzhw+XPVNiZUC661S6vhTtbXtj0FU27YPtHsjwO2IM9BRllg0S/+7ardk kbp0PQ8EqQ32pa0Hm/p5GVW3pf9DTPRENYlVT/ilbKo6TJXIxO8OBO7jQ0uWSt/Ls71pXU/f LpHoYsRtpPRLR6MB+3slUbX02bhdnrJZI+rRHlX7/aul+GGpPlhhENXBDDpucyoS1Xkm/TkR uyWXzMNU8RLRwWGgT6ZwqZ9OVHmZ09xpVusMwWeOEZHuDSY8onp0mKpf/Pj7GvNxLpelGyjL S89iEmdJCJuVVcbvsG+vTVSfh7HimLN54U7uw7bjH3elSle7Lv50dbf+NYhq6xaCfk8E7Igq 6VWozcb5+OqQ7Z7LOLMTL4VvrzadbhxIZreifZw3Tkb1ufyduMlgOZQ1kd71b9l9tvzDO1T3 zGPCJKrZU9K948c4KV4EXSZLN1AS4tNySXdAWaql3ykuSP3a23eUGdVZjszPiu7rLpumQXpC vyQRbAj5Vg9d/FHb1Gc5ENU+7faFWhMGQgoq7A6dIpRThpg5YS1dh/rpS1HZe1Rv92noaf0P +HlZSDVQUjJ6lku6A8rS4s8jql5eNLDcZ/JCfPdsARqV/QeGfR7dbksS5TJ4O9G87hEYhaiG 7OdtDrrDPzZRzWdVN/XkMpKnE3i6gwI/OlackqqBkkJUTZeLLZeH25ClxR9ElePtzLLOJDVo o7I/szm9FQdR7c1iX6vvOEQ1ZD/vJaYqIKrlS7zzWVcS+WvG94CfhylUAyV5omO5XDyWrDr4 e3jO+DLfW6jeL+YtN5tYZldV9h/cBCCqgxt4nOYZEdW/fx7//vl7OiyfF2JOVyUsrJSJcwtq rnQAfvYG+fvnn8e//wnlkomqUP4XfKYiKo30a19gJrcmquLPTas2BIOotmEHaFFEwIioNjOg GrWniFupAHHPZ0lM9d+BnzXkKqLUTFxZo1JPHvCvh3WLNans32KDDHUCUTUEE6I8ETAiJhhQ PY0E2R0joBooEVdqywN/NYRdC1DZv+uWl5UHUS1jhBJNIACi2oQZoMSwCKgGSiw9q/1CtfSL iYIa/7MFqOLvbOWd6wdRdQYY4q0QAFG1QhJygEAKAdVACaKkdirgr4awawEq+3fd8rLyIKpl jFCiCQRAVJswA5QYFgHVQAmiqvYL4K+GsGsBKvt33fKy8iCqZYxQogkEQFSbMAOUGBYB1UAJ oqr2C+CvhrBrASr7d93ysvIgqmWMUKIJBEBUmzADlBgWAdVACaKq9gvgr4awawEq+3fd8rLy IKpljFCiCQRAVJswA5QYFgHVQAmiqvYL4K+GsGsBKvt33fKy8iCqZYxQogkEQFSbMAOUGBYB 1UAJoqr2C+CvhrBrASr7d93ysvIgqmWMUKIJBEBUmzADlBgWAdVACaKq9gvgr4awawEq+3fd 8rLyIKpljFCiCQTGIao/9/vj93RMpxep7j+nayFRAPhJUCt/oxooQVTLABdKAH81hF0LUNm/ 65aXlQdRLWOEEk0gMAZRbaoz+rk9rvfzKTPHvYAfBy1eWRW2IKo8sBOlgb8awq4FqOzfdcvL yoOoljFCiSYQGICoVh7Mf3/LJPT3fnt0w1WBn2skqgbKyrZxBeIk4cD/JOAbqVZl/0ba4KUG iKoXspBrjEBrRHXS53JlkTxPUvhzuzxu75X8aVn/elllSw907YhgjI3fYrPLZflHl+mWyVIN lGQ/kumW7kzGkvXd+FOHi8Xmn76O+p2mnKWf5fVQ2V/TvA6+BVHtwEhQMSDQGlHlWiV0drep FfZ/oYO7bHrumKhOdU5E4npN7Y01wtW+WZHEkfF7DoRvG4aJhZSsymWpBkoSUZXrtnev8WR9 L/7UzuNDGOsRVUs/O26nyv5UCDstB6LaqeG+T20jQkUaUD/oziTwmeW6bDKo6yzl899/JjKY LFsgiutvZhkcQhvqXpffzv7XBDZkXfeZulCelxk+9L1AiF/t2RHjSLfo9zzWg+M3YxbZYNo/ fElOLAqRr5ClGigpcaXQbdfqAWV9Lf6EwezdN0yT/VvNjKqlnxVD91o5U0wAvpEiIKqNGAJq lBA4gagGsrAmgZv/jolqWLL9EMZACjdEI3y7SwOklui3ckqo7LOp4YtERnVOSqfJz3bbQKnG o9+XTODSzFiHODMR1FlhdIj1U/dR8UvZZR4gOROWp10UstyJkkK3ndcNKOtr8Sd0Ob/TTSnL alTlpX9LPwNRJVg6XQREVQwdPqyLQANEddPgPVHd8KiIeCUJZUzOQjc8Z3ATBCVJXDKENEdU w/aJxL7adKZVYN1Ee95SkvqviO3Rty9cYqI6CH6zzePsaSqTQzCJRpY3UdLoFjd9RFnfij/B rVdF6hJVSz8rtVNl/5Lwzn8HUe3cgN+j/glE9Un4Xkv/W57EJ6rxsnu+E4yI6kzIUpnWdQZz 7QnHBDbme0EP3eGdpe5ke15qJbO5az232wIoOo6Cn+VgqJGlGigJS/8a3UBUi+m4x61wfUer +PPGMBBVHl5jlAZRHcOOX9CKM4jqB9Z5mXomi6+9hHyiGi/9U4jWUu9UZ3Lvau40Py/T2gZR PcL6SYIj9joMfpbLiwpZ3kQ1ufXkhC0Ou85SgZmlrG/F/9O3fm69eJ8LyGz3qXaYytI3inMN 7FHNQQSi+gUUb4wmnktUnznD1bVPeqI6D9zxMn9uCby0dL4xMi+j2sTS/85Jt22gbp1IYrqk exN7Pm0y0mr8UrqpDlMlMvKEg1nuRKmRdu5dLeEbwP942LC0JWuAqptRTfYbUt8AUWVZel0Y RFUMHT6si8AJRDUmjZt9gzyiOhOoTHbg8/8vxOmMPao2GYot8duSS+ZhqniP5tD4WV6BI5fl TlRfW2lOvoZr32/JMbOU9b34c0aSykTV1GdL3B8ZVWRUObGAsg0icAJRnVCIl6U+hI5JVLP3 mEZ7M2+JLGs2I5heEl+KP6/VWjPQ7D5Rp+updofCjq+nymP9zIgms4Kj4Ldth27PsEyWP1Ga PfP0hw3Sndv5en03/tQhpzZRtfbZfDtV9qfC12k5ZFQ7Ndz3qX0OUbXDOXSwhOuGWEv/QbuD V6ci5bP3qN5SDwHYtdxGEvCzwdFpoCQcpvLWv3f5KqIC/Hs3/5xcsFnZ6h6KXQNAVMez6aAt 6p2ohiznrfzkKpuo5rOqG0fIZXQ7GuCAn29oqwbKjvzIF0W5dOAvx26EL1X2PxmA399fVw1A VF3hhXA7BPonqiH7eS9cIcM7DPRCt7Qcls+6ksifnRGVkoCfEsDDz1UDJYiq2jTAXw1h1wJU 9k+1vHA3tRSs7QMxqUdrDLeSPZUEUZVaC99VRmAEohqyn68XVirDl6yOQPxaUHOlA/DzM4hq oARRVRsG+Ksh7FqAyv6ViOr+9pXEDTPZ8xhy84CoyrHDl1URGIOozntKCVcF+UNL3PPprwiz BuDHBIxcXDVQgqiScc4VBP5qCLsWoLL/3PLXrTHPu7enrWbbG2Si35N3cx9BGL5fn7OIDseu Ntiqr+yL1ABR7dq1v0l5AkGZljqKm9ExoH6T06CtDARUAyXiioF0uijwV0PYtQCV/XfPZsdX HaaW6DNXIWZQTN5lnXuu2/iuWRDVrl37m5QHUf0ma6Ot9RFQDZQgqmqDAX81hF0LUNm/9HhM 4vflCsNVhnS+u/rzOtg26cN77ZBzGw3FaCCqFJRQpgEEQFQbMAJUGBgB1UAJoqr2DOCvhrBr ARr7z6Qz3lK2ej2s9PuOWMYPrjy3FexXLHmvIEoNBKIqRQ7fVUYgTVR570RPKmNArWw3VNcL AocD5TPbkt1ag7hSmxn4qyHsWoDG/iUiWvo99XLi9nR/7uYYbqZVZiIQVRlu+Ko6AsioVocc FX4VApqMDiaAelcB/noMe5agsr9g6T97FeIMYkxMt89jf3BGRrVnn4Pu5giAqJpDCoFAYIWA aqBERlXtS8BfDWHXAlT2fz1N/F7ySB+mumR/X0OXIp/czCn9xUSK0ZBRpaCEMg0gAKLagBGg wsAIqAZKEFW1ZwB/NYRdC1DZf275+rqo6dL93fVU2+ukbrf4+qpXJvXyuCYepkmf+n++jBgO Ya33BeHUf9e+COXFCBCIKkU2BlQKSijzhQioBkrEldpjgL8awq4FqOwvaXm8XaC0D323HSBf Ke5RlRgE3wyAAIjqAEZEExpGQDVQgqiqLQv81RCeLkDz5r3K/pKWr4lqkaQuFeSyqpvq8TKV xBr4ZgwEQFTHsCNa0SoCqoGSTFS3y4+pJUY6Pq3KerVg0a/4CMmzeH/4y9pJs6+lbWk1cktZ v3mvsj9X+VB+RVSXO1U/d6i+/j13HVXep233pr6ahT2qEgPjmxMQAFE9AXRU+UUIqAZKElF9 ko/oQIeMrLYqa0vewoDfDlG1xEzeznJIeehZrpVTYp9Z1L95r4o/jvIdlgVR7dBo36kyiOp3 2h2troWAaqCkENXdJeLPrE58UTmlwa3KmnR/Z6eu05POLWVULTFTtLNoXmM99/W1+ea9Kv6K oPZdAES1b/t9kfajE9X2l7radLbRcOMtF6dtIsNENVBSiGrqJPDq9RyWf7UqayZw9+nYSfjj 2bIr/BXtLNrZ0ra7ytp9815l/yKofRcAUe3bfl+k/chEtf2lrjYdbTTcPgSTuly8t4scE9VA SSCq+ddxpqt0fnke1qqsbSvaIqqWmGnaWbK0n57PDP76fft3Zvj8N+9V8VcCtfPfQVQ7N+D3 qD8wUXVf6hrUSwbCTbpcvE8Y3R/XS0T8iHcaqgZKENVEkIGoSnoeT6Kal/0iqtFhoIpv3qvi TwJ0R9+AqHZkrO9WdWCi6rrUNbDXDISbdLl4Z10FJqqBkkBU51PG8X7UAZf+PzZpi6ia4r9x PF47iz2SpZ9ElRWJaqg7Ws6o9ea9Kv6KoPZdAES1b/t9kfbjElXPDMLIDjImbrpBX4OJaqCk ENUUKSVme9OZ49VybSjQgiwFgesKf0U7i32SpZ/ElcWX3L/8JtoO8Pms3pv3KvsXQe27AIhq 3/b7Iu1BVL/I2KSmakgZqYJTCg1MVDPvkY95PVVwHp4tVUSFMlEwxX8dHLx2lsNKvs9aKvuS JKp137xX2b/c8K5LgKh2bb5vUn5couq3JDe4fzguEZ6HnHLQV2CiGihJROlD3l4XistI6ss6 stsN0ra1lLXVj3owrj/8Ze2kxZaHPdJ+08qb9yr700DtthSIarem+zbFByaqnktdI7vJkLgp iaoCE9VASSaqIzukrm3AX4ef+OtG3rxX2V/c+D4+BFHtw07QcrqZ8Ca5GDxGrskB1XOpa2TX GRE3JVFVLO+qBsom46ov3wf+J9mrkTfvVfY/Cbpa1YKo1kIa9SgRGJmoWi+JKqHu6nPPJcIz gNASVbkvqQZKEFW1swB/NYQyAY28ea+yv6zl3XwFotqNqb5d0dGJ6rfbF+0/GwHVQAmiqjYf 8FdD2LUAlf27bnlZeRDVMkYo0QQCIKpNmAFKDIuAaqAEUVX7BfBXQ9i1AJX9u255WXkQ1TJG KNEEAiCqTZgBSgyLgGqgBFFV+wXwV0PYtQCV/btueVl5ENUyRijRBAIgqk2YAUoMi4BqoARR VfsF8FdD2LUAlf27bnlZeRDVMkYo0QQCIKpNmAFKDIuAaqAEUVX7BfBXQ9i1AJX9u255WXkQ 1TJGKNEEAiCqTZgBSgyLgGqgBFFV+wXwV0PYtQCV/btueVl5ENUyRijRBAIgqk2YAUoMi4Bq oARRVfsF8FdD2LUAlf27bnlZeRDVMkYo0QQCIKpNmAFKDIuAaqD8++fx75+/w2JTo2F///zz +Pc/YU2YKAiBa+czVfy10wwXTUBUXWCFUHsEQFTtMYVEIPBBQDVQgiipXQn4qyHsWoDK/l23 vKw8iGoZI5RoAgEQ1SbMACWGRUA1UIKoqv0C+Ksh7FqAyv5dt7ysPIhqGSOUaAKB/x7//vPn oV5cxBJlE9aEEu0hgKXnc22iIiro1841nkHtqvgzqL9lET//+7/H//vfz+PSspLQDQg8Hsio wguAgCcCKqJEzqj+Pu7Xy+NyWf653n8VTRpLVh38FXDjU1cEVPZ31awB4VP/cr2BqDZgCahw jACIKjwECHgioBoonwPJsX5PYjkNOMvfFNNisjqeLC3+NxXp9/QsyKYgoLI/pYKey4Co9my9 b9IdRPWbrI221kdANVBSiGooc7k+Nnzq5/a4XO8Pdl51QFla/EFU68eMZY0q+1sq0qIsENUW rQKd9giMTlQtlzG/yX9Gwc2jHYvMdwKz4Ba6gZIQnylSOhPO25RbZf4NKOt1YISJxFK8+60X cas94kGE7OojXjxxa9PFH7e2zsqDqHZmsK9VlzAQUrChZH4ockzLWC5jmirWuLBRcPNox2eg r0NUQ33HhDMMxLvsaSozSvC68WSV8TuEhdSvWfqZpawMSTXZIkJwJlIRfjyRxK5p8BQf1Fjl yu6+PIhq9yb8kgYMTFQtlzG/xBteWSSzpeQzcTO2/0ziwmGliTjeqmVUQ1LveKAdj1zunUbc RhLRPHBSyveWfmYpa8dTDbeIGMS1NJ64VZfihytvqPIgqkOZc+DGGBFVq9sDLJG2XMa01Kt1 WaPgZtyO3/v9uZTOW6pULT0HXymRJct2DiZLT1II/WOrmMX9jKWeBn2YNJ64Vavjj1thT+VB VHuy1jfrSuiISfAol9hIdfAKibMwvGqGKz0Kbn7t4BBVi7goyEjtR1Udpoq2GnQrqwL28zyi za0X+4SqnZ62nR4nnrg1W/gAt86OyoOodmSsr1bViqiWlyhrw2w5gNTW/cz6RsHNrx2MgbWU DaUaOpDF7EY7y32N48gK9tfdJ7sYp5SVtfQzS1kgqoTVCGr8jVoORHVUy47WLjuiWlyirA1d Y0tdtZsvrm8U3NzaQSeqJZLDsdHP7eimAcvT3APICgOw5HqulEFKkw1LP7OUFbfFUzbHkXdl 6fHErcYy/rh1d1EeRLULM0FJ072ljS2zWC6JfpOnjIKbWzuoA6t1PAR50X2p3+SX5LaGBw8E V3Nl5Xe69WKfUt1fWSbd1kG2BaUgNZ4ostZlrOOPW38H5UFUOzASVJwQMMyoBjwPlyhrA265 jFlb9zPrGwU3r3bQBlarpeetJ4CsHkeGNUl91tbl1osdU12e2W3qeqqgIy2euD2iT/xxtWi8 PIhq4waCeq8eeLpqR/CCzQF+x0uUtYG3XMasrfuZ9Y2Cm0c7CAOr5dLzzg1ebbLMGp7paxZ1 +2PS59aLDFkN16yJn9m1sFec+aQ/oEGq3TX+SBr0UQhEtQ87QUvjjOoMKLI+8KtvRsApq/fN kDbRdvRrTZihqATirwjRqwCIKhkqFDwVAQ+iCrJ6qklR+YkIYJA8EfwKVYOsVgBZUQXijwUe iCoLLhQ+DYEQ2MsyUPyP/tk5/+W402BDxUBggwB8/XscArZuz9awSckmYetKapwPe5YvpY/x OxAAAkAACAABIAAEgAAQOAOB/w/27FVX1CyOZgAAAABJRU5ErkJggg==</item> <item item-id="374">iVBORw0KGgoAAAANSUhEUgAAAf8AAABjCAYAAACVIgkyAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABNMSURBVHhe7Z3rseQmEEYnAeexMUwW m8TEYWcw0cyvm8kNRhZ6AgJ1I4GENMdVLnt3EILTLT5oXo+GfyAAAQhAAAIQ+CoCj6+qba7K fl7N4/FqPrny25DP5/1ufjc8l/eR3+b9PpNC3tp8a2740rdaPlxv/OEO/tC2zc9H83zHVQLx T7JzD/TxOlfwft/P5uQizNTajtCagyXhJfHhBPClw5FX/UL8oWrzJBfO2DM2UEX81TiN8D+b lY6UOqddCX/fzevAQvz+yvGF3/frfC47oGrquCP7eh/Fl7Lb5tK+hD9k94dSGab52ad5BSLV iL/SOp/Xo8Bo2xglrUNRUmjdOvpho5Wylmg0Ck2tbK6j0k/6ZEOE6NFGidp/a42M4EtJRl0k PsaXtpaRtqUnl85hK/Gm5jarbaOfT3eqGPHXWNoYtYo4uxGVMmsNuvCQU8fAnFHAgaYPzHMs DdbVNAU+pH111NbInxoyjU+NHQB8SWvRULpjfGlPCVOfvas/XFv8c/qZycseiCD+4jey/6Po 5136UeDDGenbjjn8/6ftoQXTmgHlsvc2926t/Ls8UjoJfljIHbnanQIz2lmOZHNMifQiOTFq pxLcuSrv98PrKDrKMOg37L1ojunIbO0cGZuPXBZ5eHbyfo/7Hb7k+FqtvqRwOdoWCVJJ8b9a m+W284i/5Dum8d0z6vdHsM6fffE34jeLthFaRzSCEYhQeN7NR66iP+qfQ9cLoY8I2b5pEakO 0u9SDU2/aX8d5beYKGNA6DsBT+mMjW/qG5fe/XwGy8Wnjr+s+t1QzoVf18EZX1J5Wu9rtl/R tgTAlRJ/6VuRfpdtXKLNshd0Iv6CDXavfl0NXy/F32mPvWeDzhDIP7rCMyhCsS0hsb8Pf0zh iIDs4F2KECP77yqpo6Y2HXt/hN5xT1vbEeUyFiJoS6uzIEyb4EuzNc/4XjS+JKahbRERLeb8 7Uja1LFWZOMnuWqbZQ1mEf9Vu+8P+fuLv9zBVrr4+yPxuNh4I83OWUMRAXt0acNY7xT4g0Z/ Pinlc5LqIP0+vatwHTV1yin+wbymoEBoKsG2mTsloLFXLZzxJY2nzdGgcUqRtiXELTC1Om5g 2topN3G4aCe/b3el389rs2ZNQ/xXv7PWcYS52i7UOs1Ve//vtbhz2nEUmC7+/sJDjZP1723f GZzbjIXF0iICqw320NuOzZ5IdZB+74MH5euoapIzhv33if9c2qXfhadBauGML/W2o23pOezx B2fkH5g2jU4x3bjN+rx6/UH811r0vfP9wbxtUd0v/mLI3BnMh+ae84z8jw77R7fVSOFwxyZp 0Q2V+Ifev3XB31pYN6me8yhxjBxpw/5ncMaXVJ4WSETbsoSyNue/Yz3AhrD/Gd9SyJPGqWzE v7T4+07ihJrSxL9znsgirfnvxxWogQVmhef8t6+LDG+PmxczSb9bRixYR12TnHOrn9sxcwU7 ccGfH+LElwZznvO96HxJSEXbosCYGtlUZNnHI7zTXn0/kn4/r81C/DU2znR4jR++m0UyUfyj W/28+d1X5O6ByKrz8KrSITRspjRsVQ+OYnNs9bPr0IalFlv9zq6jxmHGNG5Zdx3y4yxQ8jt0 61v94n7XxVIXh34MQda+URumsl740uIOj/3fS4ovraelbZFYhsS/F+pd36XdARi3cF+kzUL8 JZ/pOnfHHqUrF0m5ADEWLo5uOdOHv6L7/F8HXzR0eB1l61wrBb402QtfGkayiu2oh7Nq/TRn 2yLM5Rf9hg9nF64N4q+xcnXib/ojinP0k50stg/egxQbLZ7B6eg6avzlYmnwpTHynxYp68cF oXMjlN9LpX5ye384U/iNzStpsxB/zQd4hqiJ5fq0IXHhsp0NTjbOYcXn7ePRAVWjIdYrMcHB dUws3UWS40udofClsRd067alP89huTtr+1qlxM+8Ej9D/DV2+/nb/Pn7o0l5aJrf93sxD3lo AZyXKQTkvMLxZoEAvoSL2ATwh/v7w8/ff5o//7HVb93SVY78u6GKeP7AMS6snDc+pjC8ZRMB fGkTtts+hD/c1rRDxRj5ayxcrfhrCk8aCEAAAhCAgEsA8dd4BOKvoUQaCEAAAhC4CAHEX2Mo xF9DiTQQgAAEIHARAoi/xlCIv4YSaSAAAQhA4CIEEH+NoRB/DSXSQAACEIDARQgg/hpDIf4a SqSBAAQgAIGLEED8NYZC/DWUSAMBCEAAAhchgPhrDIX4ayiRBgIQgAAELkIA8dcYCvHXUCIN BCAAAQhchADirzFUheL/aY/2FU7219RsZ5r2ZL/3Z2cePH42AXzpbAvU9X78oS57lCoN4q8h W5n4j0bTFL14mvaSiv33YRcvJS+IEMCXcA2bAP7wPf6A+GtsXZP4H1yW3185vnDKbX4auynT aOqozOpayfCl7Pa6tC/hD9n9oVSGOfwM8ddY5+CPYq1IJYX283o087WW5rKehzWqj1/l215q 3ryk64U1nO00sWsvU/Px0m+u46b39gzH60PLRkhW7BMd9b+a3GYbX7WZM760ydNyPHTPtiX9 u9jM8mJtFuKvsXSJBknz3kWacrfndXdcOxda++LfFqbl8HyG1hoUuAGswIe0r46pBhuEf2Jq GiG7M5WaX+70+NIeosf60p6Sap+9qz9cW/xL+hnir/k2UsXfiGTb0HcjvoVYuqNB//fO2OOz j6c7MlsTX/uZj3n/q73wV/uP+UDs9F4ZrU6BGdEtR7AmvVdW7aundL049nVv83q/2v/aZfJ+ P7yOiRXqfMBjYjo0wc6TPu+4f9iN3PD/HSOLqT2Dgy/Nvla7L9nuQdui/1i6lCXF/9ptFuKv caUk8e8dotdLf/TsjwZb12zFdBIEf7Qb+rMzOg+9Y3RIvfgve5ehfAdQEQFzw7waqE6LFphi MKI11iE0BWH/Lr8vRx3lt1gpQpy6hltvl8X7Vv3DF3+Xj+NnXZvYdkTwpUEcKvclr4NM25Ly JZYSf6lNkn6X61C6zUL8ZRt04W71nPZauDrY+FudBSHUHXSGwDP96DAgMsH3B8L7HZPY34c/ pnBEQAN3ECK/vHa9KqmjsjY9PWMDf5QfigakZLrqH0vxd7TdexZfmsGf8b2kmH3Wfj8aZuVC 2xJB6rVXduRkGqRtsEboW7xYm4X4a+yeIP7BRn98R3DUbIusG273B2Ymbz/kHhcZT/w7xwyN cOxIxdpofPytL6OmbBq060LZ16GWOmrrU0z8hw7ZOC3k2iBd/PGlwaIh4Sz8vaT40vTlhTqU tC0CysB02Dj9taMzLrVJ0u9uh65cu7wGB/HXfIWHif9cmC5MO85/D84aGq1pnKzPq51/Ds5t xsJiaRGBUMdkqs3Q215Emae2NzZK1ov/EXXUuIrzUQdH/jvC/lYBlv6RLv5+2B9f6gFX50tr 34la/L+zbXHm/ANTXdHpyi9osxB/TYueIP7dXGpsXlcKzS3K4gqwNlQbLUPS+9fF3xfyo8P+ Z9RR4ypuhycQfdm54M8tg22j/eIfZBrzZ3zJc4e07yXJl2yBp21JRLc2579jPcCGsH9tbRbi r3GlFPHvVpfOYXFXsBMX/PlhqZVFWvMobmXBX+E5/9jIXkYc3hbnL/g7u45yPewUBbb6+Q2O 4x9p4r+24O9szjkWj8brIPmaZcOC30uaL03qT9uSDC41sql9geRH0u/n+xnir7F1kvi3GTqL Svww7/pWvzmc24f93a33sX323lqBVyT6EFltHl5VOsy1m6kHuxDRdQt7t/rZdQht9Tu7jhpH 8dO4Zc5xyE/cPxLFP7rV72zOObaN3tGXpti/tX2TtkX+KkPin+vMjWv7GeIve0/aan9NfpvT GGdTzBknhWpNYfThr+g+/9fBFw0dXsfNRqv0QXxpMgy+ZEYs39G2CHP5RT/WyvwM8ddYO3Xk r8lzYxrVEZzJTjaM8qW4fWy0eAafo+u40V41P4YvDdbBlzoQt/eHM4W/G2OlRWR7m/gnrwZa lGgUb731uZz457jQILlBPkPcooX8tKffCZftbHCycV9/XP/j0QFVo5EMXXjg4DrmLn4d+eFL nR3wpbEXdOu2pT/PYb5rI7xltuCXWZmf6cTfKnQMYAmQmy8HyW2/qsTf9AbfCUf35obh56cQ kNJFIP/NBPClzehu+SD+cEuzBiuVLP5OLjsOSZAQL8Mdga00G8Md0rsXv1cm/t0cfdYtY8lE hgeU84Rbs+e5AwjgSwdAvtAr8IcLGWtXUSPiL11YMLb9gctLdhVnfNi8f89FM1kKMWdSnfhn rh/ZQQACEIDAVxEIiH/ChQSFRv7hRQ6RQzSCW89sG2bY1oH4f9VHQWUhAAEI3J3AUvylk4ts Iiviv3pQh7MP3j8nPu1Y2ZRtapuNifhvRseDEIAABCBQH4GF+GvO956qsUn8Q7cs2QfE5Llo JoTaPyDFWfm5ts0N8a/PcykRBCAAAQhsJlBW/LuT5ryT6sTLFVKPY4xFCjYzWT6I+GeESVYQ gAAEIHA2gaJh/+k+88ixsn3lfbFn5H+2U/B+CEAAAhC4N4Hogj/95R7hM939Of/wGoDQqJ05 /3u7HLWDAAQgAIGzCUS2+kkXFgzFXp3zdzsFS/GPr8Lff9GMjZXV/mc7Ge+HAAQgAIG6COgO +dlQ5tDpfNOaOvGM5b0XzWwo8NojzPlnBkp2EIAABCBwJoGF+D/+fTjl2frnbmV9q/bd89ac v/nz07qqNpZ/yQsNkoEj/snIeAACEIAABOol4Ii/EWJbjPf8uRP/Ib/Ho58CmP88XK4w/d7v 9Xff1089bLloJjtuxD87UjKEAAQgAIHzCCzE3xRl7ACc/d/zsHhvRvyrMQUFgQAEILCVwCm3 wm4tbOHnJvHPNeIfOw978ytc77TsEf+Bl70QtJ2+ka4WTqN8w9Twko0KI5nRzVPErrrdWe1q boXdWY9SjwfF3x79jy/eOve/9flSFd6UL+LfYhsa6WkeJsMuik3GuMpD8JItBSOZ0RekKCD+ Vd0KW6kJi632r7S+24qF+A+LNr0zHcRLlbbhvsVToW2w8HJNC6NbuHp6JaRbY73fP+b2WPuW V+mNld0KKxX3pN8Rfw14xL89iLE9qvn5bsf/1j+rJzdqwN44Dbxk48JIZnS7FNKtsdLvMpC8 t8LK77tqCsRfYznEv92t+YyIf/iERw3WO6eBl2xdGMmMbpdCujU28HvnJ/bI/2q3wlZqRMRf YxjEH/HX+IkTFKGzJCFD/CVC9/tdujVW+n1xF8xi6qjc3TB3swbir7Eo4k/YX+MndhpC2jIx GMmMbpZCEnfp92760Tv8xV3VX+GtsJXaEPHXGAbxd05pnJCxgC3uPaH1EPByecFI0/rcK82G sH8n+NEFf8fdCnsvQ5gm/dkfrne3imWtD+Lf4mRbVppPwUvmBSOZ0d1ShG0+i7v0u83jIrfC VmpCxF9jGMR/oMSBLBp3mdPAS+YFI5nR3VJIt8a6PvF6hUb+R90Kezf2VuvEyF9hXMRfAYkk EIAABAoQ8MP+V7sVtgCSHFky8tdQRPw1lEgDAQhAID8BW/xF4e9fX9WtsPmJZMkR8ddgRPw1 lEgDAQhAID8BS/z7Pf/DrbDWf5e3v1Z0K2x+IllyRPw1GBF/DSXSQAACEIDARQgg/hpDIf4a SqSBAAQgAIGLEED8NYZC/DWUSAMBCEAAAhchgPhrDIX4ayiRBgIQgAAELkIA8dcYCvHXUCIN BCAAAQhchADirzEU4q+hRBoIQAACELgIAcRfYyjEX0OJNBCAAAQgcBECiL/GUIi/hhJpIAAB CEDgIgQQf42hEH8NJdJAAAIQgMBFCCD+GkMh/hpKpIEABCAAgYsQQPw1hvr52/z5+6NJSRoI QAACEIBA9QR+/v7T/PmvaR7Vl/TMAjLyP5M+74YABCAAgcwEGPlrgCL+GkqkgQAEIACBixBA /DWGQvw1lEgDAQhAAAIXIYD4awyF+A+U+msyxys1n+9fDb0vTgMv2fgwkhmRwiWAz+TwCMRf Q7EV/+fywmjNkzdKM3xwE4dP82rv06YDEDMxvGTnh5HMiBRB4acd2u0YiL8GIeLfNIbB49k4 g/3Pq3k83w3j/4ATwUv+smAkMyKFp/20Q7lcAvFXkWxHud8uciGh7xrvV/NRMfyyRPCSDQ4j mREpXAL4TDaP+Lz6wRxb/VaRmvDkd4uc6SUuRvmhkVs217x2RvCS7QcjmREp/IE/7VAen5g1 DfEXiI4hkjzgr5cLDXWazeAl84KRzIgUiH8RH7CmshF/ifC3z/sTbpM8hPBkGqGmwadSiZEe n8niA/ZgFvEXkX556D80v8+Cv7jXwEv8ovpFpN50Gj4lc/vmFPhMBuu7Wob4a5Cahulrt/yx LUvjInMaeMm8YCQzIoUX+O/PGmGr32bHMKN+e4s24q9E+Xk9mq/V/3ZTH4f8KB2lSwYvmRaM ZEakCHYA2nNGzIFjnDWS4B8mcuLtXEP81fxMY+Xtd1c/S0IIQAACEIDAGQTMwWzLXWuIf5It 6AAk4SIxBCAAAQicSCAs/KZAiH+yWcZw5Xfv/0/GxgMQgAAEIHAQAVmnEP+DTMFrIAABCEAA ArUQ+B9DX8hZrqJkBQAAAABJRU5ErkJggg==</item> <item item-id="375">iVBORw0KGgoAAAANSUhEUgAAAyIAAAEcCAYAAAA7ogCqAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAGMzSURBVHhe7X3ZleQ4z2w5MD7c/21s KC/67bMg/RgP0pp6ak/KmLxacpEoUgQY4Kroc/rMkhQIRoAkgov09eAfIkAEiAARIAJEgAgQ ASJABIhAYQS+CtfH6oiAEoGfx+3r6/Hl+Xv7UZpi8foI/NwmLm+PktT93O+P3+ot/33c7yVb bddg4peC5cT399fj+14/8lK8r/5MhXGiepubdoDx3DQ9HTj3c/PncV9TIkch0gGB13ZxEiLf LSSS12YBb/06kc2DTsk/v/fvR+Eqw82bkqveElPih0XrjF9p4Y15XPvpOuNE7Vb3Uj/juRem OvHz9/74phBJJIurNQHgcqyaUIgkRmlDj81x8f0ovjg8DXK3gpX+/sZXv3/vt/I4pEYC8UtF znlu3tUtuwto5HhhM5XGicKt7L+6AvHMHKtwmOTI3QRNoBARgHQowtUaCWq2qyZKIcIBTELR pkz+AWjekq2xK5Ez6d+3ycVwnqgDwqtwcv8h+sSn0LJCRtFUD7/nGP486ontUClszRMud3ZP xybZOLFijo0nCt6Uo+ljOgS67PyaxJe68ucD+r6urilbPDPHUnNh+IBt7iZwjEJEANKuCFdr dIhZrZpIhQgHMB0/+9LZBqBZGGJZQ2Kz5njIswq9YLVrk0fMBSdqaTwnNtvssRHxc8eI9f5Z mhjR25rjJq0uM1LbNSQaJz5JfvqQoudNDlpO23IvHtMNvOBCiMZMpKx9PDPHMqQHMGWVuwlc oBARgLQp0udqjfXqjNKeyaqJJHHjAKaL5lBp6wFIkMzOMfJ6EcFhxXgfb1/O76t4eq0+OjsQ Z0Jg+8zPXL9GsLgYOT5uMqR5zDgmnnljNYzJNjl5/vvS9gvht8SaEydzApyyU5Fky7p/2fT6 +lbi48Q7rqfFhRuyI5LEmxChnLaFLqzFygiRtR7N2HneCOZYKpKnwsp8TGPeJHcTVEghIgDp VaTL1Rrr1Zk0e/iqSVyInA9gGTtrMIRaOz6gwMByAHoOMuGetq5Ir7m7u6tw3OFa3rrxShrd I3i+/z4sm7p1vN7IJp9Mj7shPt+fLQ4kubIJVzE+bcepbWKww8QVIrMA+bR7h+2Sy/h2sjrH z8fHkjzK+X+zkmirqcv/CSGW5ZHoODGNDtOb79bXXIBjayJvonbntC1y4D0QFNkRWdiwehkI cywVw28R8p7jkN1df9V47iZoEoWIAKT3wHc+UTW5WmO9OpNsD101iQiR0wEsTTxJIyPQfd9n hNs4PqDHwGoAik5SZ/d5vAniRrhE7gJ5BYPnmeCRNG/9niNYm+TouPvhX5n075RgUbc8fYrJ UYjs4tN5dkT8lja5ux++cU1ARbItQdItqH6oItFxYtdaTIgk8yZAPKdtQfWbIs64s911fi/8 6CwGS5vEc6c7Ysk5kQH2RepGczdBOylEBCCtkn95vdjZnyZXa6xXZwB7uonGRfpMiEQGsCKd 9ePvOILUYgASTi6hYzHe3YStENjv8rhd1CemwomCs9CwJOX7HYOV5e0OzjZOzwWKxDfhaBQp doaJXoi4wqp3/CwTxXRb8X5hEwu9WNHiQSESZ9ZzDPP1Qr9E4R2uU8ufxxJzrDilh7TIc6Q0 dXf3pHYsdxM0i0JEANKiQzTfIWhnkEyfKP24QPYEA02YjRMhErMLiCdZdOxLjSRIdXHvQyt+ pM4bUy9TUSHyqfPzoaTP+X/fir4kkV5tTXa8d0dCZ691OyWpO07BD0LNoslRO0dM9ELEtdk7 fsuOkXdHpNzRrEXO3iq8yjplQCvyTHyccEZZ7K1ZljFQKTmM07Lp654TA9ZHQ9F41s014+ZY cV4/JaB8TFdRdCFeY+5QlkJEAp9W7Y/bSbDA1+K45SY8UcUGMMxnSXyEygwQBzGRF4NH8jxy NOs4ou2+ZC09WhQ8zhQ7GrarX7cjku1o1ikmuBDxYhXisEX8fD5Bl9U9O2mCi++xcSvWtYb6 XTJOePpa8rFXyxhwichpW0X62WV1+4vsWDxrc4MB5lYVl/7C5XIbLT/KxlGISADreLXGeuUH tJe+ahLiIN5BynXWw4wErdpZ+p1uK47vaQ8SJRj7o0578aC8rO4eOTi5bP1Z6T+5rJ75jkhy InUGuisKdpjohMjZZfV+8dPflwrDnW4LS9wk81ZHZUTjxLY9WCKa95JvekzYMqbducVqx+KZ OVYS+mA+pqkzPXcT1EIhIgdJUPJZBBwkLVdULG3NrQPtpQ9WoYFKMIAZdlbNsZim3uwCYAAN QFO8iL5qvsTV6xWy7hGZ/Z0H91iNy8n+0x6hD8g59yhu830Qz9GcwHlb707L0j2erxLeOhE8 XpbvaE4YE6UQmdvvXd3vHb+9/9h3PdJspY+F8pmom5LSceLdIHCOXeyk8SbDNKdtmQf+1/eu iy5YvIdX55MXVkoLUTCP2SFgaUtK7atcwbqzjlcUIgLmS3eS1wBp8ko269UZzF56MAcEh4Sb gp11H03gZGnpN2ArnbNVuIqEiKAbphUR7uiojhbNnsiPNgS/I3K7Tz299T/ELxdDUL/K5VQt u9XHiVoNL1jvc7EnWSxEXIXiWTKP77N/6LSB7Y4YlhNhEVCubojfWCMpRGIIpSRTYAJqvlpj vTqTbi89mAEhYirsBPFitmpnOcik20rnLKXvaPCVlf293x73WMavFiLP3Y/YrB7aUego8SJ+ sjjTloL6lbay1st31B9ah9LrX2YRMtcJxbOa/9FzLE2UpedjqlpUL2zSWF7zhPmttF/Kx65V XN1JrgWPprXpg1VYiMhW3Mt01j0WYwyW6Zy1IUTm3Yt7TIkkCJH40bvwrokoudd0rKxliV8O eKF+lcOhmjY5x2ZF/31k9H38dT0GG1tH0TgFxTP510BdpSzEb8xjCpEYQq0kUwI/OyiSHsz/ Pf7958/jr9tGDmDZWU/nbHLt75/Hv38OrGX3+Rgmry8yF6/aU6EgsW/BzY0Pn1dSt+BYf/j5 UPv755/Hv/+1gGcDPjQyTjSARLcuQPHMebx53qE8INK6n//9v8f//Y87IucwsZOYdZL0YEZ3 RMyacDlD6Zy1JOIFLzUowqzwzkURXzSVED8NWpKyUL+SVNBTGc6xPbHl9RWKZ/LfPP8QvzEh 8vymEo9mnQHF1RqzTpK+akIhYkaC0hA0AHGCUaLN4ldBAOpXo4HEcaJ7RqF4Zo7VPP/puVu8 aa83c1KInGHFQTIeScIS6YNVQIhwABMin14MGoDYd9KB55NDI5A+Fg4IC8eJ7kmF4pn8N88/ xC93RAz4ZScxAHE1kR7M3BExI0FpKJ2zhfDKr+9VNpbFiUAhBKB+VcjHYtVwnCgGda6KoHgm /7loMbML8UshYsADO4kBiBQiZiAWNgQNQOw7hdlidb0gAPWrXhop9ZPjhBSpZstB8Uz+m+X1 5RjEL4WIAb/sJAYgUoiYgVjYEDQAse8UZovV9YIA1K96aaTUT44TUqSaLQfFM/lvllcKkVao YScxYyJ9sOLRLDMSlIbSOZsqYt9Ros3iV0EA6lejgcRxontGoXgm/83zD/HLHREDftlJDEDk jogZiIUNQQMQ+05htlhdLwhA/aqXRkr95DghRarZclA8k/9meeWOSCvUsJOYMZE+WHFHxIwE paF0zrgjooSaxS+EANSvRsOJc2z3jELxTP6b5x/ilzsiBvyykxiAyB0RMxALG4IGIPadwmyx ul4QgPpVL42U+slxQopUs+WgeCb/zfLKHZFWqGEnMWMifbDijogZCUpD6Zy1sSPyc78/fpVt ti8+fVH9/mNvtoBF4pcHZKhf5XGpnlXOsfWwN6oZimfyb8RCPjMQv9wRMSCGncQARO6ImIFY 2BA0AFXuO5Dv1jj/3B7f9/qSSNMs4qdBS1e2KWx1rtuXrjxO2DfoehaheCb/zQcMxC+FiAG/ 4k4yrXp+fz2+vta/NknHavMGLaZa+5VuLz2YuSNiEMlJJtI5q7wjIu63SbAcHvr9jYuM3/vt 0Y0WIX42gRGwAvWrrJ5VMF441iq0cPgqoXgW85+ee4QJaDHH0oRLDkyO9UP8UohoCA3OGIKv Qz+D4a0YpsQZFiOfAEsXItZ+YfbSg9lKiFgMOm6c5BwILG2n2UrnzFKIzP3pW5XE50z6f27b xYEV18/Cw4mv4gnXYNwCTYyNX1pf8EOaZgvqVyC3zT0u7hdpWFvyhmGXY/6JeWSJ2Uk6f/9O XzAV8Y/lHrEYaCfHivG5/T0HJgGkEH4pRDSkAkJk6kjfbqI0HcX4+k47nz5PUsvOyvftcUN2 RIz9mr8LgbQzffK1ECIWwi4gQkwF6KsOy0Em3VY6Z5ZCRNuP5/beHtBGYnA4mPrmbtZyhcja 7m9v3w/EsbZ52cuPjF96X/CsE6674An9H+pX2fkvXEHxRNQyBqRY5Zh/YnWXaycUzxL+wdzj MHO3mmPFKN3pECwf01UFCE0KEQ3UgBDxiY6l46QlQ7/TBds1iQJXUIz9eoD20gcrTIiYCbvj aAYJs9PotBx4AVvpnOmFyJun5Xjjdgdku8vw/PefuX+9jkI6uyVnQmD7zGJD00fnurfl96uN W4Ey75ocj2fO5XU7O/EYeWJwED6Ob87vYawjQqp3/IC+cOACsAX1K4NprSkTpRNRgLcU3LLN PzFnCrYTimcJ/2DucZy6G82xYpxufzfG5KxqiF8KEQ2r6UJkGWjcRMA3CKjdwYSItV+ovfRg RoWI0aDj8pdzILC0DdhK50wpRGYft0n+7r9dITIn3x9BMCf9u/43P3vYa/cdodrbiXXPJf6j dp9WAjui+2NdsRrPfl+Pf67uuG1zV0If0xrCBqNTrCdzI+MH9IUDG4AtqF8hYdPis6UTUYC3 FPjMFha1lRdsJxTPAv7R3CMMXVs5lobifJgcvYD4pRDR0EohEkMLDfz0YMaEyKdd2KBzXFXJ JUDn0z12thFb6ZyBQmQH9lGI7PSAk1h7BYObfC/uzUcgPTsi3t1MzxGsxcfQ//ffFfHvlMR6 nud3T3vepbz+b4TL2bMvXFzBNQh+SF+w7P9Qv0oIl6YfKZyIWsaADlfb+SdWd8l2QvFcmP89 bhgnJTG2HH9iseOrK/0ezXltP7f1lMCX1qlLlRd0EvTIUi61bu4XuMKSPlhRiKw5r+dMqKAz IoNlOmdKIfJM6F9vndsPenoh4h6LCmPgCJEl4fbtlGx3ILagnwsUd/Ce/bB4o563PS+3vLsx Wz/3x7YkPo6CH9IXLBMBqF8J+nxXRQRzbCu8YbhiSa+2bkvMYnVD8Szg3zyX+azaYG8mBXOi GK6nvxesG+I30kgKEUkUSDqJbwUSuKz+cQscuKz9Au2lB3ObQiTf4DhFgOUgA9hK50wrRD5R vxwj2t0T0QsR9wiVJJFe651WZ7x3R0Jvw9LtlLQhRM6wfu4UOepkGPyAvnCYLgBbUL+SzFs9 lZHMsQDWlry5tj5j1efV/a/FlNAxzlwryznbGQsnKJ4l/IO5R7bF3mx+xRB/LUx6FtISX5J0 ViPEL4WIgMxYEUknea3mJrw95bx6UIiY+4W9hSM9mBsVIjkHIUvbgK10ztKFyNontgk+LkQW YecewwodUYodbdp1Wt2OSBNHsw6Dzr4N0qNtXkwX6nwvAbDZUYLxA/rCETZPO4ULUFC/is1Z vf0umWMb4Q2DFp3PlbVbYhapGopnCf/mucyrQSgnWE6kZNQpXq5uiF8KEYzmNR+6C74j8kmc +EHDk7WH5HdRNypEsg2Om3gyEbfpAxY0AIn7ztReVxTsjqHphMjZZWv3Vas17ojYrIjuE/u9 eFBeVneP/J1cVu8fv/S+cBzZ0m1B/cpgWmvKhGicSMfakjcMNzTp1dZuidl53VA8i/i/Uo6l 4Xl/zNbi2K+vdohfChENoYGy4k5iUNfgJtKDuVUhkmtw3K/W2IjbtAErnTONiF/b6x5z+CTs SiEyJ9be7WnnbsTNs0vyXHzwvdbXu1OwNPP53Z+twgje08j0+t7Dpft9W923+oWxXnkbG7+0 vuAfntNsQf1qtHlCPMemYW3JGwZ9aSGSe376oAHFs5h/DH0+nY4AxC+FSDrw7yfZSQxAXE2k B7OVEDFrymUMpXOmFyJ2oM4TvuD7IKqjWYtUEn/hPfgdkVvaR07tsJFYIn4SlJAyUL9CKm7x Wc6xLbKi8gmKZ/KvwrpGYYjf0YTI7+/0jq/Sf9hJzBBPD2YKETMSlIbSOaspRGbRe1teCXj6 Ry1E/Be5D3WEdhQ6GkuIn7KjKItD/UpZl3Vx83m4o35hjeUo9qB4Jv/NhwHEb3Qalry+dzNZ v48gvL+uu39ThM3Z59Xr/Ye/3Auh8pVJmGF2EhjCl4H0YKYQMSNBaSids7pCZN69uMeUSIIQ eV2iD4914bFJlNwr+clXnPjlwxbZHQ54Ffk2TGpbiszDnGNT6WnmuX7niWYgbNoRiF9rIbKz 515wNITxeBbb82aa4DlmQ0dmUxwkzQBND2YKETMSlIbSOavfdz5fNFY2OktxQWKfpd50o8Qv HbvYk1C/8hnPIESKzcOcY2Ph0vzvUDyT/7H5TRMi69tY3u/xn444hN8sY3jx8u3sXP/2fLdz 6XKzFAm/ylFCPzuJBCVRmfTBikJEBHCGQumc1Rciy52ODO9U18MsvHOhN5z5CeKXC2CoXy1O xeZp53fvt3HOWldwHuYcmyvMitmF4pn8F+MptSKIX70Q8R2B8n1leE0yvuePf8XOYStb7n8z TeBd/dF3tq+DMfRKM3YSJYPh4unBTCFiRoLSUDpnLQgRZWNZnAgUQgDqV7tv7GxFyWsBTzGP B9prOw9HQOUcWyjq8lUDxTP5z0eMkWWIX7UQUX/0yy9E9udKHS+WOl47Lu6bbc4/DnYUFAXu irCTGIUyci6aQsSMBKUhaABi31GizeJXQQDqV7F52vP7er/T8ya5ZUGx8jzMcaL7sIfimfw3 zz/Er1aILIOVe5TBO1Cd74gEhYhj67jqYvP1XV+73ffmf8TQJIrObtmzk5h1kvRgphAxI0Fp KJ0z7ogooWbxCyGA9KvYPB37/Q3ze1HQFSL55mEvxZxju498JJ55D7d9+iF+qwqR5WNh685H MM8/iJzQDod2p8SQWA6SZmCeBvMSC6FYoRAxI0FpKJ0zChEl1Cx+IQSQfhUTGrHfZ5jXhbnp RIP37ojxPHw6tnOcGCHskXimEGk/AooKkWl0Om7fnr7iMnw0672zEtpRWcafaQdmp1LyrcRw R6R+sKcHM4VILfbSOWOCUYsz1ts+AlC/is3Tsd+38Hjn53zzMHdE2o/NFA+heOZibwrkRZ+B +NXuiLzekf8RB683b4TOlsruiByOaj1XSJYVmd1ld+3OB++IFI1GsLL0YKYQAaFPfjydMwqR ZND54PAIQP3qeVk9PE8/3zT5XuSLzeO8IzJ8wGVuIBTPFCKZ2cHNQ/zqhcj8xPZ1uZNQSHh9 789tLzDCl9ePQuK4S7K2Yr1s59zn4Fuz8AgraCE9mClECtK0qyqdMwqRWpyx3vYRgPrVOiM+ 7t9nr9nfv/b+thyVll5W951WQObhCB9MRNsP2CiF3+Ej+LHWkf8YQtV/j49X7uJH7L8/TXrp hS/rVvq+xhq6J3IUKfJdDn5HxJq5vPbiwRyqn0IkLzNh6+mcUYjU4oz1to8A1K9Smnd6xNoj UJbvlMhezw/Pw0xEUxht6hkonsl/ES5/f9O/tQHxG2ldViHy3jbenkE97GD4B7vQroizVPv4 LvGxMnEn2a9AQd8u2a12gd9BeYO2+nf2grDzeJFPTCE76cFMIVJkpPJUks4ZhUgtzlhv+whA /SqleWohEt4VMZ+HxXNsSsP5jBSBaomqmP/RcywpU/Fyvs2AT06qz+VyjldZhci6Ffx8M8dG iL2PWHl++8AbS5r1QMapC5QQdRL/mdw0MWJp69WmTwe+phCxHMDcOOnFdpqf0AAk6jvJPZMP EoFuEYD6VUqrE4TI6/hXeM4wmofF40TaGHYOVyzXSAE7h58pfoSfaSpRFfFvmRdZ2rLMsWw4 Pi7ke+5ezxsEioX8nONVNiFiA2cjViSdZNn1cbaxo/dXwsLHzNayKP28W/N9e9wuuSOSY9Bx Bh/nUmiaAA0IHBPb6RhAA5Ck7zTSzekGESiJANSvSjpaoi7ROJE+hoWbYLFAl3PczgN+c4mq hP9L5Fgz368XS5y9XvssLubnt0ct96J4+5ZazZHKnOMVhYikn0s6iU90nLy2+LRaS1uLELlP oT3/QVd+8NWv9GAGjmZZDmCHOcdQgOa0DWCQztkSfI/b/rV4kh7HMkRgeASgfjUaOpJxAhjD fHDZLdA51o39PPo+YKIq4d8yL7K0ZZpjuTsXJ2+7C4wB/msNgbfRKhbLc45XFCKSAV3QSRby vV+kl13227phaWvfPGshshkQhVt86cEMCBHjQWeHaS+2AT/TOWtZiLR/dEIyNJUvMxpu6Jj4 WeB5fbxXuhsK9avyxOetUTDHLt84886xvov2cXftFuicuoz99M3h+7P+88q5HIMmE1UB/5Z5 kaUt0xzLc3xyFcwbfpcyr7fllXvtds7xikIkPl6JVnUtA9vSlmkn2b1FZT+B+we3I7jpwZwu RPLh+Tz2ZiRAjxsibYjbdM5aFSI5jnhIBpLey4yGm8WxnHRMoH7VeygdB7vozmm+cdxCjH4a lM/PqQ5JorrsyLwSVfflNIGV8edpiaOIlp+CgOKZQmQJoHDsPAWHc8rmmHfl+xApxG9kvKIQ kQzogk5iulqTbUUFHXC3g5JzDlF4DC09mClEniPV8S6SIIaRyTGds0aFSPajEwJCeiwyEG5m x3IATKB+1WP8nPksmGORMewcLnRedJb7DE9HyBenXivjjnA4xGejiaqA/yvkWFEh4hHw37vd sJBw1ApQy0Xk+GBFIRLHSLQjMp+F3wfEc/VCeGRp54alrb1hu9f3Ht64IFs5SZ9804WI6QDm xks20RiIH6HgO4Q14Gc6Z40KEQALyXAxbJmBcDM7lgNgAvWr0YKsdCJqOi86ZAAxEaM1mqjO dTuvONu/HavRRFXCv2VeZGnLMpZ8b7YLve3utYOy47tRockdkVjXFvwu6SSv735UfsNR3pWf zSAm/B6Mb0Un7fXBgBDJNuisibaZAI2udtQRt1DCJOo7gj5oWCTfyqqhkw2aGhM3bDUcwQTq Vw3GB+SSZJzINtZiMXBodzY/n+O/ex/kJFFd38C0vafaaKIq4f8SOZb/qOfhDtD7+J17B1m7 8yFbQJ5jPOd4xR0Ryegp6iQLVcuOg/bSot8FS1uvGtABdxO0Pe2ImA5gB7Wwcm4iQHParnSW Xdx3JB3RpgySPNp40KeVMXHDxkQEk5wTe3cRJhon0sewvAt0OcdtmW3/ZXVfUtpooiri/wo5 1rGN6/f4Qi8jOAqJ0H3d93HU7Uow35rV0VAp7iQdtQl2tZ87ImtTcwi7vcCzEaCBied5+VD6 Rh5LcQslTC32nYxHJ+Bu1bKBIXHDhAhy7BPqVy3HSYpv4nEixzgOxoC3vTn89M83/kR13fnw zRdNJqpi/lOCq/NnTne85vcXuC8kkO9y8DsiPcUGO4mHrf3KSmhwO6TV00W+4kezeoq1Bn2F EqYW+07OoxMN8mfm0pC4gUkogAnUr8xIbcRQi+NEI9BE3XAT1eexnfA822CiSv7DNG/5FR6J F+Vjh1Mt55GWc7zi0axoL58X0/lRNj9MnXxHRMIxywQRgAagJvtOriMeowfRiLiBQgQ49gn1 q9FCrclxohOQt4lqVISsbWouUSX/MiHy4u79eubQd+pi45pcjL734ZIXkeP9iEIkjhGFiAQj YZn0yRe4rC70jcX8CKRz1rKIz3l0YuRIGg232IQt4TINE6hfSdzqqQwT0XS2NkLkfQ9g8x2R +cjwcXckFveFE1Xyn85/oSdzjlcUIhIS2UkkKInKpAczhYgI4AyF0jlrWYhkAIomiYACAahf Kerpoijn2C5oOnMSimfy3zz/EL+R1lGISOhnJ5GgJCqTHswUIiKAMxRK54xCJAMdNDkIAlC/ GgSDdzM4x3bPKBTP5L95/iF+KUQM+GUnMQBxNZEezBQiZiQoDaVzRiGihJrFL4QA1K9Gw4lz bPeMQvFM/pvnH+KXQsSAX3YSAxApRMxALGwIGoDYdwqzxep6QQDqV700UuonxwkpUs2Wg+KZ /DfL68sxiF8KEQN+2UkMQKQQMQOxsCFoAGLfKcwWq+sFAahf9dJIqZ8cJ6RINVsOimfy3yyv FCKtUMNOYsZE+mDFo1lmJCgNpXM2VcS+o0Sbxa+CANSvRgOJ40T3jELxTP6b5x/ilzsiBvyy kxiAyB0RMxALG4IGIPadwmyxul4QgPpVL42U+slxQopUs+WgeCb/zfLKHZFWqGEnMWMifbAK 7Ij8/fP4989fM/9o6IjA3z//PP79LxEZ9p1E4PjY6Aikj4UDIsNxontSoXgm/83zD/HLHRED ftlJDEDkjogZiIUNQQMQ+05htlhdLwhA/aqXRkr95DghRarZclA8k/9meeWOSCvUcNXdjIn0 1XXeETEjQWmIE4wSMBYnAgIEoH4lsN9VESaiXdHlcxaKZ+ZYzfOfnrvFm8YPGsYx4oVbCUbC MumDFYWIEGLzYumcTa5wgjHngwbHQCDnxN4dQhwnuqPMdRiKZwrR5vmH8oBI6yhEJPSzk0hQ EpVJD2ZUiPw+7t9fj6+v9e/3/Vfkr6xQL7bT/EznbEKPfUcWQix1OQSgfjUaWhwnumcUimfy 3zz/EL8UIgb8spMYgLiaSA/msBD5vv1E/Hsm4O9yky0zMdKL7XQ/0zmjEDHrODQ0HAJQvxoN Dc6x3TMKxTP5b55/iF8KEQN+xZ0kbcXZ72Grtrberj5GdcDmkfRgBoTIxN/31/djtwnyc3t8 fd8f8L5IL7YBP9M5oxAxGH1oYlAEoH41GibiOXa0ho/THiiexfy3mhdZ+pUaE/p8TFMTxC+F iAbqQNk5iYtm2+krzsdaW7V1FCHzMacoNDmFyCMgULau+kTHkpjfpqfBP73YBvx8nd9MQko8 wSRZBx5qYeIA3K/26Ci45WiHLhHIObFXC4/UisXjhCVvlrbchue0nQyyeuFQUxMUz8yxNFB7 yn7iTZOPaSqF+KUQ0UANCBFgxflQa6u2no7OAbnctfi+PW61d0SmPY375MeZoFj8dXc/fBgn hEovttP9jON7CptogkkAHnrEUuhDjnT28Ci45WiHPhHIObF3FljLXbJ+F/sCIiTLUeBUZvXx qa0JimcJ/63mRZZ+aUGfyiP5mKY6iF8KEQ3UobKFV92B1etDCyxtvYXI/Zn461YA58fTV9fD HMQ6SHoSHo+dXmwn+ymZIM5gQp+PU6AvUXni0DvcyBOj4GbcjtREIDZuNcJ6GTck44Qlb5a2 Djok41HgBDZS41NbFRbPzLG0eL/K/97T8zFNnem5W7wWvjUrjtGsOYuuuicnjZ62WNo6mtcK kTiOYTpOBqrYJJZBjL397MV2op/Y5LJIz2nXzOAujqifCgslYiG0Pm6xUXAzbkdqIpBzYu8v CAXjhCVvlrZcsHPaTiA2NT61VWHxHM8NLHOZVm1pMd+X1+Zjmtri/GisHbvMeof3CzFyhWdj CVmrgW3pFyxEYoLhNJDOJqpIJ/HdBzG9rO4cDWvRdhIGFoOPhQ3bESZvn7D1tSVro+CWrx2a RKC9flE31uJ4WPJmacvFLadtjCNNfGprivMXs8gcK4ZQ7PeM/EK5W8zvz0kZCpEYVjEiLFdB WrV1wEgX+LGB5pyCyIrZjFnwllaOM+Evb3uxrfdz5svieysY77GOqf+93URB35aST4yCW752 KMbD2HxSkthG6oqNE5a8WdqiEJkQsIjnmI1W8yJLv6C+qBh/lPXE+qbS3KE4j2aJESy46p60 eh1oiKUtSIigKybxrfuf29kbvD6X9fhBQ8FHHee4sTpSFZtgxH3QqGAzE4dRe0qZGQW3bO2Q JwK5J/ZSIWFaT2ycsOTN0pYLQk7bEODy+NRWYxPPzLG0uO/L5+IXzd3iraIQiWP0KVFs1V2/ eh1uhqWtw9qP+HWA+Op6XIisd3mc74Vo+GXZJwLzBx8NXm38xjP/QKaiLqs4V3nSV+FRcMvW Dmki0Fh/aCYKO01ED9Oi59XwVsd1Ia6k8amtxDCemWNpwd+Uz8MvnrvFm0QhEsdoV6Lcqrvl Cr6lrS0cwsA3WV2XCJHZN4oRZUg7xa1FyEvbnB2dwzzWP51TnOu96eeJUXDL1Q7ZeFhiYu8n ptzhp9QR21wx8JqDpl3npl7f+/HL+jsT1vHMHCu198rGH5V1k9wtXiOFSBwjpwQTXR1kVomt VIhsJgLTVX1dq/sr/RKrljshexTOJ5jSiOUS56XbUbq+UXDL0Q5BIlBoYi8dFZb19ZmIugjk iC8UZUF8aqvIEs/MsbQ05ClvlbvFvaMQiWPkKcGOIoPNMpA1QkTmHUuVRoD9pjTirK8lBCzH w5baZe0LxwlrRPPYyxnPjIE8nEmt5uT26AOFiJSXQ7n8K8jJrlV/MAc2FCLVaTVxgBOMCYw0 0hkCZSf2zsDhYl93hJWI5xx5RHdAF3a4DuYUIoVpZnWpCFCIpCLX3nN1Brv2cKBH4yPAWE/n mNilY5frSXKSC9kr26UQuTL7XbU9sxCZ39ZR+E7Jz72FL45PE8v9p6tIeDlL/FJoWxMJi+/D pNTOZwojUGFcK9zCzqpj/+uMMLpbAAEKkQIgswoLBHIJEfftKRa+xm3YvHc9Xo+oxJSs9JaY Ej8Rs8FCywfdCgtvzGM+rUOgzrim8/G6pdn/rss9W35EgEKEUdEJAjmESKX7CtObRm7332K4 //7G6/q93x4FXcLaTvww/N5PlzjnbeQqzSgQqDSuKTxk0RkB9j91HHCHTw0Z9kCZHTwKEYwl Pl0MAXshUut1sjmT/n2b3EFknvgCH3wsnNx/wubEp0BsjYmf5es+FbayvH5zQxwTByeK80/s snHN4lWuijhTzxM5bUud0Y9NUsvvcrn7n9qhVh/gDl9NZnLv4FGI1GSXdSsQMBYip19wVbil LjoPqHm+1bEMFruvVXmSnuDEZ4yvGhfpAyPi506ycwKUeo9Db8v6g2Qrk0wcziI628QuGtc+ SX76x+30cSbt4cfYQfqDvNZjyQJCZO4p07jd29FYBFX9s9zh02OW44l8O3gUIjn4os0MCFgm yoJkdk7Yp2Twa/777V4q36/Wub+vScbzWXcH4kwIbJ/5mevXCBZ3kHB83GQc84rpceLLO9iH MdlO9s9/X9p+IfyWWHN2quaE8hB3gm6VZMt6gskbSwIUOimSA/fzMePdD6fFkNv00oJkIZIU Z0JactoWurAWKyNEeETrnJQ+d/hq7uhlrDvTDh6FiGpgYuF6CBgKkbkznc7A6wrcWsTdVTiu 9M4D5TtpdI+i+P77ULfvCNWciMuFyHE3xOf7k71Akisb8BMi4BQTV4js273DdskNpgR9NPx8 fCzJmJz/NyuJtiwv//f5ZWzLyVthy3Jij45r8+r7fUqvP2NDshBJjDPR6JHTtsiBV6FSQmTd FUnmQtWmzgp3ucOXc7cwxl/+unPs4FGIxHjl740gYCdEooP+2bl2b4K4ES6RM/FeweB5Jnh0 w1t/6Nx56P/7J1j/TokB/aeYHIXIbkJ2nh0Rv6VN7u6Hb1VYQEWyLUESK6g+IBRfT1pOkuPY sprYo+PajkDsjkhynAmCKKdtQfWbIs44ud0lfy9U6SwGS1v1PyN32jATP7nQ5A5fzR29InVb 7+TO08Z6IuCrjcCjF0QghICVEBEObqFjMd7dhG3Cv18NdVe5fElHeOJ1VsSXpNy3U7Ldwdni dy5QJL7ZxOMZJnoh4h4r6x0/y8Qr3Va8X8RjIWLDcpIcypbFxK7lj0IkHs+eY6OvFxAmLhSE 69TyF/e++xICcdbkDl/NHb1CdesWPeKRSCESx4glmkDASojE7XiTuRcGUSHyAWs5VrQIh8/5 f9+KviSRXm1Ndrx3R0JHCHQ7Jakrs592vtq7+aejdo6Y6IWIezSrd/yW42beHZFyR7PmqH1N BsndPZY4NNLOQ/sa8Auf2OPj2r7dmBAxjVmXEEs+koN56RGftwx6jghZH2WF+x/U1vYe1vUJ LJ7TF3COuFna0rJSrO7YWK90nEJECRiL10JAO9EG/JR0IORo1qHavRiQHi1aJnrfHYHY0bBd /bodkWxHs04xwYWIF6ue8PNxCl1W9+ykCS6+6yZ+/wR8ds7dcpIczpZkXDobetXPY4nbdKnh eIcpNWbdduW0rZq+zu6I2N8fQfufqmnNF9buEGHx3Op4oqXJsh3ndWv5ObdGIaJlmuUrIVBQ iCwrYZ83yuzFg/KyuruFf3LZ+rPSv9YvFyK6nY/Q22CsV/jegeKKgh0mOiFydlm9X/zauO+A JULxiclykhzPVhy/04G3tBA5vJ55HbNsXkNr2R+Q6Uq704zUxQvre/S08z0mREx3+Gru6BWs 23IHj0IEGzv4dDEEtANTeEdE9FXz3cVE94jM/s6De6zGPaq0/7THtJLoXZ127lHcNDsi6yR2 fJvU8//PombrRPB4WeBjhwYchzFRCpHgW4Z6x2/vP5bQpdnChIigf1pOkgPagib2qV+IxrV3 XwYTt8VOWpzJhpOctmUe+BdsLAXX3g+s/0nb1Em50sLachfO0paWroJ1W8YrhYiWaJavhIAg 0ZF4pp6wJUY1ZYQrn6qjRXP98qMCwe+I3NzvpWjaVaos8cuFNDSxSBIHy0lyQFso/johkiuK Brb7XJzK9ZpdiP/RYJeMJ7s2o8LachfO0paW2HJ1W8YrhYiWZ5avhMAoQmTepbgtr6o7/aMW IuFdkf14HdiRqS7Q5GFF/ORYaUpCE4socbCcJMezheJPIaKJdmXZzCJk9gbiX9mc5our5yNU iCwMPO7TRz5fHyOusSttw4tlO8IeWcYrhYgN87SSHYFxhMi8e3GPKZEEIfIaSMMrduFdE1Fy n51jaQXET4qUphw0sYgTB8tJcixbZfDXRATLvhBYjr4u9/b2fy13RyD+R6NKPJ6M1vB+2mMZ rxQi/fB+cU+NhMjfP49///ytjuXn/efVXZkcECT2Lbi58YH42RPy988/j3//S7TLxCERuM9j 0MTeyLgGg3BhA1D/Gw03jifNMwqNV07rKESap5sOrggYCZFmBjij9sDhIbxzAddjbYD4WSMK TSzN9CtrVMrZI/7lsG6xJoj/FhuE+MTxBEGvyLOW8UohUoQyVoIjYJR4coDDqaCFIRGAJhb2 KzgmiD8MYdcGIP67brnHee7wNc+o5Q4ehUjzdNPBMXdEyCsRaAsBKBFi4gCTCU3sFIIw/rUN QP2vtvPW9TOerRE1t2cZrxQi5vTQYB4EuCOSB1daJQIrAtDEwsQBDiPiD0PYtQGI/65b7nGe 40nzjFrGK4VI83TTQe6IMAaIQH4EoImFiQNMEPGHIezaAMR/1y2nEOmRPst4pRDpMQIu6TN3 RC5JOxtdDAFoYqEQgXki/jCEXRuA+O+65RQiPdJnGa8UIj1GwCV9phC5JO1sdDEEoImFQgTm ifjDEHZtAOK/65ZTiPRIn2W8Uoj0GAGX9JlC5JK0s9HFEIAmFgoRmCfiD0PYtQGI/65bTiHS I32W8Uoh0mMEXNJnCpFL0s5GF0MAmlgoRGCeiD8MYdcGIP67bjmFSI/0WcYrhUiPEXBJnylE Lkk7G10MAWhioRCBeSL+MIRdG4D477rlFCI90mcZrxQiPUbAJX0eR4j83O+P3+ocTl9Uv/9U 9yLFAeKXglr8GWhioRCJAxwpQfxhCLs2APHfdcspRHqkzzJeKUR6jIBL+jyGELHsvHAY/Nwe 3/f6kkjTDuKnQUtXFsKWQkQHtjf3+n7cUtcGiD+Mf20DUP+r7bx1/Yxna0TN7VnGK4WIOT00 mAeBAYRI4cH19zcuMn7vt0c3WoT45elaT6vQxFKYm6xAVDJO/CsB30i1EP+NtMHMDfF4Mu3s f389vr7WvzYLa6vN5EWBBYQcfknRLVO3ZbxSiEi5ZbnKCLQmRCZ/vr5VSXzOpP/nth0414Ho Myif+Coe8CvTPw/tGUVTffwsJ480W9DEIo6jNN/80TeWrWvjLx1fLJJEaV2vcpZxFq4b4l/b pNbLi8aTJy9vxTDPc6gY+XCdLkRy+CUlrFzdlvFKISLll+UqI9CaENHCMQ8Qt0fqyYuz2uYB 4Ws3arpCZMniH9/fvrspRrhq4VCXHxk/y8kj3RY0sRRPHNLbeQy9NmxdF3/pYGCRJErrckSI abIbkNXTOJ6e/Grb1Xh5yXgyz2nuYuB03PjLO8/F27vMo/POyjRP35AdEWO/4p5vShSsGxqv nEZRiKhYZuF6CBglzJIBbtevn4PTsvW73QHZ7jI8//1nHhhf28TObsmZENg+s9jQCJa57m35 /erdVqDMq/7Hreu5vG5n5zQGloHwicFhQnB8c35/TwQHrCNCqnf8LCcPwBY0sUj6FeDbIeYG tHVZ/AWTilmSKKhrV8QyziJ1Q/xr29V6ecl44hMdC1+a+fMDxO/0Epl1oRDcdTP2S0VVwbot 45VCRMUyC9dDoIIQmTv1dlDb/bcrRObk+zMAzkn/bmVmfvaw3OU7QrW3E8P7uBvyGUgPoiOw WrQ/lhSr8ez3dWt8babbNnfV+fHYYXSK9WRuZPwsJw/AFjSxlE4cgHYeIrgRW5fFXzDkmCWJ grp2RSxjg0JEjr5gPFnmPnexyycc5bU+S2JCJJ9f8YaUrBsar5ymUIjEuWWJJhBoQIjsZ6jN HZFtAv4s5CTWXsHgJt9z+r5sD3tWdLwrPZ4jWJsVnePuh/+uiH+nJIF0T3veVrz+b3A7e/aF iyvkBsHPcvJAbEETS+HEAWmnG9mt2Loq/rqRBksSdXU9x+Msye7RE4h/bcNaL194PNnDgcWY 5Xiipalk3ZbxSiGiZZrlKyFQQYg4b77Y58HHHZHd7x4h4gqD8KDhCJHFlm+nxCOAToWIf4Cd /bB424i3Pa9o8e7GbIXU/tiWqzl8Po6Cn+XkgdiCJpbCiQPSTgqRDQKJK8iW+OsmFCxJ1NVF IaLFy6y8YDxZdsm9IjHtaNbHdzDGsvklQLdg3dB8wR0RAZks0iACNYTIB4blGNHu7oJeiLhH sySJ9FrvdIfDe3ck9DYs3U5JG0LkDOtnQuCok2Hws5w8AFvQxFI6cQDaeRjcGrF1Vfw/Y+vn Nayv17GGjrMWu9RtGRuRWRXiv8EZG3JJMp74dtmBy+pmQiSbXwJEC9ZtGa/cERFwyyItIFBX iKwIbBN8XIgsKzruMazQEaXY0aYdRedC5HjCCX3l4bNy5GjWIcT2bZAebfNiulDnu8Ros6ME H22znDwAW9DEUjpxANp5DDVPbKQmNIBfl8VfNb2Aq9WqugLjRmpsUIjI0ZeMJ68TC+ZvNENj zPItfHLItjnKR8BbvNLY7wM0XjkmKUS0PLN8JQQqCBE3sd4dY9AJkbPL1u6gUeOOiM0K4z6x 34sH5WV198jIyWX1/vGznLjSbUETS/HEIb2dxwGsDVvXxV8zpaBJoqauz+JTb4mdtpXNlReN Jxt++EHDDYX7Y84Wx6598QGNVxQizXU5OiRCoIIQmfxyjw18EnalEJkTa+/7zZ27ETfPLklw Rd9/ZGkt/nzt8FZhBO9pZHp97+HS/fnre8NYP1cmh8bPcvJIswVNLFUSh7R2Btb3DL/QnObX tfEXTQLzQGDw1WtpXa9yaXyqa+F3RD6QiccTLcosb4UANF5RiFjRQDtlEagjROzaOE9mgkt0 qqNZs3cnX00/dPbAd0Ruvg8d2rXcxhLxs8ExbAWaWJg4wPQQfxjCrg1A/Hfdco/zHE+aZ9Qy Xnk0q3m66eCKQO9CZN6luD3uvxE+1UIkvCuyqym0I9PRgE/88o4F0MTSURzlRTHdOvFPx26E JyH+KwPw+xub2JQOcjxRAla+uGW8UoiU5481JiHQvxCZxdQ9pkQShEj8uEJ410SU3CfxleMh 4pcD1ZdNaGJh4gBTQ/xhCLs2APHva3nk20ypYO0/gOu+GEW+Q39aP8eTVHqKPWcZrxQixWhj RRgCIwiReffiPsmRVv4IEvtWXH36QfzyEQJNLEwcYGKIPwxh1wYg/gsJkePbCz1vaAzeh1TQ w/FEAVadopbxSiFSh0PWqkZgDCFidsRMjZ/7gPDOBVyPtQGjOIDd6hW/cMOhiYWJAx5RyGVl 4g/jX9sA1P8W59e3Fr6/dzUdBd6/gdH53fttqjMU5ue39xydl49sXoxi8UrzW+z0QG3CLl4/ Hq8fAClELh5M/TRfkIBOW9HR19Bywu6HcnpaFAFoYmG/grki/jCEXRuA+N9942orSl7CwXeE ahYtgheoPFE97obMPwS+WYV+a4XjSfOxjMXrvnkUIs3TTQdXBChEGAlEICcC0MTCxAGmhvjD EHZtAOI/9nFcz+/rK943QmT5dtPn6/b7Rb3zj+Qev1UB3hXheNJ8LEPx6rSOQqR5uukghQhj gAjkRwCaWJg4wAQRfxjCrg0g/C+iwv3O0iIsVqER+/3wGnj3g7LPY1/HEwfnAiV6QiHEGMeT 5mMZiVe3cRQizdNNB8+EiPsRvPV87POvbxTkAMeAIgJeBE4nludqaTCxYL+Co4r4wxB2bQDh PyY0Yr9PX+59fL4e/5xxb1+bo86hHQ7tTsmTIo4nXcfq7DyFSPcUsgF6BHg0S48ZnyACcgSg iYVCRA50oCTxhyHs2gDEf8LRrEV8BO+IuMJjvejOHZGuQ8zUeSheHU+4I2JKDY3lQ4BCJB+2 tEwEwBUuChE4hKCJnfjD+Nc2APH/vDT+2dV4vSFrf1k9/Pu29b5dDu3OB++I1I6n3PVj8br3 jkIkN1u0b4QAhYgRkDRDBLwIQBMLE2E4qog/DGHXBiD+l5ZvX6f7PX08193x2L9u93bz7Yis AuZ4+fx5z8RzNnO99D4dh97+xrdmdR2LEufj8fqMt3dchP+bQkSCOMs0gIBAiEi8ZMIkQYll LohAfGI5AYX9Co4Y4g9D2LUBiP+UlrtHs2L3NpYL65PA+Y1Xxu+IxDFqocTvr4DMgKOW8Uoh 0kI00AcBAhQiApBYhAgkIwBNLBQiybi/HiT+MITVDbSS2ImA2AqRqAhZLS67H7FXYRX9svp+ l8e3kyPCYm3d4/79edkNZuvdqxebMcjkPqaXnMXhxw/fd2VkItNkvHKaQSGSziufLIoAhUhR uFnZ5RAokwhbTvat2kpLQvrDP62dso5lya2sRm2plhM7UVs2QuR9vGr71smTy+nhxFq+a3Lq o2hhwz3qEz5WFsfD0ta+X8zH1moLkaOA9Nz5UQpIaLyiEImHJEu0iACFSIus0KdxEIAmlq4T hzaSkL7wz5ls5eDDtp+2ntjZtraCNcl4cvjWyeRn6t0US1uTG29h93173OAdkdeLB+bdmmnX 4ufzfRgZM/Pzmw9XOjs/2x0uzZE6aLyiEJFRx1KtIUAh0hoj9GcsBKCJpefEoZEkpCv8zZOt TV8y5uPYS8dP7LofmSTjiU90bD7iqMLA0tbSN+7LhyRfx73Sd0R8R6hmQbIVFuct9R+nC7wF TSHkoPGKQkQVnizcDAKjC5H2jyI0Ewo7R0bDbW1P+sT1mfxeH/aUnnWGJpaeE4dGkpCu8DdN tg5ZyelXwrFx6BqJHYZRA08LxpMlwfZ+TV5312EZMQ1t7dEDx3PPt17W3ZaNEFnKvO62uAIl 32uXofGKQqSBTkYXEhAYWYi0fxQhgbACj4yG20dUpQuRdEygiaXjxKGVJKQn/E2TLWekyMfH VJEksXte3H4ld/u+2EdiV2DwzVtFx+OJZd8I94Wn4HB2gI67H/k+RAmNVxQiefsPredCYGAh kv0oQi5OKtsdCDezM8UAJtDE0nHikC/x1a2G9oS/ZbLljiL5+Dhb+X6tJDuXrQ/9qY/ErvLI jFcvGE+890EaOZr1AUA3Bsj7QuBo1qH9oZcHaAX1kVJovKIQwfsILdRAYGAhYnw0pAY7Veoc CDezM8UAJtDE0nPiAGB2Hve6JKQr/HcN17UzOlZk40MgROa6ne3I/dux+kjsohi3XkAynvhE h+KOwz6EPRfAU21Z9g3PDp5vV+9VJXdEWg9s+tc5AuMKkZwrgJ2Tfur+mLhhSR2CSfZEuNXE wdIvIAnpCn+gndExKRsfU83KxG56wPmIH3dEovxZFJAIkdfbn97CsbXX985AYOP5+9smThsP l9Xfxwnd+zHanQ/565eh8Yo7Iha9hDbKI0AhUh7ztmtEku52W4ZNXAgm0MTSdeKQfq+mqx0R 08Rt23IsZo8Y5uLjkxh+dj1eb9DyHXXxJXF9JHbtjm9Cz0TjyYbP52Vt6Ys5/F7kePGJRd/Y +3W7zZfTQ2/NOgqJ4y7J2vr3ceDtDqBiFwiaLyhEhB2BxRpDYFwhYnrWtTHWsrqT8QhHVr9P jYMTF4AJNLF0nzjUT0L6w/8VyGDMevtDDj72/r4vo3sTu/Dqeg+JXb3xy6hm8XhiVF9PZny7 ehv/90cJ5x/kuxz8jkhPgUBfKyAwsBDJeRShAlPFqhwSNzCpAzApkwgXi47uKiL+lShzE7vn MReLr4fXSuwqIWlXLYVIGMttvB4WnvyiIySed5XMce++DvmEUWi84o6IXV+hpZIIDCxEsh2Z KMlPjbpyHuGo0Z65TlCIALEETSxMHOCAIf4whGkGtoldVISsVbSe2KUB0dBTHE9kQuQVi+/v iIS+oRKbV+S7Ji/HoPGKQqShzkZXFAiMLEQ+Caj2I3QKAActmvMIRw3IYhOGxKc0TKCJhYmD hJjTMsQfhjDNwEaIvM/NvxO79UNxx92RWD+tm9ilAdHQUxxPGiLD7wo0XlGINM8vHfQiMLoQ Ie1EoC4C0MTCxAEmj/jDEHZtAOK/65Z7nOd40jyjlvH6c1t3cr6abzUdvDgCFCIXDwA2PzMC 0MTCxAFmh/jDEHZtAOK/65ZTiPRIn2W8Uoj0GAGX9JlC5JK0s9HFEIAmFgoRmCfiD0PYtQGI /65bTiHSI32W8Uoh0mMEXNJnCpFL0s5GF0MAmlgoRGCeiD8MYdcGIP67bjmFSI/0WcYrhUiP EXBJnylELkk7G10MAWhioRCBeSL+MIRdG4D477rlFCI90mcZrxQiPUbAJX2mELkk7Wx0MQSg iYVCBOaJ+MMQdm0A4r/rllOI9EifZbxSiPQYAZf0mULkkrSz0cUQgCYWChGYJ+IPQ9i1AYj/ rltOIdIjfZbxSiHSYwRc0mcKkUvSzkYXQwCaWP7+efz7528xX0es6O+ffx7//pfYMgrBRODa eQzqf+00w8YTxrMNjhmtWMYrhUhGomjaEgEKEUs0aYsIuAhAEwsTBzigiD8MYdcGIP67bjl3 RHqkzzJeKUR6jIBL+kwhckna2ehiCEATC4UIzBPxhyHs2gDEf9ct9zjPHdbmGYV2cJ3WUYg0 TzcdXBEwEiIc4BhQRMCLADSxUIjAUQUlohzXYPxrG4D6X23nrevneGKNqLk9aLyiEDHngwaL IGAkRDjAFWGLlfSHADSxiPvV7+P+/fX4+lr/ft9/AaDGslUGfwBuPpoVAYj/rJ5VMC4eTyr4 xioXBCzjlTsiDKpOEKAQ6YQoutkpAtDEMiUO37efSMufwuFdburTyWJkPFso/jdI1HUatAO5 DfE/EA7PLPfBeG6bVMt4pRBpm2t690aAQoTBQARyIgBNLBIhMpf5+n7s8uWf2+Pr+/5Q74sM aAvFn4lbzt6R3zbEf373ytYg3hEZa1fUFuQVm+j6UGKllvFKIZJIAh8rjcDoQsRyQC3NTc36 RsEtRzt0ExE2sQj6p090LILiNt0AU/4Z0NZrMlYisRbvPnFzW52jPyQhu3lI15+0tWH9T1tb 4+UlCxvT8sVyzHPoHdZUnj79h0IkFUM+RwQOCAgSHQlqogFOYsiyjOWAaulX67ZGwS1HO/QT EZYIzfWdC4rZ/mH3w7ezIQi78WzF8TuFRTSuWcaZpa2ACDFJMAXBJCqi708is1uZM/WPXEmj 1pfq5SXxPOCuqAXuy9g438GbxuMbd0QsIKUNIvBCYGAhYjmgXilgRsHNuB2pExEmROKXF8cT D8fOltxGSeJ11rclz1vGmaWtgw4xPMJnMB6m9idt1Wj/09bXdnnBfD/grqgFJ7/3+3OHOe8O HrSD6zSUR7MsmKeNAggIBiaRF1Z2RJXJClkOqLIaxyg1Cm7G7UidiOCJJZYMW7ZzMFt4EioY 11rFzB2NLP00GOlS+5O2arj/aStsunx8hzBZ9Hva3aotjKKcQiTOj8Z3ChENWixbEQHBRCvy zrYDiaqMFLIcBC386cXGKLjla4dmIrLoFxEbvvsg0GV15yhYt7YKYD91ass4s7R13BCxO8Jn O5Zp+pO2ZosY0NbZdvmYOLeMwVZtYQxljNfYopPScQoRJWAsXgsBKyESP0JSuoWWg2Bp32vW Nwpu+dqhmIisJpZZDAQPulveKxjH1sw/9j2VtRf2mrhRiCzkCV5/XXO0rVB3DBPLnbNWbUGw K8Z/ZT2xsUZp7kEhokWM5SshYCdEmhv0LQfBSuxUqXYU3LK1Qz4RWU4sP7ezV0Zavg1pAFtz spXy+mJfh+s1cXPbkq0/oKOUvD9pa7Lsf9q62y3PHVaMm1zxar97RyGCMc2niyFgKESW1/4l vDI0V1stj6zk8rFFu6Pglq0d0onIuj/M9pzvhbQYP9V9mj/oaDkOdZq4HbdEjq90Tj12Z8qx tD9pK7Xuf9r6Gy5/+R1WhJs88Wq1g7ttGYUIwjOfLYiApRCZ3D4d4Ao2a6nK8phJad9r1jcK brnaIZuIckwsa0xTjIR7h7UIedbUZeJ2UCKG34ewHJ9k/UlbY57+p/Wi3fLcYU3lJkO8Wu7g bppFIZLKMZ8rjICxEFm0SL6vjurBsTxmoq+93ydGwS1HOwQTUaaJZY2nV5ssV/37jdRSmPSZ uAXEyPw9hOmvxR0aPHIE/UlbSdb+p3Wm1fJc1GiDmUyLJ0suti5afbXRUHpBBEII2AsRrtoy 2q6NQL6J5dq41m49E7faDMjqZ/+T4fRa1OAOqxwv65J5Y5VCxJov2suEQA4hwgEuE1k02zwC eSeW5ps/vIMUI21TzP6n54c7rHrM0CfKYE4hgvLE5wshkEuIvMTIfASAR0gKkclqqiFQZmKp 1jxWvEGAXLcXDuSkPU7oUW0EKERqM8D6hQjkFCKTC/Mlz8JC5Od+n07R1/4zTYz3n9pOJNVP /FJgWxOhYmfuK/SrFFSu80xh/q8DLFtKBIhAIgIUIonA8bHSCOQSIu4bi8q0q6n3xk/JYrHE 1Ahe4ocBuXxEMavwrtOvMFSu83R+/q+DJVtKBIgAhgCFCIYfny6GQA4hUukc9fSmlNv8iohC f35/43X93m/LWyu6+EP8jGjKdU69Ur8yQuU6ZnLxfx0Em28pdyQLU8QdxxTAKURSUOMzFRCw FyK1Xt+bM+nft8kdFOfEI/DmkcLJ/SeATnwKRNmY+Fm+vldhK8PrQ2X9yuJVqIp2qkesnLal zuj7htTyu1wG/nc+MBF2KCmVqHJHUt0XDB/gjqMOTAoRHV4sXQ0BYyFS7YOG8wSR51L8Mvjd tvc9PJNeMPEwxjdbnIyIn5s0zAlo6j0OvS3TD6qJ+tUnyd+Fqypm9O2Um89pW+7FdHEtvHCg MRMpa8r/R+E4HyU0dHgAU3kTVe5IthEi3HGU8kAhIkWK5SojYJkoC5LZOWF/fkzr69u9VL5f LXV/XyeZ9UNcX+4OxJkQ2D7zM9evESzuoOf4uMn45hXr452QvJNXGJNtsvX896XtF8JviTVn p2pO6A9xJ+iCSbasJsx4v3rHwSTGb9Ol+WQhktROAX5zkZy2hS6sxcoIkbUezVgTa0TesSRW ez+/W+P+jBrRh3pb25GsuQOZse7cO479BPuppxQigxA5fjMMhcg8OJxmQOuK9FrE3VU4bnnP if07aXSPIvj++1C37wiV7nXCx90Qn+/PKAkkubIjNQmRdoqJK0T27d5hu+RmU4I+Gn4+PpZk OCE5TLRlcvk/2q/mHP8+pb2f2EwWIontFEVvTtsiB16FSgmRmZfvdFHotKnPL7tbJqMKW9aJ apc7kjV3IPPXnWfHUTWQNF+YQqR5iujge3UwZYXYA1900j071+xNEDfCJXIm2isYPM8Et+69 9YfOHYf+vz/B8e+UGMTfKSZHIbJLTp1nR8RvaZMb275VeQEVybYEIiJWfbRf7QxgK7LJ7Yw1 Yl56MORDUN1JEaefbndp3wslWA3vpw34X2ydJsKWSd84tuwS1U53JGvuQBapO8/Ol1HPb8IM hUgTNNCJOAJWOyLCwTokery7CduEf78a5q74+iadcOLjrIgvSblvp2S7g7NF8lygSHyL8yIp cYaJXoi4x8p6x88y8U23Fe8X50xrn6cQifccz7HF15vtEoVquE4tfz5LERuWSd9QtowSVYGY bHJHsuYOZKG6dYs08ZFhtBIUIqMxOmx7rIRI3I43mXvhGhUiHwKWY0XOPRHfir4kkV5tTfcI vHdHQkc4dDslqStzn3a+2rv5p6N2jpjohYh7NKt3/JZVZO+OSLmjWetiduCNaqIxJd6v9mYw IWKKmds+Sz5E2IUKbfqGZ6fB+iglxv/UhlgibInrYLYsElWdDaz/pS94HGPd0pa2uxWrO9Y3 tI4PVp5CZDBCx22ONtEJICEZEJCjWYdq92JAerQo+KX32NGwXf26HZFsR7NOMcGFiBerEIct 4ufzCbqs7tlJExxr1CUyDqmSfuWJzeQ7IpaYufGZ07ZqgD67I2J/fwTif9Eh5/dMLJO+4Wyp +88haJVvY6QQmRG0jKPzrm2x46gaPLoqTCHSFV1XdragEFneIvN5o89ePCgvq7tHCE4uW39W +tf6vV++znxHJDkxPAtNVxTsMNEJkbPL6v3i18Z591gieTr6qBMpLBF6vUTC5fz4NriUMdOS j5T6X89odzqRuuJCAk20LJO+8Wyhiap2fgT7X6s7UtouYNmOSN3wjqO2bR2VpxDpiKxru6od aMM7IqKvmu8uhrpHZPZ3HtxjNe5Rpf2nPaa3IXlXp517FLf5PojnaE7gbUrenZbXis8sarZO BI+XIUdzzqMzjIlSiATfMtM7fnv/sYQ6zRYqRET96h0mYCK02Elrp2wczWlb5oH/9b3rIgUW H/76If7nxZvYrptl0jegLShRLb0QYLlraGlL2rVe5QrWjfUvbcP6Kk8h0hdfF/ZWMNFJ0JkG Hl3CJDGqKSNc+VIdLZrrlx/VCH5H5OZ+L0XTrlJliV8upKGJsnq/yoVKQ3afiyNZdi2fixbJ tiWJsGXSN6AttP+dv5LejWN0IcBy19DSlra/lqsb4lfbrM7KU4h0Rth13R1FiMxHIG6P++vt NyFC1ULked41lkmEdhQ6SiSJX55RAJooO4qfPOhltppZhCz7S8i3RCRC5LWD9R6jkN0dywSy DVso/roFNlSILBEz3Uv5vJgE26WztKXti2XqhvjVNqmz8hQinRF2XXfHESLz7sU9pkQShMhr YghrkfCuiSi5byb4iF8OKqCJkkIkByVvm8vRy+Xe2P5vbN1B41QZ/i2TvrFslcFfExEsa4kA xK+lIw3aohBpkBS65EPASIj8/fP498/f6hB/3ude3ZXJAUFi34KbGx+Inz0hf//88/j3v0S7 jfSrRO/52IQAxD+FKBxDUKJK/GH8cxuA+M3tXGX7FCKVCWD1UgSMhEgzA7ZRe6TwBcsJ71zA 9VgbIH7WiEITZTP9yhqV69gj/3W5Jv518c9dO8Rvbucq26cQqUwAq5ciYJR4MmGSAs5yF0MA mijZr7qPFvJfl0IIf+5I1iVPUDu04yiw33MRCpGe2buU7xQil6KbjS2OAJQIUYgU58u6Qoh/ JsIwHVCiyv4H45/bANS/cjtX2T6FSGUCWL0UAQoRKVIsRwRSEIAmSiZCKZA39Qz5r0sH8a+L f+7aIX5zO1fZPoVIZQJYvRQBChEpUixHBFIQgCZKCpEUyJt6hvzXpYP418U/d+0Qv7mdq2yf QqQyAaxeigCFiBQpliMCKQhAEyWFSArkTT1D/uvSQfzr4p+7dojf3M5Vtk8hUpkAVi9FgEJE ihTLEYEUBKCJkkIkBfKmniH/dekg/nXxz107xG9u5yrbpxCpTACrlyJAISJFiuWIQAoC0ERJ IZICeVPPkP+6dBD/uvjnrh3iN7dzle1TiFQmgNVLEaAQkSLFckQgBQFooqQQSYG8qWfIf106 iH9d/HPXDvGb27nK9ilEKhPA6qUIUIhIkWI5IpCCADRRUoikQN7UM+S/Lh3Evy7+uWuH+M3t XGX7FCKVCWD1UgTGESI/9/vjV9rsbOWmL6rff7JZz2mY+OVBF5ooKUTykFLQKvkvCLanKuJf F//ctUP85nausn0KkcoEsHopAmMIkaYGo5/b4/teXxJJI2AuR/w0aOnKQthSiOjAbrA0+a9L CvGvi3/u2iF+cztX2T6FSGUCWL0UgQGESOFk7fc3LjJ+77dHN1qE+Ek7S1I5aKIszE1SA/nQ KQLkv26AlMF/2gn//np8fa1/bRaiVps3aIM9h19SPsvUDfErbUqn5ShEOiXuem63JkQmf76+ VUl8zqT/57adCNaB9TPJnPjaUQI5Nn6Wk2GaLWiiFMdRmm/+8c7SlnREtUi6pHW9ypVp57X5 t8Q4zVZ+/J9+vRXDPC+gYuTT1nQhksMvaR8rVzfEr7Q5nZajEOmUuOu53ZoQ0TIwD3i3B7Ro FKhyHuC+drOAK0SmB6dE8fvbdzfFCFctHOryI+NnORmm24ImSpEQSfftGC6WtqTBaJF0Sety RIhp8hiQddM4kpxMds2/ZSyl28re/+Y5wF08m47nfnnnhXicLvPOvLMyzWs3ZEfE2K+455sS BeuG+FU1qr/CFCL9cXZRj40SZtGE+YH4PdguW9nbHZDtLsPz33/mgf617e3slpwJge0ziw2N YJnr3pbfr8ZtBcq8a3Lcip/L63Z2TgNwGdifGBwmOMc35/cw1hEh1Tt+lpMhYAuaKCX9CvDt EHOWtgQjqlnSJahrV6RgOy/LvyXGgK3s+PtEx+KvZr7Zzo3358IauEto7JeqixWsG+JX1aj+ ClOI9MfZRT2uIETmQWo7SO/+2xUic/L9GdDnpH+30jQ/e1hu9B2h2tuJkX3cDZmf8OyIzP87 sPq1P9YVq/Hs93Wrf22m64O7Uji7s8HoFOun76PiZzkZAragiVIiRADfDlFnaUsQ8r/Tm+7W 3Uww6RLUtStSsJ2X5d8SY8BWbvyXucJdHPIJJ22Mgn0in1/xhpSsG+I33pSuS1CIdE3flZxv QIjsM4TNHZFtAv4s5CTWXsHgJt9zmrNsd3tWqLwrVwHBERIiUyrlu9fi3ylJiC1Pe95WvP5v cDt79oWLK0QGwc9yMkRsQROlQIggvrnRaGlLF+llhUjJdl6Vf0uMEVs94b/vM1ifQDDT9d1j 6ZJ1Q/yiDW38eQqRxgmiey8EKgiRZ0L/esPIPg8+7ojsfvcIEfdYVHgQdITIYsu3U+IRQJtV W/8xrOPbTWY/LN6e4m3Pmz7fWeStkNof23I1h8/HUfCznAwRW9BESSGSZahG+NQ6dFX+LTFG bOXG37sjDhzN+sQXJkTy+SXoAcAOlsD6rgjEr7ayzspTiHRG2HXdrSFEPmgvx4h290T0QsQ9 miVJpNd6pzsc3rsjobdh6XZK2hAiZ1g/d4ocdTIMfpaTIWALmigFQsQ04QDa6Y6hn779ea3p a/EhdJwy+VK3dgA3bGes6qvy30pcZsffJzqAy+pmQiSbX7GIX7baj3dkTDDx774UGzcETW+p CIVIS2zQlxME6gqR1bFtgo8LkWUCdI9hhY4oxY427ddenNf3vn70r1w1cTTrwPxeTC2iQ3A0 y4vpQp3vUqbNjhKMn+VkCNjqKhEC2okNs+Dqr7bygu28LP+WGAO2suP/2uE3fwMb2ifS3zSm 7U4eebB+V8UcEwoRDTcUIhq0WLYiAhWEiCsKdhf7dEJkSZADl63dQbDGHRGblZp9Yr8XD8rL 6u4lyqHxs5yI0231lQiltxMbxNCkS1t7uXZel39LjNNt5cf/s5jGDxpu++H+WLDFMWVfL4f4 1Q4bnZWnEOmMsOu6W0GITGC7xzY+CbtSiARf3+vcjbh5dkmCK/r+I0tr8ec73rcKw7vlnPH1 vYdL9+ev7w1j/dzR8L7vfhT8LCfDNFvQRCk5mrXZVbRJhNLaiY2hpYVIruTReMW2e/4tYynN Vpn+h0U/n05HAOI3vdounqQQ6YImOjlJgumjSb4P8imxEU+YSrvR4vPkJHhfu+po1lyp/Avv we+I3AxwjbYfLUD8UARjz0MTZbV+FWsVf5ciQP6lSOUpR/zz4NqKVYjfVhqRyQ8KkUzA0qw1 Ar0LkXmX4va4/0ZwUQuR8K7IrqbQjkxHCSTxs+5Te3vQRNlRHOVFsV/r5L8ud8S/Lv65a4f4 ze1cxP7vbyxxwRykEMHw49PFEOhfiMy7F/eYEkkQIvGPrIV3TUTJfTGOYxURvxhCyO/QREkh gkDfxLPkvy4NxL8u/rlrh/j1ORf59lZqe/YfOHbfwCk/gaGpn0JEgxbLVkRgBCEy7168vtBc Ecp31YLEvgU3Nz4Qv3yEQBMlhUg+YgpZJv+FgA5UQ/zr4p+7dojfQkLk+HZKz6cAgvdd0xGk EEnHjk8WRWAMIWJ21wXGXnjnAq7H2oBRHMBu9YpfuOHQREkhAkdUbQPkvy4DxL8u/rlrh/hd nFvfSvn+ntl01Hv/hk3nd++3x85aOT+/vcfqvFxm8+Ib+JX1jhsUIrmjj/aNEBAkoNNWZfQ1 tEyYjPigmdEQgCZK9qvuw4H816WQ+NfFP3ftEL+7b5htRclLOPiOUM2iRfCCnGfDj7sh8w+e HZGl+kkEWbw86Fk3hUju6KN9IwQoRIyApBki4EUAmigpRLqPKvJfl0LiXxf/3LVD/MY+fuz5 fREWWyGylHntqLgCJSA4QkJE8bZOCa4UIhKUWKYBBChEGiCBLgyMADRRUoh0Hxnkvy6FxL8u /rlrR/hdRIW7A7F89HcVFLHfpwLvsss+x2xvd3xk/zHiDxbnAiV6AkUIKoWIECgWq42AX4i4 H8H7KP5J+ft6CROm2kSy/kYROJ0ol4nsK3z0kf2qUVblbpF/OVY5ShL/HKi2YxPhNyY0Yr8f UHCESfh7ZNqdkjS8KUTScONTxRHgjkhxyFnhpRBAVuzmFbdb7NXUl0Kzv8aS/7qcEf+6+Oeu HeI34WjWco8jcEeEOyK52ab9QRGgEBmUWDarEQSgiZJCpBEW090g/+nYWTxJ/C1QbNcGxO/z rsbnlMfrDVn7y+rh35+4PHe2v76+nY8ra3c+bL8nwh2RduOWnu0QoBBhQBCBnAhAEyWFSE5q itgm/0VgDlZC/Ovin7t2iN/Fue3rdCchcXh97/51u7dbeEfEdxTL/9as532S+ZL79qg735qV O1xov00EBEJE4jgTJglKLHNBBKCJkv2q+4gh/3UpJP518ZfU/vv7KynmLQPxm1Jr5Mvr+y+o zxXIdzn4HZEUQvjMAAhQiAxAIpvQMALQREkh0gSz1RIl8g/zX6b/7VfNv6F7XZa2XvCtNq3e xoSQsk/Ufd/pcI83ndcG8ZvSkK0QOexg+EVHaFdkVz2/rJ7CBp8ZAwEKkTF4ZCtaRQCaKMWJ aC/JSw4/bZlvKlGqwr8lR5a20pLq/P3v2cZ3lr/eM0gTI5a29njNb76sLUSOCbnnDoUyIYf4 TRk6nB2RpU3bL7N7N3diQlC+a6JxmXdENGixbEUEKEQqgs+qL4AANFGKEtFekpccftoGUHOJ UnH+LTmytJWeVGfvf8tFZWcVP/Wsv6WtCbJ3kvx9e9zgHZHXRe75431Te3/239CI98T5+e0H //YidXtXQnNECeI37nTXJShEuqbvSs5TiFyJbba1PALQRClJRJtOXjZ4G/t5ZHLARKk0/5Yc WdoCkurs/c8nOg7fkxCOO5a2Fszuy4f5Xhey03dEfEeoZkHifkk83E7/8aTAW6UUQg7iV0hL r8UoRHpl7nJ+jy5EchwNuEKQjIZbbGtcwmkaJtBEKUlEm01eHEyN/dxbHzRRKs2/JUeWtoCk Onf/WxJs79e5dXcdFrlgaMvXP5KFiOeC9rrbshEiS5lZnPgESr7X2EL8Sob9jstQiHRM3rVc H1mI5DgacIXoGA23j4BInogD75uXnAOHJkpBItps8uJ0lXx+ThVJEqX3u/7XZGkfC40mSoX5 t+TI0haSVPfU/1rBzJ3lwn49hYizA3Tc/Vh3K4/j73m/k4zXEL+DT+cUIoMTPE7zBhYixkcD xuE80pKBcDM7Iw1gAk2UhRNRJOGL9Y98SdbZSvJrxda5DHrgs9FEqTD/lhxZ2kLiMnf/W0Sw d0dEfmzp3T5LWzvQsB3hqBA5Kpfp3sy2/aHL2NoFgOMoA/EbG7Q6/51CpHMCr+P+wEIk26A+ eHQMhJvZGWkAE2iiFCSipomQYfJy6CUAhrEeF02U5rqd5dX927EaTZRK82/JkaUtIC6z9z/f fRDFHYd90zwXwFNtAZh5+657H+TkexrcEYmNWGV+pxApgzNrgREYV4jkW5GDQW/awJi45VoR jJ8D7yoRskxeoqukUwGTJOtpR5EoHT8y1u+OyHSxwFl9BnBt1RYQl9n7H3Bs07O+v3zv4yOa kVcBb61j49/76+POK4oPl9Xfxx/dcVG78yF/nS3Eb9MzMe4chQiOIS0UQYBCpAjMHVVCIeJJ D4BLpNBEKVkRN02ELJOXgxLJlGTN9fjvNfnf6uNLihpNlIrzb3k/zNJWelzm73+b+Hte1pbc HQtPCWkvxTifYlAhcmzj7TZfTg8dPzsKieMuyerx+/jsdsdSsUAB8dvRvJziKoVICmp8pgIC 4wqRfEdWKtBUsspsRypKNsKfBEsuP3q9BDCBJkpRImqdCL0QsEheAmLEJGE7t+1PlMIrzE0m SlX4t0yELW2lxWWZ/ldzbKtU98nRrNmj/dHH5f9MF9bjO8ivZ6ViDuK3EnSlqqUQKYU06wER GFiIWB4zAFHu6vEhcQOTagATaKIUJ6JdRVgZZ91E6XlsJCxGG0yUyD8cK+x/MIR+A9v+dVio 8felkNjfVTD3U/fy/0kTIH4zQdOKWQqRVpigHxEEBhYi2Y6sjB5UuY5U1MQNFCJALEETJRPR 9KDZJkpREbJW01yiRP7T+X8+yf4HQxgXIq++8/6OSGjnIzYOyxcDXk5B/GaCphWzFCKtMEE/ LixEltRiPZee5SjIyME1Gm6xCVDCZRom0ETJRFRCTDRRep9DfydKvm+JfMYLi10Tk0SJ/Kfz TyECY9eDAWh87aGBgI8UIgB4fLQkAiPviJTEkXURAT8C0ETJRLT7sCL/dSkk/nXxz107xG9u 5yrbpxCpTACrlyJAISJFiuWIQAoC0ERJIZICeVPPkP+6dBD/uvjnrh3iN7dzle1TiFQmgNVL EaAQkSLFckQgBQFooqQQSYG8qWfIf106iH9d/HPXDvGb27nK9ilEKhPA6qUIUIhIkWI5IpCC ADRRUoikQN7UM+S/Lh3Evy7+uWuH+M3tXGX7FCKVCWD1UgQoRKRIsRwRSEEAmigpRFIgb+oZ 8l+XDuJfF//ctUP85nausn0KkcoEsHopAhQiUqRYjgikIABNlBQiKZA39Qz5r0sH8a+Lf+7a IX5zO1fZPoVIZQJYvRQBChEpUixHBFIQgCZKCpEUyJt6hvzXpYP418U/d+0Qv7mdq2yfQqQy AaxeigCFiBQpliMCKQhAEyWFSArkTT0D8f/3z+PfP3+bak9vzvz988/j3/8SvWb/SwSu3GNQ /yrnZpWaKESqwM5K9QhQiOgx4xNEQI4ANFEyEZID3WhJ8l+XGOJfF//ctUP85nausn0KkcoE sHopAhQiUqRYjgikIABNlBQiKZA39Qz5r0sHhD93pOqSJ6gd2vES2O+5CIVIz+xdyvf/Hv/+ 8+cBb/5zwL5U1LCxcgSgiZL9Sg50oyUh/ilEYVYhIUL8YfxzG4D4ze1cZfs///u/x//738/j q7IfrJ4IRBDgjghDhAjkRACaKJkI5aSmiO0y/P8+7t9fj6+v9e/3/Rdo21i2yuAPwM1HIQQg fqGaO3h4mj++bxQiHTB1dRcpRK4eAWx/XgSgiZJCJC85Bayj/M+JxPmfp3B4l5vG9GQxMp4t FP8bJOoKBNjFq4D4HR07CpHRGR6lfRQiozDJdrSJADRRUoi0SarCK5T/qBCZk42v78cuX/65 Pb6+7w/1vsiAtlD8ZUJkrF0kRXgLiq7YRPW0wJKvCMRvYp3dPEYh0g1VF3d0dCFiOUFcKVRG wS1HO3QTKzRRioWIZTstbbl9Jqft1P6p41NbC8T/QzA++0THIihu09PKPwPael3YVSKxFn8m ctyRSkJvBvB9ZJBCJBVD4DkKEQA8PloQAcFEJ/FGNGBLDFmWsTxmYOlX67ZGwS1HO/QTK5SI ivqVZTstbQVEiMkRIqs+pOdTWzPE/5LInQuK2f5h98O3syFwfDxbcfxOYZH0vwF3kQShEi2y xNJ8Z2mK3xt3RKJ4ZSlAIZIFVho1R2BgIWI5QZjj3rDBUXAzbkfqxAoloj0nQgcdYniEyKD7 pPKprRrif1mU/z491jKeeDginNxGSf85JVQwPw64i6SNcV/53/v9uSOXd8cR2vGyaGjLNihE WmaHvn0QEAy0Iris7IgqkxWynCBkNY5RahTcjNuROrFiE6WgX1m209KW2xty2k7oeal8aqvC +F+UyPLmm+AfS1wHsxUTcXEu4zsqySLJU3mrtuI4nZXIKUTi/GC+d/40hUjnBF7GfUGiI8Ki vQHBclAXQTBIoVFwy9cOzcSK9ov485bttLTldoectrGup+FTW1Ocv7jFiA3ffRDosrpzFKxb WxbYc0cqHp+xEhn7V0ykx1wb/XcKkdEZHqV9VkIkPmCXRqzdxKc0Err6RsEtXzsUE6vBRBlb 1bVsp6UtChHBboa0a85iILgrYnmvZxxbcyxj31N5khPrw4PtIklDUl5OMV7KjS4lY2Oj0tx4 xSlExuN0zBbZCZHoEYLSAFpOEKV9r1nfKLhla4d8YjWZKHtNhNwYzsYH2lnkfGprMuH/WenP 7ewVqJZvIxvA1txnUl5f7CWYO1LauN+Xz9W/bHa8sLY1/jSFSOME0b3X9Da90SLhffMpA3Zp zC2PLJT2vWZ9o+CWrR3SidVqouw0EXJjOBsfaGeR8qmtx4r/V72zPed7IVqXLlF+/qBjwquL z7C5/I4UEjh5+pfZjhfStNafpRBpnSH6tyJguCOymDs7QlAac8tjBqV9r1nfKLjlaodsYjWd KLtMhA5KZP2mQFOv7519lPGp7ZGm/L8rpxg55yGDCHkt2V1+R0rbA7YC2viDhqY7Xqnt6uA5 CpEOSKKL9kJk0SLGgw7Ek+UxA8iRzh4eBbcc7RAkrhkmyj6P5gTEyPx9gemvyRl+uGcJ+NTW kYH/jwuvmDZe9de2sanyJTChCGyD8nxis432GXpBIWIIJk1lRMB4R2TxlAN2RsJounkEck2U 7FfNU784mIv/Plo/tpfsg3X5Zd9S4U8hooKLhashkEOIUIxUo5MVV0Yg90TJRKgywZHqc/Pf duuv4V2J3ZdrIClvJTGXY7UpSSGSBBsfKo7APHGuxyTcv2ff0JK5ycFDhhNL9Y9AyVgvWVf/ zJRpATkpgzNrIQJEwIfAfHTXl8fNd/K+CBkRIAJEgAgQASJABIgAESACRKA0Av8fq1jyHl+D gDsAAAAASUVORK5CYII=</item> <item item-id="376">iVBORw0KGgoAAAANSUhEUgAAAy8AAABjCAYAAACSXz+6AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABoLSURBVHhe7Z3bFeOoEkWdwOQxMTiL TsJx3MnA0firM3EwukYPC1ChKvRASN6z1qyZbiMJNkclDs9bwz8QgAAEIAABCEAAAhCAAARO QOB2gjzWl8XXo7ndHs3rwJy9ns/mfeDzu0e/m+fzSAqHA7hEBtDSJapxdSHQwWqE3OAAAuj2 AOg/9Ej0dURlf9qW91tzf6ZbuZiXrHrpgN4exzbY3897c3AWRmofIzcnsCy8JC5OAC0VR17l A9FBldVCphQC6BaJ7EkAfe1JV7+3458aKMC86Pz6FM643JsZI2i+06qE72fzKJiJ91sf33k/ H8dzWQHVUsYVt6/3UrS0ed2cUkvo4Od1gG51CVgY8S3UOZ4mBXFx86qyvEPTh76ahzDTCfNi rJ7X47bDaIerlDxDtGdwDMsYD9vN5HWPl3ynqXmLy2jUSZesH6G7fUbpPv/WOjKFlrIqdZK4 jJbW5dFyNTqwUEqnOZsO6swv38Kkwk79Lcyv13VvY+rq/HwQF9fVxKZx5tPGvN/DpRKYF0v9 uOBRxTwt1yjeZ61NOzwXlFGYcygIqMP3CQyRsCxYZ9PsELDXldFaonhqoQuaNRoYtGStUSld GS2tyaH1WnRgJXUFHaBbvbbXMeJbGBLONw16DZVIQVxcQ3ndOyQ/2d3T7wjGvKg1tF7E3by9 rhf+Foy0+C92//+vj8MU07oO/an7/JoH/5r2HjkmJx6WC0cOfFPj3PR0JGGLKXVdI//L6DMV LZzrGP1evIyqULoEro7i0TRnxJaau/Z+PZfJPaJ6in5P6w4tBVqrVUu+5NCB8QX0k10kpnyL dJIYOFNTfAstMr6SbsuaF/R1ZX2F7VTMi1bXrtGwZtQlHkEI/hybF9dIHU2HMwpBo1ccAZKm d4X30YsYj7q0rXB5t4dEQ3zdtDqtDNrvWgmdp1hfRv0pnxQSn7bhmWMmhyd1H7FOfjGD6eYR gV5mddfnc6LrOjijpVhp6MD07gWJNC1rv+tPLBZTul6RKB4PDVx7XCmbX4Ef30JdVGo9n00H G5iXj25MTTD0dXl9+RsoYF6U6l6928Ts9KepeQle0uha8eMj3D+5Q4PYiE5tSZf6ezkYySMy hnfJJZEY+X9XSRktpWnZxyMk0miM5WZz2hHr0mvkKtPu0NJYAUe8L5bq/6ZBB1m42sQXiimp 8kx025Z5GL2OTc02cT6/Irwr+Bbq+K6mWzel3J+J4I8gfzvmFCxLzUtwW9pam8XFI+OMN5iA eZl9b9ZPGYsXb4c9CPkvVDxlK91Yjj5eX8HFHzW/V9eHMf+xi3tC4vmIepSOGo9ig7/Lay1l tJRpS/Mi3mvIhDgC5tdZOKXMUl+1cEZLodLQgeXNMzDzDH8tWreWTM1v1Jkx7ZzYJs5b8yun m4tJfAsdM62etd/DDg9pBkZpHQhT44cNTK2delbzEm2UQ1tr+hZq+tF+76bFj23I8nFmbJNj Xmajsb74rp2q8+3tiv4/ajGOaYcdxvIDdrxxgCq2thOyX2sjzu1PDevm9dTNNjj73pbU0K9W Bu33rqN1/zKaPtwbThtb12gdczvVnTyNrhbOaMnQEDebWHTwJZBpXorGlJUxchKbJiOz28T5 UXb2754UN/kWJuxdcuTe3pFXk27bzXyGkRdh2ntqinBOuwp9eQRWxhFLGyDgvXOckeu2az9j XuZapGvXu4j39k3BevOiTo/w86BNNQpVmTjhtMt/bERKTxsTy911XQnrSwr2NknPX7pgf810 oWlrJqhP67SxIzijpajy0IGp3yBItGD6zRFaNxdMK090o/I9ouaS+C0tLybxLWzBaPWs/V7o e2+v7bk1L8b1MOaRlzhXtLUm9aTpR/u9gjjjYptrf2Je9jYvsRiCodK8gN0GtsQi6/HvZxZy 7rzmxbSobsbQpcsgbz8snry6YxltAVvO67KzXkLTFTZIMhfsx0P0aKmvzmPeF5uWhlToII9X 24vRNoyvEVMs5ekJfdcUxOeH5Y2kBz3m+fDlK/gWGkheTbe5I34CIqt5QV/l9HVgnMG8GKrZ 9eJvcZp9PAQ6NvIzzUtyq+RoLvEj3mbY/7BNd6cRe+Hd53/Y4tl3Jcm1FnmHbU7x+2X43Guy VfLRZbQIZkgT5nWZcYkbI9L85fA58UYBad21lTs59Kl74tGc3fPR0kRtwUJXeTH2d/pqtH4M HfRTSk8dUzLezVY800bj+jifEwNT/iWcbsa3UOJ0pW+hZF66zhjzd9FqXpzqo2n86GtHfR0U ZzAvlji8kXmxPMqWxriBQGqaSXLLXuPwbR8cxHNeHuHpp7byrEhVvIwr8lrlpWjpWy0/rSV0 cFodzO7e1TXk0ouW54PSqqmbReIduj2lbpU1GUWkY3oI+lL11ScoHWcwLxYBV2deXIf5o12s NPtPdmMsdQ5K9JRUb/0RnEqX0aKXk6VBS9/oGx2I2v990uyvfF8q0wk6OKkO/Bg4GRGXO6RS oy+BJJOjsnUJF92eTLenMS4dV/Ql6KuCOIN5scThIxrlar5enylVintZ0LAfpgul162kR2dM L7larswEhcuYmbuTJEdLbUX9vJbQwSl1EOn2O8233f0yNfVS3nBlDFj2Ufjjgxy6PZNuQ32O 0weXr5XdW4HoS9LX0XEG82LR/d8/zb9//lpSFk3zfj7b80/q+MfwgteRUXIhEEBLyKLrZSSm oITzEUC356uzM+UYfdVXW3///NP8+x+7jc3XTJUjL21XcfOID3U8RGPGeaGH5I2H2gigJRun q6dCB1ev4WuWD91es15rKRX6qqUmhnww8mKpkWrNiyXzpIEABCAAAQhAAAIQgMA1CGBeLPWI ebFQIg0EIAABCEAAAhCAAAR2JYB5seDFvFgokQYCEIAABCAAAQhAAAK7EsC8WPBiXiyUSAMB CEAAAhCAAAQgAIFdCWBeLHgxLxZKpIEABCAAAQhAAAIQgMCuBDAvFryYFwsl0kAAAhCAAAQg AAEIQGBXApgXC17Mi4USaSAAAQhAAAIQgAAEILArAcyLBS/mxUKJNBCAAAQgAAEIQAACENiV AObFghfzYqFEGghAAAIQgAAEIAABCOxKAPNiwVuheXk9n83bkvdd07yb5/O16xO4+f4E0NL+ jGt8AvVeY62Qp1wC6DiXGOnXEEBva+htdy3mxcKyMvMyVJol67uneT2a+/N4G7V7OS/6ALR0 0YpVikW9/2a9X63U6PhqNVp3edBbPfWDebHURU3mpXBe3m/dmLyfj+bM/sVSRotMTpcGLW1e ZafQEvX+m/XulfoUOtVqCR1rhLJ/v4QuskttvAC9GUHZk63RG+bFwrmwaOeytKdReD1uzeM7 C+wzJex+80ZVXs3jdpdNyh58PiM6t9uj2XpS2uIyWnQySdMxvN26f/cdoZqpn0Te0dKiSv1e VFZLqbxS78lavEQMWadRd3UdOl1fjvgOxK91TMvoIj8+rSvVflejt3Vst9Yb5sVSH3s0zi3P FRvD2zfo3WOcEG6jc3F/E5mXNlFzv0trbT4BSvz7RYXsLtqh4bGujLll6Y3Ll6kL4nsbmJw8 uvyhpRxiftqyWlqaS+k66n0NzbPV+9nya68bdGxnNU1ZThdXMS/orTa9YV4sNZJrXlwjv+9t v00a9WFvfPx7G1SGa+ORjjnz4F/zcs/PaZi6AOOnj/LomRrnnqcjCC59YlTGwrdzK23jviv7 516fqWjhyEv0e/EymgvSJWw1EDFxhmylyUvrw/9I9P/fMvKY+jMA0dKotdq1NHQuiHVJvY9v 5sViSBwTT6DTSZTkW5j54bjat7CweUFvP6M3zIulqrPMS/cB7dr78ehF3BvfDel/G7TxaIP0 52B0RHrG8AG3m5dpL4x03x5UogEeDglaoAb92MIUNdfoHsogTWHzf9eft0UZ9ad4KSRObWC1 18vkebP6iBuxIZ9AZ+338WOk0JJnmu31coiWfN0EOqDe+96Ci8WQimPeR3+T0CEGR76FWd+M rtfrYjouaV7Q2y/pDfNiqe0c8zI33UlsvHovnDJVSmw0Cdd0vfNCY0x8vjA9TAyiAyg5GMkj Mha4fUM6zq9frkrKaCxNR8/VQTzKIo3G5Nx0Vh/TRmzQwIiuRUsj+CPel5xqn59CSb23LKV3 48wxxBLz2jTDyGoc77eJ67InMZoXvoVZr/klddyOHnozEPyRkW8nbz6mlC6T62Rpe8mQt4ib B8UhzIvlvckwL2Kj9dvul6YN+R+ZcLpW3Lvl7h1P2Uo3kqOP2Vdg8UfO763wYcx//Cx5s6Cd b+h3ea2ljNby7GZe+l65ocES1kF+IxYt9TUqfdh2fl9ytDT0xlLvaWpajNB+/965knpX8xtp dtoZsU1cX2Ne+BbmveXX/BYK01qH6ctrO/MivOjtAL0dGIcwL5b6LmZexsy003yG9R/9yy71 lqsfubZTsl9HIs6ZTg3r5vXcScbqW5q+tyU11UArg/Z71/G6fxktUgkaQeLIi3160tzzpvrI Ny/xtLFaOKOldM1T7zIbTbva78VjyMqYOKEwMeDbxPWx323cNXEc7en/LhHY1zUm+RaG3097 R17Rb6Gi424taz/yIkxVTk03H+OcoDv0Frz+R38vo8xEU+O3jUP+szAvlhZphnmZneKhDV1O v0jB/FfrVJ9kHrKenzfyUnra2BFltEhF+uDMGpqsm8aJ/Tpab17UqTdh5BDW72zT24uWNFFQ 7xNCC6Y/VB1DtPJIvc7hPFFv7WXw4k53kWx/7jRlWstiXfOyZtoY30LfvY3TwHN0seP3XotQ XubTRyzEU8rsN5VTord8gpqetN8PjEOYF0t155iXfoeY4SMQGo7MBfvxsOrMIuuxF31mwf7O a15MHz6Rt7ytcLxg/+gyWqQyptlhq+Q4kAT6yDMvcwv2j+a8xeYP6TJoWvNqecf3JUtL1LsB l1av2u+11bsxv981BPFuj3kj50EPuUbbal74Fmokhd+1etd+r03HuT3vC5CNvYOBYaftZWGp 6Un7vX/GAXEI82Kq32fzyDlCPliUJi+k/A69R1OL4uHS8OiV1Dkr0VqZR+KAx8RuV+KIjuuL G7Zt9jPhGlLi9s9rt0r2yyBtlXx0GS1CidOEed7ikMq0PjLNi9OCuG3z0Zzd89FSrCTq3fL+ XS2GGN/FFs20kbg+rieYm81L+xHxtmvnW2hRcbjG7ezfQsm8dB2sW3wPJzzRm01iQaqN4mbh OIR5sVR11siL5YZL0ziRGdZMpIZPE+Ylp9ctec7LQzq8cmk5DdcVL6MhT6dKgpbGDrs8s7/+ fTlSKNT7aet9drfBbt1fehOPec2tmqp5iJzR8Sl1rK6ROURMhoeiN1VvfYJScQjzYpCt6z3K Gnmx3HNhmvfn8EZ1ECi7Yd+PsmjzvlK99UfwKV3GhfVV82Vo6RttM7YW765J9WqHHVqp0a1j VUG9n7Te462fg5FTeXrOmXWqvSXo+GQ6Pq1xGWI+ba+WRCVx6HTm5f32jwnXwttGvx/ROE9m /fU5fV5hsKBhry/YTB82ZfqIbFQVqvtPji61TU5lUWrJA7W2BrLkfmhpEox9jJfVEvV+ynqP 4vp3Wm+0K2UYCa4c89DxmXQc6nXcRUzrM13yZdvnGvQm6e2oOGQzL17QTAlQPoNgnYTC4ad4 AWLBhmZV5sX1+j7b80/q+MfwQteRUXIhEEBLvykL6v036/1qpUbHV6vRusuD3uqpn2zzEmQ9 3g1rw3JNh7uF3VOSi443zEjbYV/PtLGuZB/jJi623rjc6u2M80DV+5DgOAJo6Tj2Rz6Zej+S Ps/eigA63ook97EQQG8WSiXSJMzLsN1uf/DfZ53FuG2tl63dzIt7vr8wPdx1xT9cr8hCw+rM Swlp8AwIQAACEIAABCAAAQjURUAwL9L0LGdihF2udjIv8iLDxL714ta9PuQNtuXDvNSlWnID AQhAAAIQgAAEIPCTBKbmJedEzRnzMnvQXPuMYcGWvPf7dA/w1KFbBda+YF5+8uWg0BCAAAQg AAEIQAACdRGYmJd21CNeT5HadWeJeYnuNR1l6UZKpjtQzJ8YbNmxIj7obTRQHyM1dwPMS12q JTcQgAAEIAABCEAAAj9JYF/z0p703o2wJL3BxBilRlLmzcsup7UOksC8/OTLQaEhAAEIQAAC EIAABOoisOu0se8Izsx5CYy81CUIcgMBCEAAAhCAAAQgAIFaCSQX7I/TqIadx/IW7MdrXiZr YPrTVm+3e3RifO4IC2teahUX+YIABCAAAQhAAAIQgMCWBBJbJftbE3/MxYKtkl+P0JSkF/BP zYe825g7buWzHsdNQ/PnoLHb2JZ64F4QgAAEIAABCEAAAhColoDtkMoF2Q/NSmeGUutepsbG PprCOS8LKodLIAABCEAAAhCAAAQgcEICE/Ny+98tKMbSP7c7e33cSnu9t+bF/dnfzcz9+eFN HRuelxp9CTLn7lvipHkW7J9Q2mQZAhCAAAQgAAEIQOBqBALz0hoLz7ys+XNrXvr7Detahj9/ p3/1vz/fHdbwefOjNU1jH51ZXWmYl9UIuQEEIAABCEAAAhCAAATWEpiYl8FE1PDftYXb7HrM y2YouREEIAABCEDgigTe774n9oqFo0wQqIjA17xsNeIyHUGJR1Rsf66IUTvt7TEMD1WVsdKZ 8TdyuDW7nq1Tumi7PA9eOlYY6YxIAQEILCbgNvW5CbulLr5hd6G0rnf8JhacGbKyHFwOgTMS EM3LYED8Ai1d+zLcI/f6qmBiXj7V0Tcyv7sudFtoY2BSSoWX/g7DSGdECghAYBWBHczLdE2u cMRDqTW5q+BwMQTOSWC33cbOiSORa8xLv+lCdCaPuk31pVSQV5h2kwp4zUKDUZ6mSA0BCBgI DGfTfdbduhg8Oeoh+v3lYnXOyIy73k8fjh77RzkU2Q3VQIQkELgaAcyLpUYxL26MPNglrsXm 7SJnwfhTaeClVzeMdEakgAAEMgjEIyDxIdva7/qj5J1QE4dr08GnAyUFBBYQwLxYoGFeugNC 422ppZ5zC88fSAMvvZJhpDMiBQQgkEFAmiLm/53we7f7qTeS0n7X3KhN9294Pl3CpPTTqqfT qFn7klF7JIWAmQDmxYIK84J5sejES0PDXAcGI50RKSAAATuBdEzpzIn2++QIhkkHXTeSMz1w e97UpA7otpeMlBCAgE8A82LRA+aFaWMWnfhpmBKlE4ORzogUEICAmYBmTrTf2+nRkdMIdxVL jaTkjsiYi0RCCEBAIIB5scgC8yKvb2E+b1o90nogeIW8YGSJPqSBAASsBBZMG2sNS3LBfmxW GHmxVgXpILAnAcyLhS7m5UOJbW0tUhnTwEvnBSOdESkgAAE7ATmmjOZE+91/kjSakjvCwpoX e92REgJ2ApgXCyvMS0+JAwUtcpkYmH7hJ2fiSPTQVJ6mSA0BCMwT8GOKtFVyGHMeD2nkJX2O mbzbWL+exsV6f9oZo+2IFQK7EMC8WLBiXiyUSAMBCEAAAhA4F4F42li/21h6kb19NIVzXs4l BXJ7HgKYF0tdYV4slEgDAQhAAAIQOBcB37yoxqUrWmr0JSi4u1d8vMC5yJBbCFRLAPNiqRrM i4USaSAAAQhAAALnIuCZl+7Ml/GMF/msl9a+NM+7tGXyUHT76My5YJFbCNRBAPNiqQfMi4US aSAAAQhAAAIQgAAEILArAcyLBS/mxUKJNBCAAAQgAAEIQAACENiVAObFghfzYqFEGghAAAIQ gAAEIAABCOxKAPNiwYt5sVAiDQQgAAEIQAACEIAABHYlgHmx4MW8WCiRBgIQgAAEIAABCEAA ArsSwLxY8GJeLJRIAwEIQAACEIAABCAAgV0JYF4seDEvFkqkgQAEIAABCEAAAhCAwK4EMC8W vJgXCyXSQAACEIAABCAAAQhAYFcCmBcLXsyLhRJpIAABCEAAAhCAAAQgsCsBzIsFL+bFQok0 EIAABCAAAQhAAAIQ2JUA5sWC9++f5t8/fy0pSQMBCEAAAhCAAAQgAAEI7ETg759/mn//a5rb Tve/xm0ZeblGPVIKCEAAAhCAAAQgAIFTE2DkxVJ9mBcLJdJAAAIQgAAEIAABCEBgVwKYFwte zIuFEmkgAAEIQAACEIAABCCwKwHMiwUv5qWn9G6e91tzu3X/3p9vC70fTgMvvfJhpDMiBQQg UI4AMakca54EgWUEMC8Wbh/zcn+8LCkvnKYP6F8Or+aBgZmpb3jpLwOMdEakgAAEyhEgJpVj zZMgsJwA5sXCDvPSNI7B7d4Egy2vR3O7PxvGXwQRwUt/s2CkMyIFBCBQjgAxqRxrngSBFQQw LyZ4n1GGX2+kS0alDfSP5tfHpEQJwUt/s2CkMyIFBCBQjgAxqRxrngSBFQRej64zna2SZyG6 oeTfbqQ7lzsZZZF6qVaI8UqXwkuvTRjpjEgBAQiUI0BMKseaJ0FgOYGxTY55USgOQ1TLYZ/7 SoJ6Xv3BS+cFI50RKSAAgXIEiEnlWPMkCCwm4C3lwLxoFH993QvD6ZpCwt/hpfOCkc6IFBCA QDkCxKRyrHkSBBYS8AcTMC8qxB+fOiatb2HBflo18FLfqG4TiGg6JprSuZECAhDYhwAxaR+u 3BUCmxEI2+KYFwtY17D62S2T2ULSIpExDbx0XjDSGZECAhAoR4CYVI41T4JAPgE36uKfMYh5 MTJ8PW7Nz/qXz6bIHFJpFEqbDF46LRjpjEgBAQiUI0BMKseaJ0Egg4AbGY12/sW8mPm5wBad d2K+loQQgAAEIAABCEAAAhCAgJ2AOxh9uusv5sVOsO9Rx8BkISMxBCAAAQhAAAIQgAAEsgjI xsXdAvOSBdIlHoaWf/v8l2xsXAABCEAAAhCAAAQgAIFZAno7G/OChCAAAQhAAAIQgAAEIACB UxD4PwxaljO/Z83RAAAAAElFTkSuQmCC</item> <item item-id="377">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAdCAYAAACTzT/bAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANVSURBVHhe7VqLrcMgDGSuDJQ53giZ JstkGF74xoDJAWnUVHGkqmr5+HwctqFVWh5hYJABNThOhgkDWsQjIhhmQMQzTJ0MFPGIBvoY 2BY9qVmv+ygRTx91L++96lkprUQ8L9dBp/vbMu2iUXqaZ4k8ndy9vvu2rnozLEjaer0WxgkQ 8Yxz9/qRIp7XS2CcABHPOHevH/nz4rEOTHqxFVztCcdKc7TcX7O5maBPZ7s/nrLWKnjW2du2 x9scL7K/6WUi4wv8ozJ285bTpfamGrm/LZ7g5Jl4fJ/IkPt8EILa3cJSAt1R1V2OpQ+Pxwgn WYB1JuORfa2t8Kr4rwnHbKZUPDme0v9okRVP2D2LcZLsVut0bfeOOjE+ziyiu2s4E49znhJk Fz9+AdqThQ5YzZjSJosHRkZgnxlv8U+LOy4PPOGeRk2znvPIw+E1HAB7xw2znYCoPYgmEA4J OU8f1TDYQ4TBYByCWNDORu0MKM5mDQ8kvtd+Hjl7SHN9t2XxUZNJWxxeEmFq1grxHLs13x3l bvGo4o1jv0s9I4zTfudD8bh5ac3BlQyo/UCXL7ZdjiqeECVWfyvrIneZ8rB9UodciDpcmi2i cj5/A8eZeGhYzsM0I56Y0rhaoBRGWkDSYpIraDOXTboKRRx0rMzZaQ2B2qltTjhmJ9fxxKt8 WnQmqbDHvsfCptKezRf6lpGHTYmQY/rDaNH5XDxOCLvY1uNX1hFXmsaE9BD9B6etahj2mwO1 J3aywtflAJc+K3j4+oQsWqv9hJzaKcnjKYrgGrO3pa3OyBOIPDvGEh9GI08s9kLhTt7ZEyxa HNTuch5zvHbOQDxszdMhnmrBzh2xm7Yf6cSIh6tvYN12IfJENA2FVa97sD8MqZW0EKMFaIfz ZwiL/pXdHTcZwtcYHSBRXAcugnUc1cmU12qepshzcmcw5HwI0+mxubhX2c8W7r8n/lUUnPV2 GFly3KzYsku+IjojfNn4GwtmH0+TS8mW0/H1P4N9I/KMik7GfZSBKB71l+qo+bMXD+r/UdQy 2SMYsIoxC08Xv+vzLh7U/xGeCoiPMxDFE0R0x/vHUcuEj2BADUecxoj1CC8FxC0MJOKhUSdY Q7UMar8FtUz6CAaun7Ye4YaA+AYD/zNsUim0pC4EAAAAAElFTkSuQmCC</item> <item item-id="378">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAdCAYAAACTzT/bAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMlSURBVHhe7VrbjeUgDE1dFEQ9qYZm UgwTnjHGYCBXo0RxpNV+AMfGPvh1Z7PyiQUWLbAtnpNjYgEr5BESLFtAyLNsOjko5BEOzFng 2K3atDXnKSHPnOk+vttYvW12E/J8nAeT1z92dZJms0priTyTtvv89sMYezgrSNr6PBfWDSDk Wbfd508KeT5PgXUDCHnWbff5kyx5/AZld18hPfAb1M9o11amf537cHjk+mF3BfC1m3yUX19+ ansjRnWex1/zTMCt1S3lqZbz302edMk+uZ3jCgMYnecTpdE5PHrdEyN7IOyB8vryIyY6f+FZ y+HfIY57UCV5sD6B2CSB3kweN28Is4YbkQRYnsMj14lI5OcgagftbEc/isgQk8NfYE6a02xK W40jDxVZnY7pPg159ISZC+NTyndYPIUTZwzuQpx+Axf3oh1OD49bz/qjyMPIL4iWMYKdiOzn FK0i27zpdv+TQsIq5FD6ggjTknWfPANCZi9K73cGjK+ZIU9yjolT0VD3hN9jro/D49YvR3h8 8EpZ+c3I00gnCP+ePeuahyQz90BPJe6RxxuBcgx9vbKAhMUsrB8a1HHpKhVxI+TBORs5zKej Dh63XmkJ8PMoHxadhfxYLIPnn2xDR55TWrNmm6XSP5IHFn7eKPF24bJnJDDXr6yz1xjen9JH OjBCnipfA6NxeNw6qfiFT6cl7LSy29Km1QXlSze6pJh+mykPK0vIuZu2iu6gcI67pAv56X+k zETaWo08udjLbfcVtciXStYcyLkEVupCWHlkFAA1CyOf5h54hBz+8KujNhLkoXw4UDfmtFW8 FnSQDMNFFMD1xK3b8YfZfNx4XVXdE0VxeNU693oZ+Q28qzXm8HkTtXdQEW6iVQfAoOaBQyLU ZvaMy0aeH3ZbnbRVzVVih3INCTsEnyYPKpbJghYN+TBxc70Yomg9U0HnmbZ5nE43h4Q0edri nWP0OVuBQ6y8myXP+LVk57sswP8lYS4eQesK7yjkeZfHf6gtQx4U4har8h/qK1APsgAfeR6k rKjyLAsIeZ7lj1dpI+R5lbuepayQ51n+eJU2f/cu56vY1REuAAAAAElFTkSuQmCC</item> <item item-id="379">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAdCAYAAAAghRfBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAO9SURBVHhe7VqJjawwDKUuCqIeqqEZ iuHjJIBPTID5oMUjrVYDxMfLiy+mmeITCLwQgeaFNoVJgcAUxAwSvBKBIOYrtyWMCmIGB16A wDj1bTM1Tf5r+zFS+Qt25fMmDN1MyLafRkBi7Ke2aYOYn2fF4wAMUzcTcQ6S5BOp/PGN+bgB KUJ208BgCGJ+nBePuz90KY0P/Zy+S43ZzSwNYj6+Mx83AIhZGp6ERPoeNebHWfEr92mXvUTC 9B/CIf6UiLmVmGXtr0wLuYHAIQREjblHzNKy807pkKK3PFRSBDmtqIbRzYQOcZunidOdMg26 j7vJQ/rkvI6FD1d/fj7L4cEnj1qwfWgMc2lfDH3FDjx/PKMGMIXZ5ZbK53SuCvoLxFQcI/My cb+QZt1t/j2TcgVwrYdkR7mIpvq4vHwINnm6fqIPkRLIIIgJh0NcPEMVvGY7TFS050+NXnpg 7ebnLxIzRTSbRLnoZvcxDrWYcHnaelJfZaLizR+hU0UX0neIiG03dUrEhINwJy939bn+1BBT PvtQxOTR4poT/up8ImX02VamTVjePqyXEVlEkb6nVdGnrSf1lR8xx34eq5ipHNa3U4te7Ul/ fKRIrNzT5/pTp4s//RtiGkPTa6ZeWO1FSystl5oNotBCXDxvMyOwok8lvhJ1cA1rRz+t5lMO O8gXh+0MjlLfUX/OaIM19xNzbQJ20iayljYTrHC/JS/50bJU3bnxQDoX21ZikppwXqUSXtfn b6QkVtKvYmA1I5wGsjw4R5QXEhMX/EvNQ2oZdCrzRs7vPQf9NdM5UPRVhwldVRvSrrwbtg3R U71CEEufl/rM+/I9stmVC6h2CIyygb8vihzPH1/o7hNrxCQdJwEXNgui3/I/Rwrc3ovarSKV HybYWUerakOmBPuhyjm4YSBWwwTLvEpMNXrrP5Coh9I6gCwrXsGaGbUSk0QEpmDpzjYCzg6X 2mXolBNdQcx6kOpW2OlQIyH2hadkg4Ssk/fS75aaeeo2UrlaI2qRsOKQ1EEIp0qZm945LpIG oRoTz5IY2UR6yh1gP24EJaJdYv6/rlzMHll9K+eS9AerFDI6b9Oanz19ywbbA2k24DcbFytF H11fy0xLH8Vjb+pRq/HQjzhSTdnR4S1EUbimGuMSs9bMeP5rCPjEXJubJUoWiPaaiiDm13h0 u78OMVkIJ7Un3DNGQkHM2zfqawL9iGkhAuS7Zc74NcjD3yMInCJm7tK1+doRlfFMIOAjcIqY vth4IhC4hkAQ8xp+sfpHCPwDVh8ILIMdwoQAAAAASUVORK5CYII=</item> <item item-id="380">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAdCAYAAACTzT/bAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANISURBVHhe7VqLkYQgDLUuC6Ieq6EZ i+HkpyEESFhvbj3jzM3cCoHk8chvd3H6KAKTCCyTciqmCDglj5JgGgElzzR0KqjkUQ7IENg3 ty7G2UNKySOD7uWzrTPL4hYlz8t5IDR/39aDNItbjVHPI8Tu9dN3a93uUdCw9XouzAOg5JnH 7vWSSp7XU2AeACXPPHavlxySJ0xY3RYypC98RvpZEyoD6s/4BkV4dretYM41kIY9BmiNdYtJ Y3qsgeMYr1zWpjl4fQgraY9AXnRE0e5anRKPtXX4zyZPNlJG7nDQ4PDD5xPBuGYBmCdg58C9 fDU/9T9OYqL16fUoe9I7lryEORdBStPwfpG4JIGeTB7fb4i9BgF5gieKXdHodGrPGvoYiFxN 7rA8H9ivsWd8TdiD9e3Ic6mT+zTLapzBnoeyx+uAPC3ei+4wj8DhahzmdVgsWicdujdIpB/h Vap98Rz/+ThUGNYgkANgMRHjdhGHgpDeDsIetrwAv33b0uUhwhZlD/AwrW0+Jw9jE4GNnanx QEMolpCHusXnLiDOF7eMIHw+6OQt/K20qesacyvgaZqeA5KnYw9LfhbVmjwkWRkYf0aeMzFF LrphV5lgomS0l1Bm956TOIZhKT7VuUwL8y7JSs9xtuphUlnIp2QX2JRtz69CuGraM5afpU7O xyDcv0Yeb/SVtyU3651wqDQOT2Cvb1nnDRpIglsfZnLJw50XF21UIVm3a5wOK1i+rJaMBeMs ezryGK5gJ1VBUbj+QtgqqgcI+nGjzhsC/z8x5ZNn1vOcyR5RfncdVis3Ib0MyEma4ylskusO yAfC+5Q9t6UHhJ7U2pKEubhNheABasoHrCEqnNuMEvgtpkcpy3G4/uj2TY7nvKfSb5C04/lS eQF0tIcVlOpgL5DzwCYRJElO7C4SFboOyXNjtVV4u5LIVd8lhdZmsws3CauyFDXpqnHUZIQJ c0iRykZlW49GGJbIf0yeK2znxmpX37Qf68dg3isZ31uhuo5D8ogs08kPQoBFnm6CquR50HHf qyqPPMHFN8pxJc+9J/Kg1Xjk8QQZ9GEeZLOqehMCQ/LEslLwPdJNiuky34/AkDzfb4Jq+FcI KHn+Cvl/sO8PwSfu37C6jqkAAAAASUVORK5CYII=</item> <item item-id="381">iVBORw0KGgoAAAANSUhEUgAAAHEAAAAVCAYAAABxGwGcAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJpSURBVGhD7VgLjsQgCPVcHsjzeJpe podx/BcRLE6z22njJpvNdIsCj/eAUW79PD4D6vERrADcAvEFRbBAfC2Iu3VaaWf3X49wc0Yp p+qvcdvQ5d1ZfbyvRwHiHGwG3APvVM7US5E/xz+cE9lL/UvvleNpJj4CxJQwCMRutU80B2RO UE1sb3/gX5I5LuTNeDC1danW8fnp86hQxvacfwfQzwcxVjYGLATOJJ4qzHBGBQFA6ItBGzNW o+7+lHRIvlhU8AFUCWwv8C8VaSgc48z9TByx4IKEjxSEAiy+jwohPAvADtWIYtkMEwl7gX+7 tbld/IecUsm5gI3MFCextYpVjFnXARXOyEw+KwhGtqNE5h7NkTD1x7Z4ZP6VmP4axNrAz4aM 5BAM+hhQciLYLGBYxwDGjiUAMbxTexgLItfrenWJsXUx0PYS/3DPFvfE4EgJrGh8l/h8Wnru K3kjZEpGp/m3YrLHA0SuFoaJudiKjNZiZyZ0DlxWDlGPnranyMAwEYLlyxY09VBh4aDyF+YZ yE/zWA7iJSZG1gtXIUriQeLr0NCsLEkRGjIxw1CUyFO5jtJDDlMp5wgw7t08CXdMbOiMjEuA eFxu5OdLEOeply2m16CZFSPqLzmd0hIZG0O38rQrBGgfZJuY8Y/tiXDRFEgAlp8pEK9PpxLm NOoS/ZMu02MQ+d0PLfvE+tL7hJVN8mWEZLBB9AgXG783HU2akdGmn8gGm6+ZuAxrBs6/O62M O4BjZXSBeEtpnYDY0jY1ZT+GE82/kZhb9sRb8vcTl54z8SfcXE6MMrBAfEF9LBAXiC/IwAtC +ABb8ANdgvXNGwAAAABJRU5ErkJggg==</item> <item item-id="382">iVBORw0KGgoAAAANSUhEUgAAAJ4AAAAdCAYAAABbodUNAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOUSURBVHhe7VoLsqsgDHVdLoj1uBo3 08Xw+AgkIUisFr3PONOZe1sx4XCSnKSdrF6KwA0ITDfYVJOKgFXiKQluQUCJdwvsalSJpxwY h8BnsfNk7OosKvHGwf56S6uZ7KTEez0PxgKwGjvNs2a8sai/3drHLrMrsVpq306Esfv/LC7T LR9rlXhjgX+3tdWaebGOdkq8dxPhit370ukbBeZlfM9aLt9Q5Lc0410Bvj6jj4DLdhw5/Xvs 4sDM2fqy/DeuGIEk2PZd5/YY3iNRnMqE78oaIBa7JBNUDpGDYByOI4f0omdADzLOxM5fLfzw foJOO3N1M96fIl4BR068tIYcrCeX/CE2kCQR0x1I+L/UlRAM5bA2m+RzaM+vR4cbyJ7IFUkH P/eivXz+LSNa+FF/a/uHLf4vxIvA+8M3TsDKM17osoypsjrSIz1UESmScMZEDv6hjEkyFAzw XrBTe8E/T4bvK9Mufpw/YRa3NQo9fDqf31RqL4iecNbLVmoOlFoPqAevAtY/wxESiuYmyNHe funB9yAS5kOJOIQk+M2h9sjaOfxd/Dh/QMY6ybsfabwLHZRtUEq8SK4gVapDY4IhkZQ6wWaf dBPQRZC43JpNU3riJWKuKYsHnben4WgplCHF31XjxwbKSaJD29dnvCzCZcIXi2ki7MV6S0a8 PMj0CIhABBkpoybJdtvNjEajms5LhUw8ouFCFmTJdyXpAhhVc3Y78ao5jIviBXVeRVBHErmM spZfIZyJQ/laAfFo9hIRj3muaB3OfiV+cFdq1vJ8vhS37PfKfAosqe5l7IwqtaijguA6B7KW gX8HbEHpgiw5UGpHZbwspJmRSNZYVXZhxHtLizXF/87hQ5zY5xJCBBvfNxPtQG4RnFStb3Ro w2gutVUHlvVJ+cpjNXXXxgrsA8STZ7W9OwUZjy5nmwtCEgZoPDJB0VbPEuH6hj06bkHqApL5 UKY9iiqH3w/GKcAtoPHgsBASLGU18J1b0kitrq9LvGu62rIPnnjVXKzKyp0BLbO/3WduWikP gOl6MoSugxaeAW4uuhn7KNfQ/a3Axf6cHiDzxNtJxK7TMn7ulSfXjRKbpc1ojXcKdV18AwKy XyCTNI+6Q87pbsa7Yadq8lEIyIgXSgj+6oZ+b4nSsBLvUYf8RGdkxPNEEs/UnrhN9elpCHSJ F0XtL1r4p0Gh/oxEoEu8kc6orfcgoMR7z1k/aqf/AH02jAqIYLI/AAAAAElFTkSuQmCC</item> <item item-id="383">iVBORw0KGgoAAAANSUhEUgAAAGwAAAAVCAYAAACjSwvEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAI4SURBVGhD7ViLkYQgDLUuCqIeqqEZ i+Hkp0lIEDxnV1xuZud2XAhJXt5LcHHzb6gMLEN5O511E7DBimAC9grAVuPUopxZnxjN6oxa nLYdvlXjkezF58uSPsWB1un8m/8Pf7f62AfXbN9ZvwX/rAbnJzx4hj0WsCOJ7YDlPVwByvZC svZD4jq1V3DaR35HoJF6CvaUcSUHeP/8+uO8zVgogu3D1ukDAVuNilWrtNMdDPP7lNaFYlTt MfGH9TnhKXmI5LWccetT4ln/KrY+AFiUDlQtHWqWl67GuJigDkn0gfskswD02MMMQ+DtscQ4 S+ZTdoLgJf88wCwb3Q0MC8nQKZkXkOje0gqYX5dk8FIPO4ojMhvImcgwBjCRXbJ/uSBsVpXQ B2OO/8ewvbm2AYabKGyopGlXQWwDLEhN7jmXAQOOoMSngQPQKceGGSazq+ZflutLPaxIcvIo Pt8q2D6QYVlqDj2tTL1tBVBKMZ4StWXsSIVy4h8vuWk4yTGhqYQ9CFAYMqBDEj/FsH2gICO1 lzapx6DnrIxJPWqfHsrWIPSiU//YfQSwYgoiTQ9R+CJg3e2KH2E/cA9j2AKTWBQ0L334alCJ XrDHFRHoYfCiSO4slMJdgN0zJR5H8hJW3FsKH6UXAY0XZzq1kcsxNwVXfTr1j1zcq0MHKgZB ClF/aBs67mHYb1s5fZcoSuEE7CuVcwIYeV+Wmjiif8fQ8ZUIX3boKcNeFu/w4UzABoNwAjYB GywDg7n7Bws1mdfB3wxOAAAAAElFTkSuQmCC</item> <item item-id="384">iVBORw0KGgoAAAANSUhEUgAAAIkAAAAqCAYAAACHrHiJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAL0SURBVHhe7ZqBsYMgDIaZy4Gcx2lc xmEooFhUIkEMSsy7672eWgx/viRgVFr+RIGEAkoUEgVSCggkKYXkvBZIBIKkArwgmQbdqU4P U3Le9BcwskUgocJFIKFStnBcRo4pVGL780JdJJNgvDH2uh8xFwbXFDom827nlxfa8l1InHC9 RvmeGpIcW67QkwNJxJZvQmKcrpQynxdAkmsLJSSALWwhGXv1LxE2OrpB202PPa7sDmg8zyTz dcAHU3uC6D2Mtfz+KVu6Zfs3DZ1WCFuah8QK7Setw7RqomI9Hn73kZiT4pHlBrRljf5JD11k i55jCzKTwLaMuncZ1P/fDcix3LhoWLKESRP/71aENXsUOgYJCWzL7Ah7fgU39A0BJGe2uHMm S2JtaT6TGOlNdPqyEMLgo/YPyyZmchyDhAS2xRGylrxDMsixBZlJkrZADx05ZpIzzWzE9H1Q doijF7YFKDNXSh8aEvhCt14zuvj1SCp4GGSSE9XOtn4k0Ru3BSwzT0CyZjT8+og3JK4UAdvc apDYBeJxl7RZD1SzZS7N6+Zss4ZbiEWXm5yHLzekP7Ih7Dww21UyA3gMHM8kDCCZV/Av6Qg3 zgpbSBr3y6vMfwiSuU5H9+mvkkeMsQrQQFJtISZOrKHA/ZBkNqyKeyQ1VPr4PZKQhD0A3xCK HbM6YhtWd2kONuCgxpwch5uWgDabcpPXEMpvEkFgSCa5K2ToxlkzSW5DKLdJRDcFGZlagaDc QI0yY0LsuUnRI2/Z3VA79s7xUY/lYw2h3CbRnUbLWHUVSEMSawhdaBLVndbb7rbv3yBfm3zJ NBKQxBpC5s3xC02il8z3ATOOpXVez7UDSjqTPCArq1u650Z7ICw47fSVBJIniGysgSqQVIdk 2UU29AqDQFIVkvYAgRt8VYX7yM1ciWmz8y2ZpAajbvHazkJ1L4lAQg1JY4vUmBwCCTEkvscV 61i3snYVSIgh4TC8QMLBi8RzEEiIBeYwvEDCwYvEc/gBH+q8Q6Z0NS0AAAAASUVORK5C YII=</item> <item item-id="385">iVBORw0KGgoAAAANSUhEUgAAAIkAAAAqCAYAAACHrHiJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMLSURBVHhe7ZsLcoUgDEVdlwtyPa7G zbgYCqhUMUgiBh8xnXnTN34w3BzD57ad0R9VIKNApwqpAjkFFJKcQnreKCQKQVYBWZDMo+m7 3oxztt/8FwiKRSHhwkUh4VK2sF1BiSlU4nh7oS5aSTDZmAYzTJgLd9cUJob4tOvLC2P5LiRe uMGgcs8NCSWWO/RQIAFi+SYkNuld19nPD0BCjYUTkkQsYiGZBgfB7rOOF8txuwKarivJ6X6g rct87d5e11a/LrnmsTfdy7GEodPF2I/GLQavdGkekn0CDFhWZzP2wLKYUuKRw006lskMvmpt vyO8KLEgK0kyFtuXDVhLxv/3rV2Jw41/M9e3wXU6fF877c4HUfYCUxKDhOQqFn/OVqPiWJCQ pGOxoIbqgXt5mq8kxhbLsd+GlajTu3J60pYBkmwsqY0+SixISNKxbJX1H5ZDkxIrSVqzxDBz UVbR+t+40JX/YbCVDlpLs0ByoYytai4WbFUTUElgMZLDzBuQhIr2wPzoBqBwFU3YF9+pJG6C GK1u4vlAtbd3GQ5DAQHmTcuEG7kcfwISP0QnnoeGhLL58kjQ2khVBVx+CVvI8HCjkFTNWc2H LassmlOukNTMUKPPegmSZc4Azq4bFVJy2DyQVJ+ISU7R+317HhKiYVXskbyvofgIspD4TaDN T1/X+yNwLGcScSh5MPCAJa+eP28DUDVxeQuQkAyhGyZRChKtJByvz7NtBkhohhDdJHo2bG2t pgK74SZllEGGEN0kOnZKVzc1k1z6LJR346pMbAhBx0IwuropzctP3Y+CBPxjnqtdWYUkSnLs JdX0acp5w0ECGkI0k6g81FZbOA+ty9Z4O6DgIIEMIaJJ1GqKi+P2+0YxEA4cmn9SHEdBA1lI IEPojklUEKO8WxszULOQyMvQ2z1aV5EEq/7tiBWSqhloD5DDjmtVrb74MD/EtOl8ayWpAayf vLYzUY0lUUi4IWlskgrJoZAwQ7L9UxbkvrYyd1VImCGR0LxCIiGLzH1QSJgFltC8QiIhi8x9 +AOZ6MCRwQ1ZVgAAAABJRU5ErkJggg==</item> <item item-id="386">iVBORw0KGgoAAAANSUhEUgAAAFsAAABjCAYAAAD0H3xZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAASDSURBVHhe7Z3ttaMgEIZtYPu4NdhF mrCJ3T/bgdX4K52kGFY+DIiAjjOQzTD3nJxzkwxBH8aXEQcYlPw1IzA0q+kTFS2TGoZJLU3q fql5HNQ4v7K1MYVtT3yY2mAO6b7mMdvADGFr0KMqOFgDP1/UlLii2MFepkF9wKGPDfia1TjO KhQVXrC1Rv8XpC17LSmhhjOCreUj3xkaLX17WitN38sJH9j6si16tT5xJzGJS7yWkOtG3g6L DezwpLLgnMzsdF2DT4WHuc+tPqTLpCoOnIAJ7LKEeAYJ+UiBM/H5GjqmGqH0XbKV/bExgb1K RNTzp73bSomHuL33n2mvH4Y1dFyO3lv6riRDy2RDUR6wT/V6Hx3sooTaMuKiEq3b/cDeQdUe 7W58BDYwNliBTSe3jEYCgmjl/V5g08PO/qLAFthAAg3NL8hI/mhcOBiHeVRxNrsO8vlQP49n w9aFVfV8/FI/fxlFI2cdJAwPrfV2d8sm9BPYtA5SkN3z0K/VoaSHR+xglHh2g1YQGWkAeatC YAvsmwRQcfbNOgHFxLMBsLCmAhtLEFBeYANgYU0FNpYgoLzABsDCmgpsLEFAeYENgIU1FdhY goDy3cGOn0FqViYlrUFuYHew1SEx3j6hacDaNGpno35Brp91a59CVvmhb4ew1ercPp1hJyGV U9C6hO29OZSQ+ilofcJe5wEYnZ6jPD6REVBsdZoRFQ7kmwzVsGcU2HVgWymJohCBXRN2NB1E YNeBHU8qMrUIbGLYTj78JKbw9+umoCWikTAE0tn3/tXiLguA9mj6fc8gozus7ZTMbe6nZ8ye NAUb2C42LU2AR3klRWFusOtJib2iUI3JBnYoI5V77dtO/q2ww47R/h/odeUBGzv1LfMqXVrf Cjt/TvUHbLrz7KI2V5YR8exd7F95nvdd1+YnI7Vua7uMRi64VWUZuXAEaZPv8+wLpyqwL0BK jSbceuBbd8Dm1pm4UTuZwHSbHrAgSxkBMmhmLrCboTaD/yIjrXhfgG1XkoyGAuqNru3OvNNU BsfARFXtxug7hh0tUNsgnO0W9n4xxcxdMenqZzZbtrPEyg1smDPSZiSzQ9iZJUFFRoBhzOVo JLFWq8Cmhr0NMxyfAo1/ftddHtSoV4+anWpD8Wxqzy78nsBuCNvlxRwWuc01ghtlTK5MnDls kRFge2LMBTaGHrCswAYCw5gLbAw9YFmBDQSGMRfYGHrAsgIbCAxjLrAx9IBlBTYQGMZcYGPo Acvygi3rZwObH2N+YTwb8/PYsrw8W2Bj/QFQXmADYGFNyWHTLmnETkbK2xNCWtM/QqNKmBLY Cf7vFLV1E8+JcLEuXrDXzb6v7ZpX9vDXusKO3c+aVkZ47Zpn4FDur04Jm91+kD5dAKLOeVtC 2PpZphN/Hrt5mCv/bA9fSDPQwd70WtfOBzaplFDB3ssbI9ir65Dtu04DO14iiRdsw5tifVUC 2FrWon2F2cG2YVu7WQXpnmC/uf1mwxD2Fid/CngaNLMOMvaxzARZSFACsj2vj6lngyg1M/4H iWl/JyVD6RIAAAAASUVORK5CYII=</item> <item item-id="387">iVBORw0KGgoAAAANSUhEUgAAAKYAAABiCAYAAADa8ajVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAd+SURBVHhe7Z3bleMgDIbdwPQxNaSL NOE+toNUk6d0MsV4jS8JYGwkgWME/54zDzvDRZfP4mKQuwH/YIECLdAVKFO6SM9+6Lp+eKa3 hBbYFvgbHrduuD3+2DXtCpWBORul64FkEhUZKv89bknBoSIwDZS3IfFBzeASNPGxwHPohSNX NWA++27QEyiXyN6N0X38iQ97jPJ/j+HWFfSAGnluj4E7sNcBpplTqqHSn26YqHIEJ6f8CnBB YI7h0wzr8YfPHWkqANM4Q9FCJxTRzIO1F1UY5ScA+r6siDnxxh/S9YNpHKcmWhofBSCc4Nt5 uKjl1yGztKF8CYTmoeG4ST2YXIWvXppMq1U/Oh7ARCtvLfwKBXMcz1kBRDmYyobxZb6VG0xn DlcqmOPyhzPlUg7mOHcRrPjOjJpmd8CstIM/ZiyjDs2rkLHy/qq3WDCN6vRFmW4wmcPDmUCS 2w7NJ6OLH2/+aZWfN7LDDwJnTkeWP6EgZ9oFMBMMLavK2f4xPTDLFxwxmwKzV/mq53jD3EwH 3H0/xRvs1tMLMGWhDLVOtgDAPNnAaF5mAYApsxtqnWyBdsB83Yff++tkc6L5XBZ43X+G33+0 1tSvynUufmjOqa1UOxFz3BoBmHrwBZh6fNWUpACzKXfrURZg6vFVU5ICzKbcrUdZgKnHV01J CjCbcrceZQGmHl81JSnAbMrdepQFmHp8pVhSxlG8RUuAqdjdWkSfrpCs11qIh5MBphbvqpXT 3BOn399Z1QSYah2uRPCje/AHKgBMJf5VK+ZyGe5pXYSjXHwDmGo9rkTwKf+odS9p+n98aAeY SvxblpjuKtu5EuyHw81147luLGoCzLI8Xp80mzkmwHSdnP2gMM3Ac/YyK8nAJlTE9vi8+sLk psfE7+kSk432HDlXjImpxRExabb1Sn0cdjwk+QkI/JzjsQQF23yYczaNnKkU93SJycYxnAt4 bBg3LQNMjn0Xg01zqjHPZh+dK81g2Y6YwFp/EctnGYwusn3BkJrvlDEhXWKyMe3GLQ4wmRb7 ezyWL1xQhvJIxIwlwQrTtJNsNZTw9DgJ6qEuEtmYtjwqDjDFxqSAOTduZ3XbRE9G/sttbiJf eBtETmberS5TNGXJJjZksCLAFNuTAuZ2jjhButDJc74fffcEXxdLnHkowBRjkFyRsCqP5qt0 hCCAuTscLhvM1OFymu9RvlgxxedlFyANTHZuzmQHuQ0gYooNmgFMSv5L4puSZdJgfSsnbSif 0k37q/+j3JxiO4YrCsH099Y++3SUrYDMOtCaI0RMWkNrKQKYS/Sy0wQ6R8Bi+SyJR8S2UK4y UuEM6ZJzu4hnWVM6CcwNhKynmy9sUo0vgbnNV+k9xJt02/ub2O/tnEAW4LwB4NwNdonf8oK5 RADuB4QkgrPrZAeTLQEqMCxwCph5n2aGNkdFAWYmQ36nmbxg2kP53gHRo4OjwkOlJFMBTJKZ SimUBOb2CwjWObu9Vd00XwpsZSzn9mLvgXlbOpaZAWYpzJHkSAJzf8i2J/wzhDNQI7jP7TbE 0d9IWlAKAUyKlYopcxKY03o//M3DxKEcEbMYdk4VRB2YYmsgYopNd0VFgHmF1dFn1AJCMKPt njaUE3oOF0HEFJvuiooA8wqro8+oBc4Dc30P7G8NJS5+ohrtFUDEFJvuioongnmFOgd9AszC HHIsDsBU5a52hAWY7fhalaYA83J3Me5uv1/bWvfUlyNxn7dwXpaMwOs59yVFPF3LFSYCmFdY /d1n+mFc9+Dx8ur3DaN/j33+u3MskZiA4NtmApjftrjdX+rdbR+qQHvOhTfWifgrDSM+wX6t 0KLeS1yVUy+jBRXeRsNtMa/MF+/siHxkVULETLVgQn3e9V2vo8Mh2JpnWlc51v7sXJWxY4YJ 6iVVBZhJ5kurLAeTEi0X2SyA1ztEmGOm+S1v7ZqGctZc8XPRLPggLG/oSrsOg4iZF39ea9K7 23tzxd0kXEtir2A9yjVknlo5SgPMHFYUtyHbLrLTzLhdByBzYNz5e9a0hmJjOBUBZh47JrRy vMG+vace2It0XTqlkn7fx4rcY8fiJ8F1WaqWOMfMolidjSBi1ulX9VoBTPUurFMBgFmnX9Vr BTDVu7BOBQBmnX5VrxXAVO/COhUAmHX6Vb1WAFO9C+tUAGDW6Vf1WrUD5us+/N5f6h3WigKv +8/w+4+mbUcrVmgpvJIs1DFhsdqJmAATYBZpAYBZpFv2hELEVOWukLBlHvRNNWtTYN5Kuz+Q 6r134jL309PJzRbQAMAswAkSEdaLZbTvpkt6uLZOO2Caz+dtTnNfa/yU3nnfTU/p6Zq6z56e ukb3dtE07HG+SHuNQ/i91jjH5PlKOZi8tCN8QK6qUSGY5vYoYz2gHszpEy8Mha9CjddvfWBy 5pfGVvrBrHI4rw1M3jBeCZijGuaedVVRsy4wTbTkfr25gog5D5LmrnY9bFYEpplqCXZOqgFz XAaNK3T6dgRvzofSMguY74/Kdk0qAtOYDnDKADqjlhzKeuaYjl3X9CyyJ/UMF7XVZh77VxYx 20KgZm3/A26vUP2GJXUnAAAAAElFTkSuQmCC</item> <item item-id="388">iVBORw0KGgoAAAANSUhEUgAAAIkAAAAqCAYAAACHrHiJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAL9SURBVHhe7ZuBkYQgDEWpy4Ksx2ps ZovhCAqnSCSIQcHczM7tuILh5xEC2VVa/kSBhAJKFBIFUgoIJCmF5HMtkAgESQX6guQ36UEN evolx81/Q0e2CCRcuAgkXMoW9tuRYwqV2Dcv1EUiCcUb86jHmXLj5p5Cx2Q+7fz2Qlu+C4kV btQk33NDkmPLFXpyIInY8k1IjNOVUub1AkhybeGEBLGlW0jmUelh3eb8pkGrdb2A6wp2QPN5 JFnuQ16UtWcze6Ev3wSuD5OGDdhTtuzGRdCleUi2MOhdWJ31aCOF+x9MwZwQT1xuUFtMewes IeP/vTMpxxZiJMF18Q/V0xA5LuhxubFRYp2Z4AD/3mhhPzPRwDtoK3COY4iQ4LYYUH30oDmG yAJ625ku0Ag+p+rSfCQxwzUzwi0LgQPOEjYGSHBbwEaw7R+WnXdzbCHTk9DFTaywvx4jyZlm NhcYTXSJ5RAsjsGtgZkLtlBnL5mF7BsdsEjDT0HiE0RElMqQ7POlgvwoG4rwXA1ZZk7yow6W m5hqS6j1ASTIVWyL2pDYZRHZclezBZL4445tF93IkSTn8KWQ7M80B00pW+cXChKPJALJra5a dlkvqU5fGJlAckG0rzV5CJJlbYxm+l/zQAPj5YGkWiLWgMIdmHg/JJkFq+IaSQdOePsQkpAc nGgy9Ng1GCi1YHWXKGgBDivMyXW8aIloA77ykFwrCJUfVEkkuWvK8PXjIblSEMopEvENQXrm VmCz3GQWhDbfizgYmUxcZXfD7dg7+yccy8eWlPwi0Z1GS191FUhCEltS0GXG2Z6MJHUH+fzT wpoJ8WuTzxtuLUhAEi8IxXYVqSLRS8b7gBnHpXU5pm8HlGQkeUDVvh5pz41CIACcdmo5AskT SDZWQBVIqkOy7iIb+tqAQFIVkvYAISSuVRXs+2F2iWmz8i2RpAaaNnltJ1ENJRFIuCFpLEmN ySGQMEPifiAWO1tqJXcVSJgh6aF7gaQHLzKPQSBhFriH7gWSHrzIPIY/rD+2RlF/HU8AAAAA SUVORK5CYII=</item> <item item-id="389">iVBORw0KGgoAAAANSUhEUgAAAKkAAABLCAYAAAALWaemAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAaaSURBVHhe7V3tlZswEKSB9HE10MU1 QR1JB67Gv9yJiyEIARZCQrv62pW8fi8vuZwsZmeH1QfWeJjlJQwwZ2Bgju8D7znNwzDNz2YA C1AYA+/5MQ7z+Hh7mzcgUh3EMIk8YUlvs9X7MXqLEHORKoGO881N1mZGBLWHgec8OUZL1iJ9 TsMcXUDfj3kcGhJ4K3hL41T9j4/ZHPz5ilTNQaMVutyopcnMXQ1bwVsBpxr6zTkqU5GqYT5x kVSBzKw6bQVvFZznYZ+nSBURKVVUqacKmRll2greSjhVNd0lwFKkJsBoGWDIXNsmVu5ooNsb MXhd16oVQy2cRqFiKNIMQz2mkq77r8sWV8sirRlDikhROD86YCjSZT5ire6iipRBptol2Cfi 637cNo6o/x/UDsCzTCXV/Xv+2NOZAN7TToexAs4RQ26cp5gTuH5OeneGn0gT5qOmGM9z0n0i 7t6H023rD/covEsVOla85r/3O7hgDCicR0Xx7HEjcO7Tvq5EulbJvQqrocWoyPqJhufxG4K4 qKrueRMO72eE2SvMqduCMeBwalT2NtJHu/CCwFqkU/Qjpu0R6jrEWhv5d3Opggm+FzUG716Z PNOhojFgcG47K74pGwJnpyL1S2Kd002eBwQI4nJW0ru+XHjXpC0xOD+MQRTDFWfgUTYC53eJ 9FhopM+TqojUh5fbaODA6R3mI+bOXyRSPVQdi2lrrrpNoEgWTm7B3+G92Z5DVKg8N5oL5/I4 07Gbcar8CJx8Rfr6nX9+X3l47K2XhJ2PFql4/f6Zf/4x3YKKXzi1mAoYZr070dCnumBh3bbi W0mXaiEizZDhDroQkXaQxN5DEJH2nuEO4hORdpDE3kMQkfae4Q7iE5F2kMTeQxCR9p7hDuIT kXaQxN5DEJH2nuEO4hORdpDE3kMQkfae4Q7iE5F2kMTeQ/gekaacbqyhAu74bA4q4r0XaUUg Fx3k/oAJZSwQkXPHJyJ1ZFFECpE2XZuKN5VUUro0n69cMelZQq6It5BI1bn2e9feIFHcKini uEMwNlcDTNJLY4EEgMHrjRfmcRAn0hokcRIpyhYGkmH39Abko1oDCySEFJEiY8CLFHkBlHWL SQ5ApKi+DVJddjsl7WsgOTedVqiwpPB5HHDcTo4+bGuhBJsdlEhz+A2BEqYaAUQa6gtlC0Ng X+PFR4AlxKX6fRze9OPjF5H6E2uEgRjuUXcnspKGiMXZwtS3r/Hjq48lxKWuGz77Ij/eIjY7 d4k9AkGIFBK8s02GSrrQqr+xBGS3Q2Ff48NHgQWSKSTewzTCNwePXjjdJHa/VlCkDFf3Fk/c 7Ws4WuncyfiKl9pmJyhSyF0ZaJOlknqucdzhFpF3K9YaMVvTHe9qvzYWSDot7ora7Ax/zy6Q zp8NkuzfQ+IBtSkm0pbsazzDIUeRrlOrHa8eSW3j4Cw2O0pwpui8P28kuX4PEiCkUTGR3lxc xZX6RRKQ2CBtOGEhxnta3e8CTf0bElOwTWWRcrKv4YQlmKd91V/Q+ucQKaiCbohDFRcSWLBN ZZEG8UgDMgacIlVoQHNTA3b2uamIlEwU3C78PR965sa84AEzICIFUyUNqRgQkVIxL9cFMyAi BVMlDakYEJFSMS/XBTMgIgVTJQ2pGBCRUjEv1wUzICIFUyUNqRgQkVIxL9cFM8BXpPI9TuAk 9t7we77HKeV0Y00VcMdJgI9vJc397J6A3Chtc8dJgE9EGqWkgm8iEAEqGgJ8IlJUhio0JhAB KioCfKxFmvVT8qnk1jqywR0nBl8mzkSkkDKCdG2BdOltgxGB3UkNnFB8GbHwFen8MRzwJRRl PGGQ67PZOR0cS7CFuWrneijtuJZ9psrCWdK+JupmsvCV4szE9pz0t1Kfj4hGoc/9JvP0YVzf KJud4xLptjBYtFT2NVCcYVebkpx9dMBQpNrWJeXwJs5mR6cshy0MNPl7Oyr7GijOkKtNUc6M U7MsRbo6zaWoFGWzsyp0HsfH8i7HK9MiwC0MGvsaqEiDdkUFOTMLFU+RngwH4JRCWl5tdvLZ wkCuD21T0r4GisHfrjRn5ykfU5Eu9KhVYlI19VTF9e7/kJzTFiY9+UYP1mqaE87SWOz++Yp0 1emQNDc9i8ZlszPOY0ZbmKwiLWhfk4Yzr5XOBYtj6sVapHpOpLchvu6VPC9vkTF1A1x9sJiL dF13f51QW7PbyXM7uAWq+m5ApLtQ1cY4zHw1D2nSSx0G9h0Of24bEWkduuQqPBn4D8dyU6CQ WM3dAAAAAElFTkSuQmCC</item> <item item-id="390">iVBORw0KGgoAAAANSUhEUgAAAV8AAABaCAYAAAAfD1WGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA6qSURBVHhe7Z3rtesoD4bTwPRxakgX uwn38XWQavJrd7KLyWfwjYsACbAtO+9Za9bMnJjbI/FaCBIeH/wBARAAARA4nMDj8BalDb6H z+MxfN7ScngeBEAABHYh8Pd5PR+f5+uvqXbF4jsN8DFAdpssjMIgAAK7EPh7PZsCQ6Xia4T3 +Wl8sewCHJWCAAiAwEbg/RkqV+Yqxfc9PD4IeOHg9yQwr+ge46pu/Kd16XpPRhcb1d/r83y+ PtIkhD7xNTleKO/FvA/d5RIwgcVjmahm0j6wwuOy0/ycSUFIX6TKxNdEBdhc0+xk6FsLAbNE hdi2ENRbVp5+0CW+JhJA1KvXv9CzNgI20kVw0QZRb2kT/UrkS5X4Sjuv1wzoGQgQBExKbUw5 vO0u+ZTzlUxWMFVOQBg8KhJfpByUuxa610rAnll3Ntns/yMN0YpVT3mZhikS3zFnUrFjqAc8 evKdBPzTC0tEa/8dhrVz5Lvtik9lEf3ex3PeA/9lqkd8hSH7fcyFkXwNgSjnC/G9m+0lqVOI r2v9xNEfezxoztGJlomlo0Stn5/pufMS2ov0inlMsyPssCRCviTrqvZqAKUEsc/5XDO+9UjS rb46H9i2uLEo4EnOk7Iv1Vi/tcxlxXc49SttizP4ywZvshjLsCcMXd9m3NbPW92kf3nvDGtU ffh18fjr41LW+fZqxrcJgv9eCPs6TXzpuc6pR77o3CPlEPPIf/VWwpOaJ7Qv1dmjxk/SZSC+ FTztIelh8A+9lyLTTDtkfc7zrZ9XDHHfIqWXEvW5y1fKutSecLSTWJgvQAzj3kOQh6X6FuVv hQ3e6XHSFpkzzQKe9DyZxN59cVn7KXiTQXyljr18PTB0itoJlqpv6Vfr59Lx7f58+Vee7OSI NlSdSSRiXWqPOvCePwT/9xqPgDmRqTePqb7hzG7eq3IvUy7P5DxB5Nt3So+gz0k7OD/iEzjM Ihjuuczyz1um69uWnXNqg3TQUvm+2LvUxolCk5HvFMGIWHPaG6V0+8ETybeP4pwv+eKQRupd QF+lkvwvEvJ4lueBuz+gIOidXt2CL1ro2XD7/fn8+/k93Lu872RT4hvm9goTP1ffYpw1N0VM 4FL5wwEVGyxFoUsF8waJM0uWybOKL4s1tz3T7rIpI/lWGcS3aPLsA3nhXeZAtAoi5l56nsQ5 ZutLChT49+e/z7//8QjqEd8zIt/w14gSka//a0WZ40GF+sbXov/rR6H4lj7n2fTYp0QRoL9D Pbw3lnRagmBd1V6b+NpN1jBl8kVpB/8EinvyJxA8y4SxEVniWZoHyfL8M7Z7TZJrRr4niO+6 yeIef3KPS5F5yLT4lupr/Xwvh2mqV5SrDVpyBYzLmt1ev7SDfWmGR6fY/Wiie53Ckm/rFXiW 5kn6ZQjxrXOYE8Q36mgUVRFCy8o3zjWXorTWz+tIdy3FXu4l2G7Hg3isee3JN9w2KNTLVXI0 qivea1RW8uN4ogW31BSO7kX1J9IOCr4hi8i31mWTG2DuUstfwkZnU922S07Z+nntODuWy42f Pre7sYzPZfpnYKnNzSzvLuNKrWz8vmk4U9pluB0qKUaqJvvufrnEtingSc6T4EsWCoR3yWdz U8/fnfPt4HioAgRAAAQWAoh84QsgAAIgcAIBiO8J0NEkCIAACEB84QMgAAIgcAIBiO8J0NEk CIAACEB84QMgAAIgcAIBiO8J0NEkCIAACEB84QMgAAIgcAIBiO8J0NEkCIAACEB84QMgAAIg cAIBiO8J0NEkCIAACEB84QMgAAIgcAIBiO8J0NEkCIAACEB84QMgAAIgcAIBiO8J0HU3Kfj5 Pt0DQe9A4HgCgltLIL7Hm0d1i/YHyJffOy39hrDqkaBzIHA8gekaJd5VVBDf4+2juEXzo9Pn X6+iGBC6BgJpAva6qGd8jVSiBMQXzrQRECyZgA0EQMAlYNJ1Y8QrmEPt4nvG0lTDHW539Lz5 osf36zkunaYrfLjXnNwRB8YEAlwCRkjtdVEQXy4yPOcRsBd+Otd5S26ZBUoQ+FoCY7rO2yc5 KueLyFe5y4UXTToXfIZhbXTFeeqCSOVDRvdAoJkAf96YTbZ1KiHybSb/nRVEjgPx/U5HwKj5 BIKbked0HSdlt1/OV/AG4A90fpKT852X0Evu0v13Oo8ZgCQenI6SLP84JwOq2hOPfCyw73Xl 3rXddky8JVTNSLqVCVdfVbYIIp3Q9rYN1/bOkbyq9rqNfseKKl6+1EpYBbt9581qBIHu7SO+ qzPmJ64vZIFj53Z6OOJLuKR3hjX6fJ582/ph3L0c++T0wxMmU74gTvn2aubMJhA+nrDv00vE bgCI//gipH/Dbelv/ohcyRb288D2Hj9jawGMUntisxxeIOVruY4kbHE6uyPmzRYYPpkBS3fx nQR1nAhvEynsFDXViG8piqM+d9/i0tx2qT3hZDKGshH3eJxlGF8Kng5QfYvyt8IGL/K43WUe htHXMuJbsgXBz/JeNlHse1Zw8qPUnnK2WV/L9D1lizPZaZ43VeLrRYApUWKE38dFvtObLxcJ hpNt8rEpgrRCJxKzUnum3vDFRP3d5ul/r9fYG/OHWD5RfWPwV64B5e6ZMRqBzL4YS7agmgnL mP8fRd6shJbUgyPMfg017ZWHeuQTWV9LdSRpi57s7jVvqsTXE6qUKO05+aWRLycSSUa+k/gu Y3bPwCbzoZz2rLAvApwXXmpyu5Ev+eKQRupHzu4ubU2T2mZWcmNl2WLpkJNy8cSVSOMsYhOO RdReFxA7VsLN+eZs0ZvdfeZNlfgu0dcUBSSWe2rElxuJzJttQY532bVcli9RHjCKYLntbZG1 bFMrnhDfKL7roXa7GDApLsoPJbYINKwoos6qaC3a0N6OElpfNU98ebZwe9HKbtkYl6Q19c2b SvFlmFOL+IoiQP+0w/DeDEanJQjnrGqvzYnIlMie/Bnm3/WRMOrMpr5qf6uiJDyttt+VULJy WaqvxGB+8bmrBJb/t7LrI75nz5v7i68oVxv4rCtgZD3M/Cs5Ffotn8ivNLaM+xxdYLe6bqKE R7/Cr0NzGZBRbpDvJ3P0gbBz22OP9OwHy+JbtEWSbS27+8yb24uvf4Qo48zRG5vadAl2vAnH 4rUn3zjYek5NiDlXuaZMWo6anT3hK9pPRFs8W9i8hd2Q9U6QeEJa+nzqM7+9ijGeUqQsvlG3 EvMozVbC7l7zZj/x3dNZBBtu0dlcp1/0ud1tRzs+HeFsyNioK04X5NrrgyQ1Ify+1Z3x7dPD w2vJiG+KQ2ynwLbRaYbgCzjEaYf9bX80WdrXsuMkbaGBnb55c3vxPdpd0R4IgAAIcAhAfDmU 8AwIgAAIdCYA8e0MFNWBAAiAAIcAxJdDCc+AAAiAQGcCEN/OQFEdCIAACHAIQHw5lPAMCIAA CHQmAPHtDBTVgQAIgACHAMSXQwnPgAAIgEBnAhDfzkBRHQiAAAhwCEB8OZTwDAiAAAh0JgDx 7QwU1YEACIAAhwDEl0MJz4AACIBAZwIQ385AUR0IgAAIcAhAfDmU8AwIgAAIdCYA8e0MFNWB wO4E7nxLye7w9DQA8dVjC/QEBFgEpquAJFdPsarFQwcTgPgeDBzNgUATAXvDxniNPcS3CaOG whBfDVZAH0CARcDcxjBGvEg7sGhpf+ia4vv78/n386udLfoHAl0JrFe0Q3y7cj2rst+f/z7/ /sdr/cF77ICnBHe4HdAbNAECBxAY70Fb7o2D+B7Ae/8mrhn5Qnz39wy0cACB8ELW7fLWh3fd 73Qz8vpXEN8DbLN/ExDf/RmjBRBoJBDc/mtvzp7+CTS6sR0UP5IAxLcr7XCSlI4DCa5751zJ fcmZmLrSO2MYioX9OydyNP+9LNPNCYHws13E66DryS8b+Xay9eoajPrIedN10ldXdlnxfaoT mkl4n6+/zTVez8x5zFl413HE5TerLiL9/GzVh+Wn/3fbr/aKwwpuLx++OSkWY4eNwPIrscv4 VZy7jDc1FomdmR25pPh2tLXFxKkv4StMzHs/BvHtRdhGV2GkawTVFUynMeqNbM9wvka38v/Y Xe5hGCM7t65JrF29Mc9JBKjX0GvqsX210ekwbiTxl880iyAnWuoQaatSofTn2bEI7FzfA90l e9uaW1/KV7TQuqb4fpydXy0kqX7kljyU0FIRjfk7I8hRXdeOfP9er9GKWwTDClqzLMYX1Cji a3qBeIlNJiqtEMxLjXqJplNI2bFw7azZjxv71tfWowU5vpP0lcbBdCz+HhKBGdGGnqNmdgKV 8qkdKVVVFYpjHM1GUS4psLOBEkI+fdX0ypsvjLzdKpopFkTKZpl8oe1YUa8rwJQYpxwiHouN 0sIXgeI8ZJWrswv1sLXbWC7Hnp837C7v9qBMwxSJr3n7PRXv9OaF18ZfjEm5HqqfCpBpBzfH a4WYFULu5lEVFfMmZJ4F1WyclilHvW49y+ap5CUP8c07QG9b0/XJfaXCbVuLmPksmKuqxNeK kaDzrazcCDPaOfcTr3bXvbjxVVqOhpFbKL7J8vylTCuTVHk2qzWiLeR8SyzIjhATUxRx9hFf uxFIRr4SUd/LUkfXyxBfka0TNnZ5i2x+HA9p8KhLfDWmHuySlil+VH7XmajrpgJxRMpqvWLx lblweUKyWHA2OxMbmnF/+6UdphVLILTsfshI6n+6g629QSZWGoccK2yhLUs5mJaUie8sQAdG v1nc4jes8AgSN+2Q3GhqcZY9y5YnZNR6YvPRcwVC4HhpGfmG29Y/aixCO++J+vS6e9jaHQSj PvG83B+SlxZhNqdPfK3+8o8pMcdZ9VgxOpv76qcjtrOKJpWRTVWQThR8qeNywmtQ0xPI2DXJ o5JFts4qq4eFchtA28ZoMSXVpS8aK+ll62VsFxTf1EZwwVwqxXeavMylvkZ/RJ9AAAS+hIDk 5IyPRKn4LtETBPhLPBjDBIELEqgXXjNYxeK7LV9xvcoF/RJdBoHbElhSi22nW5SL722th4GB AAh8OYH/AxBQuUhf3j6HAAAAAElFTkSuQmCC</item> <item item-id="391">iVBORw0KGgoAAAANSUhEUgAAATAAAABmCAYAAABMW82tAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA09SURBVHhe7V3tldwoEJwELo+LYbNw EpOE/ecymGjmlzPZYOYECNSghhXiG+re8zvvWkhU0RTdjUQ/PvgPDIABMDAoA48h+/1+fh6P 5+c9ZOfRaTAABq4x8P15fT0+X69v7+WDCZgC9HhCuq4ZAK4CA+Mz8P368josAwmYEK+vT0CM xx8pIAADYMDDwPvzZKKuYQTs/Xx8ijpe36/P12NhgVwdv5g24KBv+RTj8/X60IByDAETOa+i 6gXjxeSFDfStXqp3IpykObEBBEyEjhUS9quvvqvjH9kD02P3EptbW45Y/BELvtzsIj9nViiZ mzIeUa38tB1K9i9gYnBKe18jG28uo4SAjRtCyrEjm1tauPS8KTa2Qkz21A4T3uUyTfc+Qjg1 tO4FjHa2FCG7b5qWA5NGUsFTLEVCqpGPjj/HItaKg13AjnWeCIu0F/fn3Yhy9HdP71g5at99 Q8+L6QtxajoXsErhY6rxGld9UQGbAf/INnBafIRg0Q0pRsCyjRkTOnJiFHpedF8OXehcwDbi nV2HUg4ITWKL1UQnCmWcvy1t3O/k2rZd+xDG8p7HA/PhNys8CRemwe8ImI8Dk1MiIVtzDiIF 7HJ/T54dN/uUOB4vluufj9+Fnne5L86j308l0H0LWOH8FzVSexdOJwppwpD7HWE1xgUupsJx N47Cv62SZveH/l0/ckD8egEyuCwhCI23553EVhxECpixkgz91buC1u5g6RBy340UC+rSAmbt ogg3lnh76u1f+zMG7nc5jSFOftKvjsN/eMN69bN6kGEypCOKv0McB+r+7lZ+cxtoJWDWmJOw FQJ2JBmfRV+93+N36QI7L7FySe1QonvICRyDX3sdnrB+SPxSjtTnaTE24EtrtOKgkYDJ8I+8 IWB+hoDVEjD/ii13VZ72C7Tc75qvvvFOx6UWHFa5I7xxwn5c22ryXkJz76IzBz98zjYaB6X6 CwFrLGAmSU0MlvsdnReljOHe3Etr5cM6nQcaoInhwBs6jpoHLGWzELCWAqZCCuMZy9zYc9sN dX9nf5OlNgEGfo3icCUZ/Bpr4LWWafAfYaVtA9snLPqtdvJ/yxsdjYNi/dVhuTMfQs+L7It+ P7TvJP7fX59/f/1N8ybQOh8DwshqfBWRr8e406QM/P31z+ff/wbYhSybxJ90dAvAUjuwC5/W UYBT3PI+A2N4YNuKDwG7P8hoCQZmZQACNuvIAhcYWIABCNgCgwyIYGBWBiBgs44scIGBBRiA gC0wyIAIBmZlAAI268gCFxhYgAEI2AKDDIhgYFYGIGCzjixwgYEFGICALTDIgAgGZmUAAjbr yAIXGFiAAQjYAoMMiGBgVgYgYLOOLHCBgQUYgIC5gxw662oBg0Bl7m2QV7eBgewcAgYBsxnA 5IWAQcAyM1DzNIrVJ/Dq+IXpjsqB7vdrO3xTH7Yozm0z9Rbts+tzzVL3THxFoSpDWPo/eGDw wOCBzWIDUsCISGnh0kJSSpjlc+ipq85pxgVVDAKW23gjj8QtOLb3bp1q5KPjz+GBteJgF7DD 8XErcTOVuQ3elGPQnftS/IXPxYeA5RSw6NLo9zSmaKsUAZsBf6qAteTgNHakRqM0GkbAMvWX hpFW+MgJWOiZkf2BgAUEzFdW3qxwpmKNSDPsNSXfgxf1IJNAlhPTaYwd64v53VbZfR78joD5 ODA5JhKyNbeBSAG73N+TZ8csoUaoaPioBFNxpTy80DMv94c8HgK2k3q5rPy2Qphr6d81qa3C hwS3jAq1lcDmsE6IX/ommzCzNhDE66kP2coGIgXMmEyW/u7C9XIWcISQckuj6Jn4cWXlj4rU 7ydT3CKLMSSo0Y2mfvwc1vnwK6dr2zXTlbZlCT1dQs6P11sfspUNNBWwnUO6iRDKr4U4iuAP Hpic8DFl5fWqexi2pRkR5N/QmkJNfPg5rDPiD9mABy9JH5wGpZUNNBYw5b2TtAMEbDeNwh5Y SBXOZeXVSvN8klCS3qCV8ZaSNgbrSvi1d2aPtyd0HDWNkMtmufsghCwfQnrnvlllHYMN7dTl MoZCghR9Ww7rSviNF3GkC7yh4+ICxvICAWslYM7LeFZeRPyb572Z2QRMhtcu1pXw6/BSc0B3 1vQOG9kACIVN0atHpQapNruHjkfe0ApJNvs5diHNvyAHVmlwuccI8it8JtEQ4fFoDutK+LUg rTLeXRjd9U4giX+dK3ml3K16MLuPkfcZ4XIO60r4VxvvEWzS7SMjYO7bu3uTVDczhZ2GSfyU bqMtGAADZRmAgJXlF3cHA2CgIAMQsILk4tZgAAyUZaCCgKldG/OZxh08CCHvsIY2YGB6BjwC dmwPWx+tWmf+VMyNQcCmN0QABAN3GEjzwCKPvlBfm3v+hLapIWB3xhZtwMD0DNwWsDtHX9xm EwJ2mzo0BAMzM3BbwAwpEa9XwAOb2ZSADQzUZ6CqgN2GBw/sNnVoCAZmZqCCgGEXcmYDAjYw 0JKB9E+JIkLI20Dhgd2mDg3BwMwMQMBmHl1gAwOTMwABcwc4dNbV5MYg4a2OHxwMZeXpAlYD bs0QcvUJvDp+CFiNGZ3tGRAweGA2AxCwcb1QPXYvUSl7f2FcvCBuXjgnVbuzSQgp5kFfUq90 fhoEDAIGAZvFBvTJqFo8tHDpn2ssTjWeQcYLApbbeGvsymZcPU+3SjXA0fHnCCFbcbAL2OH8 uJW4mcrcBq/niPQoW1PHsNv1NZn7ZjpOWnV9K7CzOZmPqH7WvniUHFjkt6G1abz0vBQBmwF/ qoC15OA0du7hpIyAZeyvVVvTJ4yh593oCwQs4IHRas1ycDapP30OtS93Vb8NvaRENy8ik0CW lBP14LUxbsVeX+4H+bPhdwSMG+9ubSBSwC7b7MmzY2zL4/2pXJzywkLPu9wX59EQsJ1Ytqz8 RvtTkq//T9nrrKz8Tb0SzahQW69RbCui4YX+XSnaFi7MUZk8yIHhlcPbGQeRAnZAEwVpU0LI vTCym7j3hYoIIRNmK7t4+MrKHzss7oGM3ZWVT6DEcv2t8nFH9fH30xarmfArp8tvA/rfu7eB RgKmCr1E5LogYAmzlW26ryDS3XW8Ci4nJH63hVPf3L1aJXCTKPHh1x7GIWQ0nJwHv/Yo9Vl1 jA24492jDTQRMGo79ll/X39+854dBCxptkY1lnmg5/ZezZEM4kMnfdchBcxPicwxbPgP78MT Nk2Knw+VJ+OglM0ihNxnRc1dSCvNpT2tw2C9odOsE9hZ1VfDz+GdjgMIWJRTE39xEwFTrrFx vGRu6Gtzic9HYlu5kVLGEM9aphaCB53fUNvw7rHg8+Ln8XLHog/NQTGb1eGlkx9DCJlpbuI2 PzMgjK3SZyE/dwZXgAGbAbxGAYvwMqB2l5hXJcAZGOiEAQhYJwOBboABMBDPAAQsnjO0AANg oBMGIGCdDAS6AQbAQDwDELB4ztACDICBThiAgHUyEOgGGAAD8QxAwOI5QwswAAY6YQAC1slA oBtgAAzEMwABi+cMLcAAGOiEAQhYJwOBboABMBDPAAQsnjO0AANgoBMGIGCdDAS6AQbAQDwD ELB4ztACDICBThiAgHUyEOgGGAAD8QxAwOI5QwswAAY6YWAeAdMnh7Yoq27OS/dUZ6kx2I3w y3JYznlhugRdDdjWMxpxoI4dcg56HPkMtUY83rGXyQSMTKZqZdVJsdBQoYc7oxPTZq/LZ8Sk Fn75HHripnOSbQyG1GtbcUD7zRWBScVVu30PPF7EPIyA/XgqqKewpr/M+s5QjuN0xSTei95a hWBjSk2J7qT0pRl+p9ozxVChqMPZAyPHgMt6nqGfM9qAvJUSb7vGaES5sVQbuDjpf7ysmS39 2LPTBZMJGD09tGZZdSZ05CZv5rLqbPhkap3Vw0/DSCt8XIgDpT2ktqRPjEraQPz851vcKc8W wpWrX8x9xhAwsZL66jBqUJGkXy5lflqNuNHQxR+44hflyqqnCFhW/EaoaPhIC2KswsHZ21O5 sUr4cwlFqbmUq3/kPrrg8qPAvTPeklbG8dw2knRzl5SwzUQgW7Wi17dcgZuFDw3x69Dp+XJK 1DcJISO98Cxhm2fzpjb+XDOuqS3FgDh0oXMBU+55cGOnFemWkZKwrbbxtsJPRFx6G3SQFuFA 7UJG5LpCi2aGBTVGAthrG9vS5f6Lfu721r2AyQR3SMEake6+RmB+XmTy2p4sDaFkUqh4afmU MDqPF65rHzL1Mv/8rov/8sz/4cJGcym2+9Sp6V/A5A4Ps8rFonavL7Xi1Z68d3nIhZ+7z2oc XLWt3j2w1rZ06fm2HgwgYBuq/XWFS/iuXpRrAo9qvJnwW/k/zQUEbEwP7OrcuWrzd+8XaOfa 2xgCJjXMCVNSyck0gc/dKF9WPRW6bJ+KX7bfwid2l3gRDrwDMQj+LIaUwZau9kPYnGNvwwiY 2vFCteirY43rwMBcDIiNsnMqaSABk24DRGwuqwQaMHCBAV68RMPBBEyL2PGS4AX0uAQMgIEh GfCE4gTLgAI25Eig02AADBRg4H8/isI36tR66gAAAABJRU5ErkJggg==</item> <item item-id="392">iVBORw0KGgoAAAANSUhEUgAAAckAAAB6CAYAAADUFqgeAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABd8SURBVHhe7Z3rteSoDkZPApNHx1BZ dBLO42ZQ0dSvzuQEU9eAXeYhkGSDjalv1po1012Yx5aQkAD7541/QAAEQAAEQAAESAI/t+Ly mt4/P9P7datOo7MgAAIgAALnE/h9Px8/78fz91DTN3GSbrA/E9zjIWnjYRAAARD4MgK/z8eh 4OoGTtI4yMf74GLgy9QCwwUBEAABENgIvN7Tzixk907yNf28EUBC2UHAEFgyKj9zVmX+92ga CUxB4KsI/D7fj8dznkW6f/p2kmYPEh5SJ1GUHpaAWTD+rJPcTPgfZFiGFTYG1oSASb1qF5cd O0mzasYhnSaagkpvSMCki+AUbyg4dLkrAvq0a79O0qyUEUV2pV7ozIUEbOSIReOFEkDTgxAw 0aTGtXTrJLUDGUR+GAYI0ATM1sOcan3Zk3puT1Iz0YEVBEBgIaAMwDp1kki1QqFBICBg7wh7 h3Xsn5F+hZaAgJ6Azr906iTnvPGOU0h6WHgCBK4kEJ5WXSNE+984TFwiye1knnsW0eSV8kPb dyXwmuQLzD6dpDIcvqug0G8QEBNI9iThJMXsUBAEIgKa7Tw4yV3qozVQ+fL2WP+yx1RMn410 5H9JHQaRE7vPZk6leayIECrLcld7exQjJ+c69xvN+D7H17t+RWMkK/bAkYIPOQ943dgjzbGf kdownm3ZhvHPX8F5CCc5dfuKnW1Cy1Jd+fKB0TOakjV8ax3yFMEVinekzeAOYFJR/FrC9DWF cpau8nJ7e0aSk3PcV2c0tHe1XI9CZyLTvz1jOfJMOr7ya8E0fKh5QOvGPr5Hxn2nZ6U27Oi8 45+/ihqcZCPybrKbC93TvGfK7wcVyysiQ3sBdprGvTzORUXU7z4/BcvFQx56l2OsXmo5J/uL jRT2impJWRbueFKyy/Ch54Fzyv6CwcqjzxXEFRIJ2lTZsKPzjnv+Qhpwko3g/z7nI/jeip6b h8XyUkO5vkpJ6wgaMahfLf+mfjuxk4NcnnGUsvRkl480qMvG5QvIajl/253Hku5SsqP4ZOcB IknNnNTYsKPzjn1e0/HKZeEkKwNNq5Pm89cn0/KrAvn33tLPgHkvdx/VSXJRpMuNppGf5eEi CBnLRRaS9ual0PYyZM0bOvJyDt4XOaosyXmXpsb9YqQhTfjw88DfF+MWr83Nwy0aENiwo/OO ef5KTPd3kv/+vv/8/XclQ6ZtgYKFSY7kuP6a9ggimkipgvcMDmlY+SjSYVw2/z3rtxrFj5OM 9/lIZyhtz2uTPXQSmHxaznEUPKQsqSlTdpDmCYmTLM+DdA/U6gY8ZQUbdnTelZ+/0sD/+/vf +8//ZD3o9nRrvwd37NRW3lETRhh+vfEb629kWMPTbv7p3ch4qcYUnpKbXhtTOq1DyGhXe5pX wRFtStOJsvl6n1JLpM8eoOH4cPMg+/y4h9xySiCed7YCqQ07Ou/yz1+pzPePJOeJMbqTtCnE ZJ8tMvz+lQfv/4dZJKv2EqMp5e9bMSw/T4rbq5dunUOl9J2r4n5caUYOtK15GxDD53PQhJgL dh7ASe4UlNRJVph3QbKlj3cQw0nuVBv5Y1oFo8pnoo5cek8VBclHcmVJcVqM3KPyr1HIWMra 0x/c2Rjm5byl/45cAblSWsK21XqquQJi87PRKe9MuhVv7Dqebj0679jnhTrVoBicZAOoYZW0 k0zu6n0eyjnV7b6Su1hfSO2pjU9zCIcbyPNy9xjT/dotdZum8XiWpfYOD6aYwgr7xqYg63Tm klrYyM8Gf/E9UQUfch5EF9bhIAWyF9qw6EUc6nnHPi/oaoMicJINoKJKEAABEACBMQjASY4h R4wCBEAABECgAQE4yQZQUSUIgAAIgMAYBOAkx5AjRgECIAACINCAAJxkA6ioEgRAAARAYAwC cJJjyBGjAAEQAAEQaEAATrIBVFQJAiAAAiAwBgE4yTHkiFGAAAiAAAg0IAAn2QAqqgQBEAAB EBiDAJzkGHLEKEAABEAABBoQgJNsABVVggAIgAAIjEEATnIMOWIUIAACIAACDQjASTaAiipB AARAAATGIAAnOYYcMQoQAAEQAIEGBOAkG0D9nioVny36HigYKQg4AtRHosHmWgJWJttn9NKP 2afdg5O8VmS3bt1+mHj9Ht+A37C8tXDQ+csJ2PlR+u7r5T38wg6Yb1ZOL9XA4SRVuFB4I2A+ Xvt4P3/BBARAICFgjPHjMUcthY+jA9vpBPZ8TB1O8nQxDdIgUkmDCBLDqE/AbEPMzhFzpD7a QzUauegX9nCSh6B/8cN2pfx8v56POaXkcvzKLMYXw8PQRyZgjOrDpFjgJDsTs8t+PR7rnqTM YcJJdibG23THOMnZMVpjYP6xf5Yp3W3GiI6CgJrAbIiDfXqkW9UIWz2QnJswTpOXD5xkK4Hc st7wtOoaIdr/xmHiEkluW5LuWUSTtxQ8Ol0kIJ8XZs/rMwcQSZ6gV3LZpJ2RnauAkzxBjEM2 kRgAOMkh5YxBKQgYo+tdL/D+H4tHBcbTisJJylEvqcMgcmL32aIJQcwCdwScyH/vak8+nK1k znHVud8YnBSzY+JTF3tG0f4ZLY/YGEbjju9iGR1YU3DtB9OohR2LIOpaUInNIPPiI4DmkSRv g0Jl4MpL58EOXRBrZUObFdsoIx/BvEQkmRFecAcwKbMo05ZXsalGPyWZHDVmnEi5PbGGeQU3 hQ/9d9x3N3E+e4uqpsJJdc/VspZHystMomCBsOMulgr76YVzulTqyPpMtE+tZHPPebFwaeok aRuUn8dceek82KMLUoVtb7PcXF0DF9miHk6Skh8XFVG/+6tm7cV6rj2pjn3m5qII8zH0Kd4n pPqW7C8qG7xzcS0PUlZh2ibYl7ozm7nvH6NC6VJhbPaE5zTN9wRDJ6lig3lRIOwWa/7C1Moq u1JlygvmwV5dkEyBYt2Cvkna2FsGTjITJZYiKyvQJEz3lFDldNzqKd8edQKrfCrr9zlfzbDj IlIXVN+arnj3quZJz9XgEUxidxdrO2Z+71RrUZdyIlrTWIlx07DBvCjPAC4yjJ9mygvmgVwX xrJZcJKxLklWr9lI0q3sVifq3yHM7tdJ2ptd3nZUWXZs2Q0rdZKkg9dGvif5rzOaOc5DkKYS 7n2cMd79bUj3oZwjtDeDyCP30YIwxwbzQiQq/9yDZLsjV143DyS6MI7NgpMMVJFbva6Flw1w TytX5fs4yXifj5z00vZMu+umuyyPDicpsjGfBU3wdj3xoiF2kLk201SXrHc9lZIYRrdA/GRF RBwpNpgXvOTTvXFrg5h0q5+x8svXd5Lj2KyvcJLhKdPoiHaY1E/2UPLKGp4Um16bEaHTsYSR ERmRyDGrTpAi3coaG0GaiaxjOaUpO/AkczBsXy8tIBhDHBWK9BvzghIra7Oyept5oQdXXjUP BLpgB1VnYW9fVBJvb524RfQVTlJsW1R7iVGtvtDIeoQOi+xsvdQF+aqsI+MWw+20IDXZOB42 K1AwRslCRnYfq1NCS7d4wxieHAwXo3YtKjj05GwrYRQxL0ICnNOLeXHlVfOA1wXnINes17Et oqttFpykp0zldIVXkDyQ4O+1ZBxiZDxl7ek3wbeeUsos2EPr21pX7p2SBxsdHVkMVR5a1eok hpFaOPqLCRkbzAuJ4DLp1uy9P668Zh5wujCWzYKTjJxkLn1G33vcVsvpc4vSFe7k7Plsi2T6 lJ2k+TXsmyxlqGv5XqXLPHw5sdGSC4XCN68ILiz3z4s2jEUdJhcUPBvMC6k2lFmmHDn2UrvA OUlp/6lyubqlfTvSNv0snGR9pqgRBEAABEBgEAJwkoMIEsMAARAAARCoT2Cnk8wcRDjxxNEH xdzmtH6uqT4f1AgCIAACIPDFBOAkv1j4GDoIgAAIgECZAJwkNAQEQAAEQAAEMgTgJKEaIAAC IAACIFDfSdIfFyXfUdpyrxJ7klBuEAABEACBRgTaR5L2LRvGoZbfOcq+hikHAE6ykWqgWhAA ARAAgaZO0jm++Y0br/kL0Kp3jioEAyepgIWiIAACIAACGgJNneSnI4J0KyJJjdhQFgRAAARA 4AwC3TjJ3YNFJLkbHR4EARAAARAoE4CThIaAAAiAAAiAQIbATiep5ClItypr3IojktyNDg+C AAiAAAg0iSSVWOEklcBQHARAAARAoAcCiCR7kAL6AAK1CLRckNbqI+oBgRsROMdJtgSCdGtL uqj7ZgTcKfHyneSbDQndBYFLCcBJXoofjYNARQLmxR2PR7s7yRW7iqpA4C4E4CTvIin0EwSK BMyX2+cIEulW6AkIVCUAJ1kVJyoDgWsImIn8MN9VhZO8RgBodVgCcJLDihYD+x4C80fQH8/3 7CLhJL9H6BjpSQTgJE8CjWZAQEfApE8zX9qZXkFV5rDO568QSeowozQIMATgJKEiIHBrAnMU ab+yk/4b+dJbjxKdB4GrCMBJNiMfGy/uWH4YOdj9pdw/NlqYv64SFInaG8JCOiaqoVBs7N9F TmRNT34+5dbayeTGopC7RFfvFEmSevx+hx87iPU8OykyusLNiyhiVymbRCA9l2HGXpo35LA4 1pxN5H6/hiWcZBPuTti+ozOg8/fXFmX9TND0+a2bq2L7xiN+3v256GibjLtmpdsEltstis3c J+MI5ZU4I7060SpDyo1FI3dhR27jJGlZGfaB3tpFjHyBGYqZnhe+LlhZb7nqAeaNUE/stGDG rpo3HGvOJnK/y8dVuyScZG2ipj5yYhslyKyKqRW1vfO2HMbw+mhPMU5TFEk6BfMNhHXKCsfQ AsPeOt2CwjiqaT6QIo8kaTbOGIhRiIyyfGTFsSjkLm/xHiVJWWUiy9KIinwpWfptEO3Z+qou kDqVh2Dsh+eN3wZnE7nfL8QIJ3kW/JIBoBwiFRGYvzMTOKlrrEjy9/l8u6MpinRrkc28sPAP wWSNIBeBm8VIHNVQf+fF/aWxSOV+lo6e1U5OVpmFYdlJ5nWFdnjpgjLO0tw7A7NXiLHumz9L 5405VE0tLkqszfSmto2CiIDYVto7vv3PwUnuZ6d4MnZi4aOkgpGOcIlEBXs54shJMYrzi0qd pJvQdo82YUOkrlcjHQ9IFEX6TrHsICMpJ3tmMrmfT71ti3lZrTxeaybB7iNzqda1t4SuZCPJ OLPg7c19QxQZCDg3dsW8MfWJWYfyyme7yjazrY6m9llqT3/O7Ji4re7f3coLW2IsP5fFbYAV r8BShQ73G8Q0Oysoc5JlNtSQqBUuF0X69awHDKQG3AoNTtKq7vLSA0KP19Spfk+S5jtbbnfy 17Nw66GgrNETLZQ6mya1usOOvRQZalhzNpH7vdaAZfUgkpRx2ldqOR3Gpm+4tFsc+cROMvu8 9GTgvuG1f0rgJDk2ZCeJernUT1BPHSdpV99x5HKbgzc7pM/Iik7ZCXTAdiVXLjwxOb24+rjf d4z7No9wY+d+F7DmbCL3+wUs4SRbQberMqGTogyjZ0A/hxNyd+G+2EmK2JD7iJFsxPth9dKt 5CvkxP1opbjt6hXJKkl3coZ57a+wnD/XsodFFAe92uFqWzM39hoHaWK7xtlE7ve2RLK1w0m2 AK+KSrZV8JYWKl0BsTkr8nSrH7HWv8bQAhRXp9Dw+dVkDjUF6TXCEcnS0/qDO1vXqLHEaSVG 7hyuu/0ulZVoX1KSHaAOp0QOceBFSqgemT3czyKF+z1StowsPzaJs4nc7xfqNpxkA/jsinlu M7kPtqSL1jenHH6ZwBAHEGgnmbLzhEhOtuiSMsGmWGcVHck5fO/gRHS3tkqzPVdCyirkER/c ycspw9dGJ9uLItJ5FbU3xLyRCp0be3ne0HdaadacTeR+l46oRTk4yRZUUScIgAAIgMAQBOAk hxAjBgECIAACINCCAJxkC6qoEwRAAARAYAgCcJJDiBGDAAEQAAEQaEEATrIFVdQJAiAAAiAw BAE4ySHEiEGAAAiAAAi0IAAn2YIq6gQBEAABEBiCAJzkEGLEIEAABEAABFoQgJNsQRV1ggAI gAAIDEEATnIIMWIQIAACIAACLQjASbagijpBAARAAASGIAAnOYQYMQgQAAEQAIEWBOAkW1BF nSAAAiAAAkMQgJMcQowYBAiAAAiAQAsCcJItqKJOELiawPKF989nor7qE1BXw0f7IxGAkxxJ mhgLCKwEzHcUgy9NAw0IgMAeAnCSe6jhGRDonED7j0h3DgDdA4FKBOAkK4FENSDQDwHzxfnH +/nbT4/QExC4K4H7O8l/f99//v67K3/0GwQaEHi9p5/H+/H4ebs9STjMBpBR5ZcQ+Pf3v/ef /8kG+yMrdnKp+YDChCXzydDRXNcE7KEd3zEapzm9X113Gp0DgT4J3D+ShJPsU7PQq8oETAp1 jQyj/7IHdFxkibVkZZGguq8gACf5FWLGIL+bAJzkd8sfoz9CAE7yCL1dz7qIgF38z8mxye4n Lf8SD5gTjJ/fk0iBf35X9y95SDsWrnwYlT2yIZZUVnug5OqW9q3Qprn+4adXTfq1m3uSUUQc 63V8v9Pof7HvnKyj35O0M/f7Htne8JkkRW/GwLGNx8mVZ1irZX8O5yGc5IP3OOfQZFvZDES5 y0u5T6H4z7P6zg4yMO6BYeSfZ7vaTQF6LJxj2+4Iuue38nF9buKm9UlltQdUrm5p3/g2zcTe FlD97EfahV2k14kei+czp+epbB2XlQf3O895jBKrPvop+drzTsC607u9cJInafnHaD2m98RF knEkYPror/TIVZ83EO75k8Zcpxk3uXy7aVlmDSlTnmJneHnRikpWykEW6xb0TdlcX8WJ8Vke HnvjRMU+ktNz6ncbHS3OgPu9L3rNemNk8Jgm4rBXxXknYK2SfTMaacX3d5JG6btJJeUl9/t8 LqcL+RRebDhcrZ7xj4x63Cr7/IkKdrypyitaip013lu0JZcVdWq0fJK0WLegb8d59lQDFeX7 V1fKqdZdes4tMLnfe8JXoy9rKj4Zd+V5R/U1aNPd7d2uLXFp9hqDl9XxmuSH3vq8AvI2cPtJ J/HYeSc551LDPaVPJOlWdqtxeOVSaszzfB/7K+Hvv0oijVx50rBmDaNAVnbx4qfvpLqY1q3r W38ykvfI25cMFrhE6ru0n6rW83TbIuwz97t8hPco6RyT3ZLPzIFa846Iz9xp7c9kVsr+NMA6 /9Kpk3ROQ2I4T+NabEhqeH0FcnuQZo/p4yTjfbTAYCwb5B4U//k+OEh7kU6ecF8rrqdcXueI JLLaovzgsAw7vG92kh4cMg3nw0vT59uvGj3nHCD3OyvQ2xWwadb10Bp5tzbcqz8y7/YtRkqy Pwm34aJwLt06SbsKUgykNt7wlCl3h01reFfnuD1Hp5niesOTZNNL2m5tOuX6WHbZFGQmBcKV V6U0pcxW1tIo0qYG0lPOqr6dK6d2rXGMud8Fer6cmswe9uJ+bzf462qOI/TYSXLzKFmbhvv6 9mcqOlWx5mTfHp82AOvXSd4q5bpT8P6+GbknydQb7bu1V69KLdSerBSH7B6vRFb10q3OqESO ltl/rkT5nGqyhzeWAyKCwx1sR2OGts7CnhL3O9vgPQuEp5/Dhb2NN2rPO5twKciihuyri0KX ajXNd+wkFwFcGE3K5SMwvJlN9PgaQzBcX8nY5+W9vb5kJn2aPazFlY/TarkrIJloLwCiP7iz PU7pgaZv10tG3wMueuZ+j1rk9Jw7hMP9rh/gfZ+Qplv3zjuWtVL2J5AO0tHC9vp2ktZPKo6P CwddvxjtJOl7j9sKr3SPz92HIyIQ72UE+XuF9UdYv8boEnI0UdPPQpXLr6nO9R4hd+eyzdor t1jyDrWQ9zfr0z23xnB86YsClLK2i0N6nnDREvf7uVwubo10YkpZxC8foK5V+S9IWf5/m1/c vD2RUenAWKEb3TtJZ/zkx3VPRI6mQAAEQAAEbkGgfI2rNIQbOMk1RQZHeQtdRCdBAARAoCsC +x2kGcZNnOTqKIkUZFfCQGdAAARAAAT6ILBuA2hOqKc9v5GT7AM7egECIAACIPA9BP4PV2+V 8ITPIAsAAAAASUVORK5CYII=</item> <item item-id="393">iVBORw0KGgoAAAANSUhEUgAAAPUAAAAnCAYAAADXRw5BAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAATcSURBVHhe7ZzblYUgDEWty4Ksx2po xmK8PERRAkQugpLMWvMzo2BO2ARCdFj5hxVgBbpSYOjKGjaGFWAFVoaaBwEr0JkCDHUjhy5C rEujvrnbnhRYViHOI4ko1Ms6j8M6iUbOXeZ1mhnpRup31+0yT6s7nAhCbYAehnZQi3nmKN0d Wi0NkmN6PiIUKaiXedQwD+O0Ts0itZAO4CjdEoFP9C1Xc6Maq+DveIrMyp5FBgqLNTGoreEN l99i9hzyiUHGD9lOAQ34tEMLPoiQgWqjmhTUhxjtoBZTwjnthg73/FYFMFBL5KeNaoa6qiPV ZMJQV5W8h86wUI8mV8NQV3W6nE034at2y519WwEU1EfAYKhruls5p9k5Wk1Dua+iCqCgXlcx mQQaQ11U/URjMpkxMNQ1Fe+jLzTU5pi2KtTL8pajnPKJMpRtH4QaZVcf6DSxAqXvDahHGaod qOV+DyrIsOdlNyOMmNziDgOR6tD8qL78s7Ymqv7d6dW2cIP6nByjo4J/O8LYz9YDZ5aY5rAm 1vFZwPfIgYu1JXrd1/RFaqP8h4A6AHpCWX/wAgNfPWgXSaN7UB8TW0REZ9CdrtLOfWYyrOez d0H9CX2RUCsfJqDOA9pEYffY5ijL1NUxTmixM0uR2bdJI5Bt6m8SPFmPa6qBDgit6P6jGq33 6/W9wNHXY1DX9FkLqGnom4A6f88JLzED0UxFpGi0Ns5ARbcmUKtOr7ZtoAN24bSxA7Ae1Ljn sjunlM9SjqgNNbT1UxNof/pGoVYRNPnCA7gkCC1FQ3/vYW8NQw1ORFCiDFpqZyy/z/vhAFiv 8JkbNa+1zSHQ/ijYIaRvcE9tYTZgB8TUQkH/Dy3Z47Bjkj12ogEL3DENpAJI9v9hqMFHAqDW UfIa1UN7qMjyOwl1A5/Bkt6I1MFnxjuLkr52DHjZ73OG+rwH1nlrDbvcJ8oXE/wi81DkvRvB 8U7DXAm/6XKOEsF2tux/eN64ATVQfFJ00Mm6cmur+7xVfZbUCwd1/JkdbyX6607faH7VKz4B ouw2U4IDGowmHKntHhueBIAy0YLLwz3iRyP9dfX1nM/+jtQ6ZYF4Qyk2s5PRFywThZ1rzkmx e527EbnfPTUMNfRCx5ZY22/IS5Rdl9/gcvw1e2rgWO7WRIRZn9lrqOgr7Zy8FzriM7YHdsAJ oQKLvYjivC7sIPutgsn28QVtW/zkwNbnnoelezRmj8PuZWev7eKh3p4fmIXyfJYCDrf83lv5 N1LrhijoW+LVy6DY+Oj7/XPq1AAG/u+8zJ5xd/AWqBrM4/SLPisC9f9Kv15fqZP9olF+7XdE bFQ5ZJOKsutxyh9HJdnj5JnPGenEkqU4Yyn7Wp+9COo361vmc0ZRsVPFK/hons2Od6NfyBLM F5TrFGzpiQ8P6kiyZ78DpaSf81mBRFkhX75bX8kbyQ8PggUdLSYXM1AdHxQadtwMWQUu373L X373oOBjtdRpcZ6I1ule+Yr+FDhHaWUfYaivRx39uZstoqkAUagZaJrDnYbV9KDeygrf/eYX jcHHVj6jAC2odbLsmY8MPOMebpUVuK8AHagbJsXuu4XvYAXyFSADdexbX03f3Mz3Hd/JCoAK kIGa/c8KUFGAoabiabaTjAIMNRlXs6FUFGCoqXia7SSjwA9fz7nWRp3fjwAAAABJRU5ErkJg gg==</item> <item item-id="394">iVBORw0KGgoAAAANSUhEUgAABAMAAABrCAYAAAACVksKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAChxSURBVHhe7Z3LleQqEobTgevDzK5t KC96dy1IJ2YWcz1Ia2rVnpQxOUKvRAgEBE9JX51Tp7syxSP+CILgJ0CPNz8gAAIgAAIgAAIg AAIgAAIgAAIgAAK3QuBxK2mbCvv9fj4e74fl9/ndtGM0DgIgAAIgAAIgAAIgAAIgAAIgcEEE vp/2NehjWIRCBlRT+EAGfL3eP9XaoyEQAAEQAAEQAAEQAAEQAAEQAAEQMBD4eb2/IANqmgVk QE20aQsEQAAEQAAEQAAEQAAEQAAEQMCCAGRAbbOADKiNOO2BAAiAAAiAAAiAAAiAAAiAwKUR UAt7x3H0x+Pr/bKlpkMG1DYJyIDaiNMeCIAACIAACIAACIAACIAACNwGgZEYeL69V9JBBtQ2 CciA2ojTHgiAwMUQ+H4Ol7AGTHAXExtxQOBeCPy8X1+P95d1K+teSCAtCIAACEQjABkQDVml ApABlYCmGRAAgcshMC0O1K23/IAACNwDgZ/XF+TfPVSNlCAAAjkRgAzIiWbOuiADcqJJXSAA AndBQBEBjvNud4EAOUHgtgio1zKTDXRb9SM4CIBAPAKQAfGY1SkRSQZ0kA77/erhVYjDQuDF bmAdG41rBfuIw+uaT5dP51Xvxi2aEDBOmjcmG+4uvxqYYNC3e1L6KflqZuKtWf/EW70OBOKt XjVTs18R8RZkQE3FxLQVSgb0kQ6r0vOKBuBR0D05OxiDV4VnsY8KIJ+oiWLpvCpIL+2I7r4Q vLv8kAGn8DTKx+S/Q4B4a6f8wefmx/kUJtZtJ4m3ulVNk44FxVuQAU10E9BoCBnQSTrsYETP ihf3/PzY3nexhfTn9bS/FiMA+R4eCZGxh34G9QH7CIIp5qFr2EfudF7lDyukB999MXx3+c9M Biy6G+bHx/JKKUWejTvdwx0b6rcAmTYGo+tOfa0FdQn/0kFGEPNpzFQZ9Ow15tMlWYN4PEjp EQ9dwz48/hAyIMIiqj7qJwPKpMMqg4mb8EouvLcymikvB30tMWEWSg0Uy1jVHuWNYR9y7FTJ OvYxB+jzgiBtpyeirpzpvPMrb9LQDih998Xw3eU/PRmgLfgXEmAhAIrpVs3V8/GdnGPeM1xz 7pASbxFvBcwOzR8h3kpTwW3jLciANMMpV9pDBtRIhw0Srtxu3LibsNmlsJx/cQYWfjIlSDz9 oQJkQJqM0RI0KIB9pIBexz7MnbopcJcRAvF15UrnzRn4H+osdcEUOummGE7JsneXPwcZ0MoG xnb1OzW0RfpoM+bfn93GoHdQH9ndHLNsgm0XDkf4xGCXiyAk3po0S7xV0rNmqJt4KwXEW8db oX519qmPFKApG4PA0WI2fcBPZ0jmtMBNJoDO/s7//54CiOl5I2vgaHLQy4x1xKTwmikt291G nSRQwcV+4ZLjCMUUGK1yj6mVugzG99VljLEn7xbKR8e7i5cM7I3v3bbkCR6wD49SUsdAoH3Y Fncq+JVcwCWqK0c6b7pPDEQr7fK4NR07xhcG96zOgylkwBXkTyUDWmKw052522shA7L113I8 wBaAHrUX3ZccfiG9DuKtENdEvDUzLtNrcZf4iHhrNp6L2IcoRnKMH1FdifEWZECIM8v5zAEZ kMp2mzvcm79NMkA5pU/gqhbem0WClTG3pfNv6/EhtWfoxghsdJK7hb9j4ZKW1ueTwfe9T0K1 pjAzH+Jl9LcS8oQeAJpy7QO4jQ0c2tLQNvZhTGThi8Bq9mEbP6EssWlewrrSd/ULZAK5ho42 AetE5KIv22eqqnHcKDI1mjQMGcMVnwmQf03o0sjiy8hvkAEuG/iQ7Z+0/OYYRJIBwf3dZRzY 7HEJ5hcfqAf302dH7QX3xWj6+xl37HHXc+KtLSTEW4nOlngrHkBfvO373t8i8ZYfo/EJyIBA oLI95g5ukwPnw3T3PRmwydQ3yloHkKV+522W1kWH63UYrs/tZ9nsGQOBCrJhpH/WiYyB0hw/ dmQPVv1ok5nn6AT28YG+xRgIsY/t5V5zCeHur7iu1IA7tbwHqI0v2WCzsOw62277TGtASrSE KLPQM1Hy67eL6/9f+nZC+RcyZyWivTawCjsQ2JbFaCsMIsmA1Zwy9Hc5DrQ5FuSq96i9yL6k xkup5afLGV0kMPHWaGPEW9NQI96yz2AXsg9xjGRBRlxXSrwEGVAoynJW+8/711+/339236en rC077MvOxfby4PjJydypdxuoMSE6U/4c5xZdmQHz5+YlyClnkX0y+L5f1VZYxhxWaZVlqdi6 C6CTMtsjBCE66AU77GOJP/SbvhuRAeMYDs+a2LvF4RhSgVvQP+tXDSNjTCwpwLoftH2Wc2GV Y9zH1LEZs175P0S2dVc2cjEX08+Sz8Zh8Blb1rs3WmHQigzYyKvFGN2TAYl+aVrhbdK+ibf2 o9QXE/i+J95y+5tesCPeuka89f33v97//vv7zZ0BJaONTd2uzAB/OuyUTuf4NQLmz7PL7kU8 GWC+iijE+Ryn/Nl3+p3HBBwkwaHz8aQ1+mTwfa9UWUPGEHP02UMaGfDpwd6W7EchesEO+5h1 J0ztt9peQl1J6bzDeC77elM9oLfcm2K7S8X1VpZWC8EQZ+F8Jkb+5b4Wx1x1SvnNRV2gDbju 3WiFQSMyYJwbtNhj/bt7MoB4y34f0/64JvPp5DyJt+wZvNjHNeKtJU6DDEgKqGIKHwRS2XfA 9MGbTgZ4U750GHxpURvIjo8PmLDUPibgTAcsKGOMRTmfTTkmsKt0q6Nx4b9XzD5t0tWHgthh H7PybBg7zoV67S2hrqR03OJkgFvy8W6S55AKbCx2zM/WGlotBL3Kkz1gk3/U5YBJV7viMvGC Su0x8FxgezYbKNXf3smAlHRaD7E2jQ3irXkFfRwT+NLEK8WUQc7A9xDxlg+h/fc+/fu+78k+ EmKkfbhtuZg9MHaTxluQAfHmm1iiIBlgDpzNbkHc5HR0QdwnODYvDtKgsQYD+e4MkPMm5sV5 pgy+7+vImGhkC1X5eQf08Ml2AR95gaC586RsbaeEPrDLccGk28b7kDHMPux9rfVqwaWP0slp LN+KDFD2Pu7+aos/22feYCRMU9095ZJ1twPt84fdSRbeIQsG3pTYUovr8F7HPVmqv3cgA4i3 AmzNN1/6vvf5lzwxZYAgAY9sj8ESbwVAthy1WWPJM8fj5463IANC7DXrM24yIEc6rJnK9Fmv RZIBayBkCm+ck1M7Z7ZLdBzBgHVHeVmoqiMQ+gLTea498RbhzVm/oa7dqwVby5jR4EY9LEdL zLPbWznNV865bWlapE2LJexj3CmuOgZi7GOrYxkRsC7rN2dkQ+s6HxkwYfaJT9TrGJ/v5+4z w/5LLaxi1J3lWZv8i6wHZ60vI//IQlls4EvzpZ/jeptxcDYMivV38TvGnHPUXmRfevArxFsh Dsc4ikS8NR33NeIn4q35rTynto/zxluQASG+LOszZcmAfF09CPr0RqLSwFVB170B+57b072H fj1ti9B8ku9qqi5jQVmyVY19rFBiH4dWlRS0//n9/vV7f91qNjOmojgEiqRXx3WBp0FAIfDn 91/vX/8IsWiVceTsLvMp8+mRLWMf2EeYr5PGW5ABYfhmfOosZIDa/H2+x+NvRz/RCyH75XO7 Jlw7zy0m8doyZrS2klVhHzO62Ec5MqDFeC85aE5c9/QmhdSsrBMDQNe7QkAa9I5CdOhXmE+Z Tw/pAOLxCR7irSLxFmRA9entPGSA2sV/+dgAwcDcpWDudODOHgiaMHPrtLKMubtfrj7sQzo5 pYyBcvosU/PVgvYyKFErCIBADALX8yvMp8ynRyMA+8A+/B5S6hchA/zYZn7CQQZ0mg7783oN lEAvPwHOsJeu3qQf2MdNFJ0g5rXSeROAoCgIgEA2BKRB79gB4q0APRBvBYBU9RHirapwn7Ix abwFGVBd3WfKDFDg+N/HWwfCwDNTdTpDKysC2AfGcIxAUtDeYTov+gYBEGiPwDX9CvNpe8vq uQfYR8/a6aFvUr8IGVBde2cjA6oDRIMgAAIXQkA6OY0QQAZcyBIQBQTyIYBfyYclNYEACFwD AalfhAyorn/IgOqQ0yAIgEAzBKSTE2RAM5XRMAh0jwB+pXsV0UEQAIHKCEj9ImRAZUU50+7Z AauuCRoEARAoj4B0coIMKK8bWgCBsyKAXzmr5ug3CIBAKQSkfhEyoJRGnPWSGVAdchoEARBo hoB0coIMaKYyGgaB7hHAr3SvIjoIAiBQGQGpX4QMqKwoMgOqA06DIAACDRGQTk6QAQ2VRtMg 0DkC+JXOFUT3QAAEqiMg9YuQAdVVRWZAdchpEARAoBkC0skJMqCZymgYBLpHAL/SvYroIAiA QGUEpH4RMqCyosgMqA44DYIACDREQDo5QQY0VBpNg0DnCOBXOlcQ3QMBEKiOgNQvQgZUVxWZ AdUhp0EQAIFmCEgnJ8iAZiqjYRDoHgH8SvcqooMgAAKVEZD6RciAyooiM6A64DQIAiDQEAHp 5AQZ0FBpNA0CnSOAX+lcQXQPBECgOgJSvwgZUF1V58kM+H693j/V8TEb/Hm/Xt/Ne0EH9ghg H1hFCALSyak6GTC83vXr8fV+tXd6IbDmf+bu8itEwSC/XRWq8TR+JVB+5tNAoG76GPZxU8VH ii31i5ABkUCnP34OMkBqUOn4WGr4fr6/bhuhF0E0uVLsIxnC21SQZCvD4uxZa+zffSF4d/kh A07lk07jVwJQTZIloP6oR4i3ouCq8TD2UQPla7QhtRXIgOr6PwEZUDMAV5sxP/6tuJ/X89Q7 diEyVjdFaYPYhxQ5Z7lL2YchpXRyGqupaWt3XwzfXf4zkwGL7oZ58vF4TL/PIaNuWNht/s7s ub6fcztavWq8j20X/jmNX/HhUNPHEW/5tNHf99hHdp0Qb+0hhQzIbma+CvsnA0ouvFXw8IkT hiMAXw9t13/AxpWmW8IhjoHS8507bBHL6DOdIt8fYO5oD/tIU0Rd+5jG2LIgSMuwkdV1mqD9 7ovhu8t/ejJAW5gvJMAy2ZbS7W4OnXxEBS5g4Am/5O2UiCeE0wLzqRC4uVjd+TStr+OdYZFH 0bCPNMzr2ocsRrJLKKtL6hchA9LsTFC6dzJAGWD+BfIUZ5k7BiYZMO0Efn3Z7ipw4CbQwFqk ABmQJmOKMLXKYh8pSNe1j3kyWSNzFYjo5FuMJPK6pJPT2LuaQXvqgmksX8Z3xmhK/Ozd5c9B BrSygbFdfRE+jfXPotz8e7aS5P4a9er1ueo+ajOiP6fxK4cDkvlU7K+SY8qUlmuVxT5SkCbe Ckfv5mRAPRb7o5JMZMA8+Y87frvF85ZRMr8fB8iSSmiylEeLcb3Md2zgq4IGPVA2+qhtJSgm b7+DqZ5PvdxrClwm2Ye6xpRKvU/G99VlDB+4sU+6da4z1fP/R7k1nPRTHNjHx356tw/b4k4R YFayzWNRCXWdJmhPWQyv6dg3JQOuIH8qGdASg53tmjuQFjIgU3/1owKb4Nu2sD9qM7I/Vf0K 8VZsyDE8T7y1xpprDEW8tVkLXSkeT4iRdoMroS6pX7wxGfBZjNZIactLBugTu7m7bu7gqWOD GmFg7obb/t4BYkvnV4vF8MDXfo7QkhmggHIsWLbpPrFzk08G3/f+9nLI6G9F8MShzs3JaavX je0susE+tECn7hiI0r5tHEXsvG3aSqhLOjmN7TfKDNAJyWVcb/yPRoqNY0SRi9HkUJQ2yz+s BSA2WV/6Ea8rym+QAS4MPkT6Jy2/uQ1EkgHB/d1lHFjMcPUp+uaKvhCcfORRm8H90Zqv51eI t+Kdjy+e8n3vb5F4a2EYlrFWNxYhHjdsNCFG2ll7Ql1Sv3hLMmDdJR3S4Z+VzrdlJQOO0tut wb42mXlS460O1lJmwtDifKztOxb9w4sLt3cGLCjZz1XZMwb8k8b4hE1u/bNOZAyUJu6xQ53v yYDNWt8oi318oG8xBmIUP/bPzAIQ7n6n1CWdnGqQARufssFmyWTSMpr0W7ZtN25LiZYYpWZ+ 1im/TdYLyj9NDVommm4Dh/I6MtVa2UAkGbCaUZb+ziTA8CrizTGZqxwTIN6K9zrEW467qIi3 rhqPp8RI5gBLqUsab92UDHjNA/WcxwSshrKuo21pwPqie5ueb27yqrrNFH23YRpkgDPNz3Fe 0UkG2PVi61voLOWTwff92k5hGUPliXvuSOfxkxP2MaMflQabZwzE6D1lQulhcqpBBmwwMtj4 hTT+2PvniNcycW5wyrKwitFw+rNu+W2yXk9+hWAcBhPmzrmolQ00JQNmDJc3GCxmeREygHgr 3s/44inf98Rbbj/TC3bE49txcfZ465ZkwEeFdyQDPtJPqXlziuuccWTb+Q1xPsdpfvad/iGE cGQG2D8/dD6edEafDL7vlx0kdzpwHhnjp90l/fJzY7wtjfXDFZk6jycDzNdG9YId9mFYT0Kq 2c4OE+qSMtU1yIDFB+3Pdo4rvmGnU7+nZNkNdt/7cr4LBHWi0CfrFeUfl/baGzd8GMx24bp3 46ZkwDRWjLcIQAZs3Cjx1idzpJeYgXhLR4B4POltSwkxUg/xFmTA3Y4J7Kxu6wBsZIA3xX7j T2wXC+bZFa19TMAq97QtZLk1PI+Mkskpvoyu83QyAPswNNCLfbgyF8QXCFoygQLq6psMcI+e 8Uzkc8i00tKnRlmGz6xBQ6uFYLwDCCphk/VO8k+u3tS35yLbs9lArv7a6rkIGeCMA6JjgQ/x tPgP4i3NFbmOY/QynwZ5TdtDxFvWxa55zNhzbLf7ePzk8RZkwBnJgPmW1s8rhPVX9kVeIGju fqkB6bgg7vP5wYUlhe8MkF/2aOJiyuD7XnNnBWUUzzdHBc1Jdnc2etkNc904rS0CsY8Z6TZj IM4+7DYtY7/ldZ2SDFBjZCQ6jMXfLlvA5xfiNNbV0zZZ7yT/utj7ZAt4U2NzLa5rGUKm/lpx uQoZQLwlsEZfPOX73udX43axpzcbpL6NKhAG4q0AoHz6933fo33IY6Q9YPK6pPEWZMApyYBl d3pJ+TYv8tueETcvEfukq03lNwvsNQg2zdM4d652zIIvEJzPFFpW8su53A0BYUu3MYPyAHfj HGDOVwu2llEkVFAht87jMgPGrAjrbnBr7Dw7dkEoGenCu1dPtpYxSAjjoW2fZUTAUqWsLunk NLY62Nvzpb/bUoJBbJlJztVdbfyR+s5xa3OmhVVsb8s9b5P1TvKPBqjpW78h/3MsazOmzmYD qf2djwfYX1e6+AtjvBy1GdGfqn5lkXOMHYi3wnzOFefTMMmJt0JwuqJ9yGIkO1qyuqR+ETLg rGRAyFgTPXMQ7On1RaV0qYLhzKz9OMDQr6faqav4U13GirKJm8I+VuiwjyArkk5O7ciAA7HU okCenhSEVzcP2WS9k/wzGXUbfXdjeGEduYZfYT5lPj2yd+wD+wjzh8tTUr/YhAz4+am6pDuK 7LY7QHGYW5/2y+a+fKr+DpiDjxp2RL2bcdELIXd2wKYXrp3nFjuEtWXMYH81qvjBPiaYsY8g c5NOTr2RAVMWU6VU0yBkyz1kk/VO8k88wH30Xc6SytV8Hb9CvMV86h4nxFszNsRbQc5U6hct ZIDjIrQlTSpyV2S8hOl75SyM2+PDd4uDUGj6kOsMk9mp/skAtYv/8rEBgoG53NrsNiG3PQQ5 xNz6ryxj7u6Xqw/7kAYvKWOgnD7L1iydnHojA8qiRO0gAAIxCFzHrzCfMp8eWT72gX2Ee0ap XwwkA1w3pR93cH9TqmXB7DyDHC58H09eiQxQuyKvgRLo5SfAGfbS1Zv0A/u4iaIziCmdnCAD MoBPFSBwUQSu5FeYTy9qpJnEwj4yAXmDaqR+MYAMkBEB0xlx/aIV41I7bXs46ZVxXSjXJtt8 odl4CZm6dEa7sd12AVuLNPhD7BwZDNXxDjwzVb1fd28Q+7i7BYTKL52cIANCEeY5ELgfAtfy K8yn97PgGImxjxi07vys1C96yADjVuUIhK3vTx1v5n3s39FsvT1eb2wiJNJuwo7ovOhRU7aZ INgt/M9wTEAEAIVAAARAYIeAdHKCDMCYQAAEXAjgV7ANEAABENgiIPWLh2TA8nqMw2sCzvbO 9WKWYycD9gQGZEAxFVAxCIBAdwhIJyfIgO5USYdAoBsE8CvdqIKOgAAIdIKA1C86yYDl/fMT IeB4r/J4wZrte9fRAte5+vAMBPP9nVP782/k5YZ5dWcnA/ZdggzIizu1gQAI9IyAdHKCDOhZ q/QNBNoigF9piz+tgwAI9IeA1C86yYDPjva0sH8Yq9ppUT6cg/8e3ru8Iwtct8IfkwGljwFs iAOdRND+71Tt/DYFN98AGdDfsKBHIAACrRE4nJx8frW7u1Rao0n7IAACCgH8CnYAAiAAAlsE spMBm0XvnAFgXQhbjwmQGeB+hRiZAQxeEACB+yAgnZzIDLiPjSApCMQigF+JRYznQQAEro6A 1C8GvE1ggm68ENB2XIA7A2bbIjPg6oMM+UAABOIRkE5OkAHxWFMCBO6CAH7lLppGThAAgVAE pH4xmAxYdrp3hICVDJjJA0sqwUQqGMcOLvE2gYUwWWRz3YNAZkCoUfMcCIDA+RGQTk6QAefX PRKAQCkE8CulkKVeEACBsyIg9YsWMiASAgcZ8H677g3Y16/uHyh9X0CkVAUfhwwoCC5VgwAI dIaAdHKCDOhMkXQHBDpCAL/SkTLoCgiAQBcISP3ijgx4/O+xESjkb/0CQf35MQvAd8O/IhO+ Xu+fqjDOlyKuFwc63pZQpE+QAUVgpVIQAIEuEZBOTpABXaqTToFAFwjgV7pQA50AARDoCAGp X9yQAWohry/mQ/9eyADb86+vx9vNB4RnD+TDeiIC9EwE530I+RrVaoIMKAIrlYIACHSJgHRy qk4GjFluwxty6jLT/ejs7vIrTYBBP/bo6clp/MppEKWjIAACZ0dA6hd3ZIACYiEEcv3bFbjj mxHMTICapARkQFf2QGdAAASKIiCdnCADiqplXzkLYciAyiaX0txp/EqKkJQFARAAgQgEpH5x JQMkGQFL/3wZBBFytHm0ahAEGdBGybQKAiDQAgHp5AQZUFlbVefByrKFNndWDJZ+v9Rmx5Dh uVzSPL8WendpcygenufWC6HXI5fG5dCZ2rFVcxq/UhADqgYBEAABHQGpX7SSAarikLsC9A74 nu9XXdOt/967DbIJABlwDOWsjzm4uM/FktkM7KIVYRcyxebETVaXdHKCDJBpXFzqrAthscCW gmfFYOy3FscsJMByRrOGXDXa0FR2Gr+S0z6z1yXz6dm7QYWdIYBdyBSSEzdZXVK/mP42ARli nZSqTQQosSED3Mo39bG/36ETw6EbVRHALmRw58RNXpd0cjodGeB8s45Me9VLpS7mzi6/Avys GMxkwOd+pmnudP89W1c2nU3+YSXvXfUetRfZl9P4leoDObRBuU8PbYHnzogAdiHTWk7c5HVJ /eJ9yYB58qy/8wwZ4BxotkBM7XBUf9uEzBVQqhAC2IUM2Jy4JdQlnZxORQas6dg130wjM4so /xvaxBXkTyUDWmKwG5/mPUgmOaD2JZYjBek2Ox4X0Odp28L+qD1BX07jV0LHUO3nEnx67a7S XkUEsAsZ2DlxS6hL6hfvSQaME0+rW6MhA5wjzbbwj9wtkI1iSnWNAHYhU09O3BLqkk5OLcmA 7+dnl3N5Ra76bD2PraVkT58P88m3StVOX1jJlJ2hlBaAKJnWXWX1+bDQe11dfoMMsOm7WxuI JAOCbXaXcWCxM0dWwjRWpvFw1F5wX4ymT+NXMgzNIlUk+PQi/aHSPhDALmR6yIlbQl1Sv3g/ MiA1DVBmJlopyAAXhLvdhdSdmmRdUUEPCGAXMi3kxC2lLunkVIMM0Bf92xRxtZOqFjLLv7oO VAqfhUw+IXHplH8IRtasOf3/k1IuI7+Sxm0Di85t8naGQSQZsFpzss06jlpyTEDmtCuWSvHp FbtJU5URwC5kgOfELaUuabx1OzLAevvtfFnd53ydzBjCSkEGQAaEWQpPTQikOMY7Y5gTt5S6 pJNTDTJgI5fBxi9zhXmUTH1uPV6WvLCqb61u+T/z1BIkrEvjC8m/8y+WHRmbvruzgUZkwDRG LNkwkAH1B3Nkiyk+PbIpHj8RAtiFTFk5cUupSxpv3Y4MkKk5ZynIACeaCakxOTVEXZ0hgF3I FJITt4S6pJNTDTJg2uVe0v+N3X5bFtmcMv9j08gJyQC3/MvOtzFfXU7+kQ44tgHzzpoeMWhC Bmxvu9aP0Hz99z/2IzNHYyRy/PTtV2Quu2qpBJ9etZ80VhcB7EKGd07cEuqS+kXIAJnaE0pB BjjBc106xAWCCfZ2gaLYhUyJOXFLqEs6OdUhA9zQjufmn8P9Mp/D8/b0+KWKyMWMTKn1So16 G+T/ZEE4UuMvKr/9OMTFMChls2QG1Buo0pYSfLq0ScqdAAHsQqaknLgl1CWNtyADZGpPKAUZ 4AZP/jqNBIVQtHsEsAuZinLiJq9LOjk1JQPW3d/P4s+ZGn7VxbCx23w3+aOOB5zVBiADZK71 EqXkPv0S4iOEAwHsQmYaOXGT1yWNtyADZFpPKAUZcAzeNvWw/qsfE1RL0YIIYBcycHPiJqtL Ojm1IwMmOdeEgDFlb7gnYL5bZpMO/dIODJRaWMkUn6GUwmE5Dz69mm7zNoXh741/vpT8dnlN +dXfp8agmM4WX2HcJ8AxgQzjMmcVMp+eswfU1SMC2IVMKzlxk9UljbcgA2QaTygFGZAAHkVB AAROhoB0cmpHBpwM4FLdVQu3OrfqlpKAei+MAH7lwspFNBAAARECUr8IGSCCO6UQZEAKepQF ARA4FwLSyQkyoJ2ep1viLa9PbNclWgaBDQL4FQwCBEAABLYISP0iZEB1S4IMqA45DYIACDRD QDo5QQY0UxkNg0D3COBXulcRHQQBEKiMgNQvQgZUVtT7DRlQHXIaBAEQaIaAdHKCDGimMhoG ge4RwK90ryI6CAIgUBkBqV+EDKisKMiA6oDTIAiAQEMEpJMTZEBDpdE0CHSOAH6lcwXRPRAA geoISP0iZEB1VZEZUB1yGgQBEGiGgHRyggxopjIaBoHuEcCvdK8iOggCIFAZAalfhAyorCgy A6oDToMgAAINEZBOTpABDZVG0yDQOQL4lc4VRPdAAASqIyD1i5AB1VVFZkB1yGkQBECgGQLS yQkyoJnKaBgEukcAv9K9iuggCIBAZQSkfhEyoLKiyAyoDjgNggAINERAOjlBBjRUGk2DQOcI 4Fc6VxDdAwEQqI6A1C9CBlRXFZkB1SGnQRAAgWYISCcnyIBmKqNhEOgeAfxK9yqigyAAApUR kPpFyIDKinJmBvz5/f71+0/13tAgCIAACJRE4M/vv96//hG28PN6P18/wsIUAwEQuCoC0qB3 xIN466pmgVwgcGsEpPEWZEB1syEzoDrkNAgCINAMgaSgHTKgmd5oGAR6RgC/0rN26BsIgEAL BKR+ETKgurYgA6pDToMgAALNEJBOTmOHIQOa6Y2GQaBnBPArPWuHvoEACLRAQOoXIQOqa+uf 96+/fr93BwIIeqtrggZBAATKIyCdnCADyuuGFkDgrAjgV86qOfoNAiBQCgGpX/z++9/vf/39 /X6U6hj1mgiQGXBsEz/v19fj/XhMv1+cF2YITatC7EJkCTlxk9UlnZwgA0QKpxAI3AIB/EoO Nct8eo6WqaNnBLALmXZy4iarS+wXhw3prydkgEzvolJuMkAp4t4/s/GvOAxYQQjc2yR0IgC7 iLSFnONJXpd4cho5IC4QjFQ6j4PALRBI9SvEW3KffgsDu62Q2IVM9Tlxk9cl9ouQATK1y0tB BjixU8b4+HpvkgG+n+/H12vYF+bntghgFzLV58QtoS7x5BRKBix9ew2+Ys4oeijiSPkO/W8Z igfu6kvzTebknbmxo+oayf/9HLK3DAJb6dr8rAoSjTAY5V1srKCtVcFwHm/jHFx5LEnkS/Ur tycDEny6RF+UOQkC2IVMUTlxS6hL7BchA2R6l5dykAFv1+fylk5X0rbwHwfFc0CHn9sigF3I VJ8Tt4S6lotpREKEZAaMPkJbmC4kwLJQtU2sos6YhabMpbEZ1UYr0rKV/CPOum+eCJEmCW6t MNBNopidZTHWsEp6wDGsp8OQ+0qwNeKtkSw1fRbxVqD1Xfgx7EKm3Jy4JdQljrcgA2R6l5dy TUIqkLr3onfcZbFOTka2gBx8Sp4QAexCprScuMnrSvRr8wR1iMC8gPksQrVF+ljQ/HuuLUfg qybtoWG1S76276r3qL2UvjST38BVl+E2GCyWOREh6x03teWXuYh9qWa2FC9AGhmQ6Jfiu9td CblP704UOpQRAexCBmZO3OR1Jfg1yACZ4uWl3Ix02uQm71EvJeUDoBcJ6EcJBLALGao5cRPX FbKYPxIvpPxuR1YtUnUC0UIGrEcIUglYy/EA20LwqL3UvjSUXz8qsDkicCMMlPnuxkdt+WUu wkEGmGOn1liKEyI1XkotH9fb/p4W+/T+RKFHGRHALmRg5sRNXFdIvOQSDzJApnh5qYP0tBRF yjvUT8mE1Jh+hKAn2RHALmSQ5sRNWFd6wB2Qzhu5GB4XsIos+PYcQdrtktrUMBENn3T55e/P Z0ftBffFR5jsyA/3Ai64zRD510WvfkTgjhjoxyMayC/zEMlkQLAt5eqfVo84HXapg3iLYwIF 7PL0VQrn+tPLnSpATtyEdSXFW5ABqRYQW/4ouE1I8YjtRo/Pu3ZTWp3F7RGjO/YJu5BpPSdu orpy+LOAOiLJgBXMlNT8uRI1+arU8OXf8ePaKeIN5V9e+fl8GcTKbTBwXBxZW36Zh0gmA3KO pTgRAvyCt8IcdXgb6fcBkU/vVxx6lgkB7EIGZE7cRHUl+jPIAJne5aU8O13zGVR5/WcuKX+d xpmlpu8+BLALH0L273PiFl/XZoEsE2BeW3suCmu1GN5M2NrRhNoLwVbya4TIeKO+fnPgTTCY 3iZgOWpSW/6E8bUp2tiWgsXItatPvKWNW17lHGx/l34wfq6/NBzBwuXELb6u5HgLMiBY05ke 9Ke9bi6jytTqeaqZB8H8mqb1QqbzCEBPiyCAXchgzYlbRF1qYsmV0eML/BstYMxX661/114I NpJ/tcexfeMtArfAYDse9FcMfv33P/a34Bxlo2TIVJH5CK1Ua1sKFCApHdZog3hLHWmafom3 Ag3w8o9FzPWXxyJGwJy4RdSVI96CDIhRdI5n/WTAlHrJDfo50KYOEACB2gioHabUi/n0Piem v7nEL7X4qr0Qlqo3l/y2eu6GgamDs8gvtZ1QeXPVv6kntz8g3iqiJioFARCogECmeAsyoIKu Nk2EkAGqABNUbc3QHgiAQCoCmSYmsxsl0nlzLYZDF0a97Qpnkt+anniWxXAmDHaj5izypw73 pXwpHC39S06HtcpMvJXLFKgHBECgFgIZ4y3IgFpKW9oJJQMWQkC/qbp2X2kPBEAABEIQWFLa cmYEbNvNns5bbAHjwOJqZMB8POBhPQ5yEwycQ+Mk8ocM7ZBnio0lo/Ec6bCxOguRn2dAAARA oBoCBeItyIBq2psbiiEDaveN9kAABECgVwTYvetVM/QLBMojkHEXrHxnaQEEQAAEzoMAZEBt XUEG1Eac9kAABK6CAITAVTSJHCAQjgBEQDhWPAkCIAACkQhABkQClvz49PoW/ebh5f/6m5mS m6ECEAABELgkAgVS5C6JE0KBwNkRYKyfXYP0HwRAoC8Exjcf2dahwyL00VdX6Q0IgAAIgAAI gAAIgAAIgAAIgAAIgEBpBP4PVaFL2SK8Ao8AAAAASUVORK5CYII=</item> <item item-id="395">iVBORw0KGgoAAAANSUhEUgAAB/oAAAAnCAYAAAAPd0BPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABV3SURBVHhe7Z2Hses4DEVdlwtyHb8E V/OacTH+CpatQApgDjpvZmd3LYrh4BJgkKjbmz8IQAACEIAABCAAAQhAAAIQgAAEIAABCEAA AhCAAAQgAAEIQAACEIAABJohcGumplQUAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAAB CEAAAhCAAAQgAIE3G/2IAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAE INAQATb6GzIWVYUABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQiw0W/U wOv9vN/ejz8EAgEIQAACEIBA2wSI6W3bj9pDAAIQgAAEbASI8WgDAhCAAAQg0CYBYnibdqPW EIAABCBQIwE2+g9WmQcatxsb/TUKljpBAAIQgAAE9ASI6XpWpIQABCAAAQi0RIAY35K1qCsE IAABCEDgR4AYjhogAAEIQAACMQmw0b+i+Xrepw3+2/3xfvBGf0ydkRcEIAABCEAgKwFielbc FAYBCEAAAhDIRoAYnw01BUEAAhCAAASiEiCGR8VJZhCAAAQgAIGJABv9KyG8ns/3fFo/xwfR PyAAAQhAAAItEyCmt2w96g4BCEAAAhCwEyDGow4IQAACEIBAmwSI4W3ajVpDAAIQgEDdBNjo N9qHjf66ZUvtIAABCEAAAloCxHQtKdJBAAIQgAAE2iJAjG/LXtQWAhCAAAQgsBAghqMFCEAA AhCAQCwCbPSz0R9LS+QDAQhAAAIQqJAACwgVGoUqQQACEIAABCIQIMZHgEgWEIAABCAAgQIE iOEFoFMkBCAAAQh0SuAyG/1/j9v7drP885gP7P/9MdjoVO80CwIQgAAELkeAmH45k9NgCEAA AhC4CAFi/EUMTTMhAAEIQKA7AsTw7kxKgyAAAQhAoBiBy2z0uxFOM9j4ez7fL7eKRE1duvy5 MQPb5/7BiqjNJLOGCaDRho3nXfW6fQKa9DZsRTcS09MZo+7+m67d5KwhgP/UUOotTVs+AY32 oL8+Yjxa7EGLfbUBTfZlT11riOE6TutUbTFzb1/qO4jh8QijxXgs28+JGN6+Dd1bULcPQJPu FvW5g41+I7X4g43X8/4+HBzgYzHPe0qXv6n23+N9f5Z85METIrclJYBGk+KtO/NKfQKarFs2 +toR0/WsPFJW2n89WsItEQngPyPCbC2rRnwCGm1NWLb6th/j0WIvWuynHWiyH1s6t4QY7ozs 3Qgz94bluIMYHpUyWoyKs9XMiOGtWi5CvSv1AWgygm2VWWTd6H+9WtncjTzYeD3fj5Ib25nL 19j59Xy8SyJR9g9rMk0bQ8u41P1oNLq5W9NodT4BTXakSWJ6iDE1vqS6/uvYYE0bHbO8dnL8 Z3T7t6bR6n0CGu1Io43HeLTYkRajN6VMhmgyOndieGSkaDQy0OHc1WJr9cRwF2Nq7FT9GFxo sKaNLswulxb/GN3krWmyOh+AJrNqcrXR//d+DN+wP36u/vm+j9+2d3wd/e+xzmsO3r+3uMey 7k1v9LpYKW4nc2cXt/xty73tnKKjD08u3W6Pd+wPA3i30UUk67QDm/uF+sfYdDTqK5b5vi40 msInfLHiN60K68VvhnUhp7vj+iu02b02ielO/UtK7B3vUsSYXvxnCo2m4C2Jw+F6XD/O3Kin eX5KbZgkmrI8/KX7GEt0Iyn8pVhoSAJ3BmgyhDfz8jB6urvRqI6TLZV3bAgrNsvdKbVBDGet PYuIN4UQw1kr8lBd0nk4mqxdk8JGv2XzX9DZeCTD9sGA/Ub/kME4SbqX/Wa9R3fxuGVse/yA qK9IuvLD7DxoK7b9Eyy4hrVRb6VNyuYWEDzb+b0NjYYQ7EejCXyCN1g06Y1uCu89jwHSaUPH PF35YXZL0H+J6TpJVJcKjYaYJKwfepacZNyZwCd4Nu94GxoNQVlEoyEVdro3nTbM1UhXXpid EvRfYrqTEsslRpMh7MP6nWfJxHBPcIbRQdAcFr8ZzRDeGaXzX8Tw+C/V9eMvvQWb4MZ0fSDM XvhHq7G7j+FoMqSj+/S7k41+v03+4RnW4W399cb2vMl/G08F2J0MMD5J2P232j0faJiMuTDb vN29fnrm899/n1MXpvS7kxKs5c/2ncsY7pnycHkgIdTOoy5CT3XYtWH4HMD2jf7SbfTszkkc vWdd1rdN9fpo5vCQxq6f767b9TztCloe+iltPzSadzASzhu/qennnfpNTdNjpCGmTyeIHMdu 4f13Hj+uxiXE9BiKtedBTPfgi0b10CL4BDSqx/1N2alGPUh43WKL8WjRA2enWqx0ns4cSCNR NKmhNKchhs8MXNaxIzDrdS6kF15YSmL4hx9azLuOGSbbyeOy/6OASAxXQIrmA9CkhnadmrRs 9Pt/J+f4tMEyUDQsDI9Pdp++1T1Da/phgLGNjp89GFbRtxvWm//fb/SPg8/fBv24AL9haizf 9CmFbT6SpGPYeXtklFTi/rrUBum6XF6MNsqlGFJUuYCwfvBnz/YzCVrpfKPDUz0P7UejHxEs QUL/wE1vGg3yCfhNhbuR/KJ0XS6imCblqsVJQUyffbZh7BbUfz+LadtPPK3HJQ1rk5j+WTDe f8KLcedhZHt4kyxkDuXg8hJpNMwnMO50sOBqUeesn1XsR4e44jpdduejuMMY49GigtwuiaQ1 6bpcYrHxZiJ/Kbf4JAVzIAU+SXPSdbmI3jRJDHcfg4UxkzQoXa9Yo3LV4qQghn85okWLpIjh 4wL85+WKvOvOaDKvJoN4M65UxCQpJkvX5SJ8x5XGjf5pk27YYD+dcE8Ocu8Y9g1ZKm77fb1p LTeyxRRmwwgtOT3a7rjRv7HT7l5j+Yb856d1DI4+oZ2DTnQwMVr/VkkbvTQbOvgw2syrJr+b zjRpLG+1KCYc1YhGf5hL9EMvZSTSaHSf8JvqDIPZ5QQRw2k1+M1huD+O+Y9HsjWjSS8hu99E TJ+EsupP6zAR8GAmMd0uRmL6wCbO/CJ6jGHcOevWotHovL/TStMclHGnKYZvfqs5xley0a+d k3wdNnMgc+wiptcT0zdjNuZA03xn+SOGE8N/znx6e998Ypnpd+ZC7rPo9HcQw5mXiypLtI4p lnuWgP0fGR/jSudxZbJ5OOPK2RYVa/Kw0b9s8M+b/ZYnfKYGma4bJg/zCtDpwEnzBP/y8MHv OHvzMUqyh8ibYhxsuJ9IsD0masvHfaN/X/40ANq/jWdaqEhsZz82y3zkvA21tNFLbSGDD6vN vGqyWscy8F5Pki1H+c/aO9PzfEwRGv3ALNAPvZSRSKMhPuFcZ/jNKRILvl+6vl0YyzsG8NJp gpv8NEpMl0whaU+6XrU2E/lLienZdSNPYvopUkmD0vUratTPX56M89FovxqtaKNfNSdBi/1q UQquFcZ05kCS0TqfAyXSJDHcfR07OrPV2lDT40y5i0ZJoV5XJIYTw8dlate/RGvtxHDZEJL/ k64zD5cZb1OwfikRkzQnXU+pycNG/+HY1N0u/Lzhbvumu+0Nfdc3cSSkbteNDwd8vwO7emDg 5DdriZ9v9tkeVjA9Vejy0MIv7fpt1LA3UzWCy2Hn04GwhuvJwwq1tPGrG6E9G32tJmvrp7AW LZl+G+8/t9mvBBf9LXeFbQqYyl40/Jl47zpQLfZDoxbPp9Do16Srb6VJGg3hva4pftNsN6lf SddlPxN3DODjq8Y6amI+MX3TY4xv6EsPaZo2Q6wPNhLT3+Nzb7aY7uMvf2tUJ+NYy+CUmG7w AGj0q9G9Hp/D3M9HoyExHY32r9FWYjxa7F+L86kkwmmWv0nxkHaex9YyT2cONBAghkcfZxLD x57lto4dnZnjRn+ONdyQ+UeJeToxnBjuutbuM+cJ7RfH+9n/WdtNWqeUrudex5TGJGearGEe zriy7XGl8ej+r1E/TywZ1wmlo+q2yr30G/03zZEF1l2H/QDT/c3UQ/nSERNbj2r4REOckxui HyUiHL9mPFpjwiscARpZyyZTb1hsnsoeWY8nayz/nkKU4bdVrrUd83to8HbCZHoYRjwGBY1+ dGBalAo/QSVYo0Nf/G74rf97s0h2PDEmyCec6gy/OeGRfL90PVO/Ow2HhS8a/ZVzndZ9FG32 qE2nmO7pL51lt52x2U/tchoT7ceo5of3RN+TybcExRjJP0rXM7VRqwurRk169NRodN6nYwjb 3ASNfk/oq1mjFb3Rr5o3o8VzVyNpTbreir80zskLzNOZA8mhT9KcdL1lTRLDt/pwGue6ratE H/c0vL4pd8r4KdTrisRwYvj0Rr8hXnv6y7hqZq3owFOK0dL1VmJ4LfNwxpVyl5Y0J11PqMnz jf6h4ClYZv52u0y0oRSjcV03+veCOGz86t/onxZXD+V/juH4/j4vjuW28zgQdkXzs7zUBun6 SkPGwb7b07u2bxZrlbp5Am202eq0grkPbr8NZvrtW1aKjf5pEPSz13YQvWf9OV1gacOpnsfx FRqdbVemH6bR6NCWj/3/Hr/TGySNBvkE/KbClJJflK7X5TcVDY6fhJj+8VXHfh3Uf5dPvFjH JW1p0y2m+/nLMHET0935SRqUrtflP+0aNenRT6NhPgGNXkqjlWz0m+ckaPFSWjQ01i2mL+tn pu96T4trhpco3Alv7mAOpAAoxWjpeisx3KQ/YvhGIAnX/sLGPZIGpet1aVTRKeMnMc7TieHu oCWtSdfr0qJbDPfzl+6MV3cQwxX4JM1J11vRZCXzcDTZtCbFjf7f90J2b19aJim2t92WjcnN pvNuQ/NIcg7K7t+4V9gkV5LVsdUuRe6PM/xtiLu9/TdNJg/fTx9rsvvmxmPYbFU/0GF5Y2ua u86b0rKdx/ING4AukDZtGPJ67ttQuo0ujVnXdcfF9N21s2+xpVhAmCQzH2s4H4u9fxt7y3r9 oMJ4q13Pn3zR6MT1kb0fptLo0r9/AxXdBDvMJ+A3Nfbc+Zqm/aamvZHTENPnh7MOPpuYvlWa S0z38ZcRdE1M94DYk/+0adSkRx+NRvAJaPQ6Gq1lo98W49HidbRobKlLTF/mzJY5TaJ5OnMg jUSvEMNN+iOGy+sQrG/q1nA1/axgGmL4B36EMfhl19p9/GW45onhGoZXiOH1zMPRZLuaXG30 axqxSmOdpNi+0XvMP+hoI8fqlks+dtTjEdX56qMs33SsxHdz11T/UDsP9Xo8h+FDxr/sbYzT tunJ4HEDeHX8gem3b2mJFhDitMaUCxr9UulIo+NDP6NujQ9q2Z6kz+0TrKJGk61rsri/SlYB tNm6Nk3x291fJhNYhIzRaOsaNenRXaMFxvlq9aLR1jWqNrVzQqU2nPO13aAsL/v8oED/zd7G OEbsb56OJlv3j3HGmQV8gLpLotHWNao2tXNCpTac8yWGi8g6iuHucx6RTsYEyj6Q3V4FYkr2 NsYxc3/zcDSZO2Z/N/pv/7Z7/pr/v6/e6l2nV33D1vOtuDhdZ8llOSrb9pZynNJewxuTz6w7 2tt6q8p3doL2p143pZ88VfnIDSV3G2PI58tv9VSm6bd1Wc1t9I9aUvSR3PYbOKJRhYhtenQ9 daIE75PmockPnNz9TiE5fZI0MV6lDX0lnVOqys9ttxL9N3cbnS1luCGWv4xRl4R5oNHG/WeM k6RK+AQHTaPRxjU6Vb+PGI8WG9Zip/N0NNmZJsfmND4v34d3NNqwRn87Hp/Px8Zdi1dpw2G8 KCVVlZd7zlpiDJ67jZJhNNc7nZejycb9Y4fzcDSZV5PT7v64Sb/eqNf+/7LRb0r/vJ99f13/ NrjGP/ulOX4WYD52PsXb93/DsfIFd/qHhRCxfI/AvBz/v3rRfGcKu51VHd3PsPa7MrcxvPrz 0TS/TxaPxyU/hm+f73/bnYzQ4Eb/uFiHRsc1S7dPaMwa2+nkILyU/tak0UWPJ0/uGTRaxCec dlI0Oa+jt6bJxagpY7xCG+EB4CQHRfmZ7Vak/2ZuY7hJ4/nL8LqkzgGNtu0/TfG79Zi+1zwa bVujPcV4tNimFnuep6PJfjTZy7ycGG4cuTc3F+pxno6/vLq/TD2rds8fTbapycXSPc7D0WRO TX43+sdCl83+WP92d0gZ7zAOitJtiL2ez2Ers9xf6fK3LVd08nKoKLkQATRaCHyqYsfNfPtT QLtS6/QJaDKVODLkmzjGl9ZG6fKJ6ZE17OQvI5edKDs0mghsjmxNenTSaJ0xfY8OjeYQU6Iy OovxaDGRTsjWmwCa9EZX543E8MR2aWPckxiCPntiuJ6Vc0q06IzsOEFwWMcMLi1JBsTwJFjz ZNrpPBxN5pHPWMrN503+pXrSm//5mhGppLMjrYKLGB4iuGf+Jv2mzqXLXyqj/D5HMG8yaI8A Gm3PZuYaz6ej3JWfLKnZJ6DJXjQ5tSNqjC+tjdLlE9Nj9Q03fxmr1Bz5oNEclGOXYdKjm0Zr jul7Wmg0tn6K5td0jEeLRbVD4QYCaLIXWRDDU1uypXFPahYB+RPDA+AxL48A77Nc5LKOGavU FPkQw1NQTZ1n3/NwNJlaP0v+m43+8cf1xn+M/8/VkPBy5uPXbuo3UMNLJAcIQAACEIAABHIQ IMbnoEwZEIAABCAAgfwEiPH5mVMiBCAAAQhAIAYBYngMiuQBAQhAAAIQmI7u54+BBRqAAAQg AAEI9EmAGN+nXWkVBCAAAQhAgBiPBiAAAQhAAAJtEiCGt2k3ag0BCEAAAjUSYKN/OiLo9r4/ XzXahzpBAAIQgAAEIOBLgBjvS477IAABCEAAAnUTIMbXbR9qBwEIQAACELARIIajDQhAAAIQ gEBUAtfe6P97OHxHOip3MoMABCAAAQhAICUBYnxKuuQNAQhAAAIQKEeAGF+OPSVDAAIQgAAE QggQw0PocS8EIAABCEDASOC6G/3T04P3Ny/y0zMgAAEIQAACnREgxndmUJoDAQhAAAIQ+BAg xiMFCEAAAhCAQJsEiOFt2o1aQwACEIBA9QQuu9H/et6Ht/lvxn8ef9XbjQpCAAIQgAAEIGAh QIxHGhCAAAQgAIE+CRDj+7QrrYIABCAAgf4JEMP7tzEthAAEIACBMgQuu9FfBjelQgACEIAA BCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABMIIsNEfxo+7IQABCEAAAhCAAAQg AAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAlkJsNGfFTeFQQACEIAABCAAAQhAAAIQgAAE IAABCEAAAhCAAAQgAAEIQAACEIAABMIIsNEfxo+7IQABCEAAAhCAAAQgAAEIQAACEIAABCAA AQhAAAIQgAAEIAABCEAAAlkJ/AczqOFlJ6L/jQAAAABJRU5ErkJggg==</item> <item item-id="396">iVBORw0KGgoAAAANSUhEUgAAARwAAAAnCAYAAADdPvc6AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAVwSURBVHhe7V2Lla0gDLQuC7KOLcFq bjMW4wqKRgwiCBhl9px39q1y+cyEIYTobUb8AAEgAAQKIdAUagfNAAEgAARGCA6MAAgAgWII QHCKQY2GgAAQqFRwhrFvm7H7wQC+jwC4lsRxhYIzG2DTQHAkGWKevoDrPLjG11qV4Ax9q4Wm abuxq8nDGfqxVeNe/tXg2YFrmYtqZYLTj/MuqiY3+zd21Jv7dZPwtGM/xK9Sb/jk0IPrUSDX VQnONlEqEhxldG0/Saz5qWjstS0uL+AagvOG5TppHy2PJ2ndEiurTWApB/K4huBInCMZ+6Rj GzuPJ2NjIqquV3Akcg3BETEpynRiDqR2SxyrTJvPt1Kn4EjlGoLz/Iwo0oPZAL8fLD6CWZ/g SOa6qOAMg5Sjke8Y4RVMpa52RZT2QyeSX+CaCI4jwGRyOAKTN34dTaybJ3i7nsWqtj682urj yPRblyhMNX8ZsM5VbxkVStcKuA7C0iM4cVFuvaLuBMoWHJUKM02ErwYvMxhhLKZKpEzCH/0d uH4wO5VMQhZkvgIKg+sgEk4EJ05sxikk2e1W9y29XBs8sXQ1GTavJ6jfwgrPWM0TevImetvD se7/1GQN8YAEYlqthwOu70w+h+DExziOK7HqHuPhqMuHRCV7KDO5skWJ2y4q4TGC4rvvpy8t pv72LpUoKTiTndz2yC4NylfIx6Xvvq9+5fjbu4M788ff3qUSCblmBce44ack607Yq7RDWFyC o72hDPGFSygmKsS51PQac98ZxH0TpneNkB2rgxMpggOu4yYN4fogOOYp6ll0HG6/Bp6779qG nQvRldXLFYuwt2lxiMR/ik2uIgD77q8tP4Bp/KiXGFzsYuEcq2zB8XHpuw+uR/rGP3v7suxV LTWYJ/7klbBxCJfHEur53JoKhw9zQVP7mrPF5ZTOJYo+I/Pdn3eWQjD1jHWHEfFwaCzObAm4 a/6xbi3ELjDg+uLcucH1OheWg5+enkiTwyDOrs9PqZaViJ1srEtcn4czP5FreYKeLRX7Gb1V 57ap+TC9aJpkYSbxtN2WygS1aXCbu0ZarGRL9TmuJ9teY6rm/9w1alxnWypbXD4RbwidWUHl l1O4FThzirEPGm+nc/Z93yQM9Q7zxcV23poV8Dfvn6EBfu7aOto3Cs4Si3Rz6bOFL3A92deS zvLrTPyVu8aP1Z/4Z0C2V3GHwfBR9iX6bh2Lf+OUSrsm61sE+WPxfWpA1zkSA4tgGqSmVmFr nDRxnAsinwWWXyk44Hq2dSU0m8jw17yCE2iIToO5vsJ+Jw8nEDtXstiLMdVZ0EpIrTwr+1qU hxMIr6jiH+RaORWKV9ubta9xXK8eTvO3f6zqyt/0WJyWd3k5h6Bj8UxjmrR1cgqX22KDjdCV n2E7IA9lb6+BQrP6LfEozS+55tjX54EbXOfB1cQarXSWi96sVhklFlQwrv5tBIcrf/6tCNe9 oHSgHZMIH3uoMUJw/K9FfQLTbYuxhbDUGwanRD36zmguwTNkSxVsBOA6GLKgD6hFhMvBc6TR 2EFjIzapfweNIXdhdpI/NUlzD7by+sF1XgNQAnI8XTpeY3rRxHg2ph6fJ5R31Alqv5stm6AL qKIQAuA6CdDcu3ZC3r+zExyzvaI9uxLLOSufZJRZKrGPMLM0gkpFIACuRdCgwjdSOlK2HzDA sng/2Rq4fhJ9u+36BGdJ6Zb9BLokE3lxX8C1OPLqEhwdTHz50+niTEhoh8C1SGLqERwEDUUa YJZOgesssKaotBrBWb9rmnzHdk3ftZ3CWN5SB7iWy1Q1giOXAvQMCNSDAASnHq4xUiDwOAIQ nMcpQAeAQD0IQHDq4RojBQKPI/APIEUbEhOadpMAAAAASUVORK5CYII=</item> <item item-id="397">iVBORw0KGgoAAAANSUhEUgAAANMAAAAnCAYAAACVBH3WAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAUzSURBVHhe7VyLlaUgDLUuC7KOLcFq bMZiXD6iAcP3BQchc86e2UEfhpvc/MA3HfzDCDACJAhMJLPwJIwAI3AwmdgIGAEiBJhMREDy NIzAoGTaj3WejmVjA2AE6BAYkEyaSNPEZKIzI55JIjAUmfZ1ViSa5uVYRopM+3rMct3nP47I dcg/GJnWQ2d2I6V527HAKLwtglTzse51DGrkWYci063ogcgkyTOvwn2Yn4HW/jKzmUwvA/73 j3Mi1d8L1I0ETKZuVJm2EFU3WpEq7XN8VxwBJlMco27u0A2Y5awbf1vWtsLU8be5vvlpkS6v 9t4Kk+mbmsyWWhOJpvEg5+KOoFCBqEdn0Ml5lUz73koLqZ8iPAVTyoh0iDb7wq3Au52zLldn FJDJU5iaPYpMV7QtcFNUG+/NYvksGi+Z7aLf+IBqP9OkU1DcIkyV/uiw3oHxPKAkfha5qmrI B5xLhExlnR/lCS3yuWSSWz1Cyb0WwhXIVIqpJKDZrIW/M33jaddSjwEnUcNYKRlVRT7BkdOO A2QqI5JIJEXUgYDfx3eUMoEWpaJhzkmJ27tzaay0sYooILy3HZmc65uMFjmRqxFMYw6wirES arKKfNK+deT3kKm8pnh6UAkGEpnk8GND0QVOG2HbhMNSWEkqQ5bY9bix0GIaf573DqmvUEir YqweaYQs2dG1knwm/UbJZFKDoLBKMNe7ekjjI5OKYnT5/A9mUv5RLKWDY8h1b0OgcUxxUgPo fjVWdP0Nkckjn8mwHmQyp6k1oTypiDIQ7LovNQyTLMXD+HJ/N3UsZ0XZJ9FNUAB67Pr11D/A NHfFci3BLOEXMnnX3wiZAvIZXB5ksjtudo2jM7OzLkDzfl+kyY1YuWoO348V4O6Yd4azm+kj fIwssetNYZqy1sQ0D9bDJqJhY/H135r52aECslud0bMWXGEHGtSHYZuXvTTtZMLdvJONKH5o yBsvMqm6z43gkTQP/YwqLbHUuR6muS4LS/OsJpIVmUzTBDZPsDE3TUxszCTWTF754Iar+T82 BkHKTfNc4nw1v881lPL7z27lBZzp3NkNiLtwd6/HjCk3qlesQ5EGhBV5nYaSeX8MpobY2IVA hZrJL9/d0t4WU7djYzH96GxNqj++aXs2Dx7e17NwX5F6vZgH2dpFN0+FlOvtXbw1bm8PLItn U/cVTMvdBr436KwdHnLBaqhQXVWBTA/dXPKZlvZNIH2vJBYci5EJbY1nguxdeLpn7GefKRM7 36Zu85hGNm0dGJTHlo7D2Vt0x4oiUybk2O3qjKGQz42c7lhYPoHJog/9XpFp+mcf00v5G7bG 4f3RFqqpD14/AQE3TwPdSgJFBafIJpMucoN7PC9hGjxO5NYXSr+3574jGxhLqEmqqYMicoo5 zFlFxSBJBEiG1L8NmbD7w9/+kx696IB8bgCTHgDNEbSATPFX7d/CdBMnPGIHlp1Nf5XOi01W +L0bWIqfk+bl4O29F4u0geiLyAedy0UmQyrK3yTrpZoENeC3DJBqEW3Ms4t3mbr4ljRJjmfH 7Tnmhd12LFNJRDJzxyJYG6oPSPHLJmPzi6spoKdAr/lI4rmx97vy3vl6RjCLTDAqQcLAdaTU UsTrrjSd29Ku9BiedhgEXn05sB1UmUjt6KIfScYj03lkpu2T6P0Y2EgrGYtMqgnx8VPqI1nn x9Y6Dpm42fAx0/yeuMOQ6TrOBL5zm797+3sG27LEw5CpZSWwbH0gwGTqQ4+8igYQYDI1oAQW oQ8EmEx96JFX0QAC/wEGTZ8C2norFwAAAABJRU5ErkJggg==</item> <item item-id="398">iVBORw0KGgoAAAANSUhEUgAAAJwAAAAnCAYAAAD6tSH7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAO5SURBVHhe7ZyLcaUwDEWpi4JcR0qg GpqhGIJ/IBsJ22AEPOvN7GQSEwTS8dUHst0sH/EAowc6RltiSjwwC3ACAasHBDhWd4uxRoGb 5qHvZjUKANweaBA4C1vXCXDcsGl7TQE3Db0BrevVrETh7udtGuZe+9v90xmlMeCG2WZRSan3 0zbOCmaRUS3gLRv+fsNvtCDA3R4VDVg/LFvbf1wpc7vhVxoQ4PjDYhVPFI7f801aNPXzongC XJPh571p26wpUz8LcLy+b86aha2fB1fMsQI3TVsJ+aznpYa76v+cWEJl8/YAcFEbuzYXbpZS OJYfFRys2gD3HvNFXBWg/urNv+b3zdxp283s12VGDzZ11fyciiXhiwRwBISJuzFkB4DGwOlR 2BKcoG2u6aKHzvWDwJ2NpYbUD3yDr1toYrjOwTYb9YK7bHuUZAwDEPVFbar3ECQ1zbID50YN ZpK/KOsQK1y0PmoFLlHA+rEkFO58jbPfETqiiMLpH++Gg3H0rcM+AyUrcFiZosHzQKXW0zut biytPRQ4L4eHZZtxbrxbCLAo4H6tlisBDvVfGoL1CKxegz9D1rEi3pyPMZY74PxbFBY6Qn7N zWDrVBo+BjGnHyFrgihNF4Ss/qG5wJH+y78kP0gN+n4ATmo9BJcvljvgwk4yrLlsFnT1AloP UN1nqfLlOz7nSLR4BW8x6HXy4954yNkUVilsl7rbIO4Ex/4DV5GwmwIqtf5ULI+7VLcTUWej MtyewgWND6pwerMho5IHUqqpmbGsxRjL5BzuDXk/R8WeOiZQEqQJ0uto03MVOFcXb12/70jD poFej9WUpx5PAuc7zN3OIByGdza6LnUvP0K5/IkuFY59IiU7mjVeBm7r/m3JgI1FwpGUUiUK 52KGpLdzsdx1qYUaQTos/ynCz83hAhcSqdQfUwW4wpgVpVRT5WU/EcqN5apw3V9YOOd8D8ci 8HhK5cJ4PPGkAQ5CD7rwwjhih5Op9FPA0Sp3NpaGMg0LBCb3ew8cdvzxX0Xl75wKsXen2A+R yfr0stEYbPuYJ6jlPqFwW9qmu/SyWK7AefBqfr0ct5onQNNJmbNqXk6r5+rOKJt3VkoJX+/U 3EHt62/kOxcYAAfVDUIFbyentvvG7bsOLmui+407+sJVsr6A+R6HCGxPxaI94Nwjo8+8gfIU GTfZbQs498e464vHNzlVTkt7oB3gpEF4xT5oBrj1cUz0loj8pza8HDYDHK9bxRrlAQFO2GD1 gADH6m4xJsAJA6we+AeoxnKMOpsPFAAAAABJRU5ErkJggg==</item> <item item-id="399">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAdCAYAAACTzT/bAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANqSURBVHhe7VvdeeQgDKQuF0QdKcHV uJkthpgfGSGEhcjmwZ+1L7k9EAzDMBLkzgX7GAOLDLjFOAszBoKJx0SwzICJZ5k6CzTxmAZ0 DHz2sDkfjjPKxKOj7uW9j+CdC87E83IdKJf/2bdTNC5s3pvzKLl7fffPcYRPZMHS1uu1sE6A iWedu9dHmnheL4F1Akw869y9PvLx4kkL2MKeKrjRB66V8WpZr5e1N2n38eUCf6R21JfFI8V/ wr4BtvMWwyzm8LXdieudlXWet1vuWQ5LeNIMzxYPLPJOPHnj8Ibkq2Z+3DoZyERdDObvtT/f XvvjjeLwSPG0vccbhdMI6vAI/6xQaL8qkFY8Mp5rJFY8cHr2CLIoPs6QQKPvq7i/FBdFkN8a bsTDEh03CGLyZmECk7jgL7j4gduxeKR4bqwYs+3oOiw5q45QeKdxmw+eOo+EZzBVfWFOA6DT CKIBQqdSBTdLf6p0yybpIRK8gqWJuXeeRDRs5DV9L7hk4QweMR4LBcZHJzod2G7+ZdZKttkb 122cR8IzK546KCWLfAexFVfqc+jfFttHxw0vp1EtHiqWPDquKToyrxRXkJT11n43eIbOk92O FRdaE7Qf5VWXr9lW+e1rHgnPaCbiPNgqsc0nqpHVk7bJzWwLQFwM4vqDh5rSAxSVk/PlkTjh 8DVGrWlKsYsUBdirEd/huY+XNuv6VQAuor9S81Q+upRNnW6C4zXxxIUQq4nk/pv7QHpoLH6i Jihu0d1khjZND08VuD/QiZ3C0962mnghTfBpb3RLiucjlxxz/DPjfCdtzToPdQfqUrx7rDrP VexB4Y5+DglLJ3UgsCnxkDWgmmQJD65p8J9hGoyJrXluxKPKYMw4Ep65mmdFPPSaq1rJWmfJ UqX2koKxIyVhD287whrpfN380lMATaMDd6B12BJ7nAgVV3U051raugaYuUnN9FGywIgDv4vM OQN5xKM5Hz9RkDejDu3oqoscsn8ElB7l2vb6RqXkqgf7t0dCVjxaTKo8qx3c+j+Bgct53E/7 jwpvv5/Cie243pDin0CGYdQxkBQTNx5v/uz36+W5xIOYaLwOkvV+CgOXeEBE//HzKWQYTh0D bsVxYIoZh9LBsd5PYqARD3YdLBC8IKm2oe1PIsOw6hiw/3qj48t6IwZ+AVNnNkZ8W1GgAAAA AElFTkSuQmCC</item> <item item-id="400">iVBORw0KGgoAAAANSUhEUgAAAGwAAAAVCAYAAACjSwvEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJwSURBVGhD7ViLjcMwCPVcHsjzZJos k2Hc+BvAYJyol2sin1SdVPyB9+CBa/z8exQC5lHeTmf9JOxhSTAJewVh2+KtsX7ZfjGazS/W eLdqvqV1xqSPbYLBdtM7UMODta/e5bujD835mt371R3+m8wHX2GagxpWf2Y/QO4TltfVRQkc SFoEo9rT+pbUEEi5U0pgzk7vp+fzdkhq8A/5s7o98fYPi+0PErYtNlWLdd5pFcb5HwK2yw5/ 4KBVkHh+sQNQwvfWOVFxeHtKEJhU8fzyRQYfiQT0qYP/DYS12X2lALdl8SnAAUmE5JTLIggu n0E9ECos7AkkSgCK9n6F8ckBSOb8zy5fJywGcWis3lOu0MTt0QljAWFBB32sqa5gyzIo7u3Z cQ9C+IgVlqqy+L8WVYk4p2S7SFjIBqDpgxKKmyhsqFxTlgj+JmHgDgJilLoyqAgSKtu1npkH DsBiwaYSRgel0R4Gm1/V4bCZlFRYd0+V6YTt41Xbj7qSSKS2SB2SU5KgsCIpoeL9cHDBU6Jb j7h4ycxqUHxCUwlyIBwcyrH85zKfVJxQHHdVWBoqSL+CIHKSFOMDkgRHciL9dQBi1sSkHSKM gAR9ZnsYIQyxSjYUB3tjL2/7Vt+C5wxUWBnFxbGeOaPT6LmpEkXWSKYgieKUyo/9XN8DPQw+ JMmbQ+xRIxPgyJozxPKENe+W+n4afDgzI331SuvRIw9nen6s8hMP++7QQfCL/Wl/i6C+lafE e/rWGULfvVb/LbE2YDrm3jVkvJuAs9EphBH5yTqP3wf/8RY7G+Z71usV9p5YXxHJJOxhNE7C JmEPQ+Bh7n4AeJZG7fUR0TEAAAAASUVORK5CYII=</item> <item item-id="401">iVBORw0KGgoAAAANSUhEUgAAADUAAAAVCAYAAADmSqZGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFUSURBVFhH7ZaLDYQgDIaZi4E6D9Ow DMP0KBR5CNrjND5yJhcvivB//duCwhde6oVM+Id6iqt9p5xBrTQad3cMh0YrVCr+NAt+MBQD geXIWwQGey5UL5ssoNJm0ChOT78c1ekEZ4CqQoJuD9addBYqfJdzfMmMaeXjD53RwZU1lH9+ HBRFv2guwsBYyEFIBb/cN6LyExQtmrpKmMgvRM+W9Ug8RYzSoRFRjTvaLUn6leKxijI5AOhR +O7V+QkTaPW/Et44N4CadSpqJF3F1TaKys4mCuFdsQ94KgTOZwu9/Sy22wX8aJfCfKKWXm5k jdBVfdBYGpPhsm5JZ5OMkUTim823mS/UBtQ1Q+7Rs8oN7n5ndj0J6v6BNjWCYPdGd7sJEEHv QEV780kk7thxb6B3uVBT3bVt+QrX9p0a+U3OXKFYkH9TUNGV+57ip6AEwbp0yCuhPodOHa/Z mG6ZAAAAAElFTkSuQmCC</item> <item item-id="402">iVBORw0KGgoAAAANSUhEUgAAAGwAAAAVCAYAAACjSwvEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJdSURBVGhD7ViLbcQgDGUuBmIepsky GYaGT4htbDA56S6pqFSp13D4+b1nsGPC+nkVA+ZVaBfYsAR7mQmWYP9CsN0Ha2zw+xOz2YO3 Jritg21zwRjD/l7f24KDa5oNc5y6D32eOCIxrA+JMlX8E7+UD4+Pr7DHCnaR2BWM0XJzB7kn oQetSYy6Cf0cOW+fW+jgKMoECBwfixVNgbeS8b1GsN3b7HbrghtVGBUsOd6FWpT0c1wPTcoY NsWvgmdB1Xox8br5dPB9QbBc2sidN07a3ftCuOJIRPvn9TA+JT8vzzh5Eege8bMNFh6ZQEyc Xhs/+0POp4fvvmDkDFe77YZYHAHqeJxbRQcLR1Oq7HI/AXGRCSMfnGhcLMZQKJ8OvpuCRTeC pkR556VzXGgG9PfBTIXx7j6rCcY8sYlGGBLPVagUHyrG5VMaDgCmcscaHgiAzurTRcyFO3Wm f1RlE4J1jYS7MLeN9r3xXGVkXZd44qsVFgmvJQ4DHeLU/8O/Eemk4gRBvl5h0Vji3UJAppxL Y8JWE6gg8TkZhVTxR0YoOAu+Khi66FCgA2hJenPcbKYp+49KijI7nsPKN3BrDrZpnM81FeQ+ Q5wwJDPiiPFHd1gHH7jD4KAIhckdkd8v4a54mg5Qs2ZGUN6R6IQAgondKRlu23VkcG4qlQy2 TCVzmNpMhQoT8KleTcXqcw4cjXVumZhFZjRZa0UGVIKhoXKJ9VM76QRLr3KuNwV1Sictuno2 +mnK7w6uEyxegkuNRyg9FCxX01Pf3D+Cw6+CGAr2VTQr2JCBJdiQomct+ANAFpGrYax6LQAA AABJRU5ErkJggg==</item> <item item-id="403">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAdCAYAAAAghRfBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANZSURBVHhe7VrrdYYgDHUuBnIep3EZ h6ECPkIIJKDtoRLP6Y+Khjxuwk38JquXeqBDD0wd6qQqqQesAlNB0KUHFJhdhkWVUmAqBvrx wLZYM8123TVSYPYTlsE1We08TXZSYA6Og47M3xazA3KyZp61YnYUl+FV2dbVbs4LepQPj4U+ HaDA7DMuw2ulwBweAr/sgM0uxjUyxN/seu7MpcD85bio+DYPsMD0Dxi7eEb6hStkcClZg5Xn yOLM9DBTS6+cPPQ+seE6wyqS+ri8HlcigwPk44aqlFlCY/HoytnL6FO751jAvJ1XBmYAFQx2 GGNgcObkHfevTcL/UJ4DXQSmdY7kl9ex/FRf6+Tx2VcJF6m9hD6VO/Fd+Ucq5jkfm8xsZ65i IpDcFfSuamV5ITAQF/758wbn05Z1pzOoiA7Yb+KyaC+lL9KnFpfwefrLD+ekJzuCIzM5ih7L jQVsy3IcxdKjHCmA/FCWx1RMLmgt6+Do24eAe4U21sCm4+ExXrSX0jfS51kw3wUm4jhvZu8z M1uAiYEGNcjLgxwxqZ47UNbjK0foWG+a4KuTYD3ii1HiEEepW38IzmB1au+pb16fZxF7EZjO MYDMC6tuTPYRcX8N2bXALIGSDtTZOGFOeR7l12c32LAA+iBaxyBjfZzSiza4dAhMSMhPzpSA yQGIIN5vcx7o1DpAVwDzqPplmkHIyx5tIVnJCgMqEbfu/UsCMzc5yCXQ4cXDTlnu19hb0kee FlfFjDrC5Ihwm7nsozrU3FgJVdCMTnUAkxuG2KZsXOQrmGRMVhOoQx7JIYEcbp3ib/AdQfPW 6j3qKIcd9CWX48kVClzAjDIWbUAeM4557LyIrizpqKRCp194VFAx2WOR45gpx/NJd1W5DJiv ZJet3+MgvJ8wWZq8S/lPML5q2iu8BDgmHJaiqkEFLUusJfMsyTMPrEpepYGZ0BTqExoaAeWa gXAfDdiTxiMeSJdmpLg5gvuen/rSosDt3+rTXGLH9rw5ZRH9UNhzxf23cne2htFE8mWoire0 OknfG8EDPDCvyniDkTzCFZQj4OXPbGSAiUq45547r8wcedSvSWRd35/Zqxv9Ew/wFfOfGKJq fssDCsxvxfMz1igwPxPKbxmiwPxWPD9jzQ8rAwdR9VUL5AAAAABJRU5ErkJggg==</item> <item item-id="404">iVBORw0KGgoAAAANSUhEUgAAADUAAAAVCAYAAADmSqZGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFESURBVFhH7ZaLEYMgEESpi4KuHqqh GYq5cPxBiBeiozhmJpOMEbLvdl0V+MCXeCATvlCruNp3yiiUQqIyd8cwqKRAIfxbBsELQwUg 0GHyGiGArQvVS5MGFFINiuL0+OWpTgc8AFRXiNNtwbqbzkK5dTnjKRnTyscLjZLOlS2UPX4c FE2/KBfmYDTkIcQLPn1+mcpfUPSnaW8SaqejWiF0AsWhEVGtPdotTvxIQKxELKdsF6fj5Xcn khpoVP2NcwOoWae8RsDYfW77tigqO6spWHEhuxpqAFqTgCvRvm77vx1lGavSyxtZKT66keG8 ST6K2/szp9k453Dgf7n5NvuRIwBFDEexC+13ZutxUHkPtE2TdWN3EyCC5kE5Z+JF6aOzqd/B sStc40GRC1eo42Stc84ulGvFJZ7YM90u1OSwLl32SKgPJOwZvkQ164wAAAAASUVORK5C YII=</item> <item item-id="405">iVBORw0KGgoAAAANSUhEUgAAAGwAAAAVCAYAAACjSwvEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJiSURBVGhD7ViJccQgDHRdFEQ9VONm XAxBGGwkr4y45BJfhsxkJg+snpVW4pY4vz4qA8tHeTudjZOwDyuCSdi/IGwL0S0uhu2J0Wwx uCX6dcA3JZ7VL3FZ6rcWr8EexF+jP7DJho/c5R232ncy2Rmz9S/97IIiiY8l7AzSTli9wwkh sliSVn+bVN0ewt/JavG34Br8cucAvZ6P5A8wiiXxgYTtAVOV+egHOozuOe+5Yhjis9qD+JB8 IqUUDbJPd1IHVVGjgkJF8guEgeoZULN6dAuhSIpBos5L0VESZIJEcpA7JnuEi/Ax4Fk0yH72 scomxZgKrZHMSubrhAmNtUvUC2yxK1bC9qDzaBCE5e5JiV5r1+ZZIWfMwboyM3X8a4RcAqt9 tiIwH0GRl+J4kbCmvck7g8TQMT7kxUA1M24jLEtVHeSIMDFj8syApGF7d/icMDmvKF17weiE oaIuSwys9ybAS5IpsWAgapr73X7SqvWW3ypVrTQ2Wy9MWEof3j7B3zv4h89FhS4bYFcSoabu W2X9F9uaYMc0EnDBEx2nsPRbHXYsDHItTr9nouEMsxPWxd/lJHWs8lRg86okq/XpZmk5CGNV BwJiEgBmyqWKfr61CqJNErmL8l0JMAYl8Ra/OyJ6a73iH3+HtQ85URlSAg5vLRug5cwIu5iw y7uqhVQVo52jo0tHY0CZkeej/LRzSnnn4Zx2YvbwLjPP8NGUIoVFn827wggn86yagS5hUAon WX9WUh3C5OdhYhUXQ3122/t57HbY+12YFkYyMAkbydYDzk7CHkDCiAuTsJFsPeDsF0cHdyve y1oBAAAAAElFTkSuQmCC</item> <item item-id="406">iVBORw0KGgoAAAANSUhEUgAAAIkAAAAqCAYAAACHrHiJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMaSURBVHhe7ZqBEYMgDEWdy4GYx2lc xmEoAUVQkKAEC6a9XntKIfw8AhgGyS9WIKHAwAqxAikFGJKUQnxfMiQMQVKBviBZJjkOo5yW ZL/pC3RkC0NChQtDQqXsw3o7csxDJfy/P9SFIwnGG7OQYsYUdMo8dExma9fFH9ryPUi0YIMc 1g/K+VSQ3LHlDj0YSC5s+RgksxTuwhYjHjiFBJKbtpBAcm1Lt5DMYtinCIBhnOSinD0cQodX znEAXN+izekbE34cAE91wf9ftGVct3/LNBo9ErY0Dwk4YOu0dCOD6ri97v72RuJhBMVGKTKS RG2x9S5yGmNbdKQtyEgStwXaEXJWb/Mdevm2NA+JHg0QJdZpwf4GEdbrswg5BhzmAHYlPhKS uC2mcrhvwfXay7AFCcmVLfqeWpNhbWkeEiW9draZElwYtlG7w7LrCyMFCUjWmiRmiybETHkn J2fagoQkrstqS/ChY9iWDiCJqwYjRghn2jHDWe9uMMsKtD+SBSPTzCu2wBJE9V/p4q3PLmzp GhJvjfIaIJFp5iVA9ojmgJuwpW9I9FS0L862ufi4W6GNKiaER3dKh3u0tpjp0LYBuxo1Bc7r GiWmSxgS7PODZJh9uQD0g1b1lztYp/luITFR408ywnV8SdZKt5CQKfbBil+ChGrb90EPVuhy WUhqJawqCMNN7AoUhORewupxjoS9Sa5AEhI3B7AlhELXUkkiip5gt5VcDr8FP2oFfrOQ5CWE 8pNEMUg4klAMn7J1WkhyE0K5SaKyZnNtNRVwpptEcur4zCH6wA2zc8GUqSkDt3WlAOqxfCgh lJskYje0q0AaEpviPiSEdNobnyRqV6ISlh/zN7HDPiXaKl9HApJQQkidHL+RJCpveis1nqdW s55rB5R0JGnFF/9qJ2RaT0CUPapI3XWGhFrhUP2NZdkZkuqQrLvIho4wMCRVIWkPEO+Ja1Wt vtjYmvwMn1D/b0E4ktTwj168tnsAiiGhhqSxRWpIDoaEGJLY4WvItraydmVIiCHpoXqGpAcv EveBISEWuIfqGZIevEjchx833GWEq82ZuAAAAABJRU5ErkJggg==</item> <item item-id="407">iVBORw0KGgoAAAANSUhEUgAAAFsAAABjCAYAAAD0H3xZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAS7SURBVHhe7Z3RleMgDEXdwPYxNbiL acJN7P5sB64mX9NJimENGBswYOcZyEbSnDMfGUfj+KI8hBAwKPnpRmDodqd33OgxqWGY1KPL vZ9qHgc1zs/s3YjCtg8+TH0w+3Sf85htYIKwNehRFRysg58/1JT4RpGD/ZgG9QaHPjbgc1bj OCtfVGjB1hr9X5C27LWk+BpOCLaWj3xnaLR087Remh7KCR3Y+mtb9Gr94KvEJL7irYRcN7L7 WGRg+w+VBbfKTKDrGrzfmZnXSySz/gbtV7qWu6nnBERglyVk55CQjwC29n4vkjHX3OvStdL3 Yv9sRGAvIKKeP/34Vkr2gY57vf4t0cFu34LStRMNeky2wWjAPtXrMDoIooRYRgJwkTdfvhbS dxLHB3ZOLrKwS8Pv86F5PKrU2k8G9nQyZNRy4Mfg2+skbCsv6TxH6VpaT8h59hnsrKxmopFk FLlGI6+OmwS2o+/DLsEEQbuRJCsZyQcMazi4xNqzydjtMbYfa9tsXvra2YCIlmf/fKuv75+z Z37b9Z/vX+rrL6MO8m2k14SUyEinFqAlI0vnBUcjHYAL7A6Q94DHZv7YDGo6sj3cSjy7I32B LbBBAtJBguAQM4GNUANtBDYIDjET2Ag10EZgg+AQM4GNUANtBDYIDjET2Ag10OYC7HgO0s2g 9KgN5DeCPBTG2xmaV+cTEXfgB3tZf7DV+lm33svOGpegMYStlC8lZk7RuXXjEjSWsHdv9iWk fQkaT9jLOgCj03OqcjVX232/BI0pbLsawJQk+D1j4xI0trCtlERRSOMSNOawI8loXILGFna8 qMjEzY1L0PjBdks0kkXzbUvQErD9ECisaesxykJGZpvNheH6rf9/0zgL+wDWDHPfvWL25GnJ wF5j09IC+JsNf9+cGux2UvJ6Jf+hdcjA9mWkccIGdvFPhX0s+I7XBboYtf6aQZMoShScH0Z8 cat8Kuy8XLRP2LDz7KI2Z3MIGtP9hI14tu9ujRM24tmnsO+uGWQZjVzwq8YJmwufIP2Wz+sg Lzxq44TNhU/ACPY6mtS7GrRaMwgBJ+nZEIkORgK7A2R3C4EtsHdfYLZaLLn2vF12LfA0fjM1 h/FCvxw9Y9jRLjgdMplsYYebKUaTvXF+xzTE3d3PbK0KvxW+h5qRPplMhrAzW4I2zmTqroId bBuNJOr5OmQymcF2dSHHmaDxz+9we1ATtdzNZIZjDGawCwOsDplMge0N9beNb1NFl8H7sGUh Antz9ralZyw7yI6ZmsOtxLM70hfYAhskIPlsEBxiJrARaqCNwAbBIWYCG6EG2ghsEBxiJrAR aqCNwAbBIWayfzZCDbQRzwbBIWYCG6EG2ghsEBxiVh123S2NyCWiyscTvtKC+xRarYIpgZ3g v5WoLYd4ThU366IFW0/QXjo1r+zhz2WHHXuedV0ZoXVqnoFT83z1mrDJnQe5F8K8os7591aE rSeRV/GnccCE+eafneH7SjPUg+30Wt+dDuyqUlILdihvhGAvrlPt3PU6sOMtkmjBNryxQppQ ZCrA1rIWRUjkYNuwrd+qgnRPEB5u795DELaLk98FPA2aWAcZ+9heVmYHKq1/zu9H1LNbg8X+ /z88KtIw4D2IbQAAAABJRU5ErkJggg==</item> <item item-id="408">iVBORw0KGgoAAAANSUhEUgAAAHYAAABaCAYAAABtyaJcAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAVzSURBVHhe7Z3dlaQgEIVNYPPYGMxi kjCPzcBo+mky6WBYwbZbkZ+6gtjgnXP6ZSwR6qOKAqHsFP+a1EDXZKseg+q6QT2qbNxTjX2n +vGZVPvGwM5K6YY6ka5JPsc+qXM2BFZD7VViR0+ykvw3P9Rw0PM0A/YxdOq4ob4svZusffrF 3WBA3gwDczn271M/DWx9PTBsPEfV96NCHXMbYLUyD1O13fesdD9cVF4p3em6N5x9+TG3q6/H O9vWXzQAVis6IVDSFtFZLlx3FJ+VoPJ2IOcM7DTs0DCCu+T6wWpFH7bWqZe7IBp4ns4CyQsj XFdnsQZsbbVIM6sHizbYDnCMG7StM6BoSF407RJG8mAHrhxsohueKEOgIHmJtQqhmt6ItbVy sNPYE4kYTeDiiVJNwAW5VsB1x9yruS6JwD8+5jHIp3N1gwXdk3Oe6RpPo8GTNf665ENlGBct h7TUGxl2CNa4uPVqVZ7pjvEUrmgnZsmBVY5bgR2yLDWFFyg0pO08Mr6gsb9nJjbPWWMLGG66 BJt/be8rSiTYr8CQvxIEm1+nX1HifcD+/qi/P79fofQSlfj9+aP+/pM9qfqoOE/wJFPW1VL3 sdhp6kCw7u5Gi73aDIHn02IBZdUkSrA10QLqSrCAsmoSJdiaaAF1JVhAWTWJEmxNtIC6Eiyg rJpECfY0WvHXdac9+vXKT7qhjQsUYhLoC3lxwWJBWqxYVYAgup8YKFoqSrBSTSFy6KY3pGyh LMEKFYWIodtUkbKlsgQr1RQgR7CAspJFS762oytOxiUvoCRYdP+xvBViSbpisaoQQU53EG2l yZa0WFNTLlCkAZPeXRystGLnyNEVn6PXy0s9CNbOi/A5hiBdnyzeclqsV+WrteIZ7A7iwZNh RSATbALYV8CAJrcg2PwaSHLFe7c7R4Jf6Y5psQkWu3bF9iT9dSp7ORa4gR+6lqszE6wc7P7s 5urk9QaslcJm81ordG1fl2g6AV/1CVYO1u9y11HzdFTfkTTrnR0tdC2XtZr1Ah7x8KkzHhWv 7wzlP5pyjfqTUIUTVNFiZb09c/C0eqgXbCj1jSQtjqxhOylabA5XPLu+fcayUDKOWKKOg0CX 2whWAlagZE9U7ByXX1HxqdMkgj0BbAhcCagMnoKWCG4/XV5bDWr0pLXRFupLeZPderNZLPo6 DpC3dzeK8hm7mR0MngSu+NtEsoBFX6Aj8ksHCGdh2+Yz9iuZYJEOiO4XBuQ1iH4Y9vmQ1/UT ZUidbyBYBCy6SU0qrzuATuDp6gjv+mFTQYIFwKLbSmXyqw9PhMAC1kqLBaAuysqdiNq44CXH oxcsZq0Ea4GNLldKXetSbkx+ccGrRZTdNwdeUzXn/wMdk64YsVrXalpCvmLfVE+/NdtM90LP 8NSfYBGwJ+Ur/sRHjq+ETBe9+YxpsSb+z5SZLX++YglYdLsRLRay2HqECbYeVlBNCRZSVz3C BFsPK6imBAupqx5hgq2HFVRTgoXUVY8wwdbDCqopwULqqkeYYOthBdX0PmD5eRZvxwA3s0Ed 7HzhbGvF51c1xxPuY7EES4vNYTFXl0GLPZ3ANYfBbwW2z74LPdYrPu9uSz+aYGNsDl5/b3vp h+nb8OXTN9wHrD6Tq/fuHgSF3vYcx+mJ+u8aV/wY5N91r3u6YxQ8na5HCSXLXwEWa2vlYLFj D8k83wVcAFbvpgQG9erBmsPYQIPzwC0PFhlfdRvrB3uJOy4NFnPDjYCdmuHIUpPHMn2llAW7 OTIibFgDFju39J2KSNjwNLGCYO0jI8KKNwN2noLIpwNC/VwsppOzHIv6GwK7zC9bgXscajtj 7MauPnkyys9vcxh4nvo3ZrE5FNtGGf8BuJnj7S6Ll5EAAAAASUVORK5CYII=</item> <item item-id="409">iVBORw0KGgoAAAANSUhEUgAAAIkAAAAqCAYAAACHrHiJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMnSURBVHhe7ZqLsYQgDEWty4Ksx2ps xmJYg6iIQQIsX7Nv3uzOiHCTHCIQB8Ef9oDDAwN7iD3g8gBD4vIQXxcMCUPg9EBfkKyzGIdR zKvT7vQNOtLCkKTChSFJ5dnIfjsKTKQn7rdH+oUzCSUayySmhdJQaxMZGM/R3ptHavkeJNJh gxjUPyn4qSAJ0RJCDwWSFy0fg2QRk76wpTgPgpIEkkAtSSB519ItJMt0ZQuZNSBlbMGW39oH 2mHZ5HG/ln3MPtC4aQBCX6Pacq3zWFzLaS9oHGexOvzSPCR6AASaGVYxj7ZtsTGDbLOUmEns WmCcSSzb3/6NfYhaiJnEqmWz5QAWJs35+z51bhm3eUjkzITZoB4L529lNFzHHQHwXDP81fdE SN60yGtbNorWQoTErmWDUflrmbDJ8/RL85CIDQ8I9r4QNYw+0unDsTBriYB4rUkcWtCDPk8t REjsfjky6wXL1SWupQNIbF6zPGbUKp60qyEHxN1Qrn0mY01USAtkGdByy2ovWrqFBH3MFAqK XCvJFK+BW0oL8Gyu3RxaOoVkT5vHWYjrO21W2R9B5xiwk9iAWdQaxdSWVsuR8UDTtYA+1ks2 LTgk1PMDd5blFjV6AOLrQSNDUmMQE2ras4ZfpZwhSRiQXrouBEmqbV8vYanLjv9CkqtgVZcP u1fzR0jCClbRNZLuQ1TeQCcktwKY2u/PelGMWCRKYapra8vX6ccANl9B3E5IvApCAUUiGySc SVJMn//2eULiVxDyLxL9Vzb3ltMD2uPGVpzCCkL+RaK7Uby7yRnk2LFIx/JYQci3SBQrlO8v 5wESJOjLPJ5FonIm1jCyWUuyvXhUg9anBhoksnppGuZXJKrT/Byqno/W/Wi8HVBokGAFIc8i UY5wVDkGVH0fQPz3VcXUdjshwQpCIUWi1IY01X9jVXYnJE05vwmxahfpUaovbRZDkjUC7QFy O3HN6qsvDqaKn/jb8nU7hDNJjvjIxavfiz45ZFHHYEiongpt19giFTOTIQkNPvE+20vGUHVt Ze3KkBCD/eVmDMmXo0+0nSEhOurLzRiSL0efaPsPospp07GYinIAAAAASUVORK5CYII=</item> <item item-id="410">iVBORw0KGgoAAAANSUhEUgAAAIkAAAAqCAYAAACHrHiJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMWSURBVHhe7ZqBlYMgDIady4Gcx2lc xmEoQbCCIAEJCqb37vWuUgx/PkIgDoJfrEBEgYEVYgViCjAkMYX4umBIGIKoAn1Bss5iHEYx r9Fx0zfoyBaGhAoXhoRK2Zv9duSYm0rYX7+pC0cSjDeWSUwLpuGhzU3HJN7tuvlNW74HiRJs EIP+RTmfCpIcW3LowUByYcvHIFnEdExsMeKBU0ggybSFBJJrW7qFZJkGMeptzjqPYoCQIZ2t 3g8vaOeLJvC5iTand0z4OQBo3QM+H2exPmiLNR6ELs1DcoRBWJEBZsckFvmzvftezgwKzVJk JAnaIr9vgAVQ979tXO0olxMxHPj3+3gj5irmMXRcYOvSPCQqSsDM1MvC/rf8X12TuYffKSBS 6JrjISQkYVuk6NrGZfI5JsEWJDxXukAXcB2rS/OQyOEqZ28h1HFAMOeAmYIEJCknCdliZu0f lr+vE21BQhLVxUysUzQ769IBJGHVVC4wOXmIzuIxaQXaH4iGMHPBFmv2PmJLYJm5sKVfSEyC qCKNjjCPOEUT5Ea1h2zxLjMRWzqFZAv7e7SAnYQMr4vOUdzdSp2oAjb9E2iTL9W1ZVvagrs2 55rRxQ8J9vwAEWa5ySGS1KGxuOQMSXFJzx1uUeMl1emM8TIkGaJ97SsPQUK17fua++qMtywk tQpWdbThu2gFCkKSV7C6XSNhV5IrEIXk5ESZofs+SymelRoVdivH7fDbXlcr8NUOSbhQZlzq O6nDF4lCYHAkKTVl6PrZIckpCKUUieiGwD1TK3BYbiKFMrcgtB97uyZidi6YNtRD5/6xCiCO 5ROWmYfqEdjBcrs8BaKQ+JaUnCJRnnm9fMutmYQegnrneCOQpBWEfLuIRssVBb11Xlq3Y/p2 QIlGkoJqfbMrqECfgEA+NvkSxRiSJxzRWJWdIakOid5FNrQOMyRVIWkPEOvEtapWX7yZPh7w P6H+bkE4ktTwj0pee3voqIZwX7lHY0mqzy0cSYhhDT3wDGdKreSuDAkxJD10z5D04EXiMTAk xAL30D1D0oMXicfwA7vqXztiZwlkAAAAAElFTkSuQmCC</item> <item item-id="411">iVBORw0KGgoAAAANSUhEUgAAAKkAAABLCAYAAAALWaemAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAbLSURBVHhe7Z3/laQgDMdt4PrYGuxi m7COuw6mmvlrO9liPFFRZIKE8Ctg9r17e/uGkW+SDwFxyAyz/IgHmHtgYK7vlPee5mGY5ncz gkUozgO/82sc5vH162zeAKSbEcMkeOKC3mar39foTELMIVWAjvPNIGszIqLa4YH3PAGzJWtI 39MwkxPo72seh4YAb0Vvbp3q+uNrNid/vpCqNSiZ0GWg5nZm6mzYit4COtXUb65RmUKqpvnI m6QCzkzKaSt6i+i8Tvs8IVWOiMmiip4izkyIaSt6C+lU2VQjwBJSUyAZA4wz1zbLzsH+L3Zc kLXGDKrSNmD8CjkiVKeRqBhCmmCqRwVdTSnGjRXV+VFkGm8m9V/BhmI6Tw4YQro43rq7I3Fg OFPtEuiF+Lofp1ImcGMWtZsAiFTX01n647edtj16L9r0HXAiG1LrvNga4ev3tCURfpBGrEdN GK9rUr0Qh/fhNr6srEQaGWFvCtK7AHnc8Zr/v3SZx4YgnYeeuz1unE697OsK0jVL6iyssoyR kbcnGq7Hb/5Hc2H44VqH6T1nGJ1hrr3ksyFM56bK3kY6teJ1soZ0Ij9i2h+hrjdC1ka+cy2l RvX9s2MccpRWIXp1ZoKWQ7ltCNG576yAS7YwnZ1C6gZlXdNN1gOC/Y6z6l29QzKkdw3aYsPl wxiVbfjU6ZjmCTqfBenxqM1wIMFplFxJeg+kF9qxqG0DoBOc5ok6HwTpNlUd2XJfq773Nap9 110/q8J6t2fZ1+05vc6uYwOkc3mcaew7O3c2kPvSfCH9+Z6/vn9ICaj7N0XsfLTom5/vP/PX P6ZbUPQbpxZDgdO8Zc2GPtWFM+u2Fd9MumQLgTRBhDu4hEDaQRB7N0Eg7T3CHdgnkHYQxN5N EEh7j3AH9gmkHQSxdxME0t4j3IF9AmkHQezdBIG09wh3YJ9A2kEQezdBIO09wh3YJ5B2EMTe TXgOpKTTjQXDz12f7YqCeu8hLSjkA4fUHzCpaQuGde76BFIgigIpBu16bQoOKsmk9cJ87blg 0JOYXFBvJkjDTgOCTuOSSfdzOdlL8GCCXkoLhmKMXug6BBvCICV0gLGXL6QFy9d4g15QCyZo Xr3QRWg2BEBK6yCodItpFyKTBl3bcCpUbidn+RpMzM1KK7W0xPjzOLi4nxx92aWFIsrs4CFN VG8IFTDVCAGp71pBZWEqlK9x6qugxedL9TpNb4YyO+7A2mbg6vgEjc7ATOpzbFhZmPLla9z6 ymvx+XLLG67yRW69Wcrs3AX2NARfxwdjfL41aUhZmBrla1z6amjBRCpQ71E0Akpw+JJGwHR/ E9i1L8ydO6aNxykJpvu7HriXr+FYSufOn596a5XZIZZJwYzRjzY5IQXKwqz923esJe21HcBJ CyaAlt6sZXaGv9cqkMffevvJ9TrGkJA22SBtqXzN+aUWdUvpYAJnlv7ZZlJfeR3s3vNluldA mpCaf69O2l8/OgfaY8xBtckG6U3vaiDWLwK1CeSkBROwjHo/IFV6NKjU3xibvG0KQ7plKh7l azhp8cZpHU95fXdA6sqgGtqQ1zGGedsUhtSrRxpU8wAIqZlNtTLnWnVvYL8ebZFAGu3CXi7w nA899xKxB9ohkD4w6K2ZLJC2FrEH6hVIHxj01kwWSFuL2AP1CqQPDHprJgukrUXsgXoF0gcG vTWTBdLWIvZAvXwhle9xeiCOsMnP+R4n0unGCpxw11lBH99MmvrZfQXnkhDnrrOCPoGURFLG N1WAIMiaCvoE0qAIFWhcAYIgqyroYw1p0k/JU52rj80gv1E4KOBQY+46MfoS+0wgvaWKVrUl ClQMBB8dFNTp1ZdeC19I1dHp8bV8s7v7J6jwhOFcV5mdy8GxiLIwtuIYnTnL15AGk+XHXD4z tb2n7VjP9YgoSX3qN5mnD2nXDiqzc3QRXxYmVG2t8jVYnf6qNjl9dnLAENLtgFfM4c27aiz6 iPCohqjxA54XX1/PV7XFrTNv+RospHd+XD2zxMn243btBD4zTqGyhDT+WG9ImZ3V2/MILjES VGS5JaJO+RospBq2bWq3TtRm9pmZqHhCuo7Es0AC3qn+lp9ldtKVhfH3jm+xBmmajEzFSWdu Ldf4M4V0CSZQchIfYkfLY/SfTganrH0rJWbJkUSrkb046cytxb4+X0hXToeotekVFKjMzrKm SlgWJhrM6yrZmE3Slq+J05lZC7CMYA3ptibiUV0kLrCEd2csX0NQU+gtagB8LvOYQ6rvFJ8F au7yNYWIC+wGBlRdpAFIzy2NARhlgZ6Q5uw8oHc43DfKjUDKzrMiqKAH/gMAbIRp+2kyZgAA AABJRU5ErkJggg==</item> <item item-id="412">iVBORw0KGgoAAAANSUhEUgAAAL8AAABCCAYAAAAG5gfBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAdESURBVHhe7V3bdaQwDKWB7WNroIs0 QR/bwVQzX+lkimGxjcFvyS8QY+Wc/MRgS1cXWTb4Zlr5hxEYFIGJvN/vZZ2mZX2TN5QNvA6B z/qap3V+faqGJEx+5eC0MO2rIvzFN39ec1ViJEp+Qfx5rXywvzjs7NqJwHtdCisDkuR/L9MK J3w1M2Cvm6ZtFtl+/alyn2H29uRM83mt83THQ2nbWDvdlz06pTbE4iRIq2Kift3SFmo3vBBx mV9rbhFEj/yixgcZfQYifalbOilATfKIB+0cL1VL6jGvJj/sQxmZc+4qtSEWJz8OdgkDtfu2 i/tzkwIx8guw0otbBdJG2O26Bcr8oUwtHi6dJQLtsv9AFpHgLsv1mR/yIYfDpdcW2JCMU3AT QxB+TyxQe9CP/PKHFvkFyEDW/7xe+84Pouwxia4Bk4GMPWCRzK+n1TvKnmwfShmeuK/Ahqw4 iaEhbKF22cWMKINPP0mRP894mPzBLB4E0ahnvaxvLL4RAWhNPbwPrUc++6uzAY7TRltgZw9q 321FJE8TJULkh0seO7wwqEVBc6Zcq5Zk8ptPBLIEhOIEERtqN1mRxyFC5N9qtqwVOwTqBkrB dK2zkKy+3F2EG8hf5kPjWaAIx6POjO/KSTwTL6ug9oCb7wW/IUGH/JlTlkXSWKxD9b0ZyOjC Sm2hHos2a0tObc2BG1Kt+Af50GqcVD9VNkSSlMQ+QVSoPWJvTun83eT3akl3Cy0QmFCWsxbL +MzShpel24xtRle91NgQwBiaQaH2hGuPJf+S9Uo3nFHEvr293wu9nLHbQ9ucB9YVQamjIuRD Xe+4u9M2+LjHyx5oRoXa05MUfseHVObPIz8uZHzVWAgMkvnHCip7i0OAyY/Dia/6QgSeSf7f n/Xvz+8XhoNduhKB358/699/uBG55sfhxFc9BIFnZv5tJ4UXvA9hGGEzmfyEg8Om9UWAyd8X X+6dMAJMfsLBYdP6IsDk74sv904YASY/4eCwaX0RYPL3xZd7J4wAk59wcNi0vggw+fviy70T RqCe/Hd8utv9JReFz4I1a5Cn0AKHaOyDNI62TeqEzR0xle5eizuT38tMNYcxWqe5mJYNPI7U GDqOero+pc666jG//yAOk9/lUYHuDEzF/CuyNIfc7t0jl6EjmJHsPpLmEJM/RBz3cHxSvyef 2Jg7srVsjk59PaGgMsWmaCQU6azqZzDNofbk30/Ra13FLoe3O9b8RRImGDYXX4Oo+c2+Q1k+ mvlN8o+nOdSY/IaMnFy/pMVaZV0aWahBIrC9vup8Nvn9rK+ei32xa2Qijb3+04iaQ23JHxCO xakoZ6bFjpmfhPaNBUdG5k8mG3u3Z3kb/Q6qOVREfuv0PQh4fNeAYuZXs5Wjz5mSKMl8bvMv zyB/jp2GnzUKCPn+RO64Afci8lulQRTw2BTcAK6emb9Kd6aBb5GtV8zayZZQNzryEhQQm1v2 +a/fYi4iv/0yIpTZfc30prToSn65WFFiqNF/UtHUG6AzrOaQUFxMyPnJRS/Sp1vIfz3uheRP xGvf7cFkqmIKdSd/sWV844MQaEv+K4i/7yL12u15UOzY1EoEmpI/tnBqPgtw5q8MO9+ucijL FTITBkWAyT9o4NltzvzMgYER4Mw/cPBHd53JPzoDBvafyT9w8Ed3nck/OgMG9v+Z5GeJ8oEp 2851lihvhyX39DAEnpn5+Q3vw2hG01wmP824sFUXIPDl5C/9NDl2gMTRvnEPvejjgsenw86h mAsC+oTPsZMwRD6ntg8+xQ5IZRz8efK3PTP4tVzp4YiYVo5/RkF9yKcJDrVfwfxSn3vYVqI5 FNYM8s4phA7kG2cwQGrs7j4284PkL9DfSWrlBAE3DuxD7T345fZZ4HMPs0o1h4KaQYiDNTXj YR8UOv+QTpQXrraOG8XQ8UpAfydbKwcKDNTemnkFPrc2QfSXjaO6aZ1FTF3MEOeSi8bbhnwv eFU6QuQX02O6nq6TIMHUjinJPxlNdRQSm1oasLDO5wYGeF1gcNRY7UR0yK99essSUx/DjMUe O54eE78mI0R++HPUOiJAIELEhtp7EE1hcupzHoXtpkaBz3BtLYNwVKOlNIN0STO/PqdpwRLz TDiofCMeMtSFalhS5JfTZMr4qhIgEbT9qKYVDJMxUHtbdtm9VfncwzAE+QHNoOADvc+qfvgR 4x05AX+Kix75JQCJaatKByYCosw4iSwKtffgl/fgPUtzCNQMCtb8MZJjyQ+XzW6oaGV+YV1A Ie40umbbLwAitHiF2nsTXxUQzjqjs4QM6BOWjEZHEY0hK8tXlj1WmQX6QLHs2Y1OyyGmX3LF dW78oEEZCmpHYtzgstIXew2G9roIkz+pLxRMIrZP57sVd0DEw+aWWUi36WX+I9vdtaBDIseX EUFAzIT4HR7TaKLk19M9PwBEGEbUjHLiE1zwhqe8+JRINCZsVmcEdMlUlvG1cYQzf2f8uPvh EfgPaqFHA5nne28AAAAASUVORK5CYII=</item> <item item-id="413">iVBORw0KGgoAAAANSUhEUgAAATAAAABmCAYAAABMW82tAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA5RSURBVHhe7V3h1dsqDM0Cb483Q7bo Elmi/fM2yDT51U2+YfIMGFtgYYMMGPDtOT1tEhukK3ERwkaPL/4AASAABDpF4NGl3J/X9/F4 fT9dCg+hgQAQiEPg5/t+Pr7P90/w8s4IzCj0eIG64hwAVwGB/hH4eT+DAUtHBKbI6/ndIeP+ LQUNgAAQCCDw+b6YVVc3BPZ5Pb5FA6+f9/f5uDFB3l1/NWyAQdv0qezzfH/pgrIPAlM5r6Ls BefF4IUPtM1eRjq1nKQ5sQ4ITC0dKyTs7z773l3/niMwa7u32tyacsTqr5rw9WYX+ZyZoXRu aomIauWn3aVk+wSmjFM6+urZeXM5JQis3yWkth3Z3LLEZcdNMdsqMplTO8zyLpdr+u0o4rSq NU9gVNhSgMyxqSwHZp1nnulqcG0RHKROPor+ZyaxqzGY+199jxCLdhbvc0555/SOk6PW7ZNV 015/EllIUNM4gVVaPoqdVzkGSfxLSaAIIyU2KpJ9IP179oGN7Ty7OASW22bM0tEhsL3+pLKs vNA4gU0KersOicMy/nLiBGo2sYlCvc6fpjbuO51j8EKu4rul8RqlXRmh/6KqXS6MpL9HYCEf WHJKNM90tQ+kEFiKzTaRHedSJrpbHyy3n+fv9vpLkcXr+vMygUPbBFY4/0Wd1N2Fs4lCmjDk vvMN6s98aRxS++ok/SdnW3Z/6P8dofvSXy+uyGR17ANW2b1nEi/AIIXANk52Tl67K+jsDvpL yGgfiZfFppZuTWDOLoqaDUi0Z57+dV9j4L5bbXP82kNtgjrqL03/NRq2s5/bfn/6m6CL7KRF +IC9h3+95SIMxAR2Ut7QUjFIYHv9pcnSDYG9ij56P6/fdQjsPcTK5YSCeSITNu+9s3VEJtf8 nqK/jTq4ZX2v+ms6Mq+npfgAm9a4EAMRgZ2XV0WvNIWyfGYJbK+/dFlAYAeMoXNZLzfHxX1n lh2F3xK4gN04XbXTTJg4RD2o/nZ56fpAYOnYGwal5Q3sQrI79EJZQGB7pGCT1Hp2niOz0HcD kpcmZR1leAPWn+mFzncBH6d3yWDgPwWuG+0NgxryUgLb6++ELCCwoEubJcUyW+i8yGvaDfW/ e38/c57M2ZnqntA4/e37Z+5jLTYnOJb+67LS9YHpFRb7VHvEv60+D1jHZnZZ/vq+d8bIGVn6 ILC/v77//vqbPnvijjIIFN4VLiM0Wh0Rgb+//vn++18Hj1GUTeKPaNoyOpnZ8sandZSBFa0K EegjAptmfBCY0MK4DQgMjAAIbGDjQjUgMDoCILDRLQz9gMDACIDABjYuVAMCoyMAAhvdwtAP CAyMAAhsYONCNSAwOgIgsNEtDP2AwMAIgMAGNi5UAwKjIwACG93C0A8IDIwACGxg40I1IDA6 AiCw0S0M/YDAwAiAwAY2LlQDAqMjAALzLRw8bXV0V5j1u7v+CgZg0I2zg8BAYC4CGLwgsG7o y9QyUGeuNV/Uo9ppFHcfwHfXv+cIzNruPR2+aQ9bVKPbVuimVbszkpR/Jr6B0JQhLP0HBIYI DBHYKD4wH828EIclLkskpSYn3Q+pwD0XSKnAX4jANjOE1MjWeeaZr4bxisxud9f/TAR2tQ9s zpY3VX5WX/Q+Z5OXa3cmtEBhDxshOuNEIA8isCyzr7Q0ehEKOteoiMAG0l9MYA1gsLGdXyCW Ek1eeeky0lk+OgS216dMHhDYDoGFysovs4atWHOiNPo5tilwNxkEuqSaTWPMur6Z735G0t8j sBAGTgETm2fywm7n3gKmOl497BBYis1iqgYtREWLwRjCNFhNEdlenynyEMVBYBMYSWXlJ6CX eoj0/443xZdGr+HXR30E9ed0HVB/hU8SBguggfqQ+vcLfCApAvO94qy8M3G9VX1Ukg/zl5DR 4yROHhCY3TGxVZYPy8qvFak/L664RVpp9CNyqfG7DvlZ/Tldx9PfBF0pGBirsPUhzS+6JF/1 Cu1iAssj71IejUaiQQLb6zNeHhAYcbi4svJ21l0H8koy6aXRaxDUcR+2fp8K9Skpc7qOqP9K OlsfCOhr0wcbcC/0ARGBZZSXW2qyBLbXZ5o8ILCD0a3zGK9pm5jMKhq06Ttnho3JExwzSXNX cLreSX8babn2Diwde/OB3PJyZBXYhWR36QXygMD2KGOZZT2H9Wc6AfDNMVVIIG5X8k76Gwab 8jprZMouHXvzgQLyhnGhj1TQxzqI0wnlAYEFmYTupqic7BSF2TyRznGsicpl7e+Vmu/2WTAH E1fXOftzI/3t8tLam+6s2R228L+t+kBWn7XPby3jgzqQTU+8vm9dFHmLlcJIKg8ITBIKKYO1 6pkSfY6iUF/XO+lvI7C72Du3/xRuDwSWCLCZKbjdx8SGOric0/VO+tv8113s3YFLbkRkCCzw /MXu8xyFVZ/6rvYyd2FV0DwQAAL5EACB5cMSLQEBIFAZARBYZcDRHRAAAvkQqEBgaQ+msaph CZnP4mgJCAyEQIDAQtvC/jtO63VFN2lAYAO5HFQBAvkQEEZgsqMv9JEbzHMg+rs9BgSB5bM4 WgICAyEgIzDh0Rdi3EBgYuhwIxAYGQEZgW0QiTv6AhHYyK4E3YBAfQQyEFj80Rdi9RCBiaHD jUBgZAROEljMDmPMNQcQg8BG9kHoBgTECMhfJRK+PS6SFAQmgg03AYHREZARWE3yUhYAgY3u h9APCIgQEBGY9OgLkYS1CYw7/0oseIc33l3/2d/o+V8dWvE2IosIrDo6NSOwuw/gu+sPAqs+ vM90CALz0bv7AL67/j0TmLXdW1XKnh8atyXf6OczjMHcy67Iir6aswoBAgOBuQiAwDZHSGce 7+WasyejWvJQD5zTt1xq2LZGHwRBEFguArPOM890lSag/INB6oCj6H8mArsag83mGq3ErRTz PmeX13sm1D9DcK8/oSwgsCwEJns3ND/7ZGhRRGAD6S8msAYw2NhupzK3X3hXZHc/eCe1NRcc aS0BcpKx058cOxDYDoHRas16nT+FVZvXoVopK5+Bu3QTxLF0Sbmp4MLy/VS04e2/kD+a/gwG zgEELftACoGlvM8c89hUIPoz2E0kttdfiiyen4PAVGA9DcqlxuNmZlAziJohyFFCZkRPlXlC Z+PHvRuai3POthPUf3KsBRf6/8H014uroA9YdDl7N+YDKQS2cZozPjtXHuKKv2zGje14r794 WUBgOugIlZVfyz35ZeLVPXzp+Arvhp5lLGYWW0rGOeXj1urjn5dL1iPpb4KusA/Y35v3ATGB nfNZswvpT/A2mme+15M/CRocf0yTBQS2RBP2rDIvquJyA+o7tgZehvc+M5NTXHO2dp/CgOpv I4yVyOhy8oedxUOOGSfJdVeFMJgHom/vFn1ARGBnfZbi5p739/zzeyoI7BPYXn/psoDADkaM zgO9pu3oNRnELx1j8gTXjU5xz9pBJv3X6COwbBpUfz5VMAgGpW0W2IVkd+iFsoDA9ob2Msuu DssunYTgi1ml5o3erH43/Tl9h8Cghs9SAtvr74QsILAgGZjQeJktdG5oynuFjsQOlEyvyTVl +lI40K3wnWPBPQy6fRZuAdIsaYLHoEf81ioGdd5ntsvL1/et82RbLBU+Z2QBgZUZ9eO0qmbH VkfhOChDEyECIDAhcHe4zcyMoUdF7oAAdGwdARBY6xaCfEAACIQTPWqTaVqGPprGaFrGvN7b TfumZYZwQAAIFEcAEVhxiNEBEAACpRAAgZVCFu0CASBQHAEQWHGI0QEQAAKlEACBlUIW7QIB IFAcARBYcYjRARAAAqUQAIGVQhbtAgEgUBwBEFhxiNEBEAACpRAAgZVCFu0CASBQHAEQWHGI 0QEQAAKlEACBlUIW7QIBIFAcARBYcYjRARAAAqUQAIGVQhbtAgEgUByBcQjMnhx6RVn15bz0 QHWW4macOrhIf11mzjsvTB/Dc8UZYhdhwB7Id4X+ufzsIhwl4g9GYGQwVSurTqodBws9SEyT eM98LO9CHLX01/3Qwg3eSbaJapy6/CoMqNBcEZhTSl1wcws4RqrdDYEdngoaKKy5ToQFy6rP hTk3hWDpwLZOMR+r60zQe79FGtJEYOQIbL+MfLGy8hyuM6EFijrYo4XHwcAaySsJVlv/WF85 uu4yXzoSbPv7YARGTw+tWVadWTo6zrtXOl1eVt0xZ1JJrUx9zgLQZaSzfLwRBgoKrTstv1Zb //Txz99xoS+lqtAHganoga3DSNRNAT2llHlUxRRb/IErflGurLqYwHLrvwxUunykBTHugsE2 AjbRZiX9U0d/6PpSYymXfKQdW3C57RNZdSVfrsKvkMA2QMaXMudsYMtsOeW2/OWDc2Oesupi Asusv6mdOA3et1rGEjvdBoPA5k1t/XMRRAqBZfelFCVWXmicwEx4vruxIwY9rZT5Bt7QMiHo vPnKquchsJP6z0IsO3HUSDfBwOjOTLC19U8Z+3vXXjWWUuVXcs7+1jyB6ST1HoOJQE8vZe5j 7D9GsHxmnTdvWfXzBHZe/0UGbql9Cwxs7cNtzcPnn99uRKrBKugDqQSQYwm5tJHRlyL1oEFN +wQWs4yMVFxfFpXbSmnQuzawA5WzrPoJ6fLrz5HV3TDwDdK6/qcciNxceiyxcrpppQ4ITE1e 0zNHOR4QrAE4dd69/mrIwg4smnA+78lO/s82dzMMdtMLrfnAeZObFq7wX93t8/sklcr6IDDN YecHHvvktPMMVQ7rli+rLpUyq/6zAzuPDyyC3QSDoCHa1V/qO9u5UOX/tsvnHHFGGNYpneQ9 ldANgZkdL1SLzuWAaAcI9IWAyrVtN0w6IjAdt4LE+vI6SAsEMiDAk5dquDMCsyQ2PySYARo0 AQSAQKsIrEvxT0DEDgmsVbAhFxAAArUR+B8YfE3fkzJzHgAAAABJRU5ErkJggg==</item> <item item-id="414">iVBORw0KGgoAAAANSUhEUgAAAQkAAABaCAYAAACrBaOJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAwaSURBVHhe7V3dmeMqDE0D28fUkC6m CfdxO0g18zSdTDG+wT8JxsCRBI6xffb79mEXkKUjcSzAQbeef4gAESACGQRuh0Lnp+tvt67/ OZTSVJYI7IXAX/+43/r7469IgYOQxGjsrSM9FHmbgy+JwN/jXvRyPQBJOIK494VkeMngoNFE 4I3AT98Zs/DmSeKnu/XlCcSYicjloP6ofc/gnLKu2zPzev4tTTW3scSqYwp3NwFGe8e/4ZIU tde0cmmbPPtN2abA6u/R32+ZF6prvz967eKjbZJwexDymZ3w9BtkmSjUH7XXDDitrHBZNk6O tojCqmMK97WNy/QatWsxzvd3L7V3zEr3BFK2abCaZeSzboeNNh4aJglndNkm5RgsT6c95XSC TAL1R+11w80gLfYmcURreHsYni4bYtAxi3t0M9sRwzRZULtMa1mviG2D7hn8s7YpsBomf9fl M4nBCv2yo12ScADJXv1JB/49HtNJiGx5gPqjdlkkbdgrRghDoJWRbVWNDTqqcZek3bm0vJrB OJPI2ibFal5GILsnuxyhaKZWsyShNSTvVxlJvGWg/qi9WpSpBEXfWsLAUT2ooHOZjhLc0UkY ai8w7jXU20cQZ3Fr22RYeRv7Ul8rX8CNkkT5UmPpaklw+SNQf9ReI9D0MmRBpZdbc0SZjgh3 RACovaalkyzxtz02kljsMUhJ4rl1qVnKN0oSz3WTmIEljkXBFcpA/VG7RKcN+kjT0w0ePYsc Nu4WJw3ev12OW6RjBvdhgmQ2aVG7ABNoW1SGNFYi/RBW4WmFmCScG+SfFbRJEsp0CPtX6qhZ EuqP2rFGm/SI7T80uXEZ7JGIdUzgPrytM0GP2ms5I7lJKjl+j9gG/Pna9IyQMtpz0CznSRIm 9m+UJIY00j+CO9MRqHNUaiKBbwM+skmZ0K+IAJX+VGQSpyCJruonlvFJ7dLH+JkxIgHUXuvV ZJHjbZo1943EMlOblyWhDzR+QW9T1G5BOD9miX94/KmxbXyOwp8kifrupEQicFUEmElc1fO0 mwgIESBJCIFiNyJwVQSOTxK/3/3X9+9V/Ue7icDmCPx+/+u//pM9ptnTjboblzIw2IsIXAWB 42cSz11aksRVwpV27oEASWIP1PlMInAgBEgSB3IWVSUCeyBAktgDdT6TCBwIAZLEgZxFVYnA HgiQJPZAnc8kAgdCgCRxIGdRVSKwBwIkiT1Q5zOJwIEQIEkcyFlUlQjsgQBJQo264ue4atnW AVqdgp8oh7eOTDczLW6Nit7+1dLP4LUYWLHeY9y+tpEkVD5XXuyhkm3trNcJ1nsQ1TB5By66 2chqmXycHgO57L177m8bSUITA4raBhqxRX21OgnqPaBKaNn6D0XGGAdrMTA+ZpdhDdhGktB4 Hl02qpFVq2+xTuOb6n3jk/v3s3iLu9puvg8xWGqoa1vUsjUlpxiDrRUskN+AbSQJhf/KrnhX PEjR1a6Tt85dkEDkrstkXcg29iTsGCiA3qlrC7aRJBTOb8FhobpVdIL1HkbiWO89kCQU4WPq WsW/pie/B5EkNAA2kPqt1K2iE5rsqXY0TgNuQd8qGBQ8f8uhDdhGktA4uMVaFVqdUL0HVdHc RkhCi4HG53v3bcA2koQqCPY/jlqrq9UpMrEXbyvU7mvQCEkcooaIKtC8zlr/Wp+THkeSUGO6 74ctcXXzOq3rN+TrPYwl59OnG95qdTgZ2f87CadRi35RB1diwL62kSRq+ZFyiMBJESBJnNSx NIsI1ELASBIuHY3UVIxtstTSNCWHF+FujTDlXxwBksTFA4DmEwGEAEkCIcR2InBxBEgSFw8A mk8EEAIFJOEdkfnHZbfueYA2/QnuJdjkqIx7EsjHbCcCRQgUkATauAw2N2M/efVUH+44WJCN 9+8cu5AkigKAg4kAQmA7kohcXILuKUDKRttJEibYOIgISBHYjiRWGiSOTad+zCSkLmM/IvBZ BD5EEuHFJhWNZCZREUyKIgJrBD5AEpFLTGp6giRRE03KIgIrBIwkIURyOt3Y5FRjVoEkIXQG uxEBGwLbkcQnCMLZTJKweZ6jiIAQgc1I4nWjcnCsWT2rqEYS1p/jpu5UCH5u7X8/MjgHtQs9 WNTNanPRQ8FgvU7LTe/waD7AeRWAwc/mqwdozlxtDCBsgC3ieipLnTcjiS3DaCG7CklYL/ZI 1Z5Y78OMpDl/aIbaP4Ge1eYtddPrtLorY3GzVihvvYEOa5BsZq42BjA20BZRPZVqG5ebIacX XIMkDLUNXpnSveu78OIVdAUcatejoB9hsFn/EOUIrU7gA705W/OTg8Fv838IapAoLZB318YA wkZgi/U7JWYSQ+bf9bewjB342bu69gQKaNQuDz9ZT4PNMsEFvbQ6xfov08zh5qwXKUy3V71r jIS6bnhUL4ElFwNabFa2Otvy9VRSKpIknsiUXVsuuecxTBXjwfkOZklElfUps7ns2blgjJN1 5CcAnt9+hqXc/Bm/99uh6UH+nkV8y8Fby0drnm5j71JqPkbk/krZoqmnEmj2xFe6VXP7BFTq Z1RYbsgdENMOkUR7BOGsKLNZ7SXRAK1O85JvkRks0vj1xFiu2yNqwRokIlOUnVCMGP0FbUnV U7kgScBPvtWpnA9ihiSm3eRkeovalaGm6l5ks+pJ8s5KnaKkMqXZw5svKS+emYyKItKXmQNj bhYjjQElNjJbZLZyuTG+Vvt7eEQJ17svL8dvjB5YPBOMqF0Wi/ZeRTbbH5sdqdUp6iMv8BFJ oBokG5n5EquJAYQNskW7UerZTpLw3h7vPQHNp+QRNkabkKh96+AstnkrBfExX5AIrwlastx4 7TtEfCd+ORRioI4BhA2yBbWn7SFJvLDJf6iyrl2RziRSH5K5zTWXBqP2wvBTDEcf5yhEVeuq 9UPwARH6aG21MRmM/9DGpSQGUL2U9TIW2SKtpxJQMTcuq0U3BRGBUyLATOKUbqVRRKAeAiSJ elhSEhE4JQIkiVO6lUYRgXoIkCTqYUlJROCUCJAkTulWGkUE6iFAkqiHJSURgVMiQJI4pVtp FBGohwBJoh6WlEQETokASeKUbqVRRKAeAscnid/v/uv7tx4ilEQEiMACgd/vf/3XfzJQTnuf hMx89iIC10Tg+JlEhUtnrul6Wk0EZAiQJGQ4sRcRuCwCJImX64Of2Uov9UveZKT4Gbb6boFa 8arQsdYj1XKOUZsCmhX1sdY2VEMEtF+57sZdPKHTroQ1C6JD35NsqQK6IMQXNsvIXakGQ9DQ QaOjQXyVIcepTZE3N+bjUttGme87JUJ/Ru7NvHLdjWKSENQsCIMgW3cD1UjwhDk59657Xp/3 YZJQ6FhlvluEaK9cQzYJ/GytTZEzL+pjrW1TxbdkDZGYvMBeq23HX2448KrfJhSy9DoEsnU3 pJeWOic63fdYbkh1tEzuLcc0WpsiabLGx9k4iGcKcyYRvxTYvw3bjbfV3fjp5C+wNo9Ahz2B da0FW5x6a3Qx8azvDpRdDT867fH31HQHkpDpaENxu1GRFDrIymR1O1J+ttemiNus8XHetll+ soZIMpMYr0ycq5ktrrybCSzrMN38apQkxjsjK2xLLKGCNQvm7jaSGFLQgSFIEjJSwZPIRHzQ z7LaFDEb5D7GtsUm+XIfbdq09CbCTCjpuSGwzRGJYnI1SxLDmzhjiLgGwsLT68mfflvMbD31 QKl8yOA7ZBKW0oayySzvJfbLAWpTrKyW+rjYNn8psDzd6H5QDKN2/Qu4XZIoXXKgmgUwHQtI AtRIkNyULJ9qxp6ojoNRbPVhB6lNEdot8rHGNlRDJJ7KvOvJqDdKhxRXvZRvmCTckutZDEeR Fi0xjTCquP5CjI2Vx4t7ZBLT9x22WiPVqSCRpLmiSfJNs7n6Vtom5GfUXmB36GO1zxMlC+e9 s5W8+BHpYoqAGF8sl4Smt00SA08Eb3ShYdPGwFiBei48G2xcaupuxOSlK1nvsyeh1lGFZZ3O krdxK7UpoMXBJLbZBupmDNnCO4bXMaeouyHa1Fxb3TxJjG8SzZsHupYdiMAFEXBkYjsxPABJ zOsoEsUFI5smV0HAThDu8QchiZkoXNplY8MqWFMIETgUAvO3I2Vz5kAkcSjvUFkicBoE/gcU 0xGG8D/62wAAAABJRU5ErkJggg==</item> <item item-id="415">iVBORw0KGgoAAAANSUhEUgAAAPUAAAAnCAYAAADXRw5BAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAATjSURBVHhe7VzRkYUgDLQuC7Ieq7EZ i/EBigIGCPokSnIz93OnQnazBJJot8iPICAINIVA15Q1YowgIAgsImpxAkGgMQRE1ESEztO0 zERjy7AtITAv0+R7ElNRz8vYd8swEZE7j8swiqSJ0G9u2HkcFtedGIp6FXTX0Yl6GkeJ0s1J i9Ig5dPjEaFYiXoeeyPmrh+WgSxST4oAidKUEvjE2Go312tfBX97LzJre2YVKKysmYnaGk64 /Z7GEyGfcDKZJB0CRuDDLlpwIpMKVJuqWYn6AINO1NOQIYfOdWTktyKAEbWS/LCpWkRdlUi9 mIioq0LewmBYUfdrrkZEXZV0tZpuwFcdVgb7NgIoUR8BQ0Rdk25NDlkdraahMtZfEUCJelmm YU2giaj/in7mYSqZ0YmoayLexlhoUa9l2qqinue3lHL+nyhD2fZBUaPsakM6JFag8C0Qda9C tSNqdd6DGjJsvawwwkyD29yxikgPuP7osc61NhJUbw8a2hZ/oKmTY3DU4t9KGHttPVKzxDwO a2IdziLcIx0Xa0vyuq/hi8RG84cQdUToGWTPzgs4vp5oE0mjMlEfC1sCRMfpvKsMuc8shvU4 e5eoP4EvUtSaw4yorwl6jcJu2eZoyzTdMU5osSvLX1ZfkodAtum/KeGpfty1G+gQoQX9PNUV 6/16cy9Q+npM1DU5oxA1D3wzor5+5oS3mJFopiNSMlqvZKCiG4mo9aChbZvQAbtw2FgHrCdq 3LzsySnHWY6I2qKGjn56AW0P36SodQSNvvAQ9KT6Z7rYVjT29xbO1rCowYUISpRBW+0L22// PBwI61WcuVEz7G12hJacc27hcP7PCN/omdqKeRV2uJoFIjxtB2Nb9rTYMckeu9CADe6YBxT4 QdmlsKjBKQGiNlEyjOqxM1Ri+x0XNR1nMI6YSJ2bM54hTvhaHzhlv/0MtX8GVtXtU/bWd6ZY 5C2N4HjSMFfCb7r4USL6nC1ixNeNAlEDzSd/dTrVV25t3edbm7MsXghRZ+fssJUZrzl8k/nV U/MJEGXN1iX13nFIkERqe8aGFwGgTfSP28M94iezpfU4ux6pwztvHNPY4Au2icKCXOuk0EsI UPQtjcg3yMKE6CrXFERqk1QLsdwSa0do3TLhZYmccPsNb8ffwBkiUvt1pqDHoZRULvgqO4fT Cx3pKOsLO56VjjVY7E0UbghrIvutX1DfPr5gbEtXDmx/ru+abmnMlsNKRe3Xr8+irsVZTnQl ov5X9YMDvgqry69eXj0zAVx/v06dc2DQ6Ee+jQZ1g+3r5xc5y875AvY3bnk9vgov+0Wjst5v JNCodkiSjrKwnELxbvMznzMy1QGrYvdM/UXOkHO+odHiW9+O7+XPGcX6kM9JoVzzCsVZ+ryV i+cLijkvuuGJDw+aSLJnv/0uNij7/2bO8H5WBPuti9+Nr9Ibyw8Pgg0dFIuLPnYfW6VbniY3 CwIageC7d2Xb79YgfKyXOg/UE9E6P6pc0R4CfpTW9jEWdVjqaI9usYgnAkxFLYLm6e48rOYn 6i2z+u43v3g4n1j5DAK8RG2SZc98ZOAZeuSpgkA5AnxETZgUK6dF7hAEriPARtSpb32Rvrl5 nTu5UxAAEWAjauFfEOCCgIiaC9NiJxsERNRsqBZDuSAgoubCtNjJBoEfVTRjZkV0P8IAAAAA SUVORK5CYII=</item> <item item-id="416" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTQRR+2z9aaOkP2EJBhf5akQJrUURiFiqJRqVaDFcD7abUFAqlJnJr PHkALyZe1cQYE0/evJioMSZiInjWRE28eDceSKS+mbcs20oU1IuB17zOzPudfTs7840VAATk UeRa3tfhv6FYkOUWYCQim6dSiYnLcqrIJZBEHkAnSS+aVgFKBvHhcxwZRTc2JZO48AybGtEm cWuzMraIrjdoZa4VdXaAtAWz6M9AlCWoE2/MoIkFrFx3rw5AJ/BkNopprqcUNrsIaCDVo8pB yeudIp+LA8DF526Jj40Oz54uylMCz29FNmkFNuQGbmqWZ5NyJpufNnJFjHmn8ymSGbjsmFoT 09zkzFD+KpXgLHINCpJqUc4hS5jgeAZgkbWTAOexPZUhfYeTCq0DXSPvuNRMg8ViITtxpSjT /PqR7aClPf2+irF7vbYeqq27iWrraabaNmlq66XaNkEL1dar1rZVvPUCNZ69VNNWFO3j3VJr Rbb9/PGtWNZ4fmoizwpJCgcrAoo3JGzaA7iMhvBJLmSoeu+Ry2VmjaaJnBzPZeXpIvdBK6ey /pR/9F1Zdn68+8j7CaroBOhhrWwBk0YmqN40HZ0yXiuzjETlXfqv6DvymoZ3aWdREvL4K0Ib DMM0tgWYr94KfkluMKrfPNsLrkGv4HO+c94sgW3spdGrtS15bwfNI68FPfafKhtJHLOzvDL/ n9tWbkZ4Cgna59mq33Xh9zZbpT/J/y/pb/LTIQnA3gk7g9nZzPb83b1gZ5ARAdpnfOlP3LQe aitWRsUAcSKHGI0kalQ4DVm+euyKt15xyWrcGSp8jPy1vOkK5akGce/JwjjkqpR9Hxpc2vGS bvOV/G0bsbsxptnxc2xGD76seirHiLJY5+LCq57UivP+ItwJLBvfrqMhM1TVSptYHbBJc1wL VDU8bCsY2iWJI8Y2FTGCTxF5GcDMRRFe+iWJQc9Sc4BUaT9+sYb0bLQHgpLEoacfQopbUI3E PmyDAcKSZFpCE/sB6kjhCL2tNgKiDjZHgeDyqFzIjucunczOzeTG50fyaZkeJMGfpp0cbCTz KXcNP+FhnwYPBwgP+yBIeDigzimk3DXCdNcIHSBcHEZVhO4a4YN014iwXb6DMkb4FKUECIdI EOIz6FSCRClIJ4q6KEhnNwXpYkF6yKdLDSJqghze8I0pvr3kG2O+R8g0pvoe1Sj7NEo2/gEA AP//AwBcjCt26A0AAA==</item> <item item-id="417">iVBORw0KGgoAAAANSUhEUgAAAE0AAAEACAYAAAD2uPu2AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAApVSURBVHhe7Z0L0uMoDIRzrhwo58lp cpkcxhs/AxgJ0b/JILanard2B+TYn5uHJUC3iX+qCdyqLWgwERoggp9Ce7/fwC32ZxJAe02P 2216vJKbfD+n++fvb6cC/WFej/Ba7+l5v0335w5t/q37dPxvf1zUOypAE0AWHvL9vCeQU2if C8wv4/6cPGpPgYYBm6bZ7vH59/5nBXab1ZoodlbjV31+5CZAWx+0skUuT31W2fK3SfPcAL0e 082h2rLQZgXMqshC2/u4TTlxHQGOBG1Rpb++7QRth7WCC5vZrI7kIReA4UNLTVqHWVL0/hKP Jr43dWCAuqITOEGLR7hk1JybU/KE8SgpKadWgVc8Wrtr6KPnDElqpss9pZD+p0pLm8rSsZ+a qdS51ypqkD7t3L/sU4awf1sVlZsu5EfPbVRN+yD/o6exD9hGT7nztqtngHmaAVoR2HoNSW3R L4zxRVCGtvZvwew+O1f79ndXqLF8V7+v8VMvx+8fr80vEhrAldAIDSAAmFBpf4GW/RjOjJSe 6wF8siaH0mYYI/+58vkIDVAKoRGaTIDNM2KzelyWAUqJNxDaAS0OAGmOAkI7oCXhwsULk8Y1 1sqEtkM7uZdkXx6h7dBOnl9CK08GqLQyo3MN9mkAtTj6xdHTjJDzNDOq2oocPWuJcZ4GECM0 QsMIAFbN+jTPrmzLvQOs6e4mtEoCzZpn5X24qk5owOtyBs32mbNsxgjirNGKI7QsgOsImtUd ra0aR8tiOTqCZnTdaKvG0bKkCfuBVuEkjJ9RW4KKlfmBVuGO/kKTVojPNdAyT4GVaqXJq8bX PQvSBjStbH0dfpSW7shTQmz76Kntx6ou8zx67vsNRHe0tmocLXM7ECw3LszTAtVpq8bRsnT+ 66h5AlP3RiaEBoAlNEIDCAAmVBqhAQQAk2ZKs/jZPdcBWGdNuFAZIElohCYTaNanAdDdmDiD hsQIksXGUYygosyzl2N36ciL7mJv7FLv2BOAlsWNwJHSjDGCrLNyUxRa5tY1ZPbcomrS7Lwq rSpGoPV9aNkXnJ/maVVaejrWcsZR0DzDk7OsZW6bpzVGoCkSLfMLzbhknUpL57vlGMEaSliP HVv/SU7vQ8t8ztP6+WDwMxD0w8xTsLgfalQa8C4IjdAAAoBJM6V59v9b7h1gzRgBoVUSaNY8 K+/DVXVCA16XT2jaKsgZAhAHsJ+G6mr56CaJ44M7fzrLvvAviiVEMYLvMf9x/CCRnHJCsyul rcfif7wWL/lIm3PqkMCNbXVkFnIbuIJ2aKG0SDk6kaoeWukU5/Ggbetyo+Z5+NTi4/rXfizN llE+L3xAaPFAcH++PjlZAjDBIHEq2x2YhVwtY0KL+vQkXloos5w2PyC0TPzy2GmhlS1zlViV whxuDGjpwBDGAdKmppUZMwL5hAbM4q80ITSAJqERGkAAMKHSCA0gAJg0U5rFz+65DsCaMQJC qyTQrHlW3oer6oQGvC5f0KK1ZZK7O0gweKxRy9XNHMNjypjmKUaQfJRr3tU4uWpeSnsgRUwX N0qMIHp80eVtcO8ssYLH9BATUOveW1/NM6Cm71iJExOeE0jPnlw5a/d4MYLDXS1kwj4ljI6V NwNZD0SRoI0aI1gUV364XZhHHxeF8ARohoy0bpvnGgMR8rsnff9eT4qih6l/x4oRWLf5nOrN iipPOVbOhkHkU8uV0mKlpGG5LxixXjz8fmCmSrU1eVfQgMl7ExNCA7ASGqEBBAATKo3QAAKA STOlefb/W+4dYJ014bE5AElCIzSZQLM+DYDuxsQVtLOXIh8nUOupcYbVXbQOBIK/ztsHe60r 6CTdQpwhuv4YMQKb28bq3lk9QeF+BG1tbozfUfMMjpfYQm35SJK13hbq+66d/wRbntNz2eAx SvMs+P4PLVjq5eIM6WHop90tX7U5Utp5cP1zHxfGGcxbgJx5blNsf4cWxhk+zVraHpT8sB+l WX3/Wr1CnCF6CaM0zytiBHr8IBxE5LUifpTW0fcCoQEvg9AIDSAAmFBphAYQAEyaKc3iZ/dc B2DNGAGhVRJo1jwr78NVdUIDXpcbaDVnAalnDW1rbVVHY+EsIzfQToIQffiZA0sCl08xDlA8 y8itP01Zsag6E/U4gOksI2/RqF1t6jp/DdpWVowDjNc8S+tilfOErHGA4aAZ1vmHA0F0npA1 DjAaNMs6/3jQCPsxYxxgLGiWgLF+npApDjAWNKE/qzlrKMx7vKcRSeczY0EDpu8NTPxObhvA sF6S0KykgnqERmgAAcCESusJmmf/v+XeAdaMERBaJQH2aZXA5uqENhS07PeflpszePrgqOkj TaXl+9Ji163Ssn76zIFK2eXdhoyw2esb7Dbw3TVP2U+f+PclT0TW0fhd1Shev2AXCrU7aMfN pVCsXtfkZBgxu8UJumOlidCsh5ksFzD0fX/oM8dTWrr5IsxLHLaxnJKlfMbJIOIH2hU5izVo FUp2BO2CnMX/P6UpfZUWI5D2beb6NC2fMZ2QwGcAoRHa3wgA1v0OBMDD/MqE0ADShNYTNIuf 3XMdgHXWhMfmACQJjdBkAhwIEHV8zu246s+1zVNdIyYfVh49TIXPrGafQp9KK6zlL+YSWL7t H9tJLuEGfmucYbMX8nx2B624ln9xe2u5BNazNvK5jY1xBrc5i7NNa19zCzZPY5zBbz6CDLRy LoGke8752YqnvJT2KfQcYVejUQ2VZtin0F2fJkWjLLkETtOAbJguGBgyarbsU3ADLQYCKm3b trgnbTj3XZZ9Cp6aZzwBi3MJaNH2014BLSZa7s/m2+hXaVdNuRtch9AAqIRGaAABwIRKIzSA AGDSTGme/f+WewdYM0ZAaJUEmjXPyvtwVZ3QgNfVL7Tke7LGh6+eNRTtFUhy4WllAdw+oRnO +1liAFkfvrZKO/kgj9bnamWxHLuDVowRLPdfe9bQ5kObQScbNo4jJ7SypAl3B01yQob3rfvw 7fsB9Gy08otxCM3i8zLsI0gckjknZ5hhNiz3B63kwzftI1ih5qFoZSs6d9CKPvzSfoBthMzu RdPKuh895xtU457K5EpT2gXAHCoNOGso2EegzfVq5oH9Nk9gpv4rE0IDSBMaoQEEABMqjdAA AoBJM6VZ/Oye6wCssybXrrm96q4aXKeZ0hrcazeXJDTgVRDaENAsfnp1j8H+sb8nN01z2il5 iS2/3Z9ryOCnL8YP0HwEht/eVNlX8yz46U3xA3XZu5KPYIgYwfJWja6gsF/SoG1lxXwE2m/3 1zyjp1/W1WZd0mqfdkE+AjV+0K27u+CnrxgI6vMReIwRWPz0JWjRNCLsxz7/re1Ysfx2d83T eNP5+MFOKhP3DKIoYj4C62/3Bs3sp89tAQr3C4RnBp2WLgQx0cDG/Nu9QQMm5//EpK952j9B UP+jhFbPrOMIO/AwvzKh0gDShNYTNM/+/9K9A5xFk+tO+Ljyrjq/FqEBL4jQCA0gAJhQaYQG EABMqDRCAwgAJlQaoQEEABMqjdAAAoAJlUZoAAHA5D+fm/mxs1URvQAAAABJRU5ErkJg gg==</item> <item item-id="418">iVBORw0KGgoAAAANSUhEUgAABOEAAABsCAYAAAAsRKb+AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAC0GSURBVHhe7Z3LtTMpskblQPnQPSsb 5EXNygI50T247YGsOaPy5Bijm08pk4QEAogEtP+1anUfCSWwI4Dg45G3F/8gAAEIQAACEIAA BCAAAQhAAAIQgAAEIACBogRuRZ/OwzcEfl6P2+11s/z3+AEUBCAAAQhAAAIQgAAEIAABCEAA AhCAQOsEfh527ec2iD+IcGrWHUS4+/P1q5YfGUEAAhCAAAQgAAEIQAACEIAABCAAAQhcTuD3 +bojwmmaARFOkzZ5QQACEIAABCAAAQhAAAIQgAAEIACBKgggwmmbARFOmzj5QQACEIAABCAA AQhAAAIQgAAEIACBrARGQc1x3djtdn89bUcgEeGymiDgYYhwAZBIAgEIQAACEIAABCAAAQhA AAIQgAAE2iAwCXKPl/eqf0Q4bXsiwmkTJz8IQAACEIAABCAAAQhAAAIQgAAEIFCMACJcMbSJ D0aESwTIzyEAAQhA4FsJ/DyGt4sHrDB+Kx/qDYEsBH5fz/vtdbeeocmSAQ+BAAQgAAEI9EcA Ea5WmyLC1WoZygUBCEAAArUSmEWB8XXu/IMABHQI/D7viN46qMkFAhCAAAR6IIAIV6sVI0W4 Clb9f57Pl+0+QV3CwwTsyeRLl3n+3PCl/ExbfiL+0LL11rJr7JgZ83BcbNsDQuoAgaoJDHFr 6d2nxLqLBxDrVt0UAgtHbBMI6kuS4Q89GDoi1kWEq9XgoSJcHav+4ypoNRsPhiCNoxG1+rW/ XPiSn9E3pcAf+rJ2yR0zP49b2XFoCph6FPmWOGJ5Y1f142e3duigrY+2uZdYkCXWPXgHsW7T DYbYpmnzZS88/pAd6aUPDIp1EeEutdFJ5iEiXCWr/oMTPRTvA/n99e+3+30+7K/5rdXcRrlC 6thIVeKKiS/F8QpI3bQv4Q8BFq4jSZyfFdgxM+6QKb0S1KX4Y4obo20qv+OrSzvU0Y5zlGKc fOQVcol1XXYh1s3hsRc8g9gmO/S4GCR79mkPxB/S+Cn+Os7PPLEuIpyi5aKy8otwZVb9R4eJ W+kvGQTs62hu8Twpa4kOrdAxCHEdo/ypjZ0O+FKUUS0L49udQBHtJS3bwF/Tt8yg4jkEAj4m q7nPyrpjZvR1hZcw9Cj+2Oo0+k2R3UxiT97/sFU7rOUeFglvy67DSTie2ulwj+H4XwEheVqR f9tTY0dZXpGdWJdYN7znINYVzymYN4W72WnK+Bivz7lPPAexAVqNdRHhxCYv/EOPCKex6h9U w3KTnylw3AWklnPWzomcX8QMqt42UYFGnlbH0Bq0stMBXwq1qC2dji+llDD2t736Q9uBSU4/ y7ZjZhwHCogXB49tVfw5a3o2wS00MIxt0rnSt2qHqdwboW0V31bfLVaveXfjlE1W8dtt0GxH q4h1Z8jEugG9B7Fu2vjMvCnAyQokIdZNhlr5/NwZ64bGWkuMe0sGxQMCCZx1hukNdj6rvKy8 7na+bSeIy///WQLHKb2xS+4sMNg+f3pGzE4FcyV1v7q1FefGVZ/j0YccxxfmwHXmNNR7Wr3e 1sH4Xr2Oga6Ue6fDOpEYuRx2Sxh2Mr53+50nyMSXPMZObS+BvhSQjL7FB6mkCNdan5Vnx0y2 Cb/PdFKRZNtnrmKILy+l7/e7pJZMpfVUKvMkSETu2H8LGe+xpPD9gfaVkkmE++jFG3FsSm/8 ndNvFjFrt0vGnACc5RdblizCOLEusW5Ep0Ksa7wYhXlT3mPxe18k1vW1TWLdD6HEWBcRzuds ub8/EeFSgxtTMd79bYpwowD1EZ7GAG4nvFhXKW3H4PbP8dE6ruZMS4HDkSOL4OY4OpN2hMFX B9/3vhqOC5vmTr/4OvpzGeN6y9GiUPX9kMF2kmAyOB5z2fnLqd8t5TzsZqmDM74U5GnLsaqN UE3fYgFXKjDxtRXf934bl+iz0gW09Im6v+Yp4pRhb6mAFFzIuITfI8JVYIeD7c2+YDu+5i6v 5RjqLg44y09Slgztklh335iJdc87N2Jdy3F25k3+W8Tjxsx5vcTYlEGsS6zrcaOkWBcRTtBI k37iFuGSDGnrPHblPIpwO13E6HiskzLLtlDnW0KsYpBj0HCJcI47luw75AKNYtvauv2skjqG 1CbrJOtsy6/VlptJhWe7ML70seYV7SXEl7xpTm1M3zLzs01o1x23CbtzWu2zUifaI0+t+8s2 Isp2fFn7LttnU7BuLC6kifreVhiXIOvENS5rceoAO3x2+i/HP2uwQ4wIF1PeZZfa+YnsdZfs ukiy3TU7fHaWX0xZNkb9ecTdL2z6A7GuKR/YF3CIdWfPIdZ1nQqyfY4viccf5tGB6Ih1d6BS Yl1EuECfy5bsf68///jr9c/heRlWFxcxaw1S94Fb/ETZ3O7rHgiN46jrfSiHY6rmEY0Vwrk4 ZwagKfcN+erg+/5ttsJ1DHG3nIGJ9VlrIayrtFub7bfGh9irFs74UoinTWHwtFuVvuWMl9nH biaqCbukfG3F9/11fVbimJYS2AS49W6Cu7PPerxge8zA9pmZSamdkAGVsSWxLZ44dtwIc8jy szg7bGMGlxB0gR1iRLgDtbTyrmPYbiw73RF/ll9YWdJEtMR+YZZlGI88rc83Lvi+v27cOFaM WNe2iMe8qcx1sfQt/oGdWHfPSD6m/fz9r9e///55cSec3+sypXCt7vtX/acjgJt7Tw4rwpsS ftKugWq8CGeu8ocM2nO+Q57We9RcAV7cDrlT4cSzcuyrg+/7EbFGHYOcLeNOhzQR7lPao9/Z j+fWwhlfmm1H3zJzSPGH3U64mB0mHfdZSTtmCotwuz7I6EvnHav7XQa2zz49n2sMC+rJCyUy jynOi2Al79KRVCTWDuft9CI7iEW4xPK6jp06Rbiz/MLLkibCEeva7zo+ts2U8cgXY/m+J9bd Cv5H2xDrfu4Db8mXiHWJdZ+Hc8xxGoQtzpHGuuvvEOEk0aPoN44ApMiEY+tY6SLc4az8PEob LzVYoPiOMO7Yxa3oaG/Rv6KOQa6Vc6dDynHUQ2H39pwGaHPJynfEbvtMfMkgHNdegnwpOhF9 yxFZ+g4Tqxl8bcX3vVJbspU9abI+tPvHMVqK9lT3D7Yr3pYXE9leVmR9aUCd4tYSau92DNUm wB3LGGgH6zHlC+0gEuHSyztNKDdj6/vvkzHT7gNxZUlt1/nfeMx4dOjnfOOC7/sLx41jSGl5 AZx0Vy+xbvwY6vMV3/c1+VJ07elbiHX9TiMdExHh/Gwzpygowpkd4eGIzXZXnLG92fytZSfH +wjAO+gz7yLZoCp8J5x8G7J9d8DnJRW+73XqGOZ0OXc67I8K74UzM59l59Q6ETr1u0WodbyY 4TOBwJeObxmOXZ0JO0oU5ltGKvqWAGyxO30DHjkl8fVJvu+v67Okgclc7dIinJv/dLfbY3/n m+2z+W2eCff9hbrAl6Y7Mh993XIMtTU7lC6vGX+d5ScoS2q7ThbhGI8CegTfuOD7/rpx41g5 Yt3Q3ZOHu2kXmGn3lfp8xfd9Tb7kaTr0LQF9C7GuCUk6JiLCBbhb3iRuES7Hqr+51fajfcTt hJsmF9bVZuO8/DhROdz9Nk+gjqKC682hy+fjUdutWOO8iyztUuD9fSLDs55mHa6uY4zH7cua tNNhCcbnY87GPX/GHSy7N+lOOtv+qPROc8OXPnepqbeXGF86T0vf4mNpC0zidpi4czB2bTXS Z0kDk0tFuHd/tRF8XJ8hwPkahfx7C3Pr8TyBiCQvVIZfapR3G39lFuBmffz+Ei+EZhLXGY9C fLHNccNeM2Jd28R/iteZN4U0huA09C0+VMS6iHA+H6n2+7IiXL5qjwOeKcRYnh51HHX8ffhu Hfux06Fcj+cgCSn+U6+jYt1UssKX3pjxpXEK9x19i8Zk29V+K/GzGibrcV3cPNH7bPYeFmiG cfBx+Oz5+lnujTPvaRWLE3EF7Ty1zQ73adeh815c47ta7bDeLVjWb1bB4jEsMs73G9ryk5al vXZ91ly+ZDwK6TEqGTdCilpnGnyJWHfrmV/iD8S64oUpdsKp9+StiHDjaucQwPnUruhB270b bmcK1+6pTKuoUWbXrmNU4dpIjC8tdsKXJhDd+8OVQcm01hG3Q3m2ieXuRrN7ce5qtfdDSZP1 f/56/fnX8T3ibfR4lBIC/RL4568/Xn/+T1i/K2I4T1G7H49CTVXJuBFa3BrT4UvEujsZrvd5 NLHuMqeR7Q5HhFPvxdsR4cZda0+fCicYtNfjoO6VavduuaABLrdNleuYu/h1PA9fmuyAL60R Wtd9i3SHSba2WomfJYlwFU7Ws9mHB0GgYQL9tWviE+KTXA0SX8KXtr7Utz8Q6862lo6JiHC5 +t3g5zhEuEpX/X+fw7Gb4LqVThjQmZUuAs8XE8CXxOi6/CH+0KVZd5XqbcdM/xajhhDwE5BO OKYnE+v6AYcsgAc8hSTXECC2uYZ7rbniD7VaJl+5pLEuIlw+GwQ+qaWdcGOVHOUNrG2+ZIFn 6/NlyJOyE8CXsiNt+oH4Q9PmCyh80mSdnXABhEkCAX0CfbZrxiN9T+o1R3ypV8vK6oU/yLi1 8yvpmIgIp27j1kQ4dUBkCAEIQAACHRCQBiZT1RHhOvAAqtAjAdp1j1alThCAAAQgICEgHRMR 4SS0k36DCJeEjx9DAAIQgEATBKSBCSJcE+alkF9KgHb9pYan2hCAAAQgcCAgHRMR4dSdCRFO HTkZQgACEICAOgFpYIIIp24qMoRAMAHadTAqEkIAAhCAQOcEpGMiIpy6YyDCqSMnQwhAAAIQ UCcgDUwQ4dRNRYYQCCZAuw5GRUIIQAACEOicgHRMRIRTdwxEOHXkZAgBCEAAAuoEpIEJIpy6 qcgQAsEEaNfBqEgIAQhAAAKdE5COiYhw6o6BCKeOnAwhAAEIQECdgDQwQYRTNxUZQiCYAO06 GBUJIQABCECgcwLSMRERTt0xEOHUkZMhBCAAAQioE5AGJohw6qYiQwgEE6BdB6MiIQQgAAEI dE5AOiYiwqk7BiKcOnIyhAAEIAABdQLSwAQRTt1UZAiBYAK062BUJIQABCAAgc4JSMdERDh1 x0CEU0dOhhCAAAQgoE5AGpggwqmbigwhEEyAdh2MioQQgAAEINA5AemYiAin7hjtiHA/z+fr V52PmeHv6/n8ubwUFCCNAL6Uxq+3X+MPvVnUXh9pYIII9x3+QS3bJNBbu2Y8atMPayw1vlSj Va4rE/5wHXvNnKVjIiKcppWmvNoQ4aQOVQTnz+N1f14vBxap2xc8FF/6AiNHVBF/iIDVeNIk W/8+X49L+/1hAeh+e91u83/Vj0EDr/vt/roUWRF/bcwO2RnUV/+22/XeQEl1yW1rYt3cRFWf hy+p4q4+M/yhehNlK6DU1ohw2UwQ+qAGRDjlyc/vr19g+30+mp5chNQx1IOaSocvZTdX076E P2T3h1IPzOFn0sBkqpOyrxhT81mAe6y7sIdxu3YhrksRbhGgWrJD1gZZZ/3bbdeGcZT7mJA+ lVg3awPSexi+lJ11SHvJnmmuB+IPuUgWf04OP5OOiYhwxc1rZlC/CFcyCPh53F7veHo47DpO dD47DMaJjmMlv0SHNqw63m6PYW9i3n/iOoqKoblKfmIfR9nxJZFR3z/S9aW0sob8uk9/iG8X IaysaRrrs6SByeUinE3QGtnfa7iiwdnZ9rcTrkU7iBu35YeV1r/Zdn3Q4Mot7orHbmJdVwen uDM5fkzvM7axmKKxGCRndxzzrD79Ib5dxDDbpW3Mz6RjIiKc2EOkP6xdhBtFnfzC1EhrdNLP zoLpE0OEmxK97taJjoOb1Azj7wo08rQ6xlamzlXyTy3wpViLbtPr+lJKSUN/26s/tB2YlPQz aWByuQhnE9wmQaTM2Bjagk7T9bgTrkU7ZDHm8pBK699su97ZptfxSEc4KTluHGtArLuPq43r EZg35ex1Mzyr176FWNflHNIxEREuQ3OLe0QmEW4KuJf7ag6i1X53lLl6Pw2e62/NnWdnnfn2 Nz+xE5Kx8W4nMEYZP9vjBm3Mdv/OmD71vpv5SNFc9+FZwxHX/U4443v1OsZ50iRYmvbLsFvD 7R/bDnj5/xOjDdPtyWJ86eNrtfvSXv2jb4lqiiUDk7b7LGlgcrUIN/WB5rhau8glLd82lhj6 8s1QHNUKSiRu0g4ZQdRaf9V2Tawr8Ki2x41DhYl1FyTMm7LezUrfEtm3EOsiwkW6zHnyuUPT DTpziHDzADuX29xNZq4YjRu+BpFknVCYu79sfx+A2I6NjsJL+K6A46qZrewnq7/DV/vt/bGO 4KuD73t/fjnq6M9lk6LEKvmpf5gi3N4Hdn42FnN8Fr40gljEX932EuVL78T0LfHcSgUmvj7J 972/JqX7LNXJur+6wSlqFT9OKyAS4QzfFT0jGGt0wibtEF1L9w9qrb9eu2Y8incn37jg+96f Y+lx41ACYt0NEssJojXetpwiYt7k8mf6Fn9LN1MQ67qYScfEL94J91lRaE6EOztGaT0ys+ls PEcwrYOr5TfzbimLqGDN3zFo2I6jTh5ub+j2HXKB3Yit3tvPKqljYG2mZEUC9FP/OIpwu7Zj /BZf+ljzivYS40sfDe7knkT6FgdSm5DxeaumeHzpoM+SBiZLB3fd21FLTPpEDTLiRxsBbTfx WnYkP7f3sa67lC0LJWmTtojyhiRt0Q4h9QpNU2n91do1sW6op3zSdTBumJUm1t0Scc2nmDdF NRb6lihcc2JiXUQ4gdtYO/TxCN1w99mjwZ1w1gFpraT1OOK2095vZzYniOOzze2+7gHQEOGm Ts22Q2674hAymNh3KNrKFuoOvjr4vt+LFOXqGFqfYiLcIoyux5X3/hEvwuFLi0VtAlbh9hLj S2ta+hYJNcsx7fVYdsLOIl+f5Pu+hj5LbbIuMdvZb1zttbIXM+wWpra+NvQt7753/f+2zw4M Sq10Cw3UiB2EtfP/rNL6a7VrxiO/i4QLVnO83sK4EV6nlCtqzuZCxLrnc4x2fYlY9zjHD+9l iHUR4cK9xZny9/lc3ojZ5nHUtMDkg2U6Prjej7ZMGm27l0IG7flZw4BovfvKFdjH7ZA7FeGW s/2uXSe+Ovi+H6lp1DHKvQuvkh/9Iz4wMY+j1sIZX7J7Gn2LhYunb9mtDsbsLPqCPktrsh7V bwYlrv0i8LkSu/a6Gw8+116sxx0mP11ExM9nWxiu8TgIWKFEbdihUOVHC89vhHwHNvOCZtZ7 kQSF12rXjEfx45EvxvJ9T6w7ERja2SrwWTYRBJz6qIUzsS6x7m6Ut2y0eX9PrLugiI+FpGPi Fx9HnULYNu+ES9lGe+iP9s5mE+GsbxF1lcF3ZG2X/7kIZwpq2sdRnW9PLVjHqHhYZZV8a6P0 wARfMixciy+txaJviWqCc+Kz3UMJO4sEx4pq67OkgcmiMF13HHUuwCyALC+euVr4cEwlNmXc 7gpZX2T0Ed7m+oxptp+9G34V4o6/jtcLUIIOIvEn9fmhWrtmPIr3nQ7GjeM0xfIiOOupn3hc n18Q6x7o9ehLxLoJizjEuq4eRjomIsI1eBx1veh9Fan2wlnkixnM41KWnRyu1dgr7oQT36/k WFH+1MG+4qxdx7gQosAquTno7vwjToQ7ezGDubKvzTnt3iOfr/i+31i54B2Kcb60n4zTt8TQ i93pG/psnx/5vr/ez6SBSR0iXKid6kw3sX9sjqWOsqLls/kt29ovqKqTGaUKI6DXrve7kIh1 Q+zjGxd8318/bhxrSaxrFwu3pNx3wjFvsrUb+paQ3mSfhlgXES7ea05+0ehOuLFG21crH16Q sF85fb8ZdSHxOWY4r/LvOuj1wuYDNeP+hCG4DxdOlmMzlpFgCqrGnQbb75z32qXc/zBB2+8a eJp1uLqOEufOv0ru9o9IEQ5feu+iGSfDuu1F4kvLb+hbIuHZApNcx8ba7rP0JuuRJvuG5Lb7 CM3PEOC+wROy11G1XTMeCezX9rhhrzCx7sqFeZOgSdh+Qt8SCZJYFxEu0mXOkzcswmXlsH3Y yMTy1lMzv6jjqOOPw49l2Y+dDuV6PAcZTfGfeh0V66aSFb70xowvLSL4F/QtVwoblfmZ6mRd pU9rKRNb/7v/7D2ZW47c2l/I01KdKasGgT7aNfEJ8Umu1oIv4UtfOI8m1n0bXTomchy1yeOo uQYOx3rTsEPs6VO7oid77t1wu1K4dk8Nnz+8hcrMRbuOmYtfw+N+8aXZDPjShKF7f7gyKKnQ z6SByeIs+n1+DZ1mrjKMvnh8/fnxs1z58ZyvIdBLu+5+PAr1SOKTUFLOdPjSggZfItZNbk0B D6jMz6Rj4iUi3O+vT+EJMECWJPl3wvnrZrsUeZqdVjTh+Hk9fYKXoAH4X4Th3i0XNMBl8YnN Q5TrmLv4dTwPX5KKcCntpQ7b20rRtz9cvrOosj5LGpggwqW14NkP99c32D5Ly4VffyuBftp1 3+NRsH9WNm4El7uqhPgSse7WIfv2B2LdfecjHRMtIpzldcxjXuvZ6cgbHvcXoG/fPjM+NPyI YlV9rbUwZt1cJW5BhBvN/RysU8u/gM6slqJSjgMBfAmn2BLAH77HH6SBCSLc9/gINW2PQE/t mvGoPf+rtcT4Uq2WuaZc+MM13K/IVTomBopwDmHOU9P9m4wmJW+6GP++3WXlvLz9CowpefYl wk0C6V35DjanuBlwj1SK6fhtYQL4UmHAjT0ef2jMYOLiSgMTRDgxcn4IgeIE+mrXjEfFHeZr MsCXvsbUQRXFH4IwdZBIOiYGiHAyAW7e5bYVT4w3dm521Nkv4m/JKra6jZ8Nx0GmN3CObyFd j4a0sROuJfqUFQIQgAAE6iMgDUwQ4eqzJSWCwEqAdo0vQAACEIAABGYC0jHRI8LJ70w77oKb inncCTd+PN5HcLrrahYCdzvoqrO8WbdFmDvUCxGuOtNRIAhAAAIQyE5AGpggwmU3BQ+EQDYC tOtsKHkQBCAAAQg0TkA6Jp6KcOMOtXEXl/UauPWOuOXV9vs0rqOZrs97uBvOLsIdhUNEuMbb GsWHAAQgAIEAAtLABBEuAC5JIHARAdr1ReDJFgIQgAAEqiMgHROdItwqvs1CnHknlyGaTYLc 9k1criOs5+JcyDsfVmFwPuJp/BfygGKms4twxyIhwhUzAQ+GAAQgAIFqCEgDE0S4akxIQSBw IEC7xikgAAEIQAACMwHpmOgU4T47uGZB7bZVk8bjo4a6tH8LqmtnW+wOubzmtQp3hpDnzHHZ +efW+RDh8lqLp0EAAhCAQMsETgMT35g6fP/YvsSpZRCUHQIdEaBdd2RMqgIBCEAAAkkEsotw O7FpFN1cx1KnYpuiGzvh1vvv2AmX5Nf8GAIQgAAEGiUgDUym6iLCNWp1it07Adp17xamfhCA AAQgEEpAOiYGvB11LsL0ooXDsdTpG8vLFmJ3vPV7JxwiXKgLkw4CEIAABHoiIA1MEOF68gLq 0hsB2nVvFqU+EIAABCAgJSAdE4NFuFVs2wtx7reW2t+Ouop5luOtzb8d1ayb682y3AkndXJ+ BwEIQAAC7RCQBiaIcO3YmJJ+HwHa9ffZnBpDAAIQgICdgHRMtIhwgYh997kcjqi6nzveJ3d8 i2hgOZpLhgjXnMkoMAQgAAEIRBOQBiaIcNGo+QEE1AjQrtVQkxEEIAABCFROQDomHkS42//d dlW1/r0R4M7Su3bD7TIYn3W6C64E+eVlE++XMphvfy2R5/pMRLiSdHk2BCAAAQjUQUAamCDC 1WE/SgEBGwHaNX4BAQhAAAIQmAlIx8SdCDcKaltRzfX3fD/cnHb6bxWzLL9/3m8v9xtFr7gL 7niE1n3fXQn3QoQrQZVnQgACEIBAXQSkgYm6CDctLN5f/b2Mdb4WY43Rqj9x0K0d6mqXqaVp pl2nVpTfQwACEIAABDwEpGPiQYQb81mFuFz/W5X1pje9mjvfNMVARLiq/IHCQAACEMhI4Pf3 N+PT2n6UNDBBhMth90WAe6+Cuu/wzZFblmcgwmXBWPohzbTr0iB4PgQgAIEvJUCs+zG8dEx8 i3AhO+DW7EJ3zDXjl6qBHyLcuV80tnJ/uZPDy28CGPkZdZ7CuviSXufxPtPPTm/zreCaizvp dSnxBGlgggiXwRq2uGZsB+rXf0TURTUWiyiXL+la7ue4yLvsPBw7hqnf2fzte07k9+9TKe+r VYyXnkU+LzR5M+06tEKXpCMuicMOLz8vGPkZdZ6CWPcSA0vHRKsIN9Yg6G64TVV96S+hEpSp uVoc9KOERIhwbngNrtwneEL6T+HlZwgjP6MvSFEgMDneeWqKcAPXS+48rcee0sAEES6DDW2C 2yQWad6BG1mPpkW4jQC2im+rQq9RL408FnM2064j3U8vOXFJHGt4+XnByM/oC1IQ615iZOmY KH876iXVzJ2ptgA3lh8RzmnFFlfuc7tkzPPg5acFIz+jLlNsX74z3PU17VDZig/G9z+x4sT4 ++3z9ivQt81FqN/19u+9M0kDk2ZEuOUlVetuJ/f9t/qNbBKJzV1vikKNqMbS8l1th83LyuZ6 z/3Lxx+Mv7OX11gAMMXWs/wEZWmmXYucUOFHxCVxkOHl5wUjP6MuUxDr1mBW6Zj4vSLcEnjo X1SMCOdsMC2u3F/Z+uHlpw8jP6PuUtiOhY5HwlbRzPe9H4j9zd+WnXDTfLzyI4D+6opTSAOT NkQ447ixVEAS0z3/4feIcBXY4WB78yj6VoTLX96DrXci3Fl+srI0064Lta3kxxKXxCGEl58X jPyMukvhi2V93/uBEOv6GY0ppGPid4pw03bNq96EhgjncukmJw1h7bNIKnj5scLIz6i7FLbt +NvPLN8f3pB9ujvEIba9XJ9/791w0sDkShFuu3NxDUDHz953e433b633fRlb3/Z3BF7cslqc lG3ELBvzau0QI8KNdgn1m8MOO4tPOXbhzf46LDyc5RdTlk3WzbTri5sgsW4eAxDH+TnCyM+o uxTEutWYVDomfp8Id/lqNSIcgUmefoNB188RRn5GvaVw23zeCef7fj5KtlmksU6wt0fNVoLn 4lxNRxW1bC4NTDREuN0x4Z2N16PG5pHjab3z9by7FvAqE1tt979VuCvTbYdtuzKZV2aHGBHu 0PhS/MZxpYrN9u98z/ILK0vN7Vqrb0vJh7gkjh68/Lxg5GfUWwpfLOv7nlg3n0dIx8SvE+Hm HQ/Gqvbyt84kCRHO6fYtrtzna8PxT4KXnxmM/Iw6S+ELPHzfT8dHT3equCaqsTvkOgNvqY40 MNEQ4XZ+YPQTa5xgXlcxfm6/wsJl+ytt3MZF3Wd2mGRPC/Pq7CAW4dL85rCD961buu64PMsv vCw1t+srW1xw3sQlwaimhPDy84KRn1FnKXyxrO97Yt18DiEdE79OhMuHXPokRDgnuUZW7qWW z/47ePmRwsjPqLcUgi36UzDifGvk2f1OW3jshDNdSRqYaIhw8662dUHO2Gll2zE/fma+6GCe IU6X8OvfLxvScPcvDKm/jBY72F4uUZsdRCJcqt8YL4PZLC7f//sfy1twz/KLK0vd7TqkXVyc hrgkzgDw8vOCkZ9RbymIdauxqHRMRIRTNyEinBt5Gyv36i7jVi3nSeR7105cIF1PPUqWBJ8q SbfOZ9ttbr6YwWw3dhHOJqzF7ngLO+JVJ8u0UkkDEx0Rzl236W63x3ZHpOP4Y8idXWkIv/jX Nuad2KG035gT8rP8BGVptV3X05iIS+JsAS8/Lxj5GfWWgli3FotKx0REOHULIsKdI29h5V7d aU4yhJffGjDyM+othbHL6WnudNv7xCS4HHbCuUXtaZu/5f6C93UH2+8qvIdLy9rSwORSEe69 4+0j+FiPPwrECy3uPeQTfAy1NTtolHcrwmUW4EbfarJdV9coiEviTAIvPy8Y+Rn1loJYtwaL SsdERDh16yHCqSMnQwhAAAJnBMxt/d6Jcvjutt3F819mBWlgcp0INwe0n83Fgzg7vIjh7rhH 1na/rM7dsr070iyAu+7vDfm8Vju47iXOW951YvZ4PR33II/5ScvSXrvuvb1QPwhAAAIBBIh1 AyDFJ5GOiYhw8awTf4EIlwiQn0MAAhDIS2AbmHgFuDlr1264XcGc94jlLX6tT5MGJteJcLWS pFwQqIcA7boeW1ASCEAAAsEEiHWDUcUklI6JiHAxlLOkRYTLgpGHQAACEMhFYBOYhO8OMXZN HcoSvlsuVzVqe440MEGEq82SlAcCHwK0a7wBAhCAQIMEiHWLGE06JiLCFTHH2UMR4dSRkyEE IAABCKgTkAYmiHDqpiJDCAQToF0HoyIhBCAAAQh0TkA6JiLCqTsGIpw6cjKEAAQgAAF1AtLA BBFO3VRkCIFgArTrYFQkhAAEIACBzglIx0REOHXHQIRTR06GEIAABCCgTkAamCDCqZuKDCEQ TIB2HYyKhBCAAAQg0DkB6ZiICKfuGIhw6sjJEAIQgAAE1AlIAxNEOHVTkSEEggnQroNRkRAC EIAABDonIB0TEeHUHQMRTh05GUIAAhCAgDoBaWCCCKduKjKEQDAB2nUwKhJCAAIQgEDnBKRj IiKcumMgwqkjJ0MIQAACEFAnIA1MEOHUTUWGEAgmQLsORkVCCEAAAhDonIB0TESEU3cMRDh1 5GQIAQhAAALqBKSBCSKcuqnIEALBBGjXwahICAEIQAACnROQjomIcOqOgQinjpwMIQABCEBA nYA0MEGEUzcVGUIgmADtOhgVCSEAAQhAoHMC0jEREU7dMRDh1JGTIQQgAAEIqBOQBiaIcOqm IkMIBBOgXQejIiEEIAABCHROQDomIsKpOwYinDpyMoQABCAAAXUC0sAEEU7dVGQIgWACtOtg VCSEAAQgAIHOCUjHREQ4dcdwiHD//PX6869/1EtDhhCAAAQgAIESBP7564/Xn/8TPvn3+Xo8 f4U/5mcQgEApAtIJx1QeYt1SZuG5EIAABCBwAQFprIsIp26s/73+/OOv10FuY8KhbgkyhAAE IACBcgSSJuuMieUMw5MhkECAdp0Aj59CAAIQgEBXBKRj4s/f/3796++f160rGlVXhuOoVZuH wkEAAhCAQBYC0sBkyhwRLoMNfl/P++11u83/3dlZmIEpj6Bd4wMQgAAEIACBmYB4TBzi3PsD EU7RjxDhFGGTFQQgAAEIXERAHJggwmWw2CLADQHe/G+IPRDiMnDlEbRrfAACEIAABCCACNeY DyDCnRuMlfs4h4aXnxeM/IxIsSeAz+TwiOKT9XEV8XZ/PZ+P926v2yg6/Rh/56jM5hljvW73 52u+sc4UuzJnJn3cymZ7rd7I5V1u6YMtv7vSDssuv3W332T/Fv9dxFCCqni7lhSqud8wxsSZ DF5+XjDyMyIFsW5+HxCPieyEy2+M8ye6RbhxS+J3/2PlPs7+8PLzgpGfESmsQQk7iJIdQxyY TNpWwIsZJuFiOGq52moV39a/bUJUcq3GB8y7yqZsxjxKCFup5bQJbhOPx1D6zP8us8OmHsVs nZmV63E1MAysamq7JtYlLgl0tSUZvPy8YORnRApi3TI+IB4TEeHKGMT9VEQ4JxvNlXtts5fI D15+qjDyMyKFEZcsu6s0dhB1zl4cmCwinHeyvggXn/WrjTg2sTX+XoWOZfdU0rrXKHIND/h5 LGLcWuatyHWWX86yWPxov1tvnctafDuHD15ph6n88wT0feedKTZeaIdgvJczDC6p/P6b0HYd XpQ2UxKXxNkNXn5eMPIzIgWxbiEfEMe6iHCFLOJ8rEOEGycLNa6ma+LRXLnXrFepvODlJwsj PyNS7AngM9k8Yn39uuiBS3By+tvDxGMU3YbjqW8BdSvCGd8l75yyHEPdiT9n+eUuy5GSvghn cteyw3wp8u6YbUV2CPb9S305uJSz5DnwlgvYxLrTcXkz3i+1SzXOtHWmhpffLjDyMyIFsW4h HxDHuohwhSwSLcKNAX2BYyLa1UvIT3XSkFDOWn4KL78lYORnRIo9AXwml0ekjmkBk/UY4WLZ ubat3W4X2/aLw64kG5NZ4Lu9d76tfy+fneUXUxapOTQnZVfawbGDbL4jboiprrZDqP1KMQzN PyKdeMIxS3jEuqZoPCub8/2W2x3YETbpOSljst+6MPIzIgWxbhkfSBjTEOHKmMT9VPfEIm11 Ubse+fNjEIljCi8/Lxj5GZGCwKSID4TsZDvNOCCwiREuDnmZu+biKIx9y3j8cf3fWV84u3Pt LL+0slhLbitL6Rcz7HYgunbCmaVNqbvjpRg12SHUrS705dAizukC2qXngcS6xs7Nd9+BCGdz HeI4fwuFkZ8RKYh1i/hASqyLCFfEJCcPPVndTzGkdjVK5Ke5cl+i/NrPhJefOIz8jEixJ4DP ZPGIHBNt7zPEwoVxh1hsjV3HHZ3iz1l+iWVxll3xou6L7DBNPG0vmqjKDoHOdRHDwNJ9kuWI U3M8I7rgFf2AMSbOGPDy84KRnxEpiHUL+IA3Tj3LExGugEVOH3l2xCZ9hVG7Nlnz01y5z1rw ix4GLz94GPkZkWJPAJ/J4BGZxjLfZF0kXMzHRt+X+AtqOx5jfb+Rdfj9+2+r+HOWX3pZzou/ CHHLiyhS6nyazyV22NdtPn46/3f/738sb4G90g4BTnYJw4ByGUmSJhzvZ2XqH+KLX8cvGGPi 7AAvPy8Y+RmRglg3uw8kjmWIcNkt4nmg554by/0l2iW8Lj/FlfvrKpkxZ3j5YcLIz4gURmQy vWnxI7KUFkr64787oplUvcQAx8x7mqhs3maaVDbLj82J0Fl+pcuSu245n1e67t9gh9IMrfbO 2B6JdRljgvsU4jg/Khj5GZGCWDevDyTHuohweQ3if5r/smnnZdH+h3eQQmnlvgNScxXg5Tcl jPyMSGENTkrvIOoR+xhU5HzTd67JuoZosRV/EODs3o0d0lu9BkOrxjzfg5jrH7HuZvdmRq65 7FPXc4jj/PaAkZ8RKYh1M/lAjlgXES6TMYIf4xfhZmGFC1qDkZIQAhCAAAQqIDDuGsz/lu8c k/X5/rDPpHf9/4+fnNjWSdDj9TzJT6csOeuV71k6de/bDjoMDZvnmHAc3IhYN1/L4kkQgAAE IKBDIFOsiwinY65PLiEi3Jia4ETbMuQHAQhAAAJSApmCEmv2jIdSq/A7CKQToG2nM+QJEIAA BCDQPoGM4yEinLY7hIpwqxA3rtzn31mgXWvygwAEIACBHgl8dh1l3VR2QIUQ16P3UKfaCWSc cDirqtWH1M6a8kEAAhCAQJ0ECoxTiHDapp4v+S5/LEa7XuQHAQhAAAIQKEmgQBBUsrg8GwLN EqCtNWs6Cg4BCEAAAlURGK9VsWk/40vgblWVlMJAAAIQgAAEIAABCEAAAhCAAAQgAAEIQKBD Av8P6LGYOLrTWc0AAAAASUVORK5CYII=</item> <item item-id="419">iVBORw0KGgoAAAANSUhEUgAAEdYAAAAnCAYAAAAcVa2ZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACpvSURBVHhe7d1tduMqFoXhjCsDyiS6 f/QQPJpMpgbj9mcsy5IBCQTIT61V696KkAQv+xw2SCJfR38QQAABBBBAAAEEEEAAAQQQQAAB BBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA AQQQQAABBBBAAAEEENgRga8dtUVTEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA AQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBA4 2liHCBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQR2RcDGOrvqTo1BAAEEEEAAAQQQ QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE EEAAAQQQQAABBBBAAAEEEEAAAQQQsLHOpAb+HQ/fX8efXwJBAAEEEEAAAQQQQACBeQJ8M3Ug gAACCCCAAAIIIJBOgI9OZ+YMBBBAAAEEEEAAAQR6IsDz99Rb6ooAAggggAACCCBQiwDfXIu8 +yKAAAIIIIAAAgi0TIBPbrl31A0BBBBAAAEEEEAAgfUEeP71DJddwcY6L9yuYvz6srHOMkk5 CwEEEEAAAQQQQOAzCPDNn9HPWokAAggggAACCCCQlwAfnZenqyGAAAIIIIAAAggg0BoBnr+1 HlEfBBBAAAEEEEAAgRYJ8M0t9oo6IYAAAggggAACCNQmwCfX7gH3RwABBBBAAAEEEECgLAGe vyzf91e3sc6Az7/D92VDna/vn+PPaXOdn9+aXePeCCCAAAIIIIAAAgi0SYBvbrNf1AoBBBBA AAEEEECgbQJ8dNv9o3YIIIAAAggggAACCKwlwPOvJeh8BBBAAAEEEEAAgU8gwDd/Qi9rIwII IIAAAggggEAqAT45lZjyCCCAAAIIIIAAAgj0ReBjPf+/w/H7vH/L7W/N/VtsrDOImX+Hw/G6 l851t6eaHdNXKKstAggggAACCCCAwCcR4Js/qbe1FQEEEEAAAQQQQCAXAT46F0nXQQABBBBA AAEEEECgTQI8f5v9olYIIIAAAggggAACbRHgm9vqD7VBAAEEEEAAAQQQaIMAn9xGP6gFAggg gAACCCCAAAKlCHym5/89/pw21Pnbs+X357TBzvfx8K8U5ffXtbHOJB8b69SRo7sigAACCCCA AAII9EWAb+6rv9QWAQQQQAABBBBAoA0CfHQb/aAWCCCAAAIIIIAAAgiUIsDzlyLruggggAAC CCCAAAJ7IsA376k3tQUBBBBAAAEEEEAgFwE+ORdJ10EAAQQQQAABBBBAoE0CH+T5zxvpfB+O j3106rbdxjqTEVG3U9oMUrVCAAEEEEAAAQQQQGBMgG+mCQQQQAABBBBAAAEE0gnw0enMnIEA AggggAACCCCAQE8EeP6eektdEUAAAQQQQAABBGoR4JtrkXdfBBBAAAEEEEAAgZYJ8Mkt9466 IYAAAggggAACCCCwnsAne/7f48/X1/Hndz3FJVf4mI11fn++jl8n0JN/X+h/siCXyMg5CCCA AAIIIIAAAp9JgG/+zH7XagQQQAABBBBAAIF1BPjodfycjQACCCCAAAIIIIBA6wR4/tZ7SP0Q QAABBBBAAAEEWiDAN7fQC+qAAAIIIIAAAggg0BoBPrm1HlEfBBBAAAEEEEAAAQTyEvhcz//v 8H38+j4c/+UFGn21j9lYJ5rIpWAZQf4e6nX0uVW173/tgxPbQ6VtpNJEoHQFAjRaAbpbviVA kwTSP4G2x10x1r/C+OaSfdh2/JZsuWuHCcifYUZKbEuAJrfl7W4lCPQ17oq5EhrY+prWn8sR 7yuey3Fw5ZYIyNst9Ya61CQgFmrS7/nebY/tdN2ztkrXfR+en8ZL68T1UwnQZCox5bcmQKNb E3e//ATa9t/j9oq5/ArY/op8cz7mfcVvvna70hQB+ZEuWidAo633kPqFCbQ97oqxcA+2X4JP ztdHbcdrvna6UssE5OWWe0fdahIQGzXp93zvvsZ2Ou9Za6XrXsbzl6712utfNtX5+jnW3GXE xjqTvZhfkOfO/qnY07Xv/4T59+f4fai1l9TasHV+KQI0Woqs6y4lQJNLyTmvOQKNjrtirDml LKwQ37wQXNxpjcZvXOWVKkVA/ixF1nWXEqDJpeSc1xyBTsZdMdecchZWiI9eCC7utE7iOa4x SvVOQN7uvQfVPxcBsZCL5Idep9Gxna4/VI/Rze7f89N4dGcruBEBmtwItNssJkCji9E5sTUC jfrvMSYx15pwltaHb15KbvK8TuI3a5td7IWA/EgUrROg0dZ7SP2iCTQ67oqx6B5svCCfnLWD Go3XrG10sWYJyMvNdo2KVSYgNip3QO+372Rsp/PehVa6/vk9f+kar73+dVOd72Pt7UU23Vjn 379eNlPJLMh/h+NPzZ7e+P4x/fzv8FNd/GuCOKaNa67/cefSaPYup9GVSGlyJcDtTqf1ONbN jbtiLK7jEkrViwW+OaGbXl9miZgfNRe/iQ2up83EivZSXP7M3lM0uhIpTa4EuN3ptB7Huvlx V8zFdWRCqXqxwUcndBMfvQaWc+sSkLez86+Xt7M35bMuKBa66e+WY6w5r07XdB0k0Lnnp/Fg D6cWaDnHpralSnmazI6dJjMjpdHMQMtdjvbj2Dbnv8fVFnNxHZlQql5s8M0J3XSM6afm4zfQ 4Jg2pjD7uLLyY/Yup8nMSGk0M9Byl6P9OLbNjbtiLK7jEkrViwU+OaGb+OQUWMpuS0Bezs67 Xl7O3pTPvqDY6Kb/W4655ry4NexudP3SVRHf9ZVpXGbPX6aSUVeNyRXXTXV+jr9RVyxbaLCx zu/x5+vr+DOu1Wmg+j79/OvlwPuK/f4Mr3Xt4O+/zWXO96q/q1BZtI+r503S6ezy3v+Z2uJ+ LmGATjvNlQisxW1cKrBLzH1OfJwx0ehSsVzPo9EQP3nzppTtxt695OOQtHo6XmLc/Wu/GJuV glhIjpK8noA2d69Nvjk5xt6dsNhTlhhj9pI/u9OovMk3Z00rfV6sRE7LSCKvV7LGt6f16rza MB7s3kdnzEsu9Z5A3tiUt/eUt/uOHeOEeUMlBRf16nRN15V0nXDbkr5iqhol72cdMj3nBKVi HTKIyNr4xu/wdafJVRK6nLzPvFkgX82h3stzofVSaucKRf33+mbuM+YmuIiNZLGU1AbfnP+j h8Vzg2Rl3E7ozqOkj8UlY2Bxf5UYU/aSH7vT5NLge5y3T42mx+piknvR/mIADZ5YIsf9NTNd W/uMMT45h/JLaoNP3oFPziGyj7iGvDzbzTzKR0RAzkaWHJfqzV3Tc8RipmLuiq6oF1/cO38n 0vlKhnS+EuDp9JYYNrYGFthYZ2aznUCXXHYOetqIZ7yxzjVxfX8fjv/Wd2/jVzi3Pf9EKb7R 5e6/rp9P2srd/wUCfV0b43vpqWRjSWJhKxJOo9EEWC9FaXQNvblz96rJvidpVbReQl7Vrllg 3F3clr3G2ASQvXiTxX2demI5bcTVpNz91+WwAvG7F23yzXHSjihFozdIudcpdq/RveZNvjki bey4SIFxNxutvcYcH71eIuW0EVe3cvfnUQp5lLiOVWo1AbGxBuG6+F9zZ+fmJ7DXWDBvyK+V 0BVb8up0Heqt4PG9rE8GG5qrQDnNTdew3P3WjfEF8sBetGgdcnGw0WSheefuNTmW3F7zJs+7 OLns4sQC4242LnuNOWvl6yVSTht8c/5ferrOhy1Uy+49SrkYWNdfBcYUc7mFQVD7tL1qlG+u ray69y+Q4xY3aK8xxicvlsTfieW0wSfvxCevF5krTBIoF3v8eaF1bUreiMBeY8O8YCMBDW7T khf33Ch7/+9l7Sc7mIQLNsTwvOnZ19fr36dtaBKatrbom411lm2qc9rG6PjzNdxI5rqpzl+j By09w/g+7HxrnYUf5l1M7p9Qvo8PTMNB9vb/v6dNiibLnuQxe/9r/17vcbr+5RopGwCt7eez LobtWiLlURsO40lp7TYuadOtz8590lpoXB4q3TTzsinSKM5Hx+f1TKN143BfGpU3Q/1ZcpK2 o3x8f4B+GVNuOe/sXS5mcvDvEO7E4xf9/uXOW07N6g7Xj7tiLKZTdxQLMc3NXYZvPqWaqfnR +vi9ztEG3p9vzq3e5+vxzQv40ugCaItPMaaH0PHNIUKX4zV983hhtTHffGVj/SRKR3+FdjoO pEFYXpqP5qNj1FMzbxdd74hpfKCMvL0A4o7yds3YKOppFnTr6BTzhhBD84YQofzzhvVrZHQd 6jW6DhGqdnzO8/MxC7pkRz5m2PpGPxCWd2MkSpMxlLKVkTcTUfIGUcBqziuLrrms99/WyqMU NCq003FhCYol5/DNN2oZ4tc7JksUuPgcvjkG3U7zY6NzOWN4jCaHZfjmKGI1fXPR5zHrx13j QIyCdjoOxDQ9Rxk+mU+e0lHNvFx0PWN90MjLMQx3lJdrxkJRjxLTj4Ey1tMTIZoXRAHLGnPr vbj5b1SvDQrReSqxbcvvaHx+By5DHpnZWOf6QfeS71Jedz08t+B6vZdNdM4fqb9s0DFeaOp8 851zG1NBjneCevr3eGOd84c6jw1xLjs3DZlO3n/cH/eAid9YJ0c/n+uaiuahjlAbQsfDKSlH G8N3mSix5UL5SR9xfTDcaGvM9nUDiCcdvtXzqf00ehNBnThsXqOxFZQ3I0iVMq+hfBs6Hq76 pvn4Pvm/J8f7hjr3fxfL0YM8u/CjyBDJVeOuGAvhnfC747zecCxE+4EIDGuK8M1XXzQxP1oV vy9zsY60GdJTsZw8cePoOOGbQ932ejyUH0PHw3fc1EsMq7OlRsMYriWM6RGk+OYISLeNdU5r UJv75kHtCsXYunHXOBCln6dCoTwfOh6+Y7VxIFy1PCX4aD46Rkk7Xu+YbD7//vB+5pjvI6Ra bJT3NDGpYbaMeUMEPvOGCEjZ5w2rvDpdR3QZXb9AivYUEXjXFJn0/Oaf6UhD88vQ8fAdq80/ C62RrPLa8m5YMJ7fRDCKKBKdq+XNCJqjIrxBFLNq88rG3zG5bcpxfYTgXcMoLfU8LkTn4jgS i0vxzX/oVs2fe9ZiSDx884lQnfeUaXJGnC1q0hgeyiQTx/nmKGjVfHP55zGrcpz1kwj5hNbs QsfDtyi2pscnDwNw9E0pTzKlzGJanL7Z9RfHbf7uX/n1DOvaAwK+S4gZBCrFQnmPsioWzAvC 2nkpYV4QBS3zvGCVF6fzqC57LkTnr6Efuz/DAtxJp4TmRaHj4Ztt6lXfVSdDHpncWOeyKcbJ IE9uuDHcbe6lzMwGOnMb61ySz/fx8C8MvdcS02IJtGa8QPJU/HVjnad+Gp07ef+J61931JzY WOfS3+Of5+nns85eNluK7egpRsOfNdLG2OY8lVu6UP42NmdqErtY806TkxoZTHbf6vn8Tu1J e+Nk00j/0eiMbrbUaGwQyZsRpEZj7pKcMXWXveXjG5dHWhq+YHcGMPp3Lo6XS18343ua2I1z 7Lv7BeqSPaf96YE3uaDoORZi/UBEpllThG++55jX+VH2+OWbr4vgt79RG03GxgnfnJ4Ges6f odbyzRdC3a03jNeqcvm9vWm9pm++Kuv5hYsefLP1k+msubfYCI0NBY7z0Xx0lKxq5u3C6x2T 7effb1imn8GZYw5UUzM2CnuaqNwwV8h6ewQ+6+0RkP421sm13p49f1njHnUjXb/oOtZTRAXE 8kKxz9P/7mD++Xnzzy3XIWPjgp8IB/2e10R606S8OaNX3iAcyJeHIJfnjrk8b9Q974UKr7kU 899ibn9eJdYfJAk8vTDf/GCWPX69Y1LnHZOn59bjdxhP/e17gROhVw7nH9V4RyE9a919xILv aJa8wxCbq733tKAr+eYoaDV9c+HnMdnHXevWz5Lqef0kNvdGBdHyQnwynzypnpp5ufB6xmR7 Y+PRunY42fScl6daVzMWCnuUYrFgbc96+pr9IDLHXDEvTud0HqvzWI8RHmHXlcgxPveyd0yG PPKysc59Q53r5jrjDVWmFn6GC3oTC7dTg/xfF18/gon5kPG+2c/948en/8ZcYJ2sFp99noSm bx5z5TL9oWf6x+vj+18mxuPfUjqV7C/BNKeDqX57v+HOuJuWsbl2RagNoeOP9aaybVwknEUv mIRic24si9sRbZLn/ZJnnbz81tuhFt7p+dqXNHqDWSEOm9dodAXlzTCq8fgxGL8X5Z2d5uMX FuMPkIZeZ2Hune2sm46HA+ZTXnh3v3Bd1oy79w+XeZP5SAt5j9Dxqt6kkYncMo3K/6H8H9Je 6HhVbYYbd3p5KfUFk3C+XLOQzDeHOu31eEiDoeM0mspc3gwT45vDjC4LM6McvKVvnlgXasQ3 Gwei1PNUKJTnQ8ebHgfScSw6g4++rBZPPmdYxsZ6x3VT4TzrRjea1+cdhdY7+PdHDLw+ixIb wcS6Y08TbPvbAuYNYX7mDWFG+ecNa8Z2a9wxPUbXL5QaXjs3/4zR9HOZ0PwydLzp+eeiZ70L fX90XPATIZWGNBc6TpM3ApGalDdDipw6zhtEUas6r2z3HRMxF6We/ayVR+bidCppZ0S/h3q/ rPdeJwGHPEjoOI+S5lGsV4TjPKS50HGaTNOkMTysydcSfHMUtaq+ud13TIwDYfWE8nzoeNVx gE/+w99KP615zhRqQ+h4VS1OhVrVvFx2PWMys0THo3XtUGYOaT10XCwEnl1lfA92TSyYF4Qi wXr64u0cMo8/2cd264YB8Zv/vgCK9hhL8kr8OaHxN3Q8/M5wub1j4lt5K5khj7xsrPN48fba 0KeXnW+7Qg4ret7w5vk3bkx92Ph+w5X0jWfSUE1uxnPZMCb+7+wdX3Y3mjA4o5EiZZOgR9k7 1/SNdZ768FS9cBCcN7I/sznd8/f8oVRgg6XHdPf5t4UHfv524Irh+mZzoFbaOFgJGP12mjca HgT2cNe8S5tOWpr62eU3D0zobMqkpOjvXst1hvjR1lc93/Q4qmgr/UejMzqN0OjL5meFNToe l673lzefe3AwfiT0x+tv1wpM5M+HB5P5VuI5Oh+nmKuMHK/1u3mvv3H3/u/bJnfv7hdRlzU5 TYzddT2/IWRI66HjFwVs4L/ufbnED5zPjfHPfPNTxDx/kMo3n4NpZs5wgxOYBzzpq0FPwjdP ZABzu+Ph3z3HD9YgbnM7vrm99YanhcEIjxXrM0NeIHR8a68QmgckbayTkeOF98xO43+bQ1f0 zcaB/Y8DfPRl4vK0If99zXLY+63ktDXz4FAbQsfl7fG8aLiBf971jjXzXHl7/3n7kz3Nmtiw FhheCzRviFzHybzevmZsp2u6fmjg/fpkL56fj+FjUtfK7+9l/c3hEtZrlsbFqx/x/D5l7tzd vPO5cX+bcs+997T12ri8mZ43ed46njf2mcO1XLvvmIi59JgL5f3Q8a3XI5f6g63fOaHF/Wsx uP7XuEexXhFerwjlv9DxrfPjGk2OPfJLrj2/a194LidvpudNvrkD39zwOybGgf2NA3yy78NO r4oOHkc8f4+55XcCQU+S+RleS+sZr+vSE98OR+wI4XveCV90Sdunb1v39D1vzVgo7FHWxIJ5 gXnB/Dc/K78Fyhxza94hoXM6X6rzZj3/mvE5uN40/gXMd/0U2Dsm9E1hhjzysrHOkze8vCQ/ /wHxyy5Et4d1r/7yPZwIP3r70HhmI5yYC0z7ueI/nfqwIP2mQ37rN9YZf/xwfc76/EHE86Rm 6kO3KV2k9fPw5YlkJlP1Hf4sdPzNZPV6aNsdtJ5YPAX2uR5n/vf/3us2/tmY4FyiGpWL3RFt Th/nyz3thvlnuy8bc02H5rNOJmOkkf6j0Yde0jQ6HBinNlu763juWHJGmHJyg4/25c1HXivQ H6F4DR1vLB8nfSD8orzI3Dsj8fuE7mliN5ljh7k2vk9X5bSXOvMmr90/4aV68SaxfiBHen5z Db75Yqwu49fYQ62K31AeDh1vLE9X8ySxccI3p2eKkAZDx7vR6DuPfI79+DE9HfK7M4zpr3Te eboVfi+k5dDxxrRezzdP/Maa2bWJCr7ZOJCeokLaDx1vLTbSCaw+g4/mo6NElPIwqbP1jsn2 8+83LOaYwfioFhvlPU2w7UkFzBvMG5IE8yicOcZWrZFZ447oRPPhqXX/Fl5FiX6e/rf8NPfL kzy//xr/UqlenuNMRHDaWvnUeyfji0aue8V6bXk3nHdDax6h442tiaRp8t16ecya3qDxsZq0 bhfWZNJ6QGTOmLprSNuh441pv95a+fVDpvPGaU2+YyLm0mMupP3Q8ZqxEZuL06kkncE3P3Ct mj+HtBY6XlOLq31zBY/CN4fjPKS50PFuNPlOfxneKYnN1cbwsCb55gWMTqdkXiuOr0T55zGr xl3jQLgrQ3k+dLzmOBCbe8MUVpXgk/nkSQFVy8vl1zMm27s4Hj0nf7U+HX8zMyWOarFQ3qOs igXzggVjr2ftUdAyx9wqL07nUV32XIjOp8bFFt4pCe4ZkjJvujRy3Nfb7rfxVpwZ8sj7jXUu axinnQTHL5dcajW1iUrq7kIrHrIuCNsqp5wFlxoZY5G+bLQy/C1Oo5efxudO3n9svsa/vWRA avKD/jz9fB64UtE8ahZqQ+j4Nm2M1dzTDnfnPhvsDnaNwa/Lg/D7n6mfjdkMy8/WI3py+Jz4 nhdXXs38Zde1exve6vmcY6dipI3+o9GBqoa7ykZo9DJK3F7geNVfYHfK2MAZlpM3I6il7gwY ccmBH3iMdeMxpY14jm3N8oc3K3X9NN4O+mp2Y51395s+tiqnibEICYW0Hjpe0ZtE+4EIDGuK 8M0Tk88r0FXxe5u37SVPp/rmbJ4kOk745vQ0EMqPoeMV8+dEY99pdE6PfPMQZAvrDXxzVBwv XpRc55tn1ylb8c2jjZqtn8SoKZTnQ8fbGgdiWpy9DB/NR8eIqlLeft6Uvcx6x2Tz+fcblmlf Y445HjuGm1yufSgcE5Bvnr1m9DRxNZkpZS0wAp95QwSkFR9LWON+8J2bQ5XI8XT9outoTxEV EcsLTXp+65DpQEPzy9DxtuafqWvlm79jwk9ESDSkudDxvjXp+c02/bdu/scbRARyds8bdc9r AB2//97pLbPmsl4/j3dDrZXH9Gwo74eOb5NX1q3FxXBYUYZv/oO3Ln5DWgsdr6jFCfmk+ubN PQrfHBH0Ic2FjvejyTn9ZXmnJHqNw3pDhChHRfjmKGaVnlU2/46JcSBCPqE8HzpecRyIzr0R GNYU4ZP55Cn9VMrLW6xnrJq3yssR2SaUd0PHK+blhmJhC4+yKha8BxsRC+Mi5gVR0DKPP+vW wMx/o/rsqRCdvzBrxfPn/G6w9b1jMuSR4MY69w10njfXuSaNqY075n5D7v0ljadNZkabM7wG 4vx90oO20hnnThpskhJbi8vGJCfG97+PDWiGyWdil6cpEz95/5tRvd3j52dix8jrCu3gIeyj 9uv7+Xz/4cvKsWSG5YZtOF3rMG5D7TamtGnUlsceOhMP4O/9MsUvMWZSEvdFC3dN/pws8lxf DDbVuRWZ1/OtLTR6ifXt47CwRif7NVGjCVWUN0Owpsxrrv7YUT5eZK7Wc7zod7Db3N+/J8fh d/ebO7Z+3BVjoRi7GKeTv7mPlR15kxQ/EINhaRm++brh4Mv4uT5+u9XmpJYW+OYcniQlTvjm BVmg0/y5RKNjPc7mvvX+Yq4jjOkhifLNIUKX41V88/M6z3Dd7Pu//5lYv6rjm69srJ9E6eiv 0J7GgbSWZynNR/PRMUKqkrevm4SWXe+YaTz/fgVjjhmOjiqxsYWnCTc9VMK8IUjo9Kx8/Jwu 1zxuR94oa4ytXyOja7qeHx8zeIoQ3jXH5zy/+ecCqjvKseNnUg2+YyLvxkj0wzXp+c1VJM2+ m2etPCaK66yVb7Hmst5/WyuPUtCoUKfjQspa3BIssefwzTdSGeK31/efJrXS/jsmfHNMkHea H5dostQ7JSm52npDjCgHZfjmKGBZ14qj7niebA3e533+Nquld0yMAzH92ek4kJJ7YzAsLcMn 88lT2qmSl7dYz1j/vEdejkk2neblZmJhC4+yPhas7cXEwrCMeUEUsazjT4Y1MPPfqG57FKLz F2CteP7rA8cM37RutXdMovSGxTPkkcHGOpEVuSWLwbffoxPndp16vf7ZbE5tzhNZk06KncU4 3oRky6pH3n+8Ic+9irO/HXNtP5/q9XM4heqGfzZvY562XXbOO298NNpwYfyzu2Gdj8089cl/ FRr9Y7objc4Y0+D4kV9dy674IZqs2R+dan1ST6U5jsfhd/d7W5cK4+5sAH5IjMUkoD3FQkx7 g2UitRG8ztICkfffvN8qxO/mbVzaZ8/nvfrm3j3JmAuN9u2bp/TYu0Y/RJOl/d67FNhpPuab 84xrr1f5kJiLwben2Ihpb7BMpDaC11laIPL+m/cbH720Ry/nlR7/sq13rGpl4ZPFRt/+fUYe YmNB3HxILJTWhnnDeXDa/tnyp69x0/WCnFfqlMhcmu32kffj8Ue/jOjcAWvfo8nTift7x4Qm e/fWnt/cerD3vMkb5EnSpTlmW3NpyX97Zjorvs3zSp4wKHeVSM+QrQKR99u8nyrE7+ZtzNOJ +/MoNNm3b97jOyUfOoaX9nvWivMMArv0zcaBvseBPNKevkqkNrJVIfJ+m3tIPnlVF5ce37Ll 5VWtzHyyWNhlXhYLGeLkQ2KjtFbMCxp7h8T8N0NySLvE5l4yrXpdlB4zDOatNt6FSGY70a6/ jXW+/ve8x87kvwcXeFf+3+H7aROQyYrO7Xqa3Ko1J1x3T3r8husyG+D8O/wcD5vuIPPMJOr+ yYnk/G79in4+9f/P1lC2buMaad7P/YuTwYL53M9OWu5vU51rQ2n01uE70eg5N7xsmhYcWHME TL5r7F6TtfujR61PyWsLjsNFwsWb6lwS7fbj7puQ3H2MxaajrmOhjI+O0kYs3wXlou6/db/V iN+t27igr15OmfDIe/AkL0tsMXPLrfuPRqMUPKXHPWh093lzC7+X9eHGyrWaKDUvKLQFx536 ZuPAjN62HusWyH7+FD7691XYx++v6XV56883WFs/S+kpb2eNz/wX271XikXWdd4eNFJsxPb4 xJQ94jnp1jrJOZfdQhvmDda4hxqY8wZ03cg7Kvvw/HzMvp7fXzbO/D7/4qvReycdvWNCk/vS 5B7Wxj9u3Y7nXTwfejpxC47Wyh/Ie55nxipu6zbG1iuqHN983dzc2vhbuZRcG9/pOyZ8c7++ ea/vlPDNUYNivkJde4NOn8fkXJPNoATjQL/jwGAiU+QbxyhtZNDg/RJR99s6Z9WI163bmLEP u13PKMVg4XXFwh7ycqceZaFmtzpt97GxxTqwd0iae4fE/HerDLKHsaXM2nhyDwy9amTeWvVO d3IFM5ww067LbjrnTXKGG+XM/fvS6PNGNLfyfxvSTJx/+H63yUf8zkQZmj5ziav4hps/XNtX YnOd3+Nh601knlodcf8FE7bLbwZc2M9RBih352/cxvXVH/E91//75/gzZH752eH4e4/Np42i etpoh0YvetmFRk+b6ox0+Ni8bLiR2fX/290Mat+a/BvPa+WM7rQ+ndG34XgdC87+5PAm14fq UmXcfTsQ7jvGoj1At7FQ0kdHaCMa8JKCEfffuN+qxO/GbVzSU8/nTPnmvXiSMR0a7dM3jxe/ Xn3xO8/MN09lifl1pZx5M+Sx1uevwBW6y8d8c3FNnH7zfXCNcWPd5Iy5aH4btzG6XsGCfPTk 2vubjwesP18WDE/PMb433bh/m/Evz3pHMOyqF5C3+/Tv/Xua6tJ/qcC+Y2GbvPmmV7v1RqPV ncCzziq+84PXuOl6aSbdk+ffd+6O7uHucuye3zGhyT69tec3T/lm45yS0z/xBtEjx9uC23DM s+aSUz956HlmOslx47ySry/55gtLa+OL3z9fr8U9exS+uU/fvOd3Sj5rDN/G71krXj8OXAZi 72aPQfImFb3JvTP4ZD75kZ/mv7PyDsnUu7a+S3v1XHPvGlVZ8+l2/SLteXZLHiVPXUpeZd9z V/OCPNoJcaySz5KaRudJuFILdzu2lPT8iRAHDEPx9rjy8j1FEmuXpfhcu/421jnf5b65Tq7/ Zql5qYtMBk65Cca/w2nzk1Jtibhu7fs/VzFiUIhokyL7IkCj++rPPbSGJvfQi9pwJdDmuCvG OtZnYR9dWxu17883dxwbG1WdRjcC7TbRBGgyGpWCzRNo0zePsYm55oU0X0E+esPO6yOeNwTi VhUJyNsV4bt1UwTEQlPd0WFl2hzb6bpDKZWu8s48P42XFozrpxKgyVRiym9NgEa3Ju5+5Qi0 6b+tlZfr8c2vzDcXRN5H/BYE4NInAjwJGbROgEZb7yH1iyfQ5rgrxuJ7sLmSfHLBLmkzXgs2 2KUbIiAvN9QZqtIUAbHRVHd0WJk+xnY671Bapatc2POXrv5erv9130Tn3KDz/+f8d3eQLrvs lvrtr6dNe74Pp72Na/2pff97u887Uv1U3WSoVg+4b4gAjYYIOb41AZrcmrj7lSDQ8rgrxkr0 eLVrZvXRtbVR+/58czUdd3NjGu2mqz6mojT5MV2964a27JvH4MXcrqTIRxfozp7iuUDzXbJB AvJ2g52iSlUIiIUq2Hdx05bHdrrehcRKN6Jrz0/jpeXh+qkEaDKVmPJbE6DRrYm7XwkCLftv a+UleryZa/LNGbqip/jN0FyXeEOAJyGP1gnQaOs9pH4xBFoed8VYTA92U4ZPztBVLcdrhua5 RAcE5OUOOkkVqxAQG1Ww7+KmPY3tdL4LyZVuRFbPX7qy+7j+08Y65yYNN9bJ8e9+MJ0T6mlj oZ/ffqqspggggAACCCCAAAIIVCfAR1fvAhVAAAEEEEAAAQQQ6JAAH91hp6kyAggggAACCCCA AAIJBHj+BFiKIoAAAggggAACCHwsAb75Y7tewxFAAAEEEEAAAQTeEOCTyQMBBBBAAAEEEEAA gX0T4Plr9O9XjZu2d0/ia69P1AgBBBBAAAEEEECgfQJ8dPt9pIYIIIAAAggggAAC7RHgo9vr EzVCAAEEEEAAAQQQQCAnAZ4/J03XQgABBBBAAAEEENgrAb55rz2rXQgggAACCCCAAAJrCPDJ a+g5FwEEEEAAAQQQQACB9gnw/LX6yMY6/w7H76+v4/fhX60+cF8EEEAAAQQQQAABBPojwEf3 12dqjAACCCCAAAIIIFCfAB9dvw/UAAEEEEAAAQQQQACBkgR4/pJ0XRsBBBBAAAEEEEBgLwT4 5r30pHYggAACCCCAAAII5CTAJ+ek6VoIIIAAAggggAACCLRHgOev2iefvbHO78/x6+v7aE+d qhp0cwQQQAABBBBAAIHeCPDRvfWY+iKAAAIIIIAAAgi0QICPbqEX1AEBBBBAAAEEEEAAgXIE eP5ybF0ZAQQQQAABBBBAYD8E+Ob99KWWIIAAAggggAACCOQjwCfnY+lKCCCAAAIIIIAAAgi0 SIDnr94rn7uxzmVHJ5vqVFegCiCAAAIIIIAAAgj0RYCP7qu/1BYBBBBAAAEEEECgDQJ8dBv9 oBYIIIAAAggggAACCJQiwPOXIuu6CCCAAAIIIIAAAnsiwDfvqTe1BQEEEEAAAQQQQCAXAT45 F0nXQQABBBBAAAEEEECgTQI8fxP98rEb6/w7fB+/vr4m//78NtE3KoEAAggggAACCCCAQHME +OjmukSFEEAAAQQQQAABBDogwEd30EmqiAACCCCAAAIIIIDACgI8/wp4TkUAAQQQQAABBBD4 GAJ888d0tYYigAACCCCAAAIIJBDgkxNgKYoAAggggAACCCCAQIcEeP42Ou1jN9ZpA79aIIAA AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA AAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCOQmYGOd3ERdDwEEEEAAAQQQQAABBBBAAAEE EEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAAB BBBAAAEEEEAAAQQQQKAqARvrVMXv5ggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAK5 CdhYJzdR10MAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAA AQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBCoSuD/soSYujQXcIoAAAAA SUVORK5CYII=</item> <item item-id="420">iVBORw0KGgoAAAANSUhEUgAAArwAAAAnCAYAAADthJvqAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAqnSURBVHhe7V2LseMgDExdKSh1XAmp 5jWTYnwxNg7GgADzEWhv5uZN/OGzK8lrWcaPBf+AABAAAkAACAABIAAEgMDECDwmnhumBgSA ABAAAkAACAABIAAEFgheGAEQAAJAAAgAASAABIDA1AhA8E5NLyYHBIAAEAACQAAIAAEgIFTw fpb387G8/mAAQAAIAIFcBBBHcpHDeTYCsCU5NgGue3EtUPBuxvZ4QPD2Mjr0CwTGRwBxZHwO ucwAtsSFifrjANf1Mfb3IErwft5PJXQfz9fykpTh/byX5zrv/T8y2x1dDlx0BL9M193jiCQb mnyu3W2pjEuktzI5ry5AwHX/RKMwwftetioGSY8U/paXmc3+e32F73N5f9JjFM64iwC4uIsg h/M/755xRJINzT/XvrbUy5vm59UteHvGDXC9IiBK8P4oFyR4V4H7fH8lvv4naO69fNzXL7jg xsjN8XTwJUk2JGmukpIwonh1Sl857xAx4xqC9+Ylb7zTrbvr8SYw0YjBxdhkdhC8F8Ak2dDM c+VgS728cWZehQteZvEKgreXj3fqV9URnTK+nQaCbhdwMboR9Bcpkmxo7rn2t6Ve3jg3rxC8 JgK9uYbg7eXlHfrdiuZfex1zhwGgy19hCbiYwBr6ihRJ/jz/XPvaUi9nnJ9XCN6jmJLBNQ+C t5enN+53Cyx4Wa0x7M7uwAUHFkqMoZ9IkWRDMubaz5ZKeEJOGzJ4heBdEeDCdVPB+/lwWRpg nuASg6nMu+icEHzvHHBxD7/xzu4TR2bxZ/jL6WHvNC8ygVcqkvWJG9SocvaPxrUheD2F43q9 vMTFW/9e5ocdNoKfx1pYa18TZxvV0l/lSweyMFX8VcC6Vrs5Xhc6Z1ouJveh0nbAvr1IPmv7 3bT+wt4A6g5QAq+1faMuQ+Val8B1JlqE4M17e1JlIE4C2Ra8Kse9PGd9eaqCweViuopk/cEJ 82/i/cvVvEYJLtNyESmQMgMDTmuNQByf1fxZT3daf2nNJ7P+JPA6yjWptmlI4DoTw4DgzRO7 y/eVqNcpu/n7lJ4SXIbSWoP3L+ubOQMWp21YbYLym0192xlea//fmnVNyQAzxJRtcJHCRZxA SnYPzauy4d2mV59VQdT4ndxw+ITz27t7zLh9V1Z4kFWbq8QnOWYh/tLJrkn4qx0ghFcTP7bX pGok7w0L4bqAD3sEb36NyTUTuXLiyPCumy+LEtuGsRHJWxS7yjVWYaAFLbWfdoaymNL9RR3R Mrh87SRO+1BYU/vpmfPhopJAskuYtNDVBFTj3bjBbvn0J9q2aNu4d0QlPoODovyB2k/PmI2/ tLBrNrZE8UbtH4jXXoIXXFtlqlp72x+6om0p+ogCPuwUvPqxmVNkBL+B7RG2PsGrssEV6kuj ESxwoOvxgbnNsd/70onC1s78MsU0V/jkfEM9NriI4sLynRxcXea/t/PzfftJj/W7VL/6Bvjb 8alW3faJUH85Y4m1rQKhItxEJT5DnUrylxZ2zcWWJPFaQvCOHDdKcD2KpivgwxfBuz623J5g mllKbVWuoGwKVl8ZRFi0xWTvfLVrdplE9euS1YFzIWXjIk3tP5o7HhnbgrceprewyhK8lP14 RhR5IaGwpvaPxYWJZSauXsFr+7TPxwv2q8biKGU4Cd5Qf5ljibStW74SdXIlPgN9U/5A7R/K Xy7xyk62mHF2bFuieKP2D8XrbcErnWtq/oz0RwEfvgje80oK55pbVYJgqdPzygG+jG1qljLq ChF9kOulLXubt7HLXcX5SCp4UPu3xNZe++us7W2IKTHX08wN4zNrsfUjTNc22n5+PeTc4FBY U/vH4sKwC9IvDeYojlOCSsl+1RB1LZq+6TNr077bQv0ljCXHttbR1Ywj29z3G4uEuQSDIGLX D55Kds3Rlqg4R+0fKw7asW3zoQsv+5Ojkw/rdxOCmubeNal23KC4pPbT12RG+qOAD4dXadiz jv4MbOgu+XTr5a732DM6I2d4t5d5rKwsUdLgPEcluFwlDXzusE4vGZ6Mbx3jioH+q8WLvc2+ PEeWtMRm4QRxcRJIF9UTiatLLaUElZL9KvN/qnp9/Vc17/QJ3XFonpEYxNpWUFmW2FlgLqnD kOQvLeyaiy0J4tV/TdLOsCbb7LJJ17aYmGI42IxcH0mHNk/tU8PVdi2Iffro1hrkOrz+Rc5d WdvUTG7kRSkZmZYn2I9h7SwVtd++Q+Vbw3u6W1yDqrGs3GYn5xcMXduMlIvnJsjBXXRwobCm 9o/DhV/w+nww0ieyg0qJfs3M7h7YvII31F/CWKJtKxK/7MNSMynZHZlGrnzw99Ru3tiVf7Ec 0ZaoOEftHycOhq5J2/3ydhNt/nNt2/YL59o5f0aarsC1iRS8R13dKYu5BUbX6gnut3L1p+Uc JRLBtXj9/ZQI9+Xa2AOId1kyc/+3Rvrl+TCF5+JeFtM7s7bmacYRV02vt843kdckUSKFC5dA SsTVZQpZQeV+v+oRpLVkofodeOrhXr0lcSxJtnXHd6hzK/FJdavrpmePXS3smo0t/cSbf6lM IdckW1+sduDUHKPGjVJct9J0ZEDyH1DAh9M/LUzVACasvDDPOryJJLoeOW23o571eeMz4b0w VbXcq5C3RIu9bZuj+RW+ROxKHz4LF71wrd2v7ROh/mqPpbTthdrjOpdZ/IXikiv+1Lhz90/H a0Ipg3Suyfnz1x9Os3fM6xC8j39n7ev8bTQQOt6XkbSeK3T40pr5EoxrFYrcaJF4XnJw2TPk VLGz9+41cXyphx/9GkHGt42T2F3nOQMXZMBKJTTy+Bb9moKXjditHEda4BpJ8eWwGfyFmntT /CvbEjVXvX8yXqNLGaRzHTl/vprOY+CeeSmVu4pXU8D6fuuaTL3/eOPRcf5aGxb/slusV945 7pqy99cn3+kn4tyM4KJLS3hhqtLSqg7wGJeq7X0tr8u29/K31/nab7tTOj4C0fxDJuDi8Mvj a3/bF9Fq49qmX/3o9fX9guFWJ+6ynzZjUXdIl3Ku0nGk3Vwy3GYCf6Fm3Q7/+rZEzfXYPxWv 9k3ENWZQK66Uj508uY63des6f70TZvVNBd+8DsGrhW/Jv9HO1uJAp0PHp+pbDBF9AAEgwBwB xBHmBA00PNjSQGTdHCq4vglgmdMfMZld3VVsJrjM0Bq04n2pqkHf6AIIAIE5EEAcmYNHDrOA LXFgoc0YwHUbnI1eToLXzO6aItccVVStb/Np5HTo+KpTTjM4BwgAAcEIII4IJr/w1GFLhQFl 3By47kFO+ioNPUZZvE8YW3FI0SAQEIcA4og4yqtNGLZUDVp2DYPrXpTIE7z723vuNTx70YB+ gQAQGAoBxJGh6GI9WNgSa3qKDg5cF4UztTFZglcVjtufGUyFDMcDASAgGgHEEdH0F508bKko nKwbA9fd6ZEjeFEg3t3YMAAgMDwCiCPDU8hmArAlNlRUHwi4rg5xTAdiBK93XbYG65XGEIFj gAAQ4I8A4gh/jkYZIWxpFKbujxNc38ewRAtiBG8JsNAGEAACQAAIAAEgAASAwHgIQPCOxxlG DASAABAAAkAACAABIJCAAARvAlg4FAgAASAABIAAEAACQGA8BCB4x+MMIwYCQAAIAAEgAASA ABBIQOA/+81ZeqKhzV0AAAAASUVORK5CYII=</item> <item item-id="421" content-encoding="gzip">H4sIAAAAAAAA/+xX30tTURz/3v3yTjf3Q9t0WuncD1c59aZlInHLfIjKwQyJCEK3S16Zbs4F +TbqpQeLIAh6K6hegsC3XoKKCCpIe66ooD8hegh0fc/5Xq93Q0qrl9Dv+O6c8/157veee87n OABAQB5BruZ9E/5bCnlFaQJGErI4lUqMTyqpApdAEnkAnWSzZPsBULRID5/jyCr5sCnapPln 2FRJTplbi9rYLnnfopVYLZlcAGk7ZjGfgDhLUCNdz6GJHRxcd68GwCTwZE6KKdZSCqdLAjSQ a1HlpuS1HonPxQ3g5XO3D46ODM0cLyhTAs/vQLYZBU7kOm4qKjNJ5YKanbZyRQ/zTmdTJLNw 2SG9JrbZidzR7CUqwUnkKhQk9aKcQj6DdldUgPusnQSYwPaGSnqLhQptAlM973j1TEcKhbw6 frGg0Pz6kV1gpB39wbKxb7W2fqqtr4Fq62+k2jYYahug2jZAE9U2oNe2Wbr1AjX+nVTTZhTt 4t1ic1m23fzxHVjWwezUeJYVkhRuVgQUr0nYtAdwGZ1Fj9sqVe8DcqnErNE0kVEGM6oyXeA+ +Lwebf1p/+i7tOj5fHch8AUq6DCYYaVkB5tBJujeNB2TNl4psYxEpW36r2gZecXA27S1KAlZ /BWgBYZgGts8zFVuBb8kH1j1b57tBZehVwh63ntuFsE5+tIaMNo+PfcoLA6/Ecysr20kg5id 5VX4/+ymcjPCU0gwPs9G/a4Kv7fZKP1J/n9Jf5OfDkkA9k7YGczOZrbnb+8FW4OsCNC+4kt/ 4qP1UF22MsoGiBM5xKgnUb3GaVD56nFp3mbNRTW4M1T4GPlbad0VylMdwb1HhTHIVCjFXKPX OP5ohnXp+yZid32q84pugD5sKx3cC8v+8jGiLNY5Pf+qO7XkeXAN7oQWre9W0ZAIFbUyJtYH 7BvjuBaoanjYljG0yjJHjC06YoSgJgowgJmJI7xsk2UGPYuNIVKl2/CLtaRn4t0QlmUOPdsg ormF9Ujsw0ZEHJVl22s0cbVTR47G6G21EBB1szkKBJdHlLw6ljl/TJ3NZcbmhrNphR4kwZ+m lRycJAtqd402wsNBAx4OER4OQpjwcEifU0S7a0TprhFpJ1wcRVWM7hrRPXTXiLFdfi9ljPEp ygkQ9pEgwmfQoQWJU5AOFHVSkI4uCtLJgnSTT6ceRDIE2b/m26P59pJvD/M9QKY9uu9Bg7LP oGTjnwAAAP//AwBtIP+A6A0AAA==</item> <item item-id="422">iVBORw0KGgoAAAANSUhEUgAAAE0AAAEACAYAAAD2uPu2AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAApVSURBVHhe7Z0L0uMoDIRzrhwo58lp cpkcxhs/AxgJ0b/JILanard2B+TYn5uHJUC3iX+qCdyqLWgwERoggp9Ce7/fwC32ZxJAe02P 2216vJKbfD+n++fvb6cC/WFej/Ba7+l5v0335w5t/q37dPxvf1zUOypAE0AWHvL9vCeQU2if C8wv4/6cPGpPgYYBm6bZ7vH59/5nBXab1ZoodlbjV31+5CZAWx+0skUuT31W2fK3SfPcAL0e 082h2rLQZgXMqshC2/u4TTlxHQGOBG1Rpb++7QRth7WCC5vZrI7kIReA4UNLTVqHWVL0/hKP Jr43dWCAuqITOEGLR7hk1JybU/KE8SgpKadWgVc8Wrtr6KPnDElqpss9pZD+p0pLm8rSsZ+a qdS51ypqkD7t3L/sU4awf1sVlZsu5EfPbVRN+yD/o6exD9hGT7nztqtngHmaAVoR2HoNSW3R L4zxRVCGtvZvwew+O1f79ndXqLF8V7+v8VMvx+8fr80vEhrAldAIDSAAmFBpf4GW/RjOjJSe 6wF8siaH0mYYI/+58vkIDVAKoRGaTIDNM2KzelyWAUqJNxDaAS0OAGmOAkI7oCXhwsULk8Y1 1sqEtkM7uZdkXx6h7dBOnl9CK08GqLQyo3MN9mkAtTj6xdHTjJDzNDOq2oocPWuJcZ4GECM0 QsMIAFbN+jTPrmzLvQOs6e4mtEoCzZpn5X24qk5owOtyBs32mbNsxgjirNGKI7QsgOsImtUd ra0aR8tiOTqCZnTdaKvG0bKkCfuBVuEkjJ9RW4KKlfmBVuGO/kKTVojPNdAyT4GVaqXJq8bX PQvSBjStbH0dfpSW7shTQmz76Kntx6ou8zx67vsNRHe0tmocLXM7ECw3LszTAtVpq8bRsnT+ 66h5AlP3RiaEBoAlNEIDCAAmVBqhAQQAk2ZKs/jZPdcBWGdNuFAZIElohCYTaNanAdDdmDiD hsQIksXGUYygosyzl2N36ciL7mJv7FLv2BOAlsWNwJHSjDGCrLNyUxRa5tY1ZPbcomrS7Lwq rSpGoPV9aNkXnJ/maVVaejrWcsZR0DzDk7OsZW6bpzVGoCkSLfMLzbhknUpL57vlGMEaSliP HVv/SU7vQ8t8ztP6+WDwMxD0w8xTsLgfalQa8C4IjdAAAoBJM6V59v9b7h1gzRgBoVUSaNY8 K+/DVXVCA16XT2jaKsgZAhAHsJ+G6mr56CaJ44M7fzrLvvAviiVEMYLvMf9x/CCRnHJCsyul rcfif7wWL/lIm3PqkMCNbXVkFnIbuIJ2aKG0SDk6kaoeWukU5/Ggbetyo+Z5+NTi4/rXfizN llE+L3xAaPFAcH++PjlZAjDBIHEq2x2YhVwtY0KL+vQkXloos5w2PyC0TPzy2GmhlS1zlViV whxuDGjpwBDGAdKmppUZMwL5hAbM4q80ITSAJqERGkAAMKHSCA0gAJg0U5rFz+65DsCaMQJC qyTQrHlW3oer6oQGvC5f0KK1ZZK7O0gweKxRy9XNHMNjypjmKUaQfJRr3tU4uWpeSnsgRUwX N0qMIHp80eVtcO8ssYLH9BATUOveW1/NM6Cm71iJExOeE0jPnlw5a/d4MYLDXS1kwj4ljI6V NwNZD0SRoI0aI1gUV364XZhHHxeF8ARohoy0bpvnGgMR8rsnff9eT4qih6l/x4oRWLf5nOrN iipPOVbOhkHkU8uV0mKlpGG5LxixXjz8fmCmSrU1eVfQgMl7ExNCA7ASGqEBBAATKo3QAAKA STOlefb/W+4dYJ014bE5AElCIzSZQLM+DYDuxsQVtLOXIh8nUOupcYbVXbQOBIK/ztsHe60r 6CTdQpwhuv4YMQKb28bq3lk9QeF+BG1tbozfUfMMjpfYQm35SJK13hbq+66d/wRbntNz2eAx SvMs+P4PLVjq5eIM6WHop90tX7U5Utp5cP1zHxfGGcxbgJx5blNsf4cWxhk+zVraHpT8sB+l WX3/Wr1CnCF6CaM0zytiBHr8IBxE5LUifpTW0fcCoQEvg9AIDSAAmFBphAYQAEyaKc3iZ/dc B2DNGAGhVRJo1jwr78NVdUIDXpcbaDVnAalnDW1rbVVHY+EsIzfQToIQffiZA0sCl08xDlA8 y8itP01Zsag6E/U4gOksI2/RqF1t6jp/DdpWVowDjNc8S+tilfOErHGA4aAZ1vmHA0F0npA1 DjAaNMs6/3jQCPsxYxxgLGiWgLF+npApDjAWNKE/qzlrKMx7vKcRSeczY0EDpu8NTPxObhvA sF6S0KykgnqERmgAAcCESusJmmf/v+XeAdaMERBaJQH2aZXA5uqENhS07PeflpszePrgqOkj TaXl+9Ji163Ssn76zIFK2eXdhoyw2esb7Dbw3TVP2U+f+PclT0TW0fhd1Shev2AXCrU7aMfN pVCsXtfkZBgxu8UJumOlidCsh5ksFzD0fX/oM8dTWrr5IsxLHLaxnJKlfMbJIOIH2hU5izVo FUp2BO2CnMX/P6UpfZUWI5D2beb6NC2fMZ2QwGcAoRHa3wgA1v0OBMDD/MqE0ADShNYTNIuf 3XMdgHXWhMfmACQJjdBkAhwIEHV8zu246s+1zVNdIyYfVh49TIXPrGafQp9KK6zlL+YSWL7t H9tJLuEGfmucYbMX8nx2B624ln9xe2u5BNazNvK5jY1xBrc5i7NNa19zCzZPY5zBbz6CDLRy LoGke8752YqnvJT2KfQcYVejUQ2VZtin0F2fJkWjLLkETtOAbJguGBgyarbsU3ADLQYCKm3b trgnbTj3XZZ9Cp6aZzwBi3MJaNH2014BLSZa7s/m2+hXaVdNuRtch9AAqIRGaAABwIRKIzSA AGDSTGme/f+WewdYM0ZAaJUEmjXPyvtwVZ3QgNfVL7Tke7LGh6+eNRTtFUhy4WllAdw+oRnO +1liAFkfvrZKO/kgj9bnamWxHLuDVowRLPdfe9bQ5kObQScbNo4jJ7SypAl3B01yQob3rfvw 7fsB9Gy08otxCM3i8zLsI0gckjknZ5hhNiz3B63kwzftI1ih5qFoZSs6d9CKPvzSfoBthMzu RdPKuh895xtU457K5EpT2gXAHCoNOGso2EegzfVq5oH9Nk9gpv4rE0IDSBMaoQEEABMqjdAA AoBJM6VZ/Oye6wCssybXrrm96q4aXKeZ0hrcazeXJDTgVRDaENAsfnp1j8H+sb8nN01z2il5 iS2/3Z9ryOCnL8YP0HwEht/eVNlX8yz46U3xA3XZu5KPYIgYwfJWja6gsF/SoG1lxXwE2m/3 1zyjp1/W1WZd0mqfdkE+AjV+0K27u+CnrxgI6vMReIwRWPz0JWjRNCLsxz7/re1Ysfx2d83T eNP5+MFOKhP3DKIoYj4C62/3Bs3sp89tAQr3C4RnBp2WLgQx0cDG/Nu9QQMm5//EpK952j9B UP+jhFbPrOMIO/AwvzKh0gDShNYTNM/+/9K9A5xFk+tO+Ljyrjq/FqEBL4jQCA0gAJhQaYQG EABMqDRCAwgAJlQaoQEEABMqjdAAAoAJlUZoAAHA5D+fm/mxs1URvQAAAABJRU5ErkJg gg==</item> <item item-id="423">iVBORw0KGgoAAAANSUhEUgAAAfkAAAAnCAYAAAAM9TEPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAnKSURBVHhe7V2JkeMgEHRcDkhxXAiK Rsk4GB0gIwPiGWB4VuqturpaW2KGnqcZvn3t+AECQAAIAAEgAARuicDrlr1Cp4AAEAACQAAI AIEdJA8nAAJAAAgAASBwUwRA8jc1bOtufbZt/7QWgvaBABBohMBn3zZEcCNwp2r2oST/2df3 a1+2qWzxd5T5rPuyIkH8HYNBUyBwReCzLnu/MEbOHeWDDyT5w9leL5B8qdNt64oqvhQ8vAcE pkFA5MK1R6WDnDvS5I8i+c/6VuT+ei/78qRKXlTeb9nv77+6GYxNJAZU8SODFrL/KAKscciD wUcM2FvSPHLu+ILyYSSvHfpJU0fbvpizFtsiyP5dPk23reXv8uQltAIE/iACzHHIhYDIB3WD /rgiv0EEcu6o2uhRJP9zxwc5nCT1tzm9Xtf3bVmajvy5chfaAQJTIcAch3x9E4OPlix/KlqX d/j626GlyWwNku9g87lEOBVFlnIyUEHyWZDhYSDgRaAmDjkhFXpYRQBn22ZbDyL5C4RjbQ2S b+XTk7ar1siKg7pXQpgUPKgFBJgQqItDJiVUM70G7s8l+dG2BslzxsvkbR2bYCoqcblxqMvU 3uRAQj0gUIFAdRxWyPa9ui0Ve3TIujyT5GewNUie7KR/+8HD2SqDWa41geT/tiNA+6EIsMQh cw+2pcdx4ueR/Cy27kryn88sR6/u43AUTNlGkyB55vSK5p6EAFscMoMmSf7dfOs3ci6z2cjN GSQf2Bygz3ZmVnD26PAw8M+RpKzKqpLcxQEPqmNqFdPiAZWLMFX248FaJamYHzDKamK1afU7 Yk/fY1DnOzePrSaOUdMoEe9pfW/f+5B8DcaEd2+acwk9Tz6SIPmyXYFXMnBJXu73EORTvAEs 2a+xDzRwuFJMZQD/yKPuQhypQ3TEP3EiUw4xpX5HjJm41lV8RNIZGyE3kk7DmzMOucFLxjW3 wBbt3TTnckAVIfkyghfjQpG0zCr2d6WhIhujErzFCFJZwazERNUs7oS2qzHne3GhzDur0p8D 02QymJJEjTCZUT9vcqIRhz8B1LwbSSkaO+Xb38GijGWlv/E7R1ayTGaeBvnmksxZRWaVnOYa 4R1TmtkWybhuC2Bh68/IuWdhUhF3AZIvXz/xT+l6KnnFje5FLa69r1VOoUc0fM23FCGTnh7o pL5Pq8aLaVpe6ImpputLburqSfIl+mngq/RsRDrusp0md024VTrHfNIoNnrO/pHt1wjvJMkb BVOlLcgkT8akPMfQ3kzl1NT3aSmz5NyD5Ots7SV5PbXkHTBH718OkLk6i+nb3DEgQNL2zXvC V4mZn3m+D07HKmzdtfyJME1tvCtN9CV3epcknNn1U55XW606MVWCrS8Cvu38coI70+f8ziVX FwNCsLUnxY2VmLwSXcj+1QhvAslz2YI8o0rGJC+FZj/NkXP/Co8xxN2F5PVfZzuI3iUcn0Ob m7pCU/xxoqLMvoXWtNwlgGyHqXzBe9GBkYBS35/iz2lPH+a+Iy71mGZ3vQnJp3wqoGVJwiki +Y76VRO8YkRjU2uh7kGSd2M9FPuMckMDH4vkY/IKdSH7VyO8kyTPZwvyEToyJtmZJeuFVE5N fW/HiBxXu5uT2/FYVkfVmN+nW17cXUje3gFvr6Gr6XWHkW0HCVXmudVoNhTRF3wbz9zPgg1c RlL2kymHSn1/FCpyQCUM512r74hpoq/K4Yi7683qQE99+T5L+9QP7+qBnhEwl7a+laLlF3rN OerzTPp9sU8eZUrZyCT5ZLwavpxqNyfZcMpVKur1Vz0ANtdjxWcxeRm6lPmXEZ8ZsqIJq7Mt YpfhlGGyezf7TpNzk3aaLOdap6Nc3YwBSaBf8d313+oynNcjAi0vrq86S52Nd7jgaa1g6ujY rOQ5Yuedrp9oVCmTrXMiwprqs4hA6i37qP/Xydr9zMWUuIRDrCrC+mm50jfdI4a+z/TzvPod HFb5lwEtCGP6EXX3BU0OyV/er5CripnjVIe1duyNFYqNiLoQ/etSFZJtUZGZWG2Rca0tGZOK vlFe5cy55yCyz4w0pXs2deZU8v5cmjwnHz7O4yPu3IqdGHDZyPR8wV1DdauO1PduNTXxmrzn nmtrpkIGnzEIOHzHdzwsdPlGyH/8gyvKMk9MP9mqb9NReCMSv378x/pyqxBirBQTSwZmwcGF WcF/k3GQ5GPyMnQhE1ojvGNmYbWFwGQx/0plRDAZE6JPFT+Wyqmp703Bk/MYg62TJH9uBLIq z4PIfFOLoR3YOuFb0/0OKVxtHpZT7B9NXjSPCfqO0Jnfi/X1JaeSP4jIdwlNGaZ1AFyn9py+ m5ca+tbAg+vimbYmJ5yEfu5dDVI/7/0NbfQ7bWhdhnMcSaMMYvwx485MZOrOVsnXy1UzeM6x W/V7ZNbLv+SRqQvZv3wknykrNySLEn9IJ/E51dHImOR2qOR5jpzbi8dK+vd9h8HW+dfaptaL rI0/8c6Rd3VWYDTlq1nT9bIH9BmP5phmBLraryEHNE6Sdj/Tx0SouYbHphnT9Emf59GoSSuj dG8t1yX5mLzWuliF4XHkqa8vJzwngc0qxky3/3FzbtInJsq5Ocbx9Osk+dc/m++9vxsNxJ5P nqeWSgcrppwe5T6rp9L1zW/8V8+SNMom+XA1b8nrgukmLvsh/A2CUxeDTEOfDUiK5Gn6ZDIg WXzMQ6N07yHXJHkQfNi/Erb4rKsoIVr+TJhzif45L48F7BXol2J2SdgmaYd+P6cWv8+fuyU9 78tz8fQNey2dTLd9nZoJ7zdorE8Byetlkxkw3URiiNP8MZV26qqWZRaxac/9TCSY77q9u/O2 bSXkJh7/1b+xUxlt9ePxv9BSQGvd+8jV07WLGHQeez98PtRHl8NePWVRPSSuk8CwaRk/Z86l 28nJYxfQ6dU+1V41zwWX/jTJt/i/RmH2d73EOpeR2PvcqkExYmyaG1rpjXaBABD4ISCO7FIm 5YohQ84tho7zxRelgtcCqRU/p4JN2wpuAmsq9RaNp6v5W3QTnQACN0WgdRUfgA05t7s/WSRv VvMmsZtakdbuu3ejRKB7zKKkDbwDBIAAEAACNASQc2k48T6Vv7ueV/6g1uBsg4CHWCAABB6J AHLuKLM/j+S/OxCT14eOsgjkAgEgAATuhABy7lBrPovkWa8PHWo3CAcCQAAIzI8Acu5wGz2H 5LHhY7izQQEgAAQehABy7hTGfgzJ818fOoX9oAQQAAJAYEoEkHPnMMtjSH4OuKEFEAACQAAI AIF+CIDk+2ENSUAACAABIAAEuiIAku8KN4QBASAABIAAEOiHAEi+H9aQBASAABAAAkCgKwL/ AZv+JE1hCZYcAAAAAElFTkSuQmCC</item> <item item-id="424">iVBORw0KGgoAAAANSUhEUgAAAcwAAAAnCAYAAACCL3hzAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAkoSURBVHhe7V2LseMgDExdKch1XAmp xs2kGB/YwQHMRwKBeWFv5uYuMQaxElokPnls+AMEgAAQAAJAAAhkEXhkS6AAEAACQAAIAAEg sIEwYQRAAAgAASAABAgIgDAJIKHIFYH3um5vAAMEgIBC4L2tK0bDDKYwKWG+t9fzsS3rDCpu 0Mf3a1tecBANkEWVfxSB92vZ+g0J+K+7zGRCwjyM7fEAYZYa3fp6IbosBQ/v/SgCyq+8eszA 4b/uNKCpCPP9eu5E+Xgu2zJThKkiwqfu9+dvXWS9KseA6PLOQYu2dRZU0qZlEH2riWRLyoT/ uj/QmYwwjUHPlNJYt8WOptdFEeezPH20vsrflfFLqGV6BIRtWgpPNbbqJqNpQb6EDP9115x9 KsL8muNEBqcJ8mmnUOv6vi5L01m0lO9CPT+MgLBNyyGliLwlY56C1o1huf52qGkwXYMwO+h8 rCa82TlLOD1QQZgsyFC4AwI1Ni0pnpLDmZxK1m3XNRFhXiC8V9cgzFY2PWi9+zpI8aDu5RAG BQ9iDYlAnU1LdqnXhHJewrxb1yBMyfEyeF3HpoGKCFFvtOiSchocSIg3DALVNi3ck3Wp2B9A lmVOwhxB1yBMspH+7YKHsVUOZr2eAML824bwQ9KL2LQwHuvS47jafIQ5iq67Eub7PcpxhN8x OAqmYjMzEKawe0V1pQiI2XSpAJH3NGE+m2/hhP8SVhu5OoswI4up5rwTM7JwZ1qHgr+GpNuq jHbIXbyh4H50oyL1mRiMXzUQMd31J4P17qRSdiDYVrnWDjs2Z07r9PDjdloOcqM3iXgPYWdh CPoQZiP4TbU/6r8kUMsQZtmOpKtj9Z27El0bffHmE4muN6yjgcGVYqoH8Jc86i4v0DIkZ8+3 O7LDXm0Z6yIRogNvaEpzVU3DW9KmpfHNjhHpBlvU96P+SwKqBGGWkeWmTuktTnT1vcppd9xW hPITs7FdC3ZUo6I5da+kG9l4z9Xh/ycrAh0D06wzuJswgwOd5oQj8UKbTIjBabeTzyRGj4td fuuzxAi36nB3GH7GJTNzJCySV12NrgolE9ZFdowUitn2tTn813E7lPHPZeMuQpjlOfJw2i4Q Ye484x+q983iGjG0NZyS2kOpUa0Mk5LNPc+3KYtpvr1YidtSsjU3qFSReCMH7i9zGKI05FUl c0q/1iS4Z4aHrL9GeKcgEdYFmTDJmJSPV9qbOf+Ue55vZRT/dV6naMZZwbgLEqZJeQQnn8k7 HCPEqK7qdtcwDcg3DJC8fnklQlGN/V3geTRNuGPrr30OhGlu0w/F0ZfcAVrsXGqjKM8+S2QP WdOnnu/48rM53mepds0kVTXs7DHw7S7VXoksZP01wptAmFK6IGfNyJjw3BG7tIT/+iucIDDu LoRpfsXjIE3feYcM2t5QEkvjpp0+JSsUW7fw07xsg6l8IXiQ1nJAuedn82c6LoR5aKt6Pabs rlcTZs5+IhIVOZdastzZxUrJFsoeJUx/3MTGkWC7uywBXBzCTLVXKAtZf43wzhKmnC7Ix0rI mLBHKeuFnH/KPXfHiDYvf5NhO05gdXQ3/ZBsvHF3IUx3J6u75rinUD12cw0kFjFyoyQ2FMkX Qpte/O+iFVxmJW7JnEHlnh+Tfj05UYoLrm12xDTT193giLtkLxGM3uCVtZ8vtlUTpE8/stv7 c/21CZMhu0n9RKHiDFzJdnd4zXqVmZjZ61fqu1R7DFnK9GfZOqOt5ODP6VhYF6mLC8ow2YKb 9obxX1k9Dea/nBMDvmwWuUf6ld4l+4l64j4y0aBjxfXRUKmxyVJvoLaClMaxuSNw7CSYkh1o hqadrbez2UlB2c5H9fEkLPv/DoTElDxnNr5jK3OM5jJ7LpG9OsL0KyBiFjF8s8bmrLUF7c5U kGqPKAtZfwJtcQc8hzAvdfvyMq7GI2PC7RCzvKT/OidkfbKOzJ4yI8zwuMuew4xvyw+RIDeS JA44NjI9X/BTXP4MPvfcknX0Ncw9necSvRNB68F3EuqXXMOz7pithCcllLT9NeVSawfc2TGx vWInzcAsStR2ZPlxbFHCTLXHkIVMDo3wTqlFVBcKk4X44+pkTIg2VVws559yz+2GB+cEAV1n CfNc83AiooMUQimv2E7Kg3gDKd7kWcx4O8X20eRF++hM6FiJ/VytRy6cCFNPjMIXBpRhWgfA lfy8vp+XOenvtUO+RqUmLZhNmZ5BzkL6ncETD+figpofnQ05cAGbLBq49e3uWRrvWNf+OZHZ COuIKQuZHBrhLU6Ysf6r70kzOyUQGZO68Up7W8J/9eIEWo+CpQTGHf9qvNyagLNRIt058o6y CoyGfJWVktU9oEfizTFlDHRNYHpy4DjdrP0MqbFDqLtkb92uT5ip9lrL4gQsepNGj7tZGTaX weal5h8//8f3X1mbGMh/cZQT6NdJmI9/LncGP1sVpMpnz+sZ59P9ph+TLjU33shfX0fSB5sw 41Gm057WT3NMV3UxA/FOYH9Glx1YJPTuKXSX7D3atQkTZBm3r4wu3q9X4x9XH9B/Ee1zXE6I qDvSr50lNfnZBBj7fKa8PuXPnVqB9/W5S/pmoR4+8JoyqLs2rULmAsI0qfERMF2VY6BRprvm GUuZUrNYFYhXv3qX7H3aNSm5RU2GPksnXlr7yNzGn1UD7FXQsy2q7GmZFIZNw8sx/RddT4eN jeC/KPqOLu8YwmzxL0WwbmWCJEVPFXST8y80pGZfJN+gZ2l/gQ3/AuaQcWwE1JEwauKlqCPw X0WwSb/0oESWplFqJCotZLP6LovAzVr6uYpzUeYxQ5M63vFz8KFDP4VA6+gylTbEGOtpSg5h 2lGmTZK2QKS1zp49KG5L4iaY4sbxIhAAAkCgAgH4rwrwil/l75ItbmqkF2FsI2kDsgABIMBB AP6Lg5Zk2fkI87P7iXwGUBJt1AUEgAAQqEEA/qsGvep35yJM0WvTqrFHBUAACAABOgLwX3Ss GpWchzCxwaeRCaFaIAAEmiMA/9UcYkoD0xCm/LVpFHhRBggAASBQjwD8Vz2GEjVMQ5gSYKEO IAAEgAAQmBcBEOa8ukfPgQAQAAJAgIEACJMBFooCASAABIDAvAiAMOfVPXoOBIAAEAACDAT+ A6oU2qjhLsQDAAAAAElFTkSuQmCC</item> <item item-id="425" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTQRR+29KyhZb+gC0UVKz8iMrfWhQJMZXKwajUFEPiyUC70a2FLWVN 5NZ48oBeTDyjMV68yM2LiRJjYkwEz5qoiVeJBzXEhNY385btlvgDamIMvObtzLx5730zb6Yz b5wAICAPI1fwugW/ZVpWluuBkYQsjidiYyk5oXEJxJH70ShilexfAXJl0r15bNkkPxY5uzTz GItyyRXh2qLedki+F6glVkgWN0DSgSjWE9DBACql6xlUcYCT992pBLAIHMxFPsUqgnC5JUCF SBV2eQi8yivxsXgAfHzsjujI8ODkcU0eFzi+E9luFriQq7mqKE/G5fOKOmHjHWFmnVQTJCvj ssNGTOxTFzID6mUKwUnkchTEjaCcQp5FgGgK4AMrLwLcx/J0ivonyynQFrDU8IrPQDqqaVll 7JIm0/j6kN1gpm19oZK2fzW2AYqtv5ZiG6ij2NaaYhuk2NZCPcU2aMS2Qbr5BHsC2ymmDSja wau5hhK0nXz6TgxrVB0fU1kgqcPDgoDiooQNux+30W2cydkURe81cqHAtFE1lpajaUWe0LiN QKtD0+ZftF1c8L69NRd8B2voCFghX3CA3SQTDGsajkVv5wsMkaiwRf8VrSDnTbxFm4vioOJP g0YYhAksszC99ij4KfnBZvzn2VlwBXqEkPeV90YOXCNPbUGz7seBuWZx6Llgxfoj/SCJIjrD lfl3akPYjPAWEszzWa/dVeHXOuul38H/m/Qn+HRJArA1YXcwu5vZmb91FmwOsmGC9h4X/aGf 9kNFyc4oaWCeyFOMGhLV6JwEhe8et25t1U0UkznLOx4gfyp8d4dyqKN49igwCmmsf54voouZ Op9ZufEHO/nLBnx3van2iR6AXiyLqvkA+y4vrQTMDpaXMMtilTMzz7oTi96712C2acH2cjUb EmFNrMzARoP9x3heCxQ1vGxL+R8RX61GSkQ9bIwCpcvDclYZTZ87pkxl0qPTQ2pSponE+Gx2 kYGLZCH9rbGb8uGQKR9uonw4BM2UDzcZ+XCL/tZopbdGyx7Ki1uxq43eGq176a3Rxk75fYTY xocYiYGwnwQtfATtupMOctKOok5y0t5FTjqZk26y6TScSCYnB4q2Yd22h2zDzPYgqYYN20Om zl5TJ2t/AwAA//8DAGGzvn7oDQAA</item> <item item-id="426">iVBORw0KGgoAAAANSUhEUgAAAE0AAAEACAYAAAD2uPu2AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAApVSURBVHhe7Z0L0uMoDIRzrhwo58lp cpkcxhs/AxgJ0b/JILanard2B+TYn5uHJUC3iX+qCdyqLWgwERoggp9Ce7/fwC32ZxJAe02P 2216vJKbfD+n++fvb6cC/WFej/Ba7+l5v0335w5t/q37dPxvf1zUOypAE0AWHvL9vCeQU2if C8wv4/6cPGpPgYYBm6bZ7vH59/5nBXab1ZoodlbjV31+5CZAWx+0skUuT31W2fK3SfPcAL0e 082h2rLQZgXMqshC2/u4TTlxHQGOBG1Rpb++7QRth7WCC5vZrI7kIReA4UNLTVqHWVL0/hKP Jr43dWCAuqITOEGLR7hk1JybU/KE8SgpKadWgVc8Wrtr6KPnDElqpss9pZD+p0pLm8rSsZ+a qdS51ypqkD7t3L/sU4awf1sVlZsu5EfPbVRN+yD/o6exD9hGT7nztqtngHmaAVoR2HoNSW3R L4zxRVCGtvZvwew+O1f79ndXqLF8V7+v8VMvx+8fr80vEhrAldAIDSAAmFBpf4GW/RjOjJSe 6wF8siaH0mYYI/+58vkIDVAKoRGaTIDNM2KzelyWAUqJNxDaAS0OAGmOAkI7oCXhwsULk8Y1 1sqEtkM7uZdkXx6h7dBOnl9CK08GqLQyo3MN9mkAtTj6xdHTjJDzNDOq2oocPWuJcZ4GECM0 QsMIAFbN+jTPrmzLvQOs6e4mtEoCzZpn5X24qk5owOtyBs32mbNsxgjirNGKI7QsgOsImtUd ra0aR8tiOTqCZnTdaKvG0bKkCfuBVuEkjJ9RW4KKlfmBVuGO/kKTVojPNdAyT4GVaqXJq8bX PQvSBjStbH0dfpSW7shTQmz76Kntx6ou8zx67vsNRHe0tmocLXM7ECw3LszTAtVpq8bRsnT+ 66h5AlP3RiaEBoAlNEIDCAAmVBqhAQQAk2ZKs/jZPdcBWGdNuFAZIElohCYTaNanAdDdmDiD hsQIksXGUYygosyzl2N36ciL7mJv7FLv2BOAlsWNwJHSjDGCrLNyUxRa5tY1ZPbcomrS7Lwq rSpGoPV9aNkXnJ/maVVaejrWcsZR0DzDk7OsZW6bpzVGoCkSLfMLzbhknUpL57vlGMEaSliP HVv/SU7vQ8t8ztP6+WDwMxD0w8xTsLgfalQa8C4IjdAAAoBJM6V59v9b7h1gzRgBoVUSaNY8 K+/DVXVCA16XT2jaKsgZAhAHsJ+G6mr56CaJ44M7fzrLvvAviiVEMYLvMf9x/CCRnHJCsyul rcfif7wWL/lIm3PqkMCNbXVkFnIbuIJ2aKG0SDk6kaoeWukU5/Ggbetyo+Z5+NTi4/rXfizN llE+L3xAaPFAcH++PjlZAjDBIHEq2x2YhVwtY0KL+vQkXloos5w2PyC0TPzy2GmhlS1zlViV whxuDGjpwBDGAdKmppUZMwL5hAbM4q80ITSAJqERGkAAMKHSCA0gAJg0U5rFz+65DsCaMQJC qyTQrHlW3oer6oQGvC5f0KK1ZZK7O0gweKxRy9XNHMNjypjmKUaQfJRr3tU4uWpeSnsgRUwX N0qMIHp80eVtcO8ssYLH9BATUOveW1/NM6Cm71iJExOeE0jPnlw5a/d4MYLDXS1kwj4ljI6V NwNZD0SRoI0aI1gUV364XZhHHxeF8ARohoy0bpvnGgMR8rsnff9eT4qih6l/x4oRWLf5nOrN iipPOVbOhkHkU8uV0mKlpGG5LxixXjz8fmCmSrU1eVfQgMl7ExNCA7ASGqEBBAATKo3QAAKA STOlefb/W+4dYJ014bE5AElCIzSZQLM+DYDuxsQVtLOXIh8nUOupcYbVXbQOBIK/ztsHe60r 6CTdQpwhuv4YMQKb28bq3lk9QeF+BG1tbozfUfMMjpfYQm35SJK13hbq+66d/wRbntNz2eAx SvMs+P4PLVjq5eIM6WHop90tX7U5Utp5cP1zHxfGGcxbgJx5blNsf4cWxhk+zVraHpT8sB+l WX3/Wr1CnCF6CaM0zytiBHr8IBxE5LUifpTW0fcCoQEvg9AIDSAAmFBphAYQAEyaKc3iZ/dc B2DNGAGhVRJo1jwr78NVdUIDXpcbaDVnAalnDW1rbVVHY+EsIzfQToIQffiZA0sCl08xDlA8 y8itP01Zsag6E/U4gOksI2/RqF1t6jp/DdpWVowDjNc8S+tilfOErHGA4aAZ1vmHA0F0npA1 DjAaNMs6/3jQCPsxYxxgLGiWgLF+npApDjAWNKE/qzlrKMx7vKcRSeczY0EDpu8NTPxObhvA sF6S0KykgnqERmgAAcCESusJmmf/v+XeAdaMERBaJQH2aZXA5uqENhS07PeflpszePrgqOkj TaXl+9Ji163Ssn76zIFK2eXdhoyw2esb7Dbw3TVP2U+f+PclT0TW0fhd1Shev2AXCrU7aMfN pVCsXtfkZBgxu8UJumOlidCsh5ksFzD0fX/oM8dTWrr5IsxLHLaxnJKlfMbJIOIH2hU5izVo FUp2BO2CnMX/P6UpfZUWI5D2beb6NC2fMZ2QwGcAoRHa3wgA1v0OBMDD/MqE0ADShNYTNIuf 3XMdgHXWhMfmACQJjdBkAhwIEHV8zu246s+1zVNdIyYfVh49TIXPrGafQp9KK6zlL+YSWL7t H9tJLuEGfmucYbMX8nx2B624ln9xe2u5BNazNvK5jY1xBrc5i7NNa19zCzZPY5zBbz6CDLRy LoGke8752YqnvJT2KfQcYVejUQ2VZtin0F2fJkWjLLkETtOAbJguGBgyarbsU3ADLQYCKm3b trgnbTj3XZZ9Cp6aZzwBi3MJaNH2014BLSZa7s/m2+hXaVdNuRtch9AAqIRGaAABwIRKIzSA AGDSTGme/f+WewdYM0ZAaJUEmjXPyvtwVZ3QgNfVL7Tke7LGh6+eNRTtFUhy4WllAdw+oRnO +1liAFkfvrZKO/kgj9bnamWxHLuDVowRLPdfe9bQ5kObQScbNo4jJ7SypAl3B01yQob3rfvw 7fsB9Gy08otxCM3i8zLsI0gckjknZ5hhNiz3B63kwzftI1ih5qFoZSs6d9CKPvzSfoBthMzu RdPKuh895xtU457K5EpT2gXAHCoNOGso2EegzfVq5oH9Nk9gpv4rE0IDSBMaoQEEABMqjdAA AoBJM6VZ/Oye6wCssybXrrm96q4aXKeZ0hrcazeXJDTgVRDaENAsfnp1j8H+sb8nN01z2il5 iS2/3Z9ryOCnL8YP0HwEht/eVNlX8yz46U3xA3XZu5KPYIgYwfJWja6gsF/SoG1lxXwE2m/3 1zyjp1/W1WZd0mqfdkE+AjV+0K27u+CnrxgI6vMReIwRWPz0JWjRNCLsxz7/re1Ysfx2d83T eNP5+MFOKhP3DKIoYj4C62/3Bs3sp89tAQr3C4RnBp2WLgQx0cDG/Nu9QQMm5//EpK952j9B UP+jhFbPrOMIO/AwvzKh0gDShNYTNM/+/9K9A5xFk+tO+Ljyrjq/FqEBL4jQCA0gAJhQaYQG EABMqDRCAwgAJlQaoQEEABMqjdAAAoAJlUZoAAHA5D+fm/mxs1URvQAAAABJRU5ErkJg gg==</item> <item item-id="427">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAdCAYAAACTzT/bAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMsSURBVHhe7VoLju0gCHVdLsh1zBK6 mm6mi3Eu9VOkWMV6k96UJpNJXwHheARknvH6KAKDCJhBPVVTBLySR0kwjICSZxg6VVTyKAdk CGyLt8b59aOl5JFB93Lp1TtjvFHyvJwHwvC3xX5IY7x1TjOPELvXi2/r6jdAQcvW67kwDoCS Zxy712sqeV5PgXEAlDzj2L1e8yfJszsN10T0Y5fQxLFPulZGeQeTCfyQ7/H6WUg4vJ71C7vY 5hdr/Ml8NlT/vk6xL6VzzZ/w7wlfywf7ow3z6ryp7xBBMAKR5el7IA4GKFxFw/ALHtjYAkBY /0SwA3Detfr3OfbHiAMEKf1t43OcBW5IuJ/sz+laACR0WnfQaqdX6vy4PIDdzR1uo1N8kD1Y IgChYnbBshWX09zDWOcdk3kuv0+wL0VS7A9gdJnZ8YQ5lYW0Q4k06b0j4KvyUU2DXSjAybDe orR6FdgO1CnwkG2qBKTkagC3LUvMUnwZuPzesTEt+12wISGxP6i3qa11/HkikucAl4JN3nFG YvoFaXDX8ucysw+rahtczTw18pRpO5FvjVPVkHmPklb6Ku955tqXIn32lz1sHcmCkAc3hSiN hy7gOLmElfviHTWlbBBJ89uhzzW8vFpshtHHtPZZntZ76AnjKB43jWypA48GyUN6Lr6U9tj/ NfJQfztSnDTEtnxr08rblFsZ+ZhtaUnly971LUVy25prH/gbbqJ954+JgyujHXs6lnnIzn49 87Qa3DbTiitmSKRwEahcv9meZB559rVPJXfUfk/wWKZ2iEhZ7ujL7pEnz15qMxBpYDX5ztOS 1E/1OujnDNOs55X12L6nlQG57zPtSzGu+3O0HkyPySxzjzzZIO2P8Ep9jrQhIEM9cnL5uQk/ 9MrXVjp0LFJ/OTSb2TCHWGfZbyNXStwcEiJj0/4zmGgOI41X5R+JQCaP+St5dPkO9fAjf0zr 1/0dX06o/iOjV6duIbAzBjYab3bve548N/RveajKj0UgkyeR6Bu/Hxu9OnYLATOScdKKPRnq lneq/GgECvLgrIMJgiMQ9UaPDl2du4vAtNvWXUdU//cQ+AceuqHfE6c5/QAAAABJRU5ErkJg gg==</item> <item item-id="428">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAdCAYAAACTzT/bAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMlSURBVHhe7VqLkcQgCE1dFmQ9qSbN pBgvfgP+QHf3Jk7IzM19AiKPJyB7m5FHEJhEYJvUEzVBwAh5hATTCAh5pqETRSGPcGAMgXM3 atPmuLSEPGPQvVz6MHrbzCbkeTkPBt0/d3WRZjNKa8k8g9i9Xvw8DnNaFKRsvZ4L8wAIeeax e72mkOf1FJgHQMgzj93rNUnyOAFldtchPeU5za7sNTF8aTtp6D0D8lV/CX2nA/Zjf1a7byrD c2j4PsczXntb/mD76mvB8OuW8DHtrUgeF4jksXe0ByhfPoKGg0vqHxrspySx1Uf7s/JhPnJd WfxBaPqTv/dE+5xAN0EweQbsLUeeSmZwc4fspKcQDsjbdfzsApCHoW/J0Ux+ZOb2ZID6zp/4 h5q+JV/LX0ZxiHOaTWmj88wzaa8+YSadZ+z2Tt5fOjXQJp158A4b8tZPGxDS31zf/n6RDpZR GFgy0ETmqemDEz+CfpQ99919pBCzHiL+pL158rg0HGu6/6zj9w+oy6xT2JP3BHCtRJM8Lf1K GYlEdMv5rHiEqazHqcQI9kRFFsr9IwnORb/seapZnGFvjjzZKUApt+MDbiCzZpNsgLOFUQ/B AC6Td+UqNqEMoAxp7y5FaZQPm1ykX5IP9lizwWSgUM08s/ZI8sDGr0mSD1Mqz+lcqnVraK0G 5EGW8Jmcc7uk7N3v6/0Y0G+WiZAJR8tIuPnxzl/Fj1F7AeJEHnQ7QGDaU2JTbvxeBufnmad6 6sum826z4M0m/rXMDHfZvbOgCwBlr/m+E/xww0rr98pS7TCSfRT3CFbIM2kvkQedlmyj1TSc TqwF/tczIeZpSfgNyheZh9KffJ/6nkbZSoQauDpzOdPDphgd8EYDoGzBIVFGBjKtW2MtAvE2 QmOAh1i1gRyeg/TlkT3OkLBo0LMhX/E+s180zGP6n894oset8ov3y7HH+mcwN9O4ZiH3UKsM dXfuQTNDJBZEgCZPai7B1baov73MsyAqsmUWAgR5shQHSJMmlm6G8eueh+WLCP0zAnTm+ecN ibl1EBDyrBOrx+1UyPO4kKyzISHPOrF63E7/ACem3VwoUaoNAAAAAElFTkSuQmCC</item> <item item-id="429">iVBORw0KGgoAAAANSUhEUgAAAHEAAAAVCAYAAABxGwGcAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAG+SURBVGhD7ViJEYMgEKQuCqIeq7EZ iyEen4DIMo4kXuYyk4nhTpBd9h6VlQ97BBT7HcgGrJD4B4dASPxbErfFaqXtsr19h5tdtLJK +a+GD4z8edrbSmRBYgDcrOGkrdZ0iUT+fO18SWwdtNVYpRfbDCDIn7H9RyQi1QyE8RZhjghj ozaLWZA/Y/uzJBIQIT+pKzAH+Blx2RZ9Vl0nDSB/zvbnSKxU4EBJ+eqaltUchclxAMJY534E er0i8udshyQSyLHqi8TQWMKXyGvloV5oG5Ea8kHhr74f+TO2JxJzsmwRlih/UZ6Jvzs6+4ZT OZ9fZ8DNVqJ/xir/wcKm44/me7E9kViEkwoMZyvK953QoL7VVP2k2yyFw9l9JmoJTgHV95SX LQma7732LJzmjW6LmHyMfOn/QeY5+pFyr4h8oDp1C/ab8yK6DPij+d5qH3rt5nKg2SvPrNAg ddJY7y1JkTtRjhP7bQQwialwieoLa9Xl/Ckf9ZR4+3nlxgYCgEQfro40kr8RIVtZKMTc6VuF 2TlR+IwIYCVeYUVKHOgDBer5CNwi0StOlDafnrEVbpE4NrV4fQsBIfFbSE9c5wNyY6KKINit wgAAAABJRU5ErkJggg==</item> <item item-id="430">iVBORw0KGgoAAAANSUhEUgAAAI8AAAAdCAYAAACTzT/bAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMnSURBVHhe7VoLjoQwCPVcHqjn8TRe xsN0pT9pS1vKOolGTCaZrCLweHzKzmL1UgSECCxCORVTBKySR0kgRkDJI4ZOBZU8yoE5BI7N roux+yml5JmD7uNP79Ysi12UPB/nwaT7x7aepFnsaoxWnknsPv/4se/2ABS0bX2eC3IAlDxy 7D4vqeT5PAXkACh55Nh9XnJIHvfAajc3IT3lOuy2wjExfAxsGphX1x//3u7rSPl4bI02+d3H dRX3SwXuncgf+L5ufih1V+7velswWv4y9b2RPLs5wU0B8I7yAI2gUMlwAdYmDyXviYH1+6Ns JFCQKey97D+5sRvkT5kEpXytj5k2xWMtfyf0vY48ROa7YGWZSsMJz/ndRE6euLdYVmNNp/KQ 8hD4RJSoFwIcdFD3Cx8gGZqEpSodvJPhb4tUXX+F+ugN861t666swbAwKw/4AYCT5NtCm+m0 rY58FSSkgya2x8ETBnSepMZtGBODIgrKeEnVObaOv0J9cvK47Gr1e4l7HBnUl4dZ6APkRgXR zMOVR/NJLCXNyhPJQyRUJKozl6iqtyV0nSxSfTLyFFnglDMGWDe3lEOiZACGeJGt4yKgazdx yBSQZ1Y+9z8MywiT6HsbpqsySYPJSb84iGM7pPqG5Ml6M8qOzNB/llSe0/RQSQajtHOWPFz5 cGKiB/f8tGX20akO3Z9tI8EORv6mU1z27Ky+EIpEHiAJmanni9Pf8XcUy59XnuaASg+daTgk qlwNcKOMNypkknc2TawzcIKNBm4qGf85MKOaXK8mhPoSebLSlRl6ZlCYL3ZTgJV2FRMgisoM kbUzYM5WnqrIFXuv0fxR3S8H/JE/E0fnaTypCijTh9oWXhJhMsTB8SJRbS86plY37zptFUvC YmDOKuco+HnPnV4SsipbdqCgdlLFErE6ADCXdreQBw39oeJydmisH4MBWAZ2JZ0tZ3dvMe2g CrwBARZ5qqNu1TJ6lecNMKiNEgR45HFLrfx/N3np/vXMI3FNZX6NAI88MADyzoG/tlff/yAE huTxFUYry4Ni9hhThuR5jKVqyOMQUPI8LiTvMegPTwD7tGILLn0AAAAASUVORK5CYII=</item> <item item-id="431">iVBORw0KGgoAAAANSUhEUgAAAJ4AAAAdCAYAAABbodUNAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANmSURBVHhe7VoJkoQgDPRdPoj3+Bo/ 42NYuTQJweDgemaqtrZ2MRCapnM4ndWPInABAt0Fa+qSioBV4ikJLkFAiXcJ7LqoEk85cB4C 02D7zthxXlGJdx7sH19ptKbrbKfE+zgPTtz+NPQz4TrbG6OKdyLun19qGkc7ORQ01H6eC9cA oMS7BvfPr6rE+zwFGgGY7NC7QoH5Ma5mLXyUeI24q/lvCIjE8w/0dvAZ4RM+4QZuXbawi1TS x5uaGZDxWPqvCEj28woGqgDFkCiFtP7u8V/PqoQf9rdvJcS7iLeCs028+NzyEP07kAqCG9oA oeE5l2QhvBTtA+nQ4YwG2EdSEvv1eWl+fryZDGlf894xfjI+u2n+FuKl/lDXG2skxSMkCFwC ys6Ne4WMqiXZS1GCGff+90NoNUjzR7WG5PD2ssxvpFyhv8bix+3H+Zj83c06bMC/uZBAbFw0 hbzW2zoNA1Kj7bwWHPLif1C5oh3AAZGEs999KEFREgbi/AXFbcFwEz9uP0CxWilwLPH8rU05 TgpRrS7W2FfkeEVFKRGPhBrBPhFnjF36gAOHAciboHpU+gdzyAaxI6Dm+LEX4UBBOo545DbU hgGcjJPyvBrZCuKlwgLMmdbOl6H5DShMCvbLayGYgLPhG5w5Go+FS9G/PAf1/ldjtHWBb0g8 mDAnMmVk4TZ/oCzLmldDvLyqNSNj5/0mRQIJrUnVoT0fKiW/6DiumpF/xdBX6D7EfdTxkvHz rFCLKjIkqQ4MFzLSb0gD5zC/8fspHkNfejm8Au1oI0F7NscDB1osXqQcM4brvcSTbyt4onQB SaqwO48tO7GE2qzCAvkHG0Z8Udjj9sFSKbqQueMAd4HEPSwpC6lgQ0mLkntU4bJL0N4msY/z IYVBZBNUJcuf6PyFUHtIlcnh9w/tFIAryPFgs5CQhksq3f82Nw1aEdlB5iC2cY8nHt9XW/PI vGfHvwZayISKJy4cQwy54oKMU/zE+UkD+xDSrZewmOvGgrGlgqbnW/VFUHeAZv4uFW6eyorm 7TZe3bWRTa2fjIBMvEXZ1nyODbFZ/N9SvCdDpr4fgYBAPBLCPLnmvI75VoKT4eVNgh+XFfGI Degcz0RAVrxn7ku9vjkCSrybH9Bb3VPivfVkb74vJd7ND+it7v0BZBhN24KiQDEAAAAASUVO RK5CYII=</item> <item item-id="432">iVBORw0KGgoAAAANSUhEUgAAAHEAAAAVCAYAAABxGwGcAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAG3SURBVGhD7VgBDoMgDORdPIj38Bo+ 42M6C4qAQJtFozVdsmSxFccdd201oB/xCBjxO9ANgJL4gUOgJH6WxMWDNRb88vYdLuCtAWPS 15J/mMqXGe8rUQSJG+AubCctgJsSSeXLjcslsXfQggNjPXQNhMoXHH+IREo1DBvvERaJcLBr s1qFyhccv5ZEBGKrT2YEJoMfTsri7Vl1kzJA5UuOX0dio4IISq5XY1qCOxqT4wBs1yb3U6C3 T6TyJcdJEhHkjCUStdYc3wLfA3tmbRypUTmU/bX3U/mC45lEJCu36KUtrZvL18vfESTs6Pqj yN1KhN4hIRubpl6W+dR6L45nEis7qcBYm5Ct4wuuJgzvOc1mcbNoh3fPmdRIcDLUNFMORxJq vffGCzstB92SgF1tB5lJhMlax+8DsAMdEXlBd5qdYDzsV+7CyE/OMnt58M4467UbKs65wlYn Nlqe/6qeUjVO438jwCIx1Z9DVV0bPdWjmRL//r96YwcBHolReXtTkKywHQewNsa6mmN310Tl c0eARyIqkTHzKazPIECSmNSlqnqGHt5TSRJ5y2jWkwgoiU+if9Gzf/4lnuaOjmFrAAAAAElF TkSuQmCC</item> <item item-id="433">iVBORw0KGgoAAAANSUhEUgAAAGwAAAAVCAYAAACjSwvEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAJKSURBVGhD7VgNzsMgCO25PJDn8TS9 TA/D6l8FQfHr+i1zccmyrAgCD57YDdZnqgxsU3m7nIUF2GRFsAD7CcAOB2Yz4I5vjOYAZzaw u+ZbXLdt8WtYMB35bi+9rJ9/r31Djor9IDcOSsp2sERugbj8V/20sdxhXwtYSXIfsLTuWhST V0DT5LwYdlsB4kFtOlHvB3A4cxYBAq2rX/sX/3v/pwEsBuyTZsFqHSYVnE9Q7gBNXuMVOo52 iAewjRdfD2d/WcRaXf2wltoP8Z8bfgAwXm0amUnyw7lEKQOUiMHJxgJIKemanDhQqrs89s8M GES5lA6FCEiRaPr/0WGE5yt+voPIsI4OWKhGcp6cxlHCNDlxReiu2C3Vuejt13tehgYoWNAP NJzOwdzN9zoMV2vIRWxX7YMdqA/zEf1o/5OASd3VipLTGPZXjw/r84IIuRuhRJZkCZgKQA24 9+Q6YKBRniYnNDo6LQt+pUmQT6gi6Zfpt+nf2RhZ1QNzGRanxMi70qj/bR0W6a+iaTZ0dOQl KZxavaxJkyg/YU0DbE1/BDDC64KCl7NKue4So1X4Xm+NUmKmzUJD98b6TEPca6GbtClUGGQI WZGcNyjxPCPRGYYvkhUA3QM1lBwZWWmAz0yJdELjIzVhCHTW3bo4p824TRxZdTFGA8d1Bakv 1mRUb+vHXWT5wKupNhUS93v3kicaa9kIGVABE6mQUWavw1amn8yAAlj9Pqy8l6Nt/8kz7Mnw 57Oldth8If22xwuwyfBdgC3AJsvAZO6+AL2rZIYV61pAAAAAAElFTkSuQmCC</item> <item item-id="434">iVBORw0KGgoAAAANSUhEUgAAAIkAAAAqCAYAAACHrHiJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMpSURBVHhe7ZqLsawgDIaty4Ksx2ps ZovhACoC8ghC8ARzZ87cnV2E8OcjAeIk+B8rkFFgYoVYgZwCDElOIf5dMCQMQVaBsSD5rWKe ZrH+svPGbzCQLQwJFi4MCZaylf0O5JhKJdzHK3XhSALxxraIZYM0tNpUOqZwtHTzSlu+B4l0 +DRNx98iQL7HguSJLU/ogUCSsOVbkGixLjB+6ywmSIjAgOSpLRiQZGwZFpJtma4UoUSYV3E7 9Hji2Pqr56+I432GgGWt3ltfoec72jIfx7/oIvFsIQ+JcsA5aWGHVbn6zff2Z2fb0DaSRG0x Y/7EOoeP6OCoBowkcVs2sehoev5/79C3hTwkekJnlFB51UQMKcLxeVs8x2iYVHQA3qkA003c lt0R6ncD7umbUluAkKRs0b/J+UNtIQ+JlF6uzjMd2E4/V+0Fy11ftZoAoAAhiduiCQmnPGMU 0BYgJFlbkvN2bRkAkrhqasUsi5V2Ak2dvQvYAaUN42nG3wdBtjulo/vt9ZylLqlNu63L0JA4 exSllJOO9BewSFLplWCaecmWK6JZ4GZsGRsSnYrcu5AzH+8nF0CqqQRkB/F+UlL7gf627KnZ RCsLjpQtYUggly/V4nXoQM2jR/zuMJU3hxgWkn1l9IgUb7qvz9jDQtJHvm+M8hIke56+ndO/ oTm5WbaFpFfBipzMtA1uB8nDglV1jYS2/iSsz0Ji1wDOO/3Qd7fZJgpWrZSJFuACR05umyhY JvRSvjKQlBWEyotEMTA4krRaMnj9GEhKC0KlRSK8KXDP2ApY6SZWKJMmhC7XshduqStvPt1g O7Zl/6Br+VBBqLRI1NJo7quvAnlITInbKgiFvnurYNVXr4ej+fUb4Lu1D0dr/VgGklBBSL45 /qBI1NpwOv3dU+u+n6MDSj6S0PHG/7RUXzD6QPR5RaGVIAxJKyVL+slu+ks6w2/LkOBr7I1w nCIJvcLAkHSFhB4gzo1rV62+ONjxVjzFyjdHkh7A6s0r3RegGBJsSIhtUkNyMCTIkLgvGLuV WCp7V4YEGZIRumdIRvAi8hwYEmSBR+ieIRnBi8hz+AO9bYG3mUpLWQAAAABJRU5ErkJg gg==</item> <item item-id="435">iVBORw0KGgoAAAANSUhEUgAAAIkAAAAqCAYAAACHrHiJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMtSURBVHhe7ZqLkawgEEWNy4CMx2hM xmAYQGT4SvMX7K3a2ldvGLjcPjafdiH4gw4EHFjQIXQg5ABCEnIIPycICUIQdGAuSM6drMtK 9jM47/oNJtKCkNTCBSGp5WxmvxMFJtMJ/euZvmAmgUTj2Mh2QBoqbTIDEznac/NMLd+DhAZ8 WRbxuxFQ7GtBkqIlhR4IJA9avgUJN+sPxrmvZIGkiBqQpGqpAUlAy7SQHNudLcRfFwyGOar/ 1vdl9qH9QcBSnl7W1yqOXF4wG2qR8tmY606sw6ChZXhI1AAQZ1o9yb66j8WlM4lfy0E2nsHu v3Y6AGsBZhKvFpoVb2CJ+m9tO6Vn2OEh4ebeTwNbV40ng30uTbmN4DCxDAO8UwEuN09a+Gd0 zGwtQEj8WiiowqNjM+bv8WV4SAhNlvt6Ly2OSbvSqTSaPdkAUICQBLU8jgXUAoTEr+XOrH9Y 7C51LRNA4nPNv8yYew/IFgMcG09Dlv63jWa6h8F4G9BxK08NyzJMi5XVlG5VLdNC4lxmrOWo 9NPrCZ7cICrg9tLCJJp7t4CWSSFhwTdON2I/cO8NrrsSwFKT99CyiPDlUGYIJSDttchNGdWk 3xE9aXFDArl8yTYPO+jmAItvxLqGkHSLVJ+Br4wRl0ERkj6xGmrUTpBce4an3fVQLk4utiwk rQpWkwflbdMrB0liwSq7RvI2RyfUE4REu+AR5/1dvfQBFolqePcv+dvHXfysjCcsbhKSqIJQ QpHIBwlmkhqPT9k+JSRxBaH4IlFZ2dhbSweU5cZXKHMVhOKLRPqk8HTTMsi5Y4Gu5V0Fodgi Ua5Q/H4/B0CQOF/miSwS9ZviG0Y2a0nAd2vfIF3duD7rYcuLOTH7//oVrF7iplOGvbRePo0D CjyTmAWhyCLRm8NYVRu/YDSBaPSKQqGJBSFxFYRSikSF9M7RzWBV9iAkc0TlTbMQp8iIUn1v 9QhJ0wiMB4h249rUqy8OJt5EH7HyjZmkBbB88xr3ok8LWdAxEBKoU6ntBtukuqaJkKQGH/g9 /e5Ir8yOsndFSIDB/nIzhOTL0QfOHSEBGvXlZgjJl6MPnPsPN3qGBaoYuTAAAAAASUVORK5C YII=</item> <item item-id="436">iVBORw0KGgoAAAANSUhEUgAAAFsAAABjCAYAAAD0H3xZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAS8SURBVHhe7Z3ttaQgDIZtYPu4NdjF NGETu3+2g6lmfk0nUwwrIAoMRmOA2Ulyz7nnfgijPoSXECIORr+6ERi6nekTJ3pMZhgm8+hy 7pe5j4MZ76/dszGF7W98mPpgjum+7uNuAzOEbUGPBjCwDnb+MFOhR7GD/ZgG8wGDfm/A192M 493EosILttXo/4K0Z28lJdZwRrCtfOwPhk5LV0vrpempnPCBbbstaNX2xheJKXTxVkJuGzlc FhvY8U3tgltkJtF1Cz4ezJy7OHsy7jvrKdCxvZNGRsAENiwhG4eCfMSwM/BOeoJZQsfAbrFd GxPYs0RkI3/5/r2UbBYb/i5YsR/hUqtPHer9Y9nJH5N3RXnAPtTr1DtIvAQAaGLZGUDoWN7Q QeLkwE6gWoteJj4l2O5/1toLkyPo2I6csIM9HUwZ7aAY++Dr35BUzFGVtVHeQELH0sLiYO+O YSBsY6AZ6dnZqsIO9GPY1rVLBtrIeqFjB066wl4BLe7g4lP7qF3ws1PNho5BvHnBft7Mz+3Z ahJI/tzn7Zf5+cvI9TsaIMnECB/Ay7Jn3VXYBGtAVVXYKFy0wgqbxg9VW2GjcNEKK2waP1Rt hY3CRSussGn8ULUVNgoXrbDCpvFD1VbYKFy0wgqbxg9VW2GjcNEKK2waP1RthY3CRSt8Ana+ BmlPiFkhp1ygvBDrW2K8X6HpkYcpD7ZbKY/gAplQ8ypv1RQ0gbD9SnlIZ9hNLWuQgiYS9pZO FktI+xQ0mbDn5wCcTt+zHL7GKWhCYS8eiE1ViEfGxiloYmF7Kcm8kMYpaMJhZ0nujVPQxMLO Hypyk5XGKWjyYIdU32LSfNsUtALs2AUKuW7+Z49ZFmU6bC3zy5J0shlWuHs3m/r0E7MHTcEG 9uKbQg/Ak6yyRmVusNtJie9RpMZkAzuWkdxFqhywuWzk3wp7SwQvJIQDkbIazwy6QNGaiJ79 DnWtb4W9f0/tAzbiLBvU5sYBG7Xs2NwaB2zUso9gr8evPjMo0hs5YVeNAzYnrqBc5PsGyBO3 2jhgc+IKBMFeZpNhV4MWzwxeAs7Ssi+R6FBJYXeAHE6hsBX2Zgt+nyg2+40cxbPT8WUJBbSL riWWJm+l5m2+0C9GLxh2tkFth0imWNhOTuJ1yMaRzJAtK0qzt1X0eE21TyRToGXvbAnaOJIp 0rK9N1LYq7VDJFOYZYe8kPeVoPHPb2AzxKuRzHSOIQw2MMHqEMlU2NFUf934Vnc/OzHtJ8VG 2qaeiRwgTzRZsyIqI83Qvn+wwlbYFwmQNPviORHV1LIRsKhFFTaVIKK+wkbAohZV2FSCiPoK GwGLWlRhUwki6vOCrftnI5qeWlT9bCpBRH2FjYBFLaqwqQQR9avDrrulEa8B0q62VMtu2pbQ an2kwi50nDVFbX6J51Rxsy5esO1mW6femgdL02veYce/z7qujPB6a56DU/P96jVhs3sfpN+O qJbGVrXsaDzhkTLsen79QbJG48VGwAd2VSmpJSOpvDGCPVt3tfeu14Gdb5HEC7bjXWPnnwqw raxlHhI72H5w6/dUQdmZTF9uH8owhB385E8BL4O2V8UU9jYxKaYJI8Iu54umaWyleoxhn8fU q+Q/MNwKDzN+ypMAAAAASUVORK5CYII=</item> <item item-id="437">iVBORw0KGgoAAAANSUhEUgAAAJ4AAABiCAYAAACh1WoZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAcTSURBVHhe7Z3r1assEIXTwOnjrcEu 0oR9fB1YTX6lkxTjJ14SLwgzsEHRfdZ6/xwng2weBxgFHi3/UYEDFHgcUGb6Il91+3jU7St9 STcs4dM21aOtmk9U3S8G3iDKoyZyUVQIfvxpqqiH+0LgGeiqNvJBFEhOk58Cr7YO7FkuA96r frQMdMCHoh+udL1H/+d4oD9NW1VNq+14rwGeEYnU4agzMM1h84yZTberHfNdADzTxXIigaPO 5sl0qa5hjL7LLR8883Qy2iXlrp9IeLpTY6NphuLB01Y4aQtdzXnf5XrGeFOdlQGgcPDYzWZh XZQX1bVF4eB1Y4uAGVWWxjpdIWOO8ztTnWaskrynb4w3VPZVy9NZZYOnDO+nY6GYG5KBpxn2 3AQ8I9zsCfclPb9jm9lvpsi6yG/Nfe7kEdepCRhsQwTbDuiXkU2b5hhD1/KthDBXdyvwau+r igG6eQN4X/co84ImeW2f9U0QyLsgGZc/uJbgrV8Zbusu89+2g0bTgyVLVxG8ubrWgbG761C9 BXEMvPvEal0vk7HSlt+x+wLR5S7rdcSzRVdzf5nGwQTP17jO7m9451uZjw2mJ3634Rxfakzd k7MsW+LVnYz9NM341Y2lq7VB1pcvi1g+2XzXCZ5TId8XLJbuaW+MsxvtZh8seMd4c9A0bwC2 4FkTvd7yfTjJr98HvPez/Xu+5cp0r7LDPpsaYLSNp2yD98W7S1HDT5MfTWQ6H3jv57/27z9Z cxQ/q/VPLkYhxplq0CxvBHYB3h5Q6+iYEbwukbYdz7GrlT0JKqtOVBF4fZconFlKJyM7g/bl bFCQbulGbL9v2uK62m4quh3PcXKhQkpmLAFPFHHmxckG7X0KRfJWHDy5+N2pLY+HS6fIGmBp dZ8xngA8SQQyEC274FXC2TKr3f5mN/8BTae4wTNXAQnkEOpMyYovVO4zxgsUkz+TK0Dw5FrR EqgAwQOKSVdyBQieXCtaAhUgeEAx6UquAMGTa0VLoAIEDygmXckVIHhyrWgJVIDgAcWkK7kC BE+uFS2BChA8oJh0JVeA4Mm1oiVQAYIHFJOu5AoQPLlWtAQqQPCAYqZ1ddwnTCnqRfBSqAr3 eexHm/DqdA4JXgpV0T4PXgOLro7xR/BSqIr2efDCHHR1CF4KRRP4PHoNbIIqMeKlEBXtk+Ch Fc3pT7DYJ+ftqMpiV6uS61zGJYN38BrYFA0ZOLlY7yH3W4wsWT6aoiJenyWDt9lOI3xLMa9O mQyiwNtAplmFn6mC32KKBq+fBw57uYy7UoVtr5Fb9P3ysOCN4pxSlOLBOw80iDtJAt4pu1uC h+AF5gML3ryrXQ+IF/sBr7bYcl1DVZXgoZSE+IkC77fvreUAtTl4Kwj7vNQUFl3XLFXsN8Cx bYNv/s8VagkeBBiUkyjw9tt5Puu1bCDo2oct1R5tBA/FDMRPIvDMJGx/P91FxFtVw3XNmDLi Qdr9cCd5wRt32rRufOi6hpCJEQ+hIsxHXvC+t+3awl92MoxaAYKnlizlDwLBE9ySZ6zmOh9C dXaE4FZ6E4InVSqLXR7wNi+5Z1HNdQ0pAcFDqhntKx1431c8w6y2nzTsnFvvuhZdw8kBwYNJ iXCUEDzE7QF9EDygmPGuCF68hvQQoADBCxCNP4lXgODFawj2oP38aXWa9vx1kva8XHBNXO4I Xkax/UXp188uD29xnBA5Fr5/Xq7/7pAWBA+pZqwv7fpZi711YdB0X47zcmNvXft7gqdVLKV9 9KIeV8TzR8OUVVv7Jng51faUFb6McTbO2zuo+UTRzshA8C4B3qwSVsDOFe0IXmbovJ90RXe1 fZP2i4JE5+Vmrv+8OEa8A8XfFK1dP7t7Xu4KvIzn0ErlJHhSpbLYadMp4PNys9RxKITgZRRb VpQ7gbw9+3aVQI45L1d2gxArggeRkU60ChA8rWK0hyhA8CAy0olWAYKnVYz2EAUIHkRGOtEq QPC0itEeogDBg8hIJ1oFCJ5WMdpDFCB4EBnpRKsAwdMqRnuIAvcB7/1s/55viGh0Eq/A+/mv /ftP5uchMzupFdfVnqph7hPxCB7BO0QBgneI7HuFMuKdqjkkN2P5Bk/ys5PZ3Aq86pTb0WuI +H17V3pVCJ6m3Q+0/e6oVdVtvV5TceB9hRZ9H/C6zdLqvaV/oepl/N2nafrt3qyLeTLeB6qo V121zUfmrex0Sr/6yrIDvazuJ7K6whhP1xaFg6dbYHIi0la3cgHwzGo6xSC1ePD6IxAUFT4n fOWDpxnfmTYoH7xLdLelg6frZi8CXlcNs7i56KhXNngm2mlP97xAxBs6zyTHGWTrlwsGzwx1 AjILlwFvSEnIp/PZmLp0QeaIibCswoXAm/JhhC8P6+HQXWeMt1B6egUV9iTmabSSS8Hoe7GI V3KD3uve/wfnTRT1EJBAXwAAAABJRU5ErkJggg==</item> <item item-id="438">iVBORw0KGgoAAAANSUhEUgAAAIkAAAAqCAYAAACHrHiJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMiSURBVHhe7ZqLkYQgDIapy4Ksx2ps ZothCSrLmyAPhc3N3NzOrWLy5yMEIuP0QwokFGCkECmQUoAgSSlE33OChCBIKjAXJJ+NL2zh 2yfpd/sLJrKFIGmFC0HSStnCcScKTKES5u2FulAmwURjX/m6Yy7UrikMTObT4pcX2vJ/kIiA M8bO35WjYt8Kkju23KEHA0nElv+CRIr1A+OzLZxhUkQLSO7a0gKShC3TQrKvjC/nNicIgyWO rj/c/8s41mcMWNrshbHULfD/ZePOBqyjLYZfPl8sW4aHRIeBG2l156vMGtdfdwrWziRBW0Qm uoDl+mejhEFmNWQmCetyDfDh2+I/LrB1GR4S6dA1M2Fd1Wap/E7UHypASh9YdiA7IM9UkMtN 2BYB6mnXvlrPlGBn2IKEJKYLDAHfY3UZHhLhrpgR13LgC0AMBMgyCFCQkIRtuWbtDxY31khb kJAkdfEteWps05YJIAmrJmuBVWSXSA1h1AvoAORfCDMXbHFmrzZUH1vCy4xdk12yzQuJKhA1 UazliMt6BZFJ8pnwFUBmy+AhW7zLTMKWSSE5liCVQDQRrjrlqPA7ASKRAZvMc5n+tsCkcHdt kN1itvghwRy+1Jhd/zQGaIrZOr9QE4KkQ1COWdoza9V1iiCpq+eUoz0EybE2xir9KdUe1Km6 kPRqWA0q9qhm14PkZsOquEcyqvID2Z2ExAmiqNB9/3N8jjSsaukTbMB5tnl0baRhGdELYqUg udcQwjeJQmBQJqk1ZdqNoyC50xDKaRK1c4FGbq2AttwkGmV2Qyj0XoSyOHbkTbub1oGtOT7i WN63pOQ3iWoaTWP1VSAJiW9JudMk6uvW255m90yQ79a+xI0EJP6GkG+nkGoSvcTfB8xwl9bj mH4cUJKZ5AFV53qkPGC0gej4ikIFNQmSCiJmDzFYl50gyY5w6Q3nLnKg1wYIktKYZ90/HiDG iWuWr3RxvgLnW/Ejdr4pk+SHO/8OWbzO9tJRvgx0R0iBwYpUnxuUSRrjbb5gbHZiR6ldCZLG kMwwPEEyQxQb+0CQNBZ4huEJkhmi2NiHL0nRe7q6SZLRAAAAAElFTkSuQmCC</item> <item item-id="439">iVBORw0KGgoAAAANSUhEUgAAAKkAAABLCAYAAAALWaemAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAbCSURBVHhe7V3tkZwwDKWB9HE10MU1 QR1JB1vN/rpOrhiC7QWMkbH8Ldu6mUySWQNPeg9ZNsu7aeUfzgDxDEzE8Z3w3ss6Tcv6bgYw A8Vl4Hd9zdM6v36twxsQqQpiWlieONLbHPX7mq1FiLhIhUDn9eEma5MRRm3JwHtdgNmStEjf y7QGF9Df1zpPDQm8Fby5cYrzz69Vn/zpilT0oMEK3W7U3MlMXQ1bwVsAp5j69R6VqEjFNB+5 SCqQzKQ6bQVvEZzXaZ+mSEUiYqqoUE+RZCaUaSt4C+EU1XSXAEmR6gCDZYBJptzW2nYO5J/I yh0M9HMgBi90jdIxlMKpFSqCIk0w1WMqqUz2KUy5BRJbvWOEGkJ+jRiK4Tx1QFCkWz9irO6C uNeSKXYJ9kbcKkaD8KBrGgeJ656V2vi3eUM48F52OoAVsLx0YAypcV5ihm58JM73onZn6Ik0 oh/VxXjtSfdGHN6HU/yWr6ReeLdp/Vjx6v/WboxcMXjhPPDY97ixOPe2ryuRyuD3Kix6Na0i qycawOM3eVeLKld+T9UP7znD7BXm1EPeGPxwKlTmNtJZ6fG5Ji3SJfgR0+cRKiQ6Zy8lqmxp ofrg3SvTUzuUKwYfnJ+247Flw+HsVKT2TlL2dMvzA4KoJ1wpmljtHBBeSdoWw9OXMUrHcMeJ e5SNwTmWSI+FhpZAox1Yt+9Xla+kFmVDeKEdi9oxADjBaT4Q50AiVVPVscjUErb3qWo1Wnqq t5VeO96t07s9iasXA4Rze5x57Dufuxmi8ofgpCvSn+/16/sn8eTZyekidj5azMDP95/16x/R LajwhVOLVOAwq0pEpdrjMMeOoltJt2rBIo2lt4/jWaR98Nh1FCzSruntIzgWaR88dh0Fi7Rr evsIjkXaB49dR8Ei7ZrePoJjkfbBY9dRsEi7preP4FikffDYdRQs0q7p7SM4FmkfPHYdxTgi dX4jvzLP1PGZ6SmI91mkBYHcJJL6CyY1Y8Honzo+FinAIosUI+16YwreVFxJ69F8vXJB0pOE XBBvJpGK94SeXXudiaJSSUvZ12BIL4XFSc42AIMXOk9ADH4iDbgAJl5wDAWRlrSvcZFeEguG NBde6ByBMeBFGngBL+sWPTCESL3OrSUVstvJaV+D4VyvTLWwxOTzeMHx8+boy7QWirDZwYsU XN1ldKBDiNRFvpctTAX7Giu+ClhcuRSfh+HNYLNjJ9bs83GeSV53p2cldSXWzxamvH2NHV95 LK5cis9D8ILv33taGt0q6ROxMhDPC2CCz9eT+tjC1LCvseGrgQXDlCfewzTCdm6cEQcw3T8Q e7nW0wUIru6NPFG3r5HEELPSeZLxHS8Rmx2Mjw/m/sxXSS1Xb8G+xlw9B1rUBOff90ADLzjN B8Zwq6TT36sL5PH/zwXOz1UlNcf7xmYdn2DhBJ+7Jfua68JUGUPstjXUDCJ06x81k5rGwUls doTgdNHZ/r97JkGf0xfpA0JRDWpakRsLRzJYMKRmzN2lku4Cjf0bE5NzTLZKaqmvhOxrVMWk VintjOXGe4gUU0F3mK6K6xQgZkBhkWIg8Zg6GQBFKqBYe9MPTtfn0eGwSKNT2MsJxvnScy+M DRgHi3RA0lsLmUXaGmMD4mWRDkh6ayGzSFtjbEC8LNIBSW8tZBZpa4wNiJdFOiDprYXMIm2N sQHx0hUp/x6nAeUIhzzO73EKebuxhkyo46yAj24lTf3svkJygzROHWcFfCzSICVlPKiCCLyi qYCPRerFUIHBFUTgFVUFfKRFmvSb6aHJLenaItRCHScGX+KcsUifykiga4tXZTIHY0QAHnO+ DyW/KZ/rNRgXvgw5oyvS9TRIsJHuZTyhJddms3N5cSzCFsbEG4Mzp31N0M1k5DFXznRs70W9 SnN9RTQIfeqD9LcPw87tZbNzXCLeFsYXbS37GixOt6tNzpydOiAoUmXrEjNrPbmx7K8Hi9ds 9R/wffHMri12nHa7nZI4n/Ko2uh5NfOYzOlGewuVpEhloDEqXX1sdj6Llvm1HWVtMKTXgKFr bEF6GFfHvgYP3JHHjDnTCxVNkUqR5XHuu9vspLOFwZPvHilJutjtUMKZG8uVf6Ii3UgU2xlR 1RQQAmCzA05ZgbYwbul5jMhoX+OBAhyaO2fm+emKVOp0iupNrxmGbHa2niqhLUws+Xe8+2yS 1r4mDmdmLEchOVGSFunWmm/Tfo5eMI6mIkdH9+VFUCa+iLgB7m0ecZHKNeRwQlU7EKPdnLBA hQIaEOkuVOHWlmcxlbgc8Om8MrDvINi5bUSkXlHz4M4y8B8XzcaJQlcF/QAAAABJRU5ErkJg gg==</item> <item item-id="440">iVBORw0KGgoAAAANSUhEUgAAANcAAABCCAYAAADE1kNFAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfnSURBVHhe7V3ttaM4DE0D08fUkC5e E/QxHaSa/HqdpBgGGwi2kS3JH2CSu+e8c3bXIOQrXUsWsbiN+AcIAIEmCNyaSK0p9DmMt9sw PmvKhCwgkETgNT7ut/H+eBXh1DG55gneBtCqyMK4ORuB1+NetLB3Si5DrPtYuHBkg4obgcCG wHMcMjOnLsn1HG5jPGAtEe02RTXzt7uQG084zusx3m8hqXl5Rl+ri/3rYVHwdS5Nb46hWq7O 8317fzGkcOxS4ifGL+6PUZsk9kcus8dKpILWkd/j+9yYG487ympcnxycPDPuOe/pe8QwnZ6d rG+C5eq8EdJ3mVDefovB2TX0E5MiajHsjFwGhETxgogsNi9eVxVuPBm0JvCGwY9cnDwy0h2z zkefQulkCJ+x8h42kwyd5/3QtNBO/jKEkYta4NxncHYlJ65PD/sil5m0qoDBVXW48QXFNeyz ZAnk9ei0lE52Xh1XXDN0fj0eSwV5nxZ6C+6bKHMEp91L5idGrsY9uyKXXHknPydXZG7cXZqc 4kmUXLS81YjPdRW1Of65Tkw6FrtoHBajyAeV6UzsuaKRKySXxk8m1ZWLf0fkYlLCmP25PQ4z 7uXSEid05K2pSU97rjJHPYdkZTpTBY2lmOGEmbXoFI08nB9ZaHQ+2hG5JkCy9gWxatHqKInx sAokIZcFeF4B6fSD06exA2ekWI01Gv1qqltZXYpTRTrLqoXDk7MLNz6j9Bzk1eB+yCUJueTq 4uTS3HjgRe9NsVuyXf7drnCcPHLPJTNSM4em9lc97g29zJzYE4p1FuLt4sLZlSl8Sfdd1yKX EzW2fapbCYvk39KIuItcnDxhvt+MSZTg3LL2oUqGy1zwaxzN6wPCBhE7buk7Z9c4FvK6wDh2 Ra5B9JMMZxNqS7Hhy730+O691G4FZV4ic887uaAxT8fHQPt+5hyapXWO2y0SuWx02lLQPQac H9EofDi5zjE9ngoE7LKlKMdfMHLByEDgPARArvOwx5M/HIFrkuv3Z/z78/vhpsH0ro7A78+f 8e8/2SyQFspwwlVAYC4VYc8FTwACbRAAudrgCqlAAJELPgAEWiGAyNUKWcj9egRArq93AQDQ CgGQqxWykPv1CIBcX+8CAKAVAiBXK2Qh9+sRALm+3gUAQCsEysklOpFbWf3pmbIjJ7We2+Ox jOAYROpUnspGggOFmT0ba1lDLudcu4FcrKX6PFAo76W3OpjkyPnmjHyjVV3PRhbm6hecbzeQ izNqRp88TmTxuKKXnm2qE/ZYJBRI9vZzriflKfQpnrtUQAd2A7k4YxU1ROGE1xqfV+ndCVpx j0XzI9N4b7+3lmJ5EX1qTVcipwO71SeXd2S6UV++A/dcZa28JF5Qco2zpyBbCiypW5U9l3kW Jy+lT8k89ff2YLe65Aq6CdkJcr3ciW5K9EcTvNzksIJGD0YSuVbQpUjdY3ELT+THCtTyRL39 RDPLuqgHu9UlVwhDq9bIB0Yu2zItjAqt5pXlRutNTpUvq8ciIef9v4Ivd4gioaDqWDRf5uYO 7JZFLq+7TgLoT4hcti1x2KVJ3CevkfcwvfTexYlYj8WkWntSsPIKevs1QmhuJ32y3bLI5YXc 6ArR8PtTR0autfXYO73V9Mlr5TrKXnqiSJOIXGRG4pbilfq0gsWTe9lSvPtyLvX+xDii5P2K Eu1DyWV0O/dlJI2OopceQS51bz9XCclLZGlzVaXpdZefa7esyKWZYPrLjxpJ5xQ0MjXEbUCg 8knkXYr4KZELngIE9AhUj1z+5rdBSmiztKN/W6gHFncAgerkOgRSkOsQmPGQMgRArjL8cDcQ iCIAcsE5gEAjBECuRsBCLBAAueADQKARAiBXI2AhFgiAXPABINAIgWuSC58QauQOEFsTAXxC qCaakAUEHASuGbnwEhlOfAEEQK4LGAkqXhOBLydX7pGE2Cnb+ayXbVNg/nYtDhS9Bg/zp1wM DlPQTbTIFgR7Tbg5ceOcHWVzvyy57qkmmKK55x6mi/X2C+WF/z1OHQNcwnXQIanLg6Ax40l6 Kpp7Obtqx/Pt9L3kyuhr9/7F/30Yh6mVmcdv6qi7+wz09hMtedRFSdzDGzi7cuPjHLVc23Lt KqLLwSW/iWwAKD3pmtHAJNXbj+w2RBhqM0T+ipjtpeGNGRhUe7ZCkKin4iqPmxM3vot8+XZ6 DvIjVzcFHo0vNRMu64lY1nor0jMibIhiV8kgwrktA0oXiEKUyzAofHjW7XxHKW5O3PjG0W3v nLcD0floR+Qy5yXvflqmNJYUZFosZeRlE+xYwu6xduRyJKK3n9ZqbEGDsys3Pu2MbVrodi/2 98pClc3CqmBlV+SyrbNKGo6y6UEKRFm1cHhyKy03LjRk7mVFGOQ+tOQ+AV7cnLLH5SmeLaso F/++yGXTq4LUsKivncDIM8Jb7zz09ith1XKvAHfOrtx4lHwacul9szNyTXgbIBSh17cuV5JV Rq5dFSrcCEf2aafuu0owqMAVtQgBuYpL8ZG0UGEnE7V2H8Vg5tofuSy/woKBxmLpl4nq3n7e RyiIr44E/Q93bbI1qle7lnuhWu1BFQTR5NrbiZsTNx68RFYQy2YrmusXVLok1/zSUBOyK9gY IoAAiYAhZd5WpVNy2c0NCAZ3PxmBfGIZxTsm10owU/rOWzlOtgwef1kE1hSzzO86J9dlrQPF gcD4H3pX5oeUMhbHAAAAAElFTkSuQmCC</item> <item item-id="441">iVBORw0KGgoAAAANSUhEUgAAATAAAABmCAYAAABMW82tAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA3bSURBVHhe7V3bleQoDO0ENo+NobOY JCqJ3Z/NoKLpr8lkgqk1YGGBAWOZh8F3zpnTXdU2SBdxkYSNvj74BwSAABAYFIGvIeX+eX2+ vl6fnyGFh9BAAAjkIfDn8/7++ny//0QvH4zAjEJfL1BXngHgKiAwPgJ/3t9Rh2UgAlPk9f1J kPH4IwUNgAAQiCDw83kFoq5hCOzn9fWp6nj9eX++vx5MkE/XX00bYHBv+lTj8/3+8IByDAJT Oa+q7AXjxeSFDdybvYx0KpzkObEBCEyFjg0S9k9ffZ+u/8geGI3dW21uLTli9V8t+Hqzi30u zFA6N2U9olb5aTeUvD+BqcGp7X2NbLyljBIENm4IqceObW4RcdG8qTa2ikzW1E4gvCtlmn47 ijhJtdsTGBe2FiCrbyrLgfFVbuRHO6RGPov+Vxax3hisBLat84xYtHF7n0vKu6Z3nBy1lodF Tan+JLIwp+bmBNYofJQarzdQ2qVu4S3WYHIJgc2k/8g2sBs7RVh8Q8rzlBi5XLfZQOjI7SJl I2L72Xjh5gS2AO/tOtSYu74HplYTShTSAIe+28nirzzVhK3QMJsEMf0tN8fChZH19wgshoHN KfGQjQ9HDwzOENg+HnO9pZ0uR7v/hhy3B8vpM/+ONZrC5wR2Py9D0PcmsMr5L26k7i4cJQp5 wjD0nWsN11ezCsSUaPKU/ourb3d/+O+ObY7ngZ7CwOoafyaxiw1cILCr8tKuoLM7mCCiVH9n ZKHU0qMJzNlFUbE48/bM07/uawyh7zbvTa04Yz1Hdk7/zRum1W+bz2sSeTD9jdPFdtIybIDu 2b3eQon0HhhICKyEvA5RsbA1RGCp/gSyDENgr6qP3q/xu3aBPfIJ5YQO80R+7qGtR3W+tzP6 k9eRCutH01/TkXk97YwNJNMaHTCQEJg1Frm8ynvlOV/7ORkKpvrLlwUEdjDb9a7Ky32ANvSd 30z1NwbOs5TojpCu2mgWTFIv186ivwJtj0He62yjYVBc3oNcVqq/XFlAYKlpbZPUzGBD33kh h9muHiuMDMIQ0tVLcuv7ZtWfdNWe1mYD/lPgQ2LQYsw4gaX6uyALCCxKYCaksDtuGuTXshvq f2feyaK8WDAEEfk+vW8K6U/vn+0fa5lP/y2sdG1geYWFnmpnP5U3OhoG9eWlsNw8C5bqTyrL GAT2+9fn71+/e89o9E8IVN4VBtBAIBeB37/++vz93wCPUdRN4ufChevMSjlBeIyhnAKBMTyw ZcUHgU1hb1ACCBRFAARWFE40BgSAQEsEQGAt0UZfQAAIFEUABFYUTjQGBIBASwRAYC3RRl9A AAgURQAEVhRONAYEgEBLBEBgLdFGX0AACBRFAARWFE40BgSAQEsEQGAt0UZfQAAIFEUABFYU TjQGBIBASwRAYC3RRl9AAAgURQAEVhRONAYEgEBLBEBgPtqHp622HJ4OfT1dfwU5MOhgeLIu QWAgMBcBTF4QmIxLutwFAgOBgcBmsQFafN7L4Zt02KI6jZEXja1Qr9Q/E984sW0qU4HAZjHe UusfPLBxPTCq6kMkRcRFn2uNre6HVeBeC6RU4MqdlYPAShGYpDR6KdIp2Y7UyGfR/0oOrDcG K4FtxMEqcWsb8T4Xk9drl5+F7xf2SPUpkAcEVoLAvEFq5T6X5C3bloTAZtJfSmB3wOBMWbXC 8vIw0rH/BJlFrzsRgoLAEgQWKytvVzhbtcdr5KCcVBXiKdUomwROaatV17cqM6cqNNBED9VG HFl/j8BiGNgck8o1hWKlHhicIbCg3fMwkF2w8+wCxmb15cVgjGdmsAq0ncIoEz8QmHKsl0lp axw6RqAGQAFPP/XF27X8d2e82yQwS3FWVP+QrhPqr4OrmA0k9Y3Xh+zihV8gsOvyrsT1VtXZ GVkliCjVZ648IDByV8mTOCwrv1Wk/nmFqngHqnuXYppK7WhjCeof0nU+/Y3TdQYDckCXEmt+ xXhKpPcofCIhsILymoIvnkcaIrBUnyflAYGZWOhEWXladbeJvOeV0QrbxvQP6Tqj/ikbiOgb Sx9YY+hgAxICKylvKNRMhoIpjPLwA4EdeDX7svJmtX69WCgZaCO3NHolp6pYsyFdn6Q/eWfu eMdDRw78aDZwWd6otxXJra2he+xxixx5QGCpqW5XWc9g/ZXuQmn0YkxTq6Hdqq7jrSXPwcLn mfU3DOboqybNLnQcDYMK8gZx4aSW6lMoDwgsOvH5bopJ3ts8kQ453VXFxv96x2Wmwq97XU3I /RT9KbwkffnOGu2wmU2g0WygmLyUtwrtSNv0jMEv1adEHhCYxHNRA9biMWOJbKXvCen6JP3J A3vKeJe2n8rtgcBOAmxWiZk8rDgAIV2fpD/lv54y3ienwi0uDxBYJPuf+WBZFa2Wvl/+dnWV jtAoEAACIyEAAhtptCArEAACDgIgMBgEEAACwyLQgMDMrs1u2/kMZAghz6CFa4HAYxCIENi2 Pey8tMrfcRIcfSFGFQQmhg43AoGZEZB5YF5CP/fFS33khn073fs9tU0NApvZBqEbEBAjICMw v7vaO5QgMPEA40YgMDMCRQgMHtjMJgLdgMB9EbhGYCePvhDDAA9MDB1uBAIzI3CNwCwyR8di YBdyZiOCbkCgFwLFXiXKOfpCrCQ8MDF0uBEIzIyAjMCER1+IgQSBiaHDjUBgZgRkBLYgIjn6 QgxkSwILnX8lFnzAG5+uvxoyYDCM4YoJrKmGILB2cGPygsDaWdvlnkBgPoRPn8BP139kD4zG 7q0qZa8PiqsHxPlbMxXONXOjMdbvZXo6bgAEBgJzEQCBjeuB0WNNRFJEXPS5xdi26INZLAis FIG1fDf0eGGSXyE1wFn0v+KB9cZgJbDNyTIHKUQ/F5fXHMPu1lhlR4+n+hPKAgIrQWDCd0Pl LFPxTgmBzaS/lMDugMFu7PznMxmhVZBXh5L8XHzeR6q/C7KAwBIExqs10+tSuxfS71JWvhSn sUngPNunvl+M8+2/kD+b/h6Bhcb7tjZwhsCCdh8pf7bz7ALGFvH+TC4u0K5HWk6Lqb95XYPA FkCiZeWXOiovDT795OjdrKz8BQKL6r+49TYc4L/rvubRX2kTtwECNqTvzTC4QGC57zOHzWwt jOwvZgkiSvV3RhYQmJqK0bLy2/Nu/oGM6p5blZW/QGBx/bfq4z8vt5DJTPobp4uFP7sHtc3f b28DEgKjxP+FQjVmFzLTy0r1J5AFBGa9CTqfzKs4FMoJreHUnyhp5JVFv8A5hW9dV9BdTUvy MDYiM3CZcHIe/cmjTNiAr+8dMZAQmLUkqc1y23HP+Pv+95+lIHCsKvfR+9N5lb9AYAdUoPNA r+W5Gusez1lWPgaDNpBF/837eJb+4VB5TgyKv898kMtK9ZcrCwgsRWB2ld0MNhg6tX43tLD/ lWzOW9Wfpn926DiaDbSQlxNYqr8LsoDAorPXuMbW8dIgL3mQwJHYI5aVz+dAhQOFAWYb3j8W fF79w/qGjkUfEYP67zNTeGnsJ9WfVBYQWP5MfuaVahWt8PrJM8GE1qURAIGVRnSi9syqmJdM nUhtqDIQAiCwgQYLogIBIOAiAAKDRQABIDAsAiCwYYcOggMBIAACgw0AASAwLAIgsGGHDoID ASAAAoMNAAEgMCwCILBhhw6CAwEgAAKDDQABIDAsAiCwYYcOggMBIAACgw0AASAwLAIgsGGH DoIDASAAAoMNAAEgMCwCILBhhw6CAwEgAAKDDQABIDAsAvMQGJ0c2qOsuj0vPVKdpYV5dNJf lxjzzgvTx/D0OEOsEwbuYXzrgY899C9lZ51wlIg/GYGxydSsrLpXLDRZ7EIyRJn3UEWX1mXl Nc68cIN3km2m+EUu64UBFz5UBKaIcg0buQOOmeoOQ2CHp4JGCms2KauuJvHS0a4QLJ/YFcqq O2PcTX+vfD0/B90v6jAtBjQShrxtAZTW+mdO+sPLutnSoWS7CyYjMH56aMuy6oHQMTGRnRDL M3Jx+HWmpFapPldz4mFkVLdUn6Xk6YiBgkLrzj3w1jZwfv6H7+iM4xk1xiAwVRn7KDQ7A7qP UKr80241CsFLxR9CxS8yC37aRXw5gz5aSy8xtD31t/jx8JEXxHgKBqwIjK7mTgVQGul/Zuan rq1lS6XkY+1QweWvCm0XbJJXxok0ewF0sdeziqLup6o00fCBiZ3qTyxLR/1N7cRl8r498k0s DHNhENm8aa1/qRnX1ZbOKLHxws0JzLjnyY0dCeiUrLxSuMIxUha2how31d9VWXrpz0hclxvj g/QQDMwuZKaXVdMGzsz90h7YVfuVyK76XO3t9gSmy9mnGEwygS1o0rLqH52455PWfk6FpTq8 iFX7EcrSSX8LYSjUfgQGVPswUC/z338S6YAKNiAhgdA9vW0pUw/u1NyfwHSYEljlMpU9uiy3 lPlRO+6Ejstboqx6tiwZF17WP+ptPQiDM7nV5dq72UCGmWRdctmWsnpx+WAAAtMjXuYByQul zLOwVRfxCV2prHq2LP6FFfSnPKDT1cMw2I3HnfUXG493YwVbyhHNt7cxCOxg1cpRnK5xn56u Uby1fln1M/runQOVt6Gw54L+lPsI7hI/BIPoQNxb/yv2w++tP5c8SZXNefY2DIGZHa8LE67U qKEdIAAEOiCgcof7tMRABKbjM5BYB9NBl0CgLwJh8lIyDUZgRGIqBKqX2O87WOgdCAABg4Ab iodQGZDAMLhAAAgAAYPA/4MDGbEAFoksAAAAAElFTkSuQmCC</item> <item item-id="442">iVBORw0KGgoAAAANSUhEUgAAAPkAAABaCAYAAAB6x/DQAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAvzSURBVHhe7V3tleQoDOwENo+JobOY JJzHZTDR9K/JZILxGbtt8yGQANEN7dr39r27NQZVSWUEuOXbjD9gAAx8NAO3odA9pvl2m+bH UEbDWDBQysDf/HO/zfefv9IO1vsGEfkG9jZB3lXexs1DMvD3c6+a3AYQuRH4fa58mA3pXBgN Bk4GHvNUmMV2L/LHdJvjE/hzhr8ts/zyl09rDFFb2/Wv3/Hfz3y3r5v/vv/Ma7K0LhWse63/ bptg5GJsIYxSG7b7Qn4YPyyMr5lbzE+qEJWxpWJotbsCm+l7j8cMDvoWuRFWVEF+Cr8FTlzo fntivZMcL2TVPICOh0AG6fKmuRjlPctbltpwBrPrQtoPtp9XXo+bdNalNF5tbM/JIPHUr8Vm Und+MnPRdixy44DEJtv6xPTSeCPS6JNuewjY/K9rHesf0lmDFyav2ATMxiiXrrhlgQ3bGtI8 AKd58mdyijd7DGK8tb+CGYzFqI1t1Xgi81TBlp+29ytyQ0gqD6YEvZIYezBwM/m29r/baWI0 sFrOLlZoZmNkwzq/QYENfz8/zxOQMF2nBRs+gE9DG3KtjG1LxaUxdKbuuTOz4TBnidityDkg ZLBQT+ZgAj7Xei5RRLofWwO9YhY3qzdqBhNgzFdy/I46G4g1eXQm92dAa+3aYhav5pfab5DG UCU2bgL03NmpyJlUvchBoQPc9REV6NQM03Bm8UyoE5iO1OtsiAshWIN7SynH+kYPVX1s0hjy srXsXXNeH7YlnYp8ERf39M5NtaLtU8dzRJC+cibNxaija7eXKhtku+vTI9ZuN4W7Xgi8CTbf Fs527jqN7THJj5X7FLkkHaHW36mNN07k5GxhZvKczb3CYIvdlotRefi1uyobhAFsjxH1Q+oo tRC4NjYuhhSxccvZ/mdyicj388ZjYc0doUXS9SNjiKwfvYyCT/ELA468rfSIpxcbJJmQv/yR +UEHYQ2/1AOMs527Lkf1ESKfRK+4WRsYxBm5EaS7c+m9hBEsCbjr2xFJ7m6o3HVUyzTGur6l d+fyzKTZ3otFIZ/ueE2Ozw7oytiWcwXnhasgxnSwXUjk0iBFOzDwWQxA5J/lT6ABAwEDEDmC Agx8OAPji/z3e/76/v1wNwEeGChn4Pf73/z1n+z+bo/QZBtvMpBoBQY+jYHxZ/LlCA0i/7Sw BB5NBiByTTbRFxjokAGIvEOnwCQwoMkARK7JJvoCAx0yAJF36BSYBAY0GYDINdlEX2CgQwYg 8g6dApPAgCYDELkmm+gLDHTIAETeoVNgEhjQZAAiZ9ns/+ebcQiRQgxsvW+WlAYNeuC5Aay1 y/dig8iTfq0pFKAVMKU2nIEVVOvMrBmvhYR7GJ213LiiHu0t0huh1H+KFmRUbL3eu+sFtbb1 XPPsqcCGZC3zpdusmvHqgIgOCzC+wiyVMTrAhpk85cmq4n0qIbJ9csmvGJKsGW9KrcVrmefX +1bC0TvPrWAW+E/bFIg8wWhdGV4dV9XZEC9z7JRRKvxulg7CPmrGa2Hx+6nzn45VEPnlRE4B Tn2VRCfQUr30IIRWKHvABpH3nkZWpXvCMsfP3d+cz+moiqIKo6ol+p11gA0iT08x4ffSkh9K 1I8R9VrmXL3vBhDYLqtqmrO9v7dBB9gg8mQIvP/44zhjFdeMtwGV1Pt+hyZ64LkV7vdjg8hZ 3773RYbNvFfX+2ZJadCgB54bwBL4r9Woe78QeWuG0T8YeDMDEPmbHYDhwUBrBgpFTnzcb80q f8KNqvYIUMixNcfof2gGIPKh3QfjwQDPAETOc4QWYGBoBiDyod0H48EAz0CFyG/zbfkEcPh3 Wj7I+vzjfHbW+nfeLnkLfFxBzhVaXpKBCpHf5+Cz4PbGm7cJt77Dm3hv0vz8kX5oLP+eet8S Ir9k4AK0nIF2IvdtaLXzDpHLvY2Wl2TgZSLHTH7J+ALoDhhoL/KjnhiR3msQgJlcg0X08cEM tBf5QV7kBZpaciHyWgZx/4czUCjyMlaa1BaDyMucgbsuw0A7kQe/u8ZMfpmoAtCuGGgn8gXm UTV0PU9/95q89KeMseoqW8mk49gvOOZzx0seA6qFRCnGGgM4nNx1f2yP15v/fgXH+1aN9jyO bRR3q9mcrTs2aYUeBlthvfymIq8JHfG9onS99If7sdrlfn/+/z8D7RD+dt0pnigGKG1YilHa P91uFVQCJ3fd7TWst75NFLvQad5tXs14Ds9kJZw6zNvdnK2uwM1DJ11ei4+ptXJvQY2ua4i8 oPb1kYXcp3laBOpwSwWOPQYxHlnQTyPWjlgyvwD0Zq3Wpao4nNz1YBJfgpicuXdcYcFJ52iW 8rMmx3ZfgjJayRiSYPfwlO5pXUPkBcX0UrXLacGmKp6+YCYvwKgf/xxO7jphkRPozEze+qHG EeaJMl3/3u2MjymD/T7flwnnWIr49fgj9l1C5CSB4qc+sZ6KzuR+SmatR4UO4eIodr0OY+mo YUoafAhibVLKQ7gMWhNla81tZ1g7B481xd/F0Og3EwFltK1bM8GanI0p4tNRwnr5EPkfF+CU g54bJFaE7YEXXTI1Wxs+w8gENvmllZYbTwR3HE7u+tElJZow0O01/54ev2ZNbmNPCVwo8n0T Lyemnvdwy/RLiLzkU0OnC2W769ODe1pz17mHDXO9i3RdEtACHp67yMFGZRTj9iCjU17BeOSz SviDqZitTp9SG9zdda2YuobIq2pfCx1kjxHdlOF2WCuEXoWxcFwOJ3edGna9J5J9MCInH+aS VLkQ/jqe6GhYGEO+HaKY4jO1a4h8XxNq1S4P1vP+hlJkHd90Xf6OIzQOJ3fdi2p2nySSrh+8 CvdPSkXtZOjEaUa0X4HIG8bURUTubf4smzJ+Khicr3prQ/Ib39bLMOEZuLXZZNo1FfhurDtm 23N5eswQZ5oHm3f35Sk3XT75914YCXj1xguO5DQU7r/oFbPV5ciPIfpM/+wr9B+HncZ2IZHr OBe9gIHRGIDIR/MY7AUDmQxA5JmEoTkYGI0BiHw0j8FeMJDJAESeSRiag4HRGIDIR/MY7AUD mQxA5JmEoTkYGI0BiHw0j8FeMJDJAESeSRiag4HRGIDIR/MY7AUDmQyML/Lf7/nr+zcTNpqD gesw8Pv9b/76T4b3Jmv24laiGm8vtgnDgYGOGBh/JofIOwonmNIjAxB5j16BTWBAkYELibz0 Z5iR3wKzNbC9nzxyNXpUnFqKUWXwSCdj1CYnjWd9zNeAd/vluZDVjBf8Pt0a+CNEfmcFVFpQ 4RQN+Xty7nvrF6i7nn48jFObnMSRrHPuxxRX543nQlYzPhGTEWdcQ+TaddcXMpM1sHPrjWtM pAUYNYZN9jFQbXIKR9LHXO19v0OOC7YqjlWogvoWQMIR44vcVKzkqq4UFDlM18w2T9OcGth+ eagG8irA2MAKvstOa5OHhqd9zNdJ56lYKk+eH8QQ1IzPqeNuj/6Y+Dpwe/s+j9DW+m3p2tp1 Ncmp9Y+0Bra1RuYeRIKYSDWpw1g5uPj2VEorWGc2rE0eQmB8zNrCkeJykVczXsDVMTyvD9vS TkW+pTGpZXmdAKSEpr6gsub3xCeAuECQX6/DKB+nvCW3ZpXwXFDvXlibXIbL9nGJLfsoIRd5 NeMlXD3HMtkCu2d1ou9W5GvakwJSlcpKCeXacddlYRZtVYWxbGx3J9irU+5+2mRJS7kPPkr5 aVObXMaAb2OuLcsokTrteTXjpVzxE6CPu1+Rcyl7VU1yglBuE6Wk3rgsyuKtqjDWDp64f5Da 5AECzscUZMoH7uI4r6Z8tGa8VOR5qboxtWORP9Ph6GxeeoRmYFOERoTP1f9uui6vwdhI5IId 43NkQeA2rE0eMsD4mLXF65HlQjqZxGKSQLAsY3PLcvct8lXnqS+UWJtgGnXX/Q/Qc/W/mwrc W+s968HnOlhb6rI66q7t76pNTmNn6pyvs328Tnp+TXk3RsPPOKe5cjAIP4Y4ULpug5cfF2gH NfoDA30wYB5OZV9z7X4m3wjezjfNB/DwBwxcj4FygRuuBhH5uWaJpzvXcz0QfzoDe6pfNoPv 7Awk8k93KPCBgTYM/A/214yIEevCLgAAAABJRU5ErkJggg==</item> <item item-id="443">iVBORw0KGgoAAAANSUhEUgAAAPUAAAAnCAYAAADXRw5BAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAATrSURBVHhe7VxRloUgCG1dLaj1tJo2 02IazSxTUGx8UsqcMz8zFXrhCgI6bPIjCAgCTSEwNDUbmYwgIAhsQmoxAkGgMQSE1EwKXZdl W5lki9iWEFi3ZblbUqekXrd5HLZpYVLuOm/TLJRmQr85ses8ba45dUhqQ+hh4CP1Ms/ipZuj FueElE3Pl4fqitTrPO5kHsZpm9g89aIUIF6akwKfkK2iuVHbKvg73jyzns+qHIWldWekthNn DL+XOVDIJ4xMBsmHwE7w6SQtOJBFOaqD1V2R+gKDj9TLlFAOn+mI5LciQCG1ovx0sFpIXVWR ejERUleFvAVhVFKPJlcjpK6qdLWaHsBXFSvCvo0AidSXwxBS11S3Vg5bHa3mREVWUQRIpN62 ZTIJNCF1UfQTH1PJjEFIXRPxNmSRSW3KtFVJva5vKeWUT5SR5vZBUpPm1QZ1WGZBwjeD1KNy 1Q6p1X4Pasiw9bJMD7NMbnOHIZEWaH60rLDWxoLqv4X6c8M/uNfJKThq8h8ljLO2jtQsKZ+j TrGOzhDdEw2XOpfoc1/Dl4iN1h+B1AjRE8iGxgsYvh5oE0mjPFJfC1sERMfobk/tyv3NYlhP Z+8i9SfwJZJa6zBB6meENl7YLdtcbZl7d4zjWuzKUmT1ZfkINDf9N0U81Y9ruoEuElrQw6Ea rM/n93eB0tfPSF1TZxyk7gPfBKmf7znhEBPxZtojRb21UQbJu7GQWgv153YQHZgXDRtrgPVI TRuX3TmldJZSRG1SQ1s/vYC2h2+U1NqDogce9tDQehUfGCwUxf7ewt4aJjW4EEGJMijUfhB+ 3/fDHrFepTPXa/q9zY49RcecWjic/3eEL7qntmQ2xPZI68X24QqPhexxslOSPXahARvcKR/I sIO8R2FSg0MCSL1j6Ht1bA8VCb9RUjPqDMaR4KmTY6ZrqCd8rQ0E2e97hvq+Bw6gDIwP87y5 HpyuNMqT8EmXu5dAv3Nk//F1I4PUQPNJUaNTfeV2ruh4f62zJF4EUvvKiCWKEvKawzeaXw2a TwAve4RAmIGIp8b31DBmQJtowfDw9PgREtTU2WNP7b1ILgVCArvBF2wThUNnUyeFwvB7Ztfg meuR291Tw6SGDnQcibXzhWeJMj/8DsLx83yuXxKrrbMMT42OmRKf2Wd6wVfNcwoOdMT3w2C2 EGgiwVbVs4nCtfYmst/6gPpx+cI+t3jlwPbn3s3SLY3Zclhedtb/Lp44C0lVVmcpwmWQ+vzU fxf/HvAtePQyNB66Ar5fp04ZMPB/5zD7g7fRV6BuMGzb9EWdRbP7JYFEvvV6fFVUY280yuv9 DjwrTGDSHoilo8wvp3Ccbf7NdUZ7dcCy2N1Tf1FnxDFX4PIVK7wc339dZ3TvRcZaFlPNK3Rv Xk5xYSMLmC8oJxD3qj+4eHD3JGf2+66XL+qMNuYKyjpEvBtfxbcuLx4EGzo4Fhe97b5CpXpm KZKaRcC79y4v/G4NlZ/1UqeBkmuC0xjJExQE7l5av9Exqf1SBwVAeUYQeD8CnZJaCP1+05QR PkWgP1IfDQ3vPvn1VJ3yniDQW/i9J8t+c8mAGJMg8BYE+vHUjEmxtyhbxtEHAt2QOnbXF+vJ zT7sTGZZEYFuSF0RUxElCLAiIKRmhV+ECwLlERBSl8dUvigIsCIgpGaFX4QLAuUR+AOpY39K YMXT7QAAAABJRU5ErkJggg==</item> <item item-id="444" content-encoding="gzip">H4sIAAAAAAAA/+xXTWgTQRR+mzTpps1/a1LTqjX2x6r926ZaS5G0saCoDaTSq7TJoitpN01X sLcgCB6qIIJnBfHiyZsIgooIIth6VlDBmxcPIiKY9c287XY3Fm1VEGlfeDs773fm28nMGy8A CMjjyDX83YHPKq0oy43ASEIWp7PpqbNyVuMSyCAPoVPSKbm/ApSqpDuPseeSItiU3NLCI2yq JV+SW4tG3yOFX6CVWCM5AgA5D2ZxHoMu6AOola4U0MQDXq67VQvgEHgyH8UU/ZTCF5AADZJ+ VAUpuT8k8bEEAcJ87J7UxPjo7FFNnhZ4fi+y2yrwIddxU1GezcinFXXGxRUJ5p1TsySr4rKD JibuuTOFEfU8QXAcuRoFGROUE8gDmOCDCnCRtTijI9h+UUlfCBHQDnDU85ewmWlY04rK1DlN pvENIgfASlsG47Z+ZBnbKGEbaSBso1sJ2wYLtjHCtgEaCduYiW2TdP0JaqLbCNMmFG3nr6Um W7YdfPpehDWlTk+pDEhSBBkIKF6RsGEP4TIaxJkIBULvNbKuM2s0TeflVF6RZzTug1Z+Y/0Z T/RdWgy9vXk39g4q6BA4oax7wG2RCaY3Dcdh9Ms6y0ikb9J/Rd+QyxbepI1FGVDxp0EzjMIM tkWYr9wKfkoRcJn/ebYXXIB+IR56FbpWAt/EU1fMavvw6v1Wcey54GTvxkaSwuwsr8yfc+vK zQhPIcE6n7X6XRJ+bbNW+p38f5P+JD8dkgDsm7AzmJ3NbM/f3As2BrmwQHuPH/1BhNZDjW1l 2DpYJ/ISo55E9QbnQOGrJ2B4Ow0XxeLOqsJ7yJ/0VVcoTzWMe48Ck5CvUA68qQvbjN2wKn1e R+wejCkGf4zN6GNaj9r7WGWxl5MLz3qzS6Hbl+FGy6Lr5XI1JEIFVtbEZof9x3hdC4QaHrZ2 /kfEv1YzFaJBNkaByuVxuahM5k8dVuYK+cn5MTUn00TSfDY7ycFHsrhx19hF9XDcUg+3UD0c h1aqh1vMerjNuGu0012jbTfVxe2o6qC7Rvseumt0sF1+L2Xs4ENMpkHYR4I2PoJOI0gXBelE UTcF6eyhIN0sSC/5dJtBJEuQvhXfhOHbT74J5rufTBOm7wGLcsCiZP3vAAAA//8DAHZUi8Xo DQAA</item> <item item-id="445">iVBORw0KGgoAAAANSUhEUgAAAE0AAAEACAYAAAD2uPu2AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAqWSURBVHhe7Z1bduMgDIazriwo6+lq upkuJmOwHSOBhFDtDvL5+zDnTAsk/hAX6/p442eYwGO4Bzq8Ac0hBH8K7efnx/EV5+tSQPt+ vx6P9+ubfcmfr/dz+f2j+oP+MN+vcqyf99fz8X5+7dDSZz3fn//Ox0X9Rh1oAsjOQ/58PRlk Dm0ZIE3G8+sdUfYUaD5g73fq91r+3X9WYI8krUxikzQe0hdH3ARo64MOrsj81LWU5d+y5bkB +n69HwGlrQktSUCSiia09KC71BCJUuBI0LJUxtvbKmg7rBVcucy2faj4XS1V0pIWJG2D2ZPo fRKPyWov979a4BU0esJ1Ts18spZgJcnRoUXb1/TTc1uKkiRA0vL+Uu9jGUxzmaYlwvejUYm6 yZ5WS9V+ZWD7W95A6odun57bqcovyfFPT982Sm/+bZDSyDe4pxmgVZLRXl6StJFPuMcbgQHa fnn93NOkO1bvchxzL9sJ/amWwzYt87cCNMccARqgOQg4ukDSfgOt+TL8OSWLF+TAv3PwaXb5 SFqCduefM58P0BySAmiAJhPA8iRsVpVWPsgUewOgfaDRd1xNUQBoH2jMXFip3w+RBLSdRaVe krUngLZDM+r3UnNAg6Q5LkrY034DjVq/cHqaWeKeZkY12hAHwSgxnJ4OYoAGaD4Cjl6X7Wl3 V3k7WEPdDWiDBC5bnoPfI1RzQHNMVzBottecHIwheY0LHuWrl2Ztk225uwaCZlVHU+VhhrHr +5k2VvV9UzwrA0EzqqObGtiWu+qyLkWVtu7zFgeaWR2tSBrbv1SfXiUgIQ60AXX06vSsmOI+ e17L+7LvWRkHmlXSMpACRt74heXZCg0yeInHgcYj8qT9aEgiF5kksaTr/3tRL4GgGdXRmqR1 gabP6AelBYKWdnFhr+JSR+5iFAK9j3FA/f0MJjzH2wCgAZqTgKNbsD3N8YQXdAE0B1RAmwka bAS22YCjso0TaQVogCYTwEHgkY4TI3KuX55qxpji6U3tGhHLmm2hGD6OpFn1+8Z2+4v7oaCl aTGIbYFJYxxofBkpLuukaatdVmi+3q8ycZRVybkMHhaaKYtCtp208q8llRBbnreGpur3CxkT 2iWIq2aW72mN5SlkyQoraa2MMe2DsFAsEmnSD4Ln17eoxQ0MrdbvS7eH3Q4gWdHbNgGeJfAY PQ60rn5/eyhru+byPNTft3GJF/X7rWuGJ7NMeb9D6KLj2q90ibM8z33uX40GaA58gAZoDgKO LpC0maDBRmCbjev1abbvcXkrLE8HYkADNAcBR5cwkjbi51+3LdxHFfuB2i+kjYBLhOIbWycZ 3jp37Adiv3vYCDSPRZsLaOZAINr7hVme5WTr9oHCxXRTD9ky09v7BYTW8YvljspZ2ch8a1v2 A0u/bebiQTP4+dfbn1TjRZ8AaY8LB83i52+HptsZbgLNsFlXkpj6bFcOzX6g9Yt9egrLacBG oMUR6DEGEa1Rjpv7VV3C7WlXgRgZF9BGaIW9cjge8uwukDQHUUCbCRpsBLbZgI3Axom0AjRA kwngIPBIx7RxBC2vbFN8wEJBa6fECsS2EXweujCIGOMDeCocquXVYwXC2gjW8riLpvWbV5Zl 68gTR6C6vRvUTtO/RnWguOIIVGh3sBFI0H4VR6DECtzCRtBdfrbEI1W8QXEQaLECaSXGU3d3 oY3HEdS3CzlW4B7QrPEBartGbrXdKHoLG0FD0k6JI1BiBWAjcNz0rV3wGmUlVbQDNEBzEHB0 gaQBmoOAo8tlkgYbgW02oO62cYKNwMEJ0ADNSOCyg8D4+XUzosPnbp8n1CMQxh+JU5gMGtOR EcXgSD2CAzbNGaSNz+YvTD2C9EWZ//qhCPxNPYLNu1sdv4QWuh6BlL0lqwiX9PmNPNsDOYOk MXr2h8mWZznbNMF5tmWSXBmSNFhzBrHxPx/dV6NPCm19cJLOZkSCunaAxvg7NEOcwnzQtgeu Q3OMe1p1Hrf6ScEYEesRiMASCWM9ArbXkf1JHX//jGD1CPp3JeGexu0Jgh3ANn4waO4L8R93 nG9P+2MAno8DNAc1QAM0BwFHF0jaTNBgI7DNBmwENk5Qdzs4ARqgGQnMd3qqsQJGG8H+8IOx CDHjCNRYAauNYCPmiEUIG0dAVgiBaNen+WIR7hBHkDRoZS2BEc2ttjyLWWlFs5T3SylH0Xx7 WtYF7nXUWRldk42AUFlK8TZK794715DDGkVsM51QIcmi9dkW22rxOSWtePBhu+cQtDvkGlLN dFYbgbI875prqF9TuFFfXY2jonsacg0Zb/BnN5t+Tzv7gc8YD9AcFAEN0BwEHF0gaTNBg43A NhuwEdg4Qd3t4ARogGYkMPHp2SglaVQurg7IjXdUoqtb/04UjWoMw0F0Wmh1TWFF90915EsG ZRZH8CGjxRHYYwzmhJZV2y9aU3gBY9P9K7YELY7AHGMwZc3i3cDhXJ5DtgTN/V3+23SSJtcU Nuj+UxNzvIEUR5A3vrzE2xVmZ5M0IiVXSpoSR7AdIhKwhHQqSTPXFFbzEHXso5pbfNdlfpX2 qaDRa5JT0rR4gxOA3QdaJXnte5oWR9CPMQhwTzNezv9Ls4mX53/hYfpQQDNhoo0ADdAcBBxd IGkzQYONwDYbsBHYOJFWgAZoMgEcBB7pmK0egbfecPns6hjEDsD8cY31DqaTNG+94RKaHA/Q SHSyOz+rMQxTvxHYffl5sYbjsZQxRlThis5uMkkrVDpD9YaJnB3mOz7GADQt39Bc0Ejqr11X b6g3TDe0JXag7FNKniEPUSvGgB0Wc0FrnGT6/tRPPJKGJGN08xDtXyKQNYpz04K8rAFgOvhG RMv2JWIUcfDWG6ZHJ0sZVtQs1vIQmU1/ExpWXH7+revC7svBE9OhHoHjOn9Cl+kPghOe8fQh AM2BFNAAzUHA0QWSNhM02AhsswF1t40TbAQOToAGaEYCwU7P1dFvPWQOtdCIb9mR8yONwTUc 7fE5y1DQiKpGy7Et/o3qyGitAqZ3C1OPQF0ezJdWbKu4uTfV3bu0WcefUDUkstge+CsXgqbL k2q7n1UhiOPviqQZx09jxVme3Mm4kpqs2G4XdiAzoeX/LmKlmuOvA8WC1kvQ1KslwA03WSG5 Lc8BS1UcaEmKOtDSQaEFTejRLP3xd4ENBK1hVSIQDYZmTdLS4l6gfwL2brE88zSXxmR+xxL2 M24pJ/4a3ASojX9sjKEkzXhhv7wZoDkQAxqgOQg4ukDSAM1BwNHlMkmDjcA2G7AR2DiRVoAG aDKBy/Y0B/QwXeaDdoKfv2oHUGIFYtYjaHkqDvv5d7SzhTGFe3Bb3VHnkjRVh89Wr5ZFudK7 CX61ZAyDamn7CnNB0yStYibZAnSLUznMjeoRdOqoGPz81fxpiVprDEsMw5SS1tGsUmHTlI6s +EOrkMNHqSnHIgR1idetS82HGnBtz7rgUsXNtoAY0DRJs8LwjqHFMDCYkx0Eeeo3Y3BtEBZj DAbsAK44hemhBXgvmE/SAC0AAcdXhKQBmoOAowskbSZod7YRODiLXT7q7jMHvftYgOaYYUAD NAcBRxdIGqA5CDi6QNIAzUHA0QWSBmgOAo4ukDRAcxBwdIGkAZqDgKPLPxX8ZcOvc4qGAAAA AElFTkSuQmCC</item> <item item-id="446">iVBORw0KGgoAAAANSUhEUgAAB2EAAABsCAYAAABTo8n+AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAADt9SURBVHhe7Z3NlfQoskDLgfZhZtc2 lBe9awvSiZnFGw/Smlq1J2VMPglJmQiBIvgRAunWOd/prhIScCMIIIKfrxc/EIAABCAAAQhA AAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCBQjMBXsS/xIYHAz+vx9fX68vx7/AAPAhCA AAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhDoicDPwx/7+xqCfwRhq0lyCMJ+P1+/ 1fIjIwhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAoCqB3+frmyBsTeQEYWvS Ji8IQAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIVCdAELY2coKwtYmTHwQgAAEI QAACEIAABCAAAQhAAAIQgAAEIAABCEAAAhCAAASSCYwB1cB1o19f36+n7whcgrDJuBNfJAib CI7XIAABCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQgAAEIHAuAROQfbx+pFIQhJUIlX5O ELY0Ub4HAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgSoECMJWwZyQCUHYBGi8 AgEIQAACEIAABCAAgX4J/DxeX5oVsv3WkJJDAAKv39fz++v17T2DDDwQgAAEIAABCEAAAhCA wKUIEIRtVZwEYVuVDOWCAAQgAAEIQAACEIBAWQJTUObrIR5QVDZbvgYBCJxG4Pf5zaKL0+iT MQQgAAEIQAACEIAABCoRIAhbCXR0NpFB2AZWzf88n8Oa3rN/BgfWE+fV2VLIzR9dyiV4jffR g2vI8W61QG/vJvG69UW/6vKecquxY23M4/vFprgz5EueEDibwDDvP3r3O76CWcj4Cs7W9hL5 MxYqQbH/b6AH/cvwjjVAb+8o9Xp1Rr/qsf7kFOErIAh7hoA0eWqDsG2smh9X8TazcH+YZHK0 k0bH2kyDLrUpl9qlQg9qEye/EgTQ2xIU+UaIAPp1rm4cuWPt5/F17DjaTPgI8m41aJ5HfQ07 kId/l54/oAPnGhAp91E+30csaMZXsEGPr0DSxqafMxZqWjzVCoceVENNRgUJoLcFYfKpDQH0 61ylUPkKCMKeK6Rw7pogbCOr5gclelRcuv/7K++3/X0+ut5NoKljq5qbVS50KQuf7+UudQk9 uL0eoLeyCmgY0RfKHLtJgV0sLipNG9pmesCOtXGH2tErGQnAefTHDU6Nsr1wIBYdKG5DSn9w dN6UXQiAryC8qAlfQWn9rfI9xkLFMaeNhYoXI+6D6EEcL0Xq3vSgt/IaEaC3Ck2MS9KlHsRV UZ8a/dKzUqZM0y/BV0AQVkm/ejI5CHvMqvlRYeJWyh/p5F3X0d3ivVPWIwzQQcc4JdcxSif7 WOmPLkUJdZO4ji7llVHzNnqgoRRO05setFle+sKghnXdF8bLNa81ht6OLwd2MU8SRe1M0R1r 4/js8Tr8Ig0CcFsF8jEZ7dshuxHz9LfI273qwFLuYYHtuFvZ/BsXLZi+yPq9CKTPR8xq9rcu 1NpNWnaRB74CfAX6ZoGvIHmcgN9Jr2aFUjImzgOZrOt52Sa/3WZ5mcvhK0hWacWL6FfX+rXn KyAIq9D/U5IIQdgaq+ZV9T7OeWQmv6udAZ5ztoPKLQexVdWzEx3geM6ro7YGvaz0R5e0EvWl q6NLOSXUvoseaEldQQ/QW1naeYzoC9eE4yc0soRqpMAu5lDOa0P+nIvtWBvHsUfvgh2r0GsA Lkfw0ru+gKt2Yix9u8XnveqAKfcceB25LsHXpd0cVq9pZ7TJpujCi33lKHaUHL6CCTS+AoU1 wleQN05grK1QsoJJGBPnwMzT9Zyc097trbzhWqK3aRqwdOU5sYGYnPEVuLTy2uB9+8egr0A7 15x9BF8x6kvaHAJ7yppvwKezqufVw6udr7bRmf//Z578mvTOLtm9iY39ffONmJX+7krg9epM Ozg7rozaHt1U4vilafI9cRrqbVZg23Vwnlevo1K/Sq/0X5whI5fNbgFHTs7zsN4Jk2R0SRB2 bntR6pKdDD1IgHYRm/KueSc2cEdS9IUaNb6S3tadWKFfV9avMjvWigVcJNSpgSp7t2HUOF4q 0PnP1zsd5/Kkcjq/OnIJUut2tg7M483PWgUrOGpq7fxesrxzIHO1C8d1nuzll1KWIgsz8BXg K5BNwjsFvoLB52P7ePA7FTkWHV9BRCNckl5pzvXpn9/+1Fb9pfgKMq/yu5Le4itYN4dcP/Od 4zKZvgKCsAl9aNYrO0HY3MmZu6Nz9bsbhB0DkJ9B6TgJXQXevKtsfccGr78jodmuthjf8OyE NX27/+iwvCOYpDpIz6Uajgtz3dU88XWUcwnw0a6+2GRgOzpcBtujulb6sqt3czk3u0Ha4Iwu uYqAHqja3iqRpMvScznHajbFFKW38nr40RfKSiXKuTc9KDCxGvRGtXER/bq8fuUHUPMDJQrI U5KUAJwzVvT3MeoSNJeQIKxCJC3owEZ3XTvu7Fi15q35Ous5hthmsscnmV0Bu4CvwPEh4ivY be1FTwVgjqiwrE4SaSwtPZdzrDtHNA66z0kCm7kEPiO/xCQ5S89b04PeyouvQNYgXwpJztJz Ode69gtfgS2REuzv7EvP8hUQhJWNQ9kU4SBsliDNmMjd0WmXfBuEXTkbnXe9jdLz/Wk3iGcn rDcYGAi2hoKwZpC3vcfWv0NWKSUfI/tvjdRRU5uiTqY93fHK0hqAC8c5o0sfaZ7RXjS69E6D HkThMokvZFNC9dno7e4OkDJ2Pl4Q1hv0hTK+q+mtO16wV+kvx05KVFKDsKvvMtYqZhfPtDO5 gY5RH2vdP2oFsuzx8TL28v1t0xSSF/BJjeqk50UDDyfVISZbhQ58Tkmyjv9de2MiTzaKKWAg bUwQ1v3Ens5udtj68l92dyxzWHu3h3ZeO383ov38PLbz2hiS+Ap+HVz4Cvb0B19B6FQ139/R JZUtwlegwrSeGnh8tJ36H/EVbH0/+Do/2t62r9Ox8fgKAqeOdtQ/9uorIAgb34/mvfG/159/ /PX6Z+sBeT2/Y4719ZVifcTKekdHvGPQPa4kPJB3yv1uDG593GOmljrsO+3dnSnBM7gVgpHq ID1/Z3FwHRVVmXbcuk6+lB0RQ2beby2F8O5ItmW2p3fTt9GlHUdNA7r0bok+nUIPdpujZDOk 5y3ZlLEsYnnFHSBl7LzGBobT0BdK/CQ5S89b09tpZf7i3PZNshSOb20Qdl44tgQ1GGtttU3S H+n5tLvzM4bcOjiOtjOZO9ayg7j7LXi1GHE17luOR7KPSfL9bf39/F2FksWp/NwXFAucrlO5 ZMWyi9MBe77lt4Wn6EBGEDa3vMvcZDVH2Qmm7uUXU5a8IGqmXTJqwPhIaoRS/yQ9b2l8hK9g vvt5JXT8TqpTXwINBZ+RZEEOGBPbvhhzldcxPlZtzUQbePoYXlMT+kKJkiRn6XlLfeFUFnwF H5mXmUefGpc53c6kj8l//v7X699//7y4E1ayQsWeh1bHy6vmzRGw7zs0nf93RlOftD6npKfR KXbCagztlO+Qp/degNARAHE7p3Ybu7D6WaqD9NyY7wp1VKlbwZX+eQNqy5y/dfTj5PE5J1rh jC55HLGh3TtiMB49eBOwBgWt6Pq6bD6nxJRCU961L8O9F7yMnf/MN/X9ns9u0hf6exNJztLz 6n2huLPJ0rvRVnnGRD6nU8y4Cv2yCFQYa9W0M37ZKgL3ocHawUHYVft0+mbzbJgr2IvffH+b Df4Q7J7H7e4GM9VAtNVE7pGI07ynyF14jVQ5VgeW/n3D4L0TIEPfU5mkBGFLlHfluLH6Dl8Q di+/hLLkBWHxFWzbsN+HwPxubpT4Cjz3IeJ3yukL8Rl5OrwKY+Kq/sfM+mwIbfpWfAW15tG3 6gvxFawWMNewGWfrV6++guVUHIKwqRPI6PcCE6hDHDb2IDN+J6zrxBSP3bRZeFcTl1lxUfs4 4uAxzwfWUaVWJVf65xwtsx1pDbu6P84u7wpx6ShMdGkgUKa9qHTpE/HyHy8+ee88R9WFymhe QA+mEfaWaai9RTGOW8mt1oOY8hq1cO/APkFvxcrRF24QSXKWnley0aJo3wlCE3rTCL1XG/iY pO0OQL8O1a+T7ExWsGSw5Y/nkVFNewW/EzzbBLaW/nsvyKZsI/oG2UDK9S6HHKdzA5XxFCFB B3aPyD5BB1KCsCqbvy8x45iyjP37952dsPv9iJ5drl35TuukdoDQfx3af509rsdX8No2mbj5 E34np4XgM4ofEkhzKul5a3OumPKeNIaPFxJ94aX7QlM5fAUfGZfx1zXTP55kZ1LH9ARh4y10 5hsHBmHdDnE1uY0LwprAwWbU6l9ZfsadsOlzUKkO0nNL/N6JVdzqSrVz2Kt1JVf6rw3xOrDi 5jPvBl6cObt6N/Z36NIkvolx7fYSZ7DQgzheY2rJZkjPW7IpmvrM5Q3uAKlpAwPSoi9UqLGk l9Lz1vQ2dlW1B5H2OGL0q55+nWhnUidWBs7hQdiwCMYJ8eOxHnf5/uZ+waT5UYiWJM0T2Mp7 tOfyTtfedKB4eXeDsNPcJ9RGtGXJtSvZQVj6L0X7lcY/0vOWxkf4CrS7p0M+GW3b9iuWpCvS 85Z0aSkLvgKFEXGSSHKWnremB8rynjiGF2VEXygiup6PC1/BR+hl/HVN9I8n2pnUMT1BWIX5 KZskHIQtsWrePVrvM1mMDMKOyuxdMb1eWW4cPZt7CSYHlH2f18LQuyvSJJ+OT1sFfoPHn8qO hH2ZOavHn24dzq5jjMYVXOn/NmC+QOE6H/cu2rDezbqALhn9rt9eYnRpTosepEAzu36n4+IH +9S1TTERBKs+O3prSG0HtPl2PkEEziv0hRqGV+oLfROryCNItUHYUeud6yEYa/n0rZB+nWRn UidWprhnBWHfY3cr6Ob722Z8rd/Jp7EspDmRgEfe3uPCetOBGuW15657+WWUpQW7Qv+laZ+F +q/D/CGaOry9L6sxfdapAMwRY8AvE+uLzREXP98y73XvJ8Vn5FeSK9kUfAUr/zd+8/eViW37 OvEV2LYp31+nW+BZJS7Tma+AIGzCUCrvlWODsHllWzXLYcDoDqo8X486VtPvsA+V2b+9fWjs j+cQIqj4U72OFetWJavRQKNLU98Qt2ghZqd01nEQ6AE2ZU8H9o6eMmrt7g7RO/TRW7nx0RfK jDYpZkdh+zv76B/fsmvMzrQQLInT/MnB99Z5Eyh6vB6bv01j6Pfix0veCRtH7jqpfTrwPd/7 u75ffQzE9KYDx5d3cZJPc5a9/FLL0p9d2Wsd9F9i/xXcXX2lcXIJC4ouoUsjAfSgWz1obAxf wirpv4Hedqm3+Ap01zXNvj7vqRKtxGVmBaztk0wd0xOE1VvXQil7CcKOk8/HS7zSKjqo5LtD 0IM2tKLojN0FtetYSNNa+gy69O4ZonaOm+nI5s7NiPbSkhKYumBTjEh6syl2eZU7QNDbufHt HG+YxYi+MGzduplUTVXALnr6xwbsTOrEytTmn79ef/71T2M9MMWBAATOJvDPX3+8/vxfYinO 6PeFotJ/Mb9L1ObNa+gSusSY2GoW+AqWSVLgdMZSlqfMd7BfndkvfAWzD2I4jVRasd5qXKZj XwFB2DJ2N+Ir/QRhx114TykKmzBAWI66DLf38OpQVQcXIQ1V0sp1VJWpu0TokhHZ7XUJPehS Dxy91e0AcXbkbGyWfhfA+eYOve1Jb9f6+dn9Jc0xztMz9MunX2fbmawgbIPBkvP0m5whAIGF wPXsCv1XT+OjtlsiuoQuGWcJ/scefUb4CtDbjvQWX8F7VLo+RSnCX9dCXKZXXwFB2Oqj0UAQ ttFV87/PpzmSqY0fxaCsjYJSCg8BdAm1GAmgB+hBjwTQ2x6l1k+Z0a/2ZHW1HWvtEaZEELgf gawgLL4ChcLgK1BAajYJY6FmRVO1YOhBVdxkVogAelsIJJ/xEkC/2lOMVF8BQdjqsuxpJ+wI J1De6tyUZ+1XLxcZ6gmgS3pWV06JHlxZutetG3p7Xdm2UDP0qwUp2GXICpawE7Y1cVIeCDRB 4Jp2hf6rCeW6RCHQpUuIMbsS6EE2Qj5wAgH09gToN8oS/WpN2KljeoKw1SXZWxC2OiAyhAAE IAABCEAAAhCAwGkEUidWpsAEYU+TGxlDoGUC2JWWpUPZIAABCEAAAhCAAAQgIBNIHdMThJXZ Fk5BELYwUD4HAQhAAAIQgAAEIACBYgRSJ1amAARhi8mBD0HgSgSwK1eSJnWBAAQgAAEIQAAC ELgjgdQxPUHY6tpCELY6cjKEAAQgAAEIQAACEICAkkDqxIogrBIwySBwQwLYlRsKnSpDAAIQ gAAEIAABCFyKQOqYniBsdTUgCFsdORlCAAIQgAAEIAABCEBASSB1YkUQVgmYZBC4IQHsyg2F TpUhAAEIQAACEIAABC5FIHVMTxC2uhoQhK2OnAwhAAEIQAACEIAABCCgJJA6sSIIqwRMMgjc kAB25YZCp8oQgAAEIAABCEAAApcikDqmJwhbXQ0IwlZHToYQgAAEIAABCEAAAhBQEkidWBGE VQImGQRuSAC7ckOhU2UIQAACEIAABCAAgUsRSB3TE4StrgYEYasjJ0MIQAACEIAABCAAAQgo CaROrAjCKgGTDAI3JIBduaHQqTIEIAABCEAAAhCAwKUIpI7pCcJWVwOCsNWRkyEEIAABCEAA AhCAAASUBFInVgRhlYBJBoEbEsCu3FDoVBkCEIAABCAAAQhA4FIEUsf0BGGrqwFB2OrIyRAC EIAABCAAAQhAAAJKAqkTK4KwSsAkg8ANCWBXbih0qgwBCEAAAhCAAAQgcCkCqWN6grDV1aCf IOzP8/n6rc7HzfD39Xz+nF4KCpBHAF3K49fr28i9V8lRbpsAeow+1CSAvtWkHc4rdWJFELYN +VEKCLRI4Gp2hf6qRS3rs0zoUp9yyy01cs8lyPstEECPW5DCfcqAvrUh69QxPUHY6vLrIwib qlCH4Px5vL6f54eDD6nbDT6KLt1AyJ4qIvd7yv1qtUaPrybRtuuDvrUjnyxZ/D5fj1PHrcMC xu+v19fX9O/SY+iB9ffX9+tU3GerLQzOloA6/77tyrqaWXVRE1MmxFegBNVmMnSpTbkcXSrk fjRhvl+DAHpcgzJ5LATQt3Z0IVUWBGGry7CDIGxl59Hvrxxg/X0+unawaOpYXRVrZIguFafc hS4h93vK3ap1F3oqSQk9lghFP7+EXkTXWvkC+qYEpU+Wo2+pEytTusqydEIjUwD2sZwiM8w7 rhyIJQBp9O32gWi9WTg1Zb92xcFW2cZpbDm+glNVOz1zdCmdXeBNTXspnmnsB5F7LDExfRdy x1cgynEvgUbG9IVZiNt+GbtZXD6aNhXKNHVMTxC2uBilD7YfhD3ScP88vl5vv9Bw2PHoKPqs 0B8dRYHV7EcYnGHV7NfX41X6sOPkOkqq431ec7fDjnxCk4ADg+fJnNGlSE1D7kFgl7Ahkerg SZ7cFvOzPvQL9IV5eOvoRbx9yqvVcW+jb3lsS+tb6sTK1OKIcYYWjy8gN/ZV3y1cMaKtREQ6 ApD9BmEX2Q1zhWXXtlk8YMZW807uz6QxQin2k4624rNIYUo7tnf3b8UytD7UrV1xYNBf5WlH 6f5qvzT4CuZWjt8pT2133o4fi2ND8oRR14bklXV8u7fyamuMHmtJ+dPV0Yt4+5RXq+PeRt/y 2JbWt9QxPUHYPDkmvN16EHYcqJcPTPonuG4QdnJcfXsdRQFuCRJ4v3JAAGU7iY+pY2xl5klV s7sd0KVYidrp6+pSTkndd5F7Ds3e5N5befWyQY/1rLYp6+nFVSZW6Ftr+pY6sTL1ODMI6wu4 mmDXMWP7HLkVeZcgbOdBWCsgugRfl3nNUbLdzP+m+dQB8d6NindrV1Y1ob/KsV31xkemM2r8 ZAR0qR9dyikpvoKSmz7q2pB8ufdWXn2NsV96VvgKclhN76JvOQyPsEOpY3qCsDmSTHq3UBDW TEznVcKboOV6xaO7+t0o4PKuu/N0Lwhqv/MT69AZHaW2A8gpozXzHVcobO+vGtPn3vk0Hck2 1X34lll5bZfJeV69jpEKddBuh7B+2M7u+f8NI4upfbI0uvTRtdZ1yfiMQ3YBuX9a5sVsyHAO wMomdqCnHo8mfWFk1zGsR75QX1g5CMvYK1rbetW31InV2UFY05e784KjglkJ2lD8ldS62bst ew9Q98pgtqefKeDUNwV/LyYzJx97kYK7YGEvz4TyVLUr9FcJ5uZK4yMzudseVV7gZATmjBrV upgu4SvQCH1IczW54yvAb9673xxfwb7xIk5jn4Tjj0X5CaaO6W8ehK238nXlxPft9IxaNW9P Ht2dlu6Kx+n4h7dDxl396/t9sxTYd2zwGHjTr6r3H/Pk2SU6ggpMDtbbx5XjoHcyqQ7Sczm/ EnWUc7FSHLHbYVc/3GDcWgdWerbIEV2yBuN120u0LtnteaUHyH1iKdkI6bkskbo2pOHyDvqn 25FCXyhrlZtCkrv0XM6xrh7XnFihb7L0r6NvqRMrgrDxWpL1RkoA0gm01TqKNqueey/3ymBT bteeWza3sMzsI4lX8t8JyAbTLcEJxcClnl2hv4pvb9L4R3ou51h3fBTwqeSejICvQBb05eaM sy7hKxBkL9kI6bmsWnVtSMPlxVcwKQt+c7nRmIURuZu5FNlMArEWExKn0VGT7Iz0XM7lKLuZ Oqa/cRD2sxNTMWeSJatOUWAn7N4xut6BtWUMhCN4vQrqeWdaAekJKnnzDwRbNwPUBaLfUMas StiIw1dv+2+N1FGtRsuEv/Ruh1392AbjVm3HeRdd+kjzjPYSo0vT/VuhIDFyfw9yXUY92xCN zdvd5VHGrnv1VDuxoi+MauaX1GN3YmXv/FntqIpHpRpHLIkYe/kBlxh7nWSHUidWBkTUwsoC uml/4ogFeoWLWPRzViBvtVhzPo3lOSxEfY9VQye05AYlilYo4WMKBp+dHNv7UBedrX5kdUwQ 1sWyJ7PNDlsP0/f79oJse8ePdo47f1upQ9XsCuOj+IZUor/aHRMcOG4O1PaQkxGYM8q6dUFd wlcgi93LCF9B4IRD38mHEcEyfAWzQuI3l1umwwhfgYWszLjk9DhNZ76CWwZh30eoDHefPird AfPR9PwgrHdAvWTgXQ1jN671McBuAHr8tnsUcHgA70xQ38rvTlzd46XeMxRzT4n/6OHt3Ty+ sslGd0oh1UF6/s7n4Dpq67Nfp5yVPnv6ER+MQ5d2nDMN6dL7zqD5aOm1XUDuV7Qhos0Td52U setem6ecWNEXxvQYV+0LXftk9X8pu8N2kKJvJ+jbiXaoWrAkHuv+G75gUGClfOmsa31vNdm3 2/lQz/e4c/l/39+cgva4EzaKwbu+4atdTmGQEYTNL+8cfH061+vsBFP38tSWp5Zdob+Kt0bS uFh6jq9gJMCc8YpzxnkGMd0vjK8gaFwkGyE9b82GiOU9cYw+Brw1G6noC+kLt/0SvoKPVpTx 550apznRDqWO6W8ahH0OQ0QzRDKDCY0BjzdfoTfODsJaTW48pni5H3W+y9M3iRQ74HHIbb41 GDTvnYKhVU1xKy92G7ew6lmqg/TcTCsq1DFKzw7e7TDVd5ar0Y/4iZV9vrpmUlKLM7oU1jTk 7mcj2QjpeS3d/vhap/uaQ/2bprwrEhvHZBm7vuTx0bvPBP+9cydQibyJFX3hWlemxVMavaja F4o7miw9HPtER1dC1xigb+EFcL7FU9vFcrP2VBh71bRDdl6pE6tpevF8PZ7zwDpqYFcisXst yTTBDsqwRJaVv7GyU6ux8GeOtUxwzdh1PjXm87e1/pr5y1niSmQXx2DKxDv2fe8IOIFBShC2 YHkNw3GeY/cbviDsXp6R5allVxgfeRpWhf6q6vhIYzvwFViU8DuVGgfgK8BXMPnSnR98Bc3M o2/l68RXMES17K5uvbiwxrjkbH3rzVdwyyDsR0h9BmF3jwPxruANrXAwU/LVblTvSl7pSJWd Rj89KrPCovY29yDnKMb7A/6sBQBVdjvY5c8PworHtKBLxdqLZm4eToPcN2wkOyg9r6TbarnH lHd23q4DXGXsure8ytWt9IVqaX8SSnKXnremx7v3vEQca6VBmXO849ZTwdjLDA89R+HvcN6O UY+zQ7WCJRrVi0+zPtWklOM1vhxHvWHXzw4eLjs97QWvvr+55SpsK46q9trLYO1KkhiYTvz1 7V5hsvreCQxSgrDvMhcor89xt3us8F6euvJUsyv0V/GtUOqPpOfNjY/mdu+7SmXXFsSiY854 +TmjVyWQ++XlHmPz8BVM6hDD7ECfMn5zu3Xmj93UvSJjLzWqz3Be8AXEtKnKdih1TE8QtsOd sG5Qc+2UclfAzzs4l8G2q8TuBNizk+R9VOk7Yjg5vc64EzY9aOnfGfCpg/TcsifeDjNudeV6 V2m8rZreOGC3w65+xAVhzSBkI7A2OId2R+kkIdVBet6gLiF3hegluUrPW5O7srzBXR4H2jxt ENZZ4ENfqFDjQL/Rb18YuyNbwyiUZh3wQ980LCU7Iz2f8zjBDqVOrKbh2Zk7YTVyuW4aI7eH dSzxPCF3/+YSyBsXtsVzyyB8DPHKTWXfn9tWlbylyZZZcNer5z7YuQR7eWrKU8+u0F/Fq7DU H0nPWxvn4ytY60Bo3uIfR2rac1jHJF2RnjeoS/gKFCZFkqv0vDW5K8t7whhdexwxfnOF2m6S SHKXnremx/gKlrnpt7soy9mQ95Fch/3lCXYodUxPELbLIOzk4BmPmpyOa3Qni+sV8F/Oakf3 GL5VnCy4Unr9zdGZoQ/CzkcceiKo3qOgfEfnGAORe1SWXYfhW0+3DmfXMaOTnHWhxG6HsH5E BmHRpc+9KdXbS7wuIXcNs6vZEKXNM2i2A1jvyQmzw3tzxJ/XrgeYq4Ow9IUard2muZIe+yZW Bx6/ytgrQeUK6VtlO5Q6sVomuucdR5wgoiu9stldufQT1hxi0x/pdjF2g8lh4D0mrDcGB5Q3 fDzzPK/eyzOxPFXtCv1VQpMt1F8FdlQfNm7erel6rI+vwDmCHL+Tup3gK9CgupoNwVfwvh7J veYJX2cnvk58BeEg7MXiNJ34CgjC9hqE1YwBktKMHW14BfD7k6Gt9sFjnPQODv/xCUO5Hs/1 eedJ9Yt4qXodI8rWRVJ06bz2cqaCIPdu5b53hMoYht3sksm162fqqZQ3etylHov3wkhyP+s5 +ibq25yglh2qGiw5S+0uma+vLW3/9l4EahYx5i7ybA2kXd/l9KL1fetjIKY3BsXKuwQnvUey Lg5n657096LntZ6klOcadoX+SuyvDvOHtGZrcsuDLt1Tl5B7t3LHV2AZPfS4Sz3GV+B03Ln+ vIbiNJ34CgjCEoTdjJ5/hx2iw9x8/yc6QBleZbHKKLSi6Iyj3WrXMXce0+D76NK7J4jaOT6+ FVotrWovJ+sCcu9U7rbNU+7y6FlPpWaCHnemx91OqibO6JtH3060Q9cIlkhW7oLPRzvgnrzj +9sFq/6u0t3q25Esr2JX6K86Gx813EbQpXvqEnLvVO74ChxXHH5zA6QXvzm+guFsu+1Plj/v 7DhNh76CU4Kwv79ShK/WSHFa7Zp+z6hHgcW6DSsNfCtvz1DeIOaf4aheQUYJhna5wzTMO7wK QzVQK602letYuvhtfA9dSh2Y5LSX82WP3LuUu2PzdLs8pH5Uv7rufL11S4Ae96THa3397Poq OcY7VkfRN5++nWWHrhIsOVZn2/r6pCu+3YpX2+ka5u5j0JaU7l2a69gV+quexkdttzp06Z66 hNy7lDu+Asecosc96TG+gtCJp+n+vBbiNL35CjxB2OnYoo3Tajm6J9KbtT42zL3gt2fnrDuc desWGu72EIQdd2Q8vaskzhnEKzq3cwpGrgoC6JIC0gWTIPcLCvWGVUKPbyj0E6uMvp0I38n6 OsGSdphSEgjcncCV7Ar91d21uVz90aVyLHv6EnLvSVqUNUQAPUY3ahJA32rS3s8rdUyvDMIG ArNC/bfbmj2ByuCF1u3A1ZXkWkHY4UwB/45dHYyCqZRn7RfMkU+VJoAulSbax/eQex9yopT7 BNBjNKQmAfStJu29vFInVuabTZ1u0wpRygEBCFzLrtBfodGlCKBLpUj29R3k3pe8KK2fAHqM ZtQkgL7VpH2Er0ARhE0LwJog3pe93XkKUn4Nu2zNP2tH7bhb9ls6/rYV0t5y+Oo2/m04/mq4 X3Wq83IUVh87YZvGTeEgAAEIQAACEIAABCBwEIFrBUsOgsRnIQCBKALYlShcJIYABCAAAQhA AAIQgEBzBFLH9EIQVjobOszBf7lvYLfo5jJd97tTILjtQK1btzkwu7n/lSBsc62HAkEAAhCA AAQgAAEIQGAmkDqxMq+zExY9ggAEPASwK6gFBCAAAQhAAAIQgAAE+iaQOqbfDcKOO1THXZze a2DNpdzLzlb3gt/Q0byhv1/hblh/EHYbOCYI23dTo/QQgAAEIAABCEAAAlcmkDqxIgh7Za2g bhDII4BdyePH2xCAAAQgAAEIQAACEDibQOqYPhiEXYKvUyDWCbKO97haf9vueg0dYbwfnPUG ex2yS2D4EwD2H3FcXyD+IOy2TgRh68uGHCEAAQhAAAIQgAAEIKAjkDqxIgir40sqCNyRAHbl jlKnzhCAAAQgAAEIQAACVyKQOqYPBmE/OzingKp9h+sGnBOUne6DXe5AtVPH7pAtKyJv4Pa9 m3cK5gZ/TB0Du4Inj4u58/bDLXSUM0HYslLlaxCAAAQgAAEIQAACEChHYHdiJc0JOI64nCD4 EgQuRAC7ciFhUhUIQAACEIAABCAAgVsSKB6EXe3gnI8eDu1UZScsQdhbtjoqDQEIQAACEIAA BCBwOQKpEysDgiDs5fSBCkGgBAHsSgmKfAMCEIAABCAAAQhAAALnEUgd0+/eCWtXxwRavccS jztI3V2vsTter3snLMcRn9coyBkCEIAABCAAAQhAAAKxBFInVgRhY0mTHgL3IYBduY+sqSkE IAABCEAAAhCAwDUJpI7p1UHY5bjdTSDW8NwGUbe7YyfwUzDXOd543Gn7/RwO9A39TEcif476 bVOI67pxHHGbUqJUEIAABCAAAQhAAAIQCBNInVjNk53X4xme1cAdAhC4JwHsyj3lTq0hAAEI QAACEIAABK5DIHVM7wnCpkH5ebj3pep3t47vth5gTaPie4s7Ycux5EsQgAAEIAABCEAAAhAo SyB1YkUQtqwc+BoErkQAu3IlaVIXCEAAAhCAAAQgAIE7Ekgd02+CsF//97Xi5/3d2rk6Pf8E XO30od2wqwyGe5O+d3fBHiHOaWet2ZFr/j2GGtT6IQhbizT5QAACEIAABCAAAQhAIJZA6sTK 5MOdsLG4SQ+BWxDArtxCzFQSAhCAAAQgAAEIQODCBFLH9Ksg7BhAtYOoe7+bAOucfrkT1pf+ +e3ukLWloN8tW05226ONvffdlsvQ+RJB2MPQ8mEIQAACEIAABCAAAQhkEkidWJlsawZhx8Ws X9+v255+fPf6z/p2ax3IbOs1X+/GrtSEQl4QgAAEIAABCEAAAhDoiEDqmH4ThB3rvARiS/23 KY7jLt7NzteawWCCsE3pA4WBAAQgAAEIdELg95d7JjsRFcXsnEDqxIogbGXBE4Q1QX+CsJX1 LjG7buxKYv14DQIQgAAEIACB8wjgKziPPTnfi0DqmP4dhNXugF2CtDHpmxdF1ckrQdh9ffh9 jbunl6Oi73NXcGorgZdMDkYyI1JAAALJBLyLu5K/9n7x52GfJDLZsU+fWHPxWH5d+AIEeiOQ OrEiCFtZ0lXncJXrps2uVwZLuZ/jAul57vcYLggyfar1u5aDMt10ApZ9LdHw/2O+FX66sSsV WKRnwbwujh28ZF4wkhmRAgIQSCaAryAZHS9CoFUCqWN6bxB2rKTqbliLhpS+VXDD8uEp6Fdp 8mXuz/XdgVvz6LJmheHKYnt0dLNFP6Vg8JKxw0hmRAoIQCCLwAETK+MkXo1L3CDsUOLRge0b T2RVhpchAIGRQOrEytCrOabvNQBXSs3uXv9Z37rcCWtkZ83Bl+Dr0vfVkG2NPCxd78aulGqf xb/DvC4OKbxkXjCSGZECAhDIIoCvIAsfL0OgRQKpY/rVccQtVuzYMtUOwI61IQgblKlvIjx2 WDiZ/cjgJZsHGMmMSAEBCEQSmBYITTtphrsYzS6ex9C7Lz/O85/R0Ww/l7Ib37fTr1fo28HZ cbcsJ0ZIPHkOgXgCqRMrk1MPQVh7t2GUfYpneegbqUG0q9R/1rekIOzZDOYg7Ge90dR3Bn8v Xl5ncZMpj9X37uWXWJZu7MqhjTbj48zr4uDBS+YFI5kRKSAAgUgC+AoigZEcAt0RSB3T3zcI O0/86jsvCcIGW5cv4OpOiLtrmgcWGF4yXBjJjEgBAQhEEPAdCzwGYxfHrfRczmq7C9Z42Z3j iOfvsFBJBkoKCCQQSJ1YmaxaD8I6Y2u/zUmAdsYrKUHYK9V/1rfoIGwLDDayc4/Zt4KyB5TX 6L290NfOYy+/jLJ0Y1fOaMuaPJnXaSh90sBL5gUjmREpIACBCAKSL0B6LmeFr0BmRAoIHE0g dUx/zyCsWb067F75PVosvu8ThA1R30yGUx0LZ4j1hDzhJUOHkcyIFBCAQAQB33FC9t88z6f7 56zdNcsRjPNu2vVtCIFgaygIO56ucdp4JoIbSSHQGYHUiZWp5klBWHtn/OKgGf+2uv/Sd/1K zwserUDe6h7t8e9DgO159fo7cyWfvJvVgZggrGs/9nR2s8PWY3wCu3CntuI5uULMT3faRTd2 pVF7zbwuTjDwknnBSGZECghAIIIAvoIIWCSFQL8EUsf09wvCpqyYLqoXBGFDOBkExykavGRe MJIZkQICENATCNuUyQErPTdXEthBU68T2j6OcSnbfnC22rX2elSkhEDXBFInVqbSBwdhV8eQ r2zIcpS5e6S5KdSwm96/ALW3nbDB+g+Or/cJR/b/T0K5TP3H2oR1wO4zXHk3xiAjCJuns4Hr iHYCrXv5xZSlZbvSg8FmXhcnJXjJvGAkMyIFBCCgJyD5AqTn+Ar0rEkJgTMJpI7pbxeEnXak OKvCvbtRjhInQdggWY6DiVM6eMm8YCQzIgUEIKAmIE2cpOeD5/xl3+m6ONPXd+D5AiWxO2TV VSIhBCDgIZA6sTKfOjgIu7Izzjhnmee4162Mf99cwfLelX/W6UBpqheu/2eOtUxw3yHJC9V/ UjHrKF3PWNcn7+Z0ICUIW0Bnpzai3O26l19CWVq2K2mtsfJbzOvigMNL5gUjmREpIAABNQHJ FyA9x1egRk1CCJxKIHVMf7sg7KlSMpkThA3KwLcCmfvuwioLL7k5w0hmRAoIQEBPIOGIITOZ 8jl8lzHB6jhh6w68VanYCasXEikhkE8gdWJlcj44CLvcET0tKnUCqL4Tf+ajecO3sPR2rPm8 k3FT/2WnpzPXulz9jZKZe8KDOmDfdTrr5Hg8c1M6kBKEfTftVJ21ua0XZX//9z+vb3VfbdsY fVnativ5dvPwLzCvi0MML5kXjGRGpIAABPQE8BXoWZESAh0TSB3TE4StLnSCsGHk7vFQkzN6 s3K/usxazRBesmRgJDMiBQQgoCfgtymfIKv03M7JF1iN3fGqd/7q60hKCEAgdWJlyB0ehA3L x9yL+rB33IePoLW/srpPtWPxG7kN9f/MHe5Vf/+xy9dkUFxnhbuR9/LTlqVXu9KOSWBeFycL eMm8YCQzIgUEIKAnIPkCpOf4CvSsSQmB8wikjukJwlaXGUHYfeTrFcoEYCUFhZdEaL1bgKC+ zIsUEICAvp8adqE93Z2ua7tsAiKb3TXhRUah++Xe1ynYF8ByWgTKCoFDCKROrE4Nwr53fH6C bt4jaDd240KLOZzdlXerv/oY4t50oEZ57SDsXn4ZZenSrhxiYXM+ytw3jh68ZF4wkhmRAgIQ 0BNwTivBV6BHR0oIdEIgdUxPELa6gAnCVkdOhhCAAAQgAIGzCLjHEs33yNmx1HXR9AGRcfcN i5XOEiz5XplA6sTqvCDs5PB52xUTKBrugTVH9jrHrj5/pztF33/v605YeZHMct/ntNjlPvX3 19et//j72G/0pgPHl3dxmk76s5dfaln6sytXtvLUDQIQgAAEINAAAXwFDQiBIkAgjkDqmJ4g bBznAqkJwhaAyCcgAAEIQAACfRCwJ1ZiAHaqUmg37KrC4j2HfeChlBBokUDqxGpuwK/HEOTi 5wQCo10Mr3A5oUBkCYEPAewK2gABCEAAAhCAwIoAvgIUAgLdEUgd0xOErS5qgrDVkZMhBCAA AQhA4CwC1sRqvXvms0NrGzNwdrVtyq7fLXtWtckXAj0TSJ1YmTqfeCdsz8xzyz7Z1yvt6s0l wvutEcCutCYRygMBCEAAAhA4mQC+gpMFQPYQiCeQOqYnCBvPOvMNgrCZAHkdAhCAAAQgAAEI QAAChxFInViZAhGEPUwufBgCPRPArvQsPcoOAQhAAAIQgAAEIACB6eS6lMOXCMJW1x6CsNWR kyEEIAABCEAAAhCAAASUBFInVgRhlYBJBoEbEsCu3FDoVBkCEIAABCAAAQhA4FIEUsf0BGGr qwFB2OrIyRACEIAABCAAAQhAAAJKAqkTK4KwSsAkg8ANCWBXbih0qgwBCEAAAhCAAAQgcCkC qWN6grDV1YAgbHXkZAgBCEAAAhCAAAQgAAElgdSJFUFYJWCSQeCGBLArNxQ6VYYABCAAAQhA AAIQuBSB1DE9QdjqakAQtjpyMoQABCAAAQhAAAIQgICSQOrEiiCsEjDJIHBDAtiVGwqdKkMA AhCAAAQgAAEIXIpA6pieIGx1NSAIWx05GUIAAhCAAAQgAAEIQEBJIHViRRBWCZhkELghAezK DYVOlSEAAQhAAAIQgAAELkUgdUxPELa6GhCErY6cDCEAAQhAAAIQgAAEIKAkkDqxIgirBEwy CNyQAHblhkKnyhCAAAQgAAEIQAAClyKQOqYnCFtdDQjCVkdOhhCAAAQgAAEIQAACEFASSJ1Y EYRVAiYZBG5IALtyQ6FTZQhAAAIQgAAEIACBSxFIHdMThK2uBgRhqyMnQwhAAAIQgAAEIAAB CCgJpE6sCMIqAZMMAjckgF25odCpMgQgAAEIQAACEIDApQikjukJwlZXA4Kw1ZGTIQQgAAEI QAACEIAABJQEUidWBGGVgEkGgRsSwK7cUOhUGQIQgAAEIAABCEDgUgRSx/QEYaurQSAI+89f rz//+qd6acgQAhCAAAQgAAEIQAACEPgQ+OevP15//i+RyO/z9Xj+Jr7MaxCAwFUJpDpsDA98 BVdVC+oFAQhAAAIQgAAEINARgVRfAUHY6kL+3+vPP/56bcKtOGyqS4IMIQABCEAAAhCAAAQg 4BLICpYwpkehIAABDwHsCmoBAQhAAAIQgAAEIACBvgmkjul//v73619//7y++q5+T6XnOOKe pEVZIQABCEAAAhCAAATuRSB1YmUoEYS9l7JQWwgoCWBXlKBIBgEIQAACEIAABCAAgUYJJI/p Bz/B94MgbEWxEoStCJusIAABCEAAAhCAAAQgEEUgeWJFEDaKM4khcCcC2JU7SZu6QgACEIAA BCAAAQhckUDymJ4gbG11IAi7T/z39fz+en19Tf++uVNLUFB4yS0YRjIjUkAAAvUIYJPqsSYn CKQRSJ5YaYOw4wTs6/v1fD7eY96vYVXs68f5Pa34wbfGen19P1/TjbWzLRrzrf1zUv1/HsP8 wqmvYXIjBqa+8zzr/d8z6l9K507SpZTiH25XUgrV3TuMoeJEBi+ZF4xkRqSAAATqEcAm1WNN ThBII5A8picImwY8/a1wEHbcknzvH9cZNLAiELujEvCS2wuMZEakgAAE6hHAJtVjTU4QSCeQ PLEas9QcR2wCR1ZAcAm+LnOBJbA0RUsL/kxja5PNmMc7IFswC82nzqq/4fx4fWZck00+ZQp2 FgNbPofpmUYJCqVpgaOyKrl2BV8BYyilqs3J4CXzgpHMiBQQgEA9AtikeqzJCQLpBJLH9ARh 06GnvUkQNsjN5wgYnSVnOYjSBFzvLXjJrGEkMyIFBCBQjwA2qR5rcoJABoHkidWY5zy52s1+ Dhx9gn9WcNS86Pxu75BdBRETKjl+a8h43BX6zt+UxwpO7uVXoiyn1d/hatf7NgwWnZkcfe9T h2rXP0F1va+cpkvxFTjcrsQXqa83GEPFyQteMi8YyYxIAQEI1COATarHmpwgkEEgeUxPEDaD etKrgSDs6Gy5e7DRF3B1HQJJzC/6ErxkwcJIZkQKCECgHgFsUj3W5ASBDAI/j+Go4NRdqOog rJ3HGBx0f7d2rFoB0vzjcz3HEO8EI1f5OePy5LJsnEz16m8fSRys2149L8BgbBrro6nNHz6B +Br1z2ifq1dP1KXYKiQ7bExG+ArMce2uvwRfQVgN4SU3URjJjEgBAQjUI4BNqseanCCQQSDZ V0AQNoN60quhCdToELGPx0r6eNcvbZwBk4dgujMr1RHWNZH9wsNLFi6MZEakgAAE6hHAJtVj TU4QSCeQOyZXBEtiAkduRfaCDptdgT4K027Qz7G8y+/236z3xPwS5i9n1v9dH/so4jsysI9h PqH+6Q10/eZRulSqfNZ3kh025hu5dumAClX+JGOoOODwknnBSGZECghAoB4BbFI91uQEgXQC GWNygrDp2NPeDDtm8lbHppWmpbfocOKkAS+ZF4xkRqSAAATqEcAm1WNNThBIJqDZybr7ccXE LCNwlLz7dC7z+P54BO3yX/PnnUDrXn7JZTmx/lMwawhAPp0jmG/DwLMT+gwdSG6gzoun6lJM JRR2QfgcvoLvwE5YFmz7VIcxp9w+YSQzIgUEIFCPADapHmtygkAygRxfAUHYZOyJL+6sjs8R ZGJpmnqNoxfixAEvmReMZEakgAAE6hHAJtVjTU4QSCRQItAhfiMlcDTvcv3KOSFmFWi0jgD2 BSD38ssty1n1n3XCOLnG3cCfS3n9gegLMpjq7tm9XFsHEtvn5rWTdUldjRLz/BLfUBe4wYSM oeKEAi+ZF4xkRqSAAATqEcAm1WNNThBIJCDO8/e+SxA2kXrya3tHlOWvkE0uVgsv+ib/vk6o hbK2UAZ4yVKAkcyIFBCAQD0C2KR6rMkJAkkECo3FpWBJSuDoXR/3/lR9Re37UMe33r/v7AI1 d1EGA7+JZTmp/m9Sc3DVjsHu7Qa+DoN5F6w5jnr97/u///ncCbtRqQN0QK+2+ynP1iVlPbIc Nh/Fvff1RYyhlNo2J4OXzAtGMiNSQAAC9Qhgk+qxJicIJBHI9BUQhE2invGScE/UGHRceQQy suruVfd4rOl+ovHINH58BOAl6wWMZEakgAAE6hHAJtVjTU4QiCewOqI3/nXrjcwJmpD3GDwt Ol3YDcJOwdpQfsXLouCenWdw12f4ftvLMXA5d6YDCjVRJcnWJVUuBe0BvgLLV4KvYF/9GHPK zRNGMiNSQAAC9Qhgk+qxJicIxBPI9hUQhI2HnveGEIQdPl5nMphXi+PeXq/QJgArkYaXRGi5 +2tZ8Y9OycRIAQEIHEkAu30kXb4NgWQC46To+zncGFrop1SwZHMqTOLu071q2QG4vfxqlMUt 5wF5eifQN2OwUYeW61+oSQ6TbOdO0QPakqes2Q4b55v4Cj67uJnXSY2DMadECF+BTIgUEIBA TQLY7Zq0yQsCagIlfAUEYdW4CyWUg7DTQPD7xQbQQsj5DAQgAAEIQAACEIAABIIExmBMeBdk KrhSwZL3HabmCNkj5giLw2disJff8WXZ0i6W53LHqzfYfhMGQWVuu/6pbdB9r5guaQtUwmGz yQtfgRY/6SAAAQhAAAIQgAAEIJBHoJCvgCBsnhji39YEYcevMrmKZ8sbEIAABCAAAQhAAAIQ iCFQaFLlzZLxfIwkSAuBaxHAtlxLntQGAhCAAAQgAAEIQOBeBAqO5wnC1lYdbRB2CcSOK97L r8yvXWvygwAEIAABCEAAAhCAQDsE1jv/jisXgdjj2PJlCLRKoKDDJljFWjasVcaUCwIQgAAE IAABCEAAAkcQOGCcTRD2CEHtfXOckH3uMVnuqRz/+xjP/+IHAhCAAAQgAAEIQAACELgQgQMm cReiQ1UgcB0CtPXryJKaQAACEIAABCAAAQhAIJ7AeC2RHfN7//8Q/PuK/xxvQAACEIAABCAA AQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIBAiMD/AxSao1nSwrWRAAAAAElFTkSuQmCC</item> <item item-id="447">iVBORw0KGgoAAAANSUhEUgAAG8YAAAAnCAYAAADZVHT1AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEAlSURBVHhe7d1rduSqloVRt8sNcieq flQT3JrszGmMK562QoECJB4CxTxj5Lg3M/RAH4vNZoHEx4//EEAAAQQQQAABBBBAAAEEEEAA AQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ QAABBBBAAAEEEMgg8JFxrlMRQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ+LExHhEggAAC CCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA AAIIIIAAAggggAACCCCAAAIIIIAAAghkEbAxXhY+JyOAAAIIIIAAAggggAACCCCAAAIIIIAA AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA AAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg gAACCNgYL6iB/36+Pz9+vv4RCAIIIIAAAggggAACCCCAAAIIIHAnwC+gBQQQQAABBBBAAAEE EEAAAQQQiBHgH8QI+R0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEOiXAI+337pRMgQQQAABBBBA AAEEEEAAAQT2IsAv2Iu8+yKAAAIIIIAAAggggAACCCDQDwH+QD91oSQIIIAAAggggAACCCCA AAIIIIAAAggggMBaAjzetcRKHW9jvCeSVzF+fNgYr5TIXAcBBBBAAAEEEEAAAQQQQACB8Qnw C8avQ0+AAAIIIIAAAggggAACCCCAQG0C/IPahF0fAQQQQAABBBBAAAEEEEAAAQQQQAABBBCo R4DHW4+tKyOAAAIIIIAAAggggAACCCAwKgF+wag1p9wIIIAAAggggAACCCCAAAIIlCPAHyjH 0pUQQAABBBBAAAEEEEAAAQQQQAABBBBAAIHWBHi8rYlP72djvAmN/74/LxvifXx+/XydNsf7 +rdn1bg3AggggAACCCCAAAIIIIAAAgj0QIBf0EMtKAMCCCCAAAIIIIAAAggggAACfRPgH/Rd P0qHAAIIIIAAAggggAACCCCAAAIIIIAAAgi8IsDjpQ8EEEAAAQQQQAABBBBAAAEEEJgT4BfQ BAIIIIAAAggggAACCCCAAAII8AdoAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQGJfA23q8/33/ fJ73X7v92XP/NRvjTdrPf9/fP9e98K67Ne5ZMeM2ayVHAAEEEEAAAQQQQAABBBBA4FgE+AXH qk9PgwACCCCAAAIIIIAAAggggEANAvyDGlRdEwEEEEAAAQQQQAABBBBAAAEEEEAAAQQQaEOA x9uGs7sggAACCCCAAAIIIIAAAgggMBIBfsFItaWsCCCAAAIIIIAAAggggAACCNQhwB+ow9VV EUAAAQQQQAABBBBAAAEEEEAAAQQQQACBFgTe0+P99/N12hDvd8+1f1+nDfI+f77/a0H8+R42 xgtytzHePnJ0VwQQQAABBBBAAAEEEEAAAQR6JsAv6Ll2lA0BBBBAAAEEEEAAAQQQQACBPgjw D/qoB6VAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQS2EODxbqHmHAQQQAABBBBAAAEEEEAAAQSO TYBfcOz69XQIIIAAAggggAACCCCAAAIIpBDgD6RQcgwCCCCAAAIIIIAAAggggAACCCCAAAII INAngTfyeM8b4X1+//ztg7fvs9sYL9gi9q2UPhupUiGAAAIIIIAAAggggAACCCDw7gT4Be+u AM+PAAIIIIAAAggggAACCCCAQJwA/yDOyBEIIIAAAggggAACCCCAAAIIIIAAAggggECvBHi8 vdaMciGAAAIIIIAAAggggAACCCCwHwF+wX7s3RkBBBBAAAEEEEAAAQQQQACBXgjwB3qpCeVA AAEEEEAAAQQQQAABBBBAAAEEEEAAAQTWE3hnj/ffz9fHx8/Xv/XUSpzxNhvj/fv6+Pk4gQ7+ eaL/zoIsISvXQAABBBBAAAEEEEAAAQQQQOCIBPgFR6xVz4QAAggggAACCCCAAAIIIIBAWQL8 g7I8XQ0BBBBAAAEEEEAAAQQQQAABBBBAAAEEEGhJgMfbkrZ7IYAAAggggAACCCCAAAIIIDAG AX7BGPWklAgggAACCCCAAAIIIIAAAgjUJMAfqEnXtRFAAAEEEEAAAQQQQAABBBBAAAEEEEAA gboE3tfj/e/78+fj8/vnv7qAF6/+NhvjreNbTpDnXQ9Dm/HtsRPiv+/9hPbH/8T2e6dtINeJ wNE7EKDRHaAf8JatddT6fuEqE1sPKOWqj0S3VfG+/cXpq5UExP4p6cWN0PcYeL2QgPbRqn3U vA+/oB5dca0e2/GvLH6OX4c9PEFrHbW+H7+gB5WNXwa6Hb8Oe34C+mpVO/LqEf2CuTq0l1bt peZ9+Af16Ipz9di68lYC4vZWcs7rgUBr/ba+H7+kB5WNXwa6Hb8Oe34C+mpVO/uPI2quaWit o9b305+3aifHvg/dHrt+9346+mpVA63782N4vPTZSp/uk0qAJlNJOe4Vgdo6qn39tNpt3e+l lcpR4xCg43Hq6gglpbdWtahvmJKu6bfWrFHtpSbdVtfmF5QjLa6VYzn+lcTH8euwhyeoraPa 109jKHamcXLUEgE6po2WBOitFW19w4h+gfbRqn3UvA9/oBxdcawcS1faSkBc3krOeT0QqK3f 2tdPY6ivSOPkKH4IDfRAQNxsVQv79w011yzU1lHt66epYP86TCuno3olQMe91swxy0Vvreq1 dd9QzuNtRajEfS6b4n18/ey5S5iN8YI1WU6QXzvuejh9tLPYutkT4t/Xz+f3XntBlmi6rlGD AI3WoPp+12yto9b3e1mjYuv7CX7jE9PtRnBOSyJAX0mYyh0k9r9m+d/3z2c3g6CfH+2jnPT3 vRK/oCp/ca0q3lEvLn6OWnN9lbu1jlrfj1/Ql95GLQ3djlpzY5SbvhrXk7x6KL9gXljtpXF7 qXY7/kE1tOcLi3NV8br4OgLi9jpeju6LQGv9tr4fv6QvvY1aGrodtebGKDd9Na6nHscRBdY0 tNZR6/vpzxu3k4Pejm4PWrGdPBZ9Na6Ipv35+B4vfTbWp9tFCdBkFJEDEgjU1lHt6yc84t8h Tfu9VSVzcOcE6LjzCjpY8eitcYXqG14DL+C31qxR7aUm3ZbX5hcUpS2uFcU56sXEx1Frrq9y 19ZR7euvoil2rsLl4D8CdEwNLQnQW0vap3vpG4byC7SPxu2j2u34A0XRimNFcbrYOgLi8jpe ju6LQG391r7+Kpr6ilW4HMwPoYF9CIibjbn32DcUWLNQW0e1r79KBT3W4aoHcPBeBOh4L/Lv eV96a1zvTfuGch5vY0qbb3fW88fH58/e24M13Rjvv/9G2QytnCC72BjvlBh/NVRaSj3/9/21 u/g3t97TiSnPmHP9tzuXRotX+VtqtLGOTrvbiK2FlTuabkcr76W66LawauUED0Dpaxd9jZ5X F4c2vWCBCYJi5dM+iqG8X2i/fphfkFOZKfU2elxLecYchm93rvhZvMrfUqONdWTcVVy2w3mx Q7azxu0khZGcoHxb2u2K9FUc/Tu0oeLQevUL5g+qvRSv+pT2UvymVzP+5/vz4+frX/7VrTcI M5Qr5GvLFQoQELcLQHy8xH5xu/ij9H/Bxvrll5SXxGjtZbTyXlM664JKK3dIHZSG8DvZSV+l 0aboq7txRO6ahsZxSlwsrdrx1p2ltLPylDKv2LidpDDqLhatRJzyjCsvOe7h9FW87lL01a4N De7x0ucu+ix+0yNdkCaL12ZKzCx+070vWFtHta8/45dSh+36vTqVm/KMde687aqjlTf4lHS8 rfJfnHUIXRSncrsgvRUnm6K30fuG4tCmF8z1W2sWTnspTjelvRS/6eWC/II1XFPqafS4lvKM a5i93bHiY/Eqf0tN1tZR7evzC4q3g9IXPES7ouPSshjuXcfiAF5dkN6K406JQ6Pn1cWh9eoX aB/FqzqlfRS/KX9gNdKUeho9jqU842pwTqhPQFwuzlhbKI50+YK19Vv7+vyQhmLZdqtDtGc6 3lb5L846hC6KU7ldkN6Kk03RW3fjiNw1C7V1VPv6+vfi7aD0BVPaVel7Fr8eHZdHOsyeUcUf PX5BeoszWnlEShxq17+XWwO2EkPxw9O4njfF+/op8Bm07PJPNsb79/P1Efg42zmpOv37x8qv tv37ml7rWsGfv5uzne+1/66A2fQSLlD+Q3Xr2dVsyJvruUZQP+3mWaNhbX7GBH0ED7m0ufdo H/fnp9GtYrmeR6NXDjV1FKqhmvfbXKdia15jenH25jqpVqJL61+dT9FtXoW00cH6es17qqWz 15eDvvJqYrO+asT+vEfp5+zcCYLFJ9E+ltEcZEzWSMX8goVxb424xi9opOryt5Ff5DHdnF9s vW2nnlZNHfELyk9yNNftVr3fzuuzvPLVY+ar6+s1U94Lp68vR804vLkNvkPOWeMZ64iq/VWr +QX5j6K95DHcHBPyblv9bP4B/6C6yNxgMwFxezO6y4lHjdt5VNqdXVO//BJ+SZ/t23iWX1Iz xtLXMPrqzS/J9Cj05yfl1ajTo8wtZ4Y9/Xkc4GZGdDuDu74fjdfOliPWl6NmHKavF/VRow1t kcyKc8p7vPGb02ec0asjNrfBrbftdL3N8uOImcOMgQ6myXWxjU4Pr9Ot+r6d1zzWZ5Y39fR1 7ST1qtfjNjOrkb8NPXZfH5/W1VS7o+ktj3VXbSrvUfo5O9Nvrfkg2kse3c3tJe+21c/mF9wQ yxWWtcYvyGqHm2MHTQ6nyXX97Pp8fN3118mWTtfXxzrC64/eXCfrb9X0DDrOw91GF/21h63U 6G0ruQ49uLxH6efsan7B+narfeTJok08zivjlrP5A/yBLbpxToiAuLyoi6Hn1ah9icC6vEL7 0D5et6Wj5lnr2sm6eLOZGf95Bnp9fFpXU+2Oprc81l21qZxHyfQg1ulofftZd/11ILqqQ/nv pfI218m6qm9+NB3nIW+ji/XxKe+p6p1Nb3lsN+utRs6c9yjbzu6pP+ps/VFkY7yFzfIi1fDf 92nnv4eN9OYb450ucAbx+f3z37YqHeasPSYdHuGc2Zf/4M75Hnn1fNJW6fqv0NDznnGjTDsL EhufYsVpNLoC1tOhNHpHUk9H4fqpd7+8OhVbc9rT0rl5dVKjRFuvSbdbyeXnPWvuPOognr7W 1PL82Lw4UyH25zxMT+dmThCUexTtI4dlXvvIuXP9c4uPiVcXmTZXI5ucsIs2+QU5VfZwbl79 Veh7eVrF6vb5QvViHb+g/Ia4eW2zoowWLj1aeZcJ1WsneYzE28c64xd0P5burj+v0Ibah9o6 d+zGL3hStTndjBrP63MybtzgVP7B0rqSCnGuu1jeQGBukUFAHp0BL3O9Uc6dnXslUE+//BJ+ yXHysnrtJI+RHIhf8rovo68bn8X16RXaUE56keVR1ItT+nP9eV4syWkUpc+t107yGFWIRUN7 GuY/zH/cx6kfP5/fk7fLRunPE0JXe49X/EuolsVD8mL8xjsffk0YTW5UxtXJ2+Md3S41WU9H tT3TvDqUO+a0n6Vz8+qkRolKXbNeO8ljRsfH8DSfRi7WuGQ03e7aVMazdHVqlt9a80nE5xy6 ee0l5871z+UX3BnLFV6YFD+fH58/U8usvjJb3kF8zKG9S3zkF+RU2dO5eXUodhatjNvF8uqk RolKXVO8zSHZThejzpnyC/7lCGx2bp7eKvQNBZ9t10t14xeIxzk6yGsfOXeufy5/gD9QX2Xu ECYgLuco48hxOYdLu3Pr6ff6DPWun6edCjnv0Gtvyygur07KlKHOVeg4h2s7XfBDYvWUVxfv EDcrPGOsUl79nuVB1Itb+vecSr3R22Mdb0ax82JHxo2rn1qvneQxqxCLhs5T9e+xpkBvN0IH emcsWOcdtePzJoUfH89/HraRiwm34O8vNsbbtineaT/Yn6+P6UZs103xfh968qRnGA8vLxZ8 sF4utXXS4RKcfoUyXbA2Dey3///v9DG44LFnX+nFh+Km51yusWYDvdx6PusidyHeVaNXTqdr fc8/RjD7vfkzblRhlwvCblq6837a1HDWzme/L+uZRh80TKMbG80LHV3a0y1O0G0i36PF1kH7 gkltyQlSpHsk3bYdxNPXEfSVmVffc89LLn3rM89jtssgevL3FFQrjrlo77dvvuWSpUfFWRME t49JGJNFavVI8XeFgAsdyi84h5qQL5QZ1y71c1Bt8gturW/vHJ9GF8Ngjxpd8kb5BRt6s6PF 1r1jyYYqmJ1iPJfC8Ei65Rc81rg5qo/ofGtmzrKnXzCfSO/ML7jMvZp3SAnCk2OOFI9XPnqB w/kH/IMkGe0Zt2v7vEkAXhwkbm8geKC4vWfbqJ3TbKjZ31P4JTcUmTnzIb1ofkm0ncznH5qv 9aLbZ38gdw1qekDlx6Ww6j2PyGxDpXOLnDUN+nP9+WKT1J/rzwNrJprnLCl9xv0Y8x/mP9a+ b5bZn6+RZ6FjFz1evtUGwr3nmxse6XxKj+ttLsXyXmO8RmkyzqjQEQtjIDpN4Xs0nY4/5rHm IEW382OOpOO2YyB6O6LeMsdEpT3ORMQjvEOmvSRW5sNhR4rPW54/7xx+wZ1fZlw75Lz9fQrk vFa13VxoqqKNw1JIHTQ+9uhh8QtSBLlwzNF0yi8If6Pu5j8/fWuph/lEOcDzHGHDft8c1Yb4 2XvczGxTe/oFtddb56zPMl+W2FZ6bx+Jj7HTYfwB/kBQenvG5c7fEeNLpASrA8XlPdtC7Rwl pSqXjuGHZNA7UPsIeeNdrxVeqDbj0w16PpKOrZ94LQDf1Bnumzo5HoT+fUM8vJ9ypLjYg3ef URW/Q3zfZFpP8Ug61r/r33vIYda3wvwzjtSOX9Ao4NUsbIx3fblwy3cGn3ebPD/A9XpPm+Cd N1sITp4/JhYjb5636UN1850cH/4+Dex3of9taHfZeXHK9HzuU0XO6+P5OrFGWKKez2XdorFr 2WLPEPs99oS3l/ii7G7XiWo5fr/fI1ouCDuVO60Orhq5Hjtn+7yRyYMOX+r5dDkavYvottFj +gaVJdrhCmX+HdqjRoM6otv19RuLnbHf43dsq9vRyhvgJyeIi+pwOUGBQXxq/05fh9FXVl59 nxi8J4X3DfHuf6/W70/66aUPtiXU0MtDciYItI8E+rF+NvZ7/BbV8obUOBkvYtYR/ILbeDDg C2XFtcPlBhOZVYvJ4TyUX0Cjq4NcjxrlF/xWo9g6VXTHeUpqw5OvJpCK1XPs9/gtquWrwVvz Cx5a8fkjjJnzN+8QF7OecTe/oEH+m+MX3DbBMF8Wj5GTSaXZOoH5vHTH8Zh/cK1Gc7k3Oe+z piK5te0Wtxv4vCEIye3TfHGyhn4PjMXl2O/xOzbNo3drGw1ympy2wS/hlwSb6mDte6ENfHxM 1l1ZcxmgFKvn2O+dxfnLGC3zo1CpeQU/Ll75g8zRdeWX5HgU+nP9uf78ac21dyjueZD+fLHT 0p+/X3+emuslkMk5JLxGjG+1nmksvsV+j9+xqW/1OPnZ7kP3qe1CzIwLZpAxUMKDPB8yyhow Ok2o3lhsjP0ev0Xb2NlxeVPjqzUHcVE9HRGr99jv8Vu21XEBTzP+SA9z3Na4JAM7HRjTU+z3 +L1K6K0rjzP+yM967PEdMvE5uSb/Doy1h9jv8VuWaC/BuyT32/Ey5hzBL/ijlxXXBondm7TS 69jMnHykOmPxL/Z7XC3V4mPs1r1qcv5OAb8gVpPD5L0JD3I7pON2lZx3mDNIr+/7kbF6j/0e v2PbeMsveFUjJeriHXLOrGc88nrr3PVZ8t/j5r/J/XS8z8g5gj/AHwjqZ7e43Pk7YsZ7CeEm lgfHfo/fokRuFr/Lfbh321Cj+XfxJiXkh3Q19s7KeQ/nJXfcnpPzLH5Icjz8PTBW77Hf43ds GudLvBMWf6TbEfSWjGowvWX1DaXz7lwPwnzHepnq35+YVYvj+vcr6/O41HdzI23VfIf5jobf BUyOTRu6mFWnxPLw2O/xm1WL7/FbPx5RIH8Kbox3eTH4dxOsWanuGyWcfn/4kMjlsDnc+7lL /94ySK2lW+b4Ih+6fyjK88Z4D3nrzLQNinVu7J5r7vwR0ekk3G/VnQ3B+UZdZer5rLPNmx4G nuGSGNzL2skzblLRVgP0ZdtcKElq4A7xfqmRyaD/1bl37cUGXzRarR0eRaOpse7PYwnFNrp9 iKN3WCPH1pS+oPe85mUMlRP8GgPzXGVk3c5N+nvCf8m9EzcVLtG/P5RjaubfgoOc80ToZkzN 9PeUVzeIM1l59U1jf+nYvL5nf9+Scy4lHOdrnW78MKlwKc/8g5VX/T+NV2JlyZ0gCI2ProFn 8oFF7ePSFkbLG1Lj5KZkOf0kfsG8PU2lxC8IKolfcJ0UivW9PK3ZxiO/QBb+vaA/26FG+QVi azCepsSSBnl8etYQOJJfEMd3uDmEWbzmFwTml9bNRWaNpUvoq0GcyXrGPf2CSwuf1ecIfsG8 jL8ews3TM1/GP4j3XsEj+Af8gyTp7Bm3a/u8IQCp/p51DknyeTioRJ7TwJtJfrA920btnCaj bfBL+CX8EvN7Q87vhYX7uDEev4Rf8pjYBDdO7MovyVjToD/Xn+vP9ef680krKOETWA92BVrC F+hp/iNVG8lGw7YDgx4v32o9zBL67Mm3mhLocL1NMB78ltka2mIxkyYvfc/8lcJQgFg9BtK3 l+vbe9Jpz2u+ErX8Mr5acxDODw6XAxRYA5aaSck5U0lNjaaF95Zu7zh1Eoe68jjXUK69tiDD bxWf11Tk7diR43Nqv70By5pT+AV8/qhe+AUXRL6DVOdbT1H9hQfnp3e/P3++/1t5duw98NDl EmM1v2BtZRygH1/QS/R90wZzF8GWkahl+ejKuHI+fOR8NCyW/DVQqRj5Bamk+AUP3zeq+M2Z a9b3+P77CO+QmYe4tpGR43FqP70+aqw6gz/AHwgKZs/3YGr7uBljQOsYEsLLyHF50YuYfnOx 4XfxaucoGW2BH8IPWcrD9vj2JT8kMJ75hRL+nlfWXO/R4nyJb+4mdI+LY5f7udbrhCmW0FsD XzarTZXOuzPWLOjf9e/69wWfaRKhUtuJ+eW955etj7wOJw+8r1NP/XsnHm8Rn/zl9xHK7AmW mjq/PK5A/vS0Md59w43r5nizIDZrTM+dQeAl45Cp8/tUV5gpL7DcN+u7bogw+5NygSLE119k 04fqbhN19+d8fLz1L5DNN5+71Nt8Z9lQoPwNMPPOrEw9n8uxdWO82DPEfv/zCs4fVA9t8ljm Gdcr5t5prVwQFm2bCyVJDNxBnvdLnnXytFPxNFBe/39Yz9fFiDR6g7lDOzySRpN0RLeRvOJ1 /zBabI2WNxo7d+wLZrmSnGBZurF6jv3eX04wz/UmOUHqiwyJ/ft9cRh9VdRXoziTk1dfDZNp 7jmfTJvEwujzrM0sbnnidMAzvcer+6WUJWOCQPuI12UsvsZ+3zX+JsfJOIecI/gFF9c26Avl xLWY9mK/76rNmKBSc4HpdVLiZei+ie2EXxCrtOffYxqM/U6jNwIrNMovuDITW//aY7SdRWMn v6BVLKLbaT/CL/ijUaYN7qqvRnEm5xn39QtuH7KYzj114hfIf98s/03MOddTWXcG/4B/kKSY I/u8fItfD+15fQ1vLdo+dm0blXOazLbBL+GXzCXELzmvIfxbI2k920QhXa9n45fwS/7GCy1y peJ+ScaahuQ4dReJdb7B1DHW/8V+b+WVR/Pe2wHR8jbyJVPLGz7u1Zpz71Dc5/xevQcS1cE0 LnTxDoX+XH9esT/v2OM137C+t4jFt9jvvfXbDwQ6XBNmDW1cozHNxX6nyRuBxFgdnvuWO8aU GtNh7PfedBot755jnhVafn4P9689eEf3WdWxeo/93puOT1+KnnzoPvQRmJXvlb8IBHLOWJSs oLdGcWjcNWH9vkOmvezQXvb0qBL77fVU1p0RWhNGi+sYHtMvnTDgF1xh7DBfndPXxvLT2O/9 5a99a5JfsO1DsTEdxn7vTafR8jbK04O9WGLeIQeQA/ALTho48ncOG8WhnBym+Jqolc36KQ52 8g6Z+bJ4Rcb64djvu+YVif10nELeEfyBP345cSymtdjvu2oxJKFd34Op7OOGnje5PZofjkWc mNZjv2sLj4Sr5igZbYEfwg9J8cbnvupFzw8fti/zvQ5+yKU2Hjf6/oXi3d9Yv8UP4Yd8nd5l eN5SpF2bKu6HFH5HjC8RjyKx/Db2e2/5b7S8jXxG/bv+PXXPqHArtT7SfEfD/j3ZU4r3KTlH xOJ37PfHvPg8xAjtE5DPNecZ/4Y5+XsYPG2M9/dxgOtA9XHwOiv20yKi8I7ksYHa1s3RUiEG N9MLbbD34t8W73VhsLy5X2jSYc0mf3/H3he0r3+pe16H8UZwnis+b2R2uue/0M6iZer55SRE hGvsGWK/n+uzxTM+Nta0TSCnQWe68/jdTAr925M+Qwv8bget0d/9unmLaP5K96zn24fAZiPR XuqPRhci36RjXNLoQ9wNbV5aQ6MpOro/UvRDL3T7GL+uH//qpW2mxtaU8j6ovHJesyX+Tssn JwjHpFg9x37vLyeY5FnnWDWLbWcdhMIqfS2bR3v35y3iTM4zrjLl583wRX9+vW4s/72NOX8/ Mnn/e2jj6vvgfL5p961QobK8miBIKt/12uLvMeLv1jiZ4ifwCx4ylsnL+tN/fz3ZGPoI86JX xC/4+T6t0elqLDbdsOQxgf15/ZEO464jjLuec52rh/kUd09JbOjfmnha/IIL5pycMTauiv3e 27grpbwt8vg/m+qc/y78CQ0AZw1HvnqMfDU+huIXTDKHQ+ScLeJMTuzf1S94yvn78QvMlwVi 7sHGaPyDixn2tCmM9QZhD7Kr9QZrXnoczee9lXdL+xS3jx+3o3n0nm2jdk6T2zb4JfySWYjg l8iBRlwX9LDY2/oKfsl5cuLRcAm+YNyVX5KxpuH55fSFtX1/RrR5u2B6fHrJfz7XOVl/ktI/ 9jQ2TClvC1/S/Ed8rUROLIrVc+z33ubt9OdTvRzjHZ0WceZVG9riIZ3L3HqNGN+Kb/XcVv7W 29zXze35DtlDdLq8X3h7x/CSdnuv8Uwh1ufGfu+vT57U+iDvjNHpRYgv1+vHdBj7vTedppS3 RS6SM+aRA8gBWo6B6G0fvbWIQzm+wq5rwi555PR9MWvCHlzt2XtxLXzHHC3F+uXY763zDH6B 73ns3d5++4cV77SmfHOm9fc8jMPebxz2ysOa66+Xd8bo9P10mpJ3tMjT+QUX1/Tlh+C9R/7q uxvt3hnjF/ALAgQWPrJ6/97lfW5oQcO535ypvd46Y32WvOJ4eQV/gD8wjD+w53swtX3cW3Dd 2h6f827fZ572V7HxUez31r5tbL571zmN2jlKRlsIrSGXtxwvb4m1j5T2zA85vyX1918KM/Nz ZdYxp8+J8EOOvu9DiziUM+ddPNfI8CD07wsb31ofefPtUr+/XDaObxm38Z/38Z9b5DD69/i7 A63G1Dl9Xywnjv3+pPBKe3mM9s5YjFvs98t3vl7uP1E2vgfnie7/GFvXVMC3fNoY73ET9/MH P5YnVZ+Tpnq7vm/pCF/CbfRjaGO89beeTvznv0A2/5jdpTyzD9w9djTz5KdMPU8/4r6aSai8 03+L/f7oUJxeAqrzjKnP9cDioWGfWZ/Ldv/fS2UF/u3xTrEBze/RqTuaLunjfKHg5PSSRi4n PCxkCZa1k/qj0T9drdPoby92quvpIoeZMZjwYe9zbEo5LFlHDx1sarun2497jOykbabG1lX9 3SWcnT5085gIXV62edbg6wV5KZpNfobnjH8SQ+UEiznMwDnB0y7dDxpYGojMhJIYO591KOd8 YhKLe7HfZxesFWeycpaMQWVyzrkQ9O5mw4Pp8GLh46v7BX97NUGwOhBrH1Xbx6oxRYF+eHOc XC2clyfwC/7y7Hn+lBXXYrE59vvQfkH7sdiin8QvWG7/MQ3Gfh9Go6/0eI7l/ILfsXajOhVb J6DXtDN+wdQgfNgk5/eHirkc3U4DxCtPgF9wJbVurNCNvirGmaxn3M0vuNbjfLI+PBd1q/kn X/ev7RT3C8yXrR8Yx/rd2O+NcqXgg/EPrtE11MY6qbesOBd7htjve2ozJNjd4vbfJtzVfN7Q 86a2T3H7veJ2V22jQU6T0TaSY/uvvXP+uLL1FU/IY31F7Pfe+pI15a04jlkfuF6dYX7v8Lp9 2Ixh/rT8En7JNQYUnYcsnXdnrGnQn0+t64+f+Qf0kvuTWP8X+11/HmxnyfyTDtSf68/D88oP XFJ9gieY9FVVXxXHDcm+4GZtJAWo5IOCa8T4Vsn8fg+M9cux3zvrt9e9n7PDO2RiZlyjMc3F fh9ak7/G4b5rwOj07XTa9TtiqXmHHCCu2yeb7/yNg9kcxZTjYPG2yDtjqRTpLZXU1Ggqp7ce xkQhAqU9zhWUu36HTHtZUZO3Q2PxN/b7nvlwar+9nsqqM/gF0/DL57/TWOcXtB+bPYucx1rV Y634nkZqwFrW5Cv97fzOGL8gXr2xfjr2+579eOjp1pS3Yp4eBJ+ad8hH47rlF/x8L3wbejU8 eluNLOpLdhKHkudQu/ILGqy3zlifJf9NaC4x/cd+3zOvSO2nEzDkHMIf4A8E9XNkH3chp9/2 zUa+xNF9iZzNavK+i9cgR8loC2nPpn0cvn2sybP4IVc5rGFW0ZvNGrvFniH2+575d9g8O33r eWmdeOI7YanJOD8kldQ0Qbd+4rZpdChXLf0dG/37RvMzFvdiv/cWF9eUV/+uf3/67sNFFCu+ B7HuO23pHUmBb+Sl3kz/nkrquP17Jx5vdKyxMr4/rzMusyfYesEEzijgW77eGO/ewc2D3G3H vsvO0g95w+tg9vzieeGBRhGqZS+y6UP3c5E+bZR25x4Q4/zc89+fMui52Xa9TvrHmMvU83lA vs2IPtdR7Bliv0/qOdhhl3nGVDU97Nh5rrPP79MTXv+7/Haqn2n7Cf3b7eBT8nGuy4SXwG/m TFodPGrtccD0bN5eNrK8P8NLPd8MIho9g9ilHdbS6F27T3F/sf9YKElqchGMdXSbWr9/x8Vi Z+z3vmJrvK/4DbQLsbNtXxCsLzlBgoxjuoz93ptu1+7CHUC0JnZO83w5Z2jENfsY+7y/TtRX 5fFTVl69ZVC5tj8PteSHHHyi+1Bu/up+sd/Skt3nEoq/x46/qXEygULOIfyCy6A0ODmdFdfe 3C9oPhabTd7yC1KiQix/iP3eV/76ytNa0uPDZgn3x1mbX6TGcn7Br2DE1mn7TGxnlfP4lIix eIx8NQFfrJ5jv/cVb5c/irTkX/EL/gh0nHNWjjNZsX8nv+A6/zXfdOVUm734BfLfhPg7PyQW b2O/7xiPU3PODVTWnMI/4B8k6WWnuP0Ynyv5vCEAye3TfHGSfh4OisXl2O87xu3FuYjp+pl5 bhhYd7XWowjct0lOk9M2+CX8kmBwSGzflccx6+PW5Ax+SQK+WD3Hfu8szi9ujMcv+aupJRb8 koQG83xI6bw758NL+nP9uf78sub6YVmQdyhOPeP5P/35YoyXLyZ0fzH9xH6/3aLyuCF5/iPZ Q0pAk3FI2OPlW61HGtNf7Pe+xjPdv0MmZiZINKa52O9ja/KSdZzmdnd9Z4xO306nyblu5Vwk CD4575ADJAh3dkgsnsZ+7yveFlkDlgyR3pJR/R4Y01Ps987GRCEApT3OVMi9v0NmTVhqTU6D apl3Lq+JZeDDXBXf7U7utzdgWXEKv+APVrLXE+Qbi82x3/vKFdb6BbuMzbyTHmnpMc3Ffh9H k0v64xe0qUOxc9oUE9sVv2BFLkfHdx/q+VuJ69bhpKeHBb4xk3wzfkEyKn7B5NuiA6+3zl2f Jf89bv7LH5Ab7PDd3eQ+6Mg+bghCans0P5wgodj4KPZ7m7FAwoNcD9mpLQz5Tpj2kSCrmP5j v3fWPlLXCvND5Dw95zwl3glLaP3XQ/ghyaj4Idv9kFwPYv7NXP17gmxj/Xfsd/378galM/yp 4zbxNkG380NiOo393puOzXf8jWfn308rsxaqi3niyuOM5GdMjk0bmuaqU2LtNPb79GYhnZTR zqpHWjq4gFcT3Rjv94WB0EcIA4OIpR2G7xt5PWzSNtsA7Pk5rwOH50niIviaXGTTh+rOQ6bz xmKXAeT1z19uOg3sCRvjnUUy2WTt76FvDeF+/a/TZmypH5q8+ISnD1MGNplIr+fz/RM3b1us qekznK71PX+GvZ9xjcRmzzLdcPKpoYeM2vm9EjedXBO4fzub0CaKj6ynG/tdLIBFPd+ehUav 7bx5O6ys0WC93u9ZWKNLsY5u11Ty7dgjxdbzIyX2BZenf9Zlfn+3oQpmp8gJUhgeSbeh+Lgy J17Rv9NXQ31VizOZefWWQeUvtsT+PID5or3JeOL378GX2VLyh0BZciYIjMlSGsesnx1oTLYi TiaC2HQYv+DS0B42hr+CzIxrv9e4eyoDaTOopA1+Qcux2KXKzi8i33mHTfhfj2tWNn7BmdvB NTrX46JXmdLfTxpJaiznF0zG+rzYxzDLL7h+HPUWx/mzA/iz/IJpG8737DrKOfkFk6qdzTVN 5kk///d/Ah+/SckfyvsF8t8tQ+BB/dvUnHMLkhXn8A/4B0lyObLPGwKwpn3yLZIktDxeGty3 2KVtNMppctoGv4RfshgZ+CX8kvs8zWTdatfr2fgl/JK7xXlaz3z2EaZrmmvMQ5bOLXLWNOjP 9ef68/jGeN6h+HsPRX/+22Ksl0yxCQr5uT3Mf6zxkFLQbDxm0ePlW20gWkifC+tU8+cg1zzS hjVh5zVG03fNHm6XuJ53RbsQM1Pq88012XKd4kJuR6fvptMV3lW1XGSB+Yr4as1Bim7nxxwp 3hbwNNcglHOuoTXxmwq8h1AtDmWueyvtcSYSHuEdMvE5sTIfDhs0Pq/pt7dgSTyHX3AHlRnX LpcZVItBrWzwC1qOzU5lNg5LaeRvpMlO3xmj03fTKb/AO7pHeEeXX3BN60KbZh/sO4f8gkkn 1Wi9dc76LPlvSlIx7piMPzCr38Q15O8Qq6s9Y2KT+u0Tp+sD5rlC4PvDv5dPXDsQKE4THzeE YUV7NN5L0dGBfIld5jQa5Sg5bcH6iZSGsHDMgdrHkzf+4lvW1cYhC5hXxHXzc1vkfCQd80P4 ITvvbVE618jxIPTvWwLi7ZwjxUXzHeY7zHesDgbWR65GVmyNTbVxxop1RGvGHhtIrTulRH+0 vP9E23edXjx5gfxpsjHeOsT3o593Tkw3RM/njrzpXQqxrR+qS7l22jHnxjD/KHnQjV61MV5o 86Cl8oTr+VSur+/TMsOG/813ur7fenHzjT60fGlj5xfSZxuHzP9tTjJ5V9OGVRC+FY3+cjmM RtOSh7IaTdRRMb0n3q95nYqt0SpeqpPbicfOa+h2yHh7G2QH9iOOyr3tAfQV1Ve1OLND7J+I q2x/frrwy43xri/OLLWHp99yJgiKNiDtI9o+Oh+TFZXD5GL8gmubfvaFdohrzfP2Mqp69gv2 GIuVeRZ+QYTjkBoN6XEPjSb2w8WknHi/5nUqtkarmF/w8/vh92Wj3xzCE5sd5xD4BaePHqdt +Nl9zskviIboywGH9Avmjy6P4B+EmwP/gH+QFijzjura5817tIpni9vvELeP2zYS9VusBSXe j18SGJvvOO481z+/hF/ySgc9zu/xS/gls7UMXcxDvlpfkbWmIbF/1Z8XIzBs/qs/15/rz8vH gatp7R2dO9nmcWaHue9MFbX3eOlz2H57Om94qHfIaPJ4mjziGjA6HVanzXORzMSg6ul0PKSO h/E0rXFZbL7N49C+Y6Ku50+z/NaaAVp8HjI+15TE7dr8gjvkHeJa87UJZQR1vHfIxMex4+O7 vDNGp8PqtHmeXibW17kKHQ+pY37BrDnkrqPsKOeczgU9vMw54DNOaolfkBLBxeMh43FK1WYe wx/gD2RKKHh613G5xgNvuqa4/A5x+bhtIVG/m9rG+aTE6zf3WTvK63t8l+ZcdfyQierpeMg4 zw/hh7zou7r5btArPyRrzUJi3NK/byYwZFzUv8/qO7GdyFP7+laB/l3/Plj/nt/RJF5hHqui bSV3HimxXJUPu2yAer/Hx/897pEX/PsZ1Od1M7Pr738gpscv7Rz48DwLOxFXfuZAEDjvgnr/ k7CB3MoCtp90eC7gf99fP9+xHehWd9jnb1CGd9ZOqudT/X9FC7USduzw1s8YK0/K77/tZLIw LPRvk7Z5vWx6kEopRu1jaPRG+CAaPceGp4/KNNBoko4Kijnpfq3rVGyN1/C0ThJ1mdXfxUvU 9Ai6HSzeRgclTeUTvRl9BfTVIs60jP2JzxMVy6sDppO+r+6XUpasCYKsp3g6WfsYLP4Gq/88 xirrH/ALvn8+bx7T3EfgFyTEoIA3sNdYLKG0mw8RP8eNnyE97qXRJB1tVunziUn34xcEP0K6 6/ibX2AO4WKrn+bAPgLzRC825NpFt/yCS/DNYt9yLH3vKlrHmZbPmDJGz+1rD+oXzLHII8bN f//qkn/wtNlurX60ZZwLxfJpA671jLmxc+n80eJ2LQ4FrituHyFuT4TwZm0jSb8F2sn9Ekn3 az0m05fEa7j1OCZeoqZH0O1gcZ5fwi+Z5+h7z0Om5BaZaxqS4lTByJl0P/25+Y+CmitxKbrV n5fQ0dI16Cugr5T+r/s5nmN4vPQ5WPwL5rLHeoeMJo+lyaOuAaPTQXX65h6mNQcL2Xprf2Lr wGMwT5PeEvR2iDHRwPOnmX7r1qaccp48Y9A846Fy+QWnRbs/n6E11t17PYFWOkquEPEL9hqb pcS91GPEx3Hj4zu9M0ang+qUX/AQiul4MB3zC8qvu9h7rSi/IDU9/DvuoO+QiceDxeOgcvkD /IGM7+6uj4ZpZyT2M2kXWziqZFzOKkjZk8XlI8Tlgec0MuWcpN+MeyRdv7XPundeP/dra/jl GXV2OZUfwg8Jaah1W92qY34IP+SVdpb2MGnZN6Tk3ZlrFpL6361t7HRe0vVbx4yWdXhn1/oZ M+pM//4Mj44HG8fp3/XvXfbv5T3eTaF+2h8ltpWs7y1uKmTmSQv502U3vPOmdtON7V79/fLg t+M/Pj4vH0sNHf/9+fHz9fTVs98M4PRB+eu5+/13Fd9086bLsy0YDFvL2cOH7s+bpH3HYG9I yk4p7c/Wek5KIrZCXzqv8TPmF3/G99KIv36+pm1r0rCv+r1v1LB3+1r79DT6NNhIND9z2uHa WgoMBx5jwEWPp03xHjYMuWryHGvrazRBR/kPPblCwv0axx2xNaGCZ3WSpsvt/V1CiRofQrcj xdtHff5txrScYzeW09Pt6Cukr9pxpnXsT3ueHC1eY+59XPbqftGyZE4Q5DzF87nax0jxN1R/ NfwDfkF43No6ro2pzZBfsOdYrGzEfLya+DmmRuem/3Rj0cf/zy+YtZ8XL4zneEBia0Kc4heY QzjLpLGXl6DM4CH8gjuW7Z5dD3ExOqa9POY4z5j2PFtV/8fieH7BnIn8d8z8916PddYf8A/4 BznRc+ncoeJ2DQDFrilujx23n4XwXm0jQb/F2splwGXcOdC487fq+SV0O5Bu+SX8kr9u6zw2 62McEc0tstc0JPSv+vOiBIbMf/Xn+nP9efk48Jcw01dAX9H+r+v5jyN5vAl5QuO50R7m536b b6W1GfkB58jvkNHkkLnkfL768O+M0emQOn37MY81B8H+t3GeszUHGM/TpLcUvY09Jhp8/jTb b93amlPOk2cMmWdMPKDjvFNGi2Nq8cjvkNHkmJp8t3fG6HRInfILZkkqHY+kY37BV/BDsSO9 XxXSG78gZew8PcY3Z54+3VppftMc7hptWk9wXe7xffq+5DFjdf/rCZb1mtbPrNH7/NiCcTmn GMXPlSePlCenVP97tYUE/aZAWzwm4fqN52TlLQkVyg/hh4Rk0ritJig1eAg/5Jg5dlrffKBv 6mSvWUjof7c2smvi592HC4bT3gmhcW2l8W5WlQXKW7tdZZe3+gXoeKRxnP5d/75lj7K6Y786 Hu+m0Dfpj9Lbyva8aVMZC5wU6rd+N8Y7X/++OV6p/y1Q5nqXCCYhyx9E2FqQPj5Ud55L+F6Y 9N36ZDnnJSQQOZd37pAEaHTIauuu0K111Pp+r4GLrd0JstMC0W2nFXOQYtFX64oU+18Sz54g KFuf2kdZnk2vVsk/4BeEalFca6rtQW4mfg5SUZ0Xs7WOWt+PX9C5AAcpHt0OUlGDFpO+Wlec vHokv2BeVu2ldXspeD/+QUGYsUuJczFCfm9HQNxux9qdyhNord/W9+OXlNfMO16Rbt+x1ts9 M321Y329U4fjiAJrGlrrqPX99Oet28kx70e3x6zXXp6KvlrXROX+/GAeL3221qf7xQjQZIyQ 31MI1NZR7eunPOPfMZX7vXWFcfRABOh4oMo6QFHprXUl6hteEi/gt9asUe2lJt3K1+YXVAQs rlWEO8ylxcdhqqrrgtbWUe3rr4Mrdq7j5eg7ATqmhZYE6K0l7fO99A0j+QXaR+v2UfB+/IGC MOeXEscqwnXpCAFxmURGJlBbv7Wvv469vmIdL0fzQ2hgDwLiZmvqHfYNBdYs1NZR7euvU0GH dbjuARy9EwE63gn8m96W3lpXfOW+oZLH25rS6Pf7uG+Cd36Q8/8v+ffh4Fx25v38+f6vXMl7 +dD9eQKzj7Kcd5Rc2qm0HHdXGpEAjY5Ya/2VubWOWt9vibjY2p8Wey4R3fZcO+OXjb7a1aHY H2VdYIIgeo9VB2gfq3D1fnAB/6CPMfoZNG32Ljflo1EaKEGgtY5a349fUEIlrkG3NFCTAH3V pPt4bX5BlHV3fsG8xNpLtA5HOoB/UKG2xLkKUF0yi4C4nYXPyTsTaK3f1vfjl+wssIPcnm4P UpGdPgZ9tauYTscRRTyK1jpqfT/9ebt2cuQ70e2Ra3f/Z6OvdnWwU38+tMdLn+306U5pBGgy jZOjXhOoraPa10+t3536vdTiOa5zAnTceQUdrHj01q5C9Q1R1kX81uhdMg7QXjLg9Xcqv6BA nYhrBSAe5BLi40EqcufHqK2j2tdPxSd2ppJyXIgAHdNFSwL01o62viHKuju/QPuI1tlIB/AH CtSWOFYAoktkERCXs/A5eWcCtfVb+/qp+PQVqaQcxw+hgb0JiJvtaqDTvqGIB1FbR7Wvn6qC TuswtfiO25kAHe9cAW92e3prV+E79Q0FPN52jI5xp4eN8c6PNN0Yr8Tfx8F0Fv1pY8Cvf0WL /PVxumbgT+HbFC2ziyGAAAIIIIAAAggggAACIxH49xUed5Ue343ERFlrEijjH/ALataRayOA AAIIIIAAAggggAACp23A+QVksCsB/sGu+N0cAQQQQAABBBBAAAEEEOiIAI+io8pQFAQQQAAB BJIJ8HiTUTkQAQQQQAABBBBAAAEEEGhIgN/aELZbBQjwC8gCAQQQQAABBBBAAAEEEOiRAL+g x1o5cpn4A0euXc+GAAIIIIAAAggggAACCLwiwIOgDwQQQAABBI5AoIzHewQSLZ/ho+XN+r0X 8fVbN0qGAAIIIIAAAggggAACCCCAQC8E+Ae91IRyIIAAAggggAACCCCAAAIIINAvAf5Bv3Wj ZAgggAACCCCAAAIIIIAAAggggAACCCCAQIwAjzdGyO8IIIAAAggggAACCCCAAAIIvB8BfsH7 1bknRgABBBBAAAEEEEAAAQQQQGBOgD9AEwgggAACCCCAAAIIIIAAAggggAACCCCAwLgEeLx7 1Z2N8f77/vn8+Pj5/P5vrzpwXwQQQAABBBBAAAEEEEAAAQQQ6J0A/6D3GlI+BBBAAAEEEEAA AQQQQAABBPYnwD/Yvw6UAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ2EqAx7uVnPMQQAABBBBA AAEEEEAAAQQQOC4BfsFx69aTIYAAAggggAACCCCAAAIIIJBKgD+QSspxCCCAAAIIIIAAAggg gAACCCCAAAIIIIBAfwR4vLvWyXtvjPfv6+fj4/PHnni7atDNEUAAAQQQQAABBBBAAAEEEOib AP+g7/pROgQQQAABBBBAAAEEEEAAAQR6IMA/6KEWlAEBBBBAAAEEEEAAAQQQQAABBBBAAAEE ENhGgMe7jZuzEEAAAQQQQAABBBBAAAEEEDgyAX7BkWvXsyGAAAIIIIAAAggggAACCCCQRoA/ kMbJUQgggAACCCCAAAIIIIAAAggggAACCCCAQI8EeLy718r7box32ZHRpni7K1ABEEAAAQQQ QAABBBBAAAEEEOiZAP+g59pRNgQQQAABBBBAAAEEEEAAAQT6IMA/6KMelAIBBBBAAAEEEEAA AQQQQAABBBBAAAEEENhCgMe7hZpzEEAAAQQQQAABBBBAAAEEEDg2AX7BsevX0yGAAAIIIIAA AggggAACCCCQQoA/kELJMQgggAACCCCAAAIIIIAAAggggAACCCCAQJ8EeLxd1Mvbboz33/fn z8fHR/DP178u6kYhEEAAAQQQQAABBBBAAAEEEEBgZwL8g50rwO0RQAABBBBAAAEEEEAAAQQQ GIAA/2CASlJEBBBAAAEEEEAAAQQQQAABBBBAAAEEEEBggQCPlzQQQAABBBBAAAEEEEAAAQQQ QGBOgF9AEwgggAACCCCAAAIIIIAAAgggwB+gAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAYFwC PN4+6u5tN8brA79SIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA AAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggg gAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAALjE7Ax3vh16AkQQAABBBBA AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEE EEAAAQQQQAABBBBAAAEEEEAAgV0J2BhvV/xujgACCCCAAAIIIIAAAggggAACCCCAAAIIIIAA AggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCA AAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAggggAACCCCAAAIIIIAAAgiM T8DGeOPXoSdAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBA AAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQ QAABBBBAAAEEEEAAAQQQQAABBBBAAAEEEEAAAQQQQAABBHYl8P8jqJ8jENttfwAAAABJRU5E rkJggg==</item> <item item-id="448">iVBORw0KGgoAAAANSUhEUgAABdcAAAAnCAYAAADtuHHuAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABJ/SURBVHhe7Z3bde0qEkUdlwNyEt0f HYKjOck4GPfWaxshpAIJqAKmxzjjXlsPYK7Fq4TQxy8/EIAABCAAAQhAAAIQgAAEIAABCEAA AhCAAAQgAAEIJBH4SDqbkyEAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEPgluI4JIAAB CEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAKJBAiuJwLjdAhAAAIQgAAEIAABCEAAAhCAAAQg AAEIQAACEIDAoMH1n9/vz4/fr38YAAJPCeClpwTbuR6t29HqaU7R+ilBm9ejq01dyBUEIAAB CEAAAhCAAAS0CDBH0CLfU7oDBteXivPxQXC9JyPrlAUv6XDXSBWtNajrpInWOtxLp4qupQlz fwhAAAIQgAAEIAABCLRFgDlCW3rZze1QwfWf7885qP7x+fX7xcr18q78+f79nHiv/6q8KVAp zWG9VIlveXPGp4DW4zyMHFbr+OqQ98xK7cmwulbim9cU3A0CEIAABIYkQJ81pOxVCo23qmBu MZFh5whaYvVUFwNlGSy4/v277ATDax/l69O/3y/37YB/X68g++fv90/JlOul+fM9opfq8S3p ktR7o/WLWJX6m6pM/vPH1Do/x7g71mtPxtS1Ht84vTkLAhCAAAQgcEaAPgtvlCKAt0qR7eG+ Y84RtJTrqS6GyzJUcP3PRgTXi1epKRj3+f16jLH9VGCukeZID2pU+BZ3akICFTyckJuip6I1 3+UoarD1gU3tPoL2mm/NlPY194cABCAAgXQCw48705FxRSQBvBUJavTTBprna0ndU108KQvB dS1zDZeu93SnSvlrpDlyQ1yDbxWjRCaC1lW2dopUo+xpI2tdluz53Wu0JyPrWoOvlndIFwIQ gAAE+iJAn9WXnpZKg7csqWEnLyPPEbRU6KkuLmUhuK7lpcHSnfez2q1SLA+gTprjNsR1+Jb3 SXwKaF10V6d4ISqcOa7WFeAGk6jTnoyrax2+Wu4hXQhAAAIQ6IkAfVZPatoqC96ypYed3Iw7 R9DSoKe6uJWF4LqWmwZKd/lQxNe6332dgtdLc8yGuB7fOn6JSwWt4zj1cNaYWmspV689GVPX eny1HES6EIAABCDQCwH6rF6UtFcOvGVPEzs5GnOOoMW/p7roloXgupajBkl3MVvpD5nuYdZN c7yGuC5fSxUFrS2pUTYv42ldluf53eu2J+PpWpevlotIFwIQgAAEeiBAn9WDijbLgLds6mIn V+PNEbTY91QX/bJUDa7//FjZVIDK87QyxWip8USqfpr9eMmqpk+9mu96tM7H0vqd+tFai7TN 9qQfXW3y1XJb/+nG6N0/BbmEI3AaoYyy0n2dMYKmMWWsP4fry0ejlgZv9aV8jJ5lStzPHKEM H/muMdq10s7fLYsTXD/ZUP7n+/dz2pw98Ut2/74+fv8uWcz6+b0F16e06q5mlu3QwRnTV2sL bL9yS8vZN7k0jvRL1jSN+KFbTR2+Pep2xz5ofYca16QQGMFjKTxynwvf3ERt38+S3smkIsdV yfcNXNA0p0gAI5QxEkU3p42gqaUyMhfIXHUqtvGhnOOtzHr2ebtbMaY+UZQrFXVRZHvLhyd9 lhBcv/cF1/mJxC4Y7wfXX2WcMlT5A5ci2dZPKFB57mo5mfRjeijj/Ut8RrMqEjdAyJumETN0 qynB9YPD0NpIpes4GyN4TFM++GrSr5+2Ib3TCx83rkq/b53g+t2xaZbyVAokmStjMXhGb9x0 /Y5kaqiMXc7hImUoc1rFNt54m4i3yjjs6V3p454SjLyedv4S1F0fnrUrF8H1e4H139dnK792 q6eXwPo7yOpEV6dM/a1mjzSItdO2pxbf06rxtZxTGWcjO78Xyfei0ZLOa5X4nAf3w6He8X/T avKUD4ta0VJ5gFBEu7ObjqIpwfWlrRyh/g6uNX3EbIAu+vvjE7Ex6rCqhz3oqnnpqc0uOa7q idMAYzWlOjVPaN+LrNa54r0VOJlG6fj2MC5tdd6Ip6dRV+VdAkaoPy+smt7yFy1aai9bbSsy 9R6H2yj5ZMnHIHUxVFYDPjwJrt/fc+gY/Z9KHli5vsy2nYFVyN2LOUwH4P1tc7ag+tbgFXvN LbTVzhSo24Ln0nG5NcmrpZze+RmFBwgvzVT7p3fBJc2k4zJjO5oqBVzR2tuia9VBbItlb0Wd Uaw9DKRuRWv6iHWsJ/X3UQ6axw2014FxUck6rObhgCfU8iL1v9Jx2d91++dS4yqJg3TcGqdQ fqQySMeNlVGtTjmLuNTfZpY0k44rahrdJ0plkI4rllFOen8Gnl4DbA+3Z8VbR+epeUtp3hys e4bbimjPpjYqieer+UTSRjoul7PuWPUqPzbLEgyub8vcgxNYd0X2YRX0SRD9LLhe/amqbJjk M9bK88fKX/Hv/X7JLyH10Cse7t8Cx08/IDCXwV/RbklLbxK4NVjrE9zHgRYrDfFQmmYYJNyp S2gdDq7XaovvBtdb1rrlPsJif99THb7sywz1wVoeDsY1l+8AMeZ6GhwvNK7KMY6x2O64XsxR xu1+FsbfmvV7YvmqzLv9Tn0mV364MzYItSs5NNXybWyfmKOMlnx7GXNR6iemPFnxtD+uvzN3 xlunwfXqY5B3TryxoZH28hBjst4eJoTcbp2q1a+O1M7HxDoVfHgIrk9bjCy7mriroFdbeRX4 +OTibCuZ60liTHD0dF+bGx9bvVVJzi46BIv8CY+3MsMJYoef/MTlbv865VEf6fg7lbfp/OB6 OS3jSribyTivtoUmhLWezKfnPOUKSTPpeFuaPgyui23RCfnYgWKKcDfOlbSUjqP1q5OSfoxo /X6FdPue9+FBhtE+QqxjSn2EEV2lOiodP7yyHRxLuEHkd1Tj5AHZ/TcOpaqk5eFgvhhzbQO+ 2Qcx4+ewvu5YKt+4SvK9dHzx2t94tOY8Q6wH76G2u51JB+NvpTq1kAtsB+N64MoPoldiFZ12 enioqZiXgv1lZJ/4uIwbzhbmjXj6pVaGNh5vHRsRVW8F2iqD7aVqPx7p2fje4eaZSj4ZqZ2X yqrlw0Nw/W8LlnW/nquR+2HFxdlKmtQVWDeNfHJZ6MOa/t9OUzw8efLOTKk8fiLBFSvuQP18 4iQZSjo+pbI8sHgFpoP7E1XUUmLsDhDWFQEuyv0XfuO8c/dhTUkvSZpJx9vS1NHJqUPuvszb pDr0t4PKF3UJrV1aBdpisf6ea72rT+vqNf9vrWudFJg01kfssqPY33dZh8W+zFAfXGicc0vX QnlZ6mlHYy6xXXb8JXrRb8PLcqrZ7tzxoDQWk45XH6tJXlCqU4vO296w2wMVd6/YwDeixHnT yXelKtRvfNt/nyX1E5Y8vQuuJ7TxQ7SJV6ECy+3lIW8220t53pa3rbjj2SmPJWM6Lc/9WokP xoy1avbLW1oXHzSdo6+z8c7i6zVXlNytOHGh1gdnPRiUPlm5vmjjDSLdv0nHd/G20LYwBVdZ JOO+ev356avRi8/vr/5KLsz5BZJm0vGGNN193HBXhyY9J19v/90mX/7f9hij6xJaV1/1eq71 puEU8PffPgn9bTm/Oa176COC3JX6iB7r8DvI5NYDJb6hHkrLw5byIvW/0nFz/XOhcZXEQTru aV5znhE9mpPKIB235gXF+j3pOy3q2v67dvKBrSrl/j96bBASWtJMOq7p29g+USqDdNyab68q LJ6eJrcXHzSNnDvjraPL1Lx18tHniweOV21i0fayhfYwusO/eaKWT6R2XDreUjufUpaK89jr 4PqWET+Iuz45m1c9v191n8Mel4Gb44dJIxv3m76uctmdynPKLyXHfiPrr/6QjjtpBRtmS1qm PuFM4TiNP4wE1w+vx/ar6e5p49Q4fn6/Su9MnrwPGc/nhz5unFqX0Lr6nutXWs+9xjq53vfn y4R799Oq1q33Edb6+x7rcHDsZKgPVvNwoC9Xy4s0ppKOWxtzlRpXSRyk4++BwPwmgc15hlQG 6bgxL2jVqd3cw/FjaE5y1f+njg2CUwRJM+m4om+j+0SpDNJxY77NHVzP4SNTns7QxuOtPMH1 DN5a5sGRb/Oot5cttIeJsaLU07X61YFiScdt5fy4mY4PxeD6O+OhCh14Knr2JGwLjk0frnn/ eEG1o28XSMegfKrDC55/p/L8Abh4qhyT53UgtE1Avv3V7O7x1xsIX4HV7kt0K7hKJK+WMeU5 Oyc0QMjojejBw5MyxF47iqZeOd046qFObR692ls/8kEdWi8rv/1vVYhtcax/Q+cJWjsPVuar J/39v+1u25jWPfQRM/8jd5U+ors6fN6XqfANVuFpjOCvqo9ZZR/2zZPW5NGrto8/3NxT/1xy XJWJk6V252DaTGW0MP5W6qPmN5KdOeH794uVmFlW4542QJk0re3bpD4xUxkt+PaqI8HTwTHb tg1TdFwFbx1dpuKtfTzH3c7k87//OX3Tp157eRFjMt0ePhqNXl+s4pMtS4O080vQYF40uNWJ 01hnRR86wfV7Bjvudx0Z+Jia/dfAKrqBv5c981fd2S/8dqFCr09swazIhydnaVfVcn0ia2Ir l9tiZLqwF00dHHOdmB4EeZMu/28+wap1KZN8SbfpTuu07WBcVt1r7deHiO+3JnnpvCEPr4xZ z6e/f0jZr8NiX9bHeMpSfa2al5babNGLD71/dfkZp57anZa8kCh19jp1GVxf5o5n4//secG3 8atlT4IXJuaNeHpdSPfkI9iJEKXTO24Tr5uNzBpYaS9H6MclT2c8bqIvO/WW4bmJAR++g+sf /9vH2YO/O6sbl+N/cN3zo/ZxElcnZnTo+1bb6wLbE46TD9+USHq652F1aLw5s2QpuSOL3N+4 ppaaE8CdCMpe2vLSg6Yu17eXnMBr6G9V6xJaZ2l/vJtEbwczktZVyxpQ1W1PIvNit7/fPY6Z 34L7W+1Tue8PtdeRfVkbfB3Wkb4p0aYc7qmdl1b650gvFtOs23bHqxexr/Svl5ms+zXqlDuh v0qvRl5ig+uReTGpaWwZ/bF6cFGWwXmj1HBFaifd5vK4tqe12/gQnFb6xyfCj+Ct0Pg2stx2 2kPleX4krydWvLy2p7poYDw5R9SnwLgbHL/6fa4I6/nbXoih86cl+ucriysHlWdHHV+9Pt2/ qph710HHe5J/tc1FgUzcqDzb6xZWtHxvabELlGR+Ciyit+GlxdZpW/0sRVteobGi6R9uL19z Z/PaD9/Nq9MB7b1Qqi6htVgdbp3gD2TcwOf+/7ePnf0FRvvWuo6vT0Tz2pO4vFhtT94j/sP2 chp9v99ex/dl1vkevRTnm1sNR/JFqnlppH+O92Iy/rgLumx3vKI34oUYwcrXqe017+Uh6FV6 5fNyQQTfzvoEegCjc4xzLcv7SNfT6m18CH1HbeJVu9m7t95lb7Y9tDHPL++T+L7sfeblWxFG 5yYGfPgOrk8gtwB7rv/GDNKqnRNsxDWC/NVKTEKlCOClUmTt3Ret7WlSKkdoXYqs7n3RVZc/ qUMAAhCAAAQgAAEIQMAaAeYI1hRpPj8fsSvWt+B7yvnm6YQ+nGg+02TQJAG8ZFKWIplC6yJY Td4UrU3K8jhT6PoYITeAAAQgAAEIQAACEIBAVwSYI3QlZ+3C7ILrWwDdzUTUXuzOBf75tQsU n976ihZfxYxHxpknBPDSONZAa7Qeh0CfJaUO96krpYIABCAAAQhAAAIQgMBdAswR7pLjuoXA /iumw1Ch4gwjdfGC4qXiiM0kgNZmpCieEbQujlglAXRVwU6iEIAABCAAAQhAAAIQMEuAOYJZ aRrK2HjB9fWL2dNH8viBwCMCeOkRvqYuRuum5HqUWbR+hM/sxehqVhoyBgEIQAACEIAABCAA ARUCzBFUsPeY6FjB9fmjBZ+/xNV7tHLlMuGlysAVk0NrRfiVk0brysArJYeulUCTDAQgAAEI QAACEIAABBohwByhEaHayOY4wXU+TtCGI1vIJV5qQaU8eUTrPBxbuAtat6BSeh7RNZ0ZV0AA AhCAAAQgAAEIQKBnAswRelZXpWzDBNd/vj9fq9Y/gv/4pqmK95pNFC81K11yxtE6GVmzF6B1 s9JdZhxd+9SVUkEAAhCAAAQgAAEIQOAuAeYId8lx3RmBYYLrWAACEIAABCAAAQhAAAIQgAAE IAABCEAAAhCAAAQgkIsAwfVcJLkPBCAAAQhAAAIQgAAEIAABCEAAAhCAAAQgAAEIDEOA4Pow UlNQCEAAAhCAAAQgAAEIQAACEIAABCAAAQhAAAIQyEWA4HouktwHAhCAAAQgAAEIQAACEIAA BCAAAQhAAAIQgAAEhiHwf1BuArFeFs84AAAAAElFTkSuQmCC</item> <item item-id="449">iVBORw0KGgoAAAANSUhEUgAABDwAAAAnCAYAAADjNFioAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABAWSURBVHhe7Z3rlfMoDEBT1xTkJnZ/ bAmpJs2kmKyfCQZsxBvjO+fs+XbG2JauBAjx8OPDDwQgAAEIQAACEIAABCAAAQhAAAIQ6IzA ozN9UAcCEIAABCAAAQhAAAIQgAAEIAABCHxIeOAEEIAABCAAAQhAAAIQgAAEIAABCHRHgIRH dyYto9D79fq8y7yKt0AAAhCAAAQuTOD9eb3oMS9sQESHAAQgAIELE7hpwuP9ef49PsPrwpar Kfr7+RmeBG81TcC7IQABCEDgOgTez+FTrtskxrmOZ/hIil19aFEWAhCAwEbghgmPpcN4PEh4 hFaD1/PJ6o5QeNwHAQhAAAI3JDDGHs8SsyzEOH06F3bt065oBQEIlCBwq4TH+/k3Jzoef8Nn uNMKj3FFxt+k9/pf3MqW1xi0Nba6I6l+Jaod74BAxwSojx0bF9ViCLzHyYKcKQ9inD4ns7Br n3aNaUu4FwIQ8CNws4THFmzcaVng6zOoq1lew5j4+AtfWvt6ht/r55vC0on1E76VYhCAgI0A 9RG/gMAhgbH/jZtwOGf7S6gQ47Q2LxNTK7DrSC82do0xAPdCAAKXJ3CrhMfPWjcKBqZO4k/d ghKn+2sYss5QedeoxPp5v58bIACBHwHqI94AgRMCY0IwZ8bj++a4fv5SJrxVm4Ndi1SfS1UA hIUABCQESHhIKHVVRpuB9dJt6mwbS3gY8sfo5wWDwhCAgJMA9dGJiAI3IjDWh90ERC7VbzQw vlUMgF1JeORqM3guBPomQMKjb/sa2s17QYMDrlLBWrhR4vQLfy93QgACJgHqI14BAZVAqUmD +w6M+25zsGtjJ8jRvEEAAhchQMLjIoZKIeZy8FXECo3pMMKG0+vR+qWAzDMgAIGZAPURR4CA SeA1RJyhJQZ6z4Fx/20OdhVXAQpCIJIAX6SMBFj1dvOraCQ8qhqk3MuXQCAy0Jr2yjaa8Eii Xzlz8CYIdE2A+ti1eVEugsBreGQ9uHQR7X4D43u0Odg1oupxKwTEBKb2pNHhjliH2xccx6x/ yunVRRMe73cri9H66TQkTJPNelRIeBTV7/atAwBiCEh8Neb5V7k3WXtzFYWREwIeBKaEhxqE edzqUZQYxwPWhYpi1wsZq0lRe4tTsugzrmYfevrMU5OeWEao93P4fllUSXgcHC43bWMYP2vq O7O/n8VYGulfJz+9K3K1QRlWYW+ZP58VsXXk4K1BTGf7pWE9D2Qypjxr6xdm7Jx3LXXy8f0v vU/llL7nZwf56qWBCNvshO2NE1fJdzmFsRRoVj7alRBzHt8jrBvrA8okPNJqaDyt0xgnM7X2 H49d69ioJe4pCFxcH3WQnAJH+DP8+pbw93R8p5K8ciQ8wk7YNwfGesJjhDsFg8GHZzZunAyV PZTpFFz9Bsy//w/JW0wy5JqZakG/trxqqXsqb2bO27BQqK+2IX2oFLKON2V745S02YTCKnmT 8tGuOP3Ku4CsbmyPzdmPeoseekOnMU4ojm7uw651TNkQ9yQALq1PqYOlJaT9+hbJE+9X5vex jZOER1iy4/OZ7lNnopdkx3fQrYy0u5jpmL1HnTEbV1OMS2j2Kzy0669p1YXPbH0bTI8DtT70 m5Nw02qY2X6rz07+Ojfeyu8lWgxrhxHR+FXSbUnSaEm3kGxbMuYX99VKdlzauDQrxZKZssmE gqJdi/L11K58J0zWGKNau+JXN66Z8LhHjNNUDJCsoTx7EHYtHtt1OWboyI9sk/F3iLsq6bj/ qlaOvnx65hK7HiQ8wvcJ2rc9WFZ4zHmCcSB5usrDnI0q0gd4vcS2XWca4G0JDdd198vSMnW/ 76iETI6t4ZMndGTPXaVy+ky4fkuwo2zf2hIdWyCdYgAzPjM4Lo95fwndXOhj5Hc9W3S94boo 9YtqdvQb1InMoRaS6q/eU9KfepRvYxnDsao/rod/Vl8t6lc3xAmPEJ/zrniSG1ztpuu6+x3E AG5G6Uu47Oa67pboVnZ141hLuLi6rrtfVJa7S17X9cb0sZ1VWLWfi5xokvYjVXXM25dvW9Ct CY9tWbJ1YKbOdhurFA4SG+uJ4eZ2CL9AwV0tKpSwzZipf7NcP9yaMDucnihoiKmtIZDodxWf WSv8z+/1VU7a76d6HfiitPExbo/MfJbQ7bT6aX6s+/oZyxDONlla9lWpX1Szo9ZWb53junon OIm32Umqf4qER4g/9SjfzPLC7craH+3O06nRruirnxx1Q7yyNcTncoRAKWKcUyYNxTgl2tee 7Eps51/jUtSnXbK68pghhT4N+ZE1WVSiXbB6UoK4S9reVNNxVDxzX771uUbCY1retaziV1cp bInJ/YDcdIyjbTDnHZokWD7aGz4vR5M8wL9ZEt2xX45jcnJd/77kW+H1xisfU5GCaiFLwsOp nxaAlvQZb/2MmU49IafYwqlXyoRH5KBkHtfoh9dm0O0EuOEnKr8zlqGcLbI07atenZKa8S9l R/U9tk640CxEbMIj1J+k9rmSfLHJjurtiqVdrNCu7Ld7ueuG+LO0IT7n3em5b3C1m67rxnY4 a19k+1RvfNzo1k4rUaKf7MWuzra0odi1hF2FzuaqL67rrY0ZXPK6ri+x6W/cU3uMYF2BV81/ EsRd0vammo4HEy8J+/LNpkbCY/8lFUcywViRcLRiwzeDL2w5hMVsh3bqfzt8lJH12pd0VWbX 9elpSzJnHDBYz/YoyNSh69wwackliX47YjV9RqLf7pyCk8Gk7jCGXr8CUcm6VWbnYbGVdNu2 AZ3mHA8yx0sdtGx9OmGpd46mb9kC56VUa74a5Bc+nZKHj7rtqNQFS+JTPIhTZArS/yChoM6a bwGT7W9GO5+r3mrJAEPXscLY/lZMvh7ale/ZWVsbou4jL9eu7Ab0grrxGo6Tg6F1oukYx8mk sRinoRigabs6+xfsahtXuOIQ1/XiY4YCY6CiYwSJPnpAe7G4K6gfqabj7NHrFynz9OWHCY+d nddVB0eDmZKZuCADChMiUcUClnMth2BKA7KGsuSTU+pnrrj0NyZQ9E/bNqRfRIW375m0eJY0 27r0aksibDxsJ/qnhG5WIQ9Wp5wMNM9YijnbZGnZV6V+Uc2OZ9sPE2xNFOq/2w6wYzHJMLWp 279bJ6r/be8YYn+Klm977+8ArZ8ktr8pSTrJCkahfPNTu2hXlgTmlAjezcjVaFdOD/TV64bH FwB8bBrdQZw8wNVuuq4bj5ZOJDS+wsMZ2xww7dSuJccD3u5erd+0x4BG/K/WIZ/6ZG3vCsfU Lnld1531qKw+1pigmv8kiLuk7U01HfP35YdbWszE1vSVBW1wvmbIzMGY70qOBIGyd8uX+gZ9 QKdnqlzXFXmsjVdLTG3BmlC/K/hMSIU/1Csy2DFkifTbErpZRJw7D2ly74ylL2dR8kWvq+tN NXw1Z6eUhJ3vbJ2nvwr1381+TYGUkoBdfM32Kef932bJfJkkkG95rflp7+MltOvKP0nCUyif ubXN00568Urtyn6ll+Kbtj40e7viUzfG/nJ4jpuJBD9SmwoeFVfE1ce7rqtvt8UzDcU4Jfy5 N7vW6C99HbqEXcUyueqL63prYwaXvK7rFeMum80sK9K8toRvz/SNMaz+49O3pB5zCBLTKXTc 9dl5+vLTQ0v32FZntX5G1TTG0YzZFozuztvQAlbTXMuAxLmcX9zQ5Cq4MVoDVOOztOr1ccn9 4LPCY12Kb5nlC2Max8C+HFeo3/zq3D4ToV9Ip/h9nTB5Jwx2vrbVP+m6nrHjrWUJ3Qyh9n6h Ls/9+/efk08zJ8hqHwJq1FeFfhHU8fr6qLjjTdg+S/Xfzp2Y64W2+smWJHQmDtPW2+8hoEfy 6SvkJvmcXyoTrPIS8uujXVm3gWqfuJ9ji5MVHuefVhb6QXTdGN8jWbEzd5VD+Be9vDsI1w0p Ypzj9iJt3OjS5eR6iX6yO7tuPG8e23m5XYr6NL7woL0rX58S6dPCGMHWJ5doF6L7lgoJjwSx 5bx7I2tf/ltBq5zh4VVbf2qOwu77b3ngID6tPEy0du+yLfGapD0M1hpiKumsj/RbLWLu929I vwivCTnHIOJ1RW9NrtvpwGQZ0ByNC5LKcjNfTcZuzexLx24lnHXWbUoma52n/jddlmRMTpX0 28qiPqqMfCUsZL4juW4ttCtndWO89hzzMt3/6O2qs70gBriET9ysv/ymck7ikSJ2u/KYwQao aT/y2HYoNH6yfs7ZjgoFylAsmY6bbMn68t+qym/C4/HfPvdh/V1ZkbFc/3VSannRvmjnzFYG i3wPRplmBw8OTMzxWjPCli/zX+9th+nr83QdKqHvR9zNYNoDm3b0EzqAsTpJHrAJ31CvWAnd 1Mbs7H25ZenZV3Oxa7HT/fYnSmLB9rdcTBy1VbyVpZJ8RRqbErrVblccdeP9fI5RSM6fbZte QzGOsL0gBjjziwbtKqzP2DVBffdOeByvDN9JU2UcNg0dlVXuDfrRe1yl7xrmHFpVqI+3Vwjb Ue/nhtyQS0dVllR9+ficYTXmnOWYkhVqwuLs97nxWstvS4pt5Z9/xzO050tLQ+hL7jGXUx6e LyB5XEyZgMZrWyp9PKNabsD9GoO20z3Imn77ZdRHy7OXJXEt6Cc1rUwv6dPaKpdft/1WubP3 ZZWlc1/Nwe5oW0S91R5a2zF3xuN2ALU9UTroHEzOa68+WNkGo+a/2yGcv+1fgu0sbTUdp9Lk Z1+3XTmvG6NsWZd3tBnjyNsLYgB75WnTrpOssvqMXaOb6IuPGQz9m4+7BBO7J0aV1Qs/r5C3 o37PDS2dQ8e9LGn6cjV59U14bImPlP+Ggsxyn7XBKJckyKJTrYfeZVluLb68FwIQgAAE+iIw fnY+eNZQQoIYR0LpemWw6/VshsSXJ5B/Nd7lEV1AgX3i6iFd2bElQnzKN0/DeaBd8xpUE9C5 yqOaZLwYAhCAAAQg0BKB3Ks7DnQlxmnJCdLJgl3TseRJELASGCfETw8UB1vbBMyzWHYJjy2p oSohOttDuUEv3y4Q/VNJ7UqKZBCAAAQgAAEIQEBOgBhHzupKJbHrlayFrBCAQBsEor/S0oYa vlLQYfgSozwEIAABCEAAAlcgQIxzBSv5y4hd/ZlxBwQgAIHxvNLbQVhPup0Oh+MHAhCAAAQg AAEIdEOAGKcbU+4Uwa592hWtIACBIgTulfCYD3/q69T7Il7CSyAAAQhAAAIQaJsAMU7b9gmV DruGkuM+CEAAAjOB+yQ8OOQJl4cABCAAAQhAoEcCxDg9WnX69uvnj4m6Pm2LVhCAQDECt0l4 HH3D+PF4fIZXMd68CAIQgAAEIAABCCQlQIyTFGczD8OuzZgCQSAAgQsTuE3C48I2QnQIQAAC EIAABCAAAQhAAAIQgAAEPAmQ8PAERnEIQAACEIAABCAAAQhAAAIQgAAE2idAwqN9GyEhBCAA AQhAAAIQgAAEIAABCEAAAp4ESHh4AqM4BCAAAQhAAAIQgAAEIAABCEAAAu0T+B8c5m/twGog mgAAAABJRU5ErkJggg==</item> <item item-id="450">iVBORw0KGgoAAAANSUhEUgAABA8AAAAnCAYAAABg8GGTAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA9ZSURBVHhe7Z37teMoDIdT1y0oTez+ sSWkGjeTYrL4lQAGJN4y/O45c2bu2MbokwRCPPz44AcEQAAEQAAEQAAEQAAEQAAEQAAEQAAE AgQeoAMCIAACIAACIAACIAACIAACIAACIAACIQJIHsA+QAAEQAAEQAAEQAAEQAAEQAAEQAAE ggSQPICBJBF4L8vnnfQkHgIBEAABEACBVALvz7Kg90mlh+dAAARAAARAIIfApMmD9+f19/g8 lxx0Ez/7fn2eLwRvE1sARAcBEACBbgTer+enXReEeKGboqu+GHqtiheFgwAIDEtgwuTB3mE8 HkgepFr18nph1UEqPDwHAiAAAiCQSUD1468W2X/EC5mKEvo49CpUMagWCIDADQhMlTx4v/62 pMHj7/l5zrTyQK0U+FvlPv7krbhYVNAmbNVBUflu4LWoIghIJgB/lKydYer2VknsmukDxAtj TrJAr2PqdZiGDYKAwA0ITJY8OIONmZarLZ+nvspieaokwl/6ks/llf5sFYcoLF+VOqJQEJiF APxxFk13l1P1ZXmJ8LAEv+QE4gVp8wU5tge9Knq5cWCOAvAsCIDA7QlMlTz4aWuiYGDtJP70 bQZ5si/PZ9XZnmiPKixf9PvxAAiAwI8A/BHW0IyASlTVzB585cjrM5vhKPGiqfwXem3iPiXs EmWAAAiIIoDkgSh1tKiMNTMY9cq1sxWWPLjUP0e+KBi4GQRAgCQAfyQR4YZEAsq2jMR4YjHk YxMNMqfqT6FXJA9I58cNIAACDgJIHkxmFtt+v+SAq1Wwlq6UPPnS34snQQAErgTgj7CKegRa JbPnHWSO7b/Qq7DTq+o1FSgZBECgKAEkD4rilF3YflBQxsqB9SA0wanqbPlkqw+1A4FbEYA/ 3kpdt6zs8sw4v4ct8ZyDzPH9F3pluwBuBIFMAvhKWybAro9fv26E5EFXhbR7+R4IZAZa635I ocmDIvK1UwfeBAJDE4A/Dq1eMcItzxafXJ5vkDmH/0KvYhwZFRmawNqeCB06DM29qHBq/Pen nZzbNHnwfktZJDVOp8FhWmwGoUPyoKl8RT0Nhc1GgGOrMzAp1t7MAAsyZhFYkwd6QJNVmPdh xAt1uPYuFXrtrYG7v3+0Pr+KPGrF8nOkz7Xc3Wgz6v9+Pb9f29OSB56Drc5vdkemjcwZgb2R /nXy67syZ8EzAFR/dPsMTsb2AE8Fk5hu+ivDehsURNpBDOve8sXUtc29u08+vn/K21QbOcZ7 S5Kt3hoDs80u2N6QuFq+y1sZ+Cipp6gbmHZ2lNkmeRAlQPzNg8YL8SAGewJ67aNQSdxLELi5 PPqAswSO9DLi+pb09wz8pJYIIpIHaSdlXweZdvJAwV0Dv+SD+4Qrp4KzpzJdg6vf4PP375Qc wFqHWrM8EuSTZVW77+m8MaMrQ0Optiqj9qm14HW8JdsbsqbdkwfwUVJH0Tfw7OwstmafFF31 1AcGjRdScQzzHPTaR5WCuBcBcGt5Wh1qyyEd17dwSpzvnt+h+YHkQVri4PNZn9NnSPfEwXcA q41ah5g12KxHn31Ss/xqaYe58sC6vqyrAWJmkWUw9QdqY8i3JbTWVRqb/g6bXe11a7y131u0 GM4OI6Px6yTbnvCwElgpmatizG9uq530uLdxZVYwFVNl7+TBSD76TeQf/XU3H42zs3smD+aI F0T1p8UanVBB0GvzOGnI+HsgO3JNEs8Qw3SS0fw6To2+fC1zjwM9yYP0vWDupe2OlQfbmFsN yoKrD64zO036gKiXuLZkrIOlMzlAXadfVpYp/T7fHbx6nA0fPznCK/eoFWkz6fLtwY7S3Rk4 n0mD8/cSgxVVZnJcnvP+FrJR6HPqT5XNui7YF7l20U2PcYM6ljr0m7jy68/UsqeUupz1yqlT V90eBw92XxEYZ2fs5EGOTqONOfQA1QZR1+nKoD+lGZW/g9IbdZ2u0VR6pXEcd1Bcqev0i9py p+pLXRcmj+uctK79XOYECLcf6Spj3b783LLrTB6cS0+dgxx9FvYye+5JEnx8/x8XKNBu0eEO 1+yT/n+O697l55vB2YNuQUxdDQFHvrvYzOHwP7u3V99Yvwfl8tgit/G5PJ6ZRWwhW9D9LDu2 bT3EMoWzqy6SbZVrF930aLXVZ+d4rCpJToideuLKH5s8SLGdlLps9bqxjx5tu3GWRw8ftVe4 EHbGXr2YrNPCMUWJeCHIRFC80KKtGkmviJPina2EPxmJ387xdwl5BNmRM/HSol1wWlKBGIbb 3nSTUQleuS8/+9xL8mBddrSv1NZnz88knzm4vRqGb6tDuEPjBJ6+vbTbMilOAfHNEusJc5nI lRN1/fuSr8PbjVc9piwB9ZscyQNSPisAbWkz0fJdZg3t5JamC1KuksmDzEHJNq6xD86sIFsA +MVOdH4hlqmcHXURbatRnZKePW+lR/09rk64UUY/JnmQajtcXRg2dncfddS/g4+a22NoO2N/ qjFJp9E9CPkA1QZR1y/bh5ztuuvzlfkxGCmcfUOLPmcUvZJtlaA4sIVemcZG+Qt1XVr8TdWX ur7Heb8xRO9427kyrJv9FIhhuO1NNxk9kxgF+/JTp5fkgflFBGJgfpkp960kiM2GM1sO5m2u AwPt//MWdckgmXdSzkxdX0vbEyMq+HaehdCQKSHr1jBZiRqOfGaMba+uECafsa87MDBzBkru rRpZia9DJ+RBlRzdVZDt3OoRzN95srC7DzqYXdoVDTZ5zf/dd2m2mmQXMZ1ShI3SetR8wZFE ZA/itDolye9JHlxmzF3b4QK2k1WXEXz0e27P6Y/6vtt2PmoMjhl2tjz9SatUnYqOF0gm6E99 sZxovZJtNfTq0ivVp1PXm8ffDcYTTeNtjjx2cHizGCapH+km42bRx1fa6vTl3uSBoedjNtw3 MGiZ1UpSIDO5kHVbwjKj/QA+bkAmKOO8GqUdlFPyW3Bb2ky0XjMc3r0vzlEDbuZy79X2pJI6 nCT7p4Vszkp6ZmQDA7kQSzZnV10k2yrXLrrpMbTFrMD2M6b8xjJ1nYV6/ptg0/9t5J2Yn5pl 1mUreggfXRcm7V/SMWaKevho8GBO284iTvKO0Wl2YxsogGqDqOuXorkJbuErD8g4wcN0UL1O HydxfZDyF+r6JRndeeUvVV/qOulHbccT/m0LzNWTpDxcQzkH1b54mhnDcNubbnFa/b7cu23h miRaT0u3HOrINl0HNrErDJgKi7GP5vfagyM760NdN6Jb2WcebHt63XvCfltHbPkP+e5gMykO 75UrM9i51CXTsFvI5qji1nlwE2UhlrGcWYkMQbZas1Mqwi525ivSXpnyGzNJayD1TWb+EpuX 2ehY+Zl1uW4FipTZvr2Tj5pLXTU9u5IH1X00xs5Uf/R8qV6J8cPVKaOovFuoeIC6box2ti9Z mavSBMVgLex5NL0iTop0L8pfqOvS4m+qvtR1YfG2Y6VU1BbaUz2xfbjTimL6ltLxOyPJW0JG o8+u05cHD0w0sR3G6vy04FUZvpnBfRBhbYMwgj+XsvbgnlyyHdnclL/9ZHRsP7h8qlG/rpZV P2NWHuyZJNe5DmlM86R3LxNlyre9urbNZMiXEux8X8dMhDGDna9u7c8cHmeSREvZQrZLpUy7 0JeN/v37T+BzpTVnuYXaKtMukjreWBtld7wF22eu/OehhJtf6LMIq17X3x2ro2LlZ9ZlDB89 ts1Zn1De+pvAyoPwpzuZbWG2nan3cM87Yuo0ul1NeqBEvOD3PTHxQos+Zzi9ngY1eZwU5Vcl /Em90NPetfenQvJIiLdXpvZq5RbtQnbf0iF5EBunOKq4rdCv2pefcZbxqcYob/2JqSpr9t/8 wIF9UnJa1eQ+5Vp6tNbWG6wJYsrprH3yHRq57o8WJF+G1aTs+854XdNHi8sWHJjsAxrfuKBo XSaz1WLsjiw5d+zWwljXIG9NzIaSzcXkbyFQ5DuKyybBR0N2pq69VI5j+B+7jSJ9D/3pLWxi sr7nmxYJ9O1N9Hbn+NsFSLQdRWwtYyq/WD9HtqPMClW4rZiMZ92K9eW/1X7fAxMf/2lnJ6oX On/XVgrs13+dlH4/a1+yKyNVQQlmkecy5XXWynNYW/U6rNjiVh7seQXGft0mTJfPi9qEr8t3 WV3iDmzkyMc0AKZczNJk3dZCNr0xC72vdl1GttVa7KR2uvaMRi35JXhrC9l6+yhhZ+/XS0Ug NX8ExgtM30N/GrILgXpl+jP0WsDfbx1/O+QXHsO81Upsasjg1SrTL6KtgtmORpeb8kAtGfW6 lOrLVTnPQ5lbxmAd+OuD/9DvW+N13H8uG3Xdv+7F889K8TPjKbpwP3Nd5ufdj13upZ6qxCcP zm+IS2C6qKAtuM/UapzN5b2+A0v2pVoS5OOqnycXtzRZ99WXzdwOFXpf1boMbqs12PmW6/df hXCd5aghvxRPrS9bXx8N25mqW9VlBzLjBb7voT+9WxzI82foNbv9TUgeSIq/L/KLj2EYE44B pfL8Is4q+O1oXLmpd9eQ0axLmb5cTwR9kwdnEqHk36kgqzznbDB6JDGqSNe20FmWi7alireB AAjkEFiz6/0zGDkS4FkuAfVZ4+TZLM47EC9wKN3vHuj1fjpDjW9PoP4qsdsjuoEAZhLowV1x cCYVYu4XT+NycIf4GoupILn6QExNUREQAIHRCeyZ+0KfNR0d1u3lq73qwAMI8cLtLccpAPQ6 pl4hlSACoYOMBVUTVfF1fpcv7RnJgzNBoD/NOgtBe8C+X64u7E+eyK0pagYCIAACIAACINCL AOKFXuTrvhd6rcsXpYMACIxIwDwlcUQJ3anmbX+96/OH0yCAoCAAAiAAAiAAAgQBDDDHNBHo dUy9QioQAIHaBOZLHhynbIY+51UbOsoHARAAARAAARAQTgDxgnAFJVYPek0Eh8dAAARAQH1o YSoI22E52Bc7lc4hLAiAAAiAAAjEEkC8EEvsHvdDr/fQE2oJAiAglsA8yQMciiPWCFExEAAB EAABEBBDAPGCGFUUrQj0WhQnCgMBEJiTwDTJA993PR+Pxwdf95rT+CE1CIAACIAACNgEEC+M aRPQ65h6hVQgAAJtCUyTPGiLFW8DARAAARAAARAAARAAARAAARAAgXEIIHkwji4hCQiAAAiA AAiAAAiAAAiAAAiAAAhUIYDkQRWsKBQEQAAEQAAEQAAEQAAEQAAEQAAExiGA5ME4uoQkIAAC IAACIAACIAACIAACIAACIFCFwP/HSB8QMTOnugAAAABJRU5ErkJggg==</item> <item item-id="451" content-encoding="gzip">H4sIAAAAAAAA/+xXzWsTQRR/u2nSTZvv1jRNo9bYD6v2a5tqLUVSY0FRG0mlV2mTRVfSJt2s Ym/Bk4fqRfDiRUFE8FTw4KWgIoIotl68KKjgnyAeBBvfzNtuN6Foq4JI+8Lb2XmfM7+dzLxx AYCAPIZcw99FfFbpmqI0ASMZWZpKJycvKGmdSyCFPIROcZvs+AZQrJIfPMWeXQ5iU3TIc0+w qZbdcW4tGX2nHHiNVlKNLHoBMk7MYjsBXdAHUCtfz6OJE1xcd7cWQBR4MjfFlDyUwu2VAQ3i HlT5KLnHL/Ox+AACfOzOxPjYyMxxXZkSeH4XssMqcCPXcVNJmUkp59TctJ0rYsw7k0uTrIrL DpmYOArn80dylwmCk8jVKEiZoJxCzqPPLQ1ggbUFhgzAfY30YoCAFkGs5y8BM9Owrmvq5EVd ofENInvBStsGo2X94Aq2DYRtMETYNjQStiELtmHCNgRNhG3YxDYi33yGmobthGkERTv4azFS lm0nn74LYU3kpiZzDEhS+BgIKF6VsGEP4TLScOLzGqH3HrlUYtZomswqiayqTOvcB+frMdaf 8UTfpUX/xzvz4U9QQYfBBsslJzgsMsH0puGIRn+5xDISlbbov6LvyMsW3qLNRSnI4U+HZhiB aWw1mK3cCn5KQbCb/3m2F1yBfiHqf+e/UQT3+HN72Gp7+tXbVmn0pWDD98fGRpLA7Cyvwp+F DeVmhKeQYJ3Pev2uCr+2WS/9Tv6/SX+Snw5JAPZN2BnMzma252/tBZuD7FigfcaPvhCk9VBT tjLKOlgn8hKjnkT1BmdA5avHa3jbDBfV4s6qwkfIX0prrlCeahj3HhUmIFuhlPKNAWv/kg3W pK8biN3zoS4g+QAGsK10OPZQDJX3scpiL2fmXvSml/z3rsHtlkX7m5VqSIIKrKyJzQ77j/G6 Fgg1PGzL+R8RB7OZClEfG6NA5fKYoqkT2bNH1UI+OzE7mssoNJEkn80ucnCTLGrcNXZTPRy1 1MMtVA9HoZXq4RazHm4z7hrtdNdo20N1cTuqOuiu0b6X7hodbJffRxk7+BDjSRD2k6CNj6DT CNJFQTpR1E1BOnsoSDcL0ks+3WYQ2RKkb9U3Zvj2k2+M+R4g05jpe9CiHLAoWf8HAAAA//8D AOtqUx3oDQAA</item> <item item-id="452">iVBORw0KGgoAAAANSUhEUgAAAE0AAAEACAYAAAD2uPu2AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAqWSURBVHhe7Z1bduMgDIazriwo6+lq upkuJmOwHSOBhFDtDvL5+zDnTAsk/hAX6/p442eYwGO4Bzq8Ac0hBH8K7efnx/EV5+tSQPt+ vx6P9+ubfcmfr/dz+f2j+oP+MN+vcqyf99fz8X5+7dDSZz3fn//Ox0X9Rh1oAsjOQ/58PRlk Dm0ZIE3G8+sdUfYUaD5g73fq91r+3X9WYI8krUxikzQe0hdH3ARo64MOrsj81LWU5d+y5bkB +n69HwGlrQktSUCSiia09KC71BCJUuBI0LJUxtvbKmg7rBVcucy2faj4XS1V0pIWJG2D2ZPo fRKPyWov979a4BU0esJ1Ts18spZgJcnRoUXb1/TTc1uKkiRA0vL+Uu9jGUxzmaYlwvejUYm6 yZ5WS9V+ZWD7W95A6odun57bqcovyfFPT982Sm/+bZDSyDe4pxmgVZLRXl6StJFPuMcbgQHa fnn93NOkO1bvchxzL9sJ/amWwzYt87cCNMccARqgOQg4ukDSfgOt+TL8OSWLF+TAv3PwaXb5 SFqCduefM58P0BySAmiAJhPA8iRsVpVWPsgUewOgfaDRd1xNUQBoH2jMXFip3w+RBLSdRaVe krUngLZDM+r3UnNAg6Q5LkrY034DjVq/cHqaWeKeZkY12hAHwSgxnJ4OYoAGaD4Cjl6X7Wl3 V3k7WEPdDWiDBC5bnoPfI1RzQHNMVzBottecHIwheY0LHuWrl2Ztk225uwaCZlVHU+VhhrHr +5k2VvV9UzwrA0EzqqObGtiWu+qyLkWVtu7zFgeaWR2tSBrbv1SfXiUgIQ60AXX06vSsmOI+ e17L+7LvWRkHmlXSMpACRt74heXZCg0yeInHgcYj8qT9aEgiF5kksaTr/3tRL4GgGdXRmqR1 gabP6AelBYKWdnFhr+JSR+5iFAK9j3FA/f0MJjzH2wCgAZqTgKNbsD3N8YQXdAE0B1RAmwka bAS22YCjso0TaQVogCYTwEHgkY4TI3KuX55qxpji6U3tGhHLmm2hGD6OpFn1+8Z2+4v7oaCl aTGIbYFJYxxofBkpLuukaatdVmi+3q8ycZRVybkMHhaaKYtCtp208q8llRBbnreGpur3CxkT 2iWIq2aW72mN5SlkyQoraa2MMe2DsFAsEmnSD4Ln17eoxQ0MrdbvS7eH3Q4gWdHbNgGeJfAY PQ60rn5/eyhru+byPNTft3GJF/X7rWuGJ7NMeb9D6KLj2q90ibM8z33uX40GaA58gAZoDgKO LpC0maDBRmCbjev1abbvcXkrLE8HYkADNAcBR5cwkjbi51+3LdxHFfuB2i+kjYBLhOIbWycZ 3jp37Adiv3vYCDSPRZsLaOZAINr7hVme5WTr9oHCxXRTD9ky09v7BYTW8YvljspZ2ch8a1v2 A0u/bebiQTP4+dfbn1TjRZ8AaY8LB83i52+HptsZbgLNsFlXkpj6bFcOzX6g9Yt9egrLacBG oMUR6DEGEa1Rjpv7VV3C7WlXgRgZF9BGaIW9cjge8uwukDQHUUCbCRpsBLbZgI3Axom0AjRA kwngIPBIx7RxBC2vbFN8wEJBa6fECsS2EXweujCIGOMDeCocquXVYwXC2gjW8riLpvWbV5Zl 68gTR6C6vRvUTtO/RnWguOIIVGh3sBFI0H4VR6DECtzCRtBdfrbEI1W8QXEQaLECaSXGU3d3 oY3HEdS3CzlW4B7QrPEBartGbrXdKHoLG0FD0k6JI1BiBWAjcNz0rV3wGmUlVbQDNEBzEHB0 gaQBmoOAo8tlkgYbgW02oO62cYKNwMEJ0ADNSOCyg8D4+XUzosPnbp8n1CMQxh+JU5gMGtOR EcXgSD2CAzbNGaSNz+YvTD2C9EWZ//qhCPxNPYLNu1sdv4QWuh6BlL0lqwiX9PmNPNsDOYOk MXr2h8mWZznbNMF5tmWSXBmSNFhzBrHxPx/dV6NPCm19cJLOZkSCunaAxvg7NEOcwnzQtgeu Q3OMe1p1Hrf6ScEYEesRiMASCWM9ArbXkf1JHX//jGD1CPp3JeGexu0Jgh3ANn4waO4L8R93 nG9P+2MAno8DNAc1QAM0BwFHF0jaTNBgI7DNBmwENk5Qdzs4ARqgGQnMd3qqsQJGG8H+8IOx CDHjCNRYAauNYCPmiEUIG0dAVgiBaNen+WIR7hBHkDRoZS2BEc2ttjyLWWlFs5T3SylH0Xx7 WtYF7nXUWRldk42AUFlK8TZK794715DDGkVsM51QIcmi9dkW22rxOSWtePBhu+cQtDvkGlLN dFYbgbI875prqF9TuFFfXY2jonsacg0Zb/BnN5t+Tzv7gc8YD9AcFAEN0BwEHF0gaTNBg43A NhuwEdg4Qd3t4ARogGYkMPHp2SglaVQurg7IjXdUoqtb/04UjWoMw0F0Wmh1TWFF90915EsG ZRZH8CGjxRHYYwzmhJZV2y9aU3gBY9P9K7YELY7AHGMwZc3i3cDhXJ5DtgTN/V3+23SSJtcU Nuj+UxNzvIEUR5A3vrzE2xVmZ5M0IiVXSpoSR7AdIhKwhHQqSTPXFFbzEHXso5pbfNdlfpX2 qaDRa5JT0rR4gxOA3QdaJXnte5oWR9CPMQhwTzNezv9Ls4mX53/hYfpQQDNhoo0ADdAcBBxd IGkzQYONwDYbsBHYOJFWgAZoMgEcBB7pmK0egbfecPns6hjEDsD8cY31DqaTNG+94RKaHA/Q SHSyOz+rMQxTvxHYffl5sYbjsZQxRlThis5uMkkrVDpD9YaJnB3mOz7GADQt39Bc0Ejqr11X b6g3TDe0JXag7FNKniEPUSvGgB0Wc0FrnGT6/tRPPJKGJGN08xDtXyKQNYpz04K8rAFgOvhG RMv2JWIUcfDWG6ZHJ0sZVtQs1vIQmU1/ExpWXH7+revC7svBE9OhHoHjOn9Cl+kPghOe8fQh AM2BFNAAzUHA0QWSNhM02AhsswF1t40TbAQOToAGaEYCwU7P1dFvPWQOtdCIb9mR8yONwTUc 7fE5y1DQiKpGy7Et/o3qyGitAqZ3C1OPQF0ezJdWbKu4uTfV3bu0WcefUDUkstge+CsXgqbL k2q7n1UhiOPviqQZx09jxVme3Mm4kpqs2G4XdiAzoeX/LmKlmuOvA8WC1kvQ1KslwA03WSG5 Lc8BS1UcaEmKOtDSQaEFTejRLP3xd4ENBK1hVSIQDYZmTdLS4l6gfwL2brE88zSXxmR+xxL2 M24pJ/4a3ASojX9sjKEkzXhhv7wZoDkQAxqgOQg4ukDSAM1BwNHlMkmDjcA2G7AR2DiRVoAG aDKBy/Y0B/QwXeaDdoKfv2oHUGIFYtYjaHkqDvv5d7SzhTGFe3Bb3VHnkjRVh89Wr5ZFudK7 CX61ZAyDamn7CnNB0yStYibZAnSLUznMjeoRdOqoGPz81fxpiVprDEsMw5SS1tGsUmHTlI6s +EOrkMNHqSnHIgR1idetS82HGnBtz7rgUsXNtoAY0DRJs8LwjqHFMDCYkx0Eeeo3Y3BtEBZj DAbsAK44hemhBXgvmE/SAC0AAcdXhKQBmoOAowskbSZod7YRODiLXT7q7jMHvftYgOaYYUAD NAcBRxdIGqA5CDi6QNIAzUHA0QWSBmgOAo4ukDRAcxBwdIGkAZqDgKPLPxX8ZcOvc4qGAAAA AElFTkSuQmCC</item> <item item-id="453">iVBORw0KGgoAAAANSUhEUgAAALAAAAA2CAIAAADoPITMAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA0vSURBVHhe7VxpVBTXEnZ/RqNEY8yi RiEu6MkxMYsxKqCg4kPkuS+ICARZFBUN74lJjgsSRBYDBEQBIYCICzGsihsECAiKmqAGkKAo sjMMy7DD5H1Dm7YZZnq6ZxDGpO8PT89YVbeq7nfrVtXtoc+f3OA8QPFAH84bnAeoHuAAweGh kwc4QHCA4ADBYUC6B7gIwaGDixAcBrgIwWGAoQeU8ci4HB+3cNFiQX39twcPzJz5Gb+mjqEx HJniHlBGQPyamb5IzyDwRAC/unr8uDFVNQLF7eQkMPSAMgLC2XG/9kLdCl7VrYxU7UV6DC3h yLrFA8oICM3ZM8+ej4Z59nY7fI4HdoudnBCGHlA6QPAryyZNmdYuFP75p1B9ouqlKwkdz9zo IQ8oHSBys++dOn1OZL2wzdTEJCcvv4c8odzTPHjwoKSkRG4dr127xpBX6QDBUO9/FFlpaaml pWVra6vcVnt7e1+4cIEJOwcIJl4S0TwtLLzXeRQrsGWZztpBZ2Rk9PTpU4YsDYJav4ATYsTt 7e16enqVlZUyhfQyINLT001YjidPnsi06kUQrFy29JDz4e1braa+/0FgYKDZJiP/oJMvYiIx mcnJydbW1gwnOnUyNDfn93k6uumpKdczblK5oqKibG1tZcrpZUDU19d/9NFHfTrG6tWrv5cy PDw89uzZM3nyZJAlJSXJtKrbCWr5lanXb0Csna3NXgcnPNzKSCupqOr2iboK1NfXT0lJYTjR MR8v6602FpvN169fn9YZEG1tbRMmTODxePSiehkQUA47/q233sJKjxw5Mi8vj0bdpqamuXPn njvXkXL2zhBOm6yWduNOj01eXFw8YsQIrCXDGQ85HjD7YrO1laW+/pLE5FQxLhw92HHKDgjo l5qaOmjQIGBi2rRpNTU1NBpfvnzZ19eXoXfYksHvtbW1jY2NJCP1GV8+yst+ffQ7be09VwYf O3Zs3rx5zA2Ji415mJczd96C+/eysu7dF2MEGubPn88aENGR5+dpaSA+6y81sLCwWLpU33yz 5R8PC5irJQdlUFAQcXAgQtJsCIFA0O0RAglXWFiYpqbmpEmTiHxGR0dn586doaGhBw4coNri 4+m2fqMpjXVeXl7w28cff7xq1apZs2bhGWPFihVI6NTV1fHM1jPLly+3sbFhxdVYLzhzNkIi y88//4yNV1dHdzck+cjYZLhm+IhRLa2iSIXlMVq3evTbYyp4fFaasSXGGhCY2L17N1teuemB MKwWJt24cWNzczMhBya7ubn169dv165dVMlLdLVDTp2lmWvfvn2GhoY42kCDU5wwJycnBx+R Pg8fPpytnqNHj3Z3d2fLJY2+sLAQ+ly9epVGoCRACIWT1d5dscaQZIuLjICgkHA6XyiuNOps XV1dwonYsooLlClBKBQaGBhgujFjxjQ0NIjRIzxQASGo5Q8dMqScV00j1snJiSztxAABLrZA R3YF3RCoZBrCkAAeBsqBdXaAyM+9Dz38AkNINt/vv8M3cZcTGE4sN1lVVRVRSgwePDgjI0Nu OQwZUYkR+JNYj2Gju7q6EqKKi57u/dp+7HjV5JRfACNp8ouKisj/6goI9JcYKkaQob0I3S5d ukRyVVdXI98iBhCcmJiItODWrVvMxSJzNzc3ZwcIbw+3Pn36Pi56pn1dbY36JLVPZ81tbWtn PrHclAiwKioqxK6l+leiwKaG+rCToQt1tM02Wzc21FtuNnv11Ve9fQNAfP7c6fHvjputqU2j CU76FxeQugKCrU+Cg4OhXmZmJsmIJPfgwYOEzigZ1q1bhzOlb9++yF0YCldTU0MYZgeIJbo6 KiPfiImNy7x5MzT4hxkfTDc02lRZxadKyc3N1ZYyrKysGConjezixYv9+/eHzTNnzuwaycW4 hML2t98Y6XMs4Ks99nn5D99Xn2hjawc0BAaf9PF0HzRUhUYZJHqEcxMSuj/4KQ4IxHbodvfu XaoJiAqEzgEBItz/9NNPeEaqyDD8TJ8+HTkvC0A01tcOGTxoy/adyclJ4eGnoqNjSkrLuvIj /0IzVeIoK+tED0Wx6SUOPr8TyKizEL4A9tGno4fXvV9vgvDgt06PC4txzA8eNOCwi9vJjnTH wnSjls5iGnZsF8K51M5PRUUFIhM55L5SUhwQSFGhG5GTkoMEBPE9Gk2ECSjTmOxDoIG+2BFP KuNjIyH9WpJ4T4PJZBJpcK2CxE3iiI+Plya2paVl7NixCI8y53VxchgxclT8ZdFtXlTE6X8N HuLsKkrL21qbR7/+mtdRPxoJZA6LfUaSYUeampoSXkYhSj3CZSpDJZAICOQf5WVlAkE9E1FM AAE5hKpiFbI0+awBsWOr5bDXXm9ukdEaQ2z4Rso4evQoE2vpaVB8o5NNk76R7PM1Zmlq6xJp nrmJ0TCVEUWl5XhOvHKxb7/+hSWiZ4yY6Eh+da3YpP7+/oQ39+/fT/0vchdu2bJFblskAiLz RvqQV17hUTRpaW46c+asxDyVFSCcnZ0JVZFLnYs4TwOIKVOm0BjVKUJgASapjltOKTilcaIc OCtlXLlyRW4nEox+fn4zZsxAh0CmnJqqioED+oVHRIKyva0VyYStnT3BZWNl/rmGNiIN8XGr tUXOA/FXK1CGzZ49G4CYOnUqtRtGAkKsDyFTHyoBCYj79593DPOys+Zo6VDJ+JXl69YbtrZJ qFyIczMrK0siWIkjAycygWn0cAmy0qJCI2MTaaqyyyEyUpMg+ntff1aWdy8xkgYcFo8fP2Yi 9sczYUOGqQgaRI2gDuX75uQ96mAUqo572/7rvQGBQYQc9KRJgThuNTQ0iGse/IveMKxG5Umi hy0gbt++/cknn6SlpVF1XrlyJbFU169fJ7/3dHN2POxeWVFR9xfcsQmpuiEmoVVK0IeEhIix 40tSNzs7O4AYm4c42kjlIZCmF4kEYvFiurzqeYSIiYrcYLgOt0cWVtbpGaKbvZ4fBQUFQAPz y73vXJ3t7L8m9AwNCthgbEY8C9ta1Ma/a/KFRXMzQnKjt4f7Z3Oe3wggFKNpiLYdQQy3osAD RBAn1q5di1Yjus5IL44cOcIwdcfuRJ4fGSkKVBjgCg8PX7BgAZyJsX37djI1XqStuc/B0dXl 8ARV1afFZZUV5abGhv/7ai/pai0tLbIKIPoQYpkWCQjED8TRgQMHzpkzB0UfIaGsrHTtqmUH Dz1rn3RdwVGjRrHuQ/Q8DogZcUZ8+OGHONe7XQFvD1cHp04+wv1F11mwt3CIML9apEqQKFBs CkFN1TtjxvL4otu7lf/Ri4iMxcOqZfrJac+3H3QgMydcdQIQiBNUOdQqA5RdtdXV0bpzN1ui D2EdCjcXFxcaD/f+9fezPS0UIovctm2bTDTgSMb+k0lGJcC+vJ0l2Ues5ChIHPXjaYst2wkh Gp9/+tv93KYGwQRVNZqO35tvvnno0CGJgMjOlmBRDb9y4mR1ack4gTD2dxkK2i0Xu4ODA+4Y mbw2iMOe1Tsy1bxytYlTlOHVbUsz48hYUaVdWJCvq2eAhwvR5zds+oKmmEIvVSzCx8TEEKmJ RCecDQu2srGVJhANbxwx1JSl61opRYRAGwBpkcw3/mAJLhfQxCwvf1ZMMsFexOmTCxcvuXot kQnxC6X54P2plfzammr+l1/uKioRte9QCu3Y9d+uLy6QaqAdiYSG/IimGV4ew+bBQHnf9UVL kw1rd+/5Jjv3gURDcBxT367I/f3ujl12YpS9DwiUVcOGDcNLU6iIaAaq5wEDBmBnIC1itWwF j/Ijo2N77p0W6cqVl5VERERcjL+EVJegSk1Jyrx9h8YctH2HDh0q9p4ODX1iwtXf7oq/F0PS I9h4enqSH6t4FZFRMcoFCEQFVVVVIgYyHMjbWQHiZSfGqREXF6e4FThHsKkQYwhRVVW8hIRr t+/8plyAQL3kw3KQHRjFffRSSLhx48aaNWsUVxWlL7XxKqir09fVibko3kXs/SNDcVP/9hJw tyJ25ymHyeicUi/q0Nh9T021vvHZS2KkQA4Qcvi2p1lwLWxsbEz2IuWY/sSJE0hfqIzXUxL1 l63qKooDhBzu7QWW/Px8uS/ioW7X3oO9na2vf1D5XymF0kWItrbWO3d+lebppqZG/+O+7h5M 3wvqhRV72abE31zYu9+xvuH5bw4IC5QlQjx59MesOZrSvFpQ8Mh2m7XVNtm/RHvZ1qXX9K3i 8dokvROpLICQ6Zhj3h4cIGR6SXECpQAE7uhsrC0cnUX3T5WVFTgsqYO4KT7u48kBQvH1lilB KQABLVcY/PuXdNHrxUe9vfZ2HolJop+6coCQuZbdQqAUgGisr5ug+h79byY5QHTLessUohSA iIv6caPpZkJXxwP78NdSqCP2guiXKhwgZK5ltxAoBSCszE0cnQ7/niP5jo6w0+uIi5nl1m6x mRNC4wGlAERYaDARBqSNkuKikOAfjvv55z98xC3nC/WAUgDihVrICWflAQ4QrNz19yfmAPH3 X2NWFv4f4LrcadHUVJgAAAAASUVORK5CYII=</item> <item item-id="454">iVBORw0KGgoAAAANSUhEUgAAALIAAAA4CAYAAABZoaLWAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA6NSURBVHhe7VwHWFTXErY/o1GjMaao UYj9y2diijEWVFDxKfrsBVHBIEXRoOE99cUPG0GsQQVRQXx2RWJAxK4EDArWxBJBgmIBpAvS ROB/d+5616137zbibu583/l02XPmnJnz3zlzZuZuLYgkasAMNFDLDGQQRRA1ABHIIgjMQgMi kM1iG0UhRCCLGDALDYhANottFIUQgSxiwCw0IALZLLZRFEIEsogBs9CA2QD51IloDB4yFMUl JfhhxTL07PkVCgqfmcUmiUJo1oDZAPm3KwkYMmwkQreHoODpU7Rr2xr5hcWaNSD2MAsNmA2Q /XyWwnqwLXLy8nE1MR7WQ4aZxQaJQgjTgNkA2ap3T4QdPsJKvdDrWwRuDRWmAbGXWWjALIBc kJuFjp27oaq6mtmUanTpYIGTp8+9/GwW+yQKoUEDZgHk5Du3sO/AIYmo1ZVwcnREUkqquPlG 1MDdu3eRmZlp0BnOnj2rMz+zALLO0osDddLAkydP4OrqihcvXug0Xt2ggIAAHDt2TCeeIpB1 UpvxBj1+9Ai3bt1SahkGtn76SODg4IDHjx/rxKK0uAjbQrarHFtVVYVhw4YhNzdXa94mBeSE hAQ4Mm6DPu3hw4daK6kmB4wdNQIr/VZh7mw3dP34E4SGhmLGdAcE79hTk8tQO1dcXBzc3d11 Wsu+PbuRnPQHBtjYIiH+PC4mXlbiExkZCU9PT635mxSQS5hkx2effYZatWqxbfz48di0aRNv 8/f3x6JFi9CpUyd2TGxsrNZKqqkBRQW5iL94iZ3Oy9MD3st92f9fTbyAzJz8mloG7zx2dnY4 f/68TmvZErgR7rM94DLTGZMnT8YFFUCurKxE+/btkZeXp9UcJgVkkows6nvvvceCskWLFkhJ SREkcHl5Ofr27YtDh15eCgWN+qs6VaNbJ0tcuHT9r1qAynkzMjLQvHlzENh0oZU+yzDjm5lw d3OFnd1wxMTFq2RDrgsZKG3I5IBMwsXHx6NBgwYsmLt164bCwkJBMp86dQpBQUGC+hq6E21+ UVERysrK5FgrfqYv76fcwdutPkBlFYUTXx/asmULBgwYoPOCoo9G4V5KEvoOGITbt27gxq3b KnkRiAcOHKjVPLxAPhJxGAP692OPZbsRI+Hi4oIRI+zgPNMVf95L02oiQ3fesWOH1MWg406I lSguLq5Ri0yXl71798LKygodO3aU+vY2NjaYN28edu/ejWXLlimpJnDDWkye6iRIZRs3bmT3 5/PPP8e4cePQq1cv9jO1MWPGsJenLl26sJ/1pdGjR8PDw0MvNmUlxTgYFs7L45dffmEN1bNn wmtlNFrk6fYT0LR5S1S8kBwnBBiHSePR6v3WTDq4QC+h9B1MYOD85QULFujLzqDj6aEhENH6 pk6diufPn0v5kw7Xrl2LOnXqYP78+UrzDre1xq59YYLWs2TJEtjb24NcJyLyPTmdJCUlsX+j S3LTpk0F8ePr1KpVK6xbt05vPpoYPGIiNyTDmTNnNHWVfs8PZCZT1snyQ4yZYC/HMDoinJ1o 135hyha8Gi07UhzT1tZWunFk/V4Hqmb0NnLkSHZdrVu3RmlpqcplkTVWBHJxUQEaN2qE7Lyn gkTx9fWVC1epAjIx0vdBp7sJyUOniLGJ9pUecnrYhRIvkFOTb7OL3xa6S45f0KYf2b9Hnzon dB6j9cvPz5dGJBo2bIjExESjzSWUMYWQOKvIF0oiK7pmzRop24z0x/D+fiHatLNA3PlfQQ+E JkpPT5frog7IlMTQhyjrRjKdPHlSjs1TptKQ7ixco4c2JiaGvaxdvXpV5ynpIu/s7Cx4PC+Q A/zXMouvjQfpr5TwrKgQXTpa4steffGiskrwRMbsSEdos2bNpBZQcXP55i4vLcFeJr452MYa M2a6o4z57DpzBt58800EBIWwQw8fOoB2H7ZFbytrQWKQr8oBuaZPCXVAFrRwnk47d+5kZbpy 5YpcL7qsrlixQiovRRwmTZoEckNq164N8uF1IUtLS/a0FUq8QB5ua4NmLd5B1NFoXLl8Gbt3 /g89PukOe4fpyM0vUJojOTkZ1tbWvM3NzU3o2rTqd/z4cdStW5dVaM+ePdUe56qYVldX4f13 WiBwSwj+u2ghUlLv4eMuHeDh6cWCOHTnHgRuWIcGjZsJWhNdrjggnztXs6eWsYBMxzzJdPPm TSUdkAXm5A0JkTz8P//8M/s3urTpchp0796dvcAKJbVALispQqOGDTBr7jzExcVi//59OHIk CplPstTypgsNpS75WlaW8ngSlKwqXysoUH5wFBfCKZssAWWghNKt3y6zJ8+KH3zx4FEGyE9t 2KAeVq1eiz0v7wEuTlPR32aoIJZkTbiNVUwe5OTkgE4M2WbI4htjAZkulSQTd4GUVYQskLnv KaHB6YAiTNoSgVibSItaIJ84GsEu5Gys6qC1tgvj60/FInQ54msnTpzQOGVFRQXatGnDHnXa 0Grf5WjeoiVOnJJUX0WGH8A/GjaC3xrJDb3yxXO0evstbNy8TRBb2QsoWSZZIovm5OQk3WQK yyn6nYImUdOJD8jkc2czhqS4uETrKbQFMk3AAVlViFHTAgwG5G9nu6LJW2/jeYXwLA5Z4sWL F/O2zZs3a5JB5+8pxklpayGXJNlJBvbrBStrW6aSWULOjg5o0qw50p9ks59jTh9H7Tp18ShT 8pko6kgE80pVkcq1BgcHSzdx6dKlSn1kLdisWbN0llfVQD4gX7mUgEZvvIE8hXVXPC/HwYNh jN7UL0UfIPv5+UkZ0x3kUPhhjTITkDt37qyxH9dBpUUmIHS0aIvRCmE3TVwpghAWFsbbTp8+ rYmNTt9v27YNPXr0YKyNdu/pFebnoH69OtgfHsHOW1X5gvWXPb0WStfh4eaMr/tZgyw+R7Pd XZB0V3XNM4WPevfuzYK5a9euSskaWSCriiPrpICXg2SBfPu2fOYs5c4N9Olvo8S+IDcbkybb M5d39Ujm3LYbN27wPpica0HuImeRKaPK0ZP0R3CY5qhRRIP4yInxsewiNgUFa5zwdehA/jC5 FA8ePNB6OT8d3ItGTZqhuFSSUJDIXpspzL//klc1LNq+j4XfeyMkdIeUP6WbZYn8wH79+kmL XchHpHQu6ZFCcLIPgb5AvnbtGr744gtcuHBBSd6xY8dKAXTx4kW57zes9YPPqnXIZfz0ZzIP PBkuRXnopKAqQ4527drF8lXkSd/LyuPl5cU+uGRYqD+5TrKy01xCMnbkHw8dKuxOQmtQsshR kRGYYj+JLbBxcXNHQqKkGut1pbS0NBbEulZk/bjGD14Lv5eKt3tHCKZMmyH9XF1ZAct2H8Lx GxcmO1eB5+VlCPBfh6/6yNcc0NFL2TPKSnFEG0phKwI4WeaJEyeyWThKI5MfvX79ep1u9GTh KBoQESE5RYjIAu7fvx+DBg1i947a3Llz5S69Q6ytsGS5D9asXoX2FhZ4nJHFgDobTtPs8Z// esttcf/+/eWiBlwcWdVdRRbIZLnpZKxfvz769OkDimRxlJX1BBPHjcKKla9i5+pw1bJlS8PF kV9X8HLrIjfi008/BfmkNUkB/muw3Fd5M6i2Qh2RJSKXQ0hNiBBZ+OZSNb64MB8ftG6DvAJJ gdXYfw1DeMRR9v/jRtkh7oK8waL1yt41qPKNzeYyllmRFKMWNE6dnLY2/XH95h1eEUlPFHla vXq1EFWwfTTWWgjmVMMdSVl0sZszZ45WM5PfSJZLHyLLdu0G/2bow98YYyN/OgCXWXOlrPt9 /SV+v52M8tJixjpbCkpuvfvuu1i5ciUvkO/cUa+XQqbeukOnLhov49xDY7haC2No1EA8ly9f Dqoi0/a9MfJX9Smuf5qXDcsOnU3uDW3XGdMQcVQSwnyUlgpb5sdsiI4dOYwp07/RCC7WcjMZ S1Vp46ioKKlfzqfbsL074ebhqXEuSneTa6Lot/NBxyQtMsVm6RKhzbtdpBSqa6DsX3b2qzCa ts9V+IE9GDx0OM6cjdF26F/a/5OPuyK3oAiFTwvw3XfzkZ4pSUxRRObb+f9WWxssu2jK2pF/ L0uU4KG3cMiwUKPwqrr3+RynTMSCRYtxJ/kury7IVVSse07+4yazTi+140wOyBT+adKkCfuW CIVohDSKR9arV4+1GnSJ0IfS7qci4shRacxZH141OTY7KxPh4eE4fuIke2nlKP58LK5cuy5o KZSVbdy4sdLLAYIGM51izp3B7zdVF9PL8iCrv2HDBjm2+Xk5iIiMMg8gkwW2YG7bXHxSl3/p Ni+S7hog9yI6Olp3BhpG0t2HDA9Zeo7y8/Nw7txZXLv+u3kAmUI5gYGBejXZ4LzRdsOMGV+6 dAkTJkwwmoSUE1DMdhYzb4rYMQVsUcfVJ9NMzrUwmgZFxoI1QLUiqqrgBDPg6UiZScUiKsq2 fmRpgZKyV2/ZKLIQgWwI7f/NeFAl4rRp0+QydoZQwfbt21k/XpEuno+B3ahxvFOIQDbEDvwN eaSmphr8t9/UxY0XenkiKHgHsmX8ZrOxyJXMcXP9+m8aIVTOpJSDtwZhnb9ubyponEDsYHQN 0E8Gey/1QUmp/E8pyE5sshb54f0/0auPlUYlpqXdh+ccd7jN0f5nmDQyFzvUiAbymQKsSg2v 1ZkskLXR4JYAfxHI2ijMBPuaJJCpisqDqQf28ZMU7uTm5rD+mmLjShW3Bm4QgWyC4NRmySYJ ZBJwzMh/4tcEyRu9mwM2wtvbW6nFxEp+bE8EsjaQMM2+JgnkspJnTMXWR4J/G00EsmmCU5tV mySQoyN/wlSnmVI5fZYtYX9BXbEdPSb5MRERyNpAwjT7miSQ3Zwd4eO7Cn8k8VdRcVuycf1q zHCdbZo7JK5akAZMEsh7d+8EZ201SZmZkY5dzA/LbN0WjNR79zV1F783UQ2YJJBNVNfiso2o ARHIRlSuyLrmNCACueZ0Lc5kRA2IQDaickXWNaeB/wMOQBKsTzjMrQAAAABJRU5ErkJg gg==</item> <item item-id="455">iVBORw0KGgoAAAANSUhEUgAAAFIAAAASCAYAAADIdIn3AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIHSURBVFhH7VeLrcMwCPRcHihzvBE8 TZbJMH7+YTDgkKSRKlWuVLUpBpvjOFMX1+sVBNwrUVaQuIB8iQQLyN8Bco+bc9HBe9uN1Kz1 Rwwe4/lwiHj7RvZzPvIlp/YjRE/Pm7/78O3Wbkl38Pgzx0Bfj2BxewWdgplBGsDdt1TELUL5 LHvM65Vis9am1U6VCuMmL3UBhmFJFEOpuGRJdarno3kcwWNimm/eIzGm8PI09gV7PkEqhNY0 BEhWvU5hrNYIpKz2XaALCJBkd5ZgYVyDkRQ0cCp5tBw0Oz20ZU/lCN5HT6QDzo9AKkFKooT2 d4Ey108ZqVcd4lENE+zkhSEshMLtJS/QSSSKZYeOGKQhx6caObQInvgSkKM4UyFP308vjyYl ZA3E0t10zYM9VIZzIJlmFs1rZKnEOddQSY6WA3YA0ZqbQJrMO10w3sLbXttXBXLauk1TjdbW pQT3s+x6Gk1uUJqIKLcfr7b2c0YqR6Oaxs0WkJov9VE1kBTuil1IXSZCIiEXcux/YMrssvmM h8Vb3KI1KW32q7tNWrvrojX+KGwfdPqhXc6RyvgjbtXe92JGewRtSWQ+QIu5roHZfcT5rIF8 tMvL1LKzPwRt//O/iOY48Ai6n3TqQLq/zAochPMzbbP8vF5zBAo6BcT0husfnkGr4BnCLFAl oB1IAPTO52IoIvAPa7NiFIInKZsAAAAASUVORK5CYII=</item> <item item-id="456">iVBORw0KGgoAAAANSUhEUgAAAEQAAABaCAYAAAABz/BZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANvSURBVHhe7VzbkcMgDKSB6yM1uIs0 4T6uA1fjr3SSYjiE4xwvg4TlGYXoZvJzsR2z7EpCCBmrfxECRjwe62yNme3K8qJPu0zGTsvz 8GmCAdle3sw8UIQIPJfpEGShgAAYk61MJANfVjsXmCcSkHU2Fk+MF5OMY5P71OSQofhc7DQt NhSQPEDAZqDRSGUFs04DBeQTgigMEBggwYDCDJtEWgBoMut1fcXSkQUIDBDNDjfM0uA9SARQ 3WOAJfvPigIkfDGM1fTeImVDiTWthwUTIQgQolxeM8sCiDOru1QFAeK0TNI+n2SAQOu82SI5 gFDtB4yiZC/IRnXT0y7XzwbEUz2MZuludzcvIgGZu0LTE4FZYGwHAqTlQnDfKyAJTgqIeEAe d3u7P3D8vuCqx/3H3n6Fud0+o8qDjkpGvGRckKUMifN6CkjEWmVIJmJliDKk5iFVMiqZegSl DOFiiC7/wyyGJohSz3R+X0ZwCpEcujPty4jNqVIBYduXkZpkVkDOLu5UMrmrzvZxR9qXoUrG bS+p283DXQ3MeJKomkJsLaW2GpHi3i7UeEG91v/n6gI4HwhITBBtm8VZjZevFaUUwnWwWiIg nhkHJU3FqLBj3Ie3yAME2NErjf4yhDdA4gDpKFbjJIg8G1ICxP+PZlxzgxzcX6swFMcQV15f lUxPdR+FQvIAgcKzSrE9EpCBGALT+XK7xdpPoH6v0UVQRSJD9tfejk/EwVm9wHhEL4OYxEsv kcyQSwd+9HAFhGtfhmf6tILoe5b/L0/pnYLzigvuEOOgDEm83TvSbp+fGROQQoK5dgIzTvpX EkQ8Zor4FAYv4wefBkzIc78fyZDWsuDrAGlyTiWTQpQeZd89zrcaVY9Pwe0ijq59pA1pSqZ0 AXJrc0xAvEcJUxTtbhDhCv9wX6ZrJs7exOB24RXS1AW2F8CYDDkxKQrI9yzu+miiDFGG1Jmj DFGGfBpD9JiqJplbnJVYQdTnw1nuYgrde99lIC8zcFkmqUOVp8LghbtkQFj6mG0ikycZyHQh MluRjWAs/pfXlClonYU1jHznZUS27Yo7zmFAYQNEZmM3L2Rt/RczgdjtjqWPWfybcvqY7cho +9DcWmiD2QwTbUFccCpXglLuxwwvIc+GRNDs65T23izGTb9D/UoDWuGA4IbJedUfZk3UcP4S eUQAAAAASUVORK5CYII=</item> <item item-id="457">iVBORw0KGgoAAAANSUhEUgAAAMsAAAAdCAYAAAAEnJgBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANySURBVHhe7VrrdYYgDHUuB3Iep3EZ h6ECn8grkCAg2vSc/mhFCDf35gFOgn8YAUYAhcCEGsWDGAFGQLBYmASMABIBFgsSKB7GCLBY RubAvop5msQU/Z3Fuo9s/PdsY7G8xadKOIvY3mLvB+1ksbzFqSyWxz3FYnncBUgDWCxIoNoN Y7G0w7buzCyWungWzMZiKQDtkVdYLI/Abi/KYnncBUgDWCxIoNoN6yqWfeezzmJXfkwsb+SC JZZNLMCZ/lJwXrktk7je28U6T2I2FwNyLb4nOIUjsXLvUiLYVBbLvs7A/Y22pcTnUCDow4W6 /I3tJRBLANK2HODRiK0c4Uzki+UwRTp/XsX/zjU/B/ugK8w9wlYWi0MGNTfNx9gM2Y8LGssa /IX2lhfLQWc3K+Rgkkbbl2f6fRM5rd3IiHNlm9y8jZ6fRFk1QdWvtPFHWPN3g+VVRgFCuCJZ r2DSTCw9uQCIhcxf2NFosWDTchhJ5OKA4CQhk4TQADQV1PlJybnBUyTn302J1Caak3XdaI91 uZDbVVosWP6mVsmLBSrDomUBlIWg/w/Qu/zEcoHpgw444W5ZdPf9HHcozxNicfsNYNIhuIAo wyDMU76wniEa/Ej0MyWK/60SNRVqEWFUHzbB8dKOwhE1NiCKL+DInsD9E1aPOSj4cLJT5rkj lge4EEcZavAtDGOYp3zpPctnFs8yTdrDgC32YR+UKagZh0C6zNCsyIhiSe/fMibIWL6hmax6 tzTKru/bGhemyizL1c/Zga0rF7L7gQK1OXO0Tnt1kE/ZH3tGFouBOJq6/klmMRnp3lfAqQY/ zHj1AkgwUyazmL6SVMa040IqsySrFJL9v1VSZRimJLrKF58s1AwySs9iR1VEGVZJLEds09HO P+Qw5dh4ZVi0hxm5Z7GVNZZYZAvg37Foa80lmJvHBzkNe0osHjbWpTA6aNVIOMnM4goWL5ba XMhtNFeGnf1ppBqgN/g5Y7zn4AL4bDHEPQtx2+kytHSycd+L3b4HQn4LF+plFqLDEmqEsouz gny/16UbcWuo4SMd/aIMLhvk9FUFZBuKCwX2695RZ6PyDymTZMkdCeOzT5mLO7z1j8RynYYB PdRruHB+TeKVYs3LsA585CUYgZEQKM8sI+2CbWEEOiDAYukAMi/xDQRYLN/wI++iAwJ/YNNd eWCWxYkAAAAASUVORK5CYII=</item> <item item-id="458">iVBORw0KGgoAAAANSUhEUgAAAZgAAABnCAYAAAA9iFQtAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABSSSURBVHhe7V3tlewoDu0EJo8XQ2fR SVQSuz92Mqho6tfLpIOpNf6oMpgPCSELU3fOmbPbUxiki8RFQsZfT/wDBIAAEAACQEABgS+F PtElEAACQAAIAIEnCAZGAASAABAAAioIgGBUYEWnQAAIAAEgAIL5ZBv4vT+/v76eX9F/v5/3 308GB7oDASAgRQAEI0VwlOdnsrk9H9r6PG4ToZ0wzk6Px/3+tOfK3+f9ro6uyuwBPwms07x/ fz2/z9qtnepfZd1AMBLbGelZdYJZjPHrdu4i+3v/fp48ZNoqJuc/baFpZJvArw2QDkfdjZWN fzl0crqBYNrYz/V7USUYZ/wGKbdJp9tZO0fnaL/lOOn3frtO6hH4Nfbrx/OmEr0b+ZeHTlw3 EExjE7psd4oE87h9mUQRmou5r1OYKnDOliDUkxfttz1mZEoY7Zj4rTv99dxRHlEy+3N+9t02 ZWvlXweziegGgumNEZrmUMs50pf6WgTj9DHJUTnddc565pSAp1ME5+RCMi30jRcYHRMeEb8w jeRIV3I+Utefsx85sa2zbuZfcasLdQPB6HhnRa96OVRS/leFYAiL1L6S7bDw+rvDr+D3Ra+t Ci6IGHIL/P6ZB7e4IUwFBDLuiMftLI8LiW46I43JPoJZ//+s+wfhN9taYCduga4l/Or+WqXK 8v4128JLN731xV/sfN1AMBVU0P4R3UVnkbdg1BoE4/rMRi/LDnJpEkYBR4dwC/bLYcJIL/b3 YexYKsstsPRI5xi9xGTf7S4ji5daSiOLSUgwvt4etrO5xCLPi+MXIxOJ3Qv6a1I8wfEvhdRc ah3c6waCac8W7B55Cw4z57uXJmdkEkdL5vALFVy5dGBUnh0hFVKJUSKIPJOM7qLjp1KOqf8e P/eIRzZsszk+kMXkSDAe/wbPjoifv6Nf4YtFIcSpEPVXJIeyECSSWjcK3hqT8vXcGsBZH3a6 gWDK86jbgpVDrcv5+hyTyP9yDIiESDk9FnXQre9o6mK/kPtEGwYrsTx3ekEIIph5sY1FNvuI y0M18a7DIiNFNhKkxUY5TPgEE6b3ro6fiBAi2Mv6K/tHfrqpz0dSYzFfT9r8Gs1G/SEZw7zO P0EwRafVbEA1ksxui51DbpX/LeFSPsyWEcx7/Dm9MzvAO78e24FTFsilr6mf6NlMqhKLF9nU HvK+9YzcvhCw2BETPsGExRlXx29O+4UpS8nGStjf4yYp3S/71+Ihy6bonQbe/n7/t5zN5/0h vQZsuoFgSuuk5u/cMFlo0JsqpNBaqjdFN0mK7CCfv8hTUzzzohM7gyml6Lzx8wQTRjBqKbIs JnKCiWJ1JfxSO3fRIX8k+iX2J/JDin9N9rBtZrxNjXaKbB3X2T0IRrqQCp7nGpgsJN8JSjRO gWrOsgsH/O/d1bYA+6TAPOQPc+mZQ+r3zjzc3QUYHYiHF6ksu8fjLpV35saYhXCx9zDhEUzu kP+6+MlTzP5syPrj+r+/pyH4l0cku/kHwTCc6rJNmemxdVcQD/G5oTZ/bDbMkxGT3qKfjX1L +YTVXPky5TBl5L+aknqhLTinuHEimPVajEhl3Ks8eP9b8hyJO1909NOYMAkmWRBydfwERTLR aajvT0owJf+abSEom5//BsHQHeq6Lak51J2GjVJkc+wgyv8SUKcSDKGruiZEEmWleLaoi0YQ yfdgbm3f5K7Dp/QU8CshJP1dm2CS8oFgpFN3gedJKaRAj4Y5ZJFxU+A1Jxi3USPc+8UmmHQU c0hhxHLxHeBCmT7XBvhRkaprJ/JBiR2BYOom7FJP1RDM+jJimAOvuXZCZNwUoCUOQOmf1OYx XZFfuICygmC2l0LT75Cm7/0iLdok3c5oBPw0URb5oMi/trRekJLOVdQxq+023XDIr2lBub6r DaQ+57sXR2TcFMz+/jz//PyltFRt8zt9C+bcDwTk1CEs2Kpo8DsHfnzMqE/8/fnn+edfauug XSf+lZJ+0w0EUzm/4seqCUY88tyBOsEY6/dGqeKsqw3EQS/EMw2VsSWdAj8Jevk9puBbRd34 V1xDRDBaVkPt19hAPodgqBOCdkDgXAREPmi8fpSQAsGUENL+3dhARMZNwcZYP4qIaAMELBEQ +WDn/gWCsbQsN7ZxDlWU/6Vg17kDUFRAGyCgiQAIRhPdT+/beAEWGTdl7oz1o4iINkDAEgGR D3buX4hgLC3LjW1sICLjpmBnrB9FRLQBApYIiHywc/8CwVhaFgjGGn2MDwTMEQDBmE/BwAIY 70BExk2ZFmP9KCKiDRCwREDkg537FyIYS8tCBGONPsYHAuYIgGDMp2BgAYx3ICLjpkyLsX4U EdEGCFgiIPLBzv0LEYylZSGCOQX9x3RNTOEmshPkmN7gv/dzWQ1HYeDHQYvfFgTDxwxPUBEw 3oGIjJui4+j6UTDY2kwXatZcSMoZonVbdfvgCHxB/CjqiTA29q+SfohgSghp/25sICLjpmBj qd/JY//+luOkS92iDPwoFi5uI/LBk+eIqywIhotY6/bGBiIybgoWzfRLX32fEkNzMfc/dxx+ QjkjazM8KODL2oyNX5vbyN8I1/cn8sHO7QkEI/NB+dPVBlJv0HuhRcZN0b5aP0rnuTZ6txY7 zPafoN2+C+Olvya9v2MfGps+GnCL/nepvq2fHxm/1XdeH/JxG4IvQfpS1p/IB838i2ZvIBga TnqtqgxEZtA9E8y8eE/Ovvy7/yRx+C356bfHtIhH204a5hb4/TNzH8EHl7Kz7eTYt/eJPvz2 +fHMxbWnfWqZZHROz02fA3EFsgW/p7EeHL8Zs2AOYp8hJ03AipWgP22CcdG2vyEifo2Vqn+m HQimAYiiLmoIpqGDiIybojhHv/Crkt7fIcE4Anov9LMT7RdQ9+zhU5OxVJbfT0mlY/Tingj7 XXtJLFp+eq00Yu73Zee9qBnKEG5Cnk8PoyzWU3cj4xebl9mnOBuN3bwI+xP5IMW/Dl9rXWwj /SVWiU36z4Jg2mFZ1xPFQMKehQbdbQST+mzxLPCRYDwHCZ6NEkGk/2UXH1lYogtOgkhSBOPJ /EbdLfRNqslyeEXl3xFSFuvEDncQ/OY5D6O92KaN6NHS/tQJZrbDHaHsbSNFrDnCZZAxCIZo RGrNKghGatDdEsy6UG8pMn+HxSeYcBFP4xYQzLyQxiKbwFFfQOaJJ9wpOjlaEExUn02maPS0 l9NPn1FkHAW/lv4zx45CwtInmDV6XSfZ23zFyCJp/2tkG/WN+AoJglFjDmLHIJgoUHM6xzuH 4RNMNO8c3bkGqTaXT4+ezaSqw3iRTR8E40dU4ZlXLAKkEMwyb53j1zADsATX04akYFe51eAM gpnPJOdIfZ8eWzZM+81Ubv7ycwuCIa74JzerIBipQfcbwYTY7xduOcHMuIXpsFSqqJRi8kTl RTBdpMgOZu7rQE0xRjFdtvWRM402EaAYv9Suvba6T9jfKQSzEct0q4V31oQU2ckL/tnD1RCM 0KC7JZhwsffy4jyCyR1SvyObbQd3/hlMmwNWf8H2SYF5yB+eQWQO+a+PX7sqzMWXZP2dQzBr Ks9FLHvjA8GcveKfPF4NwQgNuluCmbMNW8i+/O/bF5gEkyxTDs4ebpGoJrkDT5d3vkp+986b PAdRKlM+FCvky5TTWK8RSHRHPwp+bd4je/tSfX9nEcwSVQbVYyCYkxf8s4erIpjdrmnNodYe GouMm4JVtX6UzrOZ7akUk1B2ykqRzQn3KW9NI4h4KmdaiG49XL5Zwpf4oiXwKwFZ/F3kgxz/ ipEJCKY4P9duwDEQBU1Fxk2Rx1A/0lUn7AWS+JJaKoIyxIMyXX50e3veS9erAT8urIf2Ih9k 2FO0uGREgqFcCiietat0wDAQDZVExk0RyFS/x3RFfmGFrFggt5x7+hwlHeWQSI+C6yltgN8Z MIt8kOJfa2rsUOk2K7el9oJoP0U8mfRxDKtImfK+dC2VD6fDXn0pIH2Ia7ekGIiihiLjpshl rt99Smr18g9hwe5F1FWO36nqCPjpTorIB439q4RMkmAOu7N5p0fLPW+DHksdI+WcycPYkuiD /G5sICLjpkyBsX7zmUlt+SlFP3Ib4pkGub+zGgI/baRFPmjuX3l06ASTvA4jNYD0UkDtaQ36 38o079tb3Gs53+ut1uOFcU0kNDYQkXFTADDWjyIi2gABSwREPti5f7EJhlq/H31Ri3kp4HvS pddpE8xny1NuCm7Esv29EVDp0JMwlNfE2EBExk3R1Vg/iohoAwQsERD5YOf+RSeYVIosehjE uzqDU/qpZggrwfjvXYTvYURuIM0dhlGENTYQkXFfQD+KiGgDBCwREPmg8fpRwo1xyB85f1G+ FDAmfPhy2PvbIcIU1iFCCSuBItdc5C6FKyG//W5sICLjpuhorB9FRLQBApYIiHywc/+iRzDB DJxxqV3LSS8SE5NgyBe/HSKjQCtjAxEZt1Olc/1a2hD6AgIaCGR98OL+VU0wL6CjKaI2l9p1 H8G8FljCG+Mpy7w6wZQ8zli/knj4HQhYIyDa5HXuX0oEc9UzmNQnep0JJkgTZzB5/+zcAawX F4wPBEAwORtILLDxKrLEjZ7RSwH3g55VRQaCae7uIJjmkKLDsRD4MIJhTl5yBy+9FJAph1Vz RDCIYKxsD+MOgcBHEczX/768SaP8vf+Azb59KorxBnALdBdvWlfaKggGBFNpOngMCDgEPoZg HDnsCYL690Ywsfb378i7Iy+7okc53ZoiCAYE061xQrArIPBRBOMmZCOZVv97hUk2k9H4jEJk 3BTQjPWjiIg2QMASAZEPdu5fryqymshlm5RSpGM5ed2P3cxA9rdgT8UK851q5fJpkXFTwG2m H2UwTpv6LxByRhmv7Wi4LfpQr8A6zqc8CyPywW79a0EqSjD7KGZPIntwKWcz4zmXgkZNDCSo sltfzgLBpOZL9g11BSu4SJej4fYmSxCMjglG3oPRGQi9JhBoQTCRMu+5wAIRTBz0w60NU7Ni qTwseLm1Ibgy6qK4Lf4xnTlPn9W+DR7BvHRdP68+613PqCxHAMGw4FJo3IBgotV6qS81BiqI wnMKHA30owzDahNbFKXFGiwBLtp4INzeH1L7sBRZbJOgaI4gGEVwSV0TFuDSPWogGBLSr0Yz XmFp/MmOx5O4j9Zj4taaYHZnocTXL0SbPML68bae4IaV1KYqt9libsRAMNa+yzKQhLBIkbFm ccyFkgVBVeMxcWtJMH5fpPcAp5k4i2AO8xcji9wN8RW3x4Ngqlyt4UMtCObwIbdtF4UqsuhM DZTqaWiJ5a6GxK0lwQRf8SXu9k8hmLXwJ/ze1fK5k2WdyN0QT749PpGC91/fL5saWrRCoAnB OGEiZcqEEF1k3BQMmulHGYzYJrVzI+BFHGHMZkPi1pBgHD6eDdFKmEU+SPKvsPpvNU+kyMb0 U08rkoFU4ECs7hEZN0UsLf0oYyfbjFZuKwKD8fCIuDUkmIPP9UEwyYpSEAzD9q/atMUCfPic depzCUeQPpNgHA6jvTB4lgOMhltDgukygvHna/8F4O///mcqO4+k0XHIf5YznTBOC4Jxy+VW 17/Wun/ff0nCfy7BkOBBIyDAQKDjM5iYFohgGHN71aaNCKZWfRBMLXJ4DgiECPiZg96qyA7z BYL5ABMGwXzAJEPFz0Gg5/dg4oR4uPEDKbKBzBUEM9BkQhUgwEdAlEUwXj9K2uI9mBJC2r8b G4jIuCnYGOtHERFtgIAlAiIf7Ny/QDCWluXGNjYQkXFTsDPWjyIi2gABSwREPti5f4FgLC0L BGONPsYHAuYIgGDMp2BgAYx3ICLjpkyLsX4UEdEGCFgiIPLBzv0LEYylZbmx//48//z8NZPi 788/zz//Kg7fuQMoao6ugQAJARAMCSY0qkLAeAEWGTdFYWP9KCKiDRCwREDkg537FyIYS8vC GYw1+hgfCJgjAIIxn4KBBTDegYiMmzItxvpRREQbIGCJgMgHO/cvRDCWliWKYNpcOigybgp2 nTsARQW0AQKaCIh8sHP/AsFoWg6lb3ctw/srQJQnpjbtrk0XGTdFWuMiBoqIaAMELBEQFdp0 7l+bbvjgmJWF1RDMfFfQ99O7MJn4/ZdQTXWC6XyHZTXtGBcIbAiIfLBz/0IEY27n0+V43C8p Nvx07eMWEFVrPDp3gNbqoj8gwEUABMNFDO0ZCLh0V+SjP5ke5mvAQ1KKRTVFKfhjF7s8hkjP G/HbNOy+8QAQGAABEMwAk9izClwDa0YwNek5LpDdRjBtiiS4cFy//Si4aenB/0Im1/89G2ru X3z5czaNFFkPHs9d6BulyESGTcWNqxu1X1G7dkUSIjEu9/AouGnp8SYtTt2OyA+b+led/CCY 7h2Zmaqa02FBWo19yM8csxbDpg5QK0TwXMMiiUYSXaObUXBT0GPOKrjPlU/p7tv31/NqBCOR HwRzBfd1BEG2SvkOzBnU9ylnIxVFDNrz1SgC1Bazu/5HwU1Bj9/7/fmYJ4yfYpIV2rTxL4n8 OTvddEOZcgfe/Lhxdj6CHLLbwXEr16rxOSlSYsjX7AyLMeYITUfBTVcPLsFI/UP6fGiZXPmz 8curgAkE08UK4CZXuWx42mfdwvSasu6iHLOCbLoLjILAnXQ5Cm66ejAX6AYp5Lb+xZQ/nx97 vUQOgunEiZcQW4tkzieXJWtQc1uB4oQopEgUpe2n61FwU9WDt0A3IYem/sWTn3L+4tqAYPpx 41ce96tZpLGl03jv27SDpHUYL5SsSZGEUIYrPj4Kbqp6cBboVn7Rqp+6M6S4KfsygWCu6PBX kplVxKCtmLxIQlvCPvsfBTdNPegE07TQppl/0eUvRS/7IiIQTJ8ePZRUvCIGbdUFRRLaonXd /yi4aelBXKAVCm3a+BdR/tLZS1BEBILp2qlHEU7zfGkUjKDH+AhonYX24F9x3UAw41t1Jxr2 4ASdQAExPhABLXLZoLT0r7RuIJgPNHU7la2LDuw0x8ifisCZNn/mWO/CgFxREgjmU+0eegMB IAAElBH4P13ZEPgTIOzJAAAAAElFTkSuQmCC</item> <item item-id="459">iVBORw0KGgoAAAANSUhEUgAAAKYAAABiCAYAAADa8ajVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAd+SURBVHhe7Z3bleMgDIbdwPQxNaSL NOE+toNUk6d0MsV4jS8JYGwkgWME/54zDzvDRZfP4mKQuwH/YIECLdAVKFO6SM9+6Lp+eKa3 hBbYFvgbHrduuD3+2DXtCpWBORul64FkEhUZKv89bknBoSIwDZS3IfFBzeASNPGxwHPohSNX NWA++27QEyiXyN6N0X38iQ97jPJ/j+HWFfSAGnluj4E7sNcBpplTqqHSn26YqHIEJ6f8CnBB YI7h0wzr8YfPHWkqANM4Q9FCJxTRzIO1F1UY5ScA+r6siDnxxh/S9YNpHKcmWhofBSCc4Nt5 uKjl1yGztKF8CYTmoeG4ST2YXIWvXppMq1U/Oh7ARCtvLfwKBXMcz1kBRDmYyobxZb6VG0xn DlcqmOPyhzPlUg7mOHcRrPjOjJpmd8CstIM/ZiyjDs2rkLHy/qq3WDCN6vRFmW4wmcPDmUCS 2w7NJ6OLH2/+aZWfN7LDDwJnTkeWP6EgZ9oFMBMMLavK2f4xPTDLFxwxmwKzV/mq53jD3EwH 3H0/xRvs1tMLMGWhDLVOtgDAPNnAaF5mAYApsxtqnWyBdsB83Yff++tkc6L5XBZ43X+G33+0 1tSvynUufmjOqa1UOxFz3BoBmHrwBZh6fNWUpACzKXfrURZg6vFVU5ICzKbcrUdZgKnHV01J CjCbcrceZQGmHl81JSnAbMrdepQFmHp8pVhSxlG8RUuAqdjdWkSfrpCs11qIh5MBphbvqpXT 3BOn399Z1QSYah2uRPCje/AHKgBMJf5VK+ZyGe5pXYSjXHwDmGo9rkTwKf+odS9p+n98aAeY SvxblpjuKtu5EuyHw81147luLGoCzLI8Xp80mzkmwHSdnP2gMM3Ac/YyK8nAJlTE9vi8+sLk psfE7+kSk432HDlXjImpxRExabb1Sn0cdjwk+QkI/JzjsQQF23yYczaNnKkU93SJycYxnAt4 bBg3LQNMjn0Xg01zqjHPZh+dK81g2Y6YwFp/EctnGYwusn3BkJrvlDEhXWKyMe3GLQ4wmRb7 ezyWL1xQhvJIxIwlwQrTtJNsNZTw9DgJ6qEuEtmYtjwqDjDFxqSAOTduZ3XbRE9G/sttbiJf eBtETmberS5TNGXJJjZksCLAFNuTAuZ2jjhButDJc74fffcEXxdLnHkowBRjkFyRsCqP5qt0 hCCAuTscLhvM1OFymu9RvlgxxedlFyANTHZuzmQHuQ0gYooNmgFMSv5L4puSZdJgfSsnbSif 0k37q/+j3JxiO4YrCsH099Y++3SUrYDMOtCaI0RMWkNrKQKYS/Sy0wQ6R8Bi+SyJR8S2UK4y UuEM6ZJzu4hnWVM6CcwNhKynmy9sUo0vgbnNV+k9xJt02/ub2O/tnEAW4LwB4NwNdonf8oK5 RADuB4QkgrPrZAeTLQEqMCxwCph5n2aGNkdFAWYmQ36nmbxg2kP53gHRo4OjwkOlJFMBTJKZ SimUBOb2CwjWObu9Vd00XwpsZSzn9mLvgXlbOpaZAWYpzJHkSAJzf8i2J/wzhDNQI7jP7TbE 0d9IWlAKAUyKlYopcxKY03o//M3DxKEcEbMYdk4VRB2YYmsgYopNd0VFgHmF1dFn1AJCMKPt njaUE3oOF0HEFJvuiooA8wqro8+oBc4Dc30P7G8NJS5+ohrtFUDEFJvuioongnmFOgd9AszC HHIsDsBU5a52hAWY7fhalaYA83J3Me5uv1/bWvfUlyNxn7dwXpaMwOs59yVFPF3LFSYCmFdY /d1n+mFc9+Dx8ur3DaN/j33+u3MskZiA4NtmApjftrjdX+rdbR+qQHvOhTfWifgrDSM+wX6t 0KLeS1yVUy+jBRXeRsNtMa/MF+/siHxkVULETLVgQn3e9V2vo8Mh2JpnWlc51v7sXJWxY4YJ 6iVVBZhJ5kurLAeTEi0X2SyA1ztEmGOm+S1v7ZqGctZc8XPRLPggLG/oSrsOg4iZF39ea9K7 23tzxd0kXEtir2A9yjVknlo5SgPMHFYUtyHbLrLTzLhdByBzYNz5e9a0hmJjOBUBZh47JrRy vMG+vace2It0XTqlkn7fx4rcY8fiJ8F1WaqWOMfMolidjSBi1ulX9VoBTPUurFMBgFmnX9Vr BTDVu7BOBQBmnX5VrxXAVO/COhUAmHX6Vb1WAFO9C+tUAGDW6Vf1WrUD5us+/N5f6h3WigKv +8/w+4+mbUcrVmgpvJIs1DFhsdqJmAATYBZpAYBZpFv2hELEVOWukLBlHvRNNWtTYN5Kuz+Q 6r134jL309PJzRbQAMAswAkSEdaLZbTvpkt6uLZOO2Caz+dtTnNfa/yU3nnfTU/p6Zq6z56e ukb3dtE07HG+SHuNQ/i91jjH5PlKOZi8tCN8QK6qUSGY5vYoYz2gHszpEy8Mha9CjddvfWBy 5pfGVvrBrHI4rw1M3jBeCZijGuaedVVRsy4wTbTkfr25gog5D5LmrnY9bFYEpplqCXZOqgFz XAaNK3T6dgRvzofSMguY74/Kdk0qAtOYDnDKADqjlhzKeuaYjl3X9CyyJ/UMF7XVZh77VxYx 20KgZm3/A26vUP2GJXUnAAAAAElFTkSuQmCC</item> <item item-id="460">iVBORw0KGgoAAAANSUhEUgAAAM0AAAAVCAYAAADl0WorAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAM7SURBVHhe7VvZcYUwDHRdFEQTyUdK oBqaoRgHXyDLp2zDezDKTCZD4kNeabWyeBGSvxgBRoCEgCCN5sGMACMgmTQcBIwAEYFbSbNt G9E8Hs4IfB8CgDSrnIWQIvI9r3TD11nIc94ml0nIaXGkUXtN8nikL88zGIGLECjHZkCagCDr vBOJFuDbMknhLYRJs593W+Q0LZK15yLf87KNCIwgzR7WvkqUbFGbzvIUJzP/UDBAJqVGp/qU 1u35O1TRPQEsKhFAGwlrK7KrJKLXsOdSZ9LJBTwTlqwZqhMRrgJaSoCazZrHPB/n3ZHFKqis NJY0tf4JVUZ5IEE8FWhZtTFO6CMWWkMHvQruHtLs8x0gjizu2ZHqSgm9Yw9HnP18db5/C84j SJMqz7TjcOClVCn1+7KBzUkPOB0T02TtPtKcgWSCJf1sDYni1XI6hGVq3dx+FFtqSRNJgM/E GcckUE+b4CsaAZH7zFGK4MDDAeSCIk+mmkymSrlYk0L/LrNAVPm0/T2kgZjEQfZMSuJFJ40+ D1TnGAFy+1FtqSTNe3CG/jRxexYR5q5eUZ75jjXBuwfNGlOalHJQFYgeTKkZZGfa8i3Jw6A0 ypMmjxewurSvrnJNaYlVzSQTkwRy+9Xa0pKg3oMz9Ce6n9sERSbN4eaoxH+f0ugLOro39ZcN RKU5Ar5R3TTotqGC2fzq8uwTOAPSBB1e87fBpKEqyg13mqAJ4WrUxgAmKk0+ydQrapLo30Ka l+Dsdc+ChHsJaVQFgd/RmMA4WqYwU97SPVO7R1qhre+IPkIa1LYHrefp9yfSkHGlXCIxXNEI 0F5+Os7uDFbhykpTn/UsC+LOquhzn42t3nYy0eZz40Kru3Hd3DRKoFK2v1ppKLbgscWk2LN4 Yu5QnAt3GvHnfwyt5hm2nOH4lNp4x7zrEwFBy5z6snaQY4c6E9j0LaR5Jc5+rLi41kxRAQ+D vvbZkSY2HrbqwrC74y5z7orfpve9LG0k0VWkcQ0C3EIf9Z6GcNx34px4T+MIM/onAW8eygg8 BgHRojDudCVFegwKbCgjQEDAI40r1eD8mrtNbjzBFh7KCDwCgVv/Ce0RiLCRjEABgX/AK15W RIc44AAAAABJRU5ErkJggg==</item> <item item-id="461">iVBORw0KGgoAAAANSUhEUgAAAKUAAAAVCAYAAAAn4S6vAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAN8SURBVGhD7VrtkYQgDKUuC7KJux9X gtXYjMVwBEQDBEjwY3HHm9m5cRfxkby8hKDS799rgc4soDrD88JhWGCeJr0wxj1jyKKnaQ6g vqR8huc2lMs06DH04cNWQMCdRz1Me5jdSspl+Z74/ggTlkmPyHkfwXDRQ5dp1H5piJSzHpXS ivi0ROY8KhTRRqIHhaIBnjVsIC5a59dNix33jMUJ/IwCLiFlQkAjrUpIIEgxKpgoJqUxqQEx DN9UG11NE7DhqJ+VuQWkNCsbVz7USWlK6lDlasYHINh47v5NgRFZQU1xLVGbuf13nAWMQptU oQKMgpkhmCBI7RzrumBNNnjRtWBK1lAiiG3wx5mtJa2xALQMkpASeOKyJ5uU3LWmKgmLyRAb HFlUS0emY8SN5rCkAvI0qo6/3xvEk9Ffe9KeXT7Dc0pOuOq5FBcNFh4fJKSEuHYlX52UufRt jRA7Nqeque9loFti1SpYRHynMMdIuTvFkT5/vaIm7cVfER3s/v7IvrlnlTBI8DWTEmUsQox8 5mRsdIgNyZaqYsfGDsoYbW9w2NTOiToATG3C7HeFCUhnWvxHSIltEgcWYYOsvWSkzGUMu0bs ZIpgJQxSfE2kdIGzJ5R43wHbjMFmxbpSRnZz5DBOmSmlzCmfVEH5zqqNFJNyTc9ZnidpskzK sr0Q+spzs0qZ3IfrZxd4JQxcfG2igG0T7TWIwGkm5S5yOVJSylcm5ZVKeU36FiqlLaspe9VC av+9VKsnmaLH9J1s1FIBy6ZvDkGsqZ5SUyabLK8kN6bvE0hpgytyTrY27pGUSW1Pk5K30ckF c2bhuTSztS+wYW/ZfcMCiJZQa49UmL7LmYWvlGlfN2q1odbQ8PtDbEIrai1R8paasqqUZEtI YKBi5PN31Pf1KZPCuNKKEtqCM1zidHI+QfP8aqXkrDcZU6spzfpGd5iybXTUX3gMzrnGLSE8 vty+WNHedaKTtLSkhwFNHkhvOkxKqJj28+Eiqi5JGdo94YjB7M/1LROBUJhU3GtPSmp8udXD V9MzKBGffBxrxjciOoGUUIZMrBcyfGqP6uaz+pSNJgjKqKR3HL2Q4Ql59v9m7O+NWQss5l3K Z51/c5wZBptqUUj/mJqicuC8Y6QW2F9ckN7Z5/i0Vg5I6VM5Bs+pLUvj+zTEi6pnC9z6km/P hnix9WOBf8rP6lnrVGp3AAAAAElFTkSuQmCC</item> <item item-id="462" content-encoding="gzip">H4sIAAAAAAAA/+wXTU8TUXB2+8EWWvpBLbWgYgUqKl9rUURiipVEE6VajCcTA+1G1xQWymLk 1nDygF5MvBkxMV48efNigsSYGBPBsyTqfzAeTGyd92ZZtpUoqDExMM3s2/meN/v63jw3AAiI w4jV/F3Ep13PK0oDMJARpbFMavS6ktE5B9KI/WiUsMnOrwAFu/xkESmHHMKh4JTnXuBQJXsS XFsyaJcceItaUrUsegGyLoxiOw8d0A1QI9+ZQBUXuLnsUQ2AKPBgHvIp1VIIj1cGVEjUoshH wWv9Ms/FBxDgubuSl4YHJ8/oypjA47sRnVaGB7GOq0rKZFq5qmrjDi6IM+usliGenfOOmTVx Tl2bOKndpBKcRaxCRtosyjnEBdQ7Pg0QtOF4A2AZ6dPTJO+1U6FFEIP8JWBGGtD1vDo6rSuU Xx+iF6ywoy9aRodWa1tPtQ2Fqbb1O6m2YUttI1TbMDRQbSNmbRvley9RUr+LatqIrN38tdBY Fm0Pn74by5rUxkY1VkgS+FgRkL3GYWn34zJaRIsLOHGW5QpiqcS0UTWVU5I5VRnXuQ3ON2is P+OJtstL/o8Pn0Y+QQWcABsUSy5wWniCaU3piAZdLLGIBKVt+K/gG2LRgtuwtSANGv50aIJB GMcxDzOVW8FPIQQO8z/P9oJZ6BGi/vf+uwXwXHrliFh15ydXWqShNwLu17BgbCRJjM7iKvw5 tanYDPAUEqzz2ajdLeHXOhuF34n/N+FP4tMhCcC+CTuD2dnM9vztvWBrgAMbtPv4wZ+HaD1U l62MMgL7RN5iBIkVNDALKl89XsPaZpioFnPWFT5D/Fxad4XyUAO496gwArkKYe+HuoCVjonr r+Qvm/DdhT4l34++GSwUxXA5jV0We7k497o7s+x/fBvmm5cc71a7IQkqamUNbBIsad7XAlUN D9sy/JcwZ7ssPBBnRcFnfK0makR9LEeB2uVhJa+O5K6cUqcmciMzQ1pWIdsUn81eMvAQL2rc NfZRPxy19MPN1A9HoYX64WazH2417hoxumu07qe+OIaiNrprxA7QXaON7fIHKWIbTzGRAuEQ MVp5Bu2Gkw5y0o6sTnLS3kVOOpmTbrLpNJ3IFieH12zjhm0P2caZ7RFSjZu2Ry3CXouQ0d8B AAD//wMAzHfWtegNAAA=</item> <item item-id="463">iVBORw0KGgoAAAANSUhEUgAAAFQAAAEACAYAAAAtA1GUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAb9SURBVHhe7Z0BsqI6EEVdlwt663E1 bsbFMKCiEIKAOZGQOVM1Vf+/0Zac3KTTfZ9wavyDEjih0QzWCBQWwU+B3m43+PLLCzcAem3+ TqfmFPn7d91+4de/U/N+3625nE/N+dID7T7r3Lz+d3v4Yt8xATqBd/1rIW8b/O1ybk6jQCHQ lsft0pzPl6Y2zS4DbYc8VteSODr1/TVvUT/e/1L+AHSn4rdql+Ie499XA1277Kfq7EDMTEqn /spUugx0bsl3S3akxA/gZlVe3166IilF9s875G4ZD5d2B/SR2KZqnts2Hj9fUn+3NcSS5f1n S2/+8U6xrNDggh6DayFfYwqdU9xnoDXto5uBvvhGl7wKhYFuVeJ/sIeu3pKiCu2Ol+EZ9KHp +8/DPa/uLL9x954B+khM6wqBys+hFNB5lY4+of5KiQPaH+Tnt4/1Kt54Vbu//Kfdpt1H+4ML ECgMWaAChQnA4VRoLqCzzYeZLn5tr6e4vhTaAfpf/5BjF2irIoHCS0mgtQN9dZJeCWzQyb83 UfqOe9jhf5KZbbT05IZGX9B4AeIXp9CxBz+Uz7jhfAcfmnKzdso7zij+qOU37gl8G78woJ16 Ztp1k47SGMBnO6UHGtrSgwmLxn+vgnXxi0tK0984eXWZFoB+tlMG20Gr6svLqBtO3gqFPrrb EYf2PTFlKfR+scNBDhUbWfKx5vOnAT/3yM+T9Nyj5zz+QwGNZNzRnjdIGufLNb49LAEdgRqo MpzM+34cSXxVAR0Bn9kPPw64fc8c0IknNdO4PhTQyaC6Jd+rJLLHxdr4CwOeKL4HXKtCx+fQ IOO/jkXtPrd2j5sAHia+YEkP48+Zg4dSKFy17BGurCy/BwH4MwUqUJgAHE6FHgVobbbGlvFQ c2TH3o49paVSmyP8+H4e0aQEIy8OqBbIYPvo/zNllrRAUKBaIMMdCDg2aYGwQLVARikSUOg0 5WqBwNXC5yS11fPRAtEC6RZtyrFJCwQ9NsFlyw7hUsQUXm6WpLQDk6SPFGgSvumbBSpQmAAc ToUeBegWD6a211JzZJZPPIN7bIpI0T2UWp/POAKtHaieElzL6ymhQPWUWAvkeb+74bnUr9Wk nMX0lPSUJodx8F4BWSolPaWUJe/Xavglr6eEHpvgsmWHcJaeMHSBChQmAIdToQKFCcDhsim0 Np9oy3ioOcpSKVEX96s42RT6qwGU9jkChWdEoLUD1VOCa3k9JRSonpKeUrAHl5WU9JT4BnOY dP2eUooFEjnC6CmlANVT4pe8nhJ6bILLlh3ClZXldwBAf6RAYaICFShMAA6nQo8CdIsHU9tr qTnSU0opaiKzIFCBUotzUN2U/gu3/JDzRiwuy+spwbW8nhIKVE9JT0lP6dT4+J/rUwY+/if9 iKKnlFIt6CnpKYVrsLiDffomsW8EgcL8BSpQmAAcToUKFCYAh8um0Np8oi3joeZICySlqNFT iusw25KnZH+0OAKFZ6w4oHpKqAXSNHpKKFA9JT0lPSU9pbGp1v6qS5dJz5dr+ySb4PnznVo+ Pf+9+7fRc+m7J4w9Y4RfOrs/a37r44XSHiwzaVb3PyCPDnpKKeWXnpKekp4SXBkJVKCZCcDh yYRsPzQlIdsPtR8KL+4fA93iwdT2Wmrm3EPdQyktDXqYfq2GheqxieWZ9BjjLN0mPSXUAtFT gi0QPSUYaNdBf3Tk+78+TynlLOa97/gGc5jpvPddikIjRxg9pRSgekr8kvfed/A5FC5cfh7O 0hNGLlCBwgTgcCpUoDABOFw2hdbmE20ZDzVHekopRU1kFgQqUGpxatLxJJ8RsyWlb69YTwmu 5f2eEgpUT0lPKdjbytpD9ZT4BrOeErqHTs8Gekop1YKeEr/k9ZQyL/lvC4S93ldWlt+LAvi5 AgVhdqEEKlCYABxOhR4F6BYPprbXUnOkBWJSorSkBcKTLNUCyTbSHwUuLsvrKcG1vJ4SClRP SU9JT8l733nvO/LooKeUUn7pKekphfUCuTptjqSszkglJ1CB8gW+Sx5mKlCBwgTgcNkUWptP tGU81ByZ5c3ylJb0lHiSekp5mGZLSt9erp4SaoF47zvYAtFTgoF67zsWqN9T4hvMYTLz3ndw taCnlAJUT4lf8n5PCT6HflsQlPK+4iqlUsB8ex0C/ZbczPsEKlCYABxOhR4F6BYPprbXUnOk p5RS1ERmQaACpRanJh1PslSTTk8JruX9nhIKVE+JtUAaPSUWqJ4S32DWU0L30OlpRk8ppVrQ U+KXvJ5S5iWfraTJFNh+KAxWoAKFCcDhVKhAYQJwuGwKrc0nWjsecn5eFggZ9H+OJVB49gUq UJgAHE6FChQmAIdToQKFCcDhVKhAYQJwOBUqUJgAHE6FChQmAIf7B2sygUjaqwh0AAAAAElF TkSuQmCC</item> <item item-id="464">iVBORw0KGgoAAAANSUhEUgAAAMsAAAAdCAYAAAAEnJgBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOcSURBVHhe7VvZlcMgDHRdLsj1uJo0 42LYgC8uXTZgnNW+l4+sMUijGYkrg9E/RUARYCEwsFppI0VAETAqFiWBIsBEQMXCBEqbKQIq lp45sMxmHAYzZD+jmZeejf8921Qsb4mpE85kPm+x9wftVLG8JagqlscjpWJ5PARMA1QsTKDq NVOx1MO2bM8qlrJ4XuhNxXIBtEdeUbE8Ars/qIrl8RAwDVCxMIGq16ypWJZF9zovh/LHxPJG Lnhi+ZgJ2NOfLuxXfqbBnO8tZh4HMx4HA3YsPSfYhWOxCs9SMtgUFssyj8D5zWrLlZhDiaAN F8ryN+dLIpYEpM/0BU9GbBeIoKNYLF9TbPDH2fzvWrMFOAbdYR4RtrBYAjK4vmUx5lbIdlxY sSzBX8g3WixfOodVgYLJGu0fnq3vH5nT88ZmnLPaUP1Wer4TZV4J6j7Wxo2wx/cKw7uKAqRw R7JWyaSaWFpyARCLmL9woNli4ZblNJPYwQHBWUKihFgBqCqo/UrJ7uAukv17VSLVyeZiXVfy sSwXKK9wsXD5i41CiyWehkX3lUIjoCoE/b+Dtcvmz+lHDHr0HfWfCqj3vOa0SmCGa4qIJVxv RB13xQXGNCzGHLM/84yxwPezX0TuBGRpKVxFxFF9ugjOT+2kPEmJEgvY94nyXzB6TizJxclG leeSWCgs6nEhjzK0wPcwDDDH7M8/oyuLb5mtMhGzw8wDVQppxRGQjmhKiiwr+DhBbIIm/Y8r B5YIiKp6d2qUVEwEKEos07meO8JPYlGYC6Q/kDiPPUdvt/e7psbsB57JxJLgjWVhvzEulvdU lhiAe9NIbIGPTY3KpZKtJ0Isx7oSnTq24wJWWVAuiewPqoQ76rghlpwApBXkHtmKkEZSWYIB pbuEOWu3qUO8yXFMx/qbhuXXMD1wgaos+9os9zMHLJbns4tigXep8jsgdg25HYL50u9mNwxZ l31/QZLu35fdpcsdEHKqbZFkQS7wQ8GmYmnFBcrbq2LBYhk+k193Yc0deRmxi3MWKgbxc9J/ aYd9t8+dvh9CJrHgzxyacAHYDcsmpoxvMrGQ4KyBh6pLOIt54Qk+0/++6S+zLlhX+WRjYtEV F7j2A76JxALdJ0qVSW0J8zOOLLR1W/P9r2tHy95dZTl2w84ZAx+Lnriw3yaZzAzcjbNcBu/N tQRex1IE3oyAqLK82VG1XRG4i4CK5S6C+v6/QUDF8m9CrY7eReAPSSb0RnJ56pEAAAAASUVO RK5CYII=</item> <item item-id="465">iVBORw0KGgoAAAANSUhEUgAAAegAAABnCAYAAADLwdG1AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABhFSURBVHhe7V3tleQqDu0ENo8XQ2cx SVQSuz92M6ho+tdk0sHUGrtcBZgPCQkLXHfOeedNT2NAV0IXia+vB/4AASAABIAAEAACwyHw NVyP0CEgAASAABAAAkDgAYKGEQABIAAEgAAQGBABEPSASkGXgAAQAAJAAAiAoD/ZBn7vj++v r8dX8r/vx/33k8GB7EAACAABWwRA0Lb4j9P6Sta3x0/vHv3clgnBCe14cvzc7w/7ucbv437v jm5v7TXXDx00Qxd8+Jk4LmPn++vx/YERAwhaZ9zMX0t3gt4G2dftXJL6vX8/Tm4ybwvL5OQT nQx0oOMePh1HJ/8pk/vTgoj6xAMErTN25q+lK0E7QzRImS8y3U6cdf/+1uP03/vts5YOoAMd 3wAcnzj+PG7dMnB2QURu4gGC1hk+89fSkaB/bl8mUWxPMgxlimfCzolkJiRiR/t0Is99A+dG 5AW5MiPgmjo4f7hfE0e+Pa3IO1/1rb1sZRREvEwpPfEAQZ8/1sotqqZX6imUV2d6EbSTxyTH 7GTvs9a9ptoCmRI4Z53IMhCbnUs8w3eDeuS1uSvqwMJhXBXHRoJeOfpbdbnIKogIrCnhM0DQ FuMt2Wa/9App7aYLQRMci7+T/EBcYbT4Ff1+k2vfhR5FrCWC9L/54W6Oi2e6UR894naD/hjh CmbqK1aRnG4C1Ez4aePP4+o71OffV/w+SAclfwFbZnrTdoJ+LNtZ1VLdZkHEEa544gGCZppU n+ICp03uUMWgexC0q7MYPW8R4FYkjkKPExZHeC8yijMNqZ8PbadS0Y5c6JH2MXpO9X1fLkuT Z/NsPUXG2nor4hoTdIhdoB8HQdLxTa6D7HiDLZNdUZDWbd+borNprhxErOP9NQHuF0S9sQv9 NAiab1XqX/ActmANsrR2o+3on2moMj8Xjlwl++M5wcpSQJJIE99kswvJ9nNLBrl/T0cI6ci6 blahs3iWT0XV9aryJYq4Hgk60G/07RV1kOdn2DLf7KLxEd3LUF0ZqwYAhB5V6/B8Tpe173QU vcsOgibosGsRVnpFvgaZXbtRJ+h6ejtJODvYydStT4ThRCUezCk58wQXRdAr0aQiaz9K8q2i TNyUvlFs7BSCfmYy9qWDsO98go5T/LPrIKcn2DLFguMyiSWT/SAEaeJZ9zG1XpGi8KePDgKp 2F+WJheCiQcIuqbBrr9nGpjKGqTi2k0Rm/pmKJlT85JCLvW9Euo7XZaK3ijksKZpXT3Jtenc mhkvsm7e4HJGitvT6YaFjyufoOMNgtPrIGPzsOUEME9iykfCnj0lAhVKZvHn1p4i35bVKMtb idR2QNCpTMDer9LvstO9V79A0F0JuFJ5Nb0Sfa/koEmzRikuFNlK6dRaivvQv5AkqenVdZ00 tQbNap8XQbemuNfjJXFfO2wSC6H1ZZMTdBLvmXSQGxew5QaPUdokRttAJvNl9SBiE2rLnL39 xP7z899KkwvhxAME3WBWWp9wjUstxUkhT6mQpDbClHFIqsxNYnF2obBB6R3VxQPPE7rzGnR1 fS2Jv3yJo6rWmGgCXHkEXdokNq8OsgztbXjcjgG9ZYQtp1HjZqSOtXB9aFADyUe9j3QFma/i kqDexAMEXfVYvQpQ0yvv9tUImpzaEci+GDDpFq9gfSZON5WPWb1TsFsqNjyanLvMIFq7vnEi 6NjxRrpxs2y/E9l1dGla7v3ASY+LSvK4Mgk6u6lmdh1k89zekTPYct17pIhsmzRT7bo7QedS 2VmCzmXTHBql30V5q+cVxSDouhV1KkFNr3jNK6W416SNaO2GAAmVoAlVtRUhToBY6dU93UUj 2Ow56Jv2LUhtCPX/CjrQwfhDcKyuWetH0LUgYp2sRncbrD8XlsDSk4u2iQcIWmcE8WshplcO KRmlNUjRzJMirTlBuzFEuPeaTdD5KPqgq9QFIgPgQlGfVhnoQAfJy+PYQM5rTCp5DEcyFjO7 uJNLVw2y7XKBoHXGD7+WFoLej8C8rIA3K/M7KTJsirQS46fUTyrzszzxWHnAooGg91QVaXdq 1E+SoyXJNksh6EBHU9fGcbuP4Pg2fW2vhsiPSXyUT9AlAm4gZ3/iAYLWGT38WpqNQ3BRiddL kWFTpP375/HPn7+Ukl3L/C5vQZ/7wGVJHIKT7YqGTeXQgQ7uwPGI498//3r8879GfJt98Eqh 2/O5S0bzXphcSCceIOhG3Yo/ExmHuHVZaojSvLF87y42rPVT5GOXIa4jsuud4QPoQEdLwDHG URRoDBJEpGxjn3iAoHVGDr8WYwITGTZFWmP5KF1EGSAABOZGQOTHBvZRWIO2tktj4xAZNgU7 Y/koXUQZIAAE5kZA5McG9lEgaGu7NE6viNZuKNgNbPyU7qMMEAAC4yMAgh5fR3P20JjARIZN QdxYPkoXUQYIAIG5ERD5sYF9FCJoa7s0Ng6RYVOwM5aP0kWUAQJAYG4ERH5sYB8Fgra2S2Pj EBk2BTtj+ShdRBkgAATmRkDkxwb2USBoa7s0Ng6RYVOwM5aP0kWUAQJAYG4ERH5sYB8Fgra2 S2PjEBk2BTtj+ShdRBkgAATmRkDkxwb2USBoa7s0Ng6RYVOwM5aP0kWUAQJAYG4ERH5sYB8F gra2S2PjEBk2BTtj+VwXf5ZrPis3cVMkEZZZbhC7j3PZqFAY9c+hIxqkwCmNk8iPDeCjctoH QdPGRb9SxsYhMmwKKleXj4LBXmZ5kIP6vi2n2tnLdrdBDkAD6wg45RUpwsbYR5XMEwTNGbw9 yhobh8iwKXhYyndy27+/9Tj9816xqhgJdEQZReu7w7U3i2kV0UrNZssiP3YytjQNbKVA0By0 epQ1Ng6RYVPwUJPPPan5/ai9Gul3qScZugfc30/gbS/avKPjQl/V8NB5zYyiwp5lrq2jHHKw 5Q0ZPg45REV+TG1M6o8UELQ+prwam41Dx0GLDJsiabN8lMqLyaGFNG9dnph0mH0FD9TGBL1O fR/f36m1b42XiJ66V3gPXIqy7Pt+L3vZ60iGTPj1VXG6EkHr+OPYakDQmuOopa4mAtNz0KMR 9OpYXw+2+xGzP5iff/9ZSDBZtkKQ/jdrHRwid2375cOB6RO3i7KPa86uPC8TcDArR/5xNmFZ O/1KTghajDL6Zm3PvXm7/HdoI5I/+n1enxfX0TM9CVsu2d9VCFrPH4OgFfyVahUtBK3ooIci aEcyPvkFP8cEvT2Svu+LdmQYkIf7NohyndZSqeiwnppuj5FZqt5nLRnSDNPjtRYTv0/Vu9oE Z6JBbdfhvqfzY/xix7QkLX09FPW5tH91HcGWK0Z2EYJW9McgaKpfOqtcC0ErOuihCTrQwZGg A/6NyCBJpDFhvKKcBLElCS+Ryl77mPv3tANKR9Z0g1tliyPZlJOgV5kvmcDsVTiJkUfopW93 7ONJ1EV0tE4+shMm2PJmQ9H48DM1r0khzYhFfqzFB/vdUvTHIGiavs8r1WAcmg5aZNgUlFjy henS0HfznVqcXs7jFhH06lxTkbUfTfrCl4k75iDXD8lxK03911SYbGv/KJkh8LEo6XPboXpV He2Ttj3FDVtOWVpi2Wo/CMGccIr8GMtHHeXoOR6xBl3zUL1/32AcmgYhMmwKNg3yrXNrlypd SXJfr+UTdJziphD01u7SZnJtOpeS40XWUoJeo7NkBM1Pcb9x3vH2/r+wioyg3wZy1OdG0JfV kTc2PtaWnxHxYaXphY03nhLLHZylIJEfa/RRuxia/hgRNIVUzizTYhyKDlpk2BScWuR751C9 40tygk6mHXOpyFr6NpCdF0FLU9zrDvE4fdprk5gkxX2wjxAn6jJENl08so6KssOWkynuADPe +rTIj4l81BpNqE2YQdAUUjmzTItxKDpokWFTcOLIF5NBkObiObXSBqR31LalrJNrhZ3XoPNR BQnUdeISyyFJm+dbDdP6IakyN4nFacvCJrHpdQRbJhgyNyOVr1Lkxzg+KtUFRX8MgiaYzalF moxDb1u/yLApQDHli1OubyJjErQbNMljR9G66C2zmSdJ0Om0rIPhdZzIZ97sGq3wmNWKe59z l0mVBpt34jR6+ZhVXp8raJfWEWy55iBSBL1NCLmTTZEfY/qoo1R6/hgEXbOZs3/fbBw6Dlpk 2BSsmuWjVF4qQ7zcgZXidu3RU2/Zc9C3ER7vkOKr8T10REPxQ3CqrlkPGkF3nDBjkxhthPQr ZUZgm0jXJWgn261+NSiboPNRdGAkuejQWN/9DLmtZuiIhtvlcRKQs9iPDTwmTQiachE7zWwv UMrYOK5M0C7avdcu724g6D29TNqdGpkoydFewKzpIkBHNKyujdNrieh1y992moC6V0Pkx4x9 cDEPuJx0cBh8vQvtG2eOxy6oYPkNNj8qQLPa+UsZG4fIsCnom8t373IfN0X0YxmCk22reOqv fpf3usd5KXtcHQGnkVPcfYZgIoLOXMawRhq8zS3HYxScRwX6CDxcreYEts3Quv0xlm9dM+51 RzULNOI6IqvOqxSGjmiaBE45nESBhrmPqk88DhH00WnnznrmKpc+KkAzWbVS+xGQZd3ydcG9 A+F1q5R/rEWt1dPfeY17LjJsCgwDGz+l+ygDBIDA+AiI/NjAPooeQT+PdVCjreQlBLk7i6uX LLRtvWeZ1X6UZBdwJ+b95/gMJ6vyQmFj4xAZNgUDY/koXUQZIAAE5kZA5McG9lF0go5T3MHZ yHgxn3f1IefoSjczOuwijFP90c9F+Rm9NDYOkWFTxDSWj9JFlAECQGBuBER+bGAflSXo9zum 8Z3ITpGpV0jit3tTO/B4VyKmTKZ2d3CzmR0i5Pi8q0/QNfkZvTA2DpFhU8Q0lo/SRZQBAkBg bgREfmxgH0WPoH39VS82517hxl3f5htTldg5BF2V3+tf7XyfsXGIDNuJObh8fEvBF0AACMyG QNGPTeyj2gj6oL1StOkXvkoEHQNAv13qAN3sBF0bycby1bqH3wMBIDA/AqJAY2AfpUDQKdKd dQ06TtNL0vZEozc2DpFhU0Q0lo/SRZQBAkBgbgREfmxgHyUk6Pzu6vQubs6jAkFOvekCdZbJ cVLcr4oVdpcbG4fIsCkAG8tH6SLKAAEgMDcCIj82sI9qv+qzltcXPyowuMFU5Sf239g4RIZN EdFYPkoXUQYIAIG5ERD5sYF91IGgv/7r3Vmy6Cz5s0dOpfK5KDowBVfXEDc9MQxUi5xdk8bG ITJsCmTG8lG6iDJAAAjMjYDIjw3sowKCdmTrE27u55V43aXmz/KvI1mJ793D8i2PCoxsLi/5 Gy92jycot9qDDh3BEBk2pV8DGz+l+ygDBIDA+AiI/NjAPupA0E4VO0lr/X989Rr20Ng4RIZN gc1YPkoXUQYIXB2Bq78gKPJjA/uoF0FTIufdiKmR9tWNXkU+NePwXyFbdp+vd4rfqq8EiQyb AoCafJTGOGW2kwZ79ufbMIvB6fWx7CYH9QpeWVu9vr6KLnrhw6vX7gVBwXFTnoiH0iI/RvBR yazpCYMuSdB+FO2Tso8Kaa1aCPpHfE4wjjoO0W7y5xo5CDqH3JMQXgNMYTd+XUkdSryJ7QRf 0aH/rsqr6KITPMxqj/t+znxB8LoEHajhcOKHqSRG8fZd3IxGULSAgAZBJx4b2WZ8iKCTyKcG WPXBlrGs+DWj/74tz2lOHEFfQBd6lhFlwX6WDbSEMfxu3/oFwU8g6GjCs9qv52dfwdGWnQsm zqXfZYwIBK03utpqUiDo5G759XETEHRSKSkyjgdamzZP++r3fn8uX0ye4r6ALnSUHke6O1nX x/DefvrUTObSKM6EdClLy9Bcn6BXjP1TR4HfKL3R0PZ+AwhaZ3S110Ig6No94iBoHvyHQbZm Wt1M2L85jlenXem5CfpauhBYQWJCfciCFSOwjrc3NhO0lxHofJS29xr0qtnD8Vo/47FMpEpv NHDeb/DMCAQtGFMqnxIIutoOUtxViPwC1yIFEDRL+YMWztvkHkHXIrD4edxXXL1uIjxugmTY TRNBh/Wno3s9ZfQn6HivxLPvxcxbKaNAyzaAoPVspK0mDYJ+brR5D0J6ekxk2BSJVeSjNMQo c6m0KsPRMiA6reildNGOWpWgqxGY7guCtaxdWlK/D9F6eOclJJEfI/io7J6erFylFxrprzeC oNvHlM6XBOOgNZQ4ZkVIK4kMm9IxNfkojRHLpAYVZ02O2Mw5xSYn6EvpQqDx1J6R4j6S814Q fLRE0E6vgf+hRYytCIr8WNVHhccAXxdzLZvAvv/z78RGvtKpEN6JERB0q0VofVc1jsaGiIQj MmxK13rJR2k7W+ZKR3smJ2gcs9pzpdu5/OjoX3qj58kvCLYQ9MH/zEzQBWeT2cWd3FR3WMOu OzEQdB2jviU0CGydafsbnPgplG5CasjXpXNXuRxjdoJ2yr2KLqSGGuJwu6VOYpz1gqAnSwtB XyqCJhJ0iYAbyHkdGcuucUf24QsZUjvD93QElAjsdS72eT849Wasz4yg6epBSSBghkCc4q46 eXqU6taYqT6iTf5rrUHnMdgnVbfl9sbnGxWJNxpi/7ynyWvH10DQbdan95USQbd2CATdihy+ AwKdEfAJukrOW19Iu6UP0W0POcIsHqlfgm6I/JixDy6JDYIWGIXKp8bGITJsCgDG8lG6iDJA YEgEPIKmR2C1JQ96lC3H5GLnoOWAsGsAQbMhU/7AmMBA0Mr6RHVAAAicjoDIjxn7YETQp5sL o0Fj4xAZNkVMY/koXUQZIAAE5kZA5McG9lGIoK3t0tg4RIZNwc5YPkoXUQYIAIG5ERD5sYF9 FAja2i6NjUNk2BTsjOWjdBFlgAAQmBsBkR8b2EeBoK3t0tg4RIZNwc5YPkoXUQYIAIG5ERD5 sYF9FAja2i7//nn88+evWS/+/vnX45//dWx+YOPvKDWqBgJA4EQEQNAngv1RTRkTmMiwKYoy lo/SRZQBAkBgbgREfmxgH4UI2toujY1DZNgU7Izlo3QRZYAAEJgbAZEfG9hHgaCt7dLYOESG TcHOWD5KF1EGCACBuREQ+THjZcYS8vsSJO7itrLPZgLTeWBAZNgUzJrlo1SOMkAACACB96MS TVgM7KMQQTdpVPEjdy9u7cb0Q3N6zyV2J+iBZ6eKWkRVQAAIGCIg2uwKgjbU3OhNtxC0+yZ4 XnIRkvj+cwxHd4Ie2PhHNw30DwgAARoCIj82sI9CBE3Tf8dSy4Xy3/flRVzGnxQZr6R9eyxP h7L+/Nz8d6RZn9IKD2z8NAFQCggAgdERGIega4+V8JAEQfPw6lDaKZRHrE5pXzGpp6Lqam/5 bVerPIboj9udNf1gN4EPgAAQ+GwEpATNX2ZM4f3eF8RetcyoDwQ9gF1zjUuNoFvS61y8ho2g dTbZceHQKz97/30kriSLnob71qQb6fXta712rg8NalTwg6tP/vpaAqfbkhH9eoCg6zqbpwTX QJRS3CKjpqLLlY1ar6ic3iY7UTeaP569/wlyfnm07Q3hb2Rdmq2j/qF+pFdvs28JmS9rWGaM xPm935/Li7oTn30JEses+tpPpXZmqjm13szeJMZssxWfEQlacZNdKyyi72bvf8DPehseRZh+ yMe9Ij1r+GQErekLNQn63S8QtLWFOYIl50XkEZQz6HOiFPnsVF01ShkI9X5RK5y9/76cV5KF qj/Dcr0iPUOR1qalm11lBH/MCJFdeQk4L7gBQVtb2GpknLULwbqdUzx353gzPpqz0+ZOBB+q reHrdIddy+z9DwNorQ2PbBg//APNSM8aSgUfo5bp08PVnzSAoK1tbG3fKbfzsadlpeTWcBxL Ao/e7FTSi/e3sxPc7P0HQevYsawWPSKR9UPhaxVyVSD5lw/nBFo5+cP+gKAV7ESnip4kfT45 bzbbcluaDprJWmZPq87ef18pV5Klo8nqV30dglYLAFjLjCVilRN0vAQJgtYfAYIa9/Q173x0 vkHt+riiac1Oue1myqtsslPqS0s1s/c/DKGPF+ywNzy2gPjp31yFoHV9C2+ZMWVDCrgmliBB 0J8+XnvLrzI71eqkfJOdVk/a6pm9/wFDL8s6y/lRHLNqM4XmrxSIpLltvQ/1N7v2zGBS5E5n OUHQFOxQRoSAfHYqaj76WLDJTrMbzXXN3v8ESbuLHnAGutkieB9egKC7bXa1Iun8EiQImmfd KN2EgJXhN3UWHwEBIDAsAr3305y5LFhvCwQ9rCFerWMg6atpFPIAgXMR6E3O50pDaQ0ETUEJ ZZQQqM8YlRpCNUAACFwGgc/1GyDoyxgxBAECQAAIAIErIfB/WA0CaxDWvZoAAAAASUVORK5C YII=</item> <item item-id="466">iVBORw0KGgoAAAANSUhEUgAAAHYAAABaCAYAAABtyaJcAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAVzSURBVHhe7Z3dlaQgEIVNYPPYGMxi kjCPzcBo+mky6WBYwbZbkZ+6gtjgnXP6ZSwR6qOKAqHsFP+a1EDXZKseg+q6QT2qbNxTjX2n +vGZVPvGwM5K6YY6ka5JPsc+qXM2BFZD7VViR0+ykvw3P9Rw0PM0A/YxdOq4ob4svZusffrF 3WBA3gwDczn271M/DWx9PTBsPEfV96NCHXMbYLUyD1O13fesdD9cVF4p3em6N5x9+TG3q6/H O9vWXzQAVis6IVDSFtFZLlx3FJ+VoPJ2IOcM7DTs0DCCu+T6wWpFH7bWqZe7IBp4ns4CyQsj XFdnsQZsbbVIM6sHizbYDnCMG7StM6BoSF407RJG8mAHrhxsohueKEOgIHmJtQqhmt6ItbVy sNPYE4kYTeDiiVJNwAW5VsB1x9yruS6JwD8+5jHIp3N1gwXdk3Oe6RpPo8GTNf665ENlGBct h7TUGxl2CNa4uPVqVZ7pjvEUrmgnZsmBVY5bgR2yLDWFFyg0pO08Mr6gsb9nJjbPWWMLGG66 BJt/be8rSiTYr8CQvxIEm1+nX1HifcD+/qi/P79fofQSlfj9+aP+/pM9qfqoOE/wJFPW1VL3 sdhp6kCw7u5Gi73aDIHn02IBZdUkSrA10QLqSrCAsmoSJdiaaAF1JVhAWTWJEmxNtIC6Eiyg rJpECfY0WvHXdac9+vXKT7qhjQsUYhLoC3lxwWJBWqxYVYAgup8YKFoqSrBSTSFy6KY3pGyh LMEKFYWIodtUkbKlsgQr1RQgR7CAspJFS762oytOxiUvoCRYdP+xvBViSbpisaoQQU53EG2l yZa0WFNTLlCkAZPeXRystGLnyNEVn6PXy0s9CNbOi/A5hiBdnyzeclqsV+WrteIZ7A7iwZNh RSATbALYV8CAJrcg2PwaSHLFe7c7R4Jf6Y5psQkWu3bF9iT9dSp7ORa4gR+6lqszE6wc7P7s 5urk9QaslcJm81ordG1fl2g6AV/1CVYO1u9y11HzdFTfkTTrnR0tdC2XtZr1Ah7x8KkzHhWv 7wzlP5pyjfqTUIUTVNFiZb09c/C0eqgXbCj1jSQtjqxhOylabA5XPLu+fcayUDKOWKKOg0CX 2whWAlagZE9U7ByXX1HxqdMkgj0BbAhcCagMnoKWCG4/XV5bDWr0pLXRFupLeZPderNZLPo6 DpC3dzeK8hm7mR0MngSu+NtEsoBFX6Aj8ksHCGdh2+Yz9iuZYJEOiO4XBuQ1iH4Y9vmQ1/UT ZUidbyBYBCy6SU0qrzuATuDp6gjv+mFTQYIFwKLbSmXyqw9PhMAC1kqLBaAuysqdiNq44CXH oxcsZq0Ea4GNLldKXetSbkx+ccGrRZTdNwdeUzXn/wMdk64YsVrXalpCvmLfVE+/NdtM90LP 8NSfYBGwJ+Ur/sRHjq+ETBe9+YxpsSb+z5SZLX++YglYdLsRLRay2HqECbYeVlBNCRZSVz3C BFsPK6imBAupqx5hgq2HFVRTgoXUVY8wwdbDCqopwULqqkeYYOthBdX0PmD5eRZvxwA3s0Ed 7HzhbGvF51c1xxPuY7EES4vNYTFXl0GLPZ3ANYfBbwW2z74LPdYrPu9uSz+aYGNsDl5/b3vp h+nb8OXTN9wHrD6Tq/fuHgSF3vYcx+mJ+u8aV/wY5N91r3u6YxQ8na5HCSXLXwEWa2vlYLFj D8k83wVcAFbvpgQG9erBmsPYQIPzwC0PFhlfdRvrB3uJOy4NFnPDjYCdmuHIUpPHMn2llAW7 OTIibFgDFju39J2KSNjwNLGCYO0jI8KKNwN2noLIpwNC/VwsppOzHIv6GwK7zC9bgXscajtj 7MauPnkyys9vcxh4nvo3ZrE5FNtGGf8BuJnj7S6Ll5EAAAAASUVORK5CYII=</item> <item item-id="467">iVBORw0KGgoAAAANSUhEUgAAAK4AAAAVCAYAAADfAdVYAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOgSURBVGhD7VqLka0gDKUuC6KOLcFq bMZiWCKiAYJJ8Hfv1Tez88ZdhCTn5JCAxr3/3gh8YQTMF9r8eJOHvnfjo6Iwur4fEo9f4n4Z Aca+czbF8Ms8aDR3sK7r13S9lLjj+CydaISo/trYO4vAO3z+bMJPw2vsrYvuI+IOzhrjDPHT kuGDNUgZvNR3BmUMrNUtRpwNwK/Mj4E72qf78FJwASVuQdyCpF6ijZJksJ2ZZKKcuD7s3oiu e1qttoduEEPrzqgS7sVLQVzvvZ05wxPXtwGpWnLBB0NwgMP7i5IjQkOW47qFm7n973g38Urv txyT2KiYGRIOEnmaY/YLfJoSHD0rphQNrSZ65tsA9mkIfjdeGuICl8JOLSautFwosxdgqZAf wN5U3QDKPnJnc0zEA4JpwEXUiu/HgETCxudI7KPLeVinAIEqwXS+HYsXipO3V8YZDXFBH0IJ yhM3LxUW4IO6pMbV1Ln2e53RImXKBxHJMYG1k7ir3yExqs+b8ZJ7RBJswiZNwMK3u/BqJi7a QQhRi7u0oDnDTVRGtEJdchAjMNuElmQmGEw1jtPvNiaQAi6mEOlzHqNIZC5e4lV9S9AVO8/k Ww7uZF8kM7f+eXhB6STB1WsoatQDT9bNK++VoDUKceAVF8eW2K7SbrSmoFollgPKjVQTd1ao atA1xGXjVZYgtXUpP1jisusfi1ebuGAbsno7ScIQqzbiFizJHT8vg9uC4g0+pVTY2IUmBclL qBi49tJInIBE+bDCdh1eTYpbNKBlvKqlgkzeaw2XVlnbgeSUdv37/gYmWUujuOmLytOZzMON 5mwtlWJ9SDWeFDYn4tVSKhQiQxNX1pyRDKl3+3SXGiS+qEcvOVUAB4jjsNYz5CbiHnA6Uj0O S48braWO+q7Ca+epAqu45HGYUMO4GjAptrfnvO4cl1CvVuIKw7QMY+MlnVB4AZGXCuz68l3v fLy4GtfHwIZLq6U5M3/pZwvkMwrC1via6hZb7hXkKW7+tBcqUmIR41jS6OYWXfli4grX/xy8 UmwKu/IrXyAhJmLtednu5/HL8RTxPj7WKOGRZ7kOWnr0Yvd8s7XvQkNuUb5ujJe8j8jXGvyN HXOzgYgrXz89hroXr/o5bvGRTSTt0f/LIX5HSiMw+m9xz/heQbr+fePSpDUSpY3GSpX5Puee sLJXpCtKrI8KZVnfJ8QFW0W1LnKKG/9R/r/G/EwELv2Q/Gei9jpyewT+AbEsTCnIzCCoAAAA AElFTkSuQmCC</item> <item item-id="468" content-encoding="gzip">H4sIAAAAAAAA/+xXzU8TQRR/u0vbLbT0Ayy1oGItIGr5WIsiIaZYOZgoNcVwNdBudE2hpVSU W6MXD2hMTEw8mKAxXrzozYuJGmNiTATPGsX/wAPhYIT6Zt6ybCtRUC8GXvM6M+9z5rezM28d ACAgDyJX8r6I/xX5nKrWAyMFWR5NxkcuqMk8l0ACuRedopJi/QZQqFAevcSRRfFhU7Aq0y+w sSnOKLeW9bFd8b5DK7lSEV0AKTtmkU5DG0tQpdzIookdHFz3oApAFHgyJ8WUqymF06UAGkSr UeWm5NUehc/FDeDlc7fHhgb7x0/k1VGB53cgW80CJ3INN5XV8YR6TsuMWbgiwrxTmSTJKrjs iIGJdeJ89ljmMkFwEtmGgoQByinkGQng6iTAAmsvATzG9uYk6Z1eAloEsZZ3vEamvnw+p41c zKs0vx5kF5hpW0+wZOxbwbaOsPX5Cdu67YSt34RtgLD1Qz1hGzCwbVBuv0JN3Q7CtAFFO3m3 0FCSbRdfvgNhjWVGRzIMSFK4GQgoXpWwaffiNrqPC7+DC2ez/IhcLDJrNI2n1VhaU8fy3Edg D4Jg0f/Rd27WM3/vSeALlNFRkGC5aAerSSYY3jQdUR8vF1lGouIW/Ve0hLxs4i3aXJSADP7y 0Aj9MIZtDqbKj4Jfkg8sxjvPzoIr0CUEPR88twrgHHptCZhts5/mm+SBtwIeV/BcP0himJ3l Vfn/xIZyM8JbSDCvZ71+14Tf26yX/iT/v6S/yU+XJAB7JuwOZnczO/O3zoLNQRYs0O7iA3/m o/1QWbIzSgZYJ/ISo5ZEtTqnQOO7x6V7S7qLZnJnVeFT5IXimjuUp+rDs0eDYUiXKbs/13jN 4yUJ1qTFDcTuwJiy++fYjNxzkr90jFUW65yZftOZnPM8vA4zoVnL+5VqSIYyrMyJjQF7x3hd C4QaXrYlbOVv31fBwtuwYNPHMn8j7cyV9wQRlymynshjMitJt3KIKXwaPLqVZVpEg5BeT7P5 CEbFxno2bL+LHMxGKkTdPCqVy4NqThtOnz2uTWTTw1MDmZRKC4nzULvJwUmyoP6tsYfq4aCp Hg5RPRyEJqqHQ0Y93Kx/a7TQt0bzXqqLW1DVSt8aLfvoW6OVnfL7KWMrn2I0DsIBEjTzGYT1 IG0UJIyidgoS7qAg7SxIJ/m0G0EUU5CDq74R3beLfCPM9xCZRgzfwyZlt0nJxj8AAAD//wMA EkPFmegNAAA=</item> <item item-id="469">iVBORw0KGgoAAAANSUhEUgAAAFQAAAEACAYAAAAtA1GUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAwxSURBVHhe7Z1ptpswDIWzriwo68lq spm3GIrN5Emy7FyCcNVz+qOFKPAhD9Hl2o/J/kAJPKDRLNhkQMFJ8FOgf39/4MvXFy4A+ple j8f0KPx9fdov/PN6TMfn/qb38zE93xtQ913Paf9ne3i1n8iAZvA+rxly283/vZ/TIwqUAp15 /L2n5/M9jZazdaDzLcfZVUsOl32v6Ujq5fN75gegXRYfWVuLe4/jYqDSZp9npwNBPBSX/YNl aR1o2uRdUw362Rg0lc3U/4/XlwoGpbD/TAB4uOnxcDDamikPupb9rmsoDZb+/2of/nFPUc/Q 8IJctiY3EI/mVMa1Zu6PKQC/rg1o9sUpwGXqlSeNZajgmZUgtWbif9CHyrqkJRNLU57yKO+m nfPcNO3zxh7lBUnpZ0DLKE+Dl2fd4PNQAdAqzCUGlaXRN4z/S6kOdG+2ye99ahBCZHH9qnSd 8dNqk65bP+dqDCiYqwE1oGAC4HCWoWcBJYsPRBV/tPNRXPcMdYD+1z/IezegcxYZUHBTMqDj Aw2FOEIh9XWAULwLqHDHlupAIPQl8b1Es1X0k/jcseDr1WVoVLUvleT2GysA5Y6tN03GTx5E VJThjiUZrgxoKhvHV7voQXNWffIM5Y4dUfj4WQWroxXoArqW4d67kAZu8tL4lbIhV1LUBzQs OFN1zt4+NK3BluLv0nbhYXLH1vTWBzR6WYGo2H8DVBLfw+HUAvqYLqDuJiQ33AtUGr80gCWD Tyx5HweVAZ3zInzTDt3kXd5R8bMZRZCF3DHdo/zW1Ii54HbxLRmanRu+ahlPvWJZJu5DuWMh U3UZCv7h8vNwBhSM3IAaUDABcDjL0LsAHU3WaLkf1DOyiv1M0po8Kp1U/pYH39wV4SxDwdQV Au2UQFhHSUgt+OmZ2HDyNwJLMstyfdTbgOqA9kkgNUfJXgSIYKSFYqqCFD6ODfpNgHZKIFVH yYYkiR8VTlzmVWyTvvr1mkuMd8lQqURRVTaZwjRZb80Nv7kRzQG/U5OXSBQu2VigjJ+Uq2tm xrM4Y11TX4wVdwP6VcWedpT4Rp8VrHlTxN6nRp+7E1CpRFHKUJEJgutD8/nTBpTyA5SsQLpH eakEIoLpUzSyl0ejfNYduHMHmDYtamObBMI6SjgJhJ2HUiP+rZo8+GfLBeHUNfkLGEC/0oBC cVr5DozTgBpQOAFwwNP60BYNZrRzUc/INCXTlFC5dMQ5rcnjL/UeEQ0o+DkpBNqpKQltL/ML orR1ZldKclOETG9SOA/t0pSkthfJeYQ1R6I3ueehLEM7NaW02VYlkvUDyXm0NUegN60hdQEF aUqilXR8AT9dm7QMOi4pLqXFe6ie32pKAtvLLoX4mqvQB1XRm8IGojJDj5VqO2w1/u6kC2j1 xk/MDwFRXUC/0ZSSflQ6iBTPE/TBY9tqpLYX6XkpULHepG6U35prm6bkPkXaXkpTpV2zEvah XPykZShr8uCfLReEM6Bg6AbUgIIJgMNZhhpQMAFwuNMydDSdqOV+UM/INCV95TvUs70uzmlN /rpbuvabDSiYv0KgfZqSVPM5+DHveTJvSC+DE7FMnMY+tEtTchXQaJu1etqRfqOiphTvS+I/ S+zdpCxDezUlueazV+wLfiNSU2owO+gC2q0p1TxGYcZu8Bua/K2B9izV1qD5iPxGxHv5mzC3 dBflWqrKDP1eUyL6VKnfqDIoPd8f0saoC+jJmpLYb1TVlOi+XhnQzqXaGjSfvmlTrI7eZ7lL f7ftPqUWTakPqJ+XHe9EMdtdqsvQ+gxS9xkGFPx8DKgBBRMAh7MMNaBgAuBwp2VoiwYz2rmo Z2SaksZ6KOrpXhXntCZ/1Q1d/b0GFPwEFALt05S2fZZrmg/vU+rcGih4KOqA9mlKhWpQqYBR 8Sl1bQ2UZLgyoJ2aUlGioJXJnUEEGLM1kC6gX2lKhyTBqZKRuhT6lKTfPQe4Tz30K58SvS5o Nu6U/EyS7xb4oFRmaLOmlIp0vhgsaPKhn6lB2eR8ULqA9mpKUrtMYYp0DETCrYfWGGP7lKQZ WgHftTWQ7lG+X1OK55eBZt7kU+rbGihkqqzJg3+2XBDOgIKhG1ADCiYADmcZakDBBMDhTsvQ 0XSilvtBPSPTlExTQuXSEee0Jo+/1HtENKDg56QQKKPr7PXIwmJU3LESNPYt5YKhIYo/hE+J 2zNJup/SXntbX54tg8k9TCP6lLg9k8T7KS2vnHsHxydfgdHj9oXmZM+khuKzribfoOvwq4cJ VhYrNnnCw3RroBKfUrJJStxFMvspxQrd9ExkEtrDVGjy4/iUuD2TKvspcUBrHqZgUBrHp5Qq kxkgehnKsvJ5DEpiD5MPNIJPCQlzG3xIZTSdNg3oU+L2TGrbT2nN1dZ5qPmUwD+BhOF0TZuE F635NAMKfjoG1ICCCYDDWYbeBWiLBjPauahnZJqSaUqoXDJNCU9yjWiDEhitQqCdmtJaI10G uPKaSt31gKWU7zeq5uK7s9QBpX1KvG5U9TeVMjF7ozk4KTkmja8MKOMVYnWjBo/RzoyTSdJj 8vi6gPZqSk2fW4hyXqPsWEN8fUB7NCWJxyhq8i3Z6enP+lOgBmSindZpk0hdLOhGos/R/WPM evY4pT7Rhvi6MrTmUyJlkHaP0fN92MtCoG7wyY/J4ysDyqx9x2lKMxHSY5SN7tzirfQxaXx1 QKm171jdyEMjPEaZdtTYf0azgso+TxrnoeAfLj8PpzBDf84A+oUGFIpT4U9P8P39PJxlKBi5 Ab0L0NF0opb7QT0j05RsHorKJa3FEfz9/TyiDUpg5AqBdq4/J/Upic7LfUrS/ZrUAe1bf07q U5KdV9prSbpfkzKgcu1mqaKv78hLfUqS80o+Ja94Ejt9J12GLqAN2g2nCfEepqicPL0iyZna ayksDRZskUFIfUBr2s3eB1IZI/QpFbxOpE/Jf2f4fXTG6gMa6TmtxWCpT6mmSzG7ga3ZeJOl 2uTaja/Rhxv7VSSSvVUS57X5lOhNBXVlKKcNcevWfQkzn4omGdqwX5M6oNx+SnEWJQuw+nea 4r9+D7lgNlDXpTa0tXkoPeIrBAr+6fLjcAYUDNyAGlAwAXA4y1ADCiYADndahrZoMKOdi3pG pimZpoTKJdOU8CTXiKf1oaddsfLACoEiNCV6bTpOG+o9Fj5jdUARmhK3Ww2nDfUeUwy0U1Mq mgpKWdr3OvjiovuvNKXCukrFLcs5baj3WNyp62ryEj8QqSkFQKj93zltqPfYHVTP6n5K/iaC rExhiPdToqWMTGJJwI2tKUH2U8rnYz2DlK4m/5WmFAwaVIZy2lDvMdVNfm/KZT8QpSktH3Pb phX87IlPiYvRe0zxtEn5zyDB5alr8oJrVn2KAQU/HgNqQMEEwOEsQ+8CdDSdqOV+UM/INKWZ pDV5VDqZBAImaUD/G6CSNeZq72+63/R5xb7+fihXU5Vcl8I+VLLG3Dc+oigvowpT/JBSl4nk ulxsZYOSQFP60kd0AK2sbxdVqQTXpbIPrfqUvvcRbUCp9e2KakH1uo7HpCtDK5oSwke03HrB rtNiihhi7bvoJvp9RHsxumV9uxHXvkP5iJbiPrG+XTgzSPtQoSFNV5Nfb9bbYdwfsmn1+4jo lxZiSyM7yt+mye/9W22Nudo8NBDsmte+W7870/aJtfWS3wfqMvSc3y+/i2pAwawNqAEFEwCH sww1oGAC4HCnZWiLBjPauahnZJqSvvId6tleF+e0Jn/dLV37zQYUzF8hUFq7Ydefi94PpX1K 7L5I0bp4SQzuWPBQ1AHltBvyFe3SS7V7ySpOQX6/pmMDldjrJHWZ3EpTknuFonXxIp6MNsQV kcU+KG1AWe1Gvv4cuS4eF5+tyt81QzlNifMRbVlIepiCgjW5tt7ywLaeYumvQ/ecwAelbh7a oN1sUka5qyTWzKvFDwae5/tz2BEbfFDKBqUv1r5Lpj/lAawlftDfNviglAFl9kVq8hHRqzrS +yIV+smj/cfLXTJOPXVAe9a+W/Q81+fVfUpc/MjrlGpKlA/KNCXwTyMDakDPJQCOrrAPBd/h j8MZUDBwA3oXoKPpRNL7QT6fXVNCBv2fYxlQ8NM3oAYUTAAczjLUgIIJgMNZhhpQMAFwOMtQ AwomAA5nGWpAwQTA4SxDDSiYADjcP6zyQ4b9dmNDAAAAAElFTkSuQmCC</item> <item item-id="470">iVBORw0KGgoAAAANSUhEUgAAAMsAAAAdCAYAAAAEnJgBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOTSURBVHhe7VpblqwgDHRdLsj1uJre jIthGmyVV140IPbknjMffUVIKlVJACej/xQBRYCFwMQapYMUAUXAqFiUBIoAEwEVCxMoHaYI qFhG5sC2mnmazJT9m826jWz879mmYnlKTJ1wFvN6ir0/aKeK5SlBVbHcHikVy+0hYBqgYmEC 1W6YiqUdtnVnVrHUxbNgNhVLAWi3vKJiuQV2f1EVy+0hYBqgYmEC1W5YV7Fsm551Fofyx8Ty RC54YnmZBTjTXwrOK1/LZK73NrPOk5nPiwG7lt4THMKxWIV3KRlsKotlW2fg/ma3pSTmUCLo w4W6/M35koglAem1vMGTEdsFIpgoFsvbFBv8eTX/u9Z8AhyD7jCPCFtZLAEZ3NyyGHMrZD8u 7FjW4C/kGy2WN53DqkDBZI32L8/298/M6XljM85Vbah5Gz0/iLLuBHV/1sYPYc/fDZZ3FQVI 4Y5kvZJJM7H05AIgFjF/4UCzxcIty2kmsYsDgrOERAmxA9BUUMcnJYeDh0iO302J1Cabi3Xd yMe6XKC8wsXC5S+2Ci2WuA3zM27y+QVUhaD/H2Dv8hHLBWYMevQb9Z8KqPe8ZVslMMMNRcQS 7jeiiYfiAqMNizHH7M88Y2zwvewXLZZmDmkp3EXEUX26Cc63dlKepESJBez5RPovWD0nluTD yU6Vp0QsJBbtuJBHGdrgA/zF7Aee0ZUFi38ScKhSSCuOgHTEUFJkCVEQscRrYdUhqVjxy0RV /bY1ItePq1xemK6yLNd+DkxsrblA+gOJ8/DTF1Pmg1Qylm8MLsioxVJW/rvKEkGQ78n5Qsc2 +FhrxF+BOZKoLOe+EiFUTy5glQXtUkT2X6scvpWJ5WwX4mwkrSCj7Fl8PxiVBfSfSc5z2Cfb xYcc1eZn2iNow5I9zDBcYCR7tPWF7rZsu78/KxNLEOxwESjbnpdgvvSHOQ0TigXxn0nPYFju gpCzjytZK/sOKpYwvvCGP018dblAeVsoFlYsd9++/twlBY9fLYa4Z6FiwNgTdSX2l/ZKX8/d vkP+Ds8F4gQSO/lzLbMIvKQS5IXB6uWt4b0u3UROIoOZ/tdaboR5gn2VTzYmFkNxgWs/4JtM LO/ohS0DdLRJHQnzq88IhPFt4Pk/mtXl9oSnYZmW+/ye8AlcOL4m2U/DsFjmnonFUg67vqkI PBsBFcuz46fWd0RAxdIRbF3q2QioWJ4dP7W+IwJ/cGYWm9fB3fgAAAAASUVORK5CYII=</item> <item item-id="471">iVBORw0KGgoAAAANSUhEUgAAAJ4AAABiCAYAAACh1WoZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAcTSURBVHhe7Z3r1assEIXTwOnjrcEu 0oR9fB1YTX6lkxTjJ14SLwgzsEHRfdZ6/xwng2weBxgFHi3/UYEDFHgcUGb6Il91+3jU7St9 STcs4dM21aOtmk9U3S8G3iDKoyZyUVQIfvxpqqiH+0LgGeiqNvJBFEhOk58Cr7YO7FkuA96r frQMdMCHoh+udL1H/+d4oD9NW1VNq+14rwGeEYnU4agzMM1h84yZTberHfNdADzTxXIigaPO 5sl0qa5hjL7LLR8883Qy2iXlrp9IeLpTY6NphuLB01Y4aQtdzXnf5XrGeFOdlQGgcPDYzWZh XZQX1bVF4eB1Y4uAGVWWxjpdIWOO8ztTnWaskrynb4w3VPZVy9NZZYOnDO+nY6GYG5KBpxn2 3AQ8I9zsCfclPb9jm9lvpsi6yG/Nfe7kEdepCRhsQwTbDuiXkU2b5hhD1/KthDBXdyvwau+r igG6eQN4X/co84ImeW2f9U0QyLsgGZc/uJbgrV8Zbusu89+2g0bTgyVLVxG8ubrWgbG761C9 BXEMvPvEal0vk7HSlt+x+wLR5S7rdcSzRVdzf5nGwQTP17jO7m9451uZjw2mJ3634Rxfakzd k7MsW+LVnYz9NM341Y2lq7VB1pcvi1g+2XzXCZ5TId8XLJbuaW+MsxvtZh8seMd4c9A0bwC2 4FkTvd7yfTjJr98HvPez/Xu+5cp0r7LDPpsaYLSNp2yD98W7S1HDT5MfTWQ6H3jv57/27z9Z cxQ/q/VPLkYhxplq0CxvBHYB3h5Q6+iYEbwukbYdz7GrlT0JKqtOVBF4fZconFlKJyM7g/bl bFCQbulGbL9v2uK62m4quh3PcXKhQkpmLAFPFHHmxckG7X0KRfJWHDy5+N2pLY+HS6fIGmBp dZ8xngA8SQQyEC274FXC2TKr3f5mN/8BTae4wTNXAQnkEOpMyYovVO4zxgsUkz+TK0Dw5FrR EqgAwQOKSVdyBQieXCtaAhUgeEAx6UquAMGTa0VLoAIEDygmXckVIHhyrWgJVIDgAcWkK7kC BE+uFS2BChA8oJh0JVeA4Mm1oiVQAYIHFJOu5AoQPLlWtAQqQPCAYqZ1ddwnTCnqRfBSqAr3 eexHm/DqdA4JXgpV0T4PXgOLro7xR/BSqIr2efDCHHR1CF4KRRP4PHoNbIIqMeKlEBXtk+Ch Fc3pT7DYJ+ftqMpiV6uS61zGJYN38BrYFA0ZOLlY7yH3W4wsWT6aoiJenyWDt9lOI3xLMa9O mQyiwNtAplmFn6mC32KKBq+fBw57uYy7UoVtr5Fb9P3ysOCN4pxSlOLBOw80iDtJAt4pu1uC h+AF5gML3ryrXQ+IF/sBr7bYcl1DVZXgoZSE+IkC77fvreUAtTl4Kwj7vNQUFl3XLFXsN8Cx bYNv/s8VagkeBBiUkyjw9tt5Puu1bCDo2oct1R5tBA/FDMRPIvDMJGx/P91FxFtVw3XNmDLi Qdr9cCd5wRt32rRufOi6hpCJEQ+hIsxHXvC+t+3awl92MoxaAYKnlizlDwLBE9ySZ6zmOh9C dXaE4FZ6E4InVSqLXR7wNi+5Z1HNdQ0pAcFDqhntKx1431c8w6y2nzTsnFvvuhZdw8kBwYNJ iXCUEDzE7QF9EDygmPGuCF68hvQQoADBCxCNP4lXgODFawj2oP38aXWa9vx1kva8XHBNXO4I Xkax/UXp188uD29xnBA5Fr5/Xq7/7pAWBA+pZqwv7fpZi711YdB0X47zcmNvXft7gqdVLKV9 9KIeV8TzR8OUVVv7Jng51faUFb6McTbO2zuo+UTRzshA8C4B3qwSVsDOFe0IXmbovJ90RXe1 fZP2i4JE5+Vmrv+8OEa8A8XfFK1dP7t7Xu4KvIzn0ErlJHhSpbLYadMp4PNys9RxKITgZRRb VpQ7gbw9+3aVQI45L1d2gxArggeRkU60ChA8rWK0hyhA8CAy0olWAYKnVYz2EAUIHkRGOtEq QPC0itEeogDBg8hIJ1oFCJ5WMdpDFCB4EBnpRKsAwdMqRnuIAvcB7/1s/55viGh0Eq/A+/mv /ftP5uchMzupFdfVnqph7hPxCB7BO0QBgneI7HuFMuKdqjkkN2P5Bk/ys5PZ3Aq86pTb0WuI +H17V3pVCJ6m3Q+0/e6oVdVtvV5TceB9hRZ9H/C6zdLqvaV/oepl/N2nafrt3qyLeTLeB6qo V121zUfmrex0Sr/6yrIDvazuJ7K6whhP1xaFg6dbYHIi0la3cgHwzGo6xSC1ePD6IxAUFT4n fOWDpxnfmTYoH7xLdLelg6frZi8CXlcNs7i56KhXNngm2mlP97xAxBs6zyTHGWTrlwsGzwx1 AjILlwFvSEnIp/PZmLp0QeaIibCswoXAm/JhhC8P6+HQXWeMt1B6egUV9iTmabSSS8Hoe7GI V3KD3uve/wfnTRT1EJBAXwAAAABJRU5ErkJggg==</item> <item item-id="472">iVBORw0KGgoAAAANSUhEUgAAAmsAAABnCAYAAABfEQW2AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABzESURBVHhe7V3btSMrDnUCk8eN4WTR STiJmY+ZDBzN+epMHIynnjZQAiQkCijvXqvXTF9TFNraoI141O2FP0AACAABIAAEgAAQAALd InDrtmVoGBAAAkAACAABIAAEgMALYg0kAAJAAAgAASAABIBAxwhArHXsHDQNCAABIAAEgAAQ AAIQa9/Mgefj9XO7vW7k35/X4/nN4MB2IAAEgAAQAAJ9IACx1ocf2rdiEW7312/tlvzeJ3F4 wnscO34fj1d73fl8PR7V0a3tveL64YNi6LwHgaMNjqPVAr/PHpvG0J/b6+esLMKpsSpvG8Ta aL22Vnuri7WVjLf7uYLl+fh5nfzKuIemzn/aQFOLJwX1wgcFoBGPAEcbHEerBX73PTbjUXfC 3yZWLXI0YRvE2mg9t1Z7q4q1mfwNllUnm+5nzcLmjvbM5++ej/t3LS/DBzY9FjiKceT0R3Gl Zz8Av0cQ/33dq6zQNIpVfv6ctA1i7ezO1+v7Koq13/utSXarpjDybQpT2PNAEhGn6sF3m/Vt +wzPzdQl7Irw+po+0HZi4KhFMHy+uD9aN8S4vmv2Hzn/SVjnmPVju8WlVaw62EfYBrFm3LnU 1Zmuk+fXwd/trSXWZnuarEPOttfZG7ekqj2bCJyjA8k0UBUPMGF6fh70TtzDISb3FX0gBsHg AeCYAlHXHw3cU62Kq/rdSKxty4ZmE9ZmsYom0Mxr1zaItWodTVpxvXVy1hp/FbHGGGzcE6kH EeNnkW7B76td+2nWIJOVEkvuM7/SgxVh+j1ooyPi5lnacSBRpNkXrAI75wGmWPzFBwkaV3eQ 3f7/gt8X+UDQreP8BI4fGNcJx8q3idun90eBQ2NFMYYJQbQTa6/pSJzNcmg6Vi19+T3O1ovV PpC+bRBrQprVKa4I4OwGZUhdQ6zNdSazautAvRYJs1PHDjGLn3eHCTOQ1L8P76aWK+cgwc/A HWfxVNs3p0SEVHGqnarP2m9JXEOR4WPn+WeGgJypDu4Dbn8Djgyk+uAC2dDJf7wFAYxhDEcH RSzF2ropn+erREslsarC8mt8HvCxDWJNzjTzJ2TBW7FnKUUy66C/pajTWi1xjQfZHmdgzCwX k6KKeCaadSTfH1tWjv13elCiM255Wvmzu608lW3LVxUvkcT1KNY8/wbPXtEHbGiBYx4qTn9c yuyZt3BSZdMfVWIt5WeMYREOBONicN+nWHhlhVaeiizBt00+vXgd+jjF1ySXI210bINYy/ux bgnROrl+z1K4Dv42zlys5ZdASfGxN4jMSrmDsy9aww5O2RkXO0EQeHeqMDi4s2iXFumgwWkb h2SniLUtw7kHSL/tcrEWLgOP7gOOn9YyKX4CxwUhb2nJnXxs/S4Yk47i36Y/asQaxjB+j/iU JLYB7Afpiyaf+ViTbiX3eWL50+Voiq9ZLkdza++91xBrJVwze4ZLkkQWRbxnyWqNPwdCfiO9 bqBzuv68PLrvedk6PZXVyQaHqcplKS+6dyaWvpfN8KOCOQspsT/NXGSncJWLjPBwyfA+yPmI +H3l1MarhZ9fguOWMYllSjhc8OA8cN2mP37mh7GvucTvh8QYRhA+43eP/0SyQrbStL7/9665 Giofq7a3bPsr90m8u9+S2EqTGpsF4/ZuG8RaweBr9og0fWu0Z4mV8tUaybFNs4RwaJ8vmLhL cMu+KmrPWm4Jw48ikZu11zaFwap0GXRKRRy/MiEW61LHurjqRQaJ90g+kML3Lg8cD9BRfk+M CT1m1qLjx2ysaAxZHvDGkUuOYau0il9tlPwt3vlUMY0TqxZ3rqczvcl2QnTR+5tXG1K/hVbu tkGsFQ+++gelBDNbBmOSU2Uh6x3+MoZPYOEBgzB9ntjc/sn27DMj7qxIlkGLDUolM8etiwdf gVjbb3Z0fZ2i+uLVw1Um1lIHDMb1AbNXAEcGUPS2jsPk6b2nKcye2PRHsqFFBwzCIIwxjCaB NCOap5I0lvpz7dxBuFB4O+2nxFqUr3s9bpadbxvEWh6rSiWES6C7Gg+vaWiyxs+AZGoX6+sB 3uZSegPxe4NxYPtneWldvvCvPotdmBjsJbpLMmvxGdEiNOelLrcR0X13mpS94oAJw22rXvOX gz4mCcXa7FvyWpHRfcADEjhycGJyYanqGORjGQp+f4y0kS3W3ABMnSz37Quv2fnOMYwSa7qJ p1as5WLV4qfgWqbl38nlTJsMIjJrnHGkahnuOrnTCKNl0DUgawQDAxiuWGNUVVaEKYZFS3B0 wIi1L3rP2t321u0yfM54Cj6wQfmLcMyc8j5mpfnXQBRvP7BxYkEtX+L37B63PHS1xVq0BZm9 Z6lVFO4KC8Ra3v91S7CWCYMmGO5ZUpGbg0xzsTZPehjf4RSLNeZ+g1hWqQNcOO6zKgMf2CD5 NTi6/fEwOaWFGWv/TzTLa+OfWrVc3u8GQm3GXhXPNGOyG5NTfGVymeIRxFqt3sWtt0Ss7dcB vNOx5aljFbk5Nmo6AKd+Vpnf1yP3IfcCsbZvBI7fBxSf7bMGX5ZtoxSCD2w89SU4Bv3xvZwZ nPb2MaUP8nzK8LNvNr6yrOXafvf9+9l+Ib1rTRXPVLFqX+Zet/Ck+Mrj8pE7EGuW/amkrmKC 2OxZUpGbY+/fP69//vzllKxa5vl4LJ2ojz+MgbePhpq2Aj6wgRM42uA4Wi3we95jf//86/XP //LlyBKdxKpY63fbcMCg0L/qx4rFmvrNSwXVxVpj+7xZtfG3M8s8wNx/UlZ5508V7M+sYtHo PgCOVWjRfaXwe85FqnjWTayirURmLef92r83JoiK3BxsGtvHaSLKAAEgAASAwPgIqOJZ57EK Yq01PxsTREVuDnaN7eM0EWWAABAAAkBgfARU8azzWAWx1pqfjdfJVWv8HOw67wAcE1AGCAAB IAAE+kcAYq1/H43bwsZiRkVuDuqN7eM0EWWAABAAAkBgfARU8azzWIXMWmt+NiaIitwc7Brb x2kiygABIAAEgMD4CKjiWeexCmKtNT8bE0RFbg52je3jNBFlgAAQAAJAYHwEVPGs81gFsdaa n40JoiI3B7vG9nGaiDJAAAgAASAwPgKqeNZ5rIJYa83PxgRRkZuDXWP7OE1EGSAABIAAEBgf AVU86zxWQay15mdjgqjIzcGusX2cJqIMEAACQAAIjI+AKp51Hqsg1lrzszFBVOTmYNfYvrmJ v9Onpp6ctlYtM92a/+jng1dVTS2oHD4qAC3xCPC0xbPX2uBn3zOqeNZBrErxDGKtdS9sTBAV uTnYXd0+DgZ7menj1D+5D8pL6rtI2eoclOB0AR8BT4nDxy0LPx99p8KkcazKMRFiLYdQ7d8b E0RFbg42Le07+d3PZz5/93zcX9BrDnHgI04v4pcBnnystpKcfiuutPYD8DOJsCqenYyplCIQ a1LErMs3JoiK3BwszOybPmJ8+xEJnZrC6Pd+e93fq5rzh8FvTtYs0VYzPNZ33m7r31Ezdtf2 EaeD2JYBnmk8i/utrZuC2jC2rYDIcQjdoopnZmNzHbJArNXBlV9rMUFsgrWK3Bwri+3jVJ4q M+Nzn7q//Z8Zs9tHqU0vCMXa/J8er58faq/cNCCR/13Szs337zbMg9yIgu3KPpL406os8EyO CKp+a+Uji3qu6meItRx/5yH/ZkEh1FGAQJGYsQvWvYm1RQht2aKbl0lzO/L2/38nQUSWzYgl 95mlDomom9/tlvdFsyvi5ln8MeM1l5dlCA+smoVgmGWc9lrd1CIwwt/lfVsW7/COwP7g97g/ L+6j9KgLPMVD5TohWceGqf+c3m/FDSa6Lca2NIr9i7V5TPcn6vO8PJy867lC1YDMWh1c+bWW iDXDYN2VWJsFhyuEvH+HYm0etD+iaelErlCYn/WyX7NLqOVKv56c4+iOSWTW5ooiAspfism9 kfidqnfhhER0ct+7BskVytDOcNIwm+z4IenPDZ+r+igKL/DkMu9Tro9+S7Z74viBwlRBjG0M t/cv1pYxnZisszjAQCA9x/tZuIbMmhLI4sdLxJphsO5arHmgHsWa10GCTkSKqkNH22ZFlMgh xU9ElFHLoEvb6cGHzrjxGbTYFma4KAHPrzJeksDsXZjEyBEjqWdn6UfNSC/io7hWCwd7pyTw pGHjcGIps2fewkmLTb81FWsY26hZqL8v2c3ovyeM6UFNFc9YsdidbC2D2GeSHPbfFCeTfKVt RGbNIqBp6mARxH+BZbBWkZtjt8g+f0nNn63IxVq4BBnHLRjc3x0pHPSDjvpRLcEBg/2H1Z5w 1jW3Q3MgwNL/OReS79ofIjOHbmBM+XMVa1f1UQxX4Jlj3PH3bL8NguRxEmDTb1VibZvQ7YIS YxuFJrHVZT9gz5yMquIZM1a5S6Ee1xLCLVouNmkl4IFYk48dtk8wCeK+1DJYq8jNQaLAvrna pUPs+1OWDisXa+TeAjIjFSynRvfExNL0spm7VqyRy6uFy6AfnD8nS98Ziimi6MTFhyBHf9KZ tWxgfnMjtm+prY+AJ90XkpzfMiixpSQOJ7yh6NAXbDjxmaMQfWXP6jHWw752bMv42RvjiW0s nO0jqnjGjVVvfrmTcXdPJbEdJTU+M8duiDWO4KhZhksQtw1XXQY94OwO/HqxdtxvsET+YA/C 1ojckpQfHUSZNe0yqJd6T2a5DIirWQZN+pO/DDqkj2LQA085KSnMEjj2mVkLzcbYdiRCas8a bz/bKWJty5Lepy/jePuEE6KL3uu8IpD6LUzSYM+afPiwe6JErFGkKDwNqCI3BwWJfeEA7KW+ ZWJtCfCRzeuf/77PhrgzIVkGLbVnjTEBT6Brdxo470J/CckfWIQHDMKljEv7KKrWnAMb4UAN PGnUaL77G72XqLedsg1PW9v0W7JtpQcMMLYRcEozoMcqVPFMEKuWcXDOproDORWXo5xM8TXS C6Z3QqzlI1a9EgKCfBphF6xV5OagIrQvXEb69AWhWJs7CXmVRbCP6i7JrMVnQWTnje7pUl7d sc7HzrsU9z3gUCdn01d3xP25DVaX9lGkgwBPzsgRlGH22+WpY9CPZS/4/TbSZK5Ym1v13tqx LqNibAsxpcTaOlnk7vFVxTNJrKKWdJPLmXZZQ5wGLRg+TB6REMR7oU2wVpGbA0CxfZzKU2Vm fBhXWYiWQelAEM2hxO5Zu/fwYXktvhbPw0cWKPqTuC/hfOak8XF/E28ZbenhZL+19ZSuti/p N9k9bkcUVfFMEquiWbR4/0vtuZPsx4NY0/We8qclBCl/S/RJFbk57WloH+vTO2KxxtxjEMvs NcSD466zy8BHtoh/DZ5uvz1ksGlhxtobFM3I2/pJW9vl/Vwg1GZMVfFMMDaTB2ZcAZfiJJOv IUeaHDAY8sO52t4Ve15AkBpNUJGb06Cm9v2+HrmvpheItX0JMr7vLD6LZw2yHFwvUwY+snXl l+AZ9Nv3cqZ3gvwQ7sirdD6l+Nk3W5+V1HZtP/v+/Jy+ze31VcUzTqzatzAkt2+s2bUUJ3l8 9XlBiDX3CKp/RDkHFEW5Pj+cW9I5Kj3DIUilV6tnIpx2NbfvUeX7oBzTj2UYA2xZxUM/9ZxO VdX4hmsZKOP7CHiWeX60p+Dno8eqi7WGJImKtYMwW2Yyso3Rx7QzcSpnkLRzNR81FzPrCZNq fxrbt2w2rvXNTBFozH0mojqvUhg+svUk8LTFs9fa4OdD7nQ7MVnkseaxKt1qvliLflIn9oI5 Q6f54HUR3OUPLenNSYw+nM+WzCrG/SxEDVXTmCCqmQgH7cb2cZqIMkAACAABIDA+Aqp41nms Eos1rl6hN3PKPnj9oY7s+G4R5fa16N3AXaTt/97F3P75i6KXEA81JoiK3BwMGtvHaSLKAAEg AASAwPgIqOJZ57GKL9bCZdDkh0grXkJYi0+H0yfh9+SCfxd8iJVsemOCqMjN8UVj+zhNRBkg AASAABAYHwFVPOs8VgkOGDj71YI7Ro5ZtHofzs19e6+YbofMWXgyyLEpa7+gFY0JoiI3x8zG 9nGaiDJAAAgAASAwPgKqeNZ5rOJn1lJ+DMRL7DM7+5UHx9uIY5k4O/JkRZ5ErIXNOtjvFDhk 7IKHGxNERe7ZlM7ts2MQagICQAAIAIGeEUjGs8FjlYlY+7rM2kFvTd8J427mI4TePXcXWMXe oRZrubY1FqO55uF3IAAEgAAQuAYCqnjWeazSibV9U/7hSo9R96y5V5MklkF3XkftFxC/MUFU 5OaY2dg+ThNRBggAASAABMZHQBXPOo9VOrH29m3tD+eedRpUKNYS9rNp35ggKnJzjGxsH6eJ KAMEgAAQAALjI6CKZ53HKkKslTns2h/OzWPC+RArWUtjgqjInYdl2dPWcpmX00SUAQJAAAgA gfERUMWzzmPVQazd/ut/0538t/Mh0vX3T2bNLU/ftRYQYl5K7OKGeQFRCz/ECrEmwBhFgQAQ AAJAAAgIEPgasTYLLVdspf69CLGt/P4ZKqr84+eW+JzRSB/O9Rmz2L98NHj+K/sMl1dTYzWv IjenEzW2j9NElAECQAAIAIHxEVDFs85jlZdZ24Wa9f+OT4GKFjQmiIrcHFga28dpIsoAASBw fQSeT+vPz1wfs9EsVMWzzmPVW6xxM2qz8yQZuNGcfXp7zQiyHsJ4Z/qWb5y632alLVORmwOW mX2cl0nKrCeW9+zo8e4/SV0ty652lN4c07Lln3dfxRd9oIlWzJ90dvtEeDtBzRWdmnXDszkE VPGs21i1Wk2KtV2QucCw9rI5D4TlcyB/7e8mBAlOy76vFIFYi0jUVai9Fc4Jp42rEPwjcsYV a5sNw/uiioNRaQECx73SxFVS1fZKQ6wVuMzska8Qa2ZooSIZAhZi7XDgYVXhyKxFXLGI2WCf IYGhzJHnln7vmfy5v+4jZ9Yu4ItzPX/1twUrBL9zX81POj+ozM+75f2srXt5+Zx9s8+oQ6y1 ZGhtsebvVd9WZk6aKZtd3dHSQUO/20Cskadulw/N5wc5Fbk5wBvYx3mNqAwlzBbRkMdL9J6K hZ+Px3QGe0mOj70MegFfVHTzl1VNLVfOAZHfL+kbCCKXtEsmaFNZXkyGWGtJWlU8k8YqaqJZ 0XiItYrgsqpmECT3XVOINRbS70ILXuF1MSd3PFmLU6XHFmvX8oWdV7+yJmKCeVgheG/xWLMa voCq+OWcYrHmZApHu6JqQBKeJ9YCroWT/YXL+57oYLKR+i2BOcRaa0IyxFq2iVgGzULkFriW QIBYEzkfhbtFIN4v92AXZK0OE6xVGB0zYGkRx8qYFYk1v2/SWb9u3TFkw84SaweuumItEG6e 31O/ZRCHWGtNSQuxti2FffZf7LO5/PKBitwc7Ezs47xIUOZSS29ji7Xp2F4ky5nnrsDjKDoA AlmxNnMlUFb+qc/YEqQ047aClVvRoCF12xDsnxtsq8UAlDk0URXPuLFqy+5+qOjusyTGrZTf BZyAWGvNSC5Bsu0kru5gpN1V5M62aSpgZh/nZcwyVAeR7F9hvuacYoOLtUv54hyPX/Yt1D7b 5N7bUJx1llk7nDjFfrba3FXFM1asCk+vbxYlRFcqoyrJtkKs1WZPrn4WQXKVEL8zxYeK3Jxm 1bKP8+5omStdFzG4WNuywuNfo6IiJB5eEKD7JX3AgMqWSTNoAvFUsgxq+VlCMISFgCqeMWLV YQ/l3ipKrL33VxJfOEr9FrEUYo1FgYqFGATJvn2ZfbqEiA1ax5pU5M42rNPMmhsYtk2g9kf4 OeBYlBldrDlBenhfWPjz2+vwr9q436lT7fF7EWOZijXIuncrTjgzJ7SLR0rEGjJrp5NZFc+y sTi4BuZ9gGC6AuY//07cJpCaFPAnDBBrp9MpeGGWILwGvgcjYcBTkZvTNCP7OK9CGSAABC6G QLgMetgvFNrLD3517llz24M9a2ezURXPNLEqs/fM31vpo5L6zS0JsXY2m8L3aQhi0HYVuTnv b2wfp4koAwSAQKcIuGItK9RWG1j7gA5Zrxr2+yscrHbVaMYX1amKZ5pY5Yq11PK3YmkcYq01 kTUEMWi7ityc9ze2j9NElAECQKBTBByxFq4e7PdYxa7qiF/Jwc++6VHBPWt6DPk1qOKZKlbt S6TraVCfq/6etdRvKUsh1vg8qFNSRRB9k1Tk5ry+sX2cJqIMEAACQAAIjI+AKp51Hqsg1lrz szFBVOTmYNfYPk4TUQYIAAEgAATGR0AVzzqPVRBrrfnZmCAqcnOwa2wfp4koAwSAABAAAuMj oIpnnccqiLXW/GxMEBW5Odg1to/TRJQBAkAACACB8RFQxbPOYxXEWmt+NiaIitwc7Brbx2ki ygABIAAEgMD4CKjiWeexCmKtNT///nn98+dvs1b8/fOv1z//q/j6zjtARctRNRAAAkAACJyI AMTaiWB/3asaixkVuTnOamwfp4koAwSAABAAAuMjoIpnnccqZNZa87MxQVTk5mDX2D5OE1EG CAABIAAExkdAFc86j1UQa6352ZggKnJzsGtsH6eJKAMEgAAQAALjI6CKZ53HKoi11vwsJoj/ UdnSD5GryM3Brtg+TuUoAwSAABAAAkBgRUAVzzqPVRBrrVk+f1Ms/l2USOs2ofZ+bv2kSYlg U5Gbg13jAxScJqIMEAACQAAIjI+A6sBc57Fqt+02vpsGtaBErM3P3Pzvjb0OH4jl4VFdrHU+ W+GhhFJAAAgAASDQOwKqeNZ5rEJmrTn7pqzYz+P1lLSDEmaLgFs/Iiv583sPRJ/kYU7ZzjsA xwSUAQJAAAgAgf4RgFjr30cDt3Be0pSJrJmQt1DgUdm2LCryd2erDAtArIkhwwNAAAgAASAg RwBiTY4ZnhAgICWYmVgrWYIV2LUU7Vas2RzQkMJhV3709rtIXMkWOw+jptoIrLwTbxmu3SzU X4yANJZ6LzKPVbb8wjJoMS0MH5SKJqNlUBWxueZLbePWqypnd0BD1Yzih0dvPyHUDA7LFMOJ B78Qgc8EAWLtOu5XxTTTWGXPL4i1LngqXI6k9qeJDxgI31mKk2kHKG1E8JzhAQ2jFsmqGb39 nlazOywjAxGlvxWBZWViOj1/m7af3JFZuxQNehBrtfgFsdYLVWexxZ7i6TMrs+NLrvqQw1Vw gEL+EtkTRplJ2UsNS4/efheKK9li6GJUVQ+B5+OxHcSyXaaq12LUzEVAd2DOJlbV4tduG67u 4LKhYrnfu2T/hGKfz5yZkZ5ALbb7pAyeoH1me/4E77QsOnr7/cSa1WEZS4RR13cgALF2LT9r Y432+RBNS3592gax1gVrZ4dUvkpjmlPeC6740MCjSk1rXhx5dnSxM3r7IdYqkBpVFiBgGUwL Xo9HbBEw2HJjG6sM+eXYBrFmSxtFbTUF2/lCbQHCoBMpAD0+OvrS2+jtdz1yJVtMSYrK6iNg GEzrNxZvyCBgIrRMY5Udv1zbINa66gr7Eqfs/rW4Cdb1ScGyTi9L3x+UNzmgoWyD5vHR2++n 1o6XOYsPy2jAxLPfi4BdMP1eDHux3CrGWNWzZCmMrobx2wSx1gvnrtoO0QGK2iDoD2jUbmG6 /tHb76m1ZUD7HK4p/85tW5/g7eMhYBVMx7P8ai02PTBnFqts+BXaBrF2NfZ2aI/sAEVtAxQH NGo3jVX/6O0nBNt8ncL095xTyiyQUejSCNgE00tDNIJxFQ7M2cQqA34RtkGsjUDK4dtYcz/e 8ODAACAABIAAEBAhUGsfdg+xirYNYk1EEBQuR6CHTlDeejwJBIAAEAACPSBQS6jttrWMVXHb INZ64N7XtKH1gYevARqGAgEgAAQuhsCZ8ePMd81uyr8PYu1idIY5QAAIAAEgAASAwLUQ+D+M 70h3p1QgnwAAAABJRU5ErkJggg==</item> <item item-id="473">iVBORw0KGgoAAAANSUhEUgAAAQkAAAAVCAYAAABVCxswAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAATASURBVHhe7VwLlqQgDORcHshzzBE8 jZfxMA4f0SQESPy0ts2+t2/XaQRSSYoK0GPm9qch0BBoCBQQMA2dhkBDII/AOAzz9FMATfMw jMjiRhI/FQDNWA0C09DNPc4Xzevf23bs527YqPGjJDFNv8XJ3xslbebzNMw9SJSrEXlabkxD P0fzAUmMc2/MbJi/e9h07A1gYSthOgPYyY3VrZO42gGt/4aAFgGYJNp3a+3vyw1F3gGSTEgi IQQrPYwyoZ1MM6gjShIWRjuJrvu1eq8WPu3zZyDg4rWfr6g07s0NBUlY6/slP+skYbdtsAqo udFNBAIc3l8VCiAPx6iw9qn1vP9zqJKsgrFSyqA5Knp25OZI0/ex2OVs8mQKnhVdSpo6rDDx Op6lZCzp6eo23491fgEjto0uFjRkcnduaEjC5W1Q+2KSkJYcfOBmiMYlVlFNBKccIxLSh09y l8wa54LEiu9HQCI5xOdIImdvv/hxUvKV+uUQNdixZeO8COvEYK5k1sXRubkBPKryj7zMj2VR nSRouQFXzCTRcqoj93MNs+0Mc4aIvLMOksQWQyExss9FvDQ2kXE8GS2kAf/vuiyNuWc+0iB8 CdZsMickvSg5GEfrAhQUJeaZC3ND6h9XQqCtA6CMmMU6Kn3BxiVgHhKMKZg0YWISlAGSrFJe bmc2VqkMh6kndbg4XROlwAPvbariJR7VN4QlB7KrQBjZdn56wnJFGIRvwdrZQdWrt40mEvIv iQM2TihxOK8ezw23KEhyyEYQIIkw7iaA01iIONSVRCmO6QqWMJWMJI6VE+VEUwfushpkQdeQ BJ1agldaxhSdvb4PHQzrZKaEqo7Jl117SPktWHN2VEnCKQ3iPHyKkVPNWoURYmaPfzBJkP0R Jk5OIYlvUBJeepMV4Hi5Aeu6gpIgJCFeubO8t5CDvQWINswKRFAaUzwf6Ur1EqzFZMeUIJvr pHFxk5JIThdTEsuWGyLZstZedBNEy4of2JNI5FxceY9sXCpJIouXrtzw4tTvp5CTDo4kSmNq 5yMlibdgzaiCWBZsaqEUR1weXJgbYv+AfEsInScJxwfHyg2mvMitTmxwf+R0w4szcFFsOb7c e0fjSLmRLccUZMGVQ6WSojimkKTFQfgSrLN3ePBxft9zR+n5E7lzcwPEjNg/wN9VJcEegSoC Fc2PbsYIA2+pq67cj8haVCWnfVhI3sJ1quSNpGZJz+aLJBHq15xCPDyfmglfibXwMhUtN2r7 WYpF4vo7RLU9CYtBHy47rkrC/OGvcbDPwOHh840QYHtRrZtl61rUKT+nR7jqy2HK8WBzgaTT 9s7tvKNTlNKYF8wHzf9FWIuuZUOSqBJEQOo5uYHLn2Re1p743RXPDC7BYZKXnn1nS/t4XZtr D49X0kSQqw1tEnHt11JnOUL9pHrBY8svsiR2xH0EtkyKMjjss5TGPG0+Gce8Amtv22hv1VZu xAGSoHbH4/pUweGjx3tzI39PIvmCVySIs/89I8FbHw2BuxCY7CnSFd/fuMse+biYII1UQWgV h3xCrWVD4KkI2JV27wb3U02qzivdj0EkEYkA9iPaqwAv0PbVObUGDYGGwKMR+OgvnXk0Em1y DYGGAIvAPxvuKgo8utjiAAAAAElFTkSuQmCC</item> <item item-id="474">iVBORw0KGgoAAAANSUhEUgAAANcAAAAVCAYAAADVXXsKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAR9SURBVHhe7VuJldwgDKWuKYg6tgRX 42ZcjJfD2JIQQhgfyQ55Ly+ZHQ6hr68L1qzjz9DA0MAtGjC3rDoWvVUD8zSty607jMXbNbCs 0zSjaYNc7Vp8dcYyfVaLMXxVnrE50MBs1890uL1HybUsw992GeMyrRaA17WWYvLAS6EkMmSZ 7JogAuSaV2vMapi/ZzzlbA3wsC5kfgxgtd/rswvRfoTvnAGBu1oD7+H1x2wBOMCMXBmRXKgz jUTwqYtBC1FyOdNwQnw+o3bQk8Tr0K53ZITv4vXHyOUQsptd18nlSmccdWrm4JUFjSDO3yMi IJ33ljBHra18/nsYlV3EdKHbIBkbVvZOwTubsMZ2Ln+m4ITA54YlVUOLzoicbfbytZDwbbye I5e3N+z0vY+ngUCFhjDI23vMytTk0qaGvLAFgnqDFKNXNJw+ApI1Ajk8CVoMEOgyzU8KSaRK nxP5ri4v/T4ZCFy63Xa2a/HCxb3OZi4gl9ONaq+AVe74VXMbOJdS7Dq5aFoIPXRmoKUoV/r5 BYqtHZohcDCoTnIdgETyFj+L+qoJf3zPkiAzls0Tw7PtziRGVWxIN+KlNXifRqGyA0RibdnQ tBfQQdDNRjb4f692CbcKpikjUzQ0QOOBCJADTg0tGYcMosZzhJBeaLjkHr3dKNVmnkUm3jjC mar6Uu8a0hcawYP+qQGiPYlsrOyUcF6mfry8cWpwdVYMyBX3PZIAZcqm3stz5kgNkf0KRCuO CxDnMias6pFLwp+yPfNCOnL1pX2ygWo9/r7K5umLhtFCLipapq883SztWwJRJBeTSuKuYClz aI1o8RznHCCUgdR/gr7O7QUdHiQyrFuZcqGKG55zCbn+h8gVwjvx7v1pIbxGECIXIVdP8ax2 EkyqeIihlfWlyJU1bZRlQ0PkSlHZulcuqPEjEEjCjfuumBaqQvmex9O7qlaPp1SePntiRvYX /WjRM5GrqK+GgwkNjSMtTh6Ya9Zw2NyIl9rggQ1kjlBpH+q9or6jcyWdQ45cEm7Cd/qGhoh/ fvgSy9kDPdItDAkLuCDf2ujaYplN7c5FLlxfNBArWkThXhBfdVjLXTOUu67X4gXOpDZ4YEOP RK6UGpJaU0r9iuVOsi1oD2wrvhHsbTjO4bnNyus+d89FZKiS+pwuNLNyfWlmBXbpLpFpWlir IUXDwbLdj5e+5tJqjR1XjFLl6xkJt+x1i42PI/aGhvnBzwzZz8Ao4/eH14HjVbVF0RN3qS2f nL0wab0U75DnbJpT2FL1/AmSq0qsuNG/gxfGRiXXCXi4zivq7Eq41TB1Ok/vPwOjPDEgOaTP 4cDb+PQsihsPW6qMxT/6tnBPSbdW/p3dSXpWvHfve8rZvQyp3E4DctFzp6uMvK7GLfB38Tpx z6UlWKqT2JIgpdcxekm4yd+Rh7uJWFf/qz3zGKfXwOK6XHe8L9RLMEaWNYCdn9FGrNYINyC4 SwPOs59txtwl0ljXx7qsJkbkSgSCulLVYmACHT/0PjTwrRp49Jclv1XJ49zfqYFfOerUFMxw VokAAAAASUVORK5CYII=</item> <item item-id="475" content-encoding="gzip">H4sIAAAAAAAA/+xXTUwTQRR+u/1hCy39oZZaULECFRWQpSgSYqqVg4lSUwxXA+1Ga0oL7RLk 1ujFA3ox0ZMJJsaLJ29ejEiMiTERDAcPesCLCScvxoOJrW/mLcu2EgU1Jgbe5u3uvN+Zb2dn 3tgBQEAeQq7m7yLezWpOURqAkYwsjSVio5eVhMolEEfuR6eISbZ+BSiY5Yfz2LLIPnwUrPLM M3xUyY4It5a0tk32vEYrqVoWnQBJG2YxnYMO6AaokW+Oo4kN7Fx3vwZAFHgyB8WUaimFwykD GkRqUeWi5LVumffFBeDhfbdFh4cGJk6rypjA89uRrUaBA7mOm0rKRFy5mMpmLFwRZt7JbIJk Zi47pmNizV8aP5m9QhCcQa5CQVwH5SzyHCZYmgLwov0SWi5ie3mK9CEPAS2C6OUvHj3TCVXN pUYnVYX614fsBCPt6AuWtX2r2NYTtj4/YVu/k7D1G7ANELZ+aCBsAzq2jfLt56ip30WYNqJo N38tNJZl28OHb0dYo9mx0SwDkhQuBgKK1ySs2/04jeZxJCs4cNbL98ilErNG01haiaZTSkbl PgL7ZgSLdkffxQX38r1HgQ9QQcfBBMWSDawGmaB7U3dErV0ssYxEpW36r+gbctHA27S1KA5Z vFRoggHI4DMH05VLwU/JBxb9n2drwVXoEYLud+5bBXAMv7AEjLZz1z62SIOvBBPQ4s0oitlZ XoXf85vKzQh3IcE4no36XRd+bbNR+p38f5P+JD9tkgDsm7A9mO3NbM3fXgu2BlmwQLuLH/yJ j+ZDddnMKGtgnchLDC+JvBonIcVnj1PzNmkuKYM7qwofI38urTtDeaoTuPakYATSFcrIpzqP sf3UBOvSl03E7sWYkuvH2JxEs589+u68Lc7mRf579DPB+ZmXXYlF94MbMNu8YHmzWg1JUIGV MbHeYP8Yr2uBUMPNtoz/BakwCQ4hAysGGQeziQpRF+ujQOXykJJLjaQvnErlx9Mj04PZpEL2 MT6aveTgIFlQO2vso3o4aKiHm6keDkIL1cPNej3cqp01QnTWaN1PdXEIVW101ggdoLNGG1vl D1LGNt7FSAyEQyRo5T1o14J0UJB2FHVSkPbDFKSTBekin049iGwI0r3mG9Z8e8g3zHyPkGlY 9z1qUPYalKz9HQAA//8DAIeeCbvoDQAA</item> <item item-id="476">iVBORw0KGgoAAAANSUhEUgAAAFQAAAEACAYAAAAtA1GUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAy5SURBVHhe7Z0LluM4CEWzrlpQ1pPV 1GZqMelY/ukDD+QmMXKYc+bMdCvG9hVCNk/It2f8Y0rgZmotjD0DqLETfBTo39+f8eX7M5cB /X3eb7fnjfj3/tt/4b/323M/7u/5+Lk9fx4r0OlcP8/tj/3m3R7RAG3g/d5fkPtu/u/x87wV hmqgLx5/j+fPz+N5NZ+Vgb5uufQuyTkm77s/d6eej988PwM9efHutZLdMdrVQLXDvvXOCQTT KZP3X8xLZaD1kE9/Xj0u90QAjvXy68VSxaSUxc8p7mXDufXGeWJrvZkLG/PfS94/hQZqskx/ Jx384Ugheyi6oArw8xU56dkbA71SHP0voOGhrbcdA5o8cxqG9eNUryd+QQztC0ktEHqWnx47 X8+mdcy79ix/LHqXb0STDb3XXfw5VAG08SgaHuelxRmu/6akAJreGJehS8bQ1Yb0OKT3Yt1V +fnVR7NNfm77fVcSQI3ZBtAAakzA2Fx46LuAsskHJot/td9bcd08dAL0rf9Y3nsAfXlRADUe SgH08kC3dN6U0qtlEc3rqPCqiuwzbeUr8p7xp7Jpzjy0fC9PN0IIb+sNUjeE2ubs1S6TlPZR W+XGIFXoC2iTNapl5JRReWnw9+ed0o9QW9L9av0+60DUVvDEyRhfQKv8Z+uh03CeMvvUsEZt CxEDoFI60RnQNam8xKlquE83M4twLVDUtjsYMaw36QW1rRbkVKEvoGlSyLSlpNsvE1PhXRVQ 1FbP4tnE8/P4XTw+8+Dlba5pS30tL6bwBRRk8bmZdvJY1IafiogYvR3QtmlkFl9AkYcWZNCj EWojniK2RwXUlma00puZnvIFdB1WWxKFW6nXAbReQJEv/6kfyVCbUjD0B9T4zeXT5gKoMfEA GkCNCRibCw8dBejVZI2e+7Hqo8jYv0jGkLdyp8VOAA2gxgSMzfnz0IMSSJsgoeUT7neizKG6 Lncx9LgE0i7WpV1P+7syVae7rumMvjz0sASiywRpM0bNymnNdfmclCRP4GSOtliXXt+v+x1d kbJnvjjx0J+Hpl7OblorgdR5VC53qfodJ3Pw15UHF39D/ogEQoRLbaxsfkfJHOrEt7cYelAC oaafo0BJmUNZYOFvyKs9ocrYNzc8tROPTeLvmMlNfV3ePPQ/JBC2ooQq0mUlFiATF5XT/CYK vmKo8VvLGeYCqDH1ABpAjQkYmwsPDaDGBIzNvc1DezSYq/3Wqo9CU3KXvrPq2hPtvG3In3hP p546gBrj9wdUpd2UyRFRD8qhod3MinNXm2qhtsy+M6BSxn6+clw6M+WomaXbcDezKjFSZJhQ W+nivoBqtBupdEa5MHbpmX27uKkTKt1ky6mitipk+AL6X2U1mfcqN4zCJTKo4oNvcwY0JUT3 3XG1mtLmJXLZy+6Z1G5mqyG0zyneA9UX0KNlNSsHRdlLOUKpDpg7lN6UELXNln0B/U9NSVP2 Uj8lFdrTMpOTEQO1uZ3l1doNKk0ED5ZIbDOA6c9DUwjNd73tKath4qdSU0LPsj3Pub6GvPFb yxnmAqgx9QAaQI0JGJsLDw2gxgSMzb3NQ6+mE/Xcj1Ufhabk7tXTqmtPtPO2IX/iPZ166gBq jN8fUKAp4Vok3Rr4tBlWto9p+e0rbRu3hZy39J2QseeXeROiHZmDO6ob6bQuf9kmqCmhWqRq S6B645Y8AX1EN9JoXcs5nA155Amgxoi8Yc2377S60agemnqZiYWoxqijSmOfg3p1I12M9uWh 6oz9jGWLqd0e2qkbdVyXL6CdnrZPUsoYOvXCEamj47p8AUWeAGuMyuHL6u1HYG6dwGxyWD3H +gI6j+PsI3zlxIK/boNi7/zc+F+6kUrrcvccavzacoI5fx56AgTLUwZQS5qRvjOmGUADqD0B Y4tvi6E9GszVfmvVR6EpRQy18qXdztuGvP2ljmExgBr3kz+ghzWllUzP539QLVKtG8125wl0 mD1HcGZcs3WQ/PmfDEZTi8R9GijLva4JHOKzRFOTLw89rCkt3inVMKF6I5ikrvKtIEz4AgpV T2nfOsXnfxoQ2YhAQJe2x324IZ/GE12nhDSlJdfJfRqIdqhaU5rPu4qic+hYwkOdmG7ge31s 6tBu5lC2AChuUPp8+t5pTS1SNiEWn//p0Kx8DfkO7SYH2vX5H2W90TxS1pn+9f/FJDRKaeJh TSkf1MBDIUziCSNbFNEUiA0xy6+PJMzedFhTYp5Ds1UkYr2R+PmfdVIaZm2T8WvLCeZ8xdAT AFifMoAaEw2gAdSYgLG58NBRgF5NJ+q5H6s+Ck3JXfrOqmtPtBMx1Bh+AL080KOaEjiuSJ2k POf6Tj79N3svRzVMyyfYv0RTIpLDTDaI16VQDdO3aUrqBDCodYL7232bpqQGKulSeXBo9aYv 0pSAHlQG0FedZ66pcx5b6U1fpylN0Dg9SJjF25hK1DCpR4A3Xf6gptQy08c83d53X6cpYT1o A45qnQTx7vs0JU4PyjSlOTLkz6HVh/uK59P5WXXX6fIJLTQl4/ch3ly8ehqjDqAB1JiAsbnw 0ABqTMDY3Ns8tEeDudpvrfooNKXQlKx8abfztiFvf6ljWAygxv3kDyjUhvhaIbwvXkZNoz1V 7//paM1x/mJoR51SlTnS1DCtBRFFYUKtPW1JljwBotesfHkorFNCOU60L17lnWCt/NQpqfLj d9qlsVJDh1xjj+qUYK2QUivSZt7rIa89zt+Qn7wJ1Sll+cn8JoUapt1He7QnYcgz9Z7+hnx+ oSmeLTfW4SWpW9YapnoW12hPwqRU1DBV9n0BhZqSXteBQAsATFymgGqOczfkUZ1S7XW5x8J9 8XISSu2pAao8zh3Q2bXYve+K+JrPwukxkdaK5ufHLB7CWqQFPuWhmuNcAjV+c/m0OV8x9NN3 /4bzBVBjqAE0gBoTMDYXHjoK0KvpRD33Y9VHoSnFc6iVL+12IoYaMw2glwfKaDdd+4VU7/k0 M+KTQXB96GoFb2PkzEOxplRm0F5JlFWWoBbVkt9T2i3gPfKWJA1R6yQd5wso1JT4NFzjgVI+ M53n/tqLqdqdcTPE7MskHuetaEH44tc26KZUHfBA9lsgyYC8Rx59vHzcZN2Xh6YbZjQlyXsS q/Wbcvz+nhMsvEce7Z3ycfMF+gIqZOxn3lnsZGdoNGQfLx9dPZUY8pT9IhSNNCkp6pQm8a3Z BJAAS4l0mj3yKPua49ZLGMxDmQUNio5omVOeplkwMZKHrkOa2ftujq90fFRrShtZCgxvP3vg Snsxc3OiLw9lY+I4DQHUuK8CaAA1JmBsLjw0gBoTMDb3Ng/t0WCu9lurPgpNyd27vFXXnmjn bUP+xHs69dQB1Bi/P6CoHkjdxr9r76/y1brRlNFb86nVnng5dEENcAYUaUr6thkMn2TeF/V2 1iKRNUyli/sCijQl1Ab3rStv+GgtEntcFTJ8ARW/p1RtC8TswIjSfOyQ11aZjDXkU0KU/p5S IiHpTSkQpnylmNUnCxOY7ykNG0ORpqTRmxbgIsxtAqo2tDpaw5QB9zXkkZQhyRwLDGF9w37r knZffE8pIzbUkD/qob0wSQ9V1iINBTSFSVCnxLTBdU8cgKO1SMMBNX5z+bQ5XzH003f/hvMF UGOoATSAGhMwNhceOgrQq+lEPfdj1UehKb1IxpC3cqfFTgANoMYEjM3581C1bsSn3qab4rNO dE5VrINawY/1Li/pRlUCeMvYVwtlWU2JKPbiyFNr7a+vKS2SiFpTqvZpYr2tXcl8PU1Jq/ls UgmheiptwDqnsYY80o2U+9YhTUnK+qPOGDKGSrqRqPnM0FlNSeOhUh3UUB6q8qDVVah4KK0Y kWOoWAc1FFDooUDzUWtKpcTcxkpFndJQQHs0pWyRQ5+mJOn+YAkPJz+7lZGN31rOMOfvTekM CobnDKCGMCdTATSAGhMwNhceOgrQHg3mar+16qPQlGJSsvKl3U7EUGOmAfTyQJGmhNbYF2tH +W8Xb/xQkoNqK65rmD1HiCTylgQBelAFAO8s9kKKtCH2e0pZ0oTVrLy9KcEEsJzL1Hgf0obY NrVmNRJQTbZ9ISp6qJSGUxU00Gk+Z5MS0I002fwtzgk5zf8CiuugnAF93SmnG3V46KFKuny2 h/IyLirzB7R4jMnjZkcMTfOOoC8dnOWlOihnQFGtENCDNOGgft7sAarWrLxNSrWm1BTH8npQ 9953HUDV657iXd74NSmABlB7AsYWnU1Kxnd3grkAagw9gI4C9Go6kfZ+LPtn05QsjX6zrQBq 3PsBNIAaEzA2Fx4aQI0JGJsLDw2gxgSMzYWHBlBjAsbmwkMDqDEBY3PhoQHUmICxuX9+n63K Z8DznQAAAABJRU5ErkJggg==</item> <item item-id="477" content-encoding="gzip">H4sIAAAAAAAA/+zdC5gU5Z3v8QKC5nJ0E0k8ul4IKkoITuTiDRwUBVG5hKuCAiIKIiAENOIt gnFNNibu5uZ6xt09K8+eJ+dk4yabrEnWXYN4v2ZBEBhgkGHuw3ARnOkZzWXOW/3O1NRUV1VX d1e/b1XXt56PbU11ddX7Vg8/Xv5dVd3H+JRh9Du3vL9hGJ9NP5r/faav0TX3P/o+NmLBBeYz V/3FF413xJLmPu/1MZ81l5v/HyL+M5c0i//6GKeYi4yq+z5tOKeKzxvfGwAAUOrnJxtPn2na cGbXTOE2BBDWvp4+Iwwh7Sh7r8PYSMCjt+GMLMJ6KwPJ1pggQun1hmBHWNkvcHR2FOafylAa HKlf4JB+Z/45PfP3p5nZu/lUY9fwT+6eeMK+WZ/dde2nK8d9Iqu9Yw1/VeUKjc1ib3l2YTUm +46ytbYq27EN8QiHtaNQthPkbVL2Voa2oyBvd2R+OZUePVVHJqxeh/XLueVi4/lhZgJb2Vs/ 46TDy07eO/uTB756fFZHrzEAALkS8bvxfPOft1b2yuCtbD4IACgSGb9e2bt5774te/e9+371 1m7vutlirrZf2ry32uG/33cnn33H19tVTm9V7QOA6Huj25t7TG/t2ff6nr2v7Xr/1V17s2bv W7v2+Huz0t1rlbt9vGrzyk6nl3aY7PO97doEAFHy4o7dFs/Vtu/a2C1r9nYPUPdtfv99qetH S3rh7/dmF+SvCfm3wxtVTq/vcdgLAJHy6p73La/s2SvZf3x5t+lXr77e2dmZNXt31NYLO+u6 bJdqe+ywea+mzmGbzdaaWod3a+pM+2tN5o+1W/bXCZul6touvZf8fj8ARE2d8HZ1bY99dabu H9/s9u/BsrequVl4v/mAIOf3NB2QHPPC7sZeKr3taGxytb3e9F59o2VbhnfrACByttY1icct 6Uc5I2y2+e9a07OvvRkke2sOtFiqW6SD3cwfrWvi9h1o2dvNWljV3CLImT225buaWyRriczk nY0HxPyOJnO5TGNrhe2NzYKc2dZwQBDzcsYi17T/aF9uf9bxlOsSx0KvnQKAly31pncbTXL+ 16+9FSR7aw861bQc2n/woCSCyDG/7+AhMfO+LZnFvPUoYrnqwEFBzMsoFo+70sT87nQUW5ks H3c0HzQ1dc3Lx/eaWt5LL5Ezjh/ljONH/6dk3nq9CgDysK2pZWtjD5nAvwmWvfUHD3mxB7I9 h+WMbXjcK3vFjGANj0UOi/jdY8tkkcO70zPy0T5C7knjppauNE7P2FkLM2eseZ+nfLYMAEGI f5vL4HWQCfzr198Okr1Nhw83HTzU7XBDt8wcFnkl53vfnscQ42Tr0T5Z42GZw/bxsDUkzjV7 fbLUmnZky16CF0CBZPyaGk327P3Jfz4fKHuPHOkhclg4cqTxyJH6w12sTLMvqTt0WDJT1/ZY feiwNTaW1QnxKEfC9jSuso17xaOw68AhOSSW+5Jts2YcP8oZx7OuT9nX8XkKAILbYbPdRqbx zza+WHj22iPXIiO3a9B76LCVvdW25SJyJfswWGavLERYqWutIOJXZq8jge0cyeyYz3wqM3sd LwSAXPln7y9efLV42WtxZK817rWy1xr32ke/sv6w2yYdvId2dX8wF6T7PvlJtAIoHv/s/eXL gc7vDZ691jzZCyDJ/LM34HVtedR7C8leyV5zyDt7AUALNdkbpOYg5ZS9hY97AUAL/+x1XlN8 JtkLACHwz17nNcUe2dvywRG7A/YotmnMIHO4NoM9h+3saSxVtRy2291tFwBETO9RYpcdvb13 4KDgvKbYa9x7sKWx5UB9c5NU19RU19ytqam2236bapt9aXttqqRG054G0+7GHrsaGoWdDU2u 5J120jfbAYCo2FbXaLfVrrZB2FzbsKWui/OaYo/s3VdXu3vf+7uq9kg7d+/asatSeE+orNxW uXOb+WjObKmsdNhs2Vn5+97esXlrx863t+94a3ulaYfpje2m17fvdHjtvZ2vAkAkvbJtx8vv 7bR7ZXvlS+/tFF7eXvnKzl2S85pij+zdun3bm++8/crrr0kvvvLKCy+/tPGlF00vbrJ73rLp BeE/N22yPJf2Hy9s+o2vZzdaXhD+fePGX218wdW//Q4AouUXvf38+Y1dxI8vvPjLl16Rfv3a m8//95as2fvE//nJ43//vx978inpr5948ls/+rtHf/QEACAIkZkiOR/7X09Jf/uP/yRyNWv2 AgCKgewFAPW8srdsxEgAQJGQvQCgHtkLAOqRvQCgHtkLAOo5s3fE8WQvABSbmb1jjQ1nkL0A oA7ZCwDqkb0AoB7ZCwDqlUb2Gp2GoL0ZABBQCWSvlbrEL4C4yC975TgT/gp8a4zOTvu8g/bf HACFKKVxb1lpDX2tgCVvgdJTGtkb1lAzUmTYWqnLuBcoJSWQvaXKilz7j5nzAOKI7I2szPEt g16gZJC9keUY9wIoJWRvZLlWGwCUBrI3sijwAiXMmb3cvxcAio97pwOAemQvAKhH9gKAemQv AKhH9gKWzItZgs9z5QtyQvYClryz1566xC+CIHsBSyHZq73xiBeyF7AUOO6l7IDgyF7A4p+9 PveU4yJE5IrsBSxZx72Zt1O2r8CgF8GRvYCF5IQyZC9gIXuhDNkLZH4VKWcvoNjIXgBQz5G9 lcO5fy8AFJ3M3g1kLwAoRPYCgHpkLwCoR/YCgHpkLwCol5DsdVzv6XUpqOtloYVfKxpw72Vu J5SGcqWq/16y9jfcI+C1d9fb0SjuvvpfAMcRUPbue938p9jvvk8D1PwC5Lqv4l0qnoTsdRzb IE9l/nHI+/jnunevveT97mftglfHHVFZjCOQ2S+93Xd9VVG773X81XQ/6y+k4ndf8RHIuq/C u+8jUdmbebS9nnJNwgJ/9/LYu9fKYTUgSDOKegQCLlHW/cyFxe5+5sJEvfuuC1UegWK/+z7I Xse84VsfKPbevVYr5K/diP/pCzIYU9b9zN1pz97SfvddF6o8AsV+932QvY75gPFYpL2HuN/g m4pa9mrsfjHeiALDp9jdty/Xkr3aj4CaP4aZkpC9ZbZfJK932cgocAV5beh7z3zKtUlhNcB1 RJG5cpGOQObeizTeyKP7Ad+jYjTA51CEvnevo63g3XdtgMpfgID7Krz7XpKTvT6/5I7ftKwR oWDv/k0KsQFl2f7ZpeAIZK4ZvPFx735Z7xBQ/O4HOdpaGqDmF0BN970kJHsBIFIc2cs9JAFA AZG9e8caT59B9gKAOmQvAKhH9gKAemQvAKiXkOztLMIpIjl57Md/l+QG0P0kd197A7R33xXZ SwNKfu/aG5Dw7mtvgPbuuyJ7aUDJ7117AxLefe0N0N59V2QvDSj5vWtvQMK7r70B2rvviuxV Q3vFKeEFN7qf5AZo774rspcGlPzetTcg4d3X3gDt3XdF9qrZgt6Xa29Awtuf8O5rbwDZqxG/ PLQ/vi/X3gDaXwxkr5otaP/lof3xfbn2BsS9/dR7NTI6DaGQLfDLT/vpfkwbEJNxbwnev9cw 73xsTtaMNclMzlxuPZW5nImJKXaT9hTyyl7b/Xs1ZG/mjfp9nnK9h7zPMXfkp/1Hr3n7jznF NRMTUzQn7Ukbwex15KrPUz5r+m6/J0XzZr2DPnHd6TtUfuzHfxf2b1Nuk94G0H2Ne6cBUa73 RiF7y9y+Ocs+77Nm8Ph1LM86X9ZdK3blurUCC8sAkiAJ2dvZPSJ127tLipZ5B6kjor3S2Cu9 db3LAKImIdkrpxwblkNc21PXZ3hM/AKQtGdvWXeQen2Js/0pnzV95Je9ufciy6DXNbGVDYkT fkE93U9yA7R331VEstcrTgOe5+BPTfaWeQyV/csUrqsBKHlRyN5iU5a9XnzKFFmHxNqPHoBi IHs1cpQpGA8DyUH2quFacfI5y8KnFJzfeDjhBTe6n+QGaO++K7I3grxKxGXen+gBiBeyN5qC FIGJXyC+yN4YyTyL2PEsH88BcUH2qhFWxSnvj+cSXnCj+0lugPbuuyJ7YyePj+cARI3I3qqx xtNkb8xlfjzneJZABiKF7C0ZmZ/E8dkcEFlkrxq6Kk5ep6glpPsRaUDCu6+9Adq774rsLXmO kbDjKcoRgBZkb8nLHPpypQagHdmbWJSCAY3IXjW0V5wyG5A5DE5U95OzdxqgvfuuyN4k87lQ jjowUFSlmr2dbpP2VkWNV+RSiwCKrVSz147szYm9FlFG/ALFQfaqob3ilFMDfE5LS0L3S2zv NEB7912Rvcjkelqa4yntjQRijexFQHyZERAishfB8UkcEBbzHpLlZG/Raa84hdKAvOvApdH9 mO6dBmjvviuyFzlx3CiYU4KB/JC9KBCFCCAPZC8KR/wCuSJ71dBecSp2A/zvDlHy3Y/y3mmA 9u67InsRCk4ABnJC9iIsXh+98SWeQCayF0VFHRhwRfaqob3ipPEL48oicGeehNcbE94A7d13 RfaiqLgMGXBF9qLYfC7HABKL7IV6pDFA9qqhveIUwYKbyo/hIth9GpCQvXshe6GFI3UZ+iJp yF7oEvq3YwAx0pW9Z5C9UM3n2zGAkkf2qqG94hSXgluRLoWLS/dpQOnt3YvK7DU6O+0yl1s/ +jzleK3UGWCyH3/mozwvI9ea194e5ktpPjrUj3sdyenIVZ+nfNb0F4VxL4KLyKVwQFFpqTk4 Rrau85lP+azpj+yNFy6FQxKQvWpo/1dPvApuoV98Ea/u04BS2rsXXZ+1eVV3Xdcpi3/2okCc kIYSozh7fSLXtYrreMpnTR9kb2ngdpQoJVo+a8sc33rFacDzHPyRvSWD+EXJ4PxeNbRXnEqj 4Ob/rXAl330aEMe9eyF7ESNUfVEyyF7EC5chozSQvYg7BsOII7JXDe0Vp9IuuGX9DK60u08D orx3L2QvSoDj6mNGv4g+kb1V5cYG7t+LOKPsgNghe1Ea+AI4xAvZq4b2ilPSCm6O+E1a92lA dPbuhexFqXKcisZgGJFC9qK0cUdKRBPZi9LmuBZDe3sAiexVQ3vFKbEFN+tbhzSWHRL+7mtv gPbuuyJ7Udo4/wHRRPYiUUhgRATZiwQifqFdqWZvp9uksT3aK04JL7hlNkBlLSKC3U9UA7R3 31WpZq9dFLIXUcP5D9CL7EUyOW68Q/xCsYzs/STZi4TgvmfQiOxVQ3vFKeEFN68GqCk7RLb7 CWmA9u67InsBidPPoBLZC9hx+x2oQfYCDtx+BwqQvWporzglvOCWUwNCP/0sXt0vvQZo774r shdw4BuIoADZCziQvVCA7AUycdUbio3sVUN7xSnhBbcCG1Bg/Ma9+3FvgPbuuyJ7gSAc3/6m vT2IO7IXCI7LkBEWshcIyFH+JX5RCLJXDe0Vp4QX3EJpQN7nP5RG9+PbAO3dd0X2AsEx6EVY yF4gJ3zohlCI7N071thwBtkL5IP4RX7IXjW0V5wSXnAragOyxm9pdz/6DdDefVdkL1A4ZV+7 iZJB9gKFs6cu8YsgdGWvYUtCMS8Fecr+o6UzwGT/dwfzzIc7bz/1Vz5Gp23MU3Owy0zazFD1 ilzX+PURhXGv9nc/4QW3YjfA/9Tfku9+xBugvfuuVGavFaH2LHWMch3rO17rtaa/KGQvSp69 5EvZAVkpHve6Dnczn3V9iuxFjBC/8Ke+5uAY7pK9KFXEL3xoqfe6BqlrFdfxlM+aPqKQvdor TgkvuOlqQESugEvs8Y/C3r1o/6ytzPvshcynfNb0EYXsRWJx7hlccX4vUDzcdhJeyF6gePja TXghe9XQXnFKeMFNYwOicOJZko+/9r17IXsBZRj6wmLev3cs9+8FFKH4AInsBdQjfkH2qqG9 4pTwglsEu6+yDszx19t9V2QvoAW3nUw4shfQIvO2k0gUshfQglN/E47sVUN7xSnhBbdodl9Z yZfjr7f7rsheIAoY+iYN2QtEBPGbKGQvEB3Eb3KQvWporzglvOAWo+4X45a/HH+93XeVd/a6 fvladHS6TdpbBQTBeb9JkGv2RjNp/ZG9iBFu+ZsQeYx7yV6geBypS/aWqsJrDtq7kFUUsld7 xSnhBbd4dT/08345/nq776rAz9pikcBRyF4gP4x7SxXZC0Qc8VuS8sveWESuhexF3BG/pSe/ z9q0NzsnUche7RWnhBfcSqD7hcQvx19v913lfY5ZjIa+UcheoHBR+NpNhCWsem+UQ5jsRWng duulhGuKgbjgduulpJDsjcWgtywa2au94pTwgltpdD/v261z/PV231Uh11bYH6Mcv1HIXiAU lHxLRijZWxbtkx/IXpQk4jfWyF4gvojf+Cq83lsW7eAti0b2aq84JbzgVsLdDxK/HH+93XfF eQ5A3DH6jSOyFygBfAYXO4Vnb/RPMyN7Udq43XochZK9ZdEu+UYhe7VXnBJecCvt7me93TrH X2/3XRV4nkMZ2QtEAIPe2Akle6McvGVkL5LBKvYSv7EQ1jXFUY5fshdJQ/xGn/rzHDKz2rHE /ynXnO8MMNlrPurn7Y9a2mD9qKUN9gYk8/irnxfxy/HPnI+OUK6tKAtc73Xkaplv7cIrcnMd ZjPuRTIx+o0yxdcU+2Rv5kYyB8Bea/oje5FYxG9kKT7PIXOoTPYCRcVlF9Gk+DyHzHtOJiR7 tVecEn6CZWK7LyNXNkBj9ib2+PvQ8lmb6xLXDHc8ld/tgqOQvYAWfNVFZGm5n4P/eQ6Za2Y9 z8Ef2YvEyvurLlBshdQcYnFybxnZi2Sj3htNYY17oxy/Uche7RWnhBfc6L6c0RW/CT/+rshe IFEY/UYE2QskDfEbBWHVe8leIEaIX+343go1tFecEl5wo/uZC1V+Bpfw4++K7AWSiXtO6kXN AUigrF91gWIr8D5m2tsfBNkLZOKSN70Kv59D9EUhe7VXnBJecKP7mQup9+oV1vdWaO+Ijyhk LxBljHvVC+X+vRGPX7IXyIr4VUzxvdO1IHuBIIhflcheNbRXnBJecKP7AdcsUvwm/Pi7CuX7 2qIcvGXRyF4gLhj9qsG1FQDs7Oc/kMPFU6rZ2+k2aW8VEH32yCV7i6dUs9cuCtmrveKU8IIb 3Q++cjGuuUj48XdF9gKw42uG1CB7AThQ71WA7AXgg/gtErJXDe0Vp4QX3Oh+IS8vPH4Tfvxd kb0A/DH0LQayF0BWxG/oyF4AQRC/4SJ71dBecUp4wY3uh7KdvM9/SPjxd0X2AgiIS95CRPYC CIKveAsX2QsgIAa9ISJ71dBecUp4wY3uh7Up6r1hIXsB5IGhb4Ec2VtJ9gIIhvgtBNkLIG/E b97IXjW0V5wSXnCj+8XbeJD4Tfjxd0X2AigQo988kL0ACsT9fvNA9gIoENe75YHsVUN7xSnh BTe6X9TtO650y4zfhB9/V2QvgALxFW95UJ+9Rmen5LXE/ynHa6XOAJP97z7mmWc+3Hl7yTcK 7fGajw7F2evIVfuSzFD1ilzX+PXBuBdQhnFvQNHJXsd85lM+a/qLQvZq/5s34QU3uq9yd9R7 gyB7AYSO0W9W2uu9ZC9Qkohff9rHvWW2AXBmojqe8lnTB9kLaEH8+tA+7nVd4vWUz5o+opC9 2itOCS+40X0t+7WyN+HH35Xz/r0jjuf8XgBh4XJjL2b2lhtPk70AioDLjb2QvQCKhK/X9EH2 qqG94pTwghvd17VrmbeiARqDV/vxd0X2Aigq6r2uyF4AahC/dmQvAGWIXwvZq4b2ihMFz8Tu PWoNUB+/2rvviuwFoBij3zKyF4ByZG8Z2QtAB+KX7FVDe8WJgmdi9x7ZBii73Fh7912RvQDU s1/plswxMNkLQD2yl+wFoB5fbezI3pL5jvhOt0lje7RXnCh4JnbvkW0A9d6SzF67KGQvAB8J HPqSvQC0I3vJXgBaJC1+yV41tFecKHgmdu8xakCR4ld7912RvQCiIzmjX7IXQHSQvdobFiKy F4iRhHy1MdmrhvaKEwXPxO49dg0I/auNtXffFdkLIDqS89XGZC+ASEnIrR7IXgCRQr23ZEQh e7VXnCh4JnbvsW4A9d5Yi0L2AshPqY5+uYckgCgr4ezdS/YCiLCSjF+yVw3tFScKnonde2k0 oJD41d59V2QvgFgosdEv2QsgFkrs3DOyF0BchHutsV5krxraK04UPBO795JpQN7Xu2nvviuy F0AslNhXG5O9AOLCGvSSvcEOV6fjR8lrif9TjtdKnQEm+787mGee+ZjOOz5uy3U70aE4ex0p 6rrEa2WfNf1FYdyr/d2n4JnYvZdqA4IPfbV335Wu7LXmvZ7NfMpnTX9RyF4AoYt15YHsBRBT ZG+240P2AiiK+MZvUbPX9aMxK3IdH665VnEdT/ms6SMK2au94kTBM7F7L/kGZI1f7d135cze Ity/N9fzHHxW9lnTRxSyF0CRxHTo67x/L/dOBxA3cbzPA9kLIO5C/1p5BcheNbRXnCh4Jnbv Jd+ArF8rr737rsheAHEXx1s9kL0A4s5+a1+yNzrIXiBRYpHAZK8a2itOFDwTu/fENsB+07MI RjHZC6BURfn8B7IXQKlynPkQqfglewGUKnvYRip4y8heVZJZcIvI3rU3IOHd19uAyJ7/QPYC gHpkLwCoR/YCgHqO7K0ke4sjyQU37XvX3oCEd197A7R331VX9p5B9gKAOqWavZ1uk/ZWAYBU qtlrR/YCiBqyVw3tFaeEF9zofpIboL37rsheAFCP7AUA9cheAFCP7FVDe8Up4QU3up/kBmjv viuyFwDUI3sBQD2yFwDUI3vV0F5xSnjBje4nuQHau++K7AUA9TKy93iyFwCKTWTv3nJjw5lk LwCoQ/aqob3ilPCCG91PcgO0d98V2QsA6pG9AKAe2QsA6pG9amivOCW84Eb3k9wA7d13RfYC gHpkLwCoR/YCgHpkrxraK04JL7jR/SQ3QHv3XSnIXqM79MSMnX0F+xL/pxyvlToDTPbjzzzz zCdzPjpUZq//j5mh6hW5rvELADGiPnvLMka2XmtmDoB9tgkAMUL2AoB6Gdkb/v17XXPSq7rr 9UKyF0ApMe/fO9bYUJx7p7t+rOaYseZdq7iOp3zWBIAYKWr2SpmjWdclXsPjIOc5AEC8KMhe AIAD2QsA6pG9AKAe2QsA6pG9AKAe2QsA6pG9AKAe2QsA6pG9AKAe2Qs4cOEkFCB7AQeyFwqQ vYAD2QsFMrK3BL+vDcp4pVaQGyW5rub1PVM+DfD5air/NrjeLi/gt64AuTKzt9x4uqS/KxPK BM/ePO6fn3XXPrchDdIGry+lCqV5gAPZixAFzF6f24oWkr3+y/2zN+CaZC/CQvYiRPllb1nB 4eazmn+iZr2xfyjNAzKRvQhR4dnrM5/Hfst8E9VannmL/oAbIXuRN7IXIQr4OZf/Z1iZZdis n7UF/Bgu4ApkLxQgexEinwpqwLD1fyrgfr3WCTje9v+szadTQHBkL0LkFW6Ok7isp4LnYa77 9VrH9W8B17B1bZ7PU0BOyF6EKOu5BLlup/DzHIrdQSA/ZC9ClLWum+t2cnp51lF06B0E8kb2 IkSOj8byTipHTTX41sJqQNaGAQUiexFN0Uy5aLYKcUT2AoB6ZC8AqEf2AoB6ZC8AqEf2AoB6 Xtlb2XwQAFAkZC8AqEf2AoB6ZC8AqEf2AoB6ZC8AqKcyeyv+3zOdnZ3au1wCOJJA3JG9ccSR BOKO7I0jjiQQd2RvHHEkgbiLfvYaGZP2g6ZdfkcSQHTklL0VgSf3l+eYGDJpN23aJB7XrzdZ PyYkgb8yeqVQ+JEEEDWO7N01/JNe2bskl8k1fiu8E2N9RpaKJZ3pab05GTbr5XKfTlWMNAIK 8Uh65WTeDRNbO3vGD8leoCR1Ze8ZWbJXxOkb23cG5BW/FbmPe72y13/cWzGyK7fF9KtXX68w jJEjR3bWvXP4nQq7ELPXJye9GuY/+W/Q/0iKw6b99wqAv5yy1xApVmF0zad/cM1kGbzi0bGR CrfEkCNer0erxmvVHIIUHBRnb8DgrQycvdYGxbxrI12PpCSCV6p0K5VTNgciItfsXdLZlbef OP1NofDszWq9PXPNEF6f9SWZEWf+PVFR4YjfULI3ePC6NuzZZ58daZtk8N70L7+VwZtr9tpS VyawZ9STvYBeRao55Jq9rvXerEu8OCOuwnCN38Kz18rJ/BomDpHMW2sSP9qDN4/stc/L6F3f eyJ7gSgInr25ftYW1rg3D70irsKwZhzxGzx7xejU3jvxY2XuwetomNjIlVdeKQ+II357/b2R Y83Bzopfxr1A1CRi3GtLYBm/wbPXSl3HeFVM1U2NOQWvo2EyYyt7B29m/BaWvYaM302bNtkH vWQvoF3A7K20xa8jiByhZD/VwbGFCr3j3s6e4kPw7PXvbCENU5O96Zh1Gf2SvYBewbO30lZ5 8Ikj++R4eUXu5zl4PfpzP53AHsLpskPW7JWDXishrY/DrM7K4kNwmdnrmKwdhZi96atRnENf shfQK6fslWQcZdZ4O7MNBSu0jHsdqdvZKVI3YPY6/pZxZG/W/vo3TFn2uk5kL6BX3tnrOuWd vUWv92YEb07ZOzJjKjx7rc/aMoNXPBVW9nJ+LxBNiRj32lI3p3PMipq98uWO+BU/Ov5qI3uB kpSEcW9m6uaavfYEDt7frA3rzLi2wj7izS97/fOW7AUiovBxb2fvMbDPCysUjnszR6qZU/DP 2hzZW5kuDhT4WVvAKY/stV7rCFv7ZsleQK9Qxr3WkjyyN8hZDZmP/kK8j1nxzjErXvYy7gWi z5G9u0d9Ku/sFWNC/31VxPDOhz7XVuQ66K0MPCDPOjiP45EEYJdf9rpOWfdVoareGzrXa4rz EHxA7j849zmSAGIhj+zNW0XiE4PsBSCRvXHEkQTijuyNI44kEHdkbxxxJIG4I3vjiCMJxJ1X 9uZ6GioTExMTU/BJ5bgXACCRvQCgHtkLAOqRvQCgXvDsLcbNWKJzg5cotAFAcjDuBQD1MrL3 eJ9xr+sSa3ne40b7S3y25jWf0/btC+3b92qDV6scS7S/jwDiRWTv7jHGTwcVmr15B6Pra/2T MNddeLU8+B691iF1AeSnGNmbk8zBc8B9Bd8j2QsgakLM3vw+rvLKXsfWopC9jobl1AYAsMsp e7PmobVm8AZkHfe6rpDTXrxa7ti+f+T6NxsAchLWuLcyr8/a/DM21zwMshf7wsztO0bdlb0z 2fVVuXYZACoLy17/5UHkPVrOey9x2TKA0hZWzSE/PuPeEGW2PMQta38HAcRR8Oz1Qv4AQK4K z14AQK7IXgBQj+wFAPXIXgBQj+wFAPXIXgBQr1f2/qVRPSZtkrH5KqnPlvFpE/p6Gt+1jlhZ rm/NIJq631xESh9EUrHecZG0VWXGiyOMH36hV/a+U24+a/5RTQds5XWGVDWlj1Q9zaidYtRM 67J/Zs+8JJ4FEFD11YieSUbtJPenqq4yqq5IK++ye2z3j1d0kUvE467RpspL0o8XmjPiUSTt gUvM7P3ugK7sbZmU/mWYZTTMMbXMMQ7OMw4vNI7dbBxd3E9qXdrjY2FZH4c/LTY+uq2PaaGB qPkjokf7bwVczEu/NfOMjrlG243Gh3OM1A1G+xyTmGmdbbRO736UM90+mG4cmWw+ymc/nGw6 MtEpM3sPzzGO3dT1eHRhPyF1S1fMfrTsOOmPK7r8YXm/TH9e1lf4WCYzIkb8zQjEzh+W9G/9 +yWdOU5/PFQvXiVeW+BGjlUsab+lvwzk9vn9jz2R+0YO1n/wwyVHp/aXOXzg6l7ZW2PL3raF fUTkfrS4r/BxOnVF0v5p1fGmNV3+vPo4S+eafl1WdpEJXKBHTvm0EMqmAMRX2z8uObp7y8vX D/nN5Sf8bvzn/mvCSc9N+Pxz4096fsKA3109YOOEz26acMKLEz798vhPbhp33KbL+718eZ+N Y4znpg48VLlZvLbwjYjQFuktRsKtFUu27Dg8ZPyvT/jyTz53wTMnDf/Z50f89KQLfjpgxDMD RvzrZ4f//IQLfvnpsl998vxnjxv6y35DftnnvGeNc34+8LJnNr93QMSvHAk7xr1W9orgldkr R0qO1P3z3Rk84rdQ6Ulkb2gbREh/JwKKicHnvgVD9n11wL7Zp9XcOGj/vMHV88/dP++cmgVn 1ywYVLPgzPqbT6tfcHLD/AH1N53YMOdTDbM+UTO1z7YJxn9MHShiJJSNyOwVGxly7e8HXPLO aWPfGTR+8+CJm8+duPmcqzefPXHLoKvfPXPC1tMmbD/5yu0DrthxYvn2T1264xMXbu9zwbvG 0JcGXvYzsZGs2SsHvSJ4/7C838erzOyVAeuSvd7BW+DRtrJX+/sOQC8RBYemnXjkptM/uHXI B0u/cnT5yKMrRh1bMfzYncOPrSo79rWhH35t8IerBrbeeWrrsgGtS074cOHxH9zYt2aK8dxo w8reAjcii/Ni5sSLK0+/as+QyXu/MuP9kbP3jbqhevjs6uHXV5ddv3/o7JrBM+sGTqs7dXL9 gGvqT7iq/vixdX0vqTa+8q5x9r+I11rlX5m9P/yCsXWgreZwsxm/InvXr19vZJu6sleG7Yo+ JtsRk0UDi2O5/5pW9vq/POtTrit4NUD77xgSSHs1NfrM1Lr+862LBrcuH966+tK2u8tTd5e3 fX1M2z2Xtq29OHXviPZ7h7WvHdx+z8D2Nad2rPxc+9LPtC7s3zCz78byPnLIWvhG5EdvYubz l+0dPKl6+Kz9l95UW76grvzmujEL6i5dUH/xgvoR8xuG3dQ4+IamgbOaT53W/Lnrmj8zvql/ eV3fkTv6nPsLmb1Wvfe14Wb27jjb/KytcZJ5boPMXjH0FdkrVjbSGej6KMPZGuJa5zn8KX2q g6PaLMPNWi7npcw1A77csSn5Y+Y2Ha91LHS8EFBM+4kW0Wem1txTWpeWta4e3bb2yk63qePB oR33n9Ox9oyOu77QseLE1ls/1Xh9/xcu72sfsmbdSK8N9t6IPOdBzJxyxftl0/ePnld75aK6 Z19sFUuuWtwwbnFD+W0NlyxqHLGwaei85nPmHhDLN/xH6sRrmj91RX3/i3b2Pe/fxBJ5kkPT ODN73xjWk70ijVumm9kr49eM1nQbvB7NFdLxa34el/5gruvXaaHRlWbdJ2z0hGTveZ+nQp8P sjKACDJjc/6ZrSsvarvnyrYHrnWNyvZvnN9x/+COtWd23PU/2+/8XOuSExrnfmbTuOOsIMrc SPtD16Ueuia1bkJq/bjUujHt6y60NmI+23sjH84xTxsTM2dO2HfRnBoRvNfeXm/tfcLShnG3 N465rfHCRU3nLzhgLRdD3xPGN3xmzM7jvvxLmb0iZkX21ozpqTmI7K0TI+HZ5jm9Mn6tca9X 8WF9ehIzInXFOFkSoW2lmfzYzrHE8azXU6HPB1m59N1oALFjRt+iwa13lbc9cE1q/VT37H3w /I77zm1f+8X2u05tX3Vy6x0DmuZ/9oXx5h98r42kHp6aWj8ptW5iat2VqXWXta+7yNqIucHe Gzk62ziazt7Bk6rLF9Rec3v91BUN0+5ssBpw5dLGyxY3XrSoyVpy6rTmkyc3DZhY99nLKz99 vpm9InVl8FaVGb8d2pW9VeVm9tbP7rqkQmavNb7dtGmTiGHHY3f0GlbqWn2UaXbsJkOyL3E8 a/1oj0efl+Q9H2RlQD0xoII/8Se0dcmX2+4dn1o3NfXNGalHZqa+Ob394SmpdWLUelXqofLU gxe2339++9pz2+8e1L76tPaVp7QuO6Xx5pM3TfyLzvSQNXMjZvZ6b8TM3t4bOZq+bkLMfPmr +8ffWjd1ecOMVY0zVzVOX9kTv+WLG+XM0dY/DZrVdNq0plOmNJ5yXd3JV+78i+G/ktm7/4qu a4pl9r7xRfNiNzN7p/dczmYf92YGr3i0xr3yKgz5i3R4Tk+aiXnrRzHZf5TPysfO3pN9YYjz QVYGEEFmbC4f0faNSalHZrX/1fXtj8w2E3j9lNQ3rkk9eGXq/stS945K3XN++13ntq8elFp1 eurO01uXnd5wy+kvXHOSPXnsG0lnr+dGzGd7b6RlulmSFTMjZtVMuqN+1tcar1/dOPtrTSKB p6zoiV85nTu7cdCMxtOnNpw+peH0ybWnX73jpJFmvbcmfeuGygvNMq/I3u8O6JW9B7qHvsHH vQfn9+syz3ytlWYt6QuTHexhaK1jH/c6Vst7uWOdrC90bW2JEW8uEDtmbK68OPXw9PZHb2j/ 1lzxmHp4RuqhKakHJqbuG9e2dkzb3aNSa4alVp2buvOs1PIzU8sGfrhsUMOiQRuvPVm81nUj Zrp6b8R8tvdGRPDWp7P34rm10+9svGFN09y7mm5Y3ThjZcOUZQ0TbbXfYTfUnzuz/qxp9WdO qR84pX7Q1JpB1+44+cJfiKeqyrtu7LDlS8Yz55rZ+/xfGlsvMm/+UDPNvJND01yjeV4O4157 8DbN7Ukzr8NoTV5LHAuzLs9jm46FXq0FoJ0Zm2suS317bvtj89u/M18kZ+rhmamHprbdP7Ht 3nFtd49uWzOqbdWwthXnpZadnbrji21Lzzp2x+CGRYM3Tjq1V/baNpLOXs+NiGcdG5E3PhIz l82vnXt30/y1TfPvaZq7pnHmqoapy+s7e0/nTa87+6t1X5xce9aU2sFf3T/4uu2nXmxmr7yX jghbkb1i3PuNE3uyt+o6M9vrZ5sRmuu4V8S1eJU9ewWxKcnxY96sjQdcnvcGAUSEmYT3Xd3+ vYUdjy9q/+7C9m/f1P7NWakHp6bundh297i21aNbV45qW35+2x1D2m4/p23JWW23Dz629Et1 t37pd5NOE6913Yj40Wcj5sq9N2Le1mySuZGrF9cvvL9p0YNN4vGmu5tmrWy0Inf0vFpr/pwp NWdNqhk8peZL06q/NPm90y79uZW9Injf+KI57nVkb+0ss50yezuDjXub5/eVqSvIe6DZ49f6 N35Y74JP9oa4QQARIWOz44dLO360rONvF7d/Z0H7IzekHpqWuu+6tq9f1ba63DxzbPlX2u74 ctvtQ9qWnNe2dOixO4bVLRr6u8mnO7LX2khntsmxEfNun93Zu/Th5mWPHFj8UPOCtT1nNVx1 S135/LqL5vTE73lTa4ZOqxk2vXrolG2nX/qvMnvloNeevW9fbGwdY2bv/plmOxtvNORwV45v N7lN1rhXrCzJ4LV6ap9CfBdC3FoxNgjkZjqyEH9CUw9N6XhyZUfF18zk/N6i9m/d1L5+VuqB Kam1E9vWXNG2anTrnaNal1/QeocYuA5ru+P8Y3eU1d867PnJZ5h/ut02kj17e2/Eyt4pyxpW frvla4+1iPi1Vp6ytH7ibXVX3Fw3+qbaUdfXWMvPn1FTNmPfsCnbzhhtZq8IXuGNYWb2/uQc M3t/dop5gdvWy817pJu3Rp/Vlb0ymLqHvi6TDF/X7AWAUHSmz0no+Kf7OjY82FGxuuMHt5uV h0fTVd8HprStvbrtrnGtIn5XXtK6YlTrihGty4cfveOCukXd2eu2kazZ69iIlb0zVjXe94OD D/7o4OrHWl56JyWWmFXfOxtF/F59W924dPxeMtcc/T7znx8On11zwcx9w6a6ZK8c97pmr/y4 zX4lhdddHcheAMVjxua35nz0L9/56F8f7/jndWb8/mhZ+9/c1v7YAvNzt2/OSq2f3vbgpLYH r2u7d3zb1y9vXTP62IpRtbcM/a9rTumVvQVsxMreOXc3fecfDz++4ci6Jw6tTo9+b/tG84J7 m+be1ThrVeP0OxsmLa2/bmn9+FvrLl9YN3qeGAZXD5289ZSLnvHK3hdHmN8WtHOisXumse9G o05k6QKjeYFx4JY+lpZb+smZ5vl9zcf0CqZ5vbKX+I0s8bcqomb/TGQhUqv9+4s/evbJj3/7 lAjPjqfv73hqTccTd3b8cGn73y5u/5tF7Y/f0v7Y/NS356YemZF6aHLb2quOrby49uYhz139 BfHaUDYiBqUyexeva37ypx889cxRkcD3/+Dgmu+23PnogaUPNy9+qGnRg823PNA8f23T3Lub ZqxqmLys/qpb6y6eu3/IdVu/MNK8j9nbF5vVXUfNQWbvlgl9Rfba49fM2EVdjy2L+whd8SsX 2oLXnr3af5+BuNCebNEnUqvjH+756Bff/+hXP+74v492/MPXO55c2S4y8/tLzMz83s3t312Q +uu5qUevT31zWtuD14pR67HlI2rnnf3qvAv+cLA+lI2Y2TvN3Mg9jx/8/j8f+fFPPnj0qcNf f7xl5bdF8B5Ysq5ZBO/N9zUtuK9p7tebrl/TOG1lw7VL68XQd8Ts6rOv3nLBpN98dKBeBO9r w83sfe6sruwVjyJ73xpnbJncx5G9ImOt1LWTy2X8NkpUHiJPe84gk/Zki76mHy35U31Vx1N3 tX9vYeqvZqcemtJ2/zXmLXHuHd9211jT6jFC64qRpmUXtN425Mj8gdW3jzq2Z6t4bSgbqUln b8P3l1Tt//iu77YsfKB59urGKcsarllSf+UtdeNvrRt7s2nMvFph5PU1wgUza4ZMqR44oWrU zC1bK4+8/+0lIngFEbZW9or5zOzd55G9h243LFYO95QgMuoPAFCI+rn9DzyxRAw+s35A5pjE q8RrC93Ij5fUXN9f/C0p4nffjP4ifj9uyXkjInjfGd1fjntF2P52qFnvffoL5nzVdcbvJxky eF2z18rbY3f0cOTw4YWGdHAeoqgZQDDWP+Tt/6KX/3iUA2lZhaia0sd0nSFV2uycaNp2lWnr 5WZRVxIJLIe7InvrWlrEoFdkr4xce/DK1D26oq/UtrKfF/Gs/Rvkra+VB4C4O3irSZ5v0Dy/ r5BZX3XUkXrC2RbFYkZEsYjfn51iBq/MXjGiFiNeR2FB5u3Hq/r9+e7j/3SXIb+XTc7Lr2yT C+VM18L0N7v1fIkbAG9dX7aFKJHviww3mWzSx8vM71OTY8u2hX3Mr5m4MX3D85u6vmVYzNv/ +S8exZIDs7tuZiX/+SnCWcSvedvedPYKWyabed56+3Eib0WEdt4/wPTNvzR9Z5Dp8fM6v//l Hj8e3sW+EADiTmSdZP/x0bO7iHkZiRax0P6jjE2LzNL7B8jvfP9wjnkRsRW8VvwKIn7NgasV vHJf30vH7A9Gm54oNz15uSe5AqLG5y2DLtp/K+Aq822S0Wc9ehFR6SAT+/4Bf1xx3NbLzY/b HMFr+f0kQ4awVaCQqqeZRQx57lnP2b8Lui6Ckyc5SNpvVAtX2m+CjUzWfagQHY4/Nc4/Sun7 qNenHxsndd10wvyu4enmt72LmdpJ5u3Qhdr0j+ZTk8xvahPB6wjbfulLg/8/AAAA//8DAENy u5RMegoA</item> <item item-id="478">iVBORw0KGgoAAAANSUhEUgAAAdYAAAHrCAYAAABy/rwpAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAFRVSURBVHhe7b0JuCVVee+9gUC35tEb be0PwhREFBHQBhQFG2VGJgFplCAIKIgtgqLRaDSS5JrcELwZ1OvF3NwLT+7j9yUxGr1mMFcZ HKNimqmbbuimm57O6YFGoCdMzPutVfusc2rXqWFV7VV711v1a57F3mdX7dpvveu/3l+9a61a 1RP+4QE8gAfwAB7AA8E80LNH2rJl/azSO+ensse590Wld+bD/XL28plywRrpvfVx6f36euld MTH9usdVm83fm8zf5rN3mFf73r668vYt0qPgg0wNbDO+oeCDFA1cOik9Cj5I08CseGL1k8Ka C81nUdnQfz3HcCp6b0r03n429fk566R3huGbLfa93R4Vs/0Mw7k3PpDKTsvUWWB1MN3nPdtl zk2/kHkfF/nV3+2XQz8t8vLPiCy41ZTPiZzwp/2y8PP98sYvFBe3L68zfsMX5TTkozP2KW6L 2nxEOyFm5GkgTc92f8eo+KtjV9ZrxLiUYhloi+XiPtf/ewTX3oIfDAB2FlgtVPe8fJNYqO55 /VMy58P/ER0gDtdD/lDEFgvYV/7JYLGwdSW5jb9n+wuf4BM0gAbQwPAasDxyxfnT/e1g6BJD x7D4q92W/NwllPFXx0P7OufGX0Sl9/ZnpHfiTPY6ANbeyT+W3gVrTffuI7LHNVui0nvPE9PF gnavG3bIXjf+PAJu70O/kL1ukqi4v+1rfJt7b/e17/f5oNlusmD3PV77/qPgAzRQrIE9rv8P oeCDNA3Y9mM/d1yyr/Gyx+Kfy57XPCt7Xbdd9rrmKdnjyh3Se+fTZshy6vWyp6PPpj+/0nQl u/KOrf33dv9FpgvYdTHbz2252HQTn/qg9BaujDLX2WA146q9X189WOz46dWbpkFrAetKBNqC EgHZnky8mBOzJ0fBB2gADaABNFCbBt61Vfay5SqTLJr5P7ZH1pZoDtDbN/bLIjO+6oqFpCt2 DpEtdj6RKXuct9LMMbLFzDWKzzuyUD3+J9Lb928Gwdo75p7+FyxYTcY6XRxkp+AaB+x0Nvte Q/F4iWW5dp8o803S35Ge1/4VDyXmg8Rkt/jEN94PTgTEH/gDDcxowMIyrTh4WmCmwHIGmDFw xifqOohagNpix1UX3jtTLFQtQ2158e0zGev0h6Y7OJoF7OCaAVbXVZzsLnYgjT63Wa6bIexm BruTdlcKvM5cNeELfIEG0EDDNbD3pRvk2s9vlg1b/23oW1PscezxXOYY9NifM8e+xAxtWpia Ic69L1ot1/7JRtmw5efD2/0Hj8neJxiwWqCaiUsRP4/4R+m97MsJsL70S/2NqWCdup3GgNJl rHGwTo/Huu3TMDVXD9FtOLGSlnrH03DeD3ZLdNEf8a4Y3s90S+GLmWzDZR28jtwn1352UlZu +IV86Iu75cpbd8mi/7xTzvvtnXLWx3fIKR/ZIaf95g456UP9cuIH++XY67dH5dWLt8vh794u B1/+pBz3njXywKNPiz2eyyJrObadN2S6cS1Uf/64GQP9ow/Jpt+6UiY+uEg2Lj5PNlx7lqy/ 6hRZ/67TZP07T4rKunecGJW1lxzbL299taw573BZefrBct9bj5Mnlz8g1xq4RlB1YH3JN6Vn Ofr8T8YyVtM3HIHVpLd7np7MWPtgjbJPl4VOjblGUDWfD2xLZqfxvmwLVgIEPkADaKCKBgDp yEE63XU65XtLjY/8j93yJ199Vj739Wfl0//vbvkN8/cNX9gt1/3ZLgOwXXL1f90l7zTQveKP dsml/2WnXPLpnXLB7+6UN39ih7zxN3bIMe97Wg59xzp59Tu+H2W+7jdqOfbU+Kg99tbPfESe /Ms/kZ996XOy7Yufli2f+Q3Z/Ac3yObfuU42fepa2fSJq2XyY+805QqZ/I1LZeKmS2TjDRfI huveLOuvfKOsWXSM3HfGofIP57xaNmx+diZjPfJfpFcE1mhQ1nYFR93AU9mqgaUDqHt1g8Fu QHig2zev67eLWRjn7J+JVwm4fKcboAasjQDrNQaeX/jGs/LFf/y5/OFfPysfv3233GQy2Pd/ 3sJ1t1zzx324XvWZXXL5LQauf7BTLvq9nXKuyWxP/egOOf6Gp+Xwd66TF5/xzX52F4N28GNb sJ6zJvqdTZ+6Rn72V1+Qp778Rdn2F38oW//04yaDvUk2f/r9ssnAdfK3r4nguum3rpLJj14u kx++VDbeeJFsWHyuyWhPlccvPV4eOPtw+etjX9y323YF22LB+mumpGasNqW1g7J20NYaY4PV 1OpJN998s/R6vemS/Du+bfo9XcD+MAG8+AoNoAEFGrBAefvv74yA+pm/fVY+9Ze75YO37ZbF n90t7zYwvcKC9Pd3ycUmQ73w5p1yjslSzzbFdhHbbPWEm7bLcdc/LUdctU72Pev/9gE1dd61 HPs8u2JSH6yTH357BNQn7/iMPPH5T8mWWz4om39vsWz65Ltl8jevkIkPmSz1xotl4/svNFnq Oaac3e8iNtnqunecIGsuOU4eOPcI+fJr9+3b/VrDS1scWO0Y66yu4AywWohOLdAUvfb/zv43 DV3ASqBQECgGptpjL5pFA7kasJH/IgPNj/2v3fKJO/pQfc+fmvFW2+376V3y1t8xY66/tVPO MJnpyWac9YQbt8vrbrAw3S7HmLLgfWas9b1PyZFXr5cDz/3WLLAmj50Lm8TG1GPHwDphss+t f/ox2frZT0RQ3Xnvd6IjTNxkgPr+txqQnifr332GGWc9WdZddoKsu/R10fZn/vnLsnbRAllt xlofPP9I+dsTDvQE669+q5/SmtUjottubGpuBWbgaEF59913RyX+3n0Wf42g6rLbHLCmOavu AOd+s+7fsccf5W+N4nz4jdh9bgTe8cHXrenK68z6tiP2hY1tdrKSHVP9wFSmevWtu+Uym6Xe vCuC6pkf3SlvuslCdYcc934DUgPTo967XY587w7zukOONrdnHvmuDTNgnTqHtGOXAWvqsWNg tZOVtpgx1S23fCDKVOP/+lA900D1TRFU15rsNP5v7UVHyeqLjpYHz8sB66yuYAtWm9K+aeo+ HtsNbAOIWex4JkPtZ6t2cWEL07RXu91lrNFNuPHFkqdmBDtjn7vv74krowBR/HfTQBHShqLf AlSACg2gAY0asLHtjI/tiMZSbffvNX+8W674w13ytt/bJRcY4J79MTOOarp8F5rZwK81meqr 3rdDXmlgevh7dsjLr90hR1y3wwDWdAWbjPWAc789K2NNHrsMWFOPHQPrhmvOiMZSo+5fM546 +dErBg6//qpTZf3lC2Xd2187CNXzXy5rLzhC1lx4pAHrEfK3rz+gb/frzLCp5eYrzIRfO8Y6 qys4CVZ7BTEA1mit/umMNQuu8Yx1r8vNahemRE+1mQJsEqpxYTnI1iW2ItgVbS9jV8hjlfld 9iVYowE0UKcGHFjtrTZXf6bfBXzZH9gx1V1y/idMtvqbO+XkD5ts1YD1OAPWowxYDzdgfakB 60sMWA8zr6+47ml5xbvWy/7npIM1fmz7ez7HtvulHjt6Kk1/jNWCdfLjV8qknf1rXz98mUzc cPEARO1Yavzf2vNeKmvPeYmsPe8wWXPBK+Shc18hX3n9/jNgfY2BqxdY7X0/Nru0MDRQrJqx zoDVwNWurWiONwgcc/uOXXcxpSSvUtw+WZ/b7Wn/4sfO2x7i99J+y14sZJ0jn2fXP77BN2ig mRqwsfINZgKSnelrZ/xebrJVO1nJjq2ebzLWM839rCebiUonGLgeZ7qDjzTdwS+/foccunin /Np7d8pLTMZ6mMlYD7t6o+x3zp19QE0xIO3Y9jOfY9v9Uo9tM1ZT7L91l78hmukbzfj9yOXR 2OrGG83Y6vvOT+XH+gtfLuvfcqisO/fXZN15L5HH33KYLD37MPnq8fsNgtVlrXaRiIHJSzaN tWmtfe5clK1OLTRsltqLT15yY6xlMtZ+1tqH6wBYc57JGt/Pvo8ANbX/rO7jqc/j37H7uH/u e1W3p/1emWPx7NmSz9/NuNgi0DYz0FIv3aoXG/uON5nohQakbzOTlSxU7etFdtKSBasZYz3Z dAefaCYvHWfgeuRNO+VlNxqgvn+nHPS+nXKwAewhi5+RQwxY5795NliTx7a/53Nsu1/qsaee vRqB1dwuM2Fm/E7e9DaZtDOAP/g2c5/qRf2FIt5z5gBcN7ztSNnw1pfJhgteIhvOO8iUg2Xt +YfIsjcfIl99zfw+WM2i+70TVkjPZa22K3jeH/W3Rf9LgtXCampF/8oZ65VmYWlTeuapAVEx D68eBGv/Qcbxf+7hzsn9+mAd3De5zyj/LvtbPLSaB5ejATTQBg3Y2HeMmYx0zid3yMXm3tRL /rNZfcmMr9rZvOeZ22vO+uROOcV0Cb/h4zvlONMtfNRHDFg/tEsO+eAuOcAA9gAD2APMCkwH XLVRXnjWXX0Imdju4nvy2BFYPY5t90s99tSDze32tRcfIxvee45MfOBiA9VLZPIDi8ztNQas 1583wCH3x8Sil8nERYfIxvMPkI3nHWAy1wNk2RkHyN8d+8K+3Sea3t0Tza2pFqyHLusvazgA 1oPtosKGvjZjtWOrDqzmMTmVM9ardponCuzsP4bHPprHlAEgOeCa1+TnafvFP4tnpBF0PY5R 9BtltpfZd/rCIna+fDZ1sYVPZi488UWxL+xzLylj9YGNfa+8dnt0X+r5nzILPxjovdUA9kIL v9/ZJWeZz041ZaHJXl9jAHvUx3fJyz5qwPrhXbK/geu+N5hiwDr/nRPyn868ewqs/XpNO7b9 zOfYdr/UYy8yyd2FP4uO/fhbXhndl7rRdP1aoE6YbuCNN1w4ANWJaxZO//2L7U/J5MWHyOQF +8vEefvK+rP3lYdPmS9fX/Cf+nafbIZL32TuoLFwPdrw04L1xX/W3xb9z4LVbozAaro2bLZq nz03Ddb+rkULQwzMCrbPvpuCqwNsHEju2Xf2Nfl52n5F+4xye9nfip8r7/vPPMwq7iKM15kL UnyBL5qiARv7Drv6GVn4oe1y1m8ZuJosNe/fUZ8wYP3Ybvk1A9f9TOY6/8ZdMs/cevMrl0/K c0+7qw+hWOKVduzzTTfzOeZ3zjTAPsWUN5jy2k/tkvix7XFSj23Baor9t+acw2TdFQtNt+9Z Jks93ywEccGA6RPXnSIT15hx2KsHZwVvumA/mTx3vqw/c54sf+OvyNeOeu4MWC1cbeaaClab xkZgNVC1qfMUVG3wSy4Q0bekP0s4+doHa3+Fpr2u6z9Y1pY93t0vvSufnT4R+96VOKji+0TZ 6NR+RfuMcnvZ34qfK+9n6h1f4As0oEsDNvYddPkz0a00dtH9Nxu45oL1k7vksI/vloM+ulv+ nw/tlhe8f5c8z2S8v3zphOxz8lTGGovxacc++7dNJmwy4NMNUE82gD3RvL7GgjV2bGtD6rFt D8ei7ZGJq08/SNaaW2nWX32KgeubB8zeeN3pMvGek2Xi3ScasL5GNl9x1MD2TWe/QDae9jx5 +MRflq+9cp8+/c58ss9MB9fosXHxjNWB9Rz78Nc+WC1UbaYZH2PNg2o8o93rBpE9F/9HVOyT 223pXWOe6G6KBWzaPzdJKL7dfuagnPe9KseMw9H9hvss+Xd8X2dT8hzi9sftidvP+5mLLHyB L8pqoHflv5sLbco4fWDj3r6XPiNHX7fd3FJj4GomKeX9O+ITu+WlBqwHGrC+2ID1+dfvlue8 a7t5pNuE7PnGu/qAmqrTssdO/m7qsd9hLlwu3R3t+tib9pXHLzw6Wp7QwnX7Pd+IPt94zamm nCwb371QJq5+nUxeeYxsescRsvnSl0bbd/7THbLprOfLhjc9Rx5+7d7ydy/fcwasFq4WrK8z gLVLG87uCjbp7Dl2BqcZSJ4Cq802i7p/k+sE7/PB/xBbLFxt2eN6A1dTHGjda3yBCPc+vk/a Z3Z71veS8PM5Zpl98vYtsjV57vw9Ww/4BJ8UacBdnPPaT1LGUWycfdElz5ju4P7yhK83cF1o Zv8u/LDJJM3CEK83WezxBrbHmIlLR/6myVZNF/DBHzHdwDftkhfcsFt++bpdsveV22XPt26U PRZOzQqeOpdajm2hbeBq/616w4ui7uDHL15gVld6vaw33cLr32nKFSfKhiteb8rxsvHyY2Ti siNl8m2HyaaLDxbbDWyz1cnTflnWL9xblh27p3z1ZXv0wXquyYZd1mrBapcFHgDrry7p9xNP gdVlqxastkt3r/f9m+xz489lzo2/iKBpy5ybfiFzPmxeE2UarDcZsLoyBVkH26IGVGV7HKxV vs93COxoAA2ggXwN2Dj7/AuekAMue1IOf9fP5FXX/UyOfd9TZi3gp2SBWVx/wfuflqNvNCsr fcDcq/qBZ+TgG5+R/cyyhvPMhCXbBTznymdkz1//mbm31PDmhP7TbZzP6zh2PBtefvzz5dFT D5BV5x4uj130Klm96FhZ87bjzOPgFpgF9hfI45ccbdYEPkLWv/UwWX/BwbLh3P1kw1nzZMOp z5P1J82RNa/bU+5/VU/++tD+UGgEVgdXC9ZZXcEpYHVwjcBqyj7X/3sE1qhYqGaA1YLWB64O sqFe42ANdUyO0+91GGUhsAE3NNBcDWx44t/l8CtWy7y3rJb9F62WQ359rRz2jsflZZevkZea 10OvWCuHmHKQKfu/c4PMv2KDzLt8ozz/sg3yHLPw0C9dbDLV8w1UT39QDj7/nwbAWsexo6ze ZK322D998+Fy7+vmyb0n7S9LTjtElpx5mCkvkyVnvFTuO/NQuf+MQ+QBMw679PT9ZamZ/bvs TfNk6cLny7LXP0eWvuaX5P5X7yHfOaInf/OGg/tgvXD7bLAO3G6TAKu9HSSetbrMdZ/Fz6YD 1kDWwbQIqnU2mqwu2Tp/k2M3NwhQN9QNGgirgWv/Yofc98hTcvgl35XnvfEf5AWnfVteePr/ lRed/k154WnflHmnf0vmnfFt+ZXT75TnnX63PPf0e2Tuad+NJirt9ca7ZY83ftf0jt5poPpN WbL8CbHHc3UU/Nh/bsA3BdZrb9su25bdJ39/2uHypVc+T7786hfI3yx4ofzVMS+Sv3r1C+XL x8yTvzXlKwvMrN9XP0++fvRz5RtHzZWvHbGPfO3wveQbL99DvvLSnnzZQHXzQ0vk2j8zWbcf WO0DYafGWKcWdLCAtYs8RMXeOmMGrKPs1QLWFZPJ2mzWFttlnFWc81wGzGu/J4Ay6INxjBvx m+MZr8Pv+vy+97X/JtcaYA37z2aQ9jj2eE4HQY9929Oy91W7+neVmDHWvS/fJdd+fmbNhKr2 b9hq7DZQ3ft8cxtPcozVdgXPzlinwGrXVrRPt5l6Gs30YhFX9ic17XWNgawrEWjjpT8DOK24 GcHuthum2euaZj+6+mLW5zhnfTb7t2kzo2uHynxtZ/9OTVSys4Cje2PtrTZv22leDWBtse/N rTdRpule3Xv7tytmQYneuWa2r311+8XHU+2EpWRxY6ypYLX3sponAfQW3iu9U5fIHqfdJ3ue 3i+9s82yTVNlj/NWiiu9C8z+FsZ28X5X7PNc43+791MLIkf7U/ABGkADZTRwhr3XnoIPUjRg uWWfZJOnj1PN6kj20ai22JUGXTnpkZnP3Hb76j63r3ZNYFvsmvpufWD73i5naLnpBVYD1Qis U3CNA9aBNu3V7jdd4t9PHGtgv/h3eD/jv476wuqOgg/SNBDFIwo+yNDA2OKGW9Jw1qzg/ZbI nOMekfmLt8ncRatk66blFHyABtAAGkADaKBAA72zzHjriSarPeSvzBjrrf0Zw9H/ACviIYCg ATSABtBAaQ0AVkRTWjT0XtB7gwbQABrI1gBgBayAFQ2gATSABgJqALAGdCZXcFzFowE0gAbQ AGAFrFypogE0gAbQQEAN1A5W+6QbruC4gkMDaAANoIGuaGBosCYfEedAmnwN5dAkqOv6nSJ7 s8676HvDbudCheA0rIb4PhpCA/VqIAhY8yopNAiywDpqoYQ+L1/7x/W7vvaxX70NFv/iXzTQ fA3UBta0TDKe5VUVh0/GmvY78e9lvS9jUx7g8n4/7he3n/3d+HtnR9Zx0vYtYzv7Nr9hUkfU ERrQq4EgYE12izpQpL3GoVFVOFnQjv9e8nfqAGveeaf9vo8NWcAeV5d31Trie3qDAnVH3aGB 4TQQBKxplZA21poGoioVWATWMqCv2rVaBMA8sCcvAPKAm8xaq9pbxc98Z7jGhf/wHxropgZG CtZQIisCqy/o0zJcXxvrBqtPl7evrezXzcZNvVPvaGA8GhgbWIfNvHzBkzeeOowNgHU8giVQ 4Hc0gAaaroGRgdVlh6Em3mSBNe938r5TtqLyoJw16Sj+G77jrXkTmMrazP4EJDSABtBA/RrI BetzeGwci1sEXI2EBl1/g8bH+BgNjF8DEVjtQ9MPvH32Y+N8wJqcKBQqI80Sx6h/L5RIQ03c CmUPxxl/46MOqAM00E4NDA1WhNFOYVCv1CsaQANooJoGACtdnXR3owE0gAbQQEANANaAzuTq rtrVHX7Db2gADbRJA4AVsHKligbQABpAAwE14A1W4R8ewAN4AA/gATxQ6AFvsI46Tf/y/3db ZPyof5ffG65Linobzn/oD/+hAf0aAKwB038axHIBrPqDAjqmDtHAcBoArIA1aK8AYB2uQRLQ 8B8a0K8BwApYASsaCKoBwKAfDNThcHUIWDsWVHvH3iYhSlbDI2MdrkES0PAfGtCvgaBgvfba ayWvlBGMT4Du9W5OvdIu+3kZu+re9xvf+MYsH9rPQv1uCKjaYwBW/Y0/lKY4DlpAA4MaCA7W tHnIFrb237HHHusNCB+wtqky40BN+tBdrIQArIWirYdhCmAlkLap7XEu6Dm0BnLBOnfBCpm/ eJvMXbTKC4gOoGlgcJ/ZfXxOIg+sLiMd9tXHDrtP1SzP9/h2vyzfxX3p67u837XnMuy/YcGa 9SCFos/L+JN9CZZoAA2MSwO1gDXeHWyDeLJ72Odkm5SxVsny8uCTPH+XrcaB5zJKdy+v8+Ow WWtTwBo/1zSgJuE/zEPpffTGPgRhNIAGQmmgFrDmZUS+WZcPWMuOpWbtX+TMNBjddu82uXe9 RMW+T5YyYE3LVuNgDZm1ZoHVAjvZPWw/S/tHxkoAKmozbEcjXdZALWDNmsDksi4fh/uA1ec4 IfbJy/KyAFsVrFljn2W70rPOO+1cbH2dcsopsxhqP0uD/rBgTdpW1AVc9zN+Q2iEYwASNIAG nAZqAWsXMtbkOTrAusxVC1htVpoGVSsQN+EsmbkCVgIIEEEDaCBbA7WAtQsZay9lDlAcrlXB 6oA9qq5g+ztZ/+JwHRgTDXy7jc1Ii/4xxkogJ5CjAS0aCALW5GSloozVZzJT02YFZ51TErBu zLUMWOOTl+IwS0LP+i305KUmgfXuu+8WMZC1rzfffHNU3D/ASlDVElSxE60ODVYb7B9e+i9R 8b1lJL5/1mSmJo+xJmHq/u6ZN1W6gm1D9PXdsI02OcbqwOqAnnYBkYRvHV3B0e/azDUjewWs BKthtc/30dCoNDAUWONQdbD0fbXfve222yKgpJ2sD1jHOSs44kCsOziCqjmfqmD1WSBiYnKN 3HDCq7zuA/advNQYsE5BNS1b7TO3N9R5j6pB8TsEbzSABoYGa9EyhnnbhwXrqASczPIGgGrg 6qAav/WmTFdw/DzyljS0UP3Hv75sKLgmzyU+eSkta03rKg6dseZlqnQFE6RG1c75HbQWSgND g9U3Q03upz1jHej+NZlq8n7WqmAtqthh4Zp1u00aQO1nDuShJi9ZiMbPMQ5VN64afwWsBLui NsF2NNI0DQQBa++2nphO3ahb1wL0Rwf8UlTyuopDgNXHmTZIJ++TtJ/5fNftk3Ufa1qmWrUr uIw9Fq5/dtGhlTLXMgtEWKjFQT4NuSFmBTuQRtnxVPcvs4IJjGX0z77opekaCAZWC1cH0ttM wLSlLrD6rxHcm4GqBWwCsr6Vk4TRD7//9aj712Z0IVZe8rUjvl9VuFZZ0jD+W9F45xBgjQPV Za8sEEGgrNIG+A66aaoGgoC1SnewG3u146xVJy/lOdVlQVHGmijuNg7fCTFNBKs99ypwrQJW l7n6ZMk+k84cXJvaKLCLgI0G0MAwGhgKrPaHh528lGW8T4DOmxXsui3zwGr38XGehVGV4nPs YfexcC0zU7jKebgM1QfkPvU27DnzfYIeGkADTdZALljnLFju9di46DaTCiXPMcMGaNe9aG/f iN7HuoKnP+MWDq8Li2QXdB7Ih623JjcWbCOYowE04KOBabAedLv05t3av00/+t9+S8QXrD4/ VHafUAE6a/yurD3s79egQtUb/vbzN37CT2igeRpoPVgR3WhFB1hH62/0jb/RQPM0AFjNODHC DOcDwBrOl+gSX6IBnRoArIA16IUFYNUZCAjg1BsaCKcBwApYASsaCKoBAnS4AI0vdfqysWBF UDoFRb1Rb2gADXRdA4CVbIVsBQ2gATSABgJqALAGdGbXr9I4fzIVNIAG0MByAayAlStVNIAG 0AAaCKgBwBrQmVypcbWOBtAAGkADgBWwcqWKBtAAGkADATXgDdZjjzlaKPgADaABNIAG0EC+ BgArFwxcMKEBNIAG0EBADQDWgM7kKo4reTSABtAAGgCsgJUrVTSABtAAGgioAcAa0JlcqXKl igbQABpAA4AVsHKlOkYN2McftyEQt+U82lAXnMP4wQ5YxxhUaQDjbwB5dWBhkVZC1VscRsP+ Tt22Fp0zYG22lovqj+1h6w+wAtZWZEx1BIY0WDiAhfi9JFirHjPPplEBb1S/U9VHfC8sOPAn t9sADi4eKmkgCxahIBICrKFsGTZQNsWOYc+D7wPgEBogYwU6laATQnxNP0YRWN32tIwx3jWb dp7JY1cBU9nv5NlrbcyyOfm9rEw+7xhNr2vsA6ghNQBYAStgzdBAHkDiEEk2SB9o+uxT1NCr gLXoYsH9Ztr4b9yeNPuLvlN0PmwHbm3RAGAFrIA1B6zJSUF5cBkGtsnf8YGmzz5F9mYFMp9u 6qJ9ytrXlqDKeXCBAFgBK2AtkbEWgapKRuiAXDYg+4CrCH7J80nrDvY5p6Lsvuy5sT9w0qwB wApYAeuIwRoKQqHAmjVGnNYtnHVhEeqcNAdTbOdiwGkAsAJWwFozWJPgCgmhIrj6ZKxF9pCx AgwuGsppALACVsAaEKxp3bo+E5WKAJk3FpqWcWZNQko7TpWJSHWeE0G8XBDHX83zF2AFrIA1 MFjjk5h8AJTcPw+UPoBNGyctGsdNfidugzuHrONmHbvqxQKgaB4oqJNydZIL1rkLlsv8xdtk 7qJVBF8AjAY6qgEAWS6oAiH8FYH1pJXSO/AO6c271dwj3r8sld5+SwSwIhCCBBoArGiAOFBO A4C1o1kIDaVcQ+myvwArWumy/qucO2AFrHTxogE0gAbQQEANANaAzqxyZcN3yAbQABpAA+3S AGAFrFypogE0gAbQQEANANaAzuSqs11XndQn9YkG0EAVDQBWwMqVKhpAA2gADQTUAGAN6Mwq VzZ8hytiNIAG0EC7NABYAStXqmgADaABNBBQA4A1oDO56mzXVSf1SX2iATRQRQOAFbBypYoG 0AAaQAMBNdAosGY9virv87xVYdIWDc9bSLzKlQnf4YoWDaABNIAG4hpoBFh9nsaR9ZQQn0dm 5T2pgwZBg0ADaAANoIGQGmgEWN0JFWWfWfsVPajZfi8NwKyBSmMK2Zg4FnpCA2jAaiAXrHNG /Ni4LNAVPdMSsCJmAhoaQANooCka6D+PdZX0Dkp5bBxgRahNESp2oEU0gAa0aKDxYC3KRrPG WOPfy5vEpKWisJOgggbQABrQoYHGgjUOw6zx0eTnaV3GafvkT3iKHvbu/e+/fe6WgWnq/I0/ 4sEPPaAH9DADw7LtQeuFRKPAqsmJcfJqsDsp6CbbrMVWLXbautZiqxY7NflUk62a6j8vhgLW ijcFawNrk0GKbTq6t6gn6gkN+GkAsAJWVlypqAGCjF+QwU/4qWsaAKwVgyoZK8Gia8GC80Xz aMBPA4C1I2DVNHahxVYtdjLG5hcMy0KD+g/vV00+ZYy1IjzzHEfGGr5RlQ1s7E8doAE00EQN kLFWhC5gpUE3sUFjE7pEA+PXAGAFrExeqqgBAtj4Axh1QB00UQOAtWJQ1Zaxahq70GKrFjsZ Y60HPtR/eL9q8iljrBXhyRhr+IbTxKtLbKKe0QAaCKkBMtaK0NWWsYYUDcciCKEBNIAGsjWQ C9a5I35snKaKAqwEFk16xVb0igZGp4E+WFdK78DbpTfv1ggXveh/+y0RwJpdEdrAqmnsQout WuxkjLWegEr9h/erJp8Wj7EC1tIzY7WBlavV8EEAn+JTNIAG0jRAxsoYa+mLCoIJwQQNoAE0 UDTGSsZaGi5krAQWAgsaQANogIy1Ynaa5jhtYNU0dqHFVi12MsZaT/Cn/sP7VZNPGWMNCFTn TG1g5co6fBDAp/gUDaABMtaAgAWsNCiCKhpAA2gAsALW0mPJBA4CBxpAA2ignAaYFVwRttoy Vk1jF1ps1WInY6zlgqIvRKj/8H7V5FPGWCvCM89x2sDqGyzYL3ywwKf4FA10SwNkrJ7QjYM0 +Z5G061GQ31T32gADZCxesKzTGMhY6VhldEL+6IXNNAdDZCxVoSuNrBqGrvQYqsWOxljrSeg U//h/arJp0NkrCtk/uJtMnfRKmaTJgCsDaxcLYcPAvgUn6IBNJB7u81BqU+3AaxZDQew0qAI qmgADaABwFqx2zfNcYCVBkVQRQNoAA0A1g6DVdPYhRZbtdjJGGs9wZ/6D+vXnnkUePw/zRct 05OX6AouJxIy1nL+0txIsJ26RgP1asACNe7j5N/a/A9YK2axgLXehqatIWEvekAD1TXgQBoH qma4AlbAyozvihogkFYPpPgO3yUz1LZA1Z4XYK0YVLVlrIwHhQ9k+BSfarlAaLJW49mqG2PV 4tcsOwFrR8CqXajYHx5i+BSfjlMDbYEos4IrQpTbbQhA4wxA/Db6066B5IxfzeOnPnVBxloR ttq6gn3EwD4EcDSABurQQHL8FLCypGHq5B5tYG3yGEuyIWuxVYud3MdaDyypfz+/pk1KygKr Jp/mXYCQsZKxMiu4ogbquLLnmH7BGj/p8lNyPJWMlYy1FRkrgUhXIKK+qK82aaAtKyr51kmj MlZJrL5hT8J+5kr8pLI+L9rH53s+ztPWFexzTuxDMEcDaCC0BtqenZaeFTznmNE83SYPdg62 SbhmfZ4EaxzO7n3ysypC0gZWTWMXWmzVYidjrPXAkvr382sZsGryafEY6yrppa0VPCqwOgOT GWvW30X7xQEaP7bP93whqw2svufFfn7BAj/hJzRQrIEyUG2TP/tdwYC19AQewFrcqNrUUDgX 6hsNlNNAV6FqdQJYK84IBazlGhlBCX+hgW5pALAqyFjjY6zxLt20iU3JruC0Mdys7/k2fm1g 1TR2ocVWLXYyxloP0Kj/bL9Whaomn6odY41PMkobH82a0JQcV00DcdoM5P7vlfuXFAJ/3zLQ rY4/8Ec8AKGH9uoh7ZaaYevbN9Fp2n6N6gpumnPy7NGWsWryLbbWk2HhV/xalwaST6ip63e0 HBewMsZaeuKWFnFjJyBBA/VroGvrAPtoCrB2BKyaxi602KrFTsZY64EL9d/3azxbjf/tA6Dk Ppp8qmaMtUpFjOs7dAXXE6zGVZ/8LvWJBqprIG2h/S77k4y1Ixlrl0XOuVcPmPgO3xVpIPms 1aL9u7AdsAJWxlgraqALAYJzBKxFGqh6a03RcTVvB6wVg6q2rmBNYxdabNViJ2Os9cCR+p8Z Xw0FQU0+ZYy1IjzzHKcNrKGEz3HqCdL4Fb9q0wCZas4CGU1aK1iTsAArgVCTXrEVvYbUAFDN 11NuV/DcBctlPg8650HnNWT8IRs5xwIaaGC0GgCsPmBdmf7YOMCa7TxtGaumsQsttmqxkzHW eqDT1fqvE6qafFo8xgpYS8+M1QZWrujrCa74Fb+2XQPcTlNe4/2uYMAKWOnuLa2BtgdUzq98 QG2jz0KurNRG/6SdE2CtCBQyVoJOV4IE59ldraetqFRnV3BbtAZYOwJWTWMXWmzVYidjrPWA sSv177qCHfTqBKsmnzLGWhGe3MdaT0Bqy1Up54E+uqABxljL65yMtSJ06QouL7YuBCHOEV20 SQN1Zqdt8lPyXAArYGXSTkUNtDkwcG5cIFgNANZqOgCsFYOqtoxV09iFFlu12MkYa7XgWHRx 0fb6HwdUNfmUMdaK8GSMtZ6AVBSw2I7f0cB4NTAOqLapzslYK0JXW8baJtFyLuMNuvi/3f4H qsPXL2AFrIyxVtQAgBk+AOHD5vkQsA5fJ4DVM6jGM9Tkew3BQdPYhRZbtdjJGOvwgTKtjbel /pt0O40mn1YeY51zzAqebpMBXrqC6wlWGi5SsJG6b4sGkisrka2G0XZuxgpY2/N0m7YEAs4j TMPHj/gxfjtNcj1g9DGcPgCrZ1dwUmhkrMMJj4aL/9DA+DXAAvv11AFg7QhYNY1daLFVi52M sdYTPNtS/4yxhtcHYO0IWMkOwjcefIpPtWuAMdV6NAxYASu321TUgPagiv31BFUtfgWq9dU/ YK0YVBljrU+UWgITdqIBzRoArPXpF7B2BKxtGQ9qUiDDp+EDEz4N79O0MfamQlVT/XMfa0V4 5jmOjLWeANAkcGILddxGDTQVqm3yNRlrRegCVoJumwIB59INPQPV0dQzYAWsTF6qqAFgNJog hZ+H83P8dhp8OZwvff0HWCsGVW0Zq6axCy22arGT+1jrCaYa6t9lqNZWDdmqBp/6wBWwdgSs PmJgn3oCMH7Fr+PQQHIdYGuDBriOw1ehfxOwAla6gitqIHRj5HgAOLQGXDewOy5gHY3GAGvF oKqtKzh0g+V4o2mg+Bk/D6OBJi1XOMx5aPtu45/HKqbzwpW4c7M+L9rH53s+lagNrJrGLrTY qsVOxljrgXPT6z+enTbdVhdztdhZxIgIrCetlN5Bd0hv3q0RLizJpLffEpm7YPlYn8dqTUmC 0v3ttqVBN28fn+8VOc1u1wZWn3Nin3oCMH7Fr+PQAN2+49Ndo8HaB9jsjDUPuEmoxv/2+Z5v AwCs4xOtbx2xH3XUVQ0A1fFqv9FgzQKhDyDT9vH5nm9DBKzjFa5vPbEf9dQ1DQDV8WsesHZk 8pKmsQsttmqxkzHWegJtE+s/C6pNtDXtgkeLnUUXa+rBmjXGGs9Os7qTkxlskbMGx3tnctYy 32PfeoIcfsWvXdcAmWpz2kCjwZo1xlpm7DUJ3qJZwQOzkjz+SF5h8fctAxPO8Af+iAMPPYTV Q/J2mrb5V+vFUuPB2lTHMsbanKvDpmoEu9BInRpIrqxExtocvQFWxlgbt/KSlnEWLXYyxlpP wB13/TuQpi1dmAT6uG31vcDQYmfR+QDWjoC1SAhsryf44lf8WpcGWK6wudoCrIC1cRlrXYGI 4zY3EFE35euG5QrL+2xUOgOsgBWwVtTAqBopv9PcADrOumFMtbm6AKwVg6q2yUuaxi602KrF TsZY6wnA46z/slAdp61lLj602Fl0ToC1I2AtEgLb6wm++BW/htZAWaiG/n2OV6xpwApY6Qqu qAECTHGAwUdhfQRUw/qzLn0WgHXFWJ9uU9dJhziutq7gEOfMMXQ0auqpnfUEVPXUK2CtmK1o A6umsQsttmqxkzHWegLyKOo/PvN3mAumUdg6jH3uu1rsLDpXwNoRsBYJge31BF/8il+rasBn 4Yeqx+Z79eoSsAJWxlgraoDgVG9w6rJ/06BKV7AevQHWikFVW1dwl4MU564nIFFXM3XFykp6 dQtYOwJWTWMXWmzVYidjrPUE6LrrP+TKSnXbGuqCSIudRecLWDsC1iIhsL2e4Itf8WsVDdDt q1s3gBWwMsZaUQNVAibf0R0wR1F/QFW/RgBrxaDKGKt+8Y8iSPIb6KSMBoBqO/QCWDsCVk1j F1ps1WInY6z1BOs66r8usNZha5kLBt99tdhZdD6AtSNgLRIC2+sJvvgVv/pqoC6o+v4++4XT KmAFrIyxVtQAgShcIOqiL0PO+u2i/5p8zoC1YlBljJWg2uSGjW3N1mdyAQiy1WbXV9n2BFg7 AlZNYxdabNViJ2Os9QTtYerfgTT5WjaA++4/jK2+vxFiPy12Fp0rYPUEazxDTb4vcjLb6wls +BW/atUAqyq1W7uA1ROsyQZMV3C7G4bWgI3dOnSZHF+lK1hHvfm2r9rAKtIz7OlFE2Pcq69R GvYDrO1qCBo0h43t0RwgbU9dprXLWsCaBtS2wVUbWDWNXWixVYudjLHWE8Sr1v84oFrV1lFf zGmxs8gvgJWuYG63qaiBosbF9nqAptmv44CqZn9ptX0kYI13C2t1FGOsBMm2aJfzGI+Wgep4 /D4OvdcCVjeu6oDatm7g/vnN/BtHxfGb3Wmk1LX+ugaq+uuwTDusBaxtBKn2jFXT2IUWW7XY yRhrPUE9r/6btqqSFq1qsbMIsrWAta0zgePOJGOtJ1gVCZbt+F2DBka9AIQGn3TJxlrAGu8C bmt3MGAlwHcpUHCu/npPLldofUdXsL//2qC1WsDaBscUnQNg7VZDKdID29FDXAPxlZWAave0 AVgr3mqhDayaxi602KrFTsZY6wnsjLGG96umNpV3MV0LWOkKDi84MiJ8igZ0aIAMVUc91dme agFrmsFtmymsLWOtU0Qcm0CCBvoaAKq0hUgHZz0lvZNWSu+gO6Q379YIF3aRX+ntt0TmLlgh 8xdvk7mLVg29Og9gRXAEXzTQZg0AVfTt9A1YGWMd+qIpdLDUMs6ixU7GWOsJ+PH6bzpUtWhV i51FMa8WsKaNsRYZom07XcH1BCttOsDebuqgaQtAoMNm6bAWsIau5LS1hn3uj03bx+d7PvYD 1mYJ2afO2Ic6C6GB5H2qTc9WQ5wzxyjXdhoP1qyx2fij6crs4/M9HxEB1nJC8/Ep++BTDRpg VSV0WqTTWsAaB90wT7bJgmASpGlgTdvH53tFDnPbtYFV09iFFlu12MkYa1gQuG5gV/8aMlYt WtViZxEnRgJWa0SVWcFJKKc9QD3r2IA1bDApEhLb8XeXNMAYK3rP03utYE1mrmUbXlaG6ZN5 AlaEX1Zv7I9mfDSgIUP1OQ/2qU/vtYDVZZGjAGtWV3Nad3SoLur++fE8VhpmfQ0T3zbTt0C1 mfXStPZSG1hDnWjWLN6sGb/x360yK3iAmB5/JMcEmvq3s6up9rl6s/bFbWyyvUlb08Yym2K/ pvqPt+Gm+M/aZKGa1GaT7MvTn9b6D8WRUR+nNrC2/V5WMlauXEfdWPm98WmOTHV8vteo+1rA GrLLtalOBaw0tKZqE7uG1yaPfRveh13W4UjAmjVzV7PjASsNT7N+sT1bv2kPKsdftPcyGqgF rMlxTsA6flFquj9Mi61a7EwbeysTJEa577h9mgbVrG7gcdtapl602KrFziLfjwSswywSUXQC 49pOxjr+i4Vx1T2/2966T66q5CYtUeftrfM66rZ2sNZhdBOOCVhpaE3QITaE1yGLP4T3add0 Clg78ti4rgmb8yU4VtEAs3/RTRXdJL9TG1jj3b9VljMMcXJ1HkNbxqpp7EKLrVrsZIzVDxZl oUr9+/m1TBzW5NO886oFrGlr+rYNrtrAWkbc7Bs+YODTZvu0LFSpz2bX57jrB7DSFSzjFiG/ T5AapwaAKvoLrb+RgJVZwQg3tHA5HpqqqgEmJ6Gdqtrx/V4tYLU/nlzS0NcgLftp6wrWNHah xVYtdjLGOgOS5H2qw2Sr1H94QGvy6cjHWLXAcRg7tYF1mHPlu+EDCD4dj0+T96kOA1bqcDx1 qMHvtWWsbc9aASuNSkMDx8ZBncbXALa+Aay04zraSDCwpj3Npm0zgeMVAFhpkHU0SI5Zr64Y X63Xv+i3799gYHUZalccqw2smsYutNiqxU7GWKeCnclPQ8Yn6j88pDX5dKRjrFkPJg8p6CYc SxtYm+AzbAgfiPCpn0/p8vXzE3oK46egGWuyUtoMWcAaRoA0ZPxYtwaAKhqrW2PJ4wNWFogI 2j02agHzewTN3C65wN2/6A29+WigFrC2OVN1TtWWsWoau9BiqxY7uzTGOsrJSdR/eMhq8unI xljbuMJSlvO0gdXnKot9wgcKfDo6n5Z5SDn1Mrp66aKvg2WsXchS4wIBrDTMLgaMJp8zDymn TTZFn8HAOgid3qwlDbXf0xoHafJ9UyoTOwgsXddAWtbadZ9w/qOPC7WAtQsVqS1j1TR2ocVW LXZ2ZYw1nrGOYiYw9R8eWJp8OrIx1i4AVevkpS7VDecaPuA13aejAGnTfYB9zdE9GSu323C7 TUUNEMiaEciAajPqgfYwUw+AtWJQ1dYVjOgJPm3UAFBF103UNWDtCFg1jV1osVWLnW0aYx3l fapFAZv6Dw91TT5ljLUiPPMcR8YavlEVBTK2d9vnIR9Sjpa6raW665+MtSJ0ASsNs+7GyfEH NcZDymlzWtoEYAWsTF6qqAEtjbwtdvKQcsCqRcuAtWJQ1Zaxahq70GKrFjvbMsbapPFVTT7V ZKumNsUYa0V4MsbKFbKWK+S228nsX9qiJo2TsVaErraMVZMosZUg6jSQ7P5FG2hDgwYAK2Bl jLWiBjQ0cM02kqUCUa36BawVg6q2jFXT2IUWW7XYqWWMrWljqEVBnfoPD35NPi0eY10lvQPv kN68WyNc2EfTSG+/JTJ3wQqZv3ibzF20iqwmAWBtYC0KEmwPHyTwqb9PuUfV31foqvm+6mes gLX0hQNgbb64CUB66ohnqeqpK9pVcV2pAWvyea4+D1ZP28fnez7CAazF4vLxI/vgx/hEpbT3 aASNaNOACrA6GMad60Cbts3tl7aPz/d8KlEbWDWNXWixVYudGsZYR/0sVZ82XrQP9R8e+Jp8 qnqMNQ7CJDCz/rafZ2W4aXAuakBp27WBtco58p3wgQOfzvYps3/RWdvaRaMz1jgcs96nQRSw 0lDb1lDbej5AlbbaRm03FqzxsdDkuGhaNpqsHDJWGmwbG6zmc0reTgNUaaOa9ay6KzituzeZ vSYhmsxY8yYxVa1YbV3BmsYutNiqxc4mjLH63k6DT+uBrRa/arGziBuNzVh9M9CiLuLk5Kai WcFxYPq8TwqBv28ZuHUJf+AP25azHvmGPtBHPNYD1oorFhWRXst2bRmrFr9iZz0Zy7j9yiPf 2lmv49ZVU39fTcbaNAcCVgJF0zTZZHu0LVfYZF9iW/NjD2CtmHlrA6umLhYttmqxc9xjrGUm KeHTeqChxa9a7Cy6uAGsHQFrkRDYXk9A67pfy0C1677i/NvTBgErYC29TjIBoD0BIGRdxsdR eY4qGgmpLW3HAqyAFbBW1IC2xl6nvcnbaer8LY4NtJuugQisC1dK7yAeG1cKMIyx1te4tYyz aLGz7jFW33tUfYIhPq2nXWnxqxY7i7QMWCtmK9rAWiQEttcT0LrgVx75hna6oPMy5whYAWup TL2MuNi3OwGXruDu1DXturiuAStgBawVNUCA6a+opPGRb9RdMRzwUXUfAdaKQVVbV7CmsQst tmqxs64x1jpupem6T+uCmRa/arGzqJ4Aa0fAWiQEtle/Ou2C7+IrJ9nzrQOqXfAj59iNdgZY AStdwRU10JUgGXLWb1d8xnl2A6BZ9QxYKwZVbV3BNPRuN/Rh6h+wop1h9NPF7wLWjoBV09iF Flu12DnsGOsou4G74tNRw0aLX7XYWVR/gLUjYC0SAtvJSjK7tcyIanwb46tohXiRrwHAClgZ Y62ogS4El+StNEAVqHZB98OeI2CtGFQZYyXADNv4mvx9FtFH303WZ9NtA6wdAaumsQsttmqx 02eMNbnQw7gCV5t8Oi4fpv2uFr9qsbOobgFrR8BaJAS2dzdDYTnC7tY97b6eus8F65wFK2T+ 4m0yd9EqxuESAKYruB5B0tBH69c0qDKOOto6QPPt8zdgJWPloqmiBtoQEEd5K00b/MU5tA+C ddQpYPUMqvEMNfm+jooJfUxNYxdabNViZ94YaxysTZiw1Aafhm67IY6nxa9a7CyqE8DqCdak I+kK5sq1qHE1fTtdvmi46RrVah9gBax0BVfUgNpGH3vUm9ZzwG4uCpqsAcBaMaiSsdKwm9yw nW1N6+rV4DNspG0PqwHA2hGwahq70GKrBjtdd6+1tQljqEUBS4NP3Tlga3gAa/JpnpYBa0fA WhTQ2B4+SDTBp8z6bWe9NkFb2JCtLcAKWBljragBDYElOUGJCUuAVoNutdsIWCsGVcZYCVBN bvzJJQo1dAM32Z/YRnsvowHA2hGwahq70GJrU+1My0qbamsyWGmx09qNreFhq8mnjLFWhGee 48hYwzeqMleE7Nv3P7N+0SFtoXkaIGOtCF3A2jwxdy3AJNf5ZfwUTXatDTT1fAErYGXyUkUN jLtRxx9CHr9vddx28fsAvusaAKwVg6q2jFXT2IUWW8dtZ3JCUl7GOm5bfQOtFjsZY63n4kFT /RePsa6S3oG3S2/erREuetH/9lsiPDYuWzzawOob2NivnoAR2q90A+uop9D1zvF01Hs/YwWs pbtDAasOgWsPRGkLPDCWiva067rt9gPWjnQFt13IbTw/slIA2kZdd+GcAGtHwKpp7EKLrXXb GZ+cNOwCD3XbGipYarGTMdZ6Lno01b/qMdb+kG9vVlet+zxtmzvhtH18vucTJOgKrqdh+fi+ K/uUmZzUFZ9wnrQ7DRpodMYah2YSoO7vLPBa56ft4/M9n4oDrDRwH51U3Qeooq+q2uF749dO o8EaF4gPZLP2d5DNgnMVIQLW8Yu3Sr1p+A5jq2hLg06xsejpNg2fFVwExKyu4iRoi45TRija wKpp7EKLrcPambYcYV0zfoe1tUzbGGZfLXYyxlrPxY+m+lc9xhrv0o2PneZlp1nf6TJYhwl2 fDd8EOFxbuF9ik7xaVM00Piu4KJsNG9yUxzEyf3yxmZ9KkdbxupzTuwzusCUnPFrfV9Xtkq9 jq5e8TW+jtpyUxeIiM/eTYNg1ozftO7f5Phs/oSnODKL3ye7Lvj7loEZ3Pgj3R+uG9j5x0EV f6GfeAzruh60Xqg0FqxNd6i2jFXT2IUWW6vamXZ/at3ZalVbR90OtdjJGGs9mamm+lc/xjrq xu3ze9rA6nNO7BMuWCQnJrmu3roBSh2Gq0N8iS+raoCMtSMrL1UVCN+rFly4Zaaa39AbfmuD BgArYC39AII2CL/Oc0hClYlJwKJOvXHs5ulrGqwH8di4UoDR1hWsaexCi615djZt5aQ2+LRp ANHiU03jwZp86jXGCljLXfVoA2vTglJb7Rnlog9t9SHnVS4W4a/m+YuMla7gUpk6jbjfiAFo 84IZ2qROmqIBwApYAWtJDbBqEgG8KQEcO5qpRcBaMqg6IWvrCtY0dtF0WzWumtR0n7p2pcVO TeOWmmzVVP+MsVaEZ57jtIGVK9twV7ZNm5hE3YarW3yJL0NogIy1InQBa7sbYBKe8XHVtDHW EI2RY7RbU9Rvd+oXsAJWxlgTGkhb3IEVk7oTFAEgdT2sBgBrR8Cqaexi3LamreWb1tDGbWeZ xq/FVi12ahq31GSrpvpnjLUiPBlj7d6Va/w2Glf/ZKvd00GZixb2RR9JDZCxVoQuY6zta0xA tX11CvSo03FoALAC1s6Nsfos7pA2eWkcDZTfBAxoQJ8GAGtHwKpp7KJOW0M+daZOO0MHUy22 arFT07ilJls11T9jrBXhyRirvivFIiDR3du+Oi2qc7ZT56PWABlrRegyxqqvsWbdmzrqRsfv 6dMOdUadldFABNaTVkqPp9uUEw5gLeevMqIcZt/k+Kk9VtpKSYyhNrP+hql7vkudNkUDgLUj GaumsYthbA05hlrUSIexs+jYobdrsVWLnZrGLTXZqqn+C8dYyVjLX+mRsZb3WWhYzLp3zOSm yQyVe1CbV09164DjU+fj1gAZq2fGGgdp8v24K7FLv582+SgO02TG2iXfcK4ABQ00QwOA1ROs ScGSsY5HwD7r+DJ+Op66IajjdzTQ1wBg7QhYNY1dZNnqu4bvqBp3G3w6Kl/5/g4+rQfOWvyq xc4iPQPWjoC1SAgatvMc1HqCroa6x0bqXpMGACtgbcyShnm3ysSzVdfAmJhEsNUUbLG1O3oF rIC1UWCNQzMNnFmTlwha3Qla1DV13XQNANaOgLXpYxdZ2WqTG1DTfRr3nRZbtdhpfYut4QGv yad5sQmwdgSsTQBU1jq9rN8bPkA1ob6xgXrtqgYAK2AdSVdwsls365YYbpUhGHc1GHPe7dE+ YAWswcCaB8W0Z6ASSNoTSKhL6hINzGgAsHYErHWPXaSteJQ2buozo7duW0MFAC12ahoPxKf1 AFqLX7XYWRRD+mBdZZ5uc4f05t0arSfUi/633xKZs2CFzF+8TeYuWhUsqykySMt2Vl6KXZ1N rdFr6y5v1i4zeusJmlraDHZS/13RAGDtSMY6rKDLApN7TAmiw2qO76MhrRoArIC1sDcia+JR fEyVxe8JglqDIHaj3dAaAKwdAWve2EVRF63vxKNQM3q1jLNosZMx1nrAQf2H96smnxbfx8oY a2HWlnRim8ZYQ048Cn3lx/HCBy98ik/RQL0aIGPtQMZaND6anHTEUoL1NjqCGv5FA+3WgFqw 9icv90uWSNP28fmej+iblLEW3T8aP5+0bt20MVQfH7BPu4MD9Uv9ooFqGlANVlvpeXB10I3v k/ZZFfE0BaxFk4Z8xkfz7jet4pthv6NlnEWLnYyxVguORTqm/sP7VZNPWzfGmsxS07LWtH18 vlfUmNz2UGAtmvDj042b1pWb9T1ugwkfDHw1w374Hg10QwMqM1YfQI4CrMNA0cHQNbSscU2f btwyWSsNuxsNm3qmntHA+DQAWCtOXrIwc/98oZiEZFL4WeOfZbJWGtP4GhO+x/doAA1ESZPG JQ3j2WjWGGvaPj7f82kYSaj6ANF3n3gXc/x3+mtNzsA8uV/WNrefHbvQ8k+LrVrstPWuxVYt dmryqSZbGWOtmOn5gMtnn6wZv/HvVpkV7AOfNIgVQbDoO0XQLAKnj93sgwfwAB5ougd84n/T 91GZsTbBqcmsNU2s8Sw1S8xun6aLHfvwAB7AA6PwQBPi+7A25IJ1Lk+3yV2RqWjyUtXKseKt +t2s72k5prVfi6112Nn188en4dt+1zUVOpb6HG8arAfePvuxcYA1fyCeIEAQ8GlkZfepQ1dd PiZg0XOx2roxVsBafjZbHcGKIKAnCFD/4S+s8Gl4nxJTysf2shfDs+7wcLOCAWt55xMECALD NsC079ehqy4fE7BwsVpHO807Jl3BQ8xuriNY1SUAbC1/4VRUF/gUnxZppCnbtWhVi51F9QpY OwJWTWMXWmzVYqcNAlps1WKnJp9qslVT/ZOxDgHPPOdpurrCVrKroqvsJmxHp+F1WldXeB16 0VT/gBWw1nILSx0NiyBAYK1LV6GPqwkCWmzVYmeRlugKHgK6mkSAreGBhU/xaVGAbcp2LVrV YmdRvQLWjoBV09iFFlu12MkYW/gLAE0+1WSrpjZFV/AQ8Cy6MmF7PUELv+JXNIAGtGqAjBXo Bl8+UWtjwG4CORpAAyE0AFgBK2BFA2gADaCBgBoArAGdGeJKh2NwxYwG0AAa0K0BwApYuVJF A2gADaCBgBrIBeucBctl/uJtMnfRKpwe0Olcjeq+GqX+qD80gAYKZwUvXCm9g+6Y/dg4wFr0 2Lieue2qX7Kc7LbH90n7rL8wQvHxqjRon+MW2Zk8T59j1mWr81Xy+E31a5advvZX8WP8O751 labjJvo0Wf9xG5uk06zY0ESfFtnaFK0W2ZnUsK/2h21jye9HGStgrXb15SoxD65p+2SB2Od4 VQTgc9wy+2SBrYptaQ02fpFRpkFnnYPPuVWxPe+4ecHT/VZaEKhiR9F3is4/L/g0Tas+gTJu c5b9RT4r2u7j06J6TrsIyNN+kU15F/dFbSrN1jw/jsOvVewpqqeqPi36HmCt2MXrExSz9kkT pc/xiiozbbvPcUPtU8W+ZGaV93eZfeMNyveYZez38VnRBYjvMcrYlXWhkhXki3zTNK0WnUfT fJrUgG9MCAWusv4oupAq8v+4tDpKnfqcI2AdE1izrlZDC9enYRXtkyXa5Dn4CC5vnyI72gRW DT6NZzlVsoWyehim/rMuYpxGQ4Eq7Xfyjl10Tk25AMy7CGyaVn3tKfJ9WX2W2R+wjgGsRd0u RZlOmQr2EVfRPmUCRxnbQmZXTc0EfDOAosyxql+L6tb3d7WCNfSFKmAdHDYbxwWLbzwqo/2q 7Svre4A1AFizMrdkMMqr6KJ9q1a8z3Hz9ilqOEXby9jtY2tWoMz6bplj1mFr1tV1mcy9jF15 FytZOvWBTxZYi45ZxvYydVU2aI5Dp0V1H/ddmXOvw6dVLgBDJgDJY/nE1DQ/jEKnPv4HrBXB 6oSQFEBag082oDzRhAxU8YBZ1s6irqE67PT1aZZtzqaiOvBpGD77JH/PN5Cm2Zllu48dRftk /Z5Pj0ETtZoWhLOC7Dh0Gvd32u+PW6dx/2XZmncOo9Sqa1NV7anT1rx2B1iHAGtRQGN7tdnW +A2/oQE0oFkDgBWwsvgHGkADaAANBNQAYA3oTM1XWNhOhoAG0AAaCKMBwApYuVJFA2gADaCB gBoArAGdydVemKs9/Igf0QAa0KwBwApYuVJFA2gADaCBgBrIBevcBSt4uk1AZ2u+AsN2Mgg0 gAbQgJ8GZsB6++yn2wBWPyciNvzUFg2k3S+YtZBBW86Z86D9htYAYCUjpQsIDaRqIGs1ntBB iOMBtrZpALASVAErGgCsaIA4EFADgDWgM9t21cX5dDuTKFqiMW1pPPdZmaX80Fm3ddbG+ges gJUrVTTgnbFmrcPsgmPa9jiAs/ZrY3DlnLp7wQBYCaqAFQ0MBdY4QPLAmpwYBXi6C5621z1g JagCVjQwErC2PZhyflwoOA0AVoIqYEUDIwFrPJtlxjEQavOFCGAlqAJWNFA7WPMmNbU5wHJu 3byAAKwEVcCKBtAAGkADATUAWAM6k6vTbl6dUu/UOxpAA3ENAFbAypUqGkADaAANBNQAYA3o TK5auWpFA2gADaABwApYuVJFA2gADaCBgBrIBeucY3hsHFefM1efWTf/4yOu0NEAGkADMxqI wHrSSukdeMfsx8YBVhpL1qo63IeINgikaAANpGsAsAZM/9suMgdToEpAbbvWOT80PowGACtg 9R5bSXtiCTf+E4CGCUB8F/20UQOAFbCWAqsDqWsMjLsSGNsYGDkndD2MBgBrDKw9GfxvGMe2 8bvxruDk+/iTS9p47pwTgRYNoAFfDQDWBFgHVs8woPV1ZBf2Sy6intU13AVfcI4EWTSABrI0 EBysyayPv8fjgToafdZDrnnOJgGmDr1xTHSlVQPBwarVEdZui0Bnf/y95nPCdoITGkADaGC0 GgCsiclLLr9EiKMVIv7G32gADbRFA4CVWcGMI6MBNIAG0EBADQDWgM5sy9UW50HmgAbQABqo rgHACli5UkUDaAANoIGAGgCsAZ3JFV71Kzx8h+/QABpoiwYAK2DlShUNoAE0gAYCaiAXrHMX 8Ni4tlxBcR5kA2gADaCB0WiAB50HvEpBtKMRLX7Gz2gADTRZA4AVsNIFhAbQABpAAwE1AFgD OrPJV1DYxhU+GkADaGA0GgCsgJUrVTSABtAAGgioAW+wbt20XCj4AA2gATSABtBAvgYAKxcM XDChATSABtBAQA2UBuuX/vfn5X/++Wfki1+4Zbp84fP/Rf7bZ39fPv/ZT1PwARpAA2gADbRa A5Z3lntf/O+Gg1Plf/3FH4vlo83mS4P1waUPyE/u/ZH84Iffmy7f+9498p3v3iX3fOfOqNx9 T1r5lvm8X+66u1/uvvufE+Wb5m9T7vonU/7Br9z5Dbl7qtxlXm25887/Y16/nl++/XdyFwUf oAE0gAbQwCwNfNX4ZLDc+a2viCt3ffsrcs9dX5Xvfedr0+VHP/h7ue9fv1UNrOvWr5bHVj8i j65cMV1WPPKwLF+xbKo8JMuXPyQPL3/QvPZL//19GWWJ+XyqPGxeH/5pSrnXfDZTHl72Y1m2 9CeyfOmP+8X8HZWl/xKVh5f+ML089AN5+KHvU/ABGkADaAANZGpg2YPfM9u+O6ssX2o//05U li/9rqx4+HvT5Sc//Hux/yplrFu2TsrmLRMyuWnDTJlcb97Hiv17cl2sPG7ex8sa83e8rDZ/ 27IqUVaav02ZmCobH5VJWyYeGSgTG1eILZMbH84vG5bK5HR5yLyn4AM0gAbQABroa2Bi/YMp 5QHz2UzZuO4B6ZclsnH9fdPlxz/4h+pgffJnW2RWeXKzPPnkZE6ZMNtSyrYN8mRU1qWWbU+s lX5Zk1qe2Lpa0sq2LStldnnEfObKCvOegg/QABpAA2hgUANbNz8itjyxeUVKWWY+GyxbNz9k 9n9Ifmy6gitnrEmAbts2Kbb0PzfwnIalg+bs121PrDegjBcH0EGQbt36uNiShOfWLY9Jatm8 0pygLX3HJB20xTjKFaaLc8sAGkADaAANFGtgmenejZel5u+ZsmXyIbHlRz/4BmAtdiaCw0do AA2gATTgB9Yffv//jAasvV5PXIlnslkZq9033vVbJWO1xyBjJRgQDNAAGkADYTTgC9avzwbr gbdLb96t0ee96H/7LZH4Y+Ocgb5dwRZwcZjG/w4N1gimtnu4xq7g6DcKbiD22afoGGwnGKAB NIAGmqSBBoO1zowVsDZJhNhCUEQDaKBNGvAE63e/NvqMNQnWeDexm/0b7wqOb49PXop/7iYw uc9sxhrvCh44xtTEJfuZncA0/Z2MLDS5PevveJYa3yeZvWbtRwNsUwPkXNAzGmifBvzA+v17 vlo/WC1Is8ZY+wCdmRXsgDr4uiaaEWyL/dzC1b3GgWrfxzNWB9Y4YO206SygpnXfJiEY3fCb 0xXstqV9z4nMZ5/2CZIgQ52iATSgXQN+YL3nzr+pDlZ7a80TZpEIV7aZ99u2bpwuT2zdYLYN lq1b101Bsf95HLju/RNb1vb3mXpN7hMH6JbNq0zWuWp6TLUPzUej4t5Hr5vM7TVTxf3dB9wy Mz26X6LPp97HX5Ofp/0dtzF5rLzvZ/1mmh18NlNX+AJfoAE0MA4NbJpYGt1SE5WJqTL5oPnb lIkHovKtf/5SdbCmgTMNpBamM6WfdcYz0Oj9FpOVxorLPPtwNOCcul/VgbSfha6chqibrOSy UTsbOJ6xDgPWPFBmQTP+uQ+YxyEQfpPAhAbQABrw18AMVKdA6oCaAGvqkoa+s4IHgTkDT5tp OnC67tu0v12XroXmFgNVW+JAdZlpWkY6k5n2F3roZ6F9mGZlpi47dZnqTMbav/roA3DqSmTq Nf6Ze5/2mfte0T4us03+XtpvJ23h78G6wR/4Aw2ggfFpYCZDdZnq5on7xZbUJQ19wbpl81oD tViZgmM884wDcxoqm1dHWWg8+5zetslkoab0AdnPSAe6WRNdum7bponlYsvmiYenu3TttsmJ ZVGJH8NeddhiP7Ovmzc+GBX7t3sff3XfTX4W/178+GnHix8j/jvJYye3FdmWZi+f9euTgg/Q ABqoVQMb7pPNtkwBNXpvSuqShr5g3WTAZ8vmTY9FZfrvyUdl81SJtif+jvYzi+fPLn045hUH yszXqYX1J+wiygPFLKi8IaWsv98sqkzBB2gADaABNDBbA5PRovv3y6RZZN/5x77vlyWDZd2/ yqQpqUsa+oJ1w7plEpX1D8fKUvPelHXJMrXv1HfWr31I0suD5vOZsm7tA5JW1q+93+x3v6x7 fKrY9/azx++bKkvM6xJZt2am2L9dmf788Z+aY1DwARpAA2gADQxqYL1hgy3r1vxkoKxf/ROx ZfDzH5m/+yV1SUNfsK557F/FltWrlshjj80U95n93JXp7at+Ko+VKKtX/lhKlUd/JKttWfkv 6eXRH5rtg2WV+ZuCD9AAGkADaCCpgcce/b7Ey6pHv2d40S/u8+nPHvmurDLlh98fYknDR1f8 WLzL8h/JoznlkeU/EL/yfbNfrJiHyz6SVpZ9Rx6xxW1zfydeV5i/Vyy7m4IP0AAaQANoYEAD jyy7x3BkphSyYqlhydI7p8vAg859M9Z+NnqfyVrvN+WBWLF/pxe7/+OxssYcI7VMZcMuK571 Ov29e833PcrKn8ialFIqGy6bPbN/ud4G/IW/0AAaUKOBWK+o6yl99MdR7+djK34gq1Z8P1pT vnfWU9JbaCbk+oKVVUS0ryKC/WgYDaABNFCnBgrB+sKLNsj8xdtk7qJVMuctm0uV6OAUfIAG 0AAaQANd0oDNVo+6Mztjfd6Zj8ivXLxanvvmFfJLJy8vVXonrRLvYg1pUjnJ2ONbFprzLFXq PtcS9vie4/R+JerU1n+ddVpGX1VsqfX4JeqolLbccevUWFnbS9pSVpOl/FPSltL6rdk3pewp aUuj/F7S9lJ+sRooe/wy+5vjH3+f9I78lvQO+svE81jnf8V8aB7SGpU7Yu/dZ6Ff7W+UKaF/ P3E82zdeV5n2q+c5lLWjjB/rPHYV3RxoNOBbyvqxjF+q7Otrd5X9yp5r2d+ocr7e3/HUedlz HIhPvrGjSbaMIq7WeL5lNFa6bn3rs4n7WZ8boNr2sf+fJ8D6otuiDyj4AA2gATSABtBAdQ3Y 1fl70RL9/MMDeAAP4AE8gAeCeOD/BwD8klLt9abEAAAAAElFTkSuQmCC</item> <item item-id="479">iVBORw0KGgoAAAANSUhEUgAAALYAAAAVCAYAAADreBREAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALPSURBVGhD7ZrrYYUgDIWZy4Gcx2lc xmGovBQCAQlwfTT913ut5iQfhxArJP9wBj6YAfFBTSyJMyAZbIbgkxkYAva2bZ9M1ld0/Qcd HtirnIWQ8wqY3BY57Z+L6Atz3Tr7f7PJZRJyWhzY6p6TPH4dijstfiyk+3SxjlRNautRABtJ sn3ytkwAeAj2fqFaGNMix3t4KtZ8/BjU9+piHbAulHpkwC5Bob6f5WnwBmqh3B04vFptp4uP sm0Ybyl+1Ktv1sU6wsrQOEPANpAi3Yd+bryK9KegFbEhrrMUWdc2xWyD3weiHP91t27R5T1l z0Eun+eVrMOvDZWzJNjKYZXr4oVAAMbA3n19fK99AlGO37ZIwY6TAbiHLgLYWR3u7GN3yLBW A+vTW4cyPbfLd6xHBLYD2iTVbzX8dYRt8/mEXnEsV8xTbLq9iR3XxHQp/iOZUN84Xfspu8qx 8zqAUWjI/UP6S3TouM8axO5M1xGBHU40sGkI5sC1TtGz34btjAUdrCazcHYI1jCpdsaD7Cw0 XbRFekGHWpgJXedHfeszTEd8SgxA32du5HrkpyLW2WKnpa+kEsq0JOrBYzyuROPHWpFxumod O8h5TodOKATgnTqGOjaEWD+sY+9TApv+fbqY6fjf0WNHh6hka5jaTWp3mIozUGVLdYmn47wA 33nQdZRf0NiDE4Q7fVq10xL4QufnU5EACTuGBP006O/cX/TV1ToVKenAp0nv0uF0xguMqqPh lfr1Vf6bOXal1yNg431d4rj6k/k8osu6HH4gf2d9wjeMqTYLr7PPWQPY2CwbPPhnbx57gf0C XUWoTS4wtwsydWd9op08vRgpOprAdi9kerhGJZbtl6OOrZEovKC67obtgcZ3MOcGbwyanGU/ X8ex+A4t2P8V1dejEewRZeN7cgbaM8Bgt+eQ7/DADDDYDywKh9SeAQa7PYd8hwdm4A8U1RHC uI0jQwAAAABJRU5ErkJggg==</item> <item item-id="480">iVBORw0KGgoAAAANSUhEUgAAALUAAAAVCAYAAAAAT69HAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKgSURBVGhD7ZkNkqwgDIQ5lwfyPJ7G y3gYVvCpEBJ+Agzqy1btVu2M49Cdjyag0vIjDnzMAfUxPSJHHNACtUDwOQeaQ71t2+dMMoK+ out/0OFAvepZKa2Q33nFOV1npe/3Nr1MSk/LCbW536Svf7uiXj722HDG6RIdWF1K6xFAHQC8 zjvoIZzbMmnlXQyhNvG26GladP/sPmDIHXsM6LG6RAesDaceaah3JP0ENl9rzJ/3v+fPcc2V 8g5dZpbd6d0rrgkY0LFHM3qwLtHhV4fHWTbUbgqGs8d2nQj8hv896aNpfRSyDvw4DFT7lE6F Gl3O3XcP8sYgOtyacDlLQx20HwS8ZCr+orcuXLZNW+StNBF4W+iqhRrWwI7/Xhn9CdOxPq11 WF2nDnflr6tHxkYR9tOlS+Rhck5SmVYF26ja16I3oDZYyEb1MhKa2E+XWa1y9B9tHeaBqwOE hAUcvo/5HYc9a3wtdYBgCVOZX490UgctKJW8pQnRsr+mDAAdmp00OwArltRtdfEmaIYOMykB gf7pwEt0hL0fWD35OphQ90kCHgjnxjVvNbBeou0HPxmS07Mw4bJS8/pSWPx36hic1KWJPLCn pmh7W09NzhqsFh3r02NyXvsD2CrydTCS2gQdPKM+XLevw/536OkHQQMKdWtdLU8/MB30qVHb +vTWcd4/DD+uDuZj8vz0/c05dbIB8C8goD42anlPQYfq+pdudJvyEh2gbP7e4Gwry+vBhJpO NW+cP3ui2ArqF+hKAu2smqnmfGR9ghUcn4hUWsc4Y0N9PmxpkRaFSNZfTib1fT76VF1XiweO /sLxpo5S89O83nD8Dr4WKpHLdVRA3Uuq3FccqHNAoK7zTz79QAcE6gcWRYZU54BAXeeffPqB DvwBNhDOp3IdOSkAAAAASUVORK5CYII=</item> <item item-id="481" content-encoding="gzip">H4sIAAAAAAAA/4xT227TQBCdtR3fmjRpSAqpk7iUwhsoLDfRBxRQhZC4SeEDKtcxjREhwXVR ES/+An6BF76Bd36AXzJzcULhibVmd+bsmcvOrusAoFDeoPismzi7ycdJcpIuPtSAxl0Ub7qI BbMYe0i0efz6+F0S54zAhP0NnO3T2fLJ4lzgFygOApM18SXKGLPOPgM8wnz+lz82jTttKcoA w2SlvU7+OM+z9PgsTxQzD1CacHFYB3t/2TUOYOVZkgQMaJTGklVb934CFDVHf8N1bLuyOp6s ri+rt6ENTPIJ++Mq5zaM4D7cwjj3qAl13vuBe4ZSI4rNToW3qamycYMqZLVocNKWbv9Cw91i x2mLHJ/jEfVXLKpowSXGv7cJl351JKLTlXI627J2L0tZ26vUV6SUtQ09cezuSCk9hAIppceB +2J02BgI2R5K9EEo63BXsoTYRGWO+OBwVTKF60x74jy8JpnoCvYluNzGdTnUYHWoG/xMmlN9 dJJFy9nR20U2j3KHuV16bQwfRnkkt7hT3aaxi5NZvdkHKDdZJ8uPztPTpxxHXmif3p6quDJK /ED1/x9dBXfyLIoTfWjyVlARQ9UCFaiSNKUCPFIZKkMFJrqGylSBVRJiIQdKVGrIKca4ZROH vBzmoOISh8gexSF3HznsvoEcdq8jh90bnAuVTeag0iQOkaXc5quzeZKlcfReGuJy2c9QppDi Z1a/jV91859Rv2j8BgAA//8DAI6rS5YiBAAA</item> <item item-id="482">iVBORw0KGgoAAAANSUhEUgAAAf4AAAGiCAYAAAAGI6SpAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACP4SURBVHhe7d2JUSPJFgVQ7JJBsgdr cAZj1IithZBQrTe3MxEdMf9Tqsw8L3MuT1s/nfxDgAABAgQIDCPwNMxKLZQAAQIECBA4CX6b gAABAgQIDCQg+AcqtqUSIECAAAHBbw8QIECAAIGBBAT/QMW2VAIECBAgIPjtAQIECBAgMJCA 4B+o2JZKgAABAgQEvz1AgAABAgQGEhD8AxXbUgkQIECAgOC3BwgQIECAwEACgn+gYlsqAQIE CBBoM/hfn0+Hp+Pp5bJ+7//f0+np68/h+fT6/fPX0/Ph62dXj7MHCBAgQIDAQAINBv/L6fge 7lcB/nI8PR1//CrwXcaX49v1nz+7/PeB6mypBAgQIEDgXaCp4H99Prx39Ifj8VfHfw70w/P/ Hv9/fc+/KBxO3z+69WyBzUCAAAECBAYRaCv4X14+nr7/Fd7np/Ivwv3XSwCXzw5c/SIwSKEt kwABAgQINNfxf5fsV/B/hPnh+3X8vzr838H//b6Ay/cI+Pf/75dgwcIesAfsgd33QOrXkqY6 /rvB//6LwGXHfw73zy7/zi8Jl68KnIPfP/UKqE+9tfmamRrVXSP1qbs+7114MIfaTLyHr9Nf dPWCv/4d/2CGyQPRPFahBahRIfiJw6rPRKiClyVr1H/wv33o79Gb+5LgBfdVs0OrT/2lU6O6 a6Q+dddHxz+lPtdd/PmjfJcf7zv//OJz/I8+zudQTEEvd436lLOfOrIaTZUqc536lHGfM2qy Rt10/F8f9ft4o971l/R8ffb/1s+yr63M2Qiu/RBIHgjmywTUaJlb6lHqk5JePk6yRm0G/3Lb m49Mgm88dbcjQIAAgQ4Ekjkk+HWUHRwZSyBAgEDbAoI/XL8keHhphiNAgACBBgSSOaTj1/E3 cCRMkQABAn0LCP5wfZPg4aUZjgABAgQaEEjmkI5fx9/AkTBFAgQI9C0g+MP1TYKHl2Y4AgQI EGhAIJlDOn4dfwNHwhQJECDQt4DgD9c3CR5emuEIECBAoAGBZA7p+HX8DRwJUyRAgEDfAoI/ XN8keHhphiNAgACBBgSSOaTj1/E3cCRMkQABAn0LCP5wfZPg4aUZjgABAgQaEEjmkI5fx9/A kTBFAgQI9C0g+MP1TYKHl2Y4AgQIEGhAIJlDOn4dfwNHwhQJECDQt4DgD9c3CR5emuEIECBA oAGBZA7p+HX8DRwJUyRAgEDfAoI/XN8keHhphiNAgACBBgSSOaTj1/E3cCRMkQABAn0LCP5w fZPg4aUZjgABAgQaEEjmkI5fx9/AkTBFAgQI9C0g+MP1TYKHl2Y4AgQIEGhAIJlDOn4dfwNH whQJECDQt4DgD9c3CR5emuEIECBAoAGBZA7p+HX8DRwJUyRAgEDfAoI/XN8keHhphiNAgACB BgSSOaTj1/E3cCRMkQABAn0LCP5wfZPg4aUZjgABAgQaEEjmkI5fx9/AkTBFAgQI9C0g+MP1 TYKHl2Y4AgQIEGhAIJlDOn4dfwNHwhQJECDQt4DgD9c3CR5emuEIECBAoAGBZA7p+HX8DRwJ UyRAgEDfAoI/XN8keHhphiNAgACBBgSSOaTj1/E3cCRMkQABAn0LCP5wfZPg4aUZjgABAgQa EEjmkI5fx9/AkTBFAgQI9C0g+MP1TYKHl2Y4AgQIEGhAIJlDOn4dfwNHwhQJECDQt4DgD9c3 CR5emuEIECBAoAGBZA7p+HX8DRwJUyRAgEDfAoI/XN8keHhphiNAgACBBgSSOaTj1/E3cCRM kQABAn0LCP5wfZPg4aUZjgABAgQaEEjmkI5fx9/AkTBFAgQI9C0g+MP1TYKHl2Y4AgQIEGhA IJlDOn4dfwNHwhQJECDQt4DgD9c3CR5emuEIECBAoAGBZA7p+HX8DRwJUyRAgEDfAoI/XN8k eHhphiNAgACBBgSSOaTj1/E3cCRMkQABAn0LCP5wfZPg4aUZjgABAgQaEEjmkI5fx9/AkTBF AgQI9C0g+MP1TYKHl2Y4AgQIEGhAIJlDOn4dfwNHwhQJECDQt4DgD9c3CR5emuEIECBAoAGB ZA7p+HX8DRwJUyRAgEDfAoI/XN8keHhphiNAgACBBgSSOaTj1/E3cCRMkQABAn0LCP5wfZPg 4aUZjgABAgQaEEjmkI5fx9/AkTBFAgQI9C0g+MP1TYKHl2Y4AgQIEGhAIJlDOn4dfwNHwhQJ ECDQt4DgD9c3CR5emuEIECBAoAGBZA7p+HX8DRwJUyRAgEDfAoI/XN8keHhphiNAgACBBgSS OaTj1/E3cCRMkQABAn0LCP5wfZPg4aUZjgABAgQaEEjmkI5fx9/AkTBFAgQI9C0g+MP1TYKH l2Y4AgQIEGhAIJlDOn4dfwNHwhQJECDQt4DgD9c3CR5emuEIECBAoAGBZA7p+HX8DRwJUyRA gEDfAoI/XN8keHhphiNAgACBBgSSOaTj1/E3cCRMkQABAn0LCP5wfZPg4aUZjgABAgQaEEjm kI5fx9/AkTBFAgQI9C0g+MP1TYKHl2Y4AgQIEGhAIJlDOn4dfwNHwhQJECDQt4DgD9c3CR5e muEIECBAoAGBZA7p+HX8DRwJUyRAgEDfAoI/XN8keHhphiNAgACBBgSSOaTj1/E3cCRMkQAB An0LCP5wfZPg4aUZjgABAgQaEEjmkI5fx9/AkTBFAgQI9C0g+MP1TYKHl2Y4AgQIEGhAIJlD On4dfwNHwhQJECDQt4DgD9c3CR5emuEIECBAoAGBZA7p+HX8DRwJUyRAgEDfAoI/XN8keHhp hiNAgACBBgSSOaTj1/E3cCRMkQABAn0LCP5wfZPg4aUZjgABAgQaEEjmkI5fx9/AkTBFAgQI 9C0g+MP1TYKHl2Y4AgQIEGhAIJlDOn4dfwNHwhQJECDQt4DgD9c3CR5emuEIECBAoAGBZA7p +HX8DRwJUyRAgEDfAoI/XN8keHhphiNAgACBBgSSOaTj1/E3cCRMkQABAn0LCP5wfZPg4aUZ jgABAgRqF3h6OiVzSMev46/9SJgfAQIE+hV4C/3zP4I/XOIkeHhphiNAgACBWgU+Q1/wFyiQ 4C+AbkgCBAiMLHAR+oK/wEYQ/AXQDUmAAIGRBQR/2eoL/rL+RidAgMBQAlehr+MvUH3BXwDd kAQIEBhR4EboC/4CG0HwF0A3JAECBEYTuBP6gr/ARhD8BdANSYAAgZEE/gh9wV9gIwj+AuiG JECAwCgCD0Jf8E/ZCK/Pp8PT8fTy49rX0/Ph49uPnmb9LPvFCVOW5xoCBAgQ6ERgQugL/oe1 fjkdb4T7y/Et8I8fvwpc/vv1/77+WRr84fJcQIAAAQJ9CEwM/XQONfWVva/Ph/eO/nA8XnX8 518GDqfn18+98uMZgb9+9nG9p/r7OGNWQYAAgaoEBP/6cry+vJzes/36qf5fT/1fhP1fP/uc kuBfXxt3IECAAIELgRmhn25Am+r4v0l3CP6P9wb8/GMTEyBAgACB2QIPPrZ3K2+SDajg91T/ 7D3tAQQIECBwR2Bmp/91F8H/aEft0PE/GtLPCRAgQIDAnwILQ99T/VP21aPX7b25b4qiawgQ IEBgK4EVoS/4pxThxuf4fZxvCpxrCBAgQGBzgZWhL/inVOTmF/h8fb7/1hf4/PUzH+ebQu4a AgQIELghsEHoC/4COyv5pooCyzMkAQIECOwlIPj3kt33voJ/X193J0CAQJcCG4W+jr/A7hD8 BdANSYAAgZYFNgx9wV9gIwj+AuiGJECAQKsCG4e+4C+wEQR/AXRDEiBAoEWBHUJf8BfYCIK/ ALohCRAg0JrATqEv+AtsBMFfAN2QBAgQaElgx9AX/AU2guAvgG5IAgQItCKwc+gL/gIbQfAX QDckAQIEWhEQ/K1Uavo8Bf90K1cSIEBgKIFA6Ov4C+wowV8A3ZAECBCoXSAU+oK/wEYQ/AXQ DUmAAIGaBYKhL/gLbATBXwDdkAQIEKhVIBz6gr/ARhD8BdANSYAAgRoFCoS+4C+wEQR/AXRD EiBAoDaBQqEv+AtsBMFfAN2QBAgQqEmgYOgL/gIbQfAXQDckAQIEahIQ/DVVY/+5CP79jY1A gACBagUKh76Ov8DOEPwF0A1JgACBGgQqCH3BX2AjCP4C6IYkQIBAaYFKQl/wF9gIgr8AuiEJ ECBQUqCi0Bf8BTaC4C+AbkgCBAiUEqgs9AV/gY0g+AugG5IAAQIlBCoMfcFfYCMI/gLohiRA gEBaoNLQF/zpjfA2nuAvgG5IAgQIpAUE/7v4U9q9xvEEf41VMScCBAhsKFBx6Ov4N6zz1FsJ /qlSriNAgECDApWHvuAvsKcEfwF0QxIgQCAh0EDoC/7ERrgaQ/AXQDckAQIE9hZoJPQF/94b 4cb9BX8BdEMSIEBgT4GGQl/w77kR7txb8BdANyQBAgT2Emgs9AX/Xhvhj/sK/gLohiRAgMAe Ag2GvuDfYyM8uKfgL4BuSAIECGwt0GjoC/6tN8KE+wn+CUguIUCAQM0CDYe+4C+wsQR/AXRD EiBAYCuBxkNf8G+1EWbcR/DPwHIpAQIEahLoIPQFf4ENJfgLoBuSAAECawU6CX3Bv3YjLHi8 4F+A5iEECBAoKdBR6Av+AhtJ8BdANyQBAgSWCnQW+oJ/6UZY8TjBvwLPQwkQIJAWEPyrxP21 vG98gn/VHvJgAgQI5AQ6DH0df277fI8k+AugG5IAAQJzBToNfcE/dyNscL3g3wDRLQgQILCn QMehL/j33Dh37i34C6AbkgABAlMFOg99wT91I2x4neDfENOtCBAgsKXAAKEv+LfcMBPvJfgn QrmMAAECSYFBQl/wJzfV51iCvwC6IQkQIPCXwEChL/gLHAXBXwDdkAQIELgnMFjoC/4CR0Hw F0A3JAECBG4JDBj6gr/AURD8BdANSYAAgWuBQUO/vuB/fT4dno6nl+sCvf//T6fj1Q9enw+n w/Pr7Q19fsz1AyrY+oK/giKYAgECYwsMHPptBP976B9Ov/P95XS8/CXhxi8NL8ffvyyU3u2C v3QFjE+AwNACg4d+A8F/DvdboX86/er2bz1b8HI8PR2eT3eeEyiy9wV/EXaDEiBA4PyXpVB4 E0jm0GPxH+F9Dv17Hfvr6flw+QvBx7XnxTz9+EXh/i8OpaqfBC+1RuMSIECgOgGh/12SZA7N CP5zsL+F+L3X6G919zffH/Bxn5pe6k+CV3fwTIgAAQIlBIT+D/VkDk0M/rc37L2H/vN7aN98 8975KfzrNwHeeWPg+XX+u28ALLABk+AFlmdIAgQI1CUg9H/VI5lDE4P/okO/98a+W6/dC/66 DpvZECBAoLSA0L9ZgQqD/+fH+c5v4pvU3Qv+0kfM+AQIEKhHQOjfrUX1wf/2/v3fr/fffY3/ +hMAXuOv5xSaCQECBEICQv9P6AaC/23+n1/g8//NfrcC/fMXhB+fBPCu/tAxMwwBAgTqEBD6 D+tQV/A/nO7/C/781r6vy3yOf4aoSwkQINC4gNCfVMBmg//09sW+P76578ZyfXPfpD3gIgIE CPQhIPgn1bHh4L/x7X2XSz6/PFDZt/adp5cEn7QDXESAAIEeBIT+5Comc+jxx/kmT7vdC5Pg 7SqZOQECBGYICP0ZWNkGVPDr+GdtThcTIEDgoYDQf0h0fUGyARX8gn/2BvUAAgQI3BUQ+os2 h+BfxLb8QUnw5bP0SAIECFQuIPQXFyiZQzp+Hf/ijeqBBAgQ+BYQ+qs2Qx3Bfy5iiT+r6JY9 OAm+bIYeRYAAgYoFhP7q4iRzSMev41+9Yd2AAIGBBYT+JsUX/JswTr9JEnz6rFxJgACBygWE /mYFSuaQjl/Hv9nGdSMCBAYSEPqbFlvwb8r5+GZJ8MezcQUBAgQqFxD6mxcomUM6fh3/5hvY DQkQ6FhA6O9SXMG/C+v9mybBw0szHAECBLYTEPrbWV7dKZlDOn4d/24b2Y0JEOhIQOjvWkzB vyvv75snwcNLMxwBAgTWCwj99YYP7pDMIR2/jn/3DW0AAgQaFfj6ErdGp9/StAV/uFpJ8PDS DEeAAIFlArr8ZW4LH5XMIR2/jn/hNvUwAgS6FRD68dIK/jB5Ejy8NMMRIEBgnoDQn+e10dXJ HNLx6/g32rZuQ4BA8wJCv1gJBX+YPgkeXprhCBAgME1A6E9z2umqZA7p+HX8O21jtyVAoBkB oV+8VII/XIIkeHhphiNAgMDfAkK/ih2SzCEdv46/ik1vEgQIFBAQ+gXQbw8p+MOlSIKHl2Y4 AgQI3EsaMhUJJHNIx6/jr2jrmwoBAhEBnX6Eec4ggn+O1gbXJsE3mK5bECBAYLmA0F9ut+Mj kzmk49fx77iV3ZoAgaoEhH5V5bicjOAPlyYJHl6a4QgQIHA6+ct2qt8FyRzS8ev4qz8QJkiA wAoBXf4KvNxDBX/O+n2kJHh4aYYjQGBkAaHfTPWTOaTjF/zNHAwTJUBghoDQn4FV/lLBH65B Ejy8NMMRIDCigNBvrurJHNLx6/ibOyAmTIDAHwJCv8ntIfjDZUuCh5dmOAIERhIQ+s1WO5lD On4df7MHxcQJELgQEPpNbwfBHy5fEjy8NMMRIDCCgNBvvsrJHNLx6/ibPzAWQGBoAaHfRfkF f7iMSfDw0gxHgEDPAkK/m+omc0jHr+Pv5uBYCIGhBIR+V+UW/OFyJsHDSzMcAQI9Cgj97qqa zCEdv46/uwNkQQS6FfCX7XRc2lwc50aquFzJ37QqZjA1AgRqFtDl11yd1XNL5pDg1/Gv3rBu QIDAzgJCf2fg8rcX/OEaJMHDSzMcAQKtCwj91is4af7JHNLx6/gnbUoXESBQQEDoF0AvM6Tg D7snwcNLMxwBAq0KCP1WK7do3skc0vHr+BdtUg8iQGBHAaG/I26dtxb8S+ry+nw6vB2WM977 n8Pz6fX7Pq+n58PXz46nl6v7J8GXLM1jCBAYSEDoD1Ts/0tN5lA/Hf/L8fR0vI70D9SX41vo f/7s8t+/yJPgQ+5oiyZA4LGAz+g/Nur4imQOdRP850A/PP/v8f/vj5fT8elw+v7R+zMDP7v+ JHjH+9bSCBBYKqDLXyrXzeOSOdRJ8J+fyr8I98ut8Cvor34ReLs2Cd7NLrUQAgS2ERD62zg2 fpdkDnUS/B9hfvh+Hf+vDv928H+/N+DifQKN7yPTJ0CgZgFP7ddcnd3mditrvv6/3Qa9unEf wf/e1V92/Odw/3w6X8ef2kvGIUBgqoAuf6rUMNfp+FeX+qKrF/yrNd2AAIENBYT+hpj93Erw r67l5dP53ty3mtMNCBDYRkDob+PY4V0E/9yinj/Kd/lO/XOXf/E5fh/nmwvqegIENhXwev6m nD3eTPAvqOrr8+H/l/dcfVzv7ZP8b6/5+wKfBaweQoDAWgFd/lrBIR4v+MNlToKHl2Y4AgRK Cgj9kvpNjZ3MoT7e1b+yvEnwlVP1cAIEWhEQ+q1Uqop5JnNI8L+VPAlexQ4zCQIE9hPwev5+ th3fOZlDgl/wd3yULI1AWECXHwbvZzjBH65lEjy8NMMRIJASEPop6S7HSeaQjl/H3+UhsigC MQFP7ceoex5I8IermwQPL81wBAjsKaDL31N3qHsnc0jHr+Mf6nBZLIHNBIT+ZpRulH2TueAX /M4cAQJzBYT+XDHXPxDQ8Ye3SBI8vDTDESCwpYDX87fUdK8LgWQO6fh1/A4fAQJTBHT5U5Rc s1BA8C+EW/qwJPjSOXocAQIFBYR+Qfwxhk7mkI5fxz/GqbJKAksFhP5SOY+bISD4Z2BtcWkS fIv5ugcBAgEBr+cHkA3xJZDMIR2/jt/JI0DgWkCXb0+EBQR/x+DhpRmOAIG5AkJ/rpjrNxAQ /BsgzrlFEnzOvFxLgEBQwFP7QWxD/X6SKfcEfG6kiuss+CsujqkRSAjo8hPKxvhDIJlDgv+t EElwO58AgcoEhH5lBRlzOskcEvyCf8xTZtUEzgJC3z6oREDwhwuRBA8vzXAECNwS8Hq+fVGZ QDKHdPw6/sq2v+kQ2FlAl78zsNsvERD8S9RWPCYJvmKaHkqAwFoBob9W0ON3EkjmkI5fx7/T NnZbAhUJeGq/omKYyu1Xn3JxnBup4lonf9OqmMHUCPQpoMvvs66drSqZQ4Jfx9/Z8bEcAp8C unxboSEBwR8uVhI8vDTDERhTQJc/Zt0bXnUyh3T8Ov6Gj4qpE7gS0OXbEo0KCP5w4ZLg4aUZ jsA4Arr8cWrd4UqTOaTj1/F3eIQsaSgBXf5Q5e51sYI/XNkkeHhphiPQt4Auv+/6DrS6ZA7p +HX8Ax0tS+1GQJffTSkt5ENA8Id3QhI8vDTDEehPQJffX02tSPCn94DgT4sbj8ACAV3+AjQP aUUgmUOe6g8/xdLKJjRPAlUJ6PKrKofJbC8g+Lc3/fOOSfDw0gxHoG0BXX7b9TP7yQLJHNLx 6/gnb0wXEogK6PKj3AYrKyD4w/5J8PDSDEegPQFdfns1M+PVAskc0vHr+FdvWDcgsJmALn8z SjdqS0Dwh+uVBA8vzXAE2hDQ5bdRJ7PcTSCZQzp+Hf9uG9mNCUwS0OVPYnJR3wKCP1zfJHh4 aYYjUK+ALr/e2phZXCCZQzp+HX98gxuQwNvXlEEgQOBCQPCHt0MSPLw0wxGoS0CXX1c9zKYa gWQO+bVbx1/NxjeRzgV0+Z0X2PLWCAj+NXoLHpsEXzA9DyHQtoAuv+36mX1EIJlDOn4df2RT G2RQAV3+oIW37LkCgn+u2Mrrk+Arp+rhBNoQ0OW3USezrEYgmUM6fh1/NRvfRDoR0OV3UkjL SAoI/qS24A9rG65bAV1+t6W1sP0FBP/+xj9GSIKHl2Y4AhkBXX7G2SjdCiRzyFP9Ov5uD5KF BQR0+QFkQ4wgIPjDVU6Ch5dmOAL7CAj8fVzddViBZA7p+HX8wx40C18gIPAXoHkIgccCgv+x 0aZXJME3nbibEUgJCPyUtHEGFUjmkI5fxz/oMbPsSQICfxKTiwisFRD8awVnPj4JPnNqLidQ TsA79cvZG3k4gWQO6fh1/MMdMAt+IKDLt0UIxAUEf5g8CR5emuEITBcQ+NOtXElgY4FkDun4 dfwbb1+3a05A4DdXMhPuT0Dwh2uaBA8vzXAE7gsIfLuDQDUCyRzS8ev4q9n4JhISEPghaMMQ mC4g+KdbbXJlEnyTCbsJgaUC3qm/VM7jCOwqkMwhHb+Of9fN7OaVCOjyKymEaRC4LSD4wzsj CR5emuFGFxD4o+8A629EIJlDOn4dfyPHwjRnCQj8WVwuJlBaQPCHK5AEDy/NcKMJCPzRKm69 nQgkc0jHr+Pv5NhYxskb92wCAs0KCP5w6ZLg4aUZbgQBXf4IVbbGzgWSOaTj1/F3fpw6Xp7A 77i4ljaagOAPVzwJHl6a4XoUEPg9VtWaBhdI5pCOX8c/+HFraPkCv6FimSqBeQKCf57X6quT 4Ksn6wbjCQj88WpuxcMJJHNIx6/jH+6ANbNggd9MqUyUwFoBwb9WcObjk+Azp+byEQUE/ohV t+bBBZI5pOPX8Q9+3CpavsCvqBimQiArIPiz3m/fe+L3nzC54b4EvsLeHrQnCAwtkMwhiafj H/qwFVu87r4YvYEJ1Cgg+MNVSYKHl2a42gQEfm0VMR8CVQgkc0jHr+OvYtN3PQlP53ddXosj sIWA4N9CccY9kuAzpuXS1gV0961X0PwJxASSOaTj1/HHNvYwAwn8YUptoQS2EhD8W0lOvE8S fOKUXNaagKfzW6uY+RKoSiCZQzp+HX9Vm7+5yejumyuZCROoUUDwh6uSBA8vzXB7CQj8vWTd l8CQAskc0vHr+Ic8ZIsW7en8RWweRIDAYwHB/9ho0yuS4JtO3M0yArr7jLNRCAwskMwhHb+O f+Cj9mDpAt/eIEAgJCD4Q9BfwyTBw0sz3FwBT+fPFXM9AQIbCCRzSMev499gy3ZwC919B0W0 BALtCgj+cO2S4OGlGe6RgMB/JOTnBAgEBJI5pOPX8Qe2dGVDeDq/soKYDgECgj+8B5Lg4aUZ 7ktA2NsLBAhULJDMIR2/jr/io7ByasJ+JaCHEyCQEhD8KenPcZLg4aWNNdxl0J//3T8ECBBo RCCZQ/7rqONv5Fjcmaauvu36mT0BAu8Cgj+8EZLg4aX1OZyw77OuVkVgYIFkDun4w79pDbyv 1y1d2K/z82gCBKoWEPzh8iTBw0trezhh33b9zJ4AgckCyRzS8ev4J2/MyIXCPsJsEAIE6hIQ /OF6JMHDS2tjOGHfRp3MkgCB3QSSOaTj1/HvtpHv3tjH7vLmRiRAoGoBwR8uTxI8vLR6htPV 11MLMyFAoDqBZA7p+HX8+x0AYb+frTsTINCVgOAPlzMJHl5abrjrp+99c17O3kgECDQvkMwh Hb+Of96BuRXwQn6eoasJECBwJSD4w1siCR5e2vLhBPxyO48kQIDATIFkDun4R+/4BfzM4+ly AgQIbC8g+Lc3/fOOSfDw0v4P13DAD1GfYhtjm4HVaBvHve6iPnvJbnffZI10/L11/A0H/L0j lDwQ2x3jse6kRnXXW33qrs95dskaDRL8r6fnw9M77NPT8fRytQeS4Jttvw4DXvBvtjviN2ry DMWVyg2oPuXsp46crNEQwf9yfAv840fcX/77V0GS4A83wb1AH/jb7qqqz8MCjnmBGtVdd/Wp uz46/s3r83I6Ph1Oz6+fN359Ph2uuv5dDsXUAB840KeWepf6TB3cdZME1GgSU7GL1KcY/eSB kzXqv+P/FfRXvwg8em1FgE/euHtdmDwQe62h9/uqUd0VVp+666Pj37o+E4L/7YX/8zsrbv75 eF+APwzsAXvAHrAH9t0DW8ffvfvp+FPSxiFAgAABAhUICP4KimAKBAgQIEAgJdB/8L99eO/R m/tS2MYhQIAAAQKlBQYI/p8f4bv1cb7SRTA+AQIECBBICQwR/G/R/9b13/8CnxS2cQgQIECA QGmBQYJ/CvPf3+435Q6uWSowx/6Pa98/wXHxrtvD8+nr6xuWzszj7gnMqdnnPW58hwbfrQQ2 qocztFVBJtxnRs2u6vL5fXQTxrh9ieD/dHn07X6LhT3wocAc+z+vfTl+f0Pjw0FdsEpgTs0+ Bvp61u33V2avmogHf+g++HbS30x36uEMxXbU9Jp91Oo77M81uvxSugUzFvzf/1H6+9v9Fth6 yCSBOW++/Pva80E6fH9F46TBXbRIYE7NTqfX58P7d2Ecjsdf35q5aHgPuhLYrh7OUGpzzajZ Oeh/PHv58UzBmq5f8J/rPOVLflL7YbRx5tj/ee35MFz88jaaY3K9c2p2Pl4vLx8vuXiqf58q bVYPZ2ifAt2468ya/bzD1TMACyYt+AX/gm2z4UPmHIA/r/34Dfrw/bcw+iVgwyr9vNWcml0+ UvDvU5LN6uEM7VOgbYP//Rm0le9fEvyCP7bXbw405z9af137/rPLsD//R8zrybsUd07NBP8u Jfhx063q4QztX6uvERbW7ONls/X/XRP8gj+32W+NNOcAzLn2+oubyq6yr9Fn1eFi6Tr+ffbB bvX4/Rea7bOAAe+6oGYfob/NM5mC/33PzXijxYB7dN8lz7Ffce2+ixjs7nPqIPj33xx71UPw 71e7eTXbqtP/Wo/g/5SY/tGK/bbCqHeeY3/32vePuFw8BXb+jXrl62Cj1mPKuufU7Pt+Ov4p tIuu2aQeztAi+6UPmlyzXy/BLB3x/+ME/7eFb/dbv52W3uG+/e+PF92/9utjYx9/dej618GW rmaMx82p2aeI4N9xa2xTD2doxxL9uvW0mr3/gnDjr4b3cb5krYxFgAABAgQaFtDxN1w8UydA gAABAnMFBP9cMdcTIECAAIGGBQR/w8UzdQIECBAgMFdA8M8Vcz0BAgQIEGhYQPA3XDxTJ0CA AAECcwUE/1wx1xMgQIAAgYYFBH/DxTN1AgQIECAwV0DwzxVzPQECBAgQaFhA8DdcPFMnQIAA AQJzBQT/XDHXEyBAgACBhgUEf8PFM3UCBAgQIDBXQPDPFXM9AQIECBBoWEDwN1w8UydQjYC/ ea+aUpgIgUcCgv+RkJ8TIPBYQPA/NnIFgUoEBH8lhTANAu0KXP694ofT82u7KzFzAiMICP4R qmyNBPYW0PHvLez+BDYTEPybUboRgYEFBP/Axbf01gQEf2sVM18CNQoI/hqrYk4EbgoIfhuD AIH1AoJ/vaE7EAgJCP4QtGEIdC3wHvze2Nd1jS2uGwHB300pLYRASYHX0/Ph6fT09HQ6vpSc h7EJEHgkIPgfCfk5AQIECBDoSEDwd1RMSyFAgAABAo8EBP8jIT8nQIAAAQIdCQj+joppKQQI ECBA4JHAP8AvjBtsbBn/AAAAAElFTkSuQmCC</item> <item item-id="483" content-encoding="gzip">H4sIAAAAAAAA/4xTzXISQRDu2WV/gYCrRMJCCDGAoqbI6EFzwlTK8hCjhQ+Q2sAmwRLBzcaK nigfwKNXPfgIlnevluUrrT3dG4ienK3e6f7m669nemdzACDQXqC55Ov4tsM3/fB4NHltgBr3 0ZzhZMBYhrCHijYePDt8GQ5iQqBP+Rq+zdOT6c7knOE9NAuB/pz4FG0N7cs7gB5W//R+EVM9 jzelgaaT482LP4rjaHR4FoeCmNtoBbg8Mtvrf8UGCWTiKAx9AiRafkquKVd+AMwMS37GuWfa PFsOz7bLs5OV5k+AHTcnNSwWZzFTGBI2YQtb8wDlpPELdbJLvJ4H0IW2BV3cGyHfENGEuKf6 UyStD+4V5hbnWl3W8lireJXXvYXWNdbyFlpQog3OnGWputArIXid3FmJDliW3m8M7BVKHZZV 6nOAivyIDZiVwSf8a0Xh/G2qrGjV+OjVVZ5rdWK+XaXiuJk1ir/PY2hwYm2dt9JA6AZvpUHC GxxUKWgy2WyxerPNc+smV2njBxN6F5uCH+sWV2rPK3U4uXWbK3UQusPiHRK/y4dqXhxqk65k YSgPjqNgenJwNInGQWwRV7XJIXg3iAO+MZX05mjqSurp/7GsWku+itzgfHT6mHT4b1DH2hMp l0eCD4jq/6MX4lYcBYNQ7uq05KfEuiiC8EWiPCF8PFJSF5rwdUytC134mUQhGeRAgo6BnFkP l0zFUVkWcdCxFUeRHaWj0l3kUHoWOZSeQw6l56kWOkvEQaegOIrM2y3sn43DaDQIXnFDbNr2 E7QhjPDR01/UTbv5z8hdDv4AAAD//wMAbDSA4o4EAAA=</item> <item item-id="484">iVBORw0KGgoAAAANSUhEUgAAASAAAAD2CAYAAAB2k1oGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABXWSURBVHhe7Z2LkaM6EEUdlwNyPI7G yTgYxoDx8AeJ1qUlzlZtvak3+rRuX59thDC3ij8ogAIocJICt5PmZVoUQAEUqAAQJkABFDhN AQB0mvRMjAIoAIDwAAqgwGkKAKDTpGdiFEABAIQHUAAFTlMAAJ0mPROjAAoAIDyAAihwmgIA 6DTpZyZ+Parb7fb9+6henmIjFhRIoAAASiBq1JDvZ3W//UPn/bxXtwcIitKSTtkoAIC8pmoE JK9hEhcKHFEAAB1RL2FfKqCE4jK0GwUAkJtUfANpKp96H+hePd/egiMeFLBVAADZ6mk42qt6 ACFDPRnKowIAyGNWvjG9HreKfWjHCSK0wwqUCaDfZUx7S3vXh3hu03c0zu3+rIKuimY3kt/V 8z5zq72+BT8YnwrosLsZwL0CBQKo/uD2oNOcrdnaT2n73Hq3wZvM1X130Wsuz/Nj1lVNN2b/ 53qEZuP5dw5oK2b33iJAFNhUoDwATSqJtuJY4kj3ob8/HoNzOC1/btU9Yid4ecxRVcOt9k2D 0qBsBcoD0CRfo4po9Pv369VeVk1gUIMrrgpZHHMyB5dZZX+8WN2WAsUDqKlG9uzdLMDh/tuv 6WBUQ2P0mETdd26O8ZgHAfR/edbtIfFfNEnjgS1wWP2+aAC1l0I7n6mahUW/AuqDp/fzEnzm qioDAFkl3nKcGgJe/3iNzWtcdR6Vsfl1zkFHt/AJuITa3I8ZXy59N5nXqqsEFdBBWZJ0Vxo2 dAFeY/MaFwAKddhM+6DKp+uvANDn+fbB4cLNOYeL82par3GpP0wh1nWr2fcubMhajrQtrwJq PtQBlc8SgJrb973Lt8GlVuQl2GeutdvwW4n0alqvcQGgLUfN/B4ARYjW69J8wH9naf5/7m7D L95an6lGhudyOhgd2IRu4uzOB82cO9pYutcPute4AFDgZ+m7l6fMZ3kVUKDmOTVXGiMnXYjV QIHejQSlzwCQQe5UQyiNoVoT8zhRAAA5SYTjMACQ4+TkHNroGIXSZ1RAGRlHaYyMZCHUIwrM nOFS+gwAHUmeuK/SGOKlMd1ZCgCgs5TPb14AlF/OXEe8cIJd6TMqINcOGQanNEZGshBqjAIr j88ofQaAYpJ3Uh+lMU5aItOqFABAKqXLmQcAlZPLU1ey8fCw0mdUQKc6IWxypTHCIqN1VgoA oKzS5SZYAOQmFfkGsuOrU5Q+owLKyEpKY2QkC6HuVWAHfOqhlD4DQHuT56Cd0hgOlksI1goA IGtFrzUeALpWvk1XuxM+VECmqpc1GAAqK5+y1QTABwDJspLfRAAov5y5iBgAuUhD9kEAoOxT qF9AIHyogPQpymZGAJRNqnwEGgEfAOQjdS6jAEAu0+I3KADkNzc5RgaAcszaSTFHwocK6KR8 5TAtAMohSw5iPAAfAOQgf15DAEBeM+MoroPwAUCOcuktFADkLSMO4wFADpNSSEgAqJBEplqG AXyogFIlp4BxAVABSUy1BCP4AKBUCSpgXABUQBJTLMEQPgAoRYIKGRMAFZJI62UAIGtFGW9O AQCELyYKGMOHCgiPLSoAgDDHQIEE8AFAeAwA4YFtBRLBBwBtS3/ZFlRAl039dOEACDOoFQBA asWdzpcQPlRATnPuISwA5CELJ8eQGD4A6OT8ep4eAHnOjiA2AXwAkCCPuU4BgHLNnFHcAMhI SIaJUgAARclWRicRfKiAyrBLklUAoCSy+h9UCB8A5N8Op0UIgE6T/ryJxfABQOel2v3MAMh9 iuwDBED2mjJinAIAKE63bHudAB8qoGzdkj5wAJReYzcznAQfAOTGAf4CAUD+cpIkohPhA4CS ZLSMQQFQGXlcXcXJ8AFAF/BY7BIBUKxyGfUDQBkl62KhAqDCE+4APlRAhXtsdXmvR1VDpv37 qF6jxgCoYHM4gQ8AKthjq0t7P6t7Dzrv5726PYYIAkCFmsMRfABQoR4LXtYISGpjBMdLhzgF nMFH7bNbnGr0Sq0AFVBqhZ2MD4CcJIIwWgWayqfeA7pXz/dQFC7BCjOJQ/hQARXmsfjlvKrH CEIAKF5Ndz2dwgcAuXPKeQG9Hreqvw8NgM7LhenMjuEDgEwzPTPY7xKnvd09utE0P/vMhvCu MGf7vavnfeZWe30L/v6s/q+6qIB2aZxjIwD0y9rFNqHrD3UPOs25m+ley9DTbZ+5cznr3p/v V1c13e31/s/t9s/n1vvvHBB7QDmyZTNm5/ChAtrM4IEGkyqjrUaWqqAOCPfHY3BGZyuC5X6j qiawsuISbEt557/PAD4ASOqhUUU0mvv9erWXRIGgWOw3GWd6mbW2fAAkNYftZJnABwDZpn11 tKZSGey7LDQfgKOGxugxifr3c+OMgWMAoP9LtG4f6WJX0UJ/mE3lFD5zXur+n9naNwa6rHvb y6Tp81azes2C49t3CT5zlZMBgFTGYB5DBZwCaGmFykr7kgBq4bO1+dxLz+wl2HeTea2CSlAB GX4sGEqhQGbw4RIssSmCKp8uFisAfZ5vHxwuDNxbUv7LlDgN1xg+Q/gAoJTWbD7wAZXPIoB6 +0Ahl2Cf8dZuw28tHQBtKeTo95nCBwAl9FDz4f+ds/n/ubsNX//+Pn4Aa7KXc2ATullbdz4o /GwRAEpoDsuhM4YPALI0QmFjAaAMEpo5fABQBh47K0QAdJbyO+ctAD4AaGeur9gMADnOeiHw AUCOPXZ2aADo7AwszF8QfACQU495CAsAechCL4YaPIXBBwA585incACQo2wUCJ5OXaXPLnkS 2pGNg0JRGiMosKs1Lhg+VEBXM3PAegFQgFipmhYOHwCUyjgFjAuATk7iBeADgE72mOfpAdCJ 2bkIfADQiR7zPjUAOilDF4IPADrJYzlMC4BOyNLF4AOATvBYLlMCIHGmLggfACT2WE7TASBh ti4KHwAk9FhuUwEgUcYuDB8AJPJYjtMAIEHWLg4fACTwWK5TAKDEmQM+jcBKn/EoRmJPWw6v NIZl3FmMBXx+aVL6DABl8elog1QaIyNZjocKfAYaKn0GgI7bVzaC0hiyRZ05UaFfp3FUUqXP tgHUvEli7svc598uUb/2ZvaL3WtV6rGWXsR+VLUL9Fcao3g5qXoWU6z02U4AzbxB9PWYebnf 6I0RM++9qt88AYPiPt5KY8RFmEkv4LOaKKXP4gFUvavnfQiTSfUz9+K9Glx73seeiZeVYSqN oVyXdC7gsym30meGAKqB1L8s67//avz/I14OuClb+Q2UxihSTeCzK61Kn8UDqLkE612azVU7 s68enlZOu1ShEXfBjngA+OxWzyGAdmxCj4HUbTr3IfWVYPENpLslumZDpTGKUhj4BKVT6bP4 Cmi8pLm9ndkKqH0/+uKdsiCprtVYaYxilAU+walU+swOQLsvwQBQsCO+HZTGiI3RTT/O+ESn QukzAYDGG87sAcU6Q2mM2Bhd9KPqOZQGpc/sADRzW/5z8rC5VV8v6P/sT313jLtgMQ5RGiMm Phd9gM/hNCh9tg2ggOWsnoLuxuEcUICiw6ZKY0QHeVZHLrnMlFf6zBRAn92dT3Uzc2q6Jw0n oeN9ojRGfJQn9KTqMRVd6TNjANWPe208C8Yp6GizKI0RHaS6I/AxV1zpM3MAmavBgD8FlMZw LzuXXMlSpPQZAEqWRvuBlcawj95wRKoeQzGnQyl9BoCSptJ2cKUxbCM3HA34GIo5P5TSZwAo eTrtJlAawy5qo5G45DIScnsYpc8A0HY+3LRQGsPNoutAqHqk6VD6bBlA3b846v9Kpc5rMqUx XChD1XNKGpQ+owI6JcVxkyqNERehUS/AYyRk3DBKnwGguByd0ktpjJMWyOXWKcIPJ1X6DAA5 SPjeEJTG2BuTSTsqHhMZrQZR+gwAWWVNMI7SGILltFOwwSyTeu9ESp8BoL1ZcdBOaYzky6Xq SS5x7ARKnwGg2Cyl6Nd8rW339bfTh3qVxkixvF/FQ9WTTF6LgZU+A0AWGbMYY/SNkvVDvbfR C9SUxrBY0mAMKh5zSVMNqPQZAEqVxaPjznzFrdIYR8P/9Qc8ZlKqBlL6DACpsho4T/YVEOAJ zLif5gDITy70kTSVT70PNP3aWqUxohbePzUfNQCdPCig9BkVkIeMz8Yw/e5spTGCZKHaCZLL e2OlzwCQYzeMv75WaYxNWah2NiXKtYHSZ2UC6HcZM34jx5wl/t/cMXjVdN10NM4t9OtkV15N 3d5u791qn3xZv9MKiGonV67sjhsA7ZZqrmH9we29Bqg5W7P8GqC6yuhud/d/bkau+45uhe8P rY1jDLW1+ZqN5985ICd7QONvQ9gvAC0zVQAAHUncpJJYexHiqMoYVSyxr5DuQHJ/PD4byv0D hevzbS1bYgyAs5WG4n8v8dlXxTIvwQYWGVVE/d9NLpH6gKjBFfcCxffr9XklY3cJ1wPQ6nzb vk5iDICzLfzFWiTx2YKGxQOoqUaW9m5WgdDC6P59s+v/ZdzMu8/qcebmGI9vAKD/S7TukY3A FAKci+FkeblzXur+n0qkQPeqwrKZp70UWnlR4hoQmt/1K6A+eHo/L8HnjApoz7dX2kjLKAUr QAVkkNwWPhuXUEEVyfiu1HeTee3OmHEF1Hx1xdpfA90YAgUA0EEPbFY+v/FDNoUNANS8uroH xdnb9Osl80Fp6I4CmwoAoE2JVhpMLp3WB1u8Ld7cvh9tIP+qnchLsE8oq7f9N9atNMaRFNA3 bwWUPituD6j5gP/O0vz/3B3nmd5a787rTM/sDM/ldDA6sAnd+HJ5vi3bKo2xFQu/L1cBpc+K A1C5tqi3f0hXyfn1sjalz3C0l6zviENpjB3h0KRQBZQ+A0AZmUhpjIxkIVRjBZQ+A0DGyUs5 nNIYKdfB2L4VUPoMAPn2wiA6pTEykoVQjRVQ+gwAGScv5XBKY6RcB2P7VkDpMwDk2wtUQBnl p5RQAVApmTReh9IYxqEzXEYKKH1GBYQxMlKAUBUKACCFyhnOoTRGhvIQspECSp9RARklTTGM 0hiK9TCHTwWUPgNAPj0wG5XSGBnJQqjGCih9BoCMk5dyOKUxUq6DsX0roPQZAPLthUF0SmNk JAuhGiug9BkAMk5eyuGUxki5Dsb2rYDSZwDItxeogDLKTymhAqBSMmm8DqUxjENnuIwUUPqM CghjZKQAoSoUAEAKlTOcQ2mMDOUhZCMFlD6jAjJKmmIYpTEU62EOnwoofQaAfHpgNiqlMTKS hVCNFVD6DAAZJy/lcEpjpFwHY/tWQOkzAOTbC4PolMbISBZCNVZA6TMAZJy8lMMpjZFyHYzt WwGlzwCQby9QAWWUn1JCBUClZNJ4HUpjGIfOcBkpoPQZFRDGyEgBQlUoAIAUKmc4h9IYGcpD yEYKKH1GBWSUNMUwSmMo1sMcPhVQ+gwA+fTAbFRKY2QkC6EaK6D0GQAyTl7K4ZTGSLkOxvat gNJnAMi3FwbRKY2RkSyEaqyA0mcAyDh5KYdTGiPlOhjbtwJKnwEg316gAsooP6WECoBKyaTx OpTGMA6d4TJSQOkzKiCMkZEChKpQAAApVM5wDqUxMpSHkI0UUPqMCsgoaYphlMZQrIc5fCqg 9BkA8umB2aiUxshIFkI1VkDpMwBknLyUwymNkXIdjO1bAaXPAJBvLwyiUxojI1kI1VgBpc8A kHHyUg6nNEbKdTC2bwWUPgNAvr1ABZRRfkoJFQCVkknjdSiNYRw6w2WkgNJnVECejPF6VHXy 27+P6jWKTWkMT7IQi1YBpc8AkDa3y7O9n9W9B533817dHkMEKY3hRRbi0Cug9BkA0ud334wj INWdlMbYFyStSlRA6TMA5NRBVEBOE3OBsADQBZK8uMSm8qn3gO7V8z1spTTGlVNw9bUrfUYF 5NZtr+oxgpDSGCGyeI3L82UrmrUOA0AhnzRx29fjVvX3ob2a1mtcACjOsMp8AqC1HP0uh9pb 46ObUtvZndlIrqp39bzP3Gqvb8Hfn5/fdn+ogLYF3m6h/DBtR/PfwmtcamgDoEXX1ADoQac5 ozPdl1k2Xdt/fJ6nrmq62+v9n+txmo3n3zmgfPaA+DCFoOd76fHJs9c/ynz6VeHs7EwqkrZy 2VMFdSC5Px6Dsz3V52jhYF9ntkJaXrjSGCHye41L/a85moUowB5QoFqjimil9/v1ai+lxoCZ AGd6mbUWlNcPute4AFCgxb/NlfmkAtqZo6aqafZoamiMHpOowTLYv/kOmgBA/5do3T4S/0UT ew/s/FgcbgaAdkjYXlL1odOD0BJ8ElRAO0KlCQpkpQAA2khXC5+5zefvJvNc5dONaVwBZeUs gkWBHQoAoLW9nEnl028cAaCDm9A78kkTFMhKAQC0lK6melm67R55CfaZa+02fFbOIVgUMFAA AC2I2IDidybn/+fH5w5X9CZ0M1d3Pmj+O38McsoQKJCNAgAom1T9NpbmT1InXcfC6e3ZOVfa jk6WD09+Wy0gJNbvnIHnsfZFahSHN82OPh0wEg8A7XOTm1ZnXMKFzLnatj7cueck5wG1Q2Jt p5k/sX4ghHbUlRPv82MvxOFKs6NPB0xXDoCOOk3a/9hJ6rhQQ+Zcb1t/KO/j7xiJC2qhV0is /4++TE+sHw3KLg5Xmh14OmBJUQB01GvK/gdPUkeFGjLnatv6kiTkWbqIaENi/Qy/eGI9YupB F7M4/Gk2lGb/0wEA6KipPPQPNLZJyCFzrrZtq4L775sAEsAoJNa+ONZ7QGZxONasBvjv6YB4 p1EBxWun7xlr7CORhsy51nZyrGHmbuKROOu+IbHmACDHmk2fDohLHgCK0+2cXrEfsCPRhswZ 0nZ8KPNIjF3foPl7E7qtgMaihD28vEvSCM2Wnw7YNeOgEQAK1+zEHmGbmzaBhsx5oK1JsCHz JwRQ7In3TRAmAFBgrFaVT6c+ADIxvm6Q8Nu7x2MLmXOxbfOFbr0Hetce4j0Qckisv2k2P/jh AZnE4U2z1acDwjWqewCgON1O7HXGSerlOae3iZfbDr/xcfrmVxtRQ2L9zpgAQGsn3hdvrc/E 4Umz5acD4jMHgOK1oycKoMBBBQDQQQHpjgIoEK8AAIrXjp4ogAIHFQBABwWkOwqgQLwCAChe O3qiAAocVAAAHRSQ7iiAAvEKAKB47eiJAihwUAEAdFBAuqMACsQrAIDitaMnCqDAQQUA0EEB 6Y4CKBCvAACK146eKIACBxUAQAcFpDsKoEC8AgAoXjt6ogAKHFQAAB0UkO7OFUjypLvzNWcU HgDKKFmEGqEAAIoQTdcFAOm0Zia5Av3vBkrwJfjy9ZQ3IQAqL6esqK8AFZBrPwAg1+khuMMK AKDDEqYcAAClVJexz1cAAJ2fg5UIAJDr9BDcYQUA0GEJUw4AgFKqy9jnK5DgTQ7nL6qcCABQ OblkJbMK1O9Xv31eCXSrHi8k8qYAAPKWEeJBgQspAIAulGyWigLeFABA3jJCPChwIQUA0IWS zVJRwJsCf2a27wY0H7dSAAAAAElFTkSuQmCC</item> <item item-id="485" content-encoding="gzip">H4sIAAAAAAAA/+wXTU8TQfRtS8u2dOkHWEpBxcqHqIisRZEQU6wcjEpNMVwNtBtdU1goayJ4 aTx5QC8m3kw0Gj140ZseTNQYE2MieNaD/gJjYjyYQH0zb1i29QvUxBh4m7cz877n7ezMGx8A SIhDiF7ed+C7wsxrWgMwUBHlsUxq9IyWMTkF0oh9qJRwqu4vAIUK9e5THLnUMDYFtzr7BJtK VUlwaVmMPWroFUrJXtXhB8h6ABzSEYAq9fIEsj3g4/RbVYzOHSlkT64m84pfBRRIVCMrQI6r gyqPIwAQ4nF7ksNDA5OHTW1M4r59iG47QUGs4aKyNpnWTunGuIsz4kw7a2SIVsFp+618uKdO Txw0ztH0jyJWIiFtJeQYYg/izRmAWdaeBxjA9t4M8btDlGQHOGp5J2R56jfNvD561tQovl5E P9hhQ2+sZBxeymsd5TUcobzW1VNeIyKvUcprBBoor1Err43q1WfIqdtI+WxE0ibeLTSWeNrM p+7DlCaNsVGDJZEYAZYAJC9TWMh9Xgr/IU6aRfgWsVhk0iiaymnJnK6Nm1wH51ov1p14o+78 XPDdjfvR91AGB8AJi0UPuG00ydKmcBxivFhkHgmK6/BfwQLiog3XYW1BGgx8TGjCrXMc2zxM l28FP4UwuKx/nu0FF6BbigXfBK8UQBl+7oraZY/f+dgiD76UnNh/LDaSJHpnfjX+nlqVbwZ4 Akn2+axU76L0a5mVwu/4/5vwJ/7pgARg34Sdv+xcZnv++l6wNsCFxdk1/OCPwrQevCUro2SA NSIvMWqJVCswCzpfPX6h7RQquk2dVYQPED8Vv7tCuat+3Ht0GIFcGTPxoSZkHy/84M/9vArb PWhTDnxrm0GgSYmUjrHKYp0Tsy+6MvPB25fgevOc6/VSNSRDWa7sjq0B+8d4TQuUNTxsS/Bf Af9aTVSIBliMEpXKQ1peH8mdPKRPTeRGpgeNrEbyKfaStpCCQrSYuGNspVo4JmrhZqqFY9BC tXCzVQu3ijtGG90xWrdRTdyGrHa6Y7RtpztGO9vhd5C3dh5eIgXSTiK0cu8dwsguMtKBpE4y 0rGbjHQyI12k02kZUW1G9izrxoVuN+nGme5eEo1buvtszB4bk42/AgAA//8DAN57biXcDQAA</item> <item item-id="486">iVBORw0KGgoAAAANSUhEUgAAAFQAAAEACAYAAAAtA1GUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAq0SURBVHhe7Z3r1ZswDIYzVwb65sk0 WSbDpJhbbNmSZRBpZL/90XNaQIHH8gW9SL698ceUwM3UGoy9AdTYCS4B+nq9jG/Tj7kI6PP9 d7u9/57k5l+P9336/1t2YDnv+Rdf83o/7rf3/bEBDTbv7/2ffrgcvtMKUAby+nOvx52ApkCn E0OD3B/vUXxWACrDnHxz8r6/6e/tzwLzFryZeHTw4o/XHm58FxcyQBc4TC+fHyz3zvl/SZdf GTz/3rdBvLQINHhU8DIeKAOOAzp78xhjaQZ0A7lAjbt03OO44UAGLXn8NsHtQ8Y2dBSGkF/u +xnQdIbmZnfO41o995fRHLs3eZYPY1+x68NDOdzVdeg8+WRdv9UTBx5D83FuWw6l42l5ll9n f/oiMOYs3zpm6L1u0HVoK1BuLVp4dR1kDRqe/GRwpPYCoPfi9ub8zStOAv3Nh/qfdwWgxvQB FECNCRibg4deBZQNStAgRaf/tuK6e2gAOuofy2cH0LAYN3QmAAVQ+4EJHqpmusRt5wlXiCcA qApoGmfgwo1zQANjqIYokbnnDzbKGhmAanhmH1jwkS8A1QDNVAIA1WDjz4GHnuOXX40x1Jho qsxiljfBi3WoCcZWI5jlW4lVzgdQADUmYGwOHuoF6MgyiFUbIcCMaJOVL33sYAw1ZgqgAFoh IAR/lyulV8g4P4pmmkjHeu3y63f8fMaJLGUkqZEkBiodi5u4my6/pO5MXvXk5YksYy/xZprN F2OSjqU9phug+2NJXV4KFK/HHmui2tw4W1KpdIyMQGMBlaSMNVN6T7SI4UvHhgaq8NBPpnOk Gw0tgYizvCRlTMeSDxhiIU46NvIYShJyqZSRzOTEK6VjXc7y7KSUeay0Do2OZR8ySMd6XYca v/UcMdffLH+EguE1AGoIM5gCUAA1JmBsDh7qBSg0pfMtBU0Jk9J5L6IWMIYaMwVQAK0RqFSG 2CpErikyaaEZXjdaKvpE9fhGSVrYHrxceYx8Gz/D/UTm1ZqS0KZ9dfk55PY3xTWZWnshYk9I fyBKulHwXF29vY6Abg9dKwZDxbcVlKgbxaE7uThiN0BDV19q7WmBkopmVU0p9lDeY/sAmkTX NUAXj0sKuzboRsHH0/LGnQWY8xl46ZbFSrjUE3cWet2oe6DppCt4KAtzscDqRpn8HH5jmFxP AjTSlDhP/kz8vG6UXsvP+H2MobW1/hePA6gxbAAFUGMCxubgoQBqTMDY3GUeCk3pfEtBU4Km dN6LoCnZM0wsXjaGXnzfP2u+H6CJVsRt5BJtNrDrQ9G5kg1Ri+osfLclc21BjjmQwdSn4+KY sg1Zi4q7Sx8eqg4OC9qQZEPUotLRZzCggjakbpQ5cspuktUH0DV/M+nypV3BiGy86E9bbDPd hmiJf5bintzuOoundgJ0epJo0rg/nmrZN4vSr5NV2UZBiyLrjX6AJg+mz82UJ6l8BVDbuq0T oOmYxpZSE7UhwUZFi+pvll8Uts+3R/GSieQpidoQY6OuRXW3Dv2dF6dOujyA/g4B4zuBhwKo MQFjc/BQL0ChKZ1vKWhKXb3Ln3cIEwsYQ00w4k3JGKN3oOL7+SeXiE+tqW3jk3+022+eUrW+ 3RooKWpKum18SrlOfJjPsQSir2/HfWGs2IKimOvUe56SUOxK2lZijuqzxa6Cp3G5Tr3nKbFA efFs7piVbXzYXCdRi3Lc5fdb54BmwMhkrq59V8916itPiQEaHrKYm7Rz5cfQplyn2dnL+aQ+ F/ZFoJqJQ7uND/HQ7vOUikCZ8bOp9t3myrV1KPKULnszooZ9dvmv4Wn/IQBtZyZeAaAAakzA 2Bw81AtQaErnWwqaEjSl816Edag9w8QiJiVjwP0APVjTLuUp7Jk0Xp4S2V1GWdMuBsrXvhst T+lwTbsE55Qqw2TgDZenlI2D+U4zxX2S4uvE2nf0B7rPU0rITCk1UeReqmlHgU4pNcX9lBKe o+QpzQ99oqZdVRFl7BPn7W6Wz78W0da0q5ynTK3pA+jRmnbEu9jad0qYwVwXQOt5RExNO0lv imb8uv1Py3QB1Phl55Q5AD2FL78YQAHUmICxOXgogBoTMDZ3mYdCUzrfUtCUelnYn/cFOwuX dXm7W/RlCUCN28sX0LgmCI2uK2vfJbVJuAi9kBSxlDPia+v5AVpK9tpjdYWKNqU8JdHG6qpS HpQiR8oPUNo1YzjF4DDvRbspAljKg9LlSDkO36X5SEoPJY3C5jQN0eU3GPtYSb9zl/aNz0hO 42DI92S+lR8K6M6GKJsxnHmsU3R5rsrimECjXKFKhpy0MirmGw0BVIJGUwc5D9WCHwLo5Gbq unVx9y8tlfb6yxhDjd9r7M35XYfaszCxCKAmGCEjG2MEUAC9jICx4cvGUGhK51sKmhI0pfNe RC1c1uXtb9WHRQA1bidXQMX6c8o8Ii5an3AtBUeUmpUroPI2E3yeUuaEzbqRXhFwBFQoI9SQ R3RIN2rQrBwB1defk/Y7Otble/RQGkRO9kKKO7WcR3QMaLhKp1k58tB8Os7H1Pp+R4eAahUB 7wv70uZStf2ODgHVSieugEr15xryiA4B7dVDOU1JzCPiBLdWIS75rgq174zfh3hzrielr1Fq +CEAbYClORVANZQazgHQBliaUwFUQ6nhnMuAQlNqaAXmVGhKrt6Uzjf4Vyxc1uW/cvc/+CMA atwozoBqa9NJn4Nr4pqFrSuUmpUroNradHOwxHQ/pS5r3wl7xqs1n4P7KTVoVn48dIVWrmGn 1HyK4ONQHLefEh1oe6h9R4PIRTiVveaO7qeU8Oyl9p3kXdqIes3GPu5y+ynVNSs/XT6ojtz2 Z2rN58R+SkqZxRFQsilU7G1aD52l508pTH7/OuKhSphhZHAFNNHGaeohp/lk2lH7OhS174zf flrMOfPQlkf7P+cCqDF3AAVQYwLG5uChXoBCUzrfUtCU/C3sz7f61RYwhhoTBtChgYq5QoLe lEAT3uUN7DvyUDkqz+tNMc00itRSnUxn31O0SdSNBL0p885IEY0jUSb2PQElVcASZVPUmyKi oqYk9ACtfX/LJmb8q+pNK9RqZP+kfVdApah8Vc1cgdY0Ja5+nta+K6CidzXsmRRH+uMx1MS+ pzG0ohuxeyEJEnAyy5vY9wQ0gBFzhQ7smUQ/1zlin7wYOFqHGr/SXGQOQI3BAiiAGhMwNgcP BVBjAsbmLvNQaErnWwqakqtXz/MN/hULl3X5r9z9D/4IgBo3yu8CLdYEkb7tVGpKQr6Rvrae t/2UirXpJD2IfN2cheI2N5TzjeTaerf3VsKIz4P6wWgTX5tOyjFSakpivpFQW6+LADPt8rVo +xSKK+cwSYNk7LFCbb0ugVY3V/l0yXnfuGJqYi4p3x+v5T9pgDmprbfATro8sxeTn0lJ4aEr mhCJngDwxaq25IcdJuPEpVJwAdj98ZyyScr2/QCdITGaupTDRGE1pMjIk1R5pncEVM4xUmlK Ekyptl7pmwCmaqEjoLOoNI9lc+AlGyPrmlIt30i9X5MwPv8uUOM3mG+ZA1Bj0gAKoMYEjM3B QwHUmICxucs8dFRNybJ9dk3J0ujItgDUuPUBFECNCRibg4cCqDEBY3PwUAA1JmBsDh4KoMYE jM3BQwHUmICxOXgogBoTMDb3D3NxHWX2uyG/AAAAAElFTkSuQmCC</item> <item item-id="487" content-encoding="gzip">H4sIAAAAAAAA/+xXzU8TQRR/2y+20NIPsNSCgpUPUflaCyIhplg5aJSaYrgaaDe6pFAoayJ4 aTx5QC8mnjEYLl70pgcTNcbEmAh61YP+BSZGDDGR+mbesGwboqAmxsAjb2fmfc78mM68cQGA hDyIXMr7Fvza9KyqVgMjBVkeS8ZHRtWkziWQQO5Fp6hVcXwDyNmUe89wZFcC2OQcyuxTbEoU d5Rby2LsVPyv0UouVSwegJQTwCKdAyhTbk6g2gkuLr9bxuQ8kZviyeUU3u1RAA2i5ajyUuJy n8Ln4QXw83k7Y0OD/ZOndHVM4rldyA6zwI1cwU1ldTKhXtQy43auiDDvVCZJMhuXHTPwcExd mjiRuULLP4NcgoKEAchZ5CXk+RmAVkw0fxXgPY7vz5C+y08gW8BSyTt+I1Ofrme1kcu6SvPr QfaAmXb1hAvGgTVcqwjXQJBwrdpNuAYFriHCNQjVhGvIwLVGuf0cNVV7CM8aFO3l3VxNQaZa vnQXQhrLjI1kGIik8DIAULwuYVPuxe3zFttHuOjTQADk88waTeNpNZbW1HGd++Bam8S+E1/0 XVr0fbjzIPQRiug4WGE17wSHSSYZ3jQdixiv5llGovwO/Vf0HXnVxDu0vSgBGfzToQ76YRzb LEwXHwU/pQDYjd88OwuuQacU9r3z3cqBe+iFPWS2nRv93CAPvJKs2H8iDpIYZmd5Vf6d2lJu RngDSeb1bNbvuvRrm83S7+T/m/Qn+emCBGD/E3b/snuZnfk7Z8H2IDsWZwslAI8DtB9KC3ZG wQBrRF5iVJKoUnAKNL57PMLbKlw0kzurCB8if8lvuEN5qj48ezQYhnSRMvqpwm8et1thQ/q6 hdjdGFP2FsbO1dqCrF1ZtgbNAVaWscpinfOzLzuSS76FGzBXv2h/s1YNyVCElTmxMWC/MV7T AqGGl20h/yPiYNZRIeplc5SoVB5Us9pw+sJJbWoiPTw9kEmptJA4X80+cnCTLCzeGPupFg6L WrieauEwNFAtXG/Uwo3ijdFEb4zGA1QTs+q0md4YTQfpjdHMTvhDlK2ZTy8aB+kwCRp59hYR pJWCtKCojYK0tFOQNhakg3zajCCKKciRdd+I8O0k3wjz7SLTiOF71KTsNinZ+AcAAAD//wMA SMNPBNwNAAA=</item> <item item-id="488">iVBORw0KGgoAAAANSUhEUgAAAF4AAAEACAYAAAA6IcFdAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAtHSURBVHhe7Z2LkeMgDIZTVwpKPakm zWwxvhi/eEhIstGRhH9n7mZ2owD+JGPMj+A24acLgVuXWlHpBPCdgqA5+L+/v06X8l3VRuBf 0+N2m27Ev8eLvqjX4zYdn/1Nz/ttuj838HN592n/9bu4uLe2AF9Afj3ezigB/j3v0y0xzsG/ 2/73nO7354R7oPSjDP6NLY3kuZA5mh/v/7efxWa/WyKHzHfFcRe4B9LXVKAGHwd3Ge3z9VIO mn30vmMQ9UVAyOCLroYBzIEPdwf6+py84uGaQ1sewuUDt+4Q7gG9NWjukqgHe/ib9OWv6WCO hsoRX1wUF8HWO+ELaTVs8knwiPirPjgB3hrZ6OMpJ50APw/P8zH8UnT4e94nY1RD3hwnpwz0 UYxxPN0pnQTPR31SDd5c2UfBafDbCxM/0tPfFVcfVN/4/Qvgv/FyP6fNAN/JFwAP8J0IdKoW Ed8bPDtBxahSo9q38tMe8TNI/NQJtGQE8IZoA3gDrJamAN+S5lpWLMRwb+OfB36ek4kewvVp hFVpYnXYZdo5XcAQlx+L7BUPhDblttESlrj+eQZ1rzAX8o86Pgx8NicTLpjSWFOg0tTyAT4t P3xPEs+DTjw7uFwJsZXL1V+uoPhU8Em0LI1MFzptDc8iiYrIMJv5mB5xxBcznHxEbnWHdUCv POLl+rfuhluO8mERn9/uzKwkCTC+M+Y7Yv4972pORPzcpNyxYv3Hdcx3AwX/g8FzsmC4DbIu ogS6XCzRx4clIvSzgRVacvC1+t+fxaC/DPwCh101Vou45LMMfP7MCP234gFrjPhkeQkzOvi8 iF9HNfXlL3wfu2u12fREcKJwp7DjmuIZIvfx0ij1s8CroIdON1mDyY8qnCJeXT+P/6PAc9Ea op+MuhPj+H14OH9XuRzQMo6XQn39/KPAK9v8E2YA38mNAA/wnQh0qhYR/2vgR5XzLNfdyudQ oAwk0dUYYLU0BfiWNA1lAbwBltYU0h81LZxIi4qZSWo+PngA0p+YVZJKf4cGC+lvu4e7SH/8 RNnSZUD6i/W0bF+DXCJkpD+DZJf050YhJP7ulylQ5Zx7AuK09JcmNC/T0EfEQ/pbH1zNpb/9 QbnM49+fr1UUF8YrxoiH9BfJf7QT68s7dndA+ttQnJT+sk0oeMkwuwMK8Nr6+Tvpo16g/rv0 J60i2/1sWMKnfMv6KPDKNv+EGcB3ciPAA3wnAp2qRcQDfCcCnap1i3iL9jiqbSufQ3M1kHSL eEMbhjQF+E5uB3gH8MNqruWcT6StqtM5I49YlmmPnG5JZwpuAnUk9bHpnBF0pFvGfUItFWaT /Yg+RK3pLt+F5ppvGl/VTstDAy5vMmdUoGKXj6O5Ft0HdweU6ZzQXK9ormQPk+9fLKRz5mUY I35IzZUaHSYPW3VmYW1Ug3TLQCfRToulH3OXsg4nz0BfKsh274DmuuyskWmn6Tj+GD5WNd3a i5RlHK98IcObqxJUazOAb01UWR7AK0G1NgP41kSV5QG8ElRrM4BvTVRZnhv4UXVUy3UrfSSa QXMVER0GbhFvaMOQpgDfye0A7wAemuueEbJMkv2XuRporopQ1pykBs01BnlSc018IZ8tBc3V QXNV5z9R8/GGfFloronz6GiH5uqtuWr69rhbgua60bBpnvkCJ/Mpmchz3cBXNM+a5hq+Xlnw xA2EoLnG+8vw25FzmuvCVR7NFPyhuSrG5l9igimDTo4CeIDvRKBTtYh4gO9EoFO1bhFv0R5H tW3lc2iuBpJuEW9ow5CmAN/J7QDvAH5YzXU7J2p5aHM7qVLH0TFesMzVQHNdITJz79tEWv2E tXlODceKRuFYm49X7CUZpLvsyFEi2KG5WjTXVQ99hg2Zqa6GO3K00tkbFai4pME01yi9MhOm DxBlHw/N9YrmWlsBkHx24eEqrDIYNM/13ccnWYCH4lQ9crQ2rITmutGp55kWCcXkVrYXIh7H inLHisYbSXDngFwBv2m30rGm/G2EN1eHN1dNkQCvoeRgA/AOUDVFAryGkoMNwDtA1RQJ8BpK DjZu4EfVUS3X3cqf0FwNJN0i3tCGIU0BvpPbAd4B/JCaq5jLukt58zwLznPdBNLpEYvT7N6/ 6QRXNYMv1lyz6V1V5h8017hP0OZACdkf5OqBox5orhbNNfKPFNHS53tR0Fy3Hum95IJRmaJ4 TbutVIF+b+BZCuHQXK9orhtgVS6rMhHNGPGDaq4LeW0uK7/Jf9JnZVvcap8x/Fj1s8bx6r1/ pb19mVxW4chpFhPyXHV5rrVc1noOLIPesnZS+UL2WRGvbPQvmAF8Jy8CPMB3ItCpWkQ8wHci 0Klat4i3aI+j2rbyOTRXA0m3iDe0YUhTgO/kdoB3AD+k5ho4rpNty0P7P6+PHzfPNZ1jD5Ni REYI8lzjW1193mplPpxMDMuiHnmuUgfLKETVrDsp4pHnKlAvz1vdvyAKGvU9Ke/PWT1Hnivh AOG8VSmXNV6bE9bFRKdb7v39heQz5LmuPosVosrdgDxXrpNpobnmq8/iiE/qvRDxyHNl8kyT 9ZH/eb8aabywfo43VyWo1mYA35qosjyAV4JqbQbwrYkqywN4JajWZgDfmqiyPDfwo+qolutW +kg0g+YqIjoM3CLe0IYhTQG+k9sB3gE8NNdMcxVzYKuTd7l2y8z5j625Hht+cpprYKzJk0Ke axyOVs2VmqGUE8+Q52rJc1WetarOcZ39bcz6i0NknL2F11TNbXvypV/PIx7nuTKPswua6x6h i0hyf76m5z0Dr+nb07BN0y2hua50qnsSlPvJa3Ngd/bYW3hDUctzJdbVJMci4DzXopupjrPJ qFNorsXyPXk0QzQsy+wOY9H3XgnYW9jh/dO3SEwZ+PJlSwd4gO9EoFO1iHiA70SgU7VuEW/R Hke1beVzaK4Gkm4Rb2jDkKYA38ntAO8A/sc1V8XMJDVrmeTARmcC1hxg2ZPstzXXlRKph9Y+ yybI2L2LIy9Ac01DktdDlz0ng+r0ep/bGmd2q/Nol7qgueaaa+yDmggibNpc2yYxcTM0V6Ij Pg2+zKPF3sLS3sKXI17QdHP/GiP+h/cWjshYI16d0lmrY9i9hU+CPwN9rgp7CxN7zxgi/r+s nVS+kOHNVQmqtRnAtyaqLA/glaBamwF8a6LK8gBeCaq1GcC3Jqoszw38qDqq5bqVPhLNoLmK iA4Dt4g3tGFIU4Dv5HaAdwA/ruZa01VV+w5n3oDmmgEh9dCarrrMwyeJacS+w0kt0FxT6Kd0 VWUq5lYTNNezmmsgGN0BRvC7q40KVBwiv5Xnml4ZkZ+0GeS6KtHVRDmw0FybaK6Mrho9XMkc WGqUY4z4cTVXtcRX5sCSo0vkuRJYqGiMRi7ZIzk5Tlq9nwE0V1lzFXXVeN9haSi5PyqyFWn7 Qxt5rg7vn75FYsrAly9bOsADfCcCnapFxAN8JwKdqnWLeIv2OKptK59DczWQdIt4QxuGNAX4 Tm4HeAfw42quh4Lx3vowy2WF5kqFmjEPtZbn+i6+PLNVOvmSaBM012yCl8tljWcU74/pEUc8 Kf1xJxwjz3UKp4ByP+TSC+7M1hMRP9drVKDipg6luR4XSx2kyO8XCc31iuaadCcZ+HzvAvbk y+z2Mkb8kJpr9cxW8eRjpj+D5kqAqe5X4BTxY5/nujrBAn7+iuqsV6GrCR9jb2GHd0//IjFl 4M+YrAHgAb4TgU7VIuIBvhOBTtW6RfyoOqr2ulv6e9dcWxaKsmQCAC8zcrEAeBescqEALzNy sQB4F6xyoQAvM3KxAHgXrHKhAC8zcrEAeBescqEALzNysQB4F6xyoQAvM3KxAHgXrHKhAC8z crH4BybBZkhQcSKVAAAAAElFTkSuQmCC</item> <item item-id="489">iVBORw0KGgoAAAANSUhEUgAAAJwAAAAnCAYAAAD6tSH7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAO5SURBVHhe7ZyLcaUwDEWpi4JcR0qg GpqhGIJ/IBsJ22AEPOvN7GQSEwTS8dUHst0sH/EAowc6RltiSjwwC3ACAasHBDhWd4uxRoGb 5qHvZjUKANweaBA4C1vXCXDcsGl7TQE3Db0BrevVrETh7udtGuZe+9v90xmlMeCG2WZRSan3 0zbOCmaRUS3gLRv+fsNvtCDA3R4VDVg/LFvbf1wpc7vhVxoQ4PjDYhVPFI7f801aNPXzongC XJPh571p26wpUz8LcLy+b86aha2fB1fMsQI3TVsJ+aznpYa76v+cWEJl8/YAcFEbuzYXbpZS OJYfFRys2gD3HvNFXBWg/urNv+b3zdxp283s12VGDzZ11fyciiXhiwRwBISJuzFkB4DGwOlR 2BKcoG2u6aKHzvWDwJ2NpYbUD3yDr1toYrjOwTYb9YK7bHuUZAwDEPVFbar3ECQ1zbID50YN ZpK/KOsQK1y0PmoFLlHA+rEkFO58jbPfETqiiMLpH++Gg3H0rcM+AyUrcFiZosHzQKXW0zut biytPRQ4L4eHZZtxbrxbCLAo4H6tlisBDvVfGoL1CKxegz9D1rEi3pyPMZY74PxbFBY6Qn7N zWDrVBo+BjGnHyFrgihNF4Ss/qG5wJH+y78kP0gN+n4ATmo9BJcvljvgwk4yrLlsFnT1AloP UN1nqfLlOz7nSLR4BW8x6HXy4954yNkUVilsl7rbIO4Ex/4DV5GwmwIqtf5ULI+7VLcTUWej MtyewgWND6pwerMho5IHUqqpmbGsxRjL5BzuDXk/R8WeOiZQEqQJ0uto03MVOFcXb12/70jD poFej9WUpx5PAuc7zN3OIByGdza6LnUvP0K5/IkuFY59IiU7mjVeBm7r/m3JgI1FwpGUUiUK 52KGpLdzsdx1qYUaQTos/ynCz83hAhcSqdQfUwW4wpgVpVRT5WU/EcqN5apw3V9YOOd8D8ci 8HhK5cJ4PPGkAQ5CD7rwwjhih5Op9FPA0Sp3NpaGMg0LBCb3ew8cdvzxX0Xl75wKsXen2A+R yfr0stEYbPuYJ6jlPqFwW9qmu/SyWK7AefBqfr0ct5onQNNJmbNqXk6r5+rOKJt3VkoJX+/U 3EHt62/kOxcYAAfVDUIFbyentvvG7bsOLmui+407+sJVsr6A+R6HCGxPxaI94Nwjo8+8gfIU GTfZbQs498e464vHNzlVTkt7oB3gpEF4xT5oBrj1cUz0loj8pza8HDYDHK9bxRrlAQFO2GD1 gADH6m4xJsAJA6we+AeoxnKMOpsPFAAAAABJRU5ErkJggg==</item> <item item-id="490">iVBORw0KGgoAAAANSUhEUgAAAcwAAAAnCAYAAACCL3hzAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAkoSURBVHhe7V2LseMgDExdKch1XAmp xs2kGB/YwQHMRwKBeWFv5uYuMQaxElokPnls+AMEgAAQAAJAAAhkEXhkS6AAEAACQAAIAAEg sIEwYQRAAAgAASAABAgIgDAJIKHIFYH3um5vAAMEgIBC4L2tK0bDDKYwKWG+t9fzsS3rDCpu 0Mf3a1tecBANkEWVfxSB92vZ+g0J+K+7zGRCwjyM7fEAYZYa3fp6IbosBQ/v/SgCyq+8eszA 4b/uNKCpCPP9eu5E+Xgu2zJThKkiwqfu9+dvXWS9KseA6PLOQYu2dRZU0qZlEH2riWRLyoT/ uj/QmYwwjUHPlNJYt8WOptdFEeezPH20vsrflfFLqGV6BIRtWgpPNbbqJqNpQb6EDP9115x9 KsL8muNEBqcJ8mmnUOv6vi5L01m0lO9CPT+MgLBNyyGliLwlY56C1o1huf52qGkwXYMwO+h8 rCa82TlLOD1QQZgsyFC4AwI1Ni0pnpLDmZxK1m3XNRFhXiC8V9cgzFY2PWi9+zpI8aDu5RAG BQ9iDYlAnU1LdqnXhHJewrxb1yBMyfEyeF3HpoGKCFFvtOiSchocSIg3DALVNi3ck3Wp2B9A lmVOwhxB1yBMspH+7YKHsVUOZr2eAML824bwQ9KL2LQwHuvS47jafIQ5iq67Eub7PcpxhN8x OAqmYjMzEKawe0V1pQiI2XSpAJH3NGE+m2/hhP8SVhu5OoswI4up5rwTM7JwZ1qHgr+GpNuq jHbIXbyh4H50oyL1mRiMXzUQMd31J4P17qRSdiDYVrnWDjs2Z07r9PDjdloOcqM3iXgPYWdh CPoQZiP4TbU/6r8kUMsQZtmOpKtj9Z27El0bffHmE4muN6yjgcGVYqoH8Jc86i4v0DIkZ8+3 O7LDXm0Z6yIRogNvaEpzVU3DW9KmpfHNjhHpBlvU96P+SwKqBGGWkeWmTuktTnT1vcppd9xW hPITs7FdC3ZUo6I5da+kG9l4z9Xh/ycrAh0D06wzuJswgwOd5oQj8UKbTIjBabeTzyRGj4td fuuzxAi36nB3GH7GJTNzJCySV12NrgolE9ZFdowUitn2tTn813E7lPHPZeMuQpjlOfJw2i4Q Ye484x+q983iGjG0NZyS2kOpUa0Mk5LNPc+3KYtpvr1YidtSsjU3qFSReCMH7i9zGKI05FUl c0q/1iS4Z4aHrL9GeKcgEdYFmTDJmJSPV9qbOf+Ue55vZRT/dV6naMZZwbgLEqZJeQQnn8k7 HCPEqK7qdtcwDcg3DJC8fnklQlGN/V3geTRNuGPrr30OhGlu0w/F0ZfcAVrsXGqjKM8+S2QP WdOnnu/48rM53mepds0kVTXs7DHw7S7VXoksZP01wptAmFK6IGfNyJjw3BG7tIT/+iucIDDu LoRpfsXjIE3feYcM2t5QEkvjpp0+JSsUW7fw07xsg6l8IXiQ1nJAuedn82c6LoR5aKt6Pabs rlcTZs5+IhIVOZdastzZxUrJFsoeJUx/3MTGkWC7uywBXBzCTLVXKAtZf43wzhKmnC7Ix0rI mLBHKeuFnH/KPXfHiDYvf5NhO05gdXQ3/ZBsvHF3IUx3J6u75rinUD12cw0kFjFyoyQ2FMkX Qpte/O+iFVxmJW7JnEHlnh+Tfj05UYoLrm12xDTT193giLtkLxGM3uCVtZ8vtlUTpE8/stv7 c/21CZMhu0n9RKHiDFzJdnd4zXqVmZjZ61fqu1R7DFnK9GfZOqOt5ODP6VhYF6mLC8ow2YKb 9obxX1k9Dea/nBMDvmwWuUf6ld4l+4l64j4y0aBjxfXRUKmxyVJvoLaClMaxuSNw7CSYkh1o hqadrbez2UlB2c5H9fEkLPv/DoTElDxnNr5jK3OM5jJ7LpG9OsL0KyBiFjF8s8bmrLUF7c5U kGqPKAtZfwJtcQc8hzAvdfvyMq7GI2PC7RCzvKT/OidkfbKOzJ4yI8zwuMuew4xvyw+RIDeS JA44NjI9X/BTXP4MPvfcknX0Ncw9necSvRNB68F3EuqXXMOz7pithCcllLT9NeVSawfc2TGx vWInzcAsStR2ZPlxbFHCTLXHkIVMDo3wTqlFVBcKk4X44+pkTIg2VVws559yz+2GB+cEAV1n CfNc83AiooMUQimv2E7Kg3gDKd7kWcx4O8X20eRF++hM6FiJ/VytRy6cCFNPjMIXBpRhWgfA lfy8vp+XOenvtUO+RqUmLZhNmZ5BzkL6ncETD+figpofnQ05cAGbLBq49e3uWRrvWNf+OZHZ COuIKQuZHBrhLU6Ysf6r70kzOyUQGZO68Up7W8J/9eIEWo+CpQTGHf9qvNyagLNRIt058o6y CoyGfJWVktU9oEfizTFlDHRNYHpy4DjdrP0MqbFDqLtkb92uT5ip9lrL4gQsepNGj7tZGTaX weal5h8//8f3X1mbGMh/cZQT6NdJmI9/LncGP1sVpMpnz+sZ59P9ph+TLjU33shfX0fSB5sw 41Gm057WT3NMV3UxA/FOYH9Glx1YJPTuKXSX7D3atQkTZBm3r4wu3q9X4x9XH9B/Ee1zXE6I qDvSr50lNfnZBBj7fKa8PuXPnVqB9/W5S/pmoR4+8JoyqLs2rULmAsI0qfERMF2VY6BRprvm GUuZUrNYFYhXv3qX7H3aNSm5RU2GPksnXlr7yNzGn1UD7FXQsy2q7GmZFIZNw8sx/RddT4eN jeC/KPqOLu8YwmzxL0WwbmWCJEVPFXST8y80pGZfJN+gZ2l/gQ3/AuaQcWwE1JEwauKlqCPw X0WwSb/0oESWplFqJCotZLP6LovAzVr6uYpzUeYxQ5M63vFz8KFDP4VA6+gylTbEGOtpSg5h 2lGmTZK2QKS1zp49KG5L4iaY4sbxIhAAAkCgAgH4rwrwil/l75ItbmqkF2FsI2kDsgABIMBB AP6Lg5Zk2fkI87P7iXwGUBJt1AUEgAAQqEEA/qsGvep35yJM0WvTqrFHBUAACAABOgLwX3Ss GpWchzCxwaeRCaFaIAAEmiMA/9UcYkoD0xCm/LVpFHhRBggAASBQjwD8Vz2GEjVMQ5gSYKEO IAAEgAAQmBcBEOa8ukfPgQAQAAJAgIEACJMBFooCASAABIDAvAiAMOfVPXoOBIAAEAACDAT+ A6oU2qjhLsQDAAAAAElFTkSuQmCC</item> <item item-id="491">iVBORw0KGgoAAAANSUhEUgAABA8AAAAnCAYAAABg8GGTAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA9ZSURBVHhe7Z37teMoDIdT1y0oTez+ sSWkGjeTYrL4lQAGJN4y/O45c2bu2MbokwRCPPz44AcEQAAEQAAEQAAEQAAEQAAEQAAEQAAE AgQeoAMCIAACIAACIAACIAACIAACIAACIAACIQJIHsA+QAAEQAAEQAAEQAAEQAAEQAAEQAAE ggSQPICBJBF4L8vnnfQkHgIBEAABEACBVALvz7Kg90mlh+dAAARAAARAIIfApMmD9+f19/g8 lxx0Ez/7fn2eLwRvE1sARAcBEACBbgTer+enXReEeKGboqu+GHqtiheFgwAIDEtgwuTB3mE8 HkgepFr18nph1UEqPDwHAiAAAiCQSUD1468W2X/EC5mKEvo49CpUMagWCIDADQhMlTx4v/62 pMHj7/l5zrTyQK0U+FvlPv7krbhYVNAmbNVBUflu4LWoIghIJgB/lKydYer2VknsmukDxAtj TrJAr2PqdZiGDYKAwA0ITJY8OIONmZarLZ+nvspieaokwl/6ks/llf5sFYcoLF+VOqJQEJiF APxxFk13l1P1ZXmJ8LAEv+QE4gVp8wU5tge9Knq5cWCOAvAsCIDA7QlMlTz4aWuiYGDtJP70 bQZ5si/PZ9XZnmiPKixf9PvxAAiAwI8A/BHW0IyASlTVzB585cjrM5vhKPGiqfwXem3iPiXs EmWAAAiIIoDkgSh1tKiMNTMY9cq1sxWWPLjUP0e+KBi4GQRAgCQAfyQR4YZEAsq2jMR4YjHk YxMNMqfqT6FXJA9I58cNIAACDgJIHkxmFtt+v+SAq1Wwlq6UPPnS34snQQAErgTgj7CKegRa JbPnHWSO7b/Qq7DTq+o1FSgZBECgKAEkD4rilF3YflBQxsqB9SA0wanqbPlkqw+1A4FbEYA/ 3kpdt6zs8sw4v4ct8ZyDzPH9F3pluwBuBIFMAvhKWybAro9fv26E5EFXhbR7+R4IZAZa635I ocmDIvK1UwfeBAJDE4A/Dq1eMcItzxafXJ5vkDmH/0KvYhwZFRmawNqeCB06DM29qHBq/Pen nZzbNHnwfktZJDVOp8FhWmwGoUPyoKl8RT0Nhc1GgGOrMzAp1t7MAAsyZhFYkwd6QJNVmPdh xAt1uPYuFXrtrYG7v3+0Pr+KPGrF8nOkz7Xc3Wgz6v9+Pb9f29OSB56Drc5vdkemjcwZgb2R /nXy67syZ8EzAFR/dPsMTsb2AE8Fk5hu+ivDehsURNpBDOve8sXUtc29u08+vn/K21QbOcZ7 S5Kt3hoDs80u2N6QuFq+y1sZ+Cipp6gbmHZ2lNkmeRAlQPzNg8YL8SAGewJ67aNQSdxLELi5 PPqAswSO9DLi+pb09wz8pJYIIpIHaSdlXweZdvJAwV0Dv+SD+4Qrp4KzpzJdg6vf4PP375Qc wFqHWrM8EuSTZVW77+m8MaMrQ0Optiqj9qm14HW8JdsbsqbdkwfwUVJH0Tfw7OwstmafFF31 1AcGjRdScQzzHPTaR5WCuBcBcGt5Wh1qyyEd17dwSpzvnt+h+YHkQVri4PNZn9NnSPfEwXcA q41ah5g12KxHn31Ss/xqaYe58sC6vqyrAWJmkWUw9QdqY8i3JbTWVRqb/g6bXe11a7y131u0 GM4OI6Px6yTbnvCwElgpmatizG9uq530uLdxZVYwFVNl7+TBSD76TeQf/XU3H42zs3smD+aI F0T1p8UanVBB0GvzOGnI+HsgO3JNEs8Qw3SS0fw6To2+fC1zjwM9yYP0vWDupe2OlQfbmFsN yoKrD64zO036gKiXuLZkrIOlMzlAXadfVpYp/T7fHbx6nA0fPznCK/eoFWkz6fLtwY7S3Rk4 n0mD8/cSgxVVZnJcnvP+FrJR6HPqT5XNui7YF7l20U2PcYM6ljr0m7jy68/UsqeUupz1yqlT V90eBw92XxEYZ2fs5EGOTqONOfQA1QZR1+nKoD+lGZW/g9IbdZ2u0VR6pXEcd1Bcqev0i9py p+pLXRcmj+uctK79XOYECLcf6Spj3b783LLrTB6cS0+dgxx9FvYye+5JEnx8/x8XKNBu0eEO 1+yT/n+O697l55vB2YNuQUxdDQFHvrvYzOHwP7u3V99Yvwfl8tgit/G5PJ6ZRWwhW9D9LDu2 bT3EMoWzqy6SbZVrF930aLXVZ+d4rCpJToideuLKH5s8SLGdlLps9bqxjx5tu3GWRw8ftVe4 EHbGXr2YrNPCMUWJeCHIRFC80KKtGkmviJPina2EPxmJ387xdwl5BNmRM/HSol1wWlKBGIbb 3nSTUQleuS8/+9xL8mBddrSv1NZnz88knzm4vRqGb6tDuEPjBJ6+vbTbMilOAfHNEusJc5nI lRN1/fuSr8PbjVc9piwB9ZscyQNSPisAbWkz0fJdZg3t5JamC1KuksmDzEHJNq6xD86sIFsA +MVOdH4hlqmcHXURbatRnZKePW+lR/09rk64UUY/JnmQajtcXRg2dncfddS/g4+a22NoO2N/ qjFJp9E9CPkA1QZR1y/bh5ztuuvzlfkxGCmcfUOLPmcUvZJtlaA4sIVemcZG+Qt1XVr8TdWX ur7Heb8xRO9427kyrJv9FIhhuO1NNxk9kxgF+/JTp5fkgflFBGJgfpkp960kiM2GM1sO5m2u AwPt//MWdckgmXdSzkxdX0vbEyMq+HaehdCQKSHr1jBZiRqOfGaMba+uECafsa87MDBzBkru rRpZia9DJ+RBlRzdVZDt3OoRzN95srC7DzqYXdoVDTZ5zf/dd2m2mmQXMZ1ShI3SetR8wZFE ZA/itDolye9JHlxmzF3b4QK2k1WXEXz0e27P6Y/6vtt2PmoMjhl2tjz9SatUnYqOF0gm6E99 sZxovZJtNfTq0ivVp1PXm8ffDcYTTeNtjjx2cHizGCapH+km42bRx1fa6vTl3uSBoedjNtw3 MGiZ1UpSIDO5kHVbwjKj/QA+bkAmKOO8GqUdlFPyW3Bb2ky0XjMc3r0vzlEDbuZy79X2pJI6 nCT7p4Vszkp6ZmQDA7kQSzZnV10k2yrXLrrpMbTFrMD2M6b8xjJ1nYV6/ptg0/9t5J2Yn5pl 1mUreggfXRcm7V/SMWaKevho8GBO284iTvKO0Wl2YxsogGqDqOuXorkJbuErD8g4wcN0UL1O HydxfZDyF+r6JRndeeUvVV/qOulHbccT/m0LzNWTpDxcQzkH1b54mhnDcNubbnFa/b7cu23h miRaT0u3HOrINl0HNrErDJgKi7GP5vfagyM760NdN6Jb2WcebHt63XvCfltHbPkP+e5gMykO 75UrM9i51CXTsFvI5qji1nlwE2UhlrGcWYkMQbZas1Mqwi525ivSXpnyGzNJayD1TWb+EpuX 2ehY+Zl1uW4FipTZvr2Tj5pLXTU9u5IH1X00xs5Uf/R8qV6J8cPVKaOovFuoeIC6box2ti9Z mavSBMVgLex5NL0iTop0L8pfqOvS4m+qvtR1YfG2Y6VU1BbaUz2xfbjTimL6ltLxOyPJW0JG o8+u05cHD0w0sR3G6vy04FUZvpnBfRBhbYMwgj+XsvbgnlyyHdnclL/9ZHRsP7h8qlG/rpZV P2NWHuyZJNe5DmlM86R3LxNlyre9urbNZMiXEux8X8dMhDGDna9u7c8cHmeSREvZQrZLpUy7 0JeN/v37T+BzpTVnuYXaKtMukjreWBtld7wF22eu/OehhJtf6LMIq17X3x2ro2LlZ9ZlDB89 ts1Zn1De+pvAyoPwpzuZbWG2nan3cM87Yuo0ul1NeqBEvOD3PTHxQos+Zzi9ngY1eZwU5Vcl /Em90NPetfenQvJIiLdXpvZq5RbtQnbf0iF5EBunOKq4rdCv2pefcZbxqcYob/2JqSpr9t/8 wIF9UnJa1eQ+5Vp6tNbWG6wJYsrprH3yHRq57o8WJF+G1aTs+854XdNHi8sWHJjsAxrfuKBo XSaz1WLsjiw5d+zWwljXIG9NzIaSzcXkbyFQ5DuKyybBR0N2pq69VI5j+B+7jSJ9D/3pLWxi sr7nmxYJ9O1N9Hbn+NsFSLQdRWwtYyq/WD9HtqPMClW4rZiMZ92K9eW/1X7fAxMf/2lnJ6oX On/XVgrs13+dlH4/a1+yKyNVQQlmkecy5XXWynNYW/U6rNjiVh7seQXGft0mTJfPi9qEr8t3 WV3iDmzkyMc0AKZczNJk3dZCNr0xC72vdl1GttVa7KR2uvaMRi35JXhrC9l6+yhhZ+/XS0Ug NX8ExgtM30N/GrILgXpl+jP0WsDfbx1/O+QXHsO81Upsasjg1SrTL6KtgtmORpeb8kAtGfW6 lOrLVTnPQ5lbxmAd+OuD/9DvW+N13H8uG3Xdv+7F889K8TPjKbpwP3Nd5ufdj13upZ6qxCcP zm+IS2C6qKAtuM/UapzN5b2+A0v2pVoS5OOqnycXtzRZ99WXzdwOFXpf1boMbqs12PmW6/df hXCd5aghvxRPrS9bXx8N25mqW9VlBzLjBb7voT+9WxzI82foNbv9TUgeSIq/L/KLj2EYE44B pfL8Is4q+O1oXLmpd9eQ0axLmb5cTwR9kwdnEqHk36kgqzznbDB6JDGqSNe20FmWi7alireB AAjkEFiz6/0zGDkS4FkuAfVZ4+TZLM47EC9wKN3vHuj1fjpDjW9PoP4qsdsjuoEAZhLowV1x cCYVYu4XT+NycIf4GoupILn6QExNUREQAIHRCeyZ+0KfNR0d1u3lq73qwAMI8cLtLccpAPQ6 pl4hlSACoYOMBVUTVfF1fpcv7RnJgzNBoD/NOgtBe8C+X64u7E+eyK0pagYCIAACIAACINCL AOKFXuTrvhd6rcsXpYMACIxIwDwlcUQJ3anmbX+96/OH0yCAoCAAAiAAAiAAAgQBDDDHNBHo dUy9QioQAIHaBOZLHhynbIY+51UbOsoHARAAARAAARAQTgDxgnAFJVYPek0Eh8dAAARAQH1o YSoI22E52Bc7lc4hLAiAAAiAAAjEEkC8EEvsHvdDr/fQE2oJAiAglsA8yQMciiPWCFExEAAB EAABEBBDAPGCGFUUrQj0WhQnCgMBEJiTwDTJA993PR+Pxwdf95rT+CE1CIAACIAACNgEEC+M aRPQ65h6hVQgAAJtCUyTPGiLFW8DARAAARAAARAAARAAARAAARAAgXEIIHkwji4hCQiAAAiA AAiAAAiAAAiAAAiAAAhUIYDkQRWsKBQEQAAEQAAEQAAEQAAEQAAEQAAExiGA5ME4uoQkIAAC IAACIAACIAACIAACIAACIFCFwP/HSB8QMTOnugAAAABJRU5ErkJggg==</item> <item item-id="492">iVBORw0KGgoAAAANSUhEUgAABjkAAAAnCAYAAABdcSotAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABd+SURBVHhe7Z3N1eu4DUDdQHqY2aWG r4vspgI3kSySDlyNV9PJV4wjWZKtH1IESZCEpPvOmZO8Z0kEL0AAJETq9uIPBCAAAQhAAAIQ gAAEIAABCEAAAhCAAAQgAAEIQAACEDgggdsBZUbkyxB4vu632+vm+O/+vAwEOgoBCEAAAsoE nnd3bLmpBRfil7LKeBwEIAABCEAAAhCAAAQgAAEIXJzA3lyeIsfFjcN297tFop/H69e2kEgH AQhAAAJnIPD7eP1oFjmIX2ewCvoAAQhAAAIQgAAEIAABCEAAApYJjHN5ihyWlXR52Shy1DSB 3+eTglJN4LRlmMDv6/mkvGpYQWVEo8hRhmuFpxK/KkCmCQhAAAIQWBEgX8QkIAABCEAAAiYI XKPI8ft6/Nxeai9mmtDclYSIKXKg6yzL6BzC/cGibhZDbj4Vgd/H/VVvSOC/TBhPsyIH+s/S P/ErCx83QwACEIBAOgHyxXR23DkRIA/EFiAAAQhkEzh/kWMIFv33HChyZJtLowdIixzoOldB zwfHguUy5P6zEej8yqPGx3/wX2Ysp0mRA/3n6p/4lUuQ+yEAAQhAIJ0A+WI6O+58decosGaF HUAAAhBQIHDmIsfv42f4WPXPvfumA0UOBXPZf0RvTLOPg+sVlcJFjsvqWpX5s1vMZRdH8XFC A438SDr43674V7LMgf8y9iJC5SIH+tfQv8H4pRqf0/0Xd0IAAh0BxiNmUIEA+WIhyCcfv+SB GnlgIdvjsRCAwPEInLvIMS1MsfWvvGV2hYj5bpnnvSsw/Sgd8yIpclxR18rMnw8lfZW3Nlo4 KwFlm9bC1PkzvaLtVqjvpPhKscqornv1VC9yEL9euTmDufhl2L61/CLPgcBhCDAeD6OqowtK vlhAg+cfv8wDOrPJzQMLWB6PhAAEDkrgzEWOr0qutHDUyBD7wPQzP+pIk3m4yHFJXSszf97v Rd9Wb2SZNHskAso2rdf1zgeVrHJ8BNX0m3q9L/Iks7quX+Qgfr0rS1nfTjMXvyzbd5EBzUMh YJgA49Gwcs4mGvmiukYvNX7zciF19iUfeCm9lgTJsyEAgQ0BihwYRRkCq7cushqhyCHDl8O8 T6oocsg4c1U9Ajk2rSlljA/KafdCk5sNJiu6psiRY8Hp9+bo/wjxK6d/6VS5EwIQcBFgPGIX pQiQL5Yi+33umccv84Aq75SVN1JagAAEWhKgyNGS/nnbfp8tudjZkdPXmITxuslBHvMYxjm6 5F4IyAnk2bS8nfCVtRZR8V8mvgpU+biqr/2h/zT9249fdnxZ2NtxBQTOToDxeHYNt+wf+WJp +ucev+SBaXlgaavj+RCAwKEIUOQ4lLoOIezw8SzNXQExCxjXTA6ymasu6h3CTBHSOIFsm1bu 3/Ou9Y2hPcHwX8pqS3ucqj8kfoWUkD3WVfUVkjb+9+z+xTfJHRCAgIcA4xHTKE2AfLEc4fOP X+YB5ayHJ0NgSeD5mB+1D51jEeh85ePpF5kix7HUaV3aIfnQXgxkkWh3WVSDeX8uJvtDrQ+v y8hXxo/k4Xveb0U/Pj5Id73JjUVd1/7w+Ncy0X/SKDUcv0zadxJkboLA8QkwHo+vwyP0gHyx jJauMX7JA8tYD0+FwJJA709Y+jq4VXTzv5+HZ+9XySLH76+VDWfXCxjaJivRZbm3K65Z5KjK 3PAikbYt8zzbBMr5kbx+95NWbyDNe/Ts7vPEqqr+S43/+CDVnQHEL5961MZ6g/h1aPvWHi88 zzQBia2a7oCScGr+RkkeHnNeAuSLcbqV+KjrjF/mAXHWw9VrApLxdCRqRfrTzfPuvsXxI8FB 1u69xPvLqcptkcPzMaf+wtvN+7b38q2FwUF/F4T6Z2q/3W9Aq28mDfvVT+xVj4UamCbpsiiL mEWiwnZxUubv5HGvnF1Uv1KdDb7p9vkv50i0k/okKcrq1wl5m7AzN5w6k9bCijmp/1Kn1qzI od6T5QNPqv9g/MrEai8nyuxQ9u2asThbGB4wI5Bkq4cmaDC3MJHHMEZ1zVpoZ2Oj5It++kk+ ysSY0rWoZk87aR7YjKe0YUvcpTLvXXfw/ngXxjXYRD0jLrZEPfoqF/sKVrIih6fwMcLbTjDX RY7uwr4htQ9RG9Fa66BbwMGk6rJPWr6Lz9//r7MN7NxFDgvMexl231JvbeuvwQfNZcx7q4eg UteLyniX9SN5PQ6OkbzH17n7MjEjEydFDjHAQ8QvcW+2F1roX4b4BW7VjsUFRLzoI1Nt9di4 DOYWp8uXj20hOtLL7Gxqi3zRTT3VR1meG+jYV8WnMA+oCHvWlCHuKgAO3Z9+nTrnRVkVguND 4mKLZsvneZZnnThc5NgvcHTv/XeLj3NDGQocnwXv2Sr3Kd5smFtE9UR2/mZOt4Ok256z3Mmx +v3Z7zSJGcRWddmyyHEN5sGEvLqtr1yvM5jmBIace3fCwsTpPTZHP9j7wLf8s78rR5b3xOFT RB59sE6FUUnSQrz3pFPWRXCMKJHSfcw1/Nf7JYp+V6XWuDtNkeMa+vePzZPkRNr2neNktGNx o74NL0msXs5pGjMPbquN9DjMQRvuqHeNpbPly410ayuvjbMz8kXXwDCyxtDInnPCbt6918gD 1ecBedC7u8/G/UT9cb1438wvxMWWLLNs1Mfysbxf93LkgftFjvC5gO5jAhw7OXqt9JOj3d0c 2zfEspRZ+uaqiazrCLB+gjYVMUK/h2Ho6jLc3vuKzibC88r/vf75j3+9/hY+Uu+yENPQ72FJ mjB3iBU87qOUrYv07+GYJVOhoPKWaXas31TcmIw8S+Y9e5oVo2vumhPrrxDvYJFDTxfiSauY Sdg/5F0R8k+h38OtW/Ffw+RGT9fPv/54/flXV5wM/RHpmvg1xfr9/C8E2/+7zA6nCZr8xQ/Z c0e5gvltev+07dspiciWC8Ri5bGbRLlYXJZKY9gXS+2imR4L5xbS/s9VXcqeUmSZ5MqRqalu b8McsWZe63aQUcU08sUtROKpNB5oXheKLaHfw7JcSq9hHOMVIa6h38MN1eUekjf0u7H+uL7j 1zTOZb6oIc0NmvaxbCxfHoM42Ns0l799ze+7WDZtD/QvQnuKGS/fvxdORsNjSPeKmKTxfa18 cr0R1PX23PzfHL97j/NxytJIl6KB2Wgnx1mZu0aBy+HHTtom5zm+HRkuXvUeSFLkcgmcu1th 5YtSZHeKNSy2fvs+Kz4MLvd97Nbnd61234/uisjdgxeOfj3W99pLkUWsv0K89zz62B8tXYh3 IoqZ6IajIjFj1yYaxYwK4+55FyacIl0Tv8Z0M2qRKGp0uOKXJCea77Db5GcHtu/dfnnIimy5 QCyO9dMpfds1ppWe1zFzrz0tWSzbqtQumumxcG4h7X9svpxiOymyvOXKzJeb6VaY19YYo+sd Q4F8mXxxPg/62uD2WOQG60U17Dl5rEZlPuGLNdYxyJPCnNdXaHCfnmlhzU6jP4bsyFkgquEX nJakkMNI/U2zPpaP5a6YO83lN0WOfhv3cMrKfLfAZhQvF+w+P+9PDiWLn77zF9/byyUPiHdJ 8XdIixyfgZ1e5Fhu9RlFnTm+0O+fznllWS/Gfrzr6iPyy3/PVoVoYLZZJAoxDf1ulrnL0rOL HC4nLVgoFOl/LXDmhO39uLm8ibI713vGY3N+px/Xhd35OFNs1zeRXSRHe+0lyiLWXyHee157 45/zdOF6S8Cdr6QW7uJD0H7350eYpcSMkE00ihkVxt0Zihyh+BT6/ejxK9i/1cRxO+k5qH0H ++XxGmJfPr9fIRbH+OnUvu04yo2dzNvYa09RFtO2KrWLZnosnFtI+78YFus8cGWAqbaTIktu gaMXvZlu340PR2DPJ5sNxmjsnIF80TUXWhc+vvr1FT+y1xhy88WqY1V3DjAM3cx5QLD/F8uT hCrK5v5ZQpiOul6vH9blnt0fY3bk3GnXLM4p5DDS3KBZH8vHcpdOvUWOb8AZBpK7sODbmRH7 BpzQawgvc30Ae/1v3kdtqly7s6PhHPBuQXNTlBkj8/Dv3TWh72ME2s12MP2y7q4s9XQZX8Dy FzlK6vpMzKfjLrwJY29/e9nkzDFudgr0R9A5iiS+JD9e/7MxOI6T3Y+kfyZlroT6kzl83yqO kF3EcXE+9M7Cuma7726NvvrzRvL097FQvddehCxp+ptxiGhr1+WHfHVMMBfItLfwncbktT0T fn1GfPf31FiV7b+CTOrFjNrjTlfXxK/Bhn15oSCxk4z1VfwK2f+m1c3bcge173XHnG8BDhel +q1BncOuxexYHOOnI/oW9BnOPGEVM6Pb87zIlJnf17bVJLtopkf93CKp/3MlhfLlCLvKkuUM YzSU10awHHxC2hhdFDmCuVHvW/0veaXq1PR8N8iEeOrLdEzrNTi+0KtLr6H8M/T7Nz/zrR8q c8/MUST9WXAqnW9L+rNe8zpYDpMUR5r1UbBGFfQ1swscsTyqyLHQ/fj2/3YNtFwlMUl5grly 7iWL7TAbY5km8p6Pn1Q+rmr42LEjoXMmeuV0uctcVH1sdKZ5wva8QzB3KmS7EOe19Y7LZ2Fj /v8Xz/UF4FXjIv2P97z1IdgdIhrke/IJZXdnNp/C57iMtDqixTfOpgCQ3r/JwS8c/d6kbveD nUIGYv0V4r2n65xgvmHTL9AKd+KJmYgMNf0iTf/1lmKnYLfMXsvu/qsw7p5//fn64+jf5NDU v6WcQRi/nLHYlxN1zzzNTo4VH/e5zQ6IMX5LMxZn+Glx35w249mFshMz99rLkiU0VoM6LZi/ S+2imR4L5xbC/ufky2LbEcoyhGvFfLmZbge/3M83pHltsTEalS+TL541XywyVtOz/PCdodgS +r1l7An3bnlFQz+1ETXENfT7/IEW8u+QvKHfjdmRcxw3sx+FHEaaGzTrY/lY7jyuapzLO7/J sRxj3ZY3y2cWxzrDxOsX1cp+UK8+pO7cAtW3tbvYKBFmPSFbv7Ud+n3WhlOW2N03wkXQUNdE A9P/Jmzo8Xm/h5iGfjfK3DvhXy7i+m39qw/320oRb+yK9D+Nn/QCwLbLsW9BCC0pOYBEMHOJ shjTs755/c5eexGySPXnnSBGtCVUwecyVV10ct67HUsSGcRMJA/LuSbkn0K/LzIAR+GiUczw 2v/cP2QWZHrbkZyTINI18WtQmVLOIIxf22NO1jnT+KDxja9tAf3g9u3tl8eniGy5QCxO8dOx fXN0+Z3fSF8C2mtPQRbTtppsFwIfrMKuUC432Yyw/0n5cmz/hbJsj5fKySNcY76SbmPy2uJj NMbOyBf7I8aWu/yIp5mjMPH2UJ4f+p08KQ18iGvod2vrRyF5Q78bs6N+/VZjJ0dsDHcaU0xs 0c7fzxPLnafHjHP5YJHjk4SvJgW+qvYwgVgdc+UoCizVNUxCg9vf0zyO0l3jQH4fK7JadO1h rooeywU34ZvAXklXbT/WOzXmv3dH9dxjdnK43mQcBEnTpRC3KGlvtUj07v1wHuyk7zMw9/rI dRHBZ+v9v/fXuvQSOYZF+p/ZoOM4H8la5LbLrqASKbuLY8qCzbgdP8fvvXe+zUB8/r7zBoi7 vUgGQv25Fzgj2xK6lKXPjV349snU/bvU0MRMYjuUcr2G//LrSTf+p/Rvnjhr6Xpc1JHoW6Rr 4tdbS8H8L0P/78e7iuDCnGgQcPNh9GPb98RTWFwS2XKBWJwUMyP7tjGtpV3Mjwv5+c+//Ufa RL3NHWvPRm1VaBdR323YoBHaqBNpoVzuY2L39/cpw39S8uVIOxbq4jNn08qXm4zR8Tg9cV4r YVnLzsgXXfML4mnYi5S5QmMe4B9fl9JrlIKUuHteVqzPXak/FvJt13ptozinsj4izA1a5Wlx a1QpsXxal1wN0G2RI2oEOyeGvie4tpLEtmb3eg/gSeDsnRwJPXdtH+sf45VFngDW1WXLRaJI 7kdmLnWSbxP6eRfRFonsWNGWTQgjuZa+vJXspdtdj/W99krLMtdhzbakthNg8xAtdEgbM3rd 2n8F9WQ1ZgT4hvo1JkY6WiJ+9RyL5wyS+OWLz6Oit28CHdS+V4Yr/giujsFXfYp63wK5+l57 qrJczFbV2IV8e1XrHBpz5suM0XRNWBij5IvjkWizlzeDY494mm70Fe+8WOyZyKrFoFRVHXn9 yNVn03bUr9nmvni+7LSa/QT9aKqB5d+n1sdJFLVY7tk9uS5y3P67/NCp5O+iMwr3djnkc/c8 YTqeYHoTX9egl2t2w7mh3j+HKHL4d3Ms+lVdl5JFonq63jXX6CBlifnz9diz4aXBL789Ydgp B91LK9lrtDv3OxQ4Av7Z/6H638eje4e35B+D/kton3bjv0dfkn5VL3IY1P/G37vzJzv6F8Sv eXze7CxxL8DY6Z/Q/wj7JXyarctq9G0eM/faKy3LmW21FDuJb29h0W+5ZjvNSvW/Rd/Wbdbo W+sxGrAz8sW9VLs75SP0Jlz1NYadgVPDnj/NG8wDhf0nT1JwvodeP3L033gO89udzCJd8tr0 Tjguoq3CUg5Tqo++uWVOvt1xu7uUOS9y9AWNeVFD/vdhC5M/bsmr99EG4b1he8SG9wze7EbX gWkoqmzfci9XZHF2IcFhTsczmdOl7xiwd8dr6jpgLAdn/uwWc0XfHXgf4/W1Z9/2+FAumz30 FB7QSvY67U7bS7tgPh0huDrCoNdRHVkGZdVsS2oe+zJ1DItu47Dpv+R6shj/A5Ps0DEeVYsc NvW/ILj7koYd/Qfj1yo+L23c980nO/1L82ea37KSSlDuOpnOctr/xsy+sL3XXlFZTm6rJdjJ Y1aOfaTcu31rtET/UyQrcU/5vrUdo+SLo9XMfJR87BFP3WPObh4oG8/oNduXHnz9yFkImH3i wJ4dCV6M2lGqrD9xViH3o3HPTb26RB+XsujEcm/Bal3k6BufCh2x/5sKsch9TmfRothSpHcX e2hgJwe61rOHziGI1nNVFwH1xOdJEFAn8OzGhKzyl9Y0/iuNW8m7VP0b8aukqhbPlsavagLR EAQgcHkCqvHk8jRtAyBftK0fq9IxD7CqGeQ6MYHyu+5ODM9M13aKVVORI20Hx9DD9ZFWZvq9 FmS9ZdisoAi2JCA5rmrFDF0nG1Hobdihsnuut0OTYXHjyQmU3sXhwYf/amtXqotSxK+aygzF r5qy0BYEIHBtAuTLV9I/+eKVtF28r8wDiiOmgasTSJifXR2Zqf4Hvq3iKnK4Chehb3OY6rNT mHFLzBHOz7EPs7KEsU4IXVdWEM1BAAJqBPBfaihTH9S0yIH+U9XGfRCAAAQgAIHrECBfOKeu 0es59UqvIACBagTmx1VVa7R6QwSL6shVG4wpcqBrVfQ8DAIQqEgA/1URtr+pZkUO9G9C/wgB AQhAAAIQME2AfMG0epKFQ6/J6LgRAhCAwETg9EWO8Uv1i4+Ao/6DERAWOdD1wfSKuBCAwIcA /suOMbQocqB/O/pHEghAAAIQgIBVAuQLVjWTJxd6zePH3RCAAAQuUeR4f8iJbwcc39oFRQ50 fXw10wMIXJUA/suW5msXOdC/Lf0jDQQgAAEIQMAiAfIFi1rJlwm95jPkCRCAAAROX+Tgg00n MvJAkQNdn0jXdAUCFyOA/7Kn8JpFDvRvT/9IBAEIQAACELBGgHzBmkZ05EGvOhx5CgQgAIGz Fzl+Hz/dLo6b8z++PX40+98vcqDro+kTeSEAgW8MJlaZs4aKRQ7ilzntIxAEIAABCEDAHAHy BXMqUREIvapg5CEQgAAEvgRO/00OlH0CAoLjqk7QS7oAAQhAAAIGCFQschjoLSJAAAIQgAAE IAABCEAAAhCAAASOT4Aix/F1eP4eUOQ4v47pIQQgAAEjBChyGFEEYkAAAhCAAAQgAAEIQAAC EIAABIQEKHIIQXFZQwJdkYOjxxryp2kIQAAC5yTwvLuPtbypnWtJ/Dqn5dArCEAAAhCAAAQg AAEIQAACEGhFYG8uf2slFO1CAAIQgAAEIAABCEAAAhCAAAQgAAEIQAACEIAABCAAgRwC/wcp E0PMH1nJIgAAAABJRU5ErkJggg==</item> <item item-id="493">iVBORw0KGgoAAAANSUhEUgAAAFgAAAAVCAYAAADCUymGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHNSURBVFhH7ZiLkcMgDESpi4JcD9W4 GRdDDNhYSMsvMePLhcxkJgdGwGNZyafs/AwloIZGn8HtBDxYBBPwI4A3Y7XS1myDZ387/GaN Vlap8NUNC12X63kl9rba5YjlYy4rW1k6n+zPbwQr+E8DPjYbIQQ4JcgObtK/LvvBLDZg5PHC 3/R5fzhxPtlf0sn3AUaH74Bps6MCn6pYwgFR0W5GX0DBeN+fm48t4fsAI5gewqlItsMS/EYF pxGfVLDf6OV1wsre9txrIFRPQaXn86tTXVybPAzq0XjdxIcb1etWfaOC3VUjibFyNdOkQxMQ SjIfAuYenXiw9PDUc4EqkvFl1VQBCxD78aK2vVFkX/fc7SrutAjsl0GNfm3ZeKUqioyv3MoI OMm0UH0uKJ8UtZ0zMkULa2SqLZZJZDDy25LPwr4OwFCtMjHmOEfAyUmDRbl+XgqhtjBRXyLo s+beMg2orcUios9mxjf6MLEIWkwzpTrV8ICozZOq16V9QGHtVXzREHXvWetmkxx70RDw2ItG I9x8kkv21GENRxVxu+9+fiKPRaj+L6LZGiZceIgVwOzq0ETU+PvX1VxV8GN3659MPAEPPsgJ eAIeTGBw+BeCGqH9ri06pwAAAABJRU5ErkJggg==</item> <item item-id="494">iVBORw0KGgoAAAANSUhEUgAAAd0AAAAdCAYAAADvorZuAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAbSSURBVHhe7V0LkqQgDPVcfSDPsUfo 0/Rl5jCuiJ+AfBIEFHlbtTXV02iSl4SXADrDhH9AAAgAASAABIBAFQSGKlIgBAgAASAABIAA EJhAuggCIAAEgAAQAAKVEADpVgIaYoAAEAACQAAIgHQRA0AACMQR+PtOn2GYhvX/+Itf8qoR vdv/KmfeawxI9178IR0INIDAbxpnst2J9jfO5PuZvn8NqJ5Fxd7tzwIibrIiANJFKAABIBBG QJHs5zsdHPs3fT+EhN+OX+/2v92/le0D6VYGHOKAQPsIWJ1f+wYJLejdfiFcGG4gANJFQAAB ICBC4O/7sTpf0eXND+7d/uYdeLMBIN2bHQDxQKAlBBbCGcapt3NUm496t7+lWH2qriDdp3oG egGBhyGgCaenA1SmA3q3/2Hh2Kw6IN1mXQfFgUA9BHrv8Hq3v16kvV9SG6S7PCP3kAobulhZ oQ+VbM9vXlt6VPd6iJ/fn/uzhUy8nxTzWf3Su/0KzJz5m9U5jd4sHlMgXalrnzQB3a6LTtgP eWDzWkcQD1ipuzA+hAAP799Ii6o3vSAD9ufNX2Qbp5A1Sdd664rqXh7x5pnbyYUEE3Q5wFhe kmAfquFNZO70vHJtIOE3n32VvitpqMBe9CefM88Z5ilX/Wzr8IiE2gwthHcIx5t8UTXeWrE/ d/7e5Ntn5Vk8pwjpnp890xVuyknFcwd0aT4rRXRz0InnQOgSduUlfOIBmxRHWzG5OXsj2+3z JZ1jneRauCoZxgsmkizhXcSO60J4R0mHFB8lfAH75fPa5rMrudBbnjnjPJ5T4eXlUyVE1v9r TSDKMEkgLGOZhQI7OYWdbsp7WkvpQru5krgsEF3t5qyATcHRlQjrfY4Cyy4wrc+55CpdFP6z YFXA7vLtGA3JS9GFHUuF8GaQblFfvMn+lvJXmmcptvlii5NnIXnZdInnlIN0fRvr5qvflpae 0Sb69oOWZT3G9XouZx6k2oG7k3RdoDMOB7EnCkEBYE3uXJ8pouC65tDmKuEuDEUOUiXi6CVd 6gO7GqWkm1GurxAx/BKSl6gL23+F8I6SbmFfvMX+1vL3NE8H8izVNm9sOeYfKiMkL6su8Zw6 LS8rMtwPxhidrroZITNJR8lbFPOPIs48kfjKDvr3czL/wp3u5SLA0sXoXlT3v1Zc1BijyyFf FNfFRjTgs0u6rBUuPVDldOapErZHkYAV4KiLssD5A8lkkFPuYt5WxG65Q4va+XcheQJd0vyX iHeUVOv74pX2t5a/kjwT2BbNb06eieV5GrfYXEMbB0/+HqSrBthLxpR0T3tS8bVrvbrmPvkY 63TVdfsk7ux0VWXj6CAlxQCzIvbqMl9PCxQ36fBw4naXV3Qp0ukuMcLo5FmFVwgrJo6XO91A IcCywRykMFdxsf3UzW+oMMyAATOuwyctL+AdJWVup5voi5fa//j8vUC6bNs8sSXNs5C8a7rE 89ck3VMnu3aP6s+LnEi5UFKuoBon0hwFgTGJUUcUIF2/LjMGa6HyG13Eo5c8oh2grk5YS7pJ uuz7gkxyZOrCXvZnk5UvpgQ4ZiXdHHJph7vi743RkDyBLlz/eZ/TFchi+3ZPbOuZ+9BSv5HY 2XPJX3Q8zP5W8jeFdKW2efObmWcheTl0YeSUsadrdqXKCLLXJep09XUssvEm7bpGvzzSYZHF SRdykwKkux8QOumyddsH+R6aCDFgT5Q+XEK6bFoxCyWmLvqZ3JzPcLr0E+KYjXSvy13yiWyO 75+dMRqSJ9SF6T836QhlVSFdoU6vs7+R/E0h3T1+mHOTI95kecbBMl0XTk4JXo5x456uAbRn WXkbIyFd6YThGK+IZxzJMvO+fFj/GWenLpbOvv3lDFDkv0V0/yS/yOWOpeXaMRqSV1qX0ypR /bgNerF3+1vOX2F6Zp+bIlwQkpdNF0f87qQ7/DP51/WZLpWq72kVb48X4s0e7l1Wvol0T0us NScJGzW70qy8JcB2ImfgXTjWkEsnAxCuPxpq+MKYNx5WcLScv7Ecr2EbzbOQvFK6eOJ3YdqF QAnp+j+vJy/X8Wqr13V9DO/07+nJz2NZ01jGrtzp6qXn46Sbb8lV/ghOCkqmLrppo0vAzD3d FNGZr7kLxzpyty2Ccfp6luhVvNTRRTuupixuqNTUqaYsrv0t5y/HxvJz05Fn6k9RhuSV0MW7 /baRZs6fHMBfM0aRfB1GjUP2JF3i2mIEEAACQKA7BAZeh+vuaF0dcU8I6krmGd3jk3TpKQZg KxAAAkBAgoBBurTb3W7C2euVCMRYIAAEgAAQAAK9IiA4vdwrRLAbCAABIAAEgEAeBP4Dy0M/ ocNq8YwAAAAASUVORK5CYII=</item> <item item-id="495">iVBORw0KGgoAAAANSUhEUgAAAFAAAAAVCAYAAADRhGlyAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAF5SURBVFhH7ZfhkYQgDIWpi4Koh2ps hmJyJMqJXNYXZN0Zb9k/7pAEh4+XBzqavyECbqh6FtMEOCiCCfAWgCmSd55iGpz99vJE0TsK i/VFKB/F/75HV+AjAK6Ldc4KEOWjuL5JjwSYohdwzgcKBgWifBQ/0/dDAUZau9bWcime56P4 5wBK669tZW8tq39peTaAeyXKR/FbPXChUB88wEeXsIMuwH+f5lOhd8EoH8UvAOSF+u04Fq/I i9PG8qDE6h/nmVlcEmLvglE+ip8ArKHQQT2srJA9pzx5Em2snbxRZBP+dwoUdfmYbZn5ZDWV /2zV26lXlCj2rYy1XlPnXxIYLOpVDMpH8dMW3u9Brr1Ea3720uNYeXvbQwZDCfqCD910mB8B QnGrByrtFsLR48TfmrG19e/2vSHiby/G38IMRdqZd2f7vHs19mXweDcAwEbS4o3N7X/zy6V8 HVT3wM/cBd8uqq4JsQK7pvu+5AlwcM8nwAlwkMBg+Q91r73RNXLPHAAAAABJRU5ErkJg gg==</item> <item item-id="496">iVBORw0KGgoAAAANSUhEUgAAAG4AAAAVCAYAAACnvtv5AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAI4SURBVGhD7VfRkYQgDKUuCrKJvY8r wWpsxmI4AoIBYuAAcR3dmZ1dB0zIe3lJEOr93BIBcctTv4dWL3E3TYKXuJe4MxBY1CSEEv47 qeUMNze0+cWKs6TJefWwrrPUJL7kASAhceusZJDhQk1XpfgyESQBmVIhLsu1YmLT785gd1Mx BGf8oOdyi0U7bbLhqqH/dwAVEWczHNtcJnBYk+GpWoqizG1y4O8izL2xr7ukdAE6wtxzi+3S U3T0wZdKMuv1Kc0BaggtjZDat6pZNmTrRtyemHGiRs9YiV1itef3pT/GkPNHrBHEZQYCb6SM OKvag29xyWgkDfIgyfa47CLiIlBNuSs+K52cxoaclS8W2Afn72AtKZUAss+KSHGWBN0nloGK 25SChxQSmkRR0a7/EBc74CpMzq9PGtyGsDgIAWT96b7szwgk4YyAhQ6lsklxxn/lMEKCj20x iks4b1HcQbVgyOEU7tZC4nAt9xMmAdyIHtexkRseahTHYVDYrg+vMBSGWcy3iqfrbdDjQnWA hNNJcweB63HtUyU5Rm+9sqrd1BC3l6PKa8imNqLHy58PM+Bx1x67VncBH6G4wowetQ2Suiph jg6YwZDzZwTm7IrfkEP2WTuFdXw3j/ePAvQUP0m/b7j4lxDH+TtYM2wB6Bj40mdHXLz/FDAH Gw1LdacBKYjBlVHbcjh/1JonzhHY43cwxo90J2qUhstr/P4jUbwg6IA4rLaq3ndBAE91WTdV PhWtL4r7D1B0P/h5pU1AAAAAAElFTkSuQmCC</item> <item item-id="497">iVBORw0KGgoAAAANSUhEUgAAAFMAAAAVCAYAAAA6s9JxAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHMSURBVFhH7ZeN0cMgCIady4GYx2lc JsP4Ff81GCG1va+tvetdmyOgDy+gyu3PMgJqmaftyG2YC0WwYb4c5mGcVtqZY2Gkp10dzmjl wF44suCUUuS3vGcd1DZXDoUcaGUKnTzNaeoggERQlzAJPxYe72njgi6in+yk/187SDH5ovr3 MA+jg9I0OJgps4fplQoui7n/7/nSVYhxNYCoQj8ApokwGGXewAz2uupVPjFZpck4lH2jeASM dsIKvQ/TByr9SVp+08o+GQhhUiocKrOGiXFiab8HJmaz6iWToL5vDQaDYmdBAvOsypCbOHyq mGlt6ZEv76Tm1TAxWOnXUf6Y4Q5CYyeXHeMNAcxLCO00B1v5TeWdVnMXJsIgM/IAl5/Xv5vt d0rt0LxdmZjsU28c5MsDC0MqDzuiijgFlHtm05ybxTxAxYVZoI4Jo5JiiE1kwlemTx61+5PS Jmu/q8x8BvNZqaGlhlygFgahZOqJKeIjMqZhNhUV/VHPcqjuYH+59vswxztD1QKeueorUZzm HPmLmH2wMe9u3mdogyRTzoPpr2HlJjFq1L+uUh5MVOKvk2K0nynMoEL+ZZ8R82tNpjC/ducv 2NiGuRDqH4wsZ31SfQqJAAAAAElFTkSuQmCC</item> <item item-id="498">iVBORw0KGgoAAAANSUhEUgAAADcAAAAVCAYAAADiv3Z7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFhSURBVFhH7VaLFYMgDGQuBmKOjsA0 LuMwKQECIaig9Veffc/XYtPkLneJVfDgl3owN3jJ/au6r3LPUG60oJUCxS4zXETNY9Fgrcl4 EMwgzgvwmC0HMI4UJzMYJGpgPb+QS9txe2eo0QSISNGZyC+UWJ45n5CRE8oeqmqslWvI5osz VzRiniAXfpStSeTwvrMJdaqjcyhbUH/mWupOlV/Ud35KTvOxWYTRalAud2VLBJLsxJXDzwIM Aj9MvTXkpPkj2UwOwWsLhYWlLYskspPT43WKcqJ0rdzsfDErpiQjWP3jwmitmi3KpZ0QMBcz V3YZPVxvUDdFHZuwJ6bBbgu5lDK4at0/lGqDtdp/3fdeKCqvPiXPqTM+4GmBtOJPpVXtC6Yc AuVg585ppcd4PCNZGX8qsVjML5H0yGEzR8T2er+C3FRN1aMYt24r/i7EEEdBzt/omD1OQMbf itydwOyN5QsrTEkcDXcJpgAAAABJRU5ErkJggg==</item> <item item-id="499">iVBORw0KGgoAAAANSUhEUgAAAFoAAAAVCAYAAADGpvm7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGuSURBVFhH7ZeLrcMgDEWZi4GYh2lY JsNQzCcBkzQ2CfRJz5WqNgr4c7jcEOXls4SAWpJFkngBvUgEAno9aOeNUt64RZn/WZpK0QJ6 5tr3oK31Oihbxa/xPxP4BnVob63JtYR6YLs5dD2TTon9Qi0d6BruZvUg7LQ7tN3GMcTmMlyI UgAXbyvNP0gBMUlW+UItN9aB7SRdR7Vr65/0eLsCubkDxHkt+/0CI9dHAsgETa6l3nXZFRDo sFUbepu3uigz/T8EFdRO6MaZYkMnv9/md4oF0HV9NXh0j6p2Fmic+6KWmPuw3OgKoU8GaGim 8mwU8Fah3AEc0KAgtGiwwGfrOLTwnFpwn5kT3TpgQmMXWGHnJIcag1BPmguP8Fb9F6s8Q9Eo 1YWi25NGhFTggmoGQHOFvI8fBl3b3U32maD3Z0aymN46XHW8q8GyFP3WqYPoiztPZt6ZoJua gk/TFbfYo+mFpZHdKYUbYN746Az08O2WLN5Dnz9x5F+CfGGxDNDxrWHdOZqxLunFqj8+Ek6f jCz0oW09nUfTA8lIPgGmovkJZEYiIKAXKUFALwL9AWnsU6czums8AAAAAElFTkSuQmCC</item> <item item-id="500">iVBORw0KGgoAAAANSUhEUgAAADYAAAAVCAYAAAANfR1FAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAE5SURBVFhH7ZaJDcMgDEWZi4GYh2lY JsO4gDkNQQaltIlSKaqQjOPn7yMCHvoTD+WCF+xuyr6K3VuxQ4MUAoR7pIbjVzQ+DglaK4zF PcoAGHIexFeUogFlHbj7YJG0FCD1Chr6WbsbIo0JxmAyUDxH8EF4GcxnQ0Fw1ckFBrxFzQAW OSxZkXRPWp9LJQNDAju0HJQfKpgTZm3zW08LwqiQiJiQ8n90v1HEgdjSTAoVYN42C+I5rG8m mHNUqEmcXd6KM2D05SE2Xik642qY0Az20bYoRl7dKEbrNhqk5l0AW1ZyRbE00bFk6wVdjnta emywq6Yi7amTHmuyh9XE/PLY3GPLUsftYIcWz0e916oy5Tn4npUb9Z1qYoLl3bFlj02mwSc6 rZJej006/GfzCcX+GaON7QW7l14AH1HAcVBX2/pXAAAAAElFTkSuQmCC</item> <item item-id="501">iVBORw0KGgoAAAANSUhEUgAAAJMAAAAVCAYAAABCDNzQAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKOSURBVGhD7VmLkYUgDKQuCrIeq7EZ i+H4CIQAETDqjY83c3PzDiHZZdlETqj5mQwwMSCY1pnLTAbUFNMUARsDU0xsVM6FaDFtixJi UdtP8bSpRUi17j8FmgXsFFNG4xTTqLKQmAyRQruR+dGnc33RmfZVyZDDkdOiPdK6Jfg+irw6 70ExvYRxX6USclXOfHe1Ss2n4fbiB4jJLSqDv3thjZQ5NzeuNZClJRqA9CLyoP1GsJcjBjHp XJv25lWMwuVocgjCGtgnMCWKqdQfZX8DzsWUQDX9g+i4KS529Tt0rEt9HhKT3/DDDZtE0imm 5zFq1g1fOvC2AE4tVmAeFKeFsSCm1PqOLU4Wd84VjUFbZQOzJtlQlkIJbShTmfNgxwDiQiRY LA25lYUM45SE1dCcd4kJrvcUxkp5gzxSnFbGOsRkgALVYhVfc8h8do+Y8Gwqt8zx8GSwocfp hU8kJxkMDB2a1zCaxHEbA/vlQmtzyql2usDHWZnLamtbbzFEsj04RwMeeiLi1CI98DkTITTq 8NzhTKwYDb3S9rT+t+vFUZkDMSlO/VjWgMfygJRrxJb0SW1iGjasETGF/qahFFUTq+HCLygE sjvFxIExEQ3AWxITFQ+NoauB4zWxdDXQ5Uxcb3ON/US2r1eEXprbiedOMcVSMny5aqsF6CnD d7J1oTh1Yx3/Tnm4Zxq2NDex1tt0L3vaY3WvyDaBDaPP6KQPpuJZQbYjS23+Wl/SHrXpybtK 8H8S0l0YIcFQTFS8yliHmOAbgFbh3fdMTSqKD1lxw9t7hsvMdM14xTF869CJCT9+B8Y0hm9z 3NscFa801immi2zM6Z9mYIrp09v7LLgppmf5/nS0KaZPb++z4P4A12XacQLAgzwAAAAASUVO RK5CYII=</item> <item item-id="502">iVBORw0KGgoAAAANSUhEUgAAAqkAAAAnCAYAAAAsA9FGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAsCSURBVHhe7Z2J0eMsDIa/ulKQ69gS Uo2bSTFZfMWYwxKnBbw7888/u8a2eHQgBCZ/X/wBARAAARAAARAAARAAAWEE/oTJA3FAAARA AARAAARAAARA4IskFUYAAiAAAiAAAiAAAiAgjgCSVHEqkSXQZ56/H1kiQRoQYBL4fOcZ1suE hWYgAAIgII5A50nq5/t+/X2nWRz3NgT6vL/TG4N8G8qClC4Cn/f0rWfCiDf9WCF02Y8u0ZOW CXScpG5B5u8PSWqsgc7vN6qosfBwnxACKg68a8xSEW+EKDyDGNBlBoh4BAhkIdBlkvp5v9bk 9O81faeRKqmq8vla+r3/l1ZBntXgPnAVNSvLLL6Kh0QS+KjJVsk0FfGmn2IAdNmPLiPDBW4T RqDTJPUYlEZaspm/k141nieVrL7ilzrnd/y9wow8XJzMLMMFwB05CShfSJuw3QtzJsGIN63P a6FLZeupY0dO38WzhifQZZJ6anWgQWMJLC99eT6t7/M0Fa0+ifa8zCxF93UI4dSko2SW+mOY 5nNNqaJ7H4Euq7hMU0YPYZ8ggCT1CepV3mlUA4PeuQTogZNUi1UKyyDwaFyEgNLfZQJX5CXq oQMlNt37CHSJJLVUnMBzQwggSQ2h1VDbdW9V9MBca1BvA2gayzb62LeUtSZd4yY2/fkIdDnw Fwl9h8PGeocktTGFccTdNv8nVEKXj4YwjV5RJ7PkKAxtihOYp4T92Wzpxkxs+vQR6JJt9mgI AgUJIEktCPeJR28DRuKAvOw3Q5K6J6iJLJ8wArzTXoyeahxFN15ikyXeiLRX6FKkWiDUcASK JKmfj5SFgn4CDYdptopG50lqVZadhxQOSwkIZpWkvop/eo54I0HXeWSALvNwHOcprcRCrkak 9EdLUj0fhxznRXoqa0vwPy9tjn0OBsszO65ErUd1JCyre6wliumqpzys12S3k0rq0yy5AaGF dlEshXSsTpJauLOdxht15tH1+LzCGEU8vltdiqB7CiGJcw40A/aHSFLvg4edzJhJqtLKkjxF f8CTQ6sFn1HAYGKZLoPwcYi//v+YXHORoXzVqaBe9kdLYFm+l3XeEMuyjnT0W7qw6U7jDZJU 2n45LWJ9NOfYwZGzahtBPpOl3wP25yZJpWa3y3W9inj+lNyaJGnZURdVjNXCNiZbEqiqlup3 wa+VVOO6OhD/FVRplcHUO6Abv8JU9idn+2DpDUxgGRazE3m1maSOEW9+Sar6ZbDzF/Pyr1CF GVzu1qPoci9MHeNk9QJVb5xH64/td54kld6P414SdlRS19zOPGjeFGRThOzqnWsrw5KsHsGU uk4HvbxM6ff5WrjlsCct2wy8xGDSKEv2LxuB5Tbn4/4SVDovdpLKlinev3h3Uj5AXaffIiXe nJP/M5Zk2V8PXRrb73abIMdj2nb8LXRf9eQDKY+/vZfyCeo6LVhdn6Hkpa631h+3vM4k9Sj/ +5eKfcbn+/cO9qa6yuz6vzmuewPtWhUykztBTLkfTpl9zvV79xyWa5ujqi2EZcqg6FvGcdoK HXx+LSSzzMpLqzg4qjfs1ZwUmQLUQjbNEW9u/VFQvHHuSTUnJvf6dfLsSZcS450LOrkcHaFH 0lm05NscV1seo3PEAEl2Q/Vnq1ycq9V7HLeS1GMJ975K5tsKcB/4OPsjfftjzC0EXLvN1c55 WLWWQFDXr0mDqwJZjmkwg9skVV9+0PthTEQSPuQiWRqJmz27fYhl8KDoY6kH3bRqtWiW2Xhd V35c1Y7rR183HhEsU7B3sW6g9EZd34K99iGl5Y8P+Yg7m3R8YKuPJbR+JSeplK6o6+t3HVry JSbeOaA7+/JrF6lHlsfsZ1qbE9SGx2jKLqjr0uyGlNf4xb7Dzq0k9fpl/nVv6Wkrvspo6Oyc aX3MZq4Ph8x/8z5qrzr4EmkKMHV9nSOsy+Nq4HDuVa3IlOjratwWiDOh+tmIOUs17vEmBoms LR1a1cZ6LOMmVQRL0lY0Ao2xLMPL2MvtqD7fHeYfJ9PX+aGimHjjmGhe/bGej2yD5d05tS5Z 9LGE1u/hEV3q0gx4D8Y7Spf3SWpZPVJjMHW9+hidGLs5/bmYTmm7SezPNrHWVkV3ee+/7t9L xXbiVm4WHhtkmHlsfDOqVE1d19/sXMItxzS800oWc0bq2sd0u7STsMUjhKXqnJjKArcKF8Ky wHL/ukfcs5e4KstcvKwTREzbWxIe5t5prkzhThV2B+UD1HXrbSYTYfHGSmI1+Uj9etB2qsuq Phpmtdv3J77vFGL1yJWB8gnqurQxmpKXum5we9xuKHk99kGek+reVxlaMU1IWLgGWrzdfnrB L2M/qmHXD6fOUw3M62b1S8g+Sic3x6BuGthvv5vrbNbUDfMU611orwwP2Sd3UAxhmZqk7kso pF0+wTIXLyvpdySp01uRYPzhysR4VFoTygeo65cR1/EBzUM+4oRix8q1WHFMlEn9Ck9SSR9k 6vIJHw024uvk55IYxeqRLQPFkboubYym5KWuSxsnCXk99kEmqapOtQY4c3bk/srt+K1zY5uA q3J0MbzNsGV/3b8IfLDwHUGlX1fLW5NnVulJPPIyZXu2e9hw/Nb5tcq9JNmuakwuXTJZrtLb k6BHWAYkODyWi8mFHmPmUqdQlrl4kRUaZR+cDfGrKU3aj5Ok+VD63Tnijd8fH/ERb5J6bIPa P4bUV3JI/UpPUjOOHZLinc/Af8m0kTfE6jHIkXL4jD/u1veZTP0RYzc3/aErqUGW4EwMfE9g f1kbKoL09r6lD2/iwa84F2caM1iTe88SFHa7tWDb73vNQwSxTOh2niTVEKA7lsReN2WX7zlF CY3c66nQ+/PzVnyEv5exEU3RYnbno0cxwd5z+KhrtjxGu6yoabsh9qT+/dOKqqrznL/7ZhUX dlZ2TPtneotj+ch3RFH6G1hPCHYA1/5Kx5uqMJ3VjxWwFkg3AUsmqGt806rSzGUjufbJsh6N K3M/Jfex3bG8Ll2bev+oQ+LLDoQC4w3TH9vwkXv9cs2e106gLruJdzX1yNO2dw/tzQqWaJ9p Ora77WPNTJeEVE9K+X+/HilhmwV/ps40KUYze3nLva+W8ajUJhFJ6rGlIEf1I1l8Nbhz09SN sf3TrNxVVlJWg+X1fa59sWvmvG5VkcCS7J+vQZblfuPhXbLUkovLR3/KBoqWUWXGG74/tuIj Pv1Ge5bjRpm63GoAenxtOd7V0GOATTQ+Rls9bT622/bxS1KPZDXm/wEmUb6p0+ieSJbLd7X4 G0ZZJi0OEi94jIA67i1kQSBYTsSbYGRib4AuxaoGgo1L4C+ugroBM7cEiMW4VqN8s0+xUosQ bA6opooQGEKAwI9A6SqqBzXiTT82CF32o0v0pEkClyTVlXhSe1Pl99o89kC+xJAQBECgVQKI N61qzpYbuuxHl+hJqwSuX0u12guv3Agy3akUHQIBsQQQb8SqJlgw6DIYGW4AgQIE+k1S969b 5Z+9WkCreCQIgEBdAog3dXmXfBt0WZIung0CQQT6TFLXDfDYgxpkCWgMAiAQRwDxJo6bxLug S4lagUwDE+gvScVG94HNGV0HgcoEEG8qAy/4OuiyIFw8GgTiCHSXpPrOB1zO8Mx2Zmcca9wF AiDQGQHEm34UCl32o0v0pB8C3SWp/agGPQEBEAABEAABEACBcQkgSR1X9+g5CIAACIAACIAA CIglgCRVrGogGAiAAAiAAAiAAAiMSwBJ6ri6R89BAARAAARAAARAQCyB/wXEUV+DVs4fAAAA AElFTkSuQmCC</item> <item item-id="503" content-encoding="gzip">H4sIAAAAAAAA/+xXzU8TQRR/29KyhZZ+gKUUVKxARUVkLYqEmGLlYFSaFMPVQLvRNYWFsiZw wDSaGA9oTEy8aTQxXjx582LiV4jGRPBo9KB/gRfjwcTWN/OGZVuJgpoYA695Ozvvc+a305k3 bgCQkIeQq/i7DZ8VRk5VG4GRgiyPpZOjZ9W0wSWQQu5Dp7hdcX4FyFco959iz6EEsck7lbkn 2FQqnji3lkXfpQReo5Vcpdi8ABkXgE06BlCtXJ1AtQvcXH63msl5Ig/Fk2sovMerABrEa1Dl o8Q1foWPwwcQ4ON2JYaHBiaPGuqYxHO7kZ1WgQe5lpvK6mRKPa3p4w6uiDHvjJ4mWQWXHTTx cE6dmTisT9P0jyNXoiBlAnICOWQHeDYLkGXteYBWbBdnSX+rlkC2ga2OvwTMTP2GkdNGzxkq ja8X2QtW2tQbKekHl3CtJ1yDIcK1voFwDQlcw4RrCBoJ17CJa5Ny4zlq6jcTnk0o2sJf800l mbbyqbsR0oQ+NqozEEnhYwCgeFnChtyHyyeMk36Lk2YjfI9cLDJrNE1m1URWU8cN7oNzbRDr TjzRd3HB/+HOg/BHKKNDYIdC0QVOi0wyvWk4NtEvFFlGouIG/Vf0Dblg4Q1aX5QCHX8GNMMA jGObg5nyreCnFASH+Z9ne8EF6JYi/nf+63nwDM87wlbba9OFVnnwlYTbFTwWG0kCs7O8Kn9O rSk3IzyBJOt8Vut3Wfq1zWrpd/L/TfqT/HRAArBvws5fdi6zPX9jL1gf5MDi7CZ+8EdBWg9V JSujpIM1Ii8x6khUJzgDGl89XuFtFy6axZ1VhA+RPxdXXKE8VT/uPRqMQLZMGf9UG7D2L9lh Rfqyhtg9GFP2/Rib0YuLrlBpH6ss9nJy7mVXetF/7wrcbllwvFmqhmQow8qa2Oyw/xivaYFQ w8O2hP8VcTCbqRD1sTFKVCoPqTltJHvqiDY1kR2ZGdQzKtkn2UPaRg4ekkXEHWM71cIRUQu3 UC0cgVaqhVvMWrhN3DGidMdo20E1cRRV7XTHiO6kO0Y72+F3UbZ2Prx4EqTdJGjj2TtEkD0U pANFnRSkYy8F6WRBusin0wyiWILsW/aNCd9u8o0x3/1kGjN9D1iUPRYl638HAAD//wMA2aNw V9wNAAA=</item> <item item-id="504">iVBORw0KGgoAAAANSUhEUgAAAFQAAAEACAYAAAAtA1GUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAq0SURBVHhe7Z3r1ZswDIYzVwb65sk0 WSbDpJhbbNmSZRBpZL/90XNaQIHH8gW9SL698ceUwM3UGoy9AdTYCS4B+nq9jG/Tj7kI6PP9 d7u9/57k5l+P9336/1t2YDnv+Rdf83o/7rf3/bEBDTbv7/2ffrgcvtMKUAby+nOvx52ApkCn E0OD3B/vUXxWACrDnHxz8r6/6e/tzwLzFryZeHTw4o/XHm58FxcyQBc4TC+fHyz3zvl/SZdf GTz/3rdBvLQINHhU8DIeKAOOAzp78xhjaQZ0A7lAjbt03OO44UAGLXn8NsHtQ8Y2dBSGkF/u +xnQdIbmZnfO41o995fRHLs3eZYPY1+x68NDOdzVdeg8+WRdv9UTBx5D83FuWw6l42l5ll9n f/oiMOYs3zpm6L1u0HVoK1BuLVp4dR1kDRqe/GRwpPYCoPfi9ub8zStOAv3Nh/qfdwWgxvQB FECNCRibg4deBZQNStAgRaf/tuK6e2gAOuofy2cH0LAYN3QmAAVQ+4EJHqpmusRt5wlXiCcA qApoGmfgwo1zQANjqIYokbnnDzbKGhmAanhmH1jwkS8A1QDNVAIA1WDjz4GHnuOXX40x1Jho qsxiljfBi3WoCcZWI5jlW4lVzgdQADUmYGwOHuoF6MgyiFUbIcCMaJOVL33sYAw1ZgqgAFoh IAR/lyulV8g4P4pmmkjHeu3y63f8fMaJLGUkqZEkBiodi5u4my6/pO5MXvXk5YksYy/xZprN F2OSjqU9phug+2NJXV4KFK/HHmui2tw4W1KpdIyMQGMBlaSMNVN6T7SI4UvHhgaq8NBPpnOk Gw0tgYizvCRlTMeSDxhiIU46NvIYShJyqZSRzOTEK6VjXc7y7KSUeay0Do2OZR8ySMd6XYca v/UcMdffLH+EguE1AGoIM5gCUAA1JmBsDh7qBSg0pfMtBU0Jk9J5L6IWMIYaMwVQAK0RqFSG 2CpErikyaaEZXjdaKvpE9fhGSVrYHrxceYx8Gz/D/UTm1ZqS0KZ9dfk55PY3xTWZWnshYk9I fyBKulHwXF29vY6Abg9dKwZDxbcVlKgbxaE7uThiN0BDV19q7WmBkopmVU0p9lDeY/sAmkTX NUAXj0sKuzboRsHH0/LGnQWY8xl46ZbFSrjUE3cWet2oe6DppCt4KAtzscDqRpn8HH5jmFxP AjTSlDhP/kz8vG6UXsvP+H2MobW1/hePA6gxbAAFUGMCxubgoQBqTMDY3GUeCk3pfEtBU4Km dN6LoCnZM0wsXjaGXnzfP2u+H6CJVsRt5BJtNrDrQ9G5kg1Ri+osfLclc21BjjmQwdSn4+KY sg1Zi4q7Sx8eqg4OC9qQZEPUotLRZzCggjakbpQ5cspuktUH0DV/M+nypV3BiGy86E9bbDPd hmiJf5bintzuOoundgJ0epJo0rg/nmrZN4vSr5NV2UZBiyLrjX6AJg+mz82UJ6l8BVDbuq0T oOmYxpZSE7UhwUZFi+pvll8Uts+3R/GSieQpidoQY6OuRXW3Dv2dF6dOujyA/g4B4zuBhwKo MQFjc/BQL0ChKZ1vKWhKXb3Ln3cIEwsYQ00w4k3JGKN3oOL7+SeXiE+tqW3jk3+022+eUrW+ 3RooKWpKum18SrlOfJjPsQSir2/HfWGs2IKimOvUe56SUOxK2lZijuqzxa6Cp3G5Tr3nKbFA efFs7piVbXzYXCdRi3Lc5fdb54BmwMhkrq59V8916itPiQEaHrKYm7Rz5cfQplyn2dnL+aQ+ F/ZFoJqJQ7uND/HQ7vOUikCZ8bOp9t3myrV1KPKULnszooZ9dvmv4Wn/IQBtZyZeAaAAakzA 2Bw81AtQaErnWwqaEjSl816Edag9w8QiJiVjwP0APVjTLuUp7Jk0Xp4S2V1GWdMuBsrXvhst T+lwTbsE55Qqw2TgDZenlI2D+U4zxX2S4uvE2nf0B7rPU0rITCk1UeReqmlHgU4pNcX9lBKe o+QpzQ99oqZdVRFl7BPn7W6Wz78W0da0q5ynTK3pA+jRmnbEu9jad0qYwVwXQOt5RExNO0lv imb8uv1Py3QB1Phl55Q5AD2FL78YQAHUmICxOXgogBoTMDZ3mYdCUzrfUtCUelnYn/cFOwuX dXm7W/RlCUCN28sX0LgmCI2uK2vfJbVJuAi9kBSxlDPia+v5AVpK9tpjdYWKNqU8JdHG6qpS HpQiR8oPUNo1YzjF4DDvRbspAljKg9LlSDkO36X5SEoPJY3C5jQN0eU3GPtYSb9zl/aNz0hO 42DI92S+lR8K6M6GKJsxnHmsU3R5rsrimECjXKFKhpy0MirmGw0BVIJGUwc5D9WCHwLo5Gbq unVx9y8tlfb6yxhDjd9r7M35XYfaszCxCKAmGCEjG2MEUAC9jICx4cvGUGhK51sKmhI0pfNe RC1c1uXtb9WHRQA1bidXQMX6c8o8Ii5an3AtBUeUmpUroPI2E3yeUuaEzbqRXhFwBFQoI9SQ R3RIN2rQrBwB1defk/Y7Otble/RQGkRO9kKKO7WcR3QMaLhKp1k58tB8Os7H1Pp+R4eAahUB 7wv70uZStf2ODgHVSieugEr15xryiA4B7dVDOU1JzCPiBLdWIS75rgq174zfh3hzrielr1Fq +CEAbYClORVANZQazgHQBliaUwFUQ6nhnMuAQlNqaAXmVGhKrt6Uzjf4Vyxc1uW/cvc/+CMA atwozoBqa9NJn4Nr4pqFrSuUmpUroNradHOwxHQ/pS5r3wl7xqs1n4P7KTVoVn48dIVWrmGn 1HyK4ONQHLefEh1oe6h9R4PIRTiVveaO7qeU8Oyl9p3kXdqIes3GPu5y+ynVNSs/XT6ojtz2 Z2rN58R+SkqZxRFQsilU7G1aD52l508pTH7/OuKhSphhZHAFNNHGaeohp/lk2lH7OhS174zf flrMOfPQlkf7P+cCqDF3AAVQYwLG5uChXoBCUzrfUtCU/C3sz7f61RYwhhoTBtChgYq5QoLe lEAT3uUN7DvyUDkqz+tNMc00itRSnUxn31O0SdSNBL0p885IEY0jUSb2PQElVcASZVPUmyKi oqYk9ACtfX/LJmb8q+pNK9RqZP+kfVdApah8Vc1cgdY0Ja5+nta+K6CidzXsmRRH+uMx1MS+ pzG0ohuxeyEJEnAyy5vY9wQ0gBFzhQ7smUQ/1zlin7wYOFqHGr/SXGQOQI3BAiiAGhMwNgcP BVBjAsbmLvNQaErnWwqakqtXz/MN/hULl3X5r9z9D/4IgBo3yu8CLdYEkb7tVGpKQr6Rvrae t/2UirXpJD2IfN2cheI2N5TzjeTaerf3VsKIz4P6wWgTX5tOyjFSakpivpFQW6+LADPt8rVo +xSKK+cwSYNk7LFCbb0ugVY3V/l0yXnfuGJqYi4p3x+v5T9pgDmprbfATro8sxeTn0lJ4aEr mhCJngDwxaq25IcdJuPEpVJwAdj98ZyyScr2/QCdITGaupTDRGE1pMjIk1R5pncEVM4xUmlK Ekyptl7pmwCmaqEjoLOoNI9lc+AlGyPrmlIt30i9X5MwPv8uUOM3mG+ZA1Bj0gAKoMYEjM3B QwHUmICxucs8dFRNybJ9dk3J0ujItgDUuPUBFECNCRibg4cCqDEBY3PwUAA1JmBsDh4KoMYE jM3BQwHUmICxOXgogBoTMDb3D3NxHWX2uyG/AAAAAElFTkSuQmCC</item> <item item-id="505">iVBORw0KGgoAAAANSUhEUgAAAKUAAAAVCAYAAAAn4S6vAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAN8SURBVGhD7VrtkYQgDKUuC7KJux9X gtXYjMVwBEQDBEjwY3HHm9m5cRfxkby8hKDS799rgc4soDrD88JhWGCeJr0wxj1jyKKnaQ6g vqR8huc2lMs06DH04cNWQMCdRz1Me5jdSspl+Z74/ggTlkmPyHkfwXDRQ5dp1H5piJSzHpXS ivi0ROY8KhTRRqIHhaIBnjVsIC5a59dNix33jMUJ/IwCLiFlQkAjrUpIIEgxKpgoJqUxqQEx DN9UG11NE7DhqJ+VuQWkNCsbVz7USWlK6lDlasYHINh47v5NgRFZQU1xLVGbuf13nAWMQptU oQKMgpkhmCBI7RzrumBNNnjRtWBK1lAiiG3wx5mtJa2xALQMkpASeOKyJ5uU3LWmKgmLyRAb HFlUS0emY8SN5rCkAvI0qo6/3xvEk9Ffe9KeXT7Dc0pOuOq5FBcNFh4fJKSEuHYlX52UufRt jRA7Nqeque9loFti1SpYRHynMMdIuTvFkT5/vaIm7cVfER3s/v7IvrlnlTBI8DWTEmUsQox8 5mRsdIgNyZaqYsfGDsoYbW9w2NTOiToATG3C7HeFCUhnWvxHSIltEgcWYYOsvWSkzGUMu0bs ZIpgJQxSfE2kdIGzJ5R43wHbjMFmxbpSRnZz5DBOmSmlzCmfVEH5zqqNFJNyTc9ZnidpskzK sr0Q+spzs0qZ3IfrZxd4JQxcfG2igG0T7TWIwGkm5S5yOVJSylcm5ZVKeU36FiqlLaspe9VC av+9VKsnmaLH9J1s1FIBy6ZvDkGsqZ5SUyabLK8kN6bvE0hpgytyTrY27pGUSW1Pk5K30ckF c2bhuTSztS+wYW/ZfcMCiJZQa49UmL7LmYWvlGlfN2q1odbQ8PtDbEIrai1R8paasqqUZEtI YKBi5PN31Pf1KZPCuNKKEtqCM1zidHI+QfP8aqXkrDcZU6spzfpGd5iybXTUX3gMzrnGLSE8 vty+WNHedaKTtLSkhwFNHkhvOkxKqJj28+Eiqi5JGdo94YjB7M/1LROBUJhU3GtPSmp8udXD V9MzKBGffBxrxjciOoGUUIZMrBcyfGqP6uaz+pSNJgjKqKR3HL2Q4Ql59v9m7O+NWQss5l3K Z51/c5wZBptqUUj/mJqicuC8Y6QW2F9ckN7Z5/i0Vg5I6VM5Bs+pLUvj+zTEi6pnC9z6km/P hnix9WOBf8rP6lnrVGp3AAAAAElFTkSuQmCC</item> <item item-id="506">iVBORw0KGgoAAAANSUhEUgAAAK4AAAAVCAYAAADfAdVYAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOgSURBVGhD7VqLka0gDKUuC6KOLcFq bMZiWCKiAYJJ8Hfv1Tez88ZdhCTn5JCAxr3/3gh8YQTMF9r8eJOHvnfjo6Iwur4fEo9f4n4Z Aca+czbF8Ms8aDR3sK7r13S9lLjj+CydaISo/trYO4vAO3z+bMJPw2vsrYvuI+IOzhrjDPHT kuGDNUgZvNR3BmUMrNUtRpwNwK/Mj4E72qf78FJwASVuQdyCpF6ijZJksJ2ZZKKcuD7s3oiu e1qttoduEEPrzqgS7sVLQVzvvZ05wxPXtwGpWnLBB0NwgMP7i5IjQkOW47qFm7n973g38Urv txyT2KiYGRIOEnmaY/YLfJoSHD0rphQNrSZ65tsA9mkIfjdeGuICl8JOLSautFwosxdgqZAf wN5U3QDKPnJnc0zEA4JpwEXUiu/HgETCxudI7KPLeVinAIEqwXS+HYsXipO3V8YZDXFBH0IJ yhM3LxUW4IO6pMbV1Ln2e53RImXKBxHJMYG1k7ir3yExqs+b8ZJ7RBJswiZNwMK3u/BqJi7a QQhRi7u0oDnDTVRGtEJdchAjMNuElmQmGEw1jtPvNiaQAi6mEOlzHqNIZC5e4lV9S9AVO8/k Ww7uZF8kM7f+eXhB6STB1WsoatQDT9bNK++VoDUKceAVF8eW2K7SbrSmoFollgPKjVQTd1ao atA1xGXjVZYgtXUpP1jisusfi1ebuGAbsno7ScIQqzbiFizJHT8vg9uC4g0+pVTY2IUmBclL qBi49tJInIBE+bDCdh1eTYpbNKBlvKqlgkzeaw2XVlnbgeSUdv37/gYmWUujuOmLytOZzMON 5mwtlWJ9SDWeFDYn4tVSKhQiQxNX1pyRDKl3+3SXGiS+qEcvOVUAB4jjsNYz5CbiHnA6Uj0O S48braWO+q7Ca+epAqu45HGYUMO4GjAptrfnvO4cl1CvVuIKw7QMY+MlnVB4AZGXCuz68l3v fLy4GtfHwIZLq6U5M3/pZwvkMwrC1via6hZb7hXkKW7+tBcqUmIR41jS6OYWXfli4grX/xy8 UmwKu/IrXyAhJmLtednu5/HL8RTxPj7WKOGRZ7kOWnr0Yvd8s7XvQkNuUb5ujJe8j8jXGvyN HXOzgYgrXz89hroXr/o5bvGRTSTt0f/LIX5HSiMw+m9xz/heQbr+fePSpDUSpY3GSpX5Puee sLJXpCtKrI8KZVnfJ8QFW0W1LnKKG/9R/r/G/EwELv2Q/Gei9jpyewT+AbEsTCnIzCCoAAAA AElFTkSuQmCC</item> <item item-id="507">iVBORw0KGgoAAAANSUhEUgAAANcAAAAVCAYAAADVXXsKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAR9SURBVHhe7VuJldwgDKWuKYg6tgRX 42ZcjJfD2JIQQhgfyQ55Ly+ZHQ6hr68L1qzjz9DA0MAtGjC3rDoWvVUD8zSty607jMXbNbCs 0zSjaYNc7Vp8dcYyfVaLMXxVnrE50MBs1890uL1HybUsw992GeMyrRaA17WWYvLAS6EkMmSZ 7JogAuSaV2vMapi/ZzzlbA3wsC5kfgxgtd/rswvRfoTvnAGBu1oD7+H1x2wBOMCMXBmRXKgz jUTwqYtBC1FyOdNwQnw+o3bQk8Tr0K53ZITv4vXHyOUQsptd18nlSmccdWrm4JUFjSDO3yMi IJ33ljBHra18/nsYlV3EdKHbIBkbVvZOwTubsMZ2Ln+m4ITA54YlVUOLzoicbfbytZDwbbye I5e3N+z0vY+ngUCFhjDI23vMytTk0qaGvLAFgnqDFKNXNJw+ApI1Ajk8CVoMEOgyzU8KSaRK nxP5ri4v/T4ZCFy63Xa2a/HCxb3OZi4gl9ONaq+AVe74VXMbOJdS7Dq5aFoIPXRmoKUoV/r5 BYqtHZohcDCoTnIdgETyFj+L+qoJf3zPkiAzls0Tw7PtziRGVWxIN+KlNXifRqGyA0RibdnQ tBfQQdDNRjb4f692CbcKpikjUzQ0QOOBCJADTg0tGYcMosZzhJBeaLjkHr3dKNVmnkUm3jjC mar6Uu8a0hcawYP+qQGiPYlsrOyUcF6mfry8cWpwdVYMyBX3PZIAZcqm3stz5kgNkf0KRCuO CxDnMias6pFLwp+yPfNCOnL1pX2ygWo9/r7K5umLhtFCLipapq883SztWwJRJBeTSuKuYClz aI1o8RznHCCUgdR/gr7O7QUdHiQyrFuZcqGKG55zCbn+h8gVwjvx7v1pIbxGECIXIVdP8ax2 EkyqeIihlfWlyJU1bZRlQ0PkSlHZulcuqPEjEEjCjfuumBaqQvmex9O7qlaPp1SePntiRvYX /WjRM5GrqK+GgwkNjSMtTh6Ya9Zw2NyIl9rggQ1kjlBpH+q9or6jcyWdQ45cEm7Cd/qGhoh/ fvgSy9kDPdItDAkLuCDf2ujaYplN7c5FLlxfNBArWkThXhBfdVjLXTOUu67X4gXOpDZ4YEOP RK6UGpJaU0r9iuVOsi1oD2wrvhHsbTjO4bnNyus+d89FZKiS+pwuNLNyfWlmBXbpLpFpWlir IUXDwbLdj5e+5tJqjR1XjFLl6xkJt+x1i42PI/aGhvnBzwzZz8Ao4/eH14HjVbVF0RN3qS2f nL0wab0U75DnbJpT2FL1/AmSq0qsuNG/gxfGRiXXCXi4zivq7Eq41TB1Ok/vPwOjPDEgOaTP 4cDb+PQsihsPW6qMxT/6tnBPSbdW/p3dSXpWvHfve8rZvQyp3E4DctFzp6uMvK7GLfB38Tpx z6UlWKqT2JIgpdcxekm4yd+Rh7uJWFf/qz3zGKfXwOK6XHe8L9RLMEaWNYCdn9FGrNYINyC4 SwPOs59txtwl0ljXx7qsJkbkSgSCulLVYmACHT/0PjTwrRp49Jclv1XJ49zfqYFfOerUFMxw VokAAAAASUVORK5CYII=</item> <item item-id="508">iVBORw0KGgoAAAANSUhEUgAAAdcAAAAVCAYAAAAU06TKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAa6SURBVHhe7V1ZEtsgDPW5ciBfov3o EXyaXCaHcY1tHAECngxeYtSZTicTwiI96WnBbjfqH5WASkAloBJQCagEqkqgqzqbTlZNAu9h GD/VZrt6os84DO+rN/Ez6z9L94jYFR+IlOyY9vAhkc5VY0MMK7lepYvEup/hNfZP46J3P76G 54QLR8HmkbpHhKX4QKQ0NosPSDoXD/IwXJ1cPx91oEUq/gxj/1AS+gz9+NCjFal8+/HJur+b rSo+MjBqHB91jOzYWSiGCbm+x77rxo75G8ui3n1HMqwpLX51JDsx873UmQp1+XsORqDnk52D UPSXDz9S99fZquKjFrCax0ctQR45D/FxAbkGRDqluh1DkqY80TmDfXKdTjAt9Ho9qXd4pFbM 3EaG/fhbFWGB85xO1iseIiA6TvfX2qrio47XUHzUkePRs3x9XJ5cZ4dPM1KzOWMwlASWMVvW S0jXRMzn9Npo5j1lzFMJsnP2KBCqCQpMQDHPsZ7LnGkONMhnwZTQUCYYmR2jX024VUNW4jwN To6oZjxT9wtmvLO9DTYlAdjVtqr4gGw/NyiaqLSEj5yQ0t8bLnITQpP/+Uli2RpLgrT4OJhc qT/nN8SRsPENEyEls5UFHGUE7M0xk6MhQYkTIkK1v7eHtqRqP1vyrd1eNuukiPOodTk8TXvB OFziPA0caCshAWTR+gQ/j9I912qR4bqurRJ9ifSDB1SKj4hNsL6hPXyw0kGxOPvxMCnE/BxO uhbDeXINysIREmUzXBt548aFH8E1dJ/Al4yvjFy/Ql/IO/553cvs2HeuaYrCySjKk3tsrdQe JPtDATtnVlS/JJJmgiq4koGuzwRvp+p+I/OlorHXUFndB85gxQjFWHL9A20V1U/r+KDVrtq+ oUF8FJHrWgXabJT6Q983pvSW0an1ccCFJp8YfaKxx00bMuJ05rQ9cqkqldGhjgkm7iBD5AnE OdMm8DJyjWXw8xkpWXFEmdqDdH+7nOeCgW+CH5ZczDmgKgW4/rW693BRUFng5BLo3ADY0Xtu /eNs1VSkEJteytrWhzSGD89GS0qQio8aVa6lcma5xNFHgmij4yIJkdVVPnMNzhQrA0qjZJjq sgPFDnaN9qPOQUiuS1AwOZBcPyyzbtT4gt/RPstC5qk9oPvbF9xQPHj9PSYASJHrnvUv1T1T qouWNXfoPkuu2fXr2uoe/bjk2hg+fM+VrSrFKx8czlvEhxXpPizS4JQGeqE/dVSX1ZubUBWS KweC6zJXrq9bXhr0S51h6TMgZ0nZlQkZUv2xIHO/Y1k4uHQROvffKAvv0P2sT1n/mUIADhKY UuB3HqDCMg8ut9VdmWvj+CjNXAMfwGHh4fgoKwt/sd9Pb8BzWngJ353SG/ddtCycL/VIM9T9 Diebsm4Dyhv7YaSyw8EWkuscJHgKiAYJdyTXoP/Jk2seY3MqDpYdb6L7KGGBKE5cWPliwkbY XOuBs8sDbRXWD8FAq/jY+uIFd08UH3FDgrG4TLH4VO/mMOdPU3pLfIdfaIIzrMimmQsn7pQ1 bgvbrMH2bNfHaPY+UyksC385vuxCU/hcsPeIE+lHv/7+4S9PCUsYUcTCgCXOM5uZCB7Fgde/ g+4rYDiQndWMi4G+5x4xi68fi7pZB5O1VYIWWD+Kj3hlAQy8FkaIvDOgJXxE5AVjcf0916JJ JkapBNH/jn0UR6BoQfkLLgNKlkfGShwFMh8ypjRzlbxE4ujMFTlvMCbXU5uA15/wUpEzdZ/r 38NyBF8S4Jf9suvjlaPjbbVBfHj6hx81CnCj+IBNKTcwmqXGL6Om9Ba8/Wz1cduFpu6f+5rh 3GeofxCNtnKnF34/OxxacomVw4TzSocXk6sJUMH3796SXF25BxiZ9lz9vclX6j5LbDIAQbqn 5Aqufx9bbQwfQBlcgpDm8SERVmIse6mS+tOU3nI6JT5uZlRDpJRMkc/2UkS8f4ZHzDVktpW5 1tIp9LhHjYXpHBXI1VyKGaC329tykBdt1SoL75YNuXnnleUh57Bj3at0769rHyODesrsOQHd E3LF13cfgQmXPtNW28GHkbOro4Ke66y0tvGxwzW4P7F9UrZd6PrTlN7S332To41cLclK/i0+ rE7ASuAz3WT7rfcLI4oEHAMyzcPHPFP3iNIUH4iU2sUHIp2rx7gY7qQZq18uvvo4z1x/iu73 Xsa6pUDAftEt9372pp6me0R+ig9ESsuYFvGBS+e6kSGGHXKlWavdZK73et1hdGWVgEpAJaAS UAncUwLV/7P0ex5Td6USUAmoBFQCKoHzJPAfApVDFAbO97kAAAAASUVORK5CYII=</item> <item item-id="509">iVBORw0KGgoAAAANSUhEUgAAAg8AAAAVCAYAAADB9w12AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAemSURBVHhe7V3r0eMqDHVdKchN7P7Y ElJNmkkxXgO2I0AgCYyNGd2ZnTuZj9jo6MHRw8606H+KgCKgCCgCioAioAgIEJgEa3VpAwQ+ 7/fybXBdvSSFwHd5vz/UIv37hsBYdqq6V8Nui8BY/mKwin1GyUNbG8pe/ft+LbOeX/dp4DMv r7dSN0oBQ9qp6p5Su/69EIEh/cVgEfjM6eTh+x0vGDeR6fteZj24Ct3zvK993/OiasjgObCd qu7P8yO90obAwP5i6w8gXgLy8FnmaVom5F8qO/7ME8ic17LGawKZnLne63GB+SqZNHB1Em4G d/ZalJ9np4K4o7rPmIcAx1ojG+j7sb8MhiPwmYg8RERhLVVMCAkwpZnJWxySB0tTltfrOT39 62QyWM2Ldix6iBqrcz/IRq9F7Il2KgnWqvu0PUlwvNYq+70b5i+j4fjzGZo8mEEJr6Jgmx9r VQEefm7NUbUApMJk8tf0lWHlZK14fFbi4u2RMrkLZUqSqkCGtUQ0iWQAMpp7GNJnr7HpxujF kkHwmYLltL/3Kpux3RYVsl7lFSgUsVNLsMPqZFeDO5JgrbrvhzyM6S/urGwRX2LNmbPWT+hN /h4m+QL/R5f+fIZNHmB8wDeEkQw3ZDFlMztnNHUEA2uZmAOSn92fKxOhIINJXOLxcbCHv0wG 76779/f77KRh/7yTi5oRlfWavHMj0HFnsvmtqlwldwx52eEDtVOEoNbYEHczIlvjB2vVfUoB Jxx6Ip2BM6Cz+MA1UXvWoXGdb4/ovbg42hgfJ/W8GM2WchXTjSvQ5CFqWyRIAlqh2KsUleBR ckWgbYwLAnkYpMu6fUCvlQklKgjJclkenwBh5OEnpzvAk5+z+CQUIDHqgEBeKhustiB4sqtj T5F3V5fVaaH9rNfIZy2Bz6TulduDZH9c7KNMD2S0SBIznO5L/Bg/sYKMOY9j9aHXcXygjp+f u2FZfkjCGuJobR/EeOhfoa/lYiIzXjIGJsODPzyEDuiQ9ob5mwsyHPZjyy6Joc2Y0f1UaoNc GBg8sAIFRll3O5kwwzP7DSstSUJRGvxRGaEuocwUPnXk4VbZAqfB9oLpoyYY3irvvvEjANSR h1RFMPI5jAjk9iDdXxF58GPP+Lov9GOSPNA4PtZfGPFBQh5if4E6aYujTdVB68Kz9wyRSK5L JBB7vKQrDxFyqXKWNHvnqoReR5IHpJzklytPlmlj/ynClApiEUFCKioHGsQ97LCq12vDGbDd I4nPTwclBE98mJ4pW2g+yCGXIw9PlNftmTH3U2CnFs7oe7Bf7chKbg/c/ZVg7/eYgzmm0XUv 8ONYh6GjwHhB4/jjrPIEsPf4wI25eKXuOhx/vml8EBKV2D89bQurg5XkAask5MlDy8qDGwIM MqzcwZsobcZ7rJcpVXlAicLppbuw0pCqPOQCR4a8cbPBJi2ZMtkwB39G6bpAXklbAFFzbg4o st8e2xZmT55PxUnCsLq3+qyZWwDfZeBYU3nA5uLq25oF/pLItOn01a0gyUNrHN0uXKV/fXOx 17LMxIJcezIXLwsqD9IKQ40Bs9XmnvY4Tv+daWElW2z/F8uEDtbUD33GbLLEgVJYILrgkodo HianH4bOJVWV/XJHLzievzl/aK4TXVaSB6wilQzqPZKHiLTi5IGT2BgsWOt6sHVwiJQPogOs GDhWkYceMMvEB0ZEckuogcnmOAISY9r//lMO8fxTTmZGvCwgD+lBKhdYgk0jWaevDHeQlBv5 cTp4j4vOM/aYY/peKfZVJhNhbhED3dfD8tL2mGXpOwhKDtht4IatC3ZA3bOgvaR5h2wQY0gg BI/rPU3eWvIQ2WnwSDaYT3r9/YMPZwpLoknPYWMvyZhH1f0ZMVWCY0JrbJ31HB/Y1CHxXqOr cbQlEPuknv8aptzwdC7BD/+GPqopAElQDmOXBSW356wN2xZUH/1SmZgv3yGJFwcI5hoSH+Z1 uMuulC3YU/QW0fmCF5ndIW8tebAZIXPgsnXlgWtX3jqqV7/KN5rum/gxhWORcvJfusNfth2x K5GRBJS/XIQj5otELMjJnIqXR+Vh+uf/zAX1Of8Y14ZqMsNuYGzhJSF5YDrUlTJFrzG1+w0z 4jMqMgysmfgwroQvuVM2qlS4yn76b4zcKS/UQDV58N9ln9V/l+TBbx9F/j2a7pv5MYFjcWA4 Tuv7Yh8VH4Sy5V/n3hjH49iNn+Zz1YgtEcjJTOEBfMYyBkMUIFngfKYfwbxi1iGjWUAejtZD 8BhoakAy3ds8U6bP+vZH/+064T7Z7QOhgYfL+fiU3+gu2cyO/Xv7Mw+tfrvhTnkPLZ1AHszQ XWinuBXsLY2gUnFW26LY9EArMBpIbvOjaHfpvq0fp3EsVg344l2YUfFBLhvlLw1x3OcU0Fa3 75/5mAjfIpuOlwd52EmE5P9yYPUbfmL41t+3uNUkKEe/dXPd3Py7Tm6P9zssqvtuDGywjYzp L0ZJvs9M0opD2M4YTO8Xi7Oy0NKByIt3Ot7tqP7keBKXSzSanaruy21Bv0kjMJq/2PpMNP/k kQdYddgBomYfaCB1hSKgCCgCioAioAiMhIA/JTmSZCqLIqAIKAKKgCKgCDRB4D94Jp0ZOpGy awAAAABJRU5ErkJggg==</item> <item item-id="510" content-encoding="gzip">H4sIAAAAAAAA/+xXy08TQRj/tqVliy20BQtWfFUeoiC64osYU0UOioIBQ8SYGB4brSm0lFXB B9bHwYN6MfGsieHiyYvxYqLGmBiN4MGTHjD+AXowJppI/c18y7IlPvBxMfA1v52d7znzdXbm Gy8RKUAbkCffHXjmGCldX0iCNEDt7W7pOqp3G5JDrcAWGEWdmvsLUTpHu/0IPZcWQpN2a5cf osnVfFGprZp9jxZ8AS01T3MUEPV4iBzKXqJ52tUkxB7ySv6teYIvA/nYn5rP7n0FGkEhmg+R nwPnBzQ5Dj9RUI7b09De1ti/09B7FRnbC7jtDB9QKFVVvb9VPxxL9LmkoE5Y9yS6mZcjeZut fLgHjiS3JwZ5+ruBXDBarYTsAfZD790w0V3RnsUE0X4YZvmrQk6ygxxF8iVoRdpmGKlY1zFD 5/HVAwVkp/n1kax+aDKvxZzXUAnntXgB57XEzGuY81pCCzmvYSuvpdr1x5AUL+J8loK1WL6m S7MiLZFT9yKlDYneroRIIgv8IgFgT3HEkLdg+RyAxWdMehf6b4BMRmhDtSWuN8Rjep8hbTDX sLnuzCdsx0YD4zfvhN/SNNpKTprIeMht4ymWNQ/HYfYnMiIiU2aO/iv6CkzYMEezi1opgZ9B S6mR+tCmaGj6VvBTCpHL+ubFXnCe1iuRwOvAtTT52p+4wnbdpNdZoTY/U5x4f2BuJA2ILuLq 8jnwW7EF4QRS7POZqd0l5dc6M6U/if8v6W/i8wFJJP4Tcf6Kc1ns+XN7wewgF4qzkVyi+yFe D3lZKyOrgxpRlhhFzCoy0UMxuXoKTGunaRKzmYuK8B7wMfPdFSpDbcPeE6NOik8TRt8XBu39 6h+s5E+/4XsTfKr+bN/jBz0loh1s4naSBptQZYmXfZefru0eC4xcoRtlo66Xk9WQStNyZQ9s dcQ3Jmta4qzhsM1CP6aVAgYAAzgGHAdOAIPAEHASOAWcBs4Aw8BZIA00UofiUFQroPh+O9A+ 354OnSyXLL94nIPueeACcLHa/LeWciEqFBwKl8pteirWGT+0IzaQjHcONSd6dPbbImezjA18 zIuYd4zlXAtHzFq4jGvhCJVzLVxm1cIV5h2jku8YFSu4Jq6EqIrvGJUr+Y5RJXb4VRytSg4v 2kJKNTMqZPQa08lqdlIDVi07qVnDTmqFk7VsU2s50WxO1k3Z1pm269m2TthuYNU6y3ajTbjJ JhT9bwAAAP//AwCDKw7J3A0AAA==</item> <item item-id="511">iVBORw0KGgoAAAANSUhEUgAAAF4AAAEACAYAAAA6IcFdAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAtHSURBVHhe7Z2LkeMgDIZTVwpKPakm zWwxvhi/eEhIstGRhH9n7mZ2owD+JGPMj+A24acLgVuXWlHpBPCdgqA5+L+/v06X8l3VRuBf 0+N2m27Ev8eLvqjX4zYdn/1Nz/ttuj838HN592n/9bu4uLe2AF9Afj3ezigB/j3v0y0xzsG/ 2/73nO7354R7oPSjDP6NLY3kuZA5mh/v/7efxWa/WyKHzHfFcRe4B9LXVKAGHwd3Ge3z9VIO mn30vmMQ9UVAyOCLroYBzIEPdwf6+py84uGaQ1sewuUDt+4Q7gG9NWjukqgHe/ib9OWv6WCO hsoRX1wUF8HWO+ELaTVs8knwiPirPjgB3hrZ6OMpJ50APw/P8zH8UnT4e94nY1RD3hwnpwz0 UYxxPN0pnQTPR31SDd5c2UfBafDbCxM/0tPfFVcfVN/4/Qvgv/FyP6fNAN/JFwAP8J0IdKoW Ed8bPDtBxahSo9q38tMe8TNI/NQJtGQE8IZoA3gDrJamAN+S5lpWLMRwb+OfB36ek4kewvVp hFVpYnXYZdo5XcAQlx+L7BUPhDblttESlrj+eQZ1rzAX8o86Pgx8NicTLpjSWFOg0tTyAT4t P3xPEs+DTjw7uFwJsZXL1V+uoPhU8Em0LI1MFzptDc8iiYrIMJv5mB5xxBcznHxEbnWHdUCv POLl+rfuhluO8mERn9/uzKwkCTC+M+Y7Yv4972pORPzcpNyxYv3Hdcx3AwX/g8FzsmC4DbIu ogS6XCzRx4clIvSzgRVacvC1+t+fxaC/DPwCh101Vou45LMMfP7MCP234gFrjPhkeQkzOvi8 iF9HNfXlL3wfu2u12fREcKJwp7DjmuIZIvfx0ij1s8CroIdON1mDyY8qnCJeXT+P/6PAc9Ea op+MuhPj+H14OH9XuRzQMo6XQn39/KPAK9v8E2YA38mNAA/wnQh0qhYR/2vgR5XzLNfdyudQ oAwk0dUYYLU0BfiWNA1lAbwBltYU0h81LZxIi4qZSWo+PngA0p+YVZJKf4cGC+lvu4e7SH/8 RNnSZUD6i/W0bF+DXCJkpD+DZJf050YhJP7ulylQ5Zx7AuK09JcmNC/T0EfEQ/pbH1zNpb/9 QbnM49+fr1UUF8YrxoiH9BfJf7QT68s7dndA+ttQnJT+sk0oeMkwuwMK8Nr6+Tvpo16g/rv0 J60i2/1sWMKnfMv6KPDKNv+EGcB3ciPAA3wnAp2qRcQDfCcCnap1i3iL9jiqbSufQ3M1kHSL eEMbhjQF+E5uB3gH8MNqruWcT6StqtM5I49YlmmPnG5JZwpuAnUk9bHpnBF0pFvGfUItFWaT /Yg+RK3pLt+F5ppvGl/VTstDAy5vMmdUoGKXj6O5Ft0HdweU6ZzQXK9ormQPk+9fLKRz5mUY I35IzZUaHSYPW3VmYW1Ug3TLQCfRToulH3OXsg4nz0BfKsh274DmuuyskWmn6Tj+GD5WNd3a i5RlHK98IcObqxJUazOAb01UWR7AK0G1NgP41kSV5QG8ElRrM4BvTVRZnhv4UXVUy3UrfSSa QXMVER0GbhFvaMOQpgDfye0A7wAemuueEbJMkv2XuRporopQ1pykBs01BnlSc018IZ8tBc3V QXNV5z9R8/GGfFloronz6GiH5uqtuWr69rhbgua60bBpnvkCJ/Mpmchz3cBXNM+a5hq+Xlnw xA2EoLnG+8vw25FzmuvCVR7NFPyhuSrG5l9igimDTo4CeIDvRKBTtYh4gO9EoFO1bhFv0R5H tW3lc2iuBpJuEW9ow5CmAN/J7QDvAH5YzXU7J2p5aHM7qVLH0TFesMzVQHNdITJz79tEWv2E tXlODceKRuFYm49X7CUZpLvsyFEi2KG5WjTXVQ99hg2Zqa6GO3K00tkbFai4pME01yi9MhOm DxBlHw/N9YrmWlsBkHx24eEqrDIYNM/13ccnWYCH4lQ9crQ2rITmutGp55kWCcXkVrYXIh7H inLHisYbSXDngFwBv2m30rGm/G2EN1eHN1dNkQCvoeRgA/AOUDVFAryGkoMNwDtA1RQJ8BpK DjZu4EfVUS3X3cqf0FwNJN0i3tCGIU0BvpPbAd4B/JCaq5jLukt58zwLznPdBNLpEYvT7N6/ 6QRXNYMv1lyz6V1V5h8017hP0OZACdkf5OqBox5orhbNNfKPFNHS53tR0Fy3Hum95IJRmaJ4 TbutVIF+b+BZCuHQXK9orhtgVS6rMhHNGPGDaq4LeW0uK7/Jf9JnZVvcap8x/Fj1s8bx6r1/ pb19mVxW4chpFhPyXHV5rrVc1noOLIPesnZS+UL2WRGvbPQvmAF8Jy8CPMB3ItCpWkQ8wHci 0Klat4i3aI+j2rbyOTRXA0m3iDe0YUhTgO/kdoB3AD+k5ho4rpNty0P7P6+PHzfPNZ1jD5Ni REYI8lzjW1193mplPpxMDMuiHnmuUgfLKETVrDsp4pHnKlAvz1vdvyAKGvU9Ke/PWT1Hnivh AOG8VSmXNV6bE9bFRKdb7v39heQz5LmuPosVosrdgDxXrpNpobnmq8/iiE/qvRDxyHNl8kyT 9ZH/eb8aabywfo43VyWo1mYA35qosjyAV4JqbQbwrYkqywN4JajWZgDfmqiyPDfwo+qolutW +kg0g+YqIjoM3CLe0IYhTQG+k9sB3gE8NNdMcxVzYKuTd7l2y8z5j625Hht+cpprYKzJk0Ke axyOVs2VmqGUE8+Q52rJc1WetarOcZ39bcz6i0NknL2F11TNbXvypV/PIx7nuTKPswua6x6h i0hyf76m5z0Dr+nb07BN0y2hua50qnsSlPvJa3Ngd/bYW3hDUctzJdbVJMci4DzXopupjrPJ qFNorsXyPXk0QzQsy+wOY9H3XgnYW9jh/dO3SEwZ+PJlSwd4gO9EoFO1iHiA70SgU7VuEW/R Hke1beVzaK4Gkm4Rb2jDkKYA38ntAO8A/sc1V8XMJDVrmeTARmcC1hxg2ZPstzXXlRKph9Y+ yybI2L2LIy9Ac01DktdDlz0ng+r0ep/bGmd2q/Nol7qgueaaa+yDmggibNpc2yYxcTM0V6Ij Pg2+zKPF3sLS3sKXI17QdHP/GiP+h/cWjshYI16d0lmrY9i9hU+CPwN9rgp7CxN7zxgi/r+s nVS+kOHNVQmqtRnAtyaqLA/glaBamwF8a6LK8gBeCaq1GcC3Jqoszw38qDqq5bqVPhLNoLmK iA4Dt4g3tGFIU4Dv5HaAdwA/ruZa01VV+w5n3oDmmgEh9dCarrrMwyeJacS+w0kt0FxT6Kd0 VWUq5lYTNNezmmsgGN0BRvC7q40KVBwiv5Xnml4ZkZ+0GeS6KtHVRDmw0FybaK6Mrho9XMkc WGqUY4z4cTVXtcRX5sCSo0vkuRJYqGiMRi7ZIzk5Tlq9nwE0V1lzFXXVeN9haSi5PyqyFWn7 Qxt5rg7vn75FYsrAly9bOsADfCcCnapFxAN8JwKdqnWLeIv2OKptK59DczWQdIt4QxuGNAX4 Tm4HeAfw42quh4Lx3vowy2WF5kqFmjEPtZbn+i6+PLNVOvmSaBM012yCl8tljWcU74/pEUc8 Kf1xJxwjz3UKp4ByP+TSC+7M1hMRP9drVKDipg6luR4XSx2kyO8XCc31iuaadCcZ+HzvAvbk y+z2Mkb8kJpr9cxW8eRjpj+D5kqAqe5X4BTxY5/nujrBAn7+iuqsV6GrCR9jb2GHd0//IjFl 4M+YrAHgAb4TgU7VIuIBvhOBTtW6RfyoOqr2ulv6e9dcWxaKsmQCAC8zcrEAeBescqEALzNy sQB4F6xyoQAvM3KxAHgXrHKhAC8zcrEAeBescqEALzNysQB4F6xyoQAvM3KxAHgXrHKhAC8z crH4BybBZkhQcSKVAAAAAElFTkSuQmCC</item> <item item-id="512">iVBORw0KGgoAAAANSUhEUgAAAWAAAAAVCAYAAAB4+TSKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAVhSURBVHhe7VwLEp0gDPRcHshLtIfw NF7mHcbyEQ3/JCAqpTOdaUcksMkuIeCb9vFnIDAQGAgMBB5BYHrE6n9qdFvX/dfN3H/7um7d zGZM5H0I9MUXia/PmSHAjeLut8770ptebcs+r/0sKY1CYZhBINAlX+S8Hc4MAUYEQ3GT37ov nQrVb132TqdW7PbRAROBjvmi8mDAmSHAzBihvPY9kdr2ZZpxwto5WSh+9tsScCwz1NXbPl86 wxFwZgjw7aEr6j7zsn+r+kAJeNF27qm2XTMgKDjWtPvlvkJ86Q3HizOOAMvJT/s0HX8fJ5YE 3oxHZGQidZ8mppiJVWeWWZ3q4+hTFmVFTcb6f+3YlXYdHGV967QJx1LbNrs/SsDLmEFmy6Tx dOB7seyidxIkbGKNO8AswBdB0mY4bovQBuewRvG16gHOxRkgwFp84aGKMswSYR0IZQc0Th9K QKVwlggwANcIrwHWCHTtMyVpJ+W8u+yGOCrGgosjWsDLoEX1S7IP4uervq8hHP8bZkG+0OIx uDxhcVS6ADVG6yIqvgmLqOHMJcCeYVUudoyDFZYlzKQReuKvM8cyAb6A1HOJ//8YqyI/06Yq uKdWT2fRi9lKjYEyPmwQesKR9rsMJtRii7UvYzG4a2D64RBwtO9Pwdc7JT75XOFg8OcrmMGd ZHW+NMRRxT7wOeSXy7XUnDN4GM6cAhzcFh/bY00uW4yxablK6c8ygvPvRGQH+w8uEkhR9zLN sFOtIZ0gMol/CHBMnLwdRkhMU2Ogjg9LZkuA836X86gpwM/63omLoh0K7CuPY0nm9ihmTtxi tSE033AstcNRjgmWIay5JMQ42i6ShJl52gKczGolCECIKJkXUiNhM3JAeVmOY5QowHrhELXN LZMBZ+xGgzGSlenFSuOcGgN2fLwFEAZ83u8pAebYf9T3gS1wtMSSizlrIcvjaCL2c5i5/M7u 2OK7ijBfaPFYgqN69xw/XDRhfT2QkGXnbL/jCbA+jEpkel5xHFeX4QSTAuGWbSg8LEJkwJYz GKtItARxHHa6O4A3liAQfv9GCYLhex2IBQdA4F0EjiUZ8Gv4ki27pXmUFeC7cdQKrEuv4stV q/yYENlU1h965pUgjFGr9qZE+QhcTxBLAhMjZu6hoFmBmOUAYgZ8jrA00w9kVNFa9hsFGOH3 +odwL/H9QURUeSWsnpd4I3AsEmBvrA/w5aydF9yKyR3C3Y6j9sJZkoVJUoifqTknnvmHcED5 r5otAJK08tS4BWGyD+caGvfw7ykB9nBzrvqB+vj890/4wI+4vYkub5wacNbvhGtoaPtv8H2N GG6YAZ/Z+sN8Kd01ePHm7EKy8RiJflLsmTKEUypJJmOphNR9FryGlstK8TWsXE/s54GyBLsv 7IulGbDKTJBZ+90ZMHbOVruc38X8lgYfYrT0fba2ywEyhyOnz8w7LTFzhoLeFXlTyPGlEY7R bDfO5dSc7WcXZwhfwtnbwpKTTlSowfIHyM7520GUVb9RsQDb334nR/FKAc74XYy5+u9cPOn7 W8RXbWqte/bV+fMkZtyyQIQM6U/3b8bxGFPwYBnyMzXnHB6AMwQBdraF3FIAQQfdq3HNxVfx puwesJ7uJr7Aw3zhYcoTzipbqwRBwN5uGr+/etfvXDzl+9h1TP5dYIgk4x4wwWdPYaZpAr/u LKgBo/hyI46mbhvUN5ufqTmnn10/YEUUYEI0jKYWAj9xovqt34PAOBC7sGD6Gm0GAhcCffLF T8aGADeLerFqN9g1NJsOpbbdblDDUjcI9MYXtU/wzoOGAHcTsGMiA4GBwNcQGAL8NY+N8Q4E BgLdIPAPip+qCvqt0rEAAAAASUVORK5CYII=</item> <item item-id="513">iVBORw0KGgoAAAANSUhEUgAAAHgAAAAVCAYAAACNDipWAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKHSURBVGhD7ZmLccMgDECZywMxD9Ow jIehCIH5CLUCO26Ck7vcNS4BSU9fotz3tbQF1NLaMcpZY9y+pOK7M8ZWmj0O8G42p2sbrIXa areZ7L7PArwbpwvl1yKbtdmNdknNRwEuFV8VbtCrcOQHAfb1adNu5eycndY6vWGf0QAGIyin VHzHRf/n7V7QJIvafAOhvWyTkLxXb60+8OzYN+oMBdrXscMGdxXsS2UBjt5ennABGOGWBRoa EjUFGcGUe407SbNHMABAmAQM0FpYac/0PIFNn5PRz7Tcfk+Rj1wsi9UqnJsBB+Va4yF0ImAQ ZtLQUtIgT+NcweEmzw3fZQDnx+hU7OfDyTDaReAGAYtlKbNMxyYAGALsAIzGK9Jz8XcVicfG MsBwELcvMXgBvwuk64Qyj4H9SEYhEQqAMbXhqwTe/E8a3UOA27MZWZoA69kq6VsD/iMdIyx/ qH19BA8DjtHFRRUfwUKjdlJ8SoOti0059ZCzNSd2MioBjI2FLCqhDZem6CllQ/DclaKFgEmi aKOduzYbqcFzsvScl6RoPzxhB11GcYBeHhqVGAAsS6C9VW3TlzpqoRPSsGJq8IxRaUPK6vmK FJ0OO3oCyog2WTgh12NSD24cpH+P4Cu66FwDsYbHMWmqq8fhnx2TqprL1eC6LosnhFcCPryq zSbdMWkg1m6J4I48nbQtl/qCi44/6rxclutX1v2A11V3LzqEB98BmJSHgbTIqHHqqvKd4BJH px1+unOfu6q8A3DIqvXoJk6LfEH0t2FztxbcGCmahYVxM7KslqeuwY/9sQHbB7P4fbStnHgu gkdc7e3W5ov4txPttEC0z3gg4NNW/KgNvoA/Cte4sD/nJIa35WkN8AAAAABJRU5ErkJg gg==</item> <item item-id="514">iVBORw0KGgoAAAANSUhEUgAAAIsAAAAVCAYAAAB2dR3MAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKOSURBVGhD7ZoNcoQgDIU5lwfiHD2C p/EyHobyI0oIMUHB1Rl2pu3YdQE/Xl4SWmXGaxAQElDC+8Ztg4AZYhkiEBNoLpZ1XcWTjxsx gTfzS8SyGK2UUYUvvZS3ddHKHO+tZp6UmeYoFjfeZPbLoQxE4Gv8kFiQMBZtBYQ3fZ0no8DN uVgsm3U20zSb4TUFB/kgP14sdquhY7gHd66h7ff4CvfsrpSIyEXP4TY97SVbQ1eRpi5sA2mx QQF4cM/5Bn71vMRiSU0Eu4qDUxKV05V1ptONC+DvCQrP7dfYRTCldOsCJQ2ec7G05ZfMZVlT JQNc0TVevFhQGiJEQYnFu1Dn2sWvMd+ssE4Ez6XGio0tFBpoLr/56Zh+jsNp4Ro68pOKRcQr cc8t6AQFbr7RYRCs4HMIEsW7lFUqsP3vTgYIm1X+LHAsD6nOBXKxFB0LCDALDv9eyrAfP+fi Es48Lxho0Ql5Z8GhRThFbcRweV3+viTlBCEK6ovNFSjorFicILMPw66Hctpr/K4EGM8rq6m2 YLgolnc5i6+LpKmlQxo6nz8Xx++dheWFutjwDBfEUhsBD9QsW70EClqi5fftvFRYRXPbuojd PWJuLxW4JVYd+QnTUGxGSF6oKbksFnd8kp+xBKp7Lkxt+JFu6OjGjtqFKKpviwXPpXXJ2egu ry2/K90Qw4t3FnmNEM5ZZB3Oc+cswvU3EUs2V54Gmbrn/fyYmkX9wT8TcddUdACMbzzB7S0W ViiJC3Oty8/4wVQJuiEnjFQckuuY9+jnlbuP0BPa3NZZLFRbSh01vJcfcc4ShVL7s83ujVG+ QkDVOkqenr7yoGOd9wkAsbjhuFpliOU+9K+O0Pyfn74KYqybJ/APjmj4CMa3LU4AAAAASUVO RK5CYII=</item> <item item-id="515" content-encoding="gzip">H4sIAAAAAAAA/+xXy08TQRj/tqVlC5Q+wIIFXxVBFERXfMYYBEnUqBgwJJ4Mj43WFFraVcEX FT2YoF5MjEdNlIsnDyZcTNQYE6MRvBn1oIn+B8aDidTfzLcuWyQK6sXA1/x2dr7nzNfZmW8K iEgB2oA8+e7AM8dI6noZCdIAtaerpfOY3mVIDrUC22DU4NTcX4nSOdrdx+i5tBCatFu7/AhN ruZtkNqq2fdowZfQUvM0h4+o20PkUA4Q5WtXExB7qEDyb+cLvgzkZX9qIbv3+jSCQkMhRH4O XBjQ5Dj8REE5bk9Te1tz325D71Fk7ALAbWd4gSKpqup9rfqRaLzXJQX1wro73sW8HMnbYuXD nTqaaIz38/T3ArlgtFoJ2Qe8BoYHiTYi0HCa6CP6NwZZfr+Ik+wgR7F8CVqRdhhGMtp53NB5 fFsBH9lpwdZIVj/0I68lnNdQKee1ZCHntdTMa5jzWkplnNewlddy7foTSEoWcT7LwVosX9Pl WZGWyKkXIKVN8Z7OuEgiC/wiAWBPcsSQt2H5vEF7C5Peg/YdkMkIbai2xPSmWFTvNaQN5ho2 1535hO34WOD9rXvhDzSFtpOTJjIectt4imXNw3GY/YmMiMiUmaf/ir4BEzbM09yiVorjZ9BS aqZetEkamLoV/JJC5LK+ebEXDNEGJRJ4G7iWJm/7U1fYrps466pU9z9XnHh/aG4kTYgu4ury mZpVbEE4gRT7fGZqd0n5vc5M6U/i/0v6m/h8QBKJ/0Scv+JcFnv+/F4wN8iF4mwkl+hBiNdD XtbKyOqgRpQlRjGzik10U1SuHp9p7TRNojZzURGOAp8z065QGWoH9p4odVBsivDhp6Kgvd/u pGnpyyx8j8Kn6v/Zt6Bddzyl2X1UWeLl4OVn67rGAyNX6GbFmOvVj2pIpSm5sge2OuIbkzUt cdZw2Gahr4YoCaQAAzgOnABOAv3AAHAKOA2cAc4C54BBIA000yHFoahWQPH9HkL7ojEdOrVC svzicR66Q8AF4GKN+W8t5UJUKDgULpXb9GS0I3Z4ZzSViHUM7I936+y3Rc5mGRt4mRcx7xjL uRaOmLVwBdfCEVrBtXCFVQtXmneMKr5jVK7kmrgKomq+Y1St4jtGtdjhV3O0ajm8hhZSaphR KaPXmk7WsJNasOrYSe1adlInnKxjmzrLiWZzsn7Stt603cC29cJ2I6vWW7abbMLNNqHofwcA AP//AwAUUGL73A0AAA==</item> <item item-id="516">iVBORw0KGgoAAAANSUhEUgAAAF4AAAEACAYAAAA6IcFdAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAtHSURBVHhe7Z2LkeMgDIZTVwpKPakm zWwxvhi/eEhIstGRhH9n7mZ2owD+JGPMj+A24acLgVuXWlHpBPCdgqA5+L+/v06X8l3VRuBf 0+N2m27Ev8eLvqjX4zYdn/1Nz/ttuj838HN592n/9bu4uLe2AF9Afj3ezigB/j3v0y0xzsG/ 2/73nO7354R7oPSjDP6NLY3kuZA5mh/v/7efxWa/WyKHzHfFcRe4B9LXVKAGHwd3Ge3z9VIO mn30vmMQ9UVAyOCLroYBzIEPdwf6+py84uGaQ1sewuUDt+4Q7gG9NWjukqgHe/ib9OWv6WCO hsoRX1wUF8HWO+ELaTVs8knwiPirPjgB3hrZ6OMpJ50APw/P8zH8UnT4e94nY1RD3hwnpwz0 UYxxPN0pnQTPR31SDd5c2UfBafDbCxM/0tPfFVcfVN/4/Qvgv/FyP6fNAN/JFwAP8J0IdKoW Ed8bPDtBxahSo9q38tMe8TNI/NQJtGQE8IZoA3gDrJamAN+S5lpWLMRwb+OfB36ek4kewvVp hFVpYnXYZdo5XcAQlx+L7BUPhDblttESlrj+eQZ1rzAX8o86Pgx8NicTLpjSWFOg0tTyAT4t P3xPEs+DTjw7uFwJsZXL1V+uoPhU8Em0LI1MFzptDc8iiYrIMJv5mB5xxBcznHxEbnWHdUCv POLl+rfuhluO8mERn9/uzKwkCTC+M+Y7Yv4972pORPzcpNyxYv3Hdcx3AwX/g8FzsmC4DbIu ogS6XCzRx4clIvSzgRVacvC1+t+fxaC/DPwCh101Vou45LMMfP7MCP234gFrjPhkeQkzOvi8 iF9HNfXlL3wfu2u12fREcKJwp7DjmuIZIvfx0ij1s8CroIdON1mDyY8qnCJeXT+P/6PAc9Ea op+MuhPj+H14OH9XuRzQMo6XQn39/KPAK9v8E2YA38mNAA/wnQh0qhYR/2vgR5XzLNfdyudQ oAwk0dUYYLU0BfiWNA1lAbwBltYU0h81LZxIi4qZSWo+PngA0p+YVZJKf4cGC+lvu4e7SH/8 RNnSZUD6i/W0bF+DXCJkpD+DZJf050YhJP7ulylQ5Zx7AuK09JcmNC/T0EfEQ/pbH1zNpb/9 QbnM49+fr1UUF8YrxoiH9BfJf7QT68s7dndA+ttQnJT+sk0oeMkwuwMK8Nr6+Tvpo16g/rv0 J60i2/1sWMKnfMv6KPDKNv+EGcB3ciPAA3wnAp2qRcQDfCcCnap1i3iL9jiqbSufQ3M1kHSL eEMbhjQF+E5uB3gH8MNqruWcT6StqtM5I49YlmmPnG5JZwpuAnUk9bHpnBF0pFvGfUItFWaT /Yg+RK3pLt+F5ppvGl/VTstDAy5vMmdUoGKXj6O5Ft0HdweU6ZzQXK9ormQPk+9fLKRz5mUY I35IzZUaHSYPW3VmYW1Ug3TLQCfRToulH3OXsg4nz0BfKsh274DmuuyskWmn6Tj+GD5WNd3a i5RlHK98IcObqxJUazOAb01UWR7AK0G1NgP41kSV5QG8ElRrM4BvTVRZnhv4UXVUy3UrfSSa QXMVER0GbhFvaMOQpgDfye0A7wAemuueEbJMkv2XuRporopQ1pykBs01BnlSc018IZ8tBc3V QXNV5z9R8/GGfFloronz6GiH5uqtuWr69rhbgua60bBpnvkCJ/Mpmchz3cBXNM+a5hq+Xlnw xA2EoLnG+8vw25FzmuvCVR7NFPyhuSrG5l9igimDTo4CeIDvRKBTtYh4gO9EoFO1bhFv0R5H tW3lc2iuBpJuEW9ow5CmAN/J7QDvAH5YzXU7J2p5aHM7qVLH0TFesMzVQHNdITJz79tEWv2E tXlODceKRuFYm49X7CUZpLvsyFEi2KG5WjTXVQ99hg2Zqa6GO3K00tkbFai4pME01yi9MhOm DxBlHw/N9YrmWlsBkHx24eEqrDIYNM/13ccnWYCH4lQ9crQ2rITmutGp55kWCcXkVrYXIh7H inLHisYbSXDngFwBv2m30rGm/G2EN1eHN1dNkQCvoeRgA/AOUDVFAryGkoMNwDtA1RQJ8BpK DjZu4EfVUS3X3cqf0FwNJN0i3tCGIU0BvpPbAd4B/JCaq5jLukt58zwLznPdBNLpEYvT7N6/ 6QRXNYMv1lyz6V1V5h8017hP0OZACdkf5OqBox5orhbNNfKPFNHS53tR0Fy3Hum95IJRmaJ4 TbutVIF+b+BZCuHQXK9orhtgVS6rMhHNGPGDaq4LeW0uK7/Jf9JnZVvcap8x/Fj1s8bx6r1/ pb19mVxW4chpFhPyXHV5rrVc1noOLIPesnZS+UL2WRGvbPQvmAF8Jy8CPMB3ItCpWkQ8wHci 0Klat4i3aI+j2rbyOTRXA0m3iDe0YUhTgO/kdoB3AD+k5ho4rpNty0P7P6+PHzfPNZ1jD5Ni REYI8lzjW1193mplPpxMDMuiHnmuUgfLKETVrDsp4pHnKlAvz1vdvyAKGvU9Ke/PWT1Hnivh AOG8VSmXNV6bE9bFRKdb7v39heQz5LmuPosVosrdgDxXrpNpobnmq8/iiE/qvRDxyHNl8kyT 9ZH/eb8aabywfo43VyWo1mYA35qosjyAV4JqbQbwrYkqywN4JajWZgDfmqiyPDfwo+qolutW +kg0g+YqIjoM3CLe0IYhTQG+k9sB3gE8NNdMcxVzYKuTd7l2y8z5j625Hht+cpprYKzJk0Ke axyOVs2VmqGUE8+Q52rJc1WetarOcZ39bcz6i0NknL2F11TNbXvypV/PIx7nuTKPswua6x6h i0hyf76m5z0Dr+nb07BN0y2hua50qnsSlPvJa3Ngd/bYW3hDUctzJdbVJMci4DzXopupjrPJ qFNorsXyPXk0QzQsy+wOY9H3XgnYW9jh/dO3SEwZ+PJlSwd4gO9EoFO1iHiA70SgU7VuEW/R Hke1beVzaK4Gkm4Rb2jDkKYA38ntAO8A/sc1V8XMJDVrmeTARmcC1hxg2ZPstzXXlRKph9Y+ yybI2L2LIy9Ac01DktdDlz0ng+r0ep/bGmd2q/Nol7qgueaaa+yDmggibNpc2yYxcTM0V6Ij Pg2+zKPF3sLS3sKXI17QdHP/GiP+h/cWjshYI16d0lmrY9i9hU+CPwN9rgp7CxN7zxgi/r+s nVS+kOHNVQmqtRnAtyaqLA/glaBamwF8a6LK8gBeCaq1GcC3Jqoszw38qDqq5bqVPhLNoLmK iA4Dt4g3tGFIU4Dv5HaAdwA/ruZa01VV+w5n3oDmmgEh9dCarrrMwyeJacS+w0kt0FxT6Kd0 VWUq5lYTNNezmmsgGN0BRvC7q40KVBwiv5Xnml4ZkZ+0GeS6KtHVRDmw0FybaK6Mrho9XMkc WGqUY4z4cTVXtcRX5sCSo0vkuRJYqGiMRi7ZIzk5Tlq9nwE0V1lzFXXVeN9haSi5PyqyFWn7 Qxt5rg7vn75FYsrAly9bOsADfCcCnapFxAN8JwKdqnWLeIv2OKptK59DczWQdIt4QxuGNAX4 Tm4HeAfw42quh4Lx3vowy2WF5kqFmjEPtZbn+i6+PLNVOvmSaBM012yCl8tljWcU74/pEUc8 Kf1xJxwjz3UKp4ByP+TSC+7M1hMRP9drVKDipg6luR4XSx2kyO8XCc31iuaadCcZ+HzvAvbk y+z2Mkb8kJpr9cxW8eRjpj+D5kqAqe5X4BTxY5/nujrBAn7+iuqsV6GrCR9jb2GHd0//IjFl 4M+YrAHgAb4TgU7VIuIBvhOBTtW6RfyoOqr2ulv6e9dcWxaKsmQCAC8zcrEAeBescqEALzNy sQB4F6xyoQAvM3KxAHgXrHKhAC8zcrEAeBescqEALzNysQB4F6xyoQAvM3KxAHgXrHKhAC8z crH4BybBZkhQcSKVAAAAAElFTkSuQmCC</item> <item item-id="517">iVBORw0KGgoAAAANSUhEUgAAAL4AAAA8CAIAAABXbpcZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABQzSURBVHhe7V15QE3p+y+JLNnXjK+l RMgyxvhihi8SxjJZGktI37Hvyk5pQRRKsqephKyVkpBQ2ijSilBaaN9X1Z3f5zrN6Xa63Xvu Oedm5ve956/u8Wzv8z7nfZ/3eZ/nIfen7JFpgJEG5BhhyZBkGvhTZjoyI2CoAWmZzpcvXxhK JA6Nx+NVVFSIg5L9u9Q1wL3pfPr0ae/evVFRUVKSvaqq6syZM5cuXYINSYmFjCwdDXBsOmFh YTo6Ojk5OXR4s4G5evXq2rVrKysr2RCR4bLRAJemExcXN2HChPz8fDYC0cd1dXVdtWqVbO2h rzFuITkznfLy8jFjxrx7945b+URT27Bhg4uLS2NylPEiNcCZ6Rw+fPjo0aONrNmioiJNTc28 vLxG5itjBw1wYzqlpaWDBg0qKSlpfJ3CXq2srBqfr4wjN6YDp3XLli3fRJu5ublDhgyReTyN r3y6poO5yc3NCQ0JTvqYXF/KRYsWPXnyhI70oBMTE/P48eOCggI68HRgfvnllzdv3tCBFAuD iFFQUBDOiQgBiAWWKsDnz58fPnz48eNHqXJhQ5yu6byJjzPavEFOTu5VrJBJUlVVhZssVg5M zLx581p9fdq2bXv37l0ChcervnHNbczoUUOHDjXff/Bjcgpe+j/wHTZ06E8/j7M9bldcWiaC +JEjR86fPy+Wu1iAhIQENTU1CKaoqAhJEKAiUDLSP1kftsSbf48e43LRtbwC0U6eyZ4deDNn rq7HbW+xlCUFsLe3b9myZbt27Zo0abJr1y5yTQ0Jfqq3cD74TtaesmLFit90dfWX/Tfi5StJ 6XMCT9d0wOz0CZueffrV3xoyMjJ++OEHOtIcOnTI29u7uroa37Snp2ffvn3h55KImhr9Bg0d QdL39rgxUWtK2ud0sZTxdSLGIxZMNADC35gMWA/AINWePXvmz59Porx/E4vPZpeJeY2tV1ev Xm6wx8Ss4gv3gaVHjx4dOHCAcBwR7xgxYsSDBw9ISY4fPQxJYt9++PrJ8Sz27VFq0SoyOo7l 8BmgS2A6s36ZvGrdpvo8goOD9fT06PCmLL+nTp26c+cOgViYl62o0MTE/CBfI9XVtketTC0O VtLbNVJSUiZPnkxHABEwCEdRTmqzZ88mQ45urk6YsIhXsaCQl5u9csXyO76108mSNQWdoqUP Hz4gBkHCLPptTi/V/mQgPSUxAYJt22XMrQx0qNE1nbKSolYtmnv63K9P9ObNmzt27KDDjALz /v3706dPEy/dr12GCp6/jM7Oylz+XwPfB/70CWKCBw8eTB+eJuSxY8fIPUtfb/53vVWrebxn IUFLluonp6bRJMIJGKneqsqKTu3bCH7AoU8fQW8HrY5xwkgiIqJMJz83x9zM1Mra2shwy5ZN G5Vati4uFeLQ4DrJzMyMDtesrCwcxDZu3Ghubm5qagrf9uzZswTiCoMlKj37BD55hIlJ/SR+ k6KwU1dXpyOAaJjnz5/r6+vDt8Bwzp07h5sy7MVAqa6q7NapPSbM5qiV8T7zL1K+/cBuDl/H wMAAKsK+GRkZaWFhQUgeGsg3FHevGh8RO7/OjGlduvdIz5T6zU991TVoOvExUfBgYuL5TjHc 2O+6dZo6Q0eo6jH9cFTFzhzWmF69erm7uxOQ2CAWLFhw48YNPv3q6p7dO/dT76/YtGlYRKRY UvUB2JvO5cuX4XslJ9ecH0NDQ+FkEL5/eGggJmzgwIF91PqXlUv30h4u1/Tp01evXg2P8Kvm eSYmJjt37iSGbLJ7OyRxdHaNiIjw9HCfqj1p/ESt128bNYJPKl+46WRlfO7Zo7u3rx8B96W8 TLmlkt0p4acYOqYDFYwePXrx4sWCsw5f5/Xr13gTFREGjZx3dBmmOXDo9yMZ+J4sTQf+RIsW La5fvy4o3ubNm4mf5ia7FZo2Cwh40kyx6S7jGk+ZgX3TQcECo6KighArCQzXpyZMz+ONHD54 3ETtZ2FhV6+63bh5M+Hdezo0pQQj3HSWL1s8beZskuW1yy5ycvLvklKFCkHHdAICAmAcT58+ FaSA74k4Tx3ab9pEoWlGdm54aJBCkyYWltaSjpal6RgZGXXt2lXwHh5fP3ZVQozRI4ePHa+F P0z37myq2CwiMlpS8WjCg2mHDh2wYwrCI9waHc3nmJGWLC8vZ21rT5OatMGEmE5udkYzRQW3 G54E7+KiAnXVPgM0hzeUHUPHdPAxNW/eXDD/C4kZ5AXC+LGjRo39D8Fu2+b1zZRaxMS/lWjk LE0HW/OcOXMoE4ZNAW+y09MU5OUPWtng7/Ky0kED1IeNGCUld+fFixf4wMhwFyEPGddxvnCW fyx/8y1XGkEVCTGdJw/vQcQXUfxQAbyQ3Tt3jBg+xGjHnobmko7pYPz4rAUpIB0sOzsbb/Ky M3AsJ1eakqLCvr16jho7vrKKv9nTfFiajoaGxsqVK0lexcXFW7duJX5ecnaANqLiakw5JPBR E3k5i0PifTuakguCBQbynSp46+RLhMG8vLyIn/Pn/tpbTePvk98mxHRiI8MxgH0Wlikpydu2 Gj4PD1dq1vTEydPPG3Bg6ZiOn5+fgoICAjB8c+TxcILw8PAgNOJw5gTYhTx/SerrgNleIv5G PwuQpekgcDJq1Chi90QsDl4qcSzHm5nTtLr26C04YT8O12zWXCkwOIyBcYhGgcl27NjRwcGB AHv27Bm55GAraN1SyWDFGs6ZMiYoxHSgr93bjbp06TJLZ877xKSSonw11b7nHJ0b4kHHdIB7 /PjxiRMn7tu3b/v27ffu3cObyi8VV92uzJmtM2nSpL0mpjFx8XgZ+SJ88aKFeKOlpXXw0OHE JFqXOCxNB+HjJUuWLFy4EOfhbdu2Eees1JSP9nbHIYa29pSz5x3y8vmXbtfcLk3R1oZ4M2f9 +oeTcynXBy64g+PGjYMMxsbGtra2xFUa7h8MN28C0wWL9Lx9ak7mjKecK0S6IUER/GiaDlcS C6XD0nSkKtv/V+Iy02mMmcXh/5skM0l1bDLTkap6a4hjKwwPD28MTqx5IBRJXOcRj4jkE5np sFY2DQL/CNNBWGvdunVKSko4oxCPsrKyiMVSZjo0Zp41yDc0HRxKkFYg9Hn1qk6iD8JsV65c QcoewtmIMKGSTnSRQq3p4GAl6UOoVISbLClBOvB03GT4FrhbFfqQlaN0eDGAIcXDMY0UANdS yC8gf+IQToIxYCEWRVBFuMGFJEKfsrLaBDrsTenp/FtnHIQp4eyGPpwa00lLS0NeOiJj9B+U IhCleg2ZDmLHI0eOpE+QDiR5EUgZD+WEtWbNmlkNPEjcJHARf6PDUSKY+/drk1Jw6U2K0KNH j/Hjx5M/BYN+OPxLxEIs8O+//854lYSjg1teIvwm9pFtWGJVxAHAN9ywLly4sLuBB2szZWxI R0TxbkMD/vDubUBgEPmvMtPhwDLEkviGpoPFFXul0CczM5MiOZKEHB0d8RKlB/UH9cD3jvWx 4zLTETvdXAJ8Q9ORaBj9+/efOnUqsk0Et1SSQnFxUblAjxHZqiORbhkC79+/n6tyH4YS0EOb MWMGLtGcnJzqgwcHPmrVWrmopNazlpkOPaX+z0NFhodOnjZTUA3iTSc2OsrW1gY1AA2lONG8 w0LmG/JQccuIzN/6XVRQxJmaKjyVjM6ssb/DQv4rEr6WLVvm7OxMJHc2/oOgHDInly5dCr8W Z97GF0AER0tzk2N2NTUIBJh400EUATkrzZRaFhbXZj0K8qBjOjioYzFEzQ3S2pFpOmDAgMLC QkEi+FdKQo9EimNpOvHx8cj2QjEXTvU9e/ZEUFUi7pwAQ89IwNXV1TU0NMQlOc7zZByBE/os ifw8emT8uyTJVh1Ab16/Smtq7WKFUKOkpoMsSVSjkVjIKLCzsxMk4u/vj345jIfH0nQQSCUj 7kjAGDt2bGJiImNhmCEiESUkJITEPXnyJM3QHDN2EmHlZqX319CkVG/SWnXU+/7L5kTNYhUW HLhuY53OBHRWHYqgCOkinUoi6UUDszQdCnFE9hCS51A8BqQwT2yCeww4ikC56uq0yYhaateg 6ZSWFN/1ueP30P9tXBRuwt68/1hRXu7k6NCubZvjJ88WFNRuNzRNB7rApQnKPYkPGgsPKWth YYGnh8erqGjsa0RGsKQPe9NBVB7XNzAa9FGA14UiLFKGxA/vUfSTkZmFG+W4eH4Jh/QelIgg qZQ4jgmqqKy09I63V+iz57jKfhERLlH2LRtp09JSq6t5S/UWJnyg5twJzxK84uq8avXa6JhY z1vX1fv168dfrP5EfZ3uXJ0WrdqcOXs2KbnWpaVjOrGxsegVBzcZSZOojrOxsSHL0rw8bk2f MevFy8jLF51mzpj+H61pDIbK0nRQhYiLAtgHiqCRx4hOYcQBtaqyctd2o02G23ARCIEHD+hn Y19rUgzkFIGSlJSEmArSFFECBgFQj0GqKPCxv/aUqUEhoT5ennPnzB4weBi3rEVQ27plEzo0 PA6oU8pCwAsxnYPmJjNn61YRWeU8Xuf2rTdtrSkh05kxZdac3yicxJoOlhlEC9CfgEREqjZu dPHz1vUrvfuqZufk8VlVVTSVl7M6doKBXtiYzsWLF+GhE4WexLN+/Xq0QOBvGfp6C5cYEInJ Xu7XiNWXgXhiUZDhj/pGwaUO3xhKUYEY8OhBt+4qf32rvO+6djTcvlsswUYAoJqOz233jp27 Zn2dSzyJCfHQ133/APxdWlyAsnNHl8uSmg7q/uF4CmK9ffsWZ+DPaclt27S+dqsm4z8++iV4 xbxmUsvI2HSwPaEXCaUvGKrNET5wc/2jTbsOpCoO7d+nNkCTfqa9RJOHwx36swjmVeEqG4t0 UUHedypd7U6dI6jlZH5CPcaDR0LWAInYcQJcx3RQwzxQXRW1ECTpDWtWtG7bobyC3wrE2/06 iiAzc/Lrmw6W2YakwRygFoJynsLc4AJlh9HGPv00sJUSuLu2bRbs4SDR8BibDiwY9kppLoGw CmqlB6j1IX1DaGZQf7WNhvyVkvMHHh6a+oCpIGXsWTiT2lhbtu3QmUyeR4cU/nRIoTMLg0HV MZ0Xz4Khx7CImm7ZiD136dxJZ95Cgu5KgyXjJ02pzwMbFrH7CH3gPYAm2niR/4rYIOo+8VOj X5/lq9cT71OSPrRRbrV6A7WrXE5mOtoQVVSK6rEFgvhkGQweKGgi0b59e0FcCHzr1q03sa8g ttfdmk4oLo7n8NPXr3YUBIq3582de/YxY01i4QYbxN3c3Mg3WH6I9JKJ40ZP/3Ue8T4vJ0ul WxedeQso7L6Ul06erJWVS/2kWUolFr2O6Xi5X8cYor9uGYnv3hqbmPb+rvtZB6eU1DR8dipd O8JJfPnyJaWKDLuyiP46cJBBE/e3pCiwG+KQ1aW98iZD/pGvqLDAzHSfUjPF239NFQmMLhM4 5YneJrD9aWtrix2qUAA0QerUqRMZsUCgEo4OoslBTx5CbP+AYGC9jHimv0SvpXK7snLq/16A hl+RUWzriOHoyMvLC1a84xhBBM+GaKj/tmgp/qgoL7M8eKBzx3bnHKnNfiH8Qz+/qkaPgNcx ndSPH1ooNR8/YRIm0mjbjuSvbX927THJyctP/fr3IaujtzxuU+YA6v7xxx8bmjkMDNmNCPDj S0LYDQdOHx8fAnieznT4VZi8DRs23bx2pX4TltSUZNeLLiFhtdWQQrmgGhCNV5iZDtLnUOZN NNzAXQQaexHFe0X5ue3bKI8eO87YeK+d/ek1K5bNmK1LYRER/vzUyZPZXHzuuJ9BR0Q01sBj bW1NRkfXr17esrUyzlpr1qz1u39XTr5Jyqc6mRKZGemoZfPzpy6HzLQhERbVTQ4JCty+fYe3 jy+mHA0ucERMTuFfpqDczsLc9O494a2s0N1OMFuRIgE2FPg6WIEtLS0xPeS/ZmZ8NjHe63Dh D5Rwb1m/esr0XymIfLOb8HNgiJhaApgjm8bb2C+Q0YczOfpECaZ+hgY/xXaGcynE6NtT5dT5 P6jfTF5WN5WeVX/5ahLpnQIMdwftELHv445dMFemsCDfwtzshP2p0rLywwfMho4YVV9FSxfq XnevOWqwkUFSXPHRZDoUERoWzK2kg1IHhsfTUOuNSCMFsaKspHfvPmLDXz/99BPZF0di1jQQ XsdEotFHUkpNZiqJ4evtscRgBQ0C3IBM+PnfO42pLbDgzqur9c0rrE125oYZDSrcmI6vry+b qHlCfE3AmiKw/7078/X0RY8CN8woF6cxUuYgRywtNDS/r4+/ce3Ky9fcmdOVBDMnK12xqcLj IGqhe1zUi3HCzi6S0GYIy43pwI9BNz+ic4VED/ZBL6/bWhPGwZFyvnSF4utt3bzeyfWqaILY aBCelogpfeDPn9Iuujh369JJVV3jWXidGxLsYhrqatl5nHV/blAqHu/eXZ+5OrOgIhu7k9i5 BCGPHtp/6Igt/RFxCMmN6UAg5LQyaNhO1Br+9RQI3s3i78Ea6ulZuSJGi+AQ2raJcLNYagrX dqRwlGI2XO2NGTeRJX066NCDgIryyTAYgTtp/NhXsZL1IqLDlA4MZ6aDhQcnZNy/0OFKByYx IW7CZFH3WdApGniz8rHoyNEAjO0RS1t7qnPGgh4T1ILc7GHfj6TkQjAhxAiHM9MBd6Qm4RKR vceKBrMhYeFmJnufvxDVhxynPxzsGY2aFZKjw/ms7Bz9pUtL6u4drIhKiPw6NvreA3/740fv +T2SEJUzcC5NB0LBbubOnYsYHRsBE98nIDUMrX0aIoLvDLfK6P3+TT44f78HXl7exSXCcybZ DJw+bvrnNGQUSTsDRLQ8HJsOmMHzwBUVs7QbOrpDAi96FuE/AaEDLIORnga4Nx3pySqj/LfS gMx0/lbT8U8SRmY6/6TZ+lvJ+n+oous/tosXlAAAAABJRU5ErkJggg==</item> <item item-id="518">iVBORw0KGgoAAAANSUhEUgAAAMAAAAA+CAYAAAB9RBRuAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABXmSURBVHhe7V0HWFTH9reLvZdo/MeC KInG5PmMT030qVgSS7DFqLG92GPvFRULduzGEiP2FtGAilGxEAQVFEHADooo0hVQsf3+cwZ3 2XK33N17d5Hs+b79Pr3cO3Pm3Dl3Tpvf5IGNbBL4B0sgzz947Lah2yQAmwLYJsE/WgI2BfhH v37b4K2mAK9evbKK9N+9e4fMzEyr9G3rNOdJwOIK8OjRI8ycOROhoaFWkcabN2/w66+/Yteu XSBlsNE/WwIWVYCLFy/C2dkZSUlJVpf6vn37MGLECLx+/drqvNgYsJ4ELKYAERERaNmyJVJT U603Wo2ed+7ciaFDh9pWghzzRizPiEUU4OXLl2jatCnu3Llj+REa6HHUqFHYvn17juPLxpBl JGARBVi8eDGWL19umRGJ7CUtLQ3169dHSkqKyCdtt+cGCciuAM+fP8dnn32GjIyMHCsvUs4l S5bkWP5sjMknAdkVgJzNcePGyTcCCVpOTk7G559/bvMFJJDlh9aEyQpAIcTk5CQEBlxA9P0H Osfdu3dvnDt3TrRcqP3r16/j7NmzePr0qejnxT7w3Xff4ebNm2IfE3U/5R/8/f1B0TAKx34o 9PjxY5w+fRr379//UFg2mk+TFeBmZAQmjB2FPHny4Fq47olTq1YtkBMshmiidO/eHcWKFeO/ UqVK4fjx48om3r17i4P796Jpk8Zo0KABXOcvxP0HMfzvvid98AW79vU3zbFy1WqkP39hVNfL li3D5s2bjbrXlJtu374Ne3t7PpaCBQtyviknoqAncY+wdLEbv/6fJk2xfcdOvMykZOE7uMyY wq937dYDh//0NqV7k59Zu3YtihYtitKlSyNfvnyYNm2a2koZcOFv9OnVk/PXpm07DB48GD/0 6IH+A/6H4KvXTO7XUg+arADE4IY17qhWo7ZO0+HJkyf497//LXosixYtgre3N96+fcu/lEeO HEHNmjVBDqsq1Xesjc8aNFTr3/vwQbRyaofYx3Gi+qUvHOUF5CDKetPEICUgonHMmDEDPXv2 VOvu7s1w/kGZ5uKarexMBsMGDcQMl7nIfGXZnMWZM2ewYMECpf9GoeyGDRvi5MmTanyvWr6Y 8x1+6x6/Tqv3vNkzYFekGELCIuQQqWRtmqUAnb9rg6G/jNHJzIULF9CnTx/RzAottevXr8fR o0eVbT1LSUTB/Png4rowS+hsoqxcvgRz5i3EaxPMi5iYGLRp00Y0r8Y8QLkPoShTly5d1BJx e3du4xMp+Fo4bzYlORFDBg/CUR/1CWdMn1LcI/Qe7t27Bwodq1LvH7rik1p12MTPvhoTdZuP ZdK0WVKwIlsbJivAi4w0FCtSGEeO/aWTuT/++ANTpkyRhPm7d+9iw4YNyrY89+/mAr58NQyJ CfEY9L+B8Dnpa3JflBGuV6+eyc+b8uCKFSvUzKD+fXri4+q18JbNpEsB/ujbrz8ePIw1pWlZ n1F9p29eZ6J8mZJaH8LAv8/w97NwyQpZeTG3caMVIJU5vK5z52DJ0qWYMH4cxo0ZDbuixZmN rdu+p3qbuXPniuYxISGBR45Gjx4NV1dXzJkzhzuoGzduVLY1eGBfVKlWA37nzvCJ8vCROJNH iCkHBwfRvBr7wOXLl9G/f39uQ5NMNm3axGuSyEwkevvmNSqXL8MnkjtbyWbNdsUrK5dpkPlJ PsDAgQP5OyCzLSQkBPPmzVMOO9Ava6J7emX7aG/fvoFzx29R8aOqiIu3ftmLvndklAJEXg/l tvz1yCxnl5zQjyuXR/uOznrfP01Yci7FEH3pP/nkE3h6eiofIxPixx9/xMGDB7P6Z+ZOtY8q oLZDHRQsUAAXg0PEdKHzXrkUYPfu3dyHefAgO1oWGBjI7WlFgCAo0I9PpE8//RQ17OvgxUvr VqyS39KhQwcMGzaM+2JZ75055C4umDp1qlKGLtMnc763euxEcHAwjhz2RPu2rdGilRNu3Mp5 mX/Nl29QARKePEa1qh/B2+eU8tlXL1+gRFE7rF6vP2oiVgFIwE2aNMFPP/2kNUnJB7hx4wa/ Hhp8kQt989bt+KL+p2jwr0aSOIhyKADZzEWKFMGBAwe0xjR27FjlNVeX6chfoBDOnz+HQgUL YNqsbEdYEu0W2Qh95atUqQJKZKoS+QXKrD57X42+rIfmrdriEgvt7tu3FweZ2Xv7zl2RvVnv doMKMGjAT/i2Uxc1Dvfv3s4mYF7ciX4o6Qpw/vx5PrH//vtvrXbpy6MoX140fw7y5S+AJ4nJ CAr0R34WnpvnttRsKcqhABMmTEClSpW0qk7pC0vmnYKaNPoSzVo48f/OmTkVBQoWQnBImNlj MqUB4q1s2bLcXNMkSmyGhWXx9ST2AfLmzYOlK9ea0k2OeEavAiQnPmFfo/zYe/CIktn0tKdw qFUDdet/ySLU+knsCkBfncKFC0NzswyVT6uWKrRo1hiNm/1X2fmksSNRyK4IM9FumSVUORSA TMeuXbsKTiQyGYgS42KRP29e5jC68/+/fMHKR+o64IuGja3iB1y5coV/iFRzL4oBqOYBPH7b mBX+vPnhfPE1X4ReBTh3+gQf4JXQrFgu2d7Tp05Bwy8/x4QpMwxONrEKQMKlr6Um0QaaxMRE fjmFKSWFP1W/+Blpz1Dzk2pMKVqwEGiWvWoKyaEAjo6OGDJkiBo76enpmDhxovLaLo8tXM6h EdkKHMCcy3zs6zpvkTgfypRxaz7j55flj5DjrkqUm/Hy8lJe6tnte1S3d1QLf0rRvyXb0KsA 4SFBXBCz57khJuYBJk0cj8tBQbArVABr1m3AZQPOp1gFOHXqFPLnz8/6ysrqkslDUYjDhw8r ZbLl1zWcp4DLV9XktGDuTGUSydDKpEvAcigAxcwbN26sNN+oKJAcS0UWmMbY6VsnVKpaXWsi ffVlfRQqbAe/CxctOSdAClquXDls2bJF2e+lS5fUssBkHRRnfuDAwcMtypvUnelVAHo50ydP QMWKFdHZuSvuRkUjIy0V9rVqYtNWD4O8iFUAanDVqlVo1aoVZs+ejcmTJ+PEiRO8n9evMrFv 7x507eKM1q1bY6bLHFyPiOR/C7kShJ969+LXnZycsHDRYkRFi69bkUMBKOvbt29f9OrVi4cS J02apIwGPYy5j7WrV3Ge27Iygo2btyAlNavuaf/eXWjXti0fU6fO3+P3bR54bsHIEPlhzZs3 5/zOmjULK1euVNYvUfnD+LFjOG8/9u4D72PZIVCDkyKH3WDQCTaHX1MUwJz+zH1WDgUwlyfb 8/JKwKYAKvLNjQpAYdicvBdD3ultuHWbAuRyBSDTK4j5bbmZKFGnqLeimiv6GVtublMAmwJ8 sLpB9Vu//PIL7OzseABE8StRooTRq55NAWwKYHUFoGAHVeLq+127pr23gHJDe/bs4RuuKGtN +QvCmxIDvqClABT5MfenkKgxTrC5fYl9Xt/bFvIByIamQjx9P1WkObH8SHG/6pio3kiVV6rn oapc1WsU5lQlKXgQ04bmO6CCQOJb3+/FC/WNTWTmxMVlFUBS5FAoa22MZqspQGxsLN/ATskb U3+EsKAAvjKkAJTxbdSokcl9ieVRtYhLSDhCCjB8+HB07txZ74+2DCqIkkhi+TLn/r/+Ui9H p4pNVX6rVq2KFi1aqF3TTHBRGNYcHsQ8+/PPPxszL42+h+x/KiBU5I6MfvD9jTYTyGYCiZ0z kt//22+/Yfr06Xp/tBILEe1OI7RBQ3Tvzi2c9/PXus2mADYFMDR3ZP87rZpkpun7xcfHC/JB exW2bt3K/0YgCrropM9RLF2xyqYA+t5mbswD5PYwaJ06ddC+fXtQabmmaaf6rtPT0xjIgPYe C9sKkMtXgPnz58sO9yL7EqGng44dO/K6pW3btum86wIrLCxWvATSMrQRQmwKkMsVwJqTM6f0 HRIUiDbfdhJkR7QChIeFssIod45WYGjDhqEokBBHtAOJtlFSARntndUFpU5obg8f6t+QI/YF yGUC0TZP2hgzYMAAeHh4KLcYiuXPUvdTgol24PXr1487phQd/JDJzdUFK1ZnAyqojkW0AlC8 l+rXC9kVxbN09e1ymkISqwAUFqUljaBUaFM8bY+sW7cunj17piV/uk9o74A5L0oOBYiMjOT7 qQlziEKq1apV49nLnEr0fmlLag8GbjV+/Hhe8UmhVNVQb07lXRdf3zRphMg70dKsANTK2JFD 4dRefUmhLJy5CkDb7Qh8SZWoFHf16tVabfv6+oLw/aUkORSAspWqxWhUHt2sWTNERUVJybpk bVH5eUBAgFp769atMznRJBljJjaUnBCHOo71dYK3mbQCONT8P7ivyV5SLl7wwy+jtQFwxa4A QmOkLCttILEEyaEAQnxT8opS+B8K0aogdQLLUmPfx8DGxkzQjU1llAI8z0jH8WNHceq0L25F hPKio5t37yOTYX5u27oFpUuVxKp1GxmIrbqpYooCkLCp7oNQ4BRfSVoFVOnZs6cMfuMwroWG 8f3Dir215gpVLgWgND7Vq9DEJ6Bf8l0IE0iVou7d5bAvT+ITWGVjCiIisxAwrEWEwEFbIBWA wZrv4AXz1Y56eyHw0mVeeXklOMis7ahSjzM29iHztd6hX59euH1P9+YogzvC9uz0wNBhIxB2 PRxHDh2AQ+3aqM2XFHBQqh7dnFGkWEn8yjCAoh+oO6ViFSA8PJwfo0ROMG3BI/Aod3d3NSAm r8OH0KFjZ1y5GoLdO7ahU8cO+K/Tt5LITw4FIHAwKkWgyU1QkbTTjU6kUYTt3jCHcxrbdTdm /CRexEXAAPXq1ob7WnUFkWSARjQSHR3N4+q0e42wi4hXQq9QBcPyO+uLtu3awz8gEMe8jqBb 1y6oW+8LI1q33C0Tx43hAMNnz2sjjKhyoVcBFjLvuVOXHkzD3280Z7O+QpniGDMxGxjJuWM7 dO76g+DIxCgAfe0pnktAuKpEm7CpWpDo0IE9qF6zFhKTUvj/373JRAG2cXzJijWSSFZqBdix Ywd31BXobwomR44cyeHGuWnRvw969R2o3A/s5blfucJKMigRjRDwAIGSaa5O9DEiVDui82dO ovJHVVQ+du/wcaVyGD95uoiecs6tOhXg2J+eKFehEhLeTzZiOep2JH85f/me5yN4nv6U44Nu 3b7bbAUgoFhyDjXp1q1bPHT4mGHQlCpZHPsPZaMSRIZd5fxcvyENApmUCkCmDkGKC508Q5ig FN7du/N3lCxdVk3Gi+bPhn1dtsJaYY5QpIog3DU3k1DlJa3KaU9T8HGVSgwQbZOSu6T4Rxy9 4uQZ/V9aKwzHqC4FFYCwHT91qMXRIFRp1PDBKF6qLEspZ8F0e3se4Ghm8UmpOhWAllJDRJOB 0CCEoj00WagOZMqE0ahR25HbdQqaNmmsFiqxob70/V1KBSClJeUUQlim2DrBS9a1r6HmoJHc P6tjj9Hjs1Y8SxL5UnR2AfGmSWQGUXTOfakbSpWtoLY5n6DR+ZywMHS7VLIRVIArly7wl3cx OPswa0onV6xQHs7deyn7HsIAalu0bqeTFzKBFOaLPobJNqb+6DQYVaKkGCHCETnWroFBw0Yq /xwTfQ8lSxTDsFHCxy8lxcfxAxsyXxt3Egv1RV8/qYgQlMuUKaPVHI310KFDuBl+jY/Z63g2 9Pn2rZv4NZ9T6nJQNOJ95A9MnTFbKhbV2qFqS+p77969atdpNVCUkbdq3gQdvu+u/HtKUgKq VK7I5sSPgjy9evmcbXJxQkKy8AdSloGIbFRQAbzYl52EEfbetIhipaSzGAxJ9Y8/wsYt2xDD ILvpa1WF2X7krF29elUQHIlsR2POByDnl/qjqkBVosmviARVLFOCOYpZ4aw0FgWaO2c2wycq iD9VJpDqs4S2TFErY00JMrXaMhgSqYgOlihfvrxa/JkSemT/Uw27/7nTfMy+5y/wLq8GMzu7 bx8ULVGaAePSyTDaRKfIhLDIlxxE9n9ehk6niWFKQQhFjudzRwf80Lsf7z6T4cO6LVyACuVK M4gc4WNmycc5zbCe3rwH15WDb3PbFFSAh/cZoKtdYbRo2ZpPtAmTpuDB+wMPps1wQVJKKh6+ //+iJctx6PCfgnzQC//qq68M8kiCou1wVCpAXxxKHFHY7dixY8pnuzt34D4JTaxRo8bgj/17 dMKzP2QgXjt3bEfARXVkM32MEPgWwbFLRbS7ifA1FYjWVA5Bp8QoALHSUpNRpmQJNGnWnI11 Jlav3YDhgwegIws6CFFw0GWsZwmpRBm/plR+QmelEWI1/ZYyKHzVZOPIYYNQlBWVubJI1fDh I3Dqr+PIkzcfYh5plyrHP4njOE6nfIVXM6nkbG47Op3gAH8/Zr5MYaBHPvwrRojQFA57EJNV F0JAVfNc5+D4Cf2nl9DZUZrb2YSYJhOEfABabt3c3EATRpXiGUq1C5soW377neNljhs5DO06 fC84fq5QLb+BX4DxaAikcFIfmE1mBe3QotAnHe6huRUxkAFMkalEoTriuWa1Kli/+Xfhj0lK AipXqca+psauaeKnBvkBdE4ama1URapZX//saSp753OxZu16PH/xEosXzEUDhl8qRDSefr16 4IBndtBCPEfyP2FUIswcNiiLq7ltz5z2+LNMuI721XnyTYgyX2SgevUaohIzX3/9tRp+v9k8 imzgxvUQjrgdHZO9vVK1CR/vw+g7cLDIVuW9veU3/8HUWcIHoJCT72BfEynP1Pcfy8uR+NZl VwAfHx/J0+i3I7Oz0UJD9j1xFD379DdaGlTtSPid1qRlbvPgWP9fOlkYPWIIdu/3tCaLan0n sRqbggXy46y/MG5pROgVNNcTIMkpA5FdAcimp7O3FOjO5gyczC4vrz/h1LI5dyA9du0RdLAm Mrj0bTv3Gd0VmSiUdbYGPX4Uix3bPVC5YnnUcnDEpaAsyHRVInPC0cEeiSnyn5dsUAaMlxPH j6Gbc2f+DtxXr+PmkCYtXzQfi5atNNictW+QXQFogLRnU4rT4hUIYIQClvV7qlXlR5OlHotW xCUkGyVbyjHQUUXG+ClGNSjyJqqnyh5PqiCgE9VfNW3eSmTL8txO8lXll/6tmptR9Nq6RTN2 frR55zXIMwL1Vi2iALQKUIiRakvkpqjbEWjZxrjaIHqZdCC35D6KxINcucwNK9cK+zsSdyVJ c0/Z8a5fsGOrFCf6SNKoTI1YRAGId9pQQUVhqgfFSTkmOlY04GIQ5rrMxOUrxp1QTlEtCqvm VNq6ZTMSEpPQn+3MyhAwM3Ia3zfCw3CCHVW7dtVynDh1JqexJ8iPxRSAeqfJ361bN1DSSWqK unubHdK2j59hYIj4SeYslk0n0ufkr5TvqZPM5/FGeob+nXeGxmupv8c9juX7HKxdyi1mvBZV AGKMbG2q75Gqhl/MYOle2u9Khz34+2uDJIlty3b/hy8BiyvAhy8y2whykwRsCpCb3qZtLKIl YFMA0SKzPZCbJGBTgNz0Nm1jES2B/weE0SHyLmOSyQAAAABJRU5ErkJggg==</item> <item item-id="519">iVBORw0KGgoAAAANSUhEUgAAAqkAAAAnCAYAAAAsA9FGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAsCSURBVHhe7Z2J0eMsDIa/ulKQ69gS Uo2bSTFZfMWYwxKnBbw7888/u8a2eHQgBCZ/X/wBARAAARAAARAAARAAAWEE/oTJA3FAAARA AARAAARAAARA4IskFUYAAiAAAiAAAiAAAiAgjgCSVHEqkSXQZ56/H1kiQRoQYBL4fOcZ1suE hWYgAAIgII5A50nq5/t+/X2nWRz3NgT6vL/TG4N8G8qClC4Cn/f0rWfCiDf9WCF02Y8u0ZOW CXScpG5B5u8PSWqsgc7vN6qosfBwnxACKg68a8xSEW+EKDyDGNBlBoh4BAhkIdBlkvp5v9bk 9O81faeRKqmq8vla+r3/l1ZBntXgPnAVNSvLLL6Kh0QS+KjJVsk0FfGmn2IAdNmPLiPDBW4T RqDTJPUYlEZaspm/k141nieVrL7ilzrnd/y9wow8XJzMLMMFwB05CShfSJuw3QtzJsGIN63P a6FLZeupY0dO38WzhifQZZJ6anWgQWMJLC99eT6t7/M0Fa0+ifa8zCxF93UI4dSko2SW+mOY 5nNNqaJ7H4Euq7hMU0YPYZ8ggCT1CepV3mlUA4PeuQTogZNUi1UKyyDwaFyEgNLfZQJX5CXq oQMlNt37CHSJJLVUnMBzQwggSQ2h1VDbdW9V9MBca1BvA2gayzb62LeUtSZd4yY2/fkIdDnw Fwl9h8PGeocktTGFccTdNv8nVEKXj4YwjV5RJ7PkKAxtihOYp4T92Wzpxkxs+vQR6JJt9mgI AgUJIEktCPeJR28DRuKAvOw3Q5K6J6iJLJ8wArzTXoyeahxFN15ikyXeiLRX6FKkWiDUcASK JKmfj5SFgn4CDYdptopG50lqVZadhxQOSwkIZpWkvop/eo54I0HXeWSALvNwHOcprcRCrkak 9EdLUj0fhxznRXoqa0vwPy9tjn0OBsszO65ErUd1JCyre6wliumqpzys12S3k0rq0yy5AaGF dlEshXSsTpJauLOdxht15tH1+LzCGEU8vltdiqB7CiGJcw40A/aHSFLvg4edzJhJqtLKkjxF f8CTQ6sFn1HAYGKZLoPwcYi//v+YXHORoXzVqaBe9kdLYFm+l3XeEMuyjnT0W7qw6U7jDZJU 2n45LWJ9NOfYwZGzahtBPpOl3wP25yZJpWa3y3W9inj+lNyaJGnZURdVjNXCNiZbEqiqlup3 wa+VVOO6OhD/FVRplcHUO6Abv8JU9idn+2DpDUxgGRazE3m1maSOEW9+Sar6ZbDzF/Pyr1CF GVzu1qPoci9MHeNk9QJVb5xH64/td54kld6P414SdlRS19zOPGjeFGRThOzqnWsrw5KsHsGU uk4HvbxM6ff5WrjlsCct2wy8xGDSKEv2LxuB5Tbn4/4SVDovdpLKlinev3h3Uj5AXaffIiXe nJP/M5Zk2V8PXRrb73abIMdj2nb8LXRf9eQDKY+/vZfyCeo6LVhdn6Hkpa631h+3vM4k9Sj/ +5eKfcbn+/cO9qa6yuz6vzmuewPtWhUykztBTLkfTpl9zvV79xyWa5ujqi2EZcqg6FvGcdoK HXx+LSSzzMpLqzg4qjfs1ZwUmQLUQjbNEW9u/VFQvHHuSTUnJvf6dfLsSZcS450LOrkcHaFH 0lm05NscV1seo3PEAEl2Q/Vnq1ycq9V7HLeS1GMJ975K5tsKcB/4OPsjfftjzC0EXLvN1c55 WLWWQFDXr0mDqwJZjmkwg9skVV9+0PthTEQSPuQiWRqJmz27fYhl8KDoY6kH3bRqtWiW2Xhd V35c1Y7rR183HhEsU7B3sW6g9EZd34K99iGl5Y8P+Yg7m3R8YKuPJbR+JSeplK6o6+t3HVry JSbeOaA7+/JrF6lHlsfsZ1qbE9SGx2jKLqjr0uyGlNf4xb7Dzq0k9fpl/nVv6Wkrvspo6Oyc aX3MZq4Ph8x/8z5qrzr4EmkKMHV9nSOsy+Nq4HDuVa3IlOjratwWiDOh+tmIOUs17vEmBoms LR1a1cZ6LOMmVQRL0lY0Ao2xLMPL2MvtqD7fHeYfJ9PX+aGimHjjmGhe/bGej2yD5d05tS5Z 9LGE1u/hEV3q0gx4D8Y7Spf3SWpZPVJjMHW9+hidGLs5/bmYTmm7SezPNrHWVkV3ee+/7t9L xXbiVm4WHhtkmHlsfDOqVE1d19/sXMItxzS800oWc0bq2sd0u7STsMUjhKXqnJjKArcKF8Ky wHL/ukfcs5e4KstcvKwTREzbWxIe5t5prkzhThV2B+UD1HXrbSYTYfHGSmI1+Uj9etB2qsuq Phpmtdv3J77vFGL1yJWB8gnqurQxmpKXum5we9xuKHk99kGek+reVxlaMU1IWLgGWrzdfnrB L2M/qmHXD6fOUw3M62b1S8g+Sic3x6BuGthvv5vrbNbUDfMU611orwwP2Sd3UAxhmZqk7kso pF0+wTIXLyvpdySp01uRYPzhysR4VFoTygeo65cR1/EBzUM+4oRix8q1WHFMlEn9Ck9SSR9k 6vIJHw024uvk55IYxeqRLQPFkboubYym5KWuSxsnCXk99kEmqapOtQY4c3bk/srt+K1zY5uA q3J0MbzNsGV/3b8IfLDwHUGlX1fLW5NnVulJPPIyZXu2e9hw/Nb5tcq9JNmuakwuXTJZrtLb k6BHWAYkODyWi8mFHmPmUqdQlrl4kRUaZR+cDfGrKU3aj5Ok+VD63Tnijd8fH/ERb5J6bIPa P4bUV3JI/UpPUjOOHZLinc/Af8m0kTfE6jHIkXL4jD/u1veZTP0RYzc3/aErqUGW4EwMfE9g f1kbKoL09r6lD2/iwa84F2caM1iTe88SFHa7tWDb73vNQwSxTOh2niTVEKA7lsReN2WX7zlF CY3c66nQ+/PzVnyEv5exEU3RYnbno0cxwd5z+KhrtjxGu6yoabsh9qT+/dOKqqrznL/7ZhUX dlZ2TPtneotj+ch3RFH6G1hPCHYA1/5Kx5uqMJ3VjxWwFkg3AUsmqGt806rSzGUjufbJsh6N K3M/Jfex3bG8Ll2bev+oQ+LLDoQC4w3TH9vwkXv9cs2e106gLruJdzX1yNO2dw/tzQqWaJ9p Ora77WPNTJeEVE9K+X+/HilhmwV/ps40KUYze3nLva+W8ajUJhFJ6rGlIEf1I1l8Nbhz09SN sf3TrNxVVlJWg+X1fa59sWvmvG5VkcCS7J+vQZblfuPhXbLUkovLR3/KBoqWUWXGG74/tuIj Pv1Ge5bjRpm63GoAenxtOd7V0GOATTQ+Rls9bT622/bxS1KPZDXm/wEmUb6p0+ieSJbLd7X4 G0ZZJi0OEi94jIA67i1kQSBYTsSbYGRib4AuxaoGgo1L4C+ugroBM7cEiMW4VqN8s0+xUosQ bA6opooQGEKAwI9A6SqqBzXiTT82CF32o0v0pEkClyTVlXhSe1Pl99o89kC+xJAQBECgVQKI N61qzpYbuuxHl+hJqwSuX0u12guv3Agy3akUHQIBsQQQb8SqJlgw6DIYGW4AgQIE+k1S969b 5Z+9WkCreCQIgEBdAog3dXmXfBt0WZIung0CQQT6TFLXDfDYgxpkCWgMAiAQRwDxJo6bxLug S4lagUwDE+gvScVG94HNGV0HgcoEEG8qAy/4OuiyIFw8GgTiCHSXpPrOB1zO8Mx2Zmcca9wF AiDQGQHEm34UCl32o0v0pB8C3SWp/agGPQEBEAABEAABEACBcQkgSR1X9+g5CIAACIAACIAA CIglgCRVrGogGAiAAAiAAAiAAAiMSwBJ6ri6R89BAARAAARAAARAQCyB/wXEUV+DVs4fAAAA AElFTkSuQmCC</item> <item item-id="520">iVBORw0KGgoAAAANSUhEUgAAAXkAAAAdCAYAAABPERzFAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZcSURBVHhe7Z3tla0qDIanrl2Q9ViN zViMAyrKR2KCEhTNXeus+0MHyEN4CQHcf5P+pwSUgBJQAq8l8Pdayz5k2DgM0/ghe9XUNxEY p2FQ75XsURV5Sbo1yh77qet1kNRArXXIEBj7blIXlmFrS1WRl2NbpeSh7zWKr0JaK5EjME59 P8gV//GSVeSbdoDBDI4PR/FmFfP7+5v+1n+d6kSz3jyaYEW7T6b7VORluNYpdeg/vMwdps6I +ybsQ2fE/vdhHnVcTqwW0386ScvQVZGX4Vql1KHrvhv9WFH/+akqs+T/eaJfpQe0knIEzKSt Kl8Op1eSirwI1hqFWlH7sMgniKPIvkYXaB0FCZj+CybtgkV/vCgV+WYdQAeF33Vj/4si+2Y7 9qMN16BFquNV5KXISpdrNx11eTtTngX+T1c10i4nXf7Q6Z6KBGMVeQmqNcq0OWkV+VXgVRxq uJx0HUOneyoSjG8R+XH83rG/4ja/XOQ5vDSC50kChyWvJNm3rMj/XnQk+Cncj0V+PpbmlsHI xpY7q4xEleHsvJyA2DvSlnljFBbYV86Ba9g8C9xLIvlTvGa/u9F3yrlL0ZJOsSzagvOFVRH5 hsc8SJZhz0WRPz7RkApRLPJzQnX63bWrzgCU67K1bLb1vCHqOcvLCoK7BOX//yXzXq7b7XsT AYCHjTfCqio+3fCYLyTyi2gvg8ZESeabEngkTx1Zs8/9zbDF4bYB6TljlRl8JnRkH/DcXDb6 ZW3o1bMZHRDRLVDLW074Ip4P5nVSNYMbtcqSVOlLvGRE/j1jfqFP2ZP2kRfJQ6kUK8pQuoa+ eAKnE4DIYm53fLElbuhi2LXIlbKPek7LRFmbj+uD60on3iXilTh50havjSb7ZqWyXDSFexP1 Oq/yIk/5KPX8WWPepD2AdDc9vneRh5YxSE7eLZXxCBER86SRDmKF3DxlH/Ac3dibo+VYOCvb zN14je0q9b0XDq/5Hbd6u5nX5mpc0QIGOLbUB/2BFgh/4okn4sT37mLJFnkOLy8KBVK0xVf0 Jcb8Xdwh96HsiSP9lfEm8uBlksB59w6y4n4cIWKpnGMh5KQVsFzsLCYHBVD2Uc/DAQnNnnI2 o7k41F5/SRevxrzNygublySvSPjSlUdlXqdFHmO5FriJwPnV0qNZZos8xitc/UMr0dJHKCmu 1PN5v9AL5u72YbK9axDtZMG1N1vkw5MxmLBikXlutJsRDZHpQuBGpNeJNEA3sRmRBHPPhW1e I25Ux8HLUPsA2/rJn/2B6B8dWET9HF5BlyTRbmFeB/1/LjAgWM6ZjHXvitqLaIylDK9ovwpY /RxdhjrTJspHqeeJS0n78GU/gRmfStfEUW0qRHJR2pnOdrnFJDcdC2CcgslansvZDOuXqS9e 8kJ7G4enCS6kyVhLx73ld0dB2Tn5HJYC6Zp5nwrZS6nKkhvJU7ySU3Sx7wl81oDyUep5NPCq cj+TrkEYJxuve8rDRTLH5+ThvHVuxH5BbNjB/nq6Z/827XqSyNlHPfcqekJOfl6aRSkCNP8O nSfH+ogLlMlr2wOI23CTj+SIli+yqB2G11WRX5fZ+Nhb++QOlqV4JZMAIPJd6R/AoXyUen4j d3AYEu1FGEfn5P1jjtQRStcK9zeh4MCnP9x3RqI0DxQFBEaWOF1jCzyyL35ujh52SDSFDOqy NtNiCy1vw5WO7RNohSHB84DXtiEUCn1tXm5Fx9n7se/yWJYQ+Qzfq82SK/IULzKSNz7J7Rh6 aPgRmXd0O9a0B3NHbTzQMDqSzyLHeJkfnRffVWe0jvVKVrpmlgX2Dd4iNmcMwM1eKtfPAoO8 dJgaWkQzHMeVeV2x7ehvL0fyQOGvY0nk5A3DR/wCYNPcqZy8wADAIrWgqjtvvFI2Z4v8ulKh IpJiNmf+/J+kwC+h755HJpfnC/zmfWQxIvPSHOV4b2QZpufifn/Mz/817cMwY+EPlFGXpviR HGNYlH/lhMi7lBCu82Vtzvkh72X/JP0cADUnscFGvML6sO/MNO4jNUTeTYb+bXTwG39PZ+kd r4x/1esRYXw0uTbJPWUsLPJsedAXzxJ4yjL3bPv175TAp3+rWL77VeTlGYvXkBPNizdGK1AC WQTM6uMpUXxWu9t5WUW+nb7SlioBJaAEsgmoyGcj0z9QAkpACbRD4B/YLuMty3wd1AAAAABJ RU5ErkJggg==</item> <item item-id="521">iVBORw0KGgoAAAANSUhEUgAAAZcAAAAqCAYAAAB/RRYSAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfcSURBVHhe7Z3rla0gDIVPXVOQ9ViN zViMAz55BAMICLjvWvfP6FH8CNlJAP0t+AcCIAACIAACiQn8El8PlwMBEAABEACBBeICIwAB EAABEEhOAOKSHCkuCAIgAAIgAHGJsIHh91t+xP9hirhYAz+Zp2mZG2gnmggCNoF5mSZYbw7L mAbaD/52RwhxiaA+/I3fcbbzuAwjBmeEmeAnlRCYx2GBCRfqDOEv/iAu8bC/JC7T+CEhjTcJ /LJqAvMyjp2WFWrjDnFhemQaRNlrWFzm+B1xmcSg/HDWIgeKUv7stexZm3/K0Z5ZBEmQlxxk jWtCXCAuXmY2jR8uJ0yLnFs7BWUNOP4+zMPLYuo9SfQfgoMC3QNxMSFvjmSbpBcORNRokbks yzS4s7cCZvruLaSYaHNrorTyp4jNu63D3YMJiDEOdQmmFvwDiIuKbHMaf2f55xCar5fFJJcP i4s1qoxMJnjU4QfvEhD996WFOG/Bhrgo5Kn5Fcy5CEAYjFoIMv4Zmcxboxf3jSOAYCmOW+Cv IC4XsJlyGutE7sczF8VIAs2ru9NXG7mxh+4euNMHmgbMmWXvWogLxIU1Mpm9oUa9bMICp8Ta SwMnyE1/MOnMHVWruMzzC8teOymLJWfXubj48ELG4ueIfFj6XSnvWVJcrrnVvPcqcfUqudPi Yk5s3+HhVs5wx+VKJDWKoCbVS0WL272vKD3hhD4zdxNrgCXYrY61kzAvitdaGi1lg7GWUP53 USzLN5O8YxFxaXjMO6CFlYSficvujNU9AFqruOPLVmrQHBchbLKRxVZ3XG1OuhQ5g6GVYifv 00OUF8vL9d6kTvQ2yt3Hsoy6WYYfFbHphsf8q+KylQlElC+WqA7Emn/u+NZ4mRmok+WqY1cz iC27qdHBuZc0cvtljONik+LdwgG7s8uxcw5EY9e6tId8DrcdXlG+ECzDsD3klUdc+hnzl3/2 3/NndWBs5nK9QoEue3HHZUPocoujJGdtZDMfZevY0gJEiwu3X4Y7zo+ztOzu70ffy97rsUX4 OfbDtMXrpOm9Exwst1jTd+f8c17pxYWzUe54XWNeeOfgPX/JxOW6EDen4jrumtdx/V0aVH11 b1JcuIUBxHHnhDG5FLowO98JffO5Ur2Py4fXes4RZZkCV5jXMTi8nSXhWFwlFWZpPOuiamaZ lJeSRRAl9eSVkBRjviYb5p7nrDztY46atojNXJ6Li2uX870j8Cm7OL8tIJ2PzwXYEXqdQIkL t1+GO65GvpvDNJ1lPnbOWquTm1oKUNtqBAMPJsVZXobDtTOtwryixcXFcr/g6Xzis8OqWQaL i4uXHtBSmXfqpcgcV+64KONoZfG3bZht757ZHG6BrG68Ky5UJhIaZQYoQYZTc4nLJpCCDzkX 48riItntGYZTP8hNlNfAPkuRarRDZDvOAc3cnzd0o2Ot6D4xrxs7igtsGJZrxejOHpQGNcYy Dy9jPpLI9u42Uca0ibNR7jhZUtKCysQ2/NhOeMarYNrfcymxFDlfNBljHLJzqS9Kuv52GEOq spisN5PzFWQZJB872m8Sr3+h5sBuV8c8KGt6pehKLm2tQCzN68o0vBLlEJYZymJO2xOPUTSC 9s1cOF7W6lLT9jK8/oWzUe64FR+Zq2gL2zDXXpbxajxviUtolP3AOWXIWG7FZU8Z3ftlAvbT 1DDnsj6PUYpxzq+EZKO+HePJ65zjMdvwkq2FOEs1SnU+xz5gHy2aqJhlKl6W+BDiMqT+8B3H lTu+j4VqbJhpL8uYERcyardCsdgJfddqsf3v5vwIFa1ovqmm1WKyYdx+GX3Z9TCEZC6p2fFO nioj6BmiFB8qukrVL5681kexAxHXRtBzybxq16yt8by2ZviufjrKXuqCBEek+jRzWRtWKctU vNioWrD1Sik9+/k8LdGYr8aGb56HZewUl1Cosef7ZyPJV3fENtn4XbJXdweVxWgH6nqkJOwC Bv411ravN2YZx7clOPOtDy/wSmRf1mWSiItx1e5YMvMBgmEVXzpumnv0nEuukWFf1xVRamda Klmufdyd3hMXd/aSh13gZ465RQIcWO64uXhAWwpJBy2t29qWdIRutuVAbhnWOd/nU+5Ym+Hx SqDXxq1eBjXbWs1njpvmfs/4tFV7Qt/DIJOdwpXV/LObZE1iLqS+JO5NcTnKG+7MIC27SXx7 3Pd1ome5SfnufNId/EbUp9/PtR+qPVt7I3Ppg6WyTNn8imgVaYsh6odgq1/BJQdbTTbsYrxb LT2hX8pNN3AfzYnZE8PJxKUBFDJqrmVctoALbayQgFjaf35otsLmddUkiAvTnRAXDVBI9tLV QMHDdEBABIeIjsr1I8TFZK3u+hXllfGoR+srbI5lxvJ9ZtSquiyT2OXMAncCARAAAW8Czr2F 7865eLe/wIlm2esQmmOPR8jm0gLNxS1AAARAoAECvwbamLeJ3K5U602heZuDq4MACIBADwQ+ Ly78+3+QufRg6HgGEACBsgQgLnLtvvnqaG1fAcSlrEnibiAAAj0Q+Ly4kC/wY1aL9dDxeAYQ AAEQyEkA4uL5wsnSX7vM2em4NgiAAAjkJgBxWQnfv3yOfNFh7p7B9UEABECgYQIQl4Y7D00H ARAAgVoJQFxq7Rm0CwRAAAQaJgBxabjz0HQQAAEQqJUAxKXWnkG7QAAEQKBhAv9I00MYrbmK aAAAAABJRU5ErkJggg==</item> <item item-id="522">iVBORw0KGgoAAAANSUhEUgAAAtEAAAAqCAYAAAB1Awf0AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAyaSURBVHhe7Z3ttaQoEIY7gc1jYrhZ TBIdx24GRuOvm0kH44q2ighWgVB8vXPOnj0z2gIPBfValPCa8AcEQAAEQAAEQAAEQAAEQMCL wMvrbtwMAiAAAiDQNoHxPb1e72lsu5VoHQgUTOAzDT+v6Wf4FFxHVE0RgIiGHYAACIAACMwE Vsf9ekM+wxxAoAQCn+EHL7QldMRNHSCiC+8gVA8EQAAE0hNQAvpnQuArPWmUAAJ+BMbpjZUh P2SCd0NEC8KupajPOM4xKfwBgRoJfKZxhPX69tz4fk0IQPtSw/0gIETgM0w/PwP8shBun2Ig on1o9XDvPFjfCEf10NPNtvEzvBFR9eldlQMNBe1DDPeCgDgBldqBHGlx7GSBENEkor5uGAe8 7fbV4y22dk5NGJDXy+tZlcaBjwh5rHAXCOQkgLSOnPRdZUNE28h0+3X6OIuPjpfC1ZLZa/6w 6vsfgnMlTlm8On3ml0HIaAYrZfMwdAYo4Vu69UHgfEdARaNFhivsj22IENEQ0QeBceh4GVy9 5Wt5ocskgg+t2DNJaTfO/SfibEprt2d9xJyyZ726vx0iRsYEauMs9dJbGxcZa7GWAhG9YFkF 1BqBnIXTnFPZ4z6p47vjZV01aZw+3Fi3+4IQyzg7PSp6HtPoPIIgUjkemVjUH8MHRcXpfFjt nFON2dq5yFiPrRSI6O/eqEfC/mZMvQnKVIMzn3E/K9mITD97GH4tTmDuP3zNTlAHI3GztBZo HqzRqw9K3RttcB7fsVdI2+CS2npcz4eIti1bdLmUAYeqD5Jlk3uIsFzzUoRy8VJIQpRaGiYr 0vkN8EEyBtAI5+gpWI1wkTGiayndi2irWFo+MOssEg2Huo8OnBKVazqKW278iE3c+mV/GsZ8 9i5QFYAPkumGVjjHFtGtcJGxIojoCwEY0BcJ9opdQKwCOvZyWa7h3Xe5OECE6H/sCV/EAIEP kumGVjhDRMvYC7eUoiLRn0+G7dUqXMpIwqlxEc1hhgg0b9rgsOQ9Ke1dSkS3dDhBdO4Q0UEG GL0fCvRB0dsYRDryjxrhHFtETwVyoXq+JPvURLSZXH7XDGrnAur6vB/G6ZhZW2K7VDRwLfs4 sSvwo45EedRSnBYB2chuBkHMlhQeKZujpohyrgexLKT6IiK65nFPimj9i321c1FnKW6zHcvY fyQfFDjuZNoYWLmoP2uDc3QR/d1coXcNZDU1xvweIKK/hqjvqXsqnbr+XTI/CTaLgBc9K/6o c/AWdwzYvvPBVdim49TKkaKhzJQj2Q5Z0f/fyHuFr+kdqS1FjVO/ZojYdM3j/lZErwJaj+T3 tlITOpf4Wel2dwQfFFCwbBsDKhj9J/Vzji+iFeQIXGqeC112xmiTl4heJ9FZbMzHxL4te+hS 19d6mkdX6p2nR4TXKEC5y7HUvorG9fkgE7+PFWU5OQWHcYqf6v90wrIuZt7zO1j6IXvIK42I bmjc//6d/vz9tfeJ1Xmotj9YrXnYn37G0/hcsvtS7XyDwn2Ms/9E7cLPig7NUg7n37//TH/+ C2lH7N80NBfuaKg2XRl6iujtKF17usZx1K47ncOeNuBIJbkcgGE24BotiW0m9udR+ypS1+la xuUUWt51r+Q1YptiWbc+Zqsf456MB5bSvNgimt2HlI1S10PHYej8SJRHpnMYv3+U8gT7p3vf 547CbY09piTtwofvdm95nNNEon3ZUFyo63R50hpoi8b7nhniJaKPZlM5z67rrrxr178/jHzQ /RR2B5WIb7nuXAq1bqeXgRP3w0KzbUYUIThKzWG23LNFBEwhn4GZl4i2mJprqejpFosls2Q7 Vw4vLWpg2dObvZLFrVNr495LRJv5pGFT5+lXmEvCIZY8xkudF0NoF8i5CBEdYy4szZ9TbVqj QMfp1l+fIyyiXafA3QsgjjBz5bQuoovzAI8BRm2VQ13fi9qNyBSE6Tg5m3krol0fGBkvOQ8i VSQzQ1he31IzMAtyFsTHWk6b4Bto0Sy5gvUYJMektbxAbWPl/KJui1qwt7hj1oniSl0vbtyz RXRMAY25hD+S3XeStpZ7vmSOqaOF6efFEO4lci5BRFNcqOvzXrKn9NYS/DlZ52/e+CYntzpn ENG2nDrfKGLIcIj3Gwo2dX3VXkoQzCyseWyuCPwDTt+IsfN9wnrwwjGx7Usc+tuaRXg7hQtR PofZqQcv0doEzBwmE/bCRrAkbUKrTGUs0/AyvhmwRO/vDlsJqRNlo9R18XHPGPPvgdhW9PsM 8tsUqiwtgtPdXEKy8fdNHFuTni9DxpQe2bPaRcR50Z9ywEE4An7pTkSH9YE/Gcr+qOuXEgW4 rcLd/U0XXWe7z8kgom2NyBeJtu3I4Pq3cyTJiB6b4tLMG/Zaus8RVZ3LNJfEbTnprnbsSx2B Hx6xllKOoVfCm+vaZGZOtA/LBOkc1r1AvzhFWcbiddm9x3yJUnMKM3ffp05349rHhq19LDzu qUj00p7A8Wx6SR/772wuSeKDDP6iY7zQebEVzrEj0Um4+MyFs72I26ftvYGqs8PnCIto30hq oTnR5L6K5vLnFoW0OPVScqKXNt28GCij2/OffVYTuG+5TGbOOmSyrVABdsfyqYgm7XNXz8ub +VUoJWQZi9dFlFlE9HuYSTD+cOtEcmXa8D6WMuf134noB6lZVuLO/GfMJQwLtdzCtLVc8yV3 TPnYxeN5MYR0eZxji+gQKvuWePvStqlxyuNGt5Oos8PnXES09a3kkgMQ+mGh7Y1jbdryJmLm L9uiFycSuXbnWGq8HtKyiZBBRW10p6hfn6Pvb/O6LmSu4tqW4xnOiTafNXhwdWjn5SFVT1u0 LFY/MJk5IlU5mLEj0QtffS9qF8vtZYUZRXV2baEsuc6V4kVGomeb5H4L4VGnpsb9zRZ3+3y8 f8h72C4Xq2maPPvveC7hTdPaXYWO8dWZsLdC5dlFrHnRG7Lh6298uZBfKmeLu0gaSIgbr+dv 2kRHonlFPL+LH11mf13/vFLpn+CVzrHMQuw9WaNx8pj4dmAJ8v32Z9+mjpiniWVilsJyUkRc mmNJ5ETPDIcxRed4PrPkcU+lc3g29fHtmEueIWxujBs4UsyLIcQzcy4jEh0ALjO3gBobPyFy ol//akHp+acp/+6KGJ5qfFH9zxFkfYK3M3VH7dNxGqeB+tBILzyl01s0sRa9J5fv14o1YVsp nEVzLM8pJ2a/H3vWZx31Zxu+jB37aoOYDZckojGXPDfU5sZ4BSI6g19qQkRn4PZ8gNl9zqKc lWDWRbPE31UqhHtZkB+FfQ6G94TPh5Vd6X5YgIjelo4lOY0DM490E6wRl3sv8Axm5yVm1wdP VKpRebZ1aXdqEX3pu1pZattinT6KnW2giDC08SLIFNFi474gEe1KHwlNHWlxLiF9UOvzZYp5 0eKxS+ecS0STXCgp1YR9Xn3OLqI3MS35f4p5tuunznZ9ZJWtdmkLLmUZPG0r8fSWCczbRvos qLSM4rZtBYnobvvA1fCefZCkMVTIWUREV8hF0mz0sl7SEWgzTSRXw2/L7dyAfKLRRfYfKtUx gYKi0KX3gorsRQv1lt7YyurXuQ8S660KOUNEi1kHq6CTiNaj0NuvU+ZGs2oocpN+WtK8tL3v tHH++jn2yYciTUMhIAACIGAjABFdkF3AB8l0Rv2c04jo+rnI2M+1lPPXhLlqkbVcM13Dvt8h eWJX1jagcBAAARDwJWA5YMn3Ebg/AgH4oAgQGY9og/PdSawMCJZb2uAS1vbnv4KItn3wV+ES z3NTwBNAAAT6IuBxqmNfYGRbCx8kw7sJzgnGbBNcZEzIVkr3Ipo+L72zDwvz2SJKBgEQECaQ ZmlYuBGVFwcfJNOBTXBOkILVBBcZE7KWAhGtTko8bY81czptpQMRndE+UTQIgEBKAgmccsrq tvhsiBiZXm2Bc4qX3ha4yFiQvZTuRfTpQI+NEdI5ctokygYBEBAjkGB5WKzujRSE5XSZjqye c6KxWj0XGfNxlQIRPX134Ni3esKHhXlNEqWDAAiIElBOFFvdiSI/FwYfJAO/bs4qYpxmg4O6 ucjYjrsUiOiFjb6Vnb7F3QpuP00Ljia3vaJ8EACBBATG990JsgkKxCMNAvBBMiZRKWeVdmWm nUYFVimXqAzCHgYRHcYNvwIBEACBhggoJ+o6/r2hZqIpIFAdAbU6/p7G6urdR4UhovvoZ7QS BEAABAgCENIwERAoiwAEdFn9ca0NRHTpPYT6gQAIgIAYgW1ZF5EvMeQoCAQuBDAOazEKiOha egr1BAEQAAEQAAEQAAEQKIbA/3BzBigFejXFAAAAAElFTkSuQmCC</item> <item item-id="523">iVBORw0KGgoAAAANSUhEUgAAArUAAAAdCAYAAAC0cJTrAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAm+SURBVHhe7Z0L0qQqDIV7Xf+CXMcs wdW4mV6Mg89GCCa8Qc9U3bo1g63wEcIhRPzM+AMCIAACIAACIAACIAACnRP4dF5/VD+CwHea 5m/E7/FTEKhH4DtPE6y3Hn88GQRAAATaIwBR216flKnRd5yHEaKgDGw8JQeB7zjMMOEcZHFP EAABEOiTAERtn/0WXetpHBGljaaIG9Ql8J3HcapbBTwdBEAABECgGQIQtc10RcmKTEoMvDhK q6LUf5/P/Nn/G6CLShpf0md91eIM3ZcUKW4GAiAAAt0SgKjttusiKj6NL962neZBidlTyE6D Erd/L+YRYUct/FT1HxYlLXQE6gACIAAC9QlA1Nbvg+I1mIbhvdGtRcT+6akXagv7TxO5xXsD D4wjoBYpULVxCPFrEAABEHgIAYjah3SkvBmLiHuxqLVAGZFbOUhc2QQB1X+XRUoTlUIlQAAE QAAEKhCAqK0Ave4jIQJ0/t/xz4jc1u0dPN2XABZpvsRwPQiAAAg8lQBE7VN71tWu5SUpbNeu dFZB+0HUuvchMA3IiZb2IU49kZLCdSAQQgAnsoRQS/kbiNqUNHu415JTClG7C1qIoR5Mlqvj NCAnmmN0LOIw9CWkcA0IRBBQc+zfm08XikCX4qdNidrv98XHTDl6MzmTh4taCS9EaGWuQ8JS dqe8Vy2i9kmTSBbu+NiK2Aiz8Bc/Pf2FT2tPekJ+d5TwfOOHYSRc/EiHXa2J2u0tcNnkwL0x zpXP8zW6Yj57eXmnYhRtPebpZluaKw/riyJMVkH3kHBNkA2tZ9RWtK1A28j9syCWuSslvH8R UdvxmN+itNTX17aXJI/zmt+YilPN7ju3J+HQLHdZazxLLSK5dnPlgT3U8rgJELWbAF0cIa2N uPI9l/HyY0JQL+Kj1lvNnCFw5QGGYovNPEyW58gWLgGNKPiTUF7LYPxN4vgAw7EtfV3o5LG9 XOZRxKY7HvPK4xInnmyCVvcFb9vBCPUhSey4a3tKQiDtTZrjWeiFbK7dXHlAL7Q+brxE7eb0 lBBQR0INxNmeXPnGb3GmehT0J4LXe2tit0gE5qzTIXBUFE9FNa5RCz2iIShXHzf483oBqRwT pwAwvrLlXrQEjALrJwbPhnkFtRYs/bBF8sojap8z5lWY1g4QkJNd5A5ZZD/6GU1vPuRB9uTq qJr9z83ZxeeYRdfk2BH0tKPmuPiN8k0v3mkz+36eovb4JCWdXvD7ZKU7/YDe/nakPlgH5ZsN sKMNvsi2KIYesTggHsI7tpyvUVom98+jn2Wf1bpFNHOcDMDxbIvXWRvxl6vAclsnSr/0Fc9L LGrFdeJslCtvzIalefRRqTnx/chTO67ojH/0HMOTyTaHiMdMS/3fhn2kf4GVa1dseUU7Ix/N tYeur5eo/d2Cy5l1lbvydl3/Hhk54PtonXwt8ab/W0C5cxtvnTRMoViYiXSCM9ttrMKD03IJ nhav9ZpjdVaZ12FDYudOGJ1rC4i0B4nR7te0zDIpL221TqQkiXd0pHV62JiX5dHvO2bBA1tg 92/1ISnsqZZPlI4Zym0V9HuXebwRvyj2S1KXH2BHLXKRNpfVZlv05BfJ3eeGwqLW9fWme2En 8bOuXEkzpcEESh6+r4mN2HI90rcJNVOk5WNCGs+tqHW9OGIsLiIiOhzPdatUY2RPyIV5BYta 5iWcc5IKj4Y3zdJ7MnTxui6QKYEmjogI68Rx5cpbG/N8JDuloIUPST3HVPWJwjHza3N9v8eO z0JzDD/uxPJuvZBrV2x5VTsjUHDtOXbZD314zA0VRC2VZ+IbrfQzhrurOXCx5etaYt3KV+0m 83pc0ehAJns0xLkQID++8HNE54sjZrTauKFTSDDP53hafWVFMxPzujGOsIUSw5K1B61CnbHM w8vINyei23cfXwipE2ejXHlrY/42UrvbGPvyKOdXtIjJ63xI5DiV2NPFTWX2iSFjRo+Ykf1f 0O+1wvNO1IYw5toVW1587o0cN9b7Wfu4qCBqqVMT6kVq2RB3bMhftxRyu7l05FE9z9zCpXKX XVtHZ8g/MAme42mMrO4itT4sM6QfkPa8My3KUhrh4XhZLzmZixrqzX7HSsWnTuaOik9KUmNj 3ilq1zYFjmMTMdePVpdEpJb15kO4+nLlNX2iz5ih5hXqvYzcfq8Rnj2kHzQzX1Aum+tHx9xQ WNT6Rh8jHJ84mGtuvdEviv1OZfAtNyNvtXNECRFgGs+Z++YTVZcC53ifCkylIewR7ss3OSrZ kI9z1x35HctY576/gOK2zYosU/GyxBIhaodRkRD8kdaJ5Sq04W3PsM08+ogUIpI0fMiNAXL2 wpU/YByzCz3B+D0v4Xhx5WV4itOixE3n2hVbXoaLuLmcH3bMDZaopc7wtA/rD31RjDqjdmvi 9rLQ9UivdRVxe1btJjDZrTOW4m4Mh4iyjsHwKVeR6MHx8QaHiHFFUsKYsI1VWG2xet0OWYQ3 FUHOwfuG19oUe2FTmtdWjcFxLrPNW8bSJXj4/rteodtmQyxT8WIjtco+JEn3nn145Gtt/pA6 xk/IvYUxbzHU/O3l4wt354/zdimz+7f6kERzSGmfmGocJxW1q2I4z8uPGp/ZeC71S7QLchl6 Pu2O8FvZuPB+xD2/Ge3hI7W+Dwu9Xh59TR6+D62y7+9cW/fOyFxhJh6O6mw6m1PnC0m7/jbV wfz6HC10XU9v2oaiI7VEqx/HksmpVQzHKcL2Uv206THvkaKRigd1H/gQOd3HjWOt6Tn8Hke2 OE815qQ7SFzdc5YX55KyMfTccEZqP/+0oK16bs6/3764cLSZiC6kxJH1Xt4TnDuCfV2kpfrK 2qQ+MCHasN0en3MyWjWqFtlmt5uPKgk+99u6DeVw7o9jeU03MX3H72zsrCOav3njY776t+jh Q3gb0q943DhuSNSWmGOUvQ8+c6yfdaS7ums7o+eGVckuAlYXsSX+vnzwwL1rKI9cpuvdhHcK mODM4yns2qRlMo3CPMRV0+6pIcZWpXTXlyVr8Lo+z7WFw6XApOXFtiHkgtyi1uq7XllqxwRd 0pGUDTQRpjUWZrot3PZxSRv2XMiG2PPNb+BDPIE+2Sfm8Hsc3sI8qy8iOR5HeWEu0mrJr7Pn hlPUHuK25P/lFceVyQm0sm2bvGG44WsIqCPyegiGtNIfzUS1WwGCeoBAFgJ1F5BZmtTRTT+l I7RmWkNHrB5XVZ9o7eMajwZ1TqChKG03JInj/LqpOyoKAj0QaCR/vQdUmep4EbV6lPZ4Xs7c 2kxtwm1BAARAAARAAARAAAReRuD6dtjLGo/mggAIgAAIgAAIgAAIPIPAf1W2akv3pwkiAAAA AElFTkSuQmCC</item> <item item-id="524">iVBORw0KGgoAAAANSUhEUgAAAEcAAAASCAYAAAAJ88NbAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGCSURBVFhH7ZfbDcMgDEWZi4GYh2my DMO4vBLADwppg/hIpUhVhLE5vraJgvcnElAvG5nAC6ejjq3gOOe2EnIFx4HVCrQdCTCtNQc+ ywFGKVDXY4AsySaHqe2x77CPhqFQ/oIz+T/jPhncgFM2auEkMDVcZ7V3SAHF940xkxhnQWsL I6n6jU8+zxVPOccUnHRYT1gbMFg5h2FAcAoI72pgbdZqaEFdY0r+AU9IAlZpOItPzCQcm8tE KisUJOOYqibYCCWdg5TVQ9U6jYnzEeP2gMpm/+g5dWhYrh0IEhyfiqd7T0wWLt+c1IfgcGAC nJRp2silxAwqNOzsS7AMAvSfOryyuBZOpC71CkkJfTiP9p1lZRWbcm8E76ccyP2luXLcaci4 P7XTmOn6pDvOKuT5nnMOgzIlO6OcrVtSs7QXXGO+uQSm2q/N+WnlQzyvCfXiFdMqJvDrJXB6 CN40GFfDknvObt9WknqaOJfdkLf7Kv82osfVdVO+Q2ZbfZUPRbxw0QdhUjwEQofqEgAAAABJ RU5ErkJggg==</item> <item item-id="525">iVBORw0KGgoAAAANSUhEUgAAAIsAAAAVCAYAAAB2dR3MAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKOSURBVGhD7ZoNcoQgDIU5lwfiHD2C p/EyHobyI0oIMUHB1Rl2pu3YdQE/Xl4SWmXGaxAQElDC+8Ztg4AZYhkiEBNoLpZ1XcWTjxsx gTfzS8SyGK2UUYUvvZS3ddHKHO+tZp6UmeYoFjfeZPbLoQxE4Gv8kFiQMBZtBYQ3fZ0no8DN uVgsm3U20zSb4TUFB/kgP14sdquhY7gHd66h7ff4CvfsrpSIyEXP4TY97SVbQ1eRpi5sA2mx QQF4cM/5Bn71vMRiSU0Eu4qDUxKV05V1ptONC+DvCQrP7dfYRTCldOsCJQ2ec7G05ZfMZVlT JQNc0TVevFhQGiJEQYnFu1Dn2sWvMd+ssE4Ez6XGio0tFBpoLr/56Zh+jsNp4Ro68pOKRcQr cc8t6AQFbr7RYRCs4HMIEsW7lFUqsP3vTgYIm1X+LHAsD6nOBXKxFB0LCDALDv9eyrAfP+fi Es48Lxho0Ql5Z8GhRThFbcRweV3+viTlBCEK6ovNFSjorFicILMPw66Hctpr/K4EGM8rq6m2 YLgolnc5i6+LpKmlQxo6nz8Xx++dheWFutjwDBfEUhsBD9QsW70EClqi5fftvFRYRXPbuojd PWJuLxW4JVYd+QnTUGxGSF6oKbksFnd8kp+xBKp7Lkxt+JFu6OjGjtqFKKpviwXPpXXJ2egu ry2/K90Qw4t3FnmNEM5ZZB3Oc+cswvU3EUs2V54Gmbrn/fyYmkX9wT8TcddUdACMbzzB7S0W ViiJC3Oty8/4wVQJuiEnjFQckuuY9+jnlbuP0BPa3NZZLFRbSh01vJcfcc4ShVL7s83ujVG+ QkDVOkqenr7yoGOd9wkAsbjhuFpliOU+9K+O0Pyfn74KYqybJ/APjmj4CMa3LU4AAAAASUVO RK5CYII=</item> <item item-id="526">iVBORw0KGgoAAAANSUhEUgAAAJAAAAAtCAYAAABBEuITAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQHSURBVHhe7VqBsYMgDHUuB3Iep3EZ h+EDyhdCIsGIlTa9612vJ0Iej+QlYTD6UQQECAyCsTpUETBKICWBCAElkAg+HawEUg6IEFAC ieDTwUog5YAIgXMCLZMZhsksoil08DcjoAT65t19wDZAoMVMw2C9jvuOZp7VAz2wB11PERFo NfM4mHFed4MCmTSEdb3DjRd/EAjTO6qBGsPf/+v/CbTOoxnG2QT/401bZzO+VEQvM1hr/3vx cgtshJrzdKpLAjmyT5oaPk84G5EOibNN318Is15x+tdpz2PYcsZ1Tfx/y6kuv3u1iVUMfyai h/+j/U4RDQ24jMSHBy7TEHlRLIGxWfAb+QQOMEjjN0Pem8a79fWfFXq9mcRgSKBdf0JN+mHS b9NbxxKtq69WhhP1KKgx8e0BaAo8qJUttYmGGx8fArD2iFjOS0HNcQ+HJHi5sYd37ItArqyQ qef89KIZ5S3Iy2tluffx6S6owYVSnLWXexgsNrzEQo5XHH67IhAKPlqr2kDKuVbrLQDrkLn8 mmKP4ksfQQbANRBEoQjkwoXrCHC0EJdALLwiL4sQOPaM3REIuvRtA48Ni38nz3rg3HPXNVS5 VgY23JMpJsC2MbmnOCcWy7MwCVTGKz182KF1/wVsuyMQDGGccOVOjO/tlfTK7j2oDSsSCAmx abZFeZRaz7TLWW8X8SWMKOMFNBpSTEYJRC6EWuCD/4dAwg9hhOCRVtar2z2QMJ/3QKbUnsoS lZz03YYwbzwhohOx6UFCtIOUQLtW4dXKMK9S62kaaKBgQ6xtYrzc70T34AQK29BVCPO9OU4a TwlPMYGOjCl47GnCrrxsngZLwfEszLUddy0XH5BsM09SSaYG2t4A0vgYr6IH6jmN94ZfF8FN msMwJBR0lC/EMTOrdnWgs5pGSQPZPZiORnZfHsgXaNNeTFV55xYPdJLaF8mzn/+sEo1YQXrb KosvPJyG2cxjnrcyLsx30xB+I3Gx1wo4hRFiUwRpPGpq5IGoFJlK2+n0nO+lboIfnorjZiqQ DCfNVGQpJcV+cfXSRuJq7wLpbY6L4IuG5Yf38Uv19zQS04aeCBMdzEQA15+Vl+q/oZHIxEsf YyFQcan+xY1Elqn6UAsE+DcSOY3EsEI022lYRGuBjL6ThQD7TnSxDxSmI5uWDcv4LFP1oRYI 3Eqg86blvY3EFmDoO+sREIUwsjGHhjD1QPXb8/4RFZfq9/4J59K9aqD37/xNK6y8VJ824fBG ol0Z0TJo1ki8CQx9TT0Csl4YVakme078Ev1nGon1AP76iIcJtF9bKN3R/Fgj8dfpUG//4wQK d1He20isB/GXR8gI9MvIqe0eASWQEkGEgBJIBJ8OVgIpB0QI/AEc9U0X9AzXQgAAAABJRU5E rkJggg==</item> <item item-id="527">iVBORw0KGgoAAAANSUhEUgAAAqwAAAAdCAYAAABvyz7JAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAmVSURBVHhe7Z3dkawsEIYnrsnhpGE0 e2E0xrG3WxPB3m0Gc8C/QQS7+W/13aqv6qujg/DQ3bw0iI83/kAABEAABEAABEAABEBAMIGH 4LqhagkEXsPwfiX8Hj8FgXYEXu9hgPW2448ngwAIgIA8AhCs8vokvUav/t31GPDTQaKEVgRe ffeGCbeij+eCAAiAgDwCEKzy+iS5RkPfI7uaTBEFtCXwevf90LYKeDoIgAAIgIAYAhCsYroi V0UGNdDfOLuqssvPx+P9mP/roHlyGVb1cl5q4oXuq44dDwQBEAABkQQgWEV2S0Klhv7GS6nD u1NCdRWpQ6eE6/PGPBLsSMJPVf9hwiGhI1AHEAABEGhPAIK1fR9krcHQdffNSmmB+jS3Q6hl 5achYLOSRmHlCagJCBRrecx4AgiAAAicgAAE6wk6iV9FLdBuLFh3oKyMKx8k7hRBQPXfZgIi olKoBAiAAAiAQAMCEKwNoJd7JAZ4k+2rf1oZ13LkUXIJApiAlaCKMkEABEDgjAQgWM/Ya746 6xeOsIQ60hnF6gPZ5rOb99BhDzK3D3E6CJcU7gOBGAI4uSSGWs7fQLDmpNm6LL2HE4J1FqsQ Oq3NMcfzhw57kDkc9QQNrs8hhXtAIIGAGmOfdz6FJwFdjp9WE6yv142PWvL0VHYmFxesHF7I rPLCAoclr6Syd2nBeqUBogh3fCiEbYRF+LOfnv/Gq7UnP6GwEjk87/hREw6XMNJxdxcRrNus yPSm9mfQ0S/CNMx+jUcdHSwVU9fjOL9rMBnF2kXSLFG8xjNYG9pWpG2U/lkUy9KVYpZfRbCe 2Oc1RvcAOr1wuJxHfMftMc3s/uT2xHTNerdJ41lrgki1m7oe2UOS/Sa7YN2LJluwjhH2/Wz1 9i/VydT1CCOoxUQ/5wrZqFhe2tE+AzQ+HjCJGXsSI8wfCX+qYtMn9nnVw46TQSaxasaCu608 NLX7U9tTxABX+ifieFZ6uZlqN3U9ol+k+01mwaoDpZm9nAbHVUQY2b8qmZOxw8xMg8q+qW+U b7MNgdfVwfzPoJd56jHxDu7W1590f5RLxFo8BfOK8OdpsrXJXIHlIcdEXmUE63V83jn5dw5k iStbif0Y5mtniyEXsidfR7Xsf2rMrj7GaF1TYiUv0I7EcQnzclqb7cvLKljdS9KOjM6oI+1D 3u3K7bMEoTim7IO9HUEL6EVUp16na5SXyfHz3M/an0U6ZSJLvEFP8ZTFa60N+4tKYDnNAblf oErnxRas7DpRNkpdF2bD3H3rSdtl0vuRprbccTL+yWMMTabYGML2GUn9L8M+8r8MSrUr9XpD O3M+mmqPu76rYP3+/nYup359fe1/OQY/W/B4hOnOoZfiEmf8NP9JFNv1NP8t4rp3aU0CE+7g Zbfbmj1HZ18dPHe8xnuWrLsQG2IHbofR+ZZlnPbAMdr5Hskss/IysgqObULslRhunS7m87x9 6/NKV7RjM+z+rjEkhz21iolcn3GFrYpxbzOOC4mL7LjEDfkRdiSRC7e5pDabMiOfffjz2DAK 1r+/v1FEaNGq//v379/6/7+/v9s6rM5liw3fV4WOhSwnhvr2Jo7C56AA58HxhpBIvW5m6CYR Vo+J0zAOBavvJQxr4pCQiaF4TsvpH0b7wbacDR06UnDgJl5o8foI252nvae2gDP5tWSZjdf2 07ku8cXOZDDrRHGlrkvzeToDnVOsIobYHkzZC3W9aUxk+synze3jnhSetN/xY72+k2pX6vWm duZAQbVnWR1f5N0yNqyCVYvW5U+LL/ekSosytXfDuWfElzENzbyGdfTR3RSU1OvjHGBcXq/E ZM5ieDW688MBnyCzvoRhZ5mtAr0igXg+xXPXV7ssZD0bipsEESxJezAInIxlGV7W/m5HVvro wwExdaJslLouzecPM6yzjZEvYlJxxch03C6GJPopx542cbFwTIzxGTPT5ez/inFPCs8jwRrD mGpX6vXqY2+i30w2ZyQAZ7/YKdOfn58x23r451zuLJcdizGAsf4F0uzOMqcpkmObRDkm7v5R z7OzcpqB69+8e1gTtmpQvK1Kny7DGsKywJYAr+0tM/TNxKOg7XEzMxSv3Wkhtu0FfJo1pE4p 24RMGxbg817BOvpiphdDqH7cBaMbxRAq5lHXW8bEEJ/hjiGl454QnmfYEiBmvHBnP4+3a3rG hp0yXfayhgvW0ExqQlBjJ2Ht5bAlQ7Z96eqzrSD0up0xa70n0zHA2w6+7jVzDWa+PuQCp3jP 5Xjr0MiGQgL3btY3Z9jt72KkBu5577ffNhuyzMVrJ4QcgrXrFQnGH7dOJFemDXsnqZVt2LUN KGFbj5M0YsiBAVL2Ql2/gB+TkziG/663ULyo63V4srcqsZtOtSv1eh0u7OZScdgzNmTMsLrO fJyqP714Y+03dc3aN62dxCO5nEUSmjt63GPqOtYq5Lo6wqjzfHjAI1B8GZA4JmRj1aRqL0S3 GWotql3ZtxK8D3iNTdlPWmrzmqrRsY/54rEcjT7w+DNX35q2KYhlLl5khlXZB2eTe2AfLvuj pn3nVEwQ7vM7hka8tY5fSznOjmf3d40hmcaQ2jExlx9nFayjYjCOw0zwz2I8df0yrV5swn5I uyVyofXJ9o6D9nIzrKxHegdjftY0e0qdVfEMN7mWJCZV7hEolZkEBKGVBrmHLYGbj9dc5H6m WplXQtMOf5pFsFpPuBxLYg+rYtgPpToooFzRPh+wbSKgycG3IobwkV3Oj42ml4h7FNnqPJXP cVd+qLqXvF6dS87GMPewsh55YJSHLwEshTuyAqznSrgpePDyZ563k6tcX/8a1McRWIuo0+NL DjS6fJMXuQS8VInxiVnpNlQicF+O5Xb53I4dr75XOXgBf8J9vvm3zRFDwoz0cn4sSLDWGGOU vXchY2yYdeS7+9R25h4b4j4ccDgYb4+q2dPnZ9Dy9VzGkiIGL/uIhtJMBjXQcyXrujWh1Neb LF7b5/mWVS5gQ6UF6zjXmLfaLEvbzk6XztI4KmfzYoeqt4j0qjXpMp1XTBwMnKRmDIfTnNe0 wwKfRL5aDLlae9g+kdnwluIq82w+QeRirMyFWy3+ffuxIU6w8p+IO1sQkLKU2qLteOY1CKij 886QxJACW0w2WgoQ1AMEihBoOzks0qQTFQrBeqLOCqlqSJY1pFzcCwLlCQjKrpZvbKYnOI60 y1QyigEBENAEhOwXv3FnQLDeuPPRdBAAARAAARAAARA4AwEI1jP0EuoIAiAAAiAAAiAAAjcm 8B85Ti4Takoj0gAAAABJRU5ErkJggg==</item> <item item-id="528" content-encoding="gzip">H4sIAAAAAAAA/4xTzW7TQBCetZPYTpMmDUkhdRKXUjihKBiKoAcUUIU48COFB6jcxLSpCAmu i3rMAXHkFbjwDNyROCPeKHwz44TCibVmd2b2m5lvZ9clIjKQ15Ci6DZmN34/iI/H03d54nEP 4o2mQ/XlxPeQYZPhq6PTeJiKhwYSb2EunJ3Mnkwv1P0c4sAxWAFfQHqQXx+JHgF/+umPzcOz lZRFli1KbVX8cZom46PzNDaC3IdU6PLI7e/8ZeclQS5N4tgXRwgpz0QthM3vRPO8E37B2i+4 ujqerm5RV28ttFDkA/rjGidEO+5Sl/bQgvtEJdn7ttzrwdtFjT16wHUkwdxbD5llv8xsRZ2X hUA1rP2E4W5IklEVRO0fdpfu4MjhZ5CcV+mK7H2toR1G+1fXrE5D6dU3dW1cVZqbjDTo5zWl trKpqYGNLaXThMtXOk1J3FKjLkZbwYWOZm8Huna2tUoArsbuyWHpulYKVpV2NLhzQyvxlexq cr2dm3qo9vJQt+TZVEbh4XESzU4O30yTSZQ6gm3wixD3QZRGeqtb2e1a25js7A3zk7wtOlvF 6GJ89lTy6Itt8Vs0GVbHAh+Z1v97l8mdNImGcXhgy5afAQNTJeObBWvG+DjSIjCW8W2EBsY2 fm7BnhwwtICSB2bex1aBMRzlCAaKyxgGe5yHw4vASPgaMBJeAkbCy1ILyrpgoFQYw2ClW3l5 PomT8TB6qw1xhfYzyIjG+OzsNypm3fxnlC4bvwEAAP//AwBzi+T3MgQAAA==</item> <item item-id="529">iVBORw0KGgoAAAANSUhEUgAAAg4AAAGaCAYAAABnpMvxAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACchSURBVHhe7d3dcePKEQZQxcWAGIVD 8AOj0dvNwa8uJeEMaP6IEsRfAAQ+YGbOVm3teglgpk8PNO0Gyfux94sAAQIECBAg0FPgo+dx DiNAgAABAgQI7BUOFgEBAgQIECDQW0Dh0JvKgQQIECBAgIDCwRogQIAAAQIEegsoHHpTOZAA AQIECBBQOFgDBAgQIECAQG8BhUNvKgcSIECAAAECCgdrgAABAgQIEOgtoHDoTeVAAgQIECBA QOFgDRAgQIAAAQK9BRQOvakcSIAAAQIECJRVOHzt9puPj/3H9+/tZyeBV699bHb7r5+Xv/a7 zeW87b57miVAgAABAgQI9BcoqHD43G8PBcNPsfC5PRQQm/3uUh0c//efSuIX4XN7KBq+X+v+ vT+TIwkQIECAAIGjQDmFw7EwuNNFuNQKx4Jg81NFdJN7LDg6BcapM6HrYPkTIECAAIExAuUU DjfRdTsQx0cRneKge+xNoXBVSIxRcw4BAgQIEGhUoNjC4Wu36XQgzsXA5ud9DM86DLeFw+U9 E/78ff8ICxbWgDVgDZS1BlJ1TJGFw6lo6D5uOHUVuh2HY3Hw/TiiR8fheHP4VY6AfJWTq8tM 5aysnMlXWfk6ve8guI8Vt2Oei4YHjyV+ct3pKigcyrsDXsw4eYNUh7dQQHK2EPzIYeVrJNyC pyVzVlThcNNpeJik7uOI12+OTIIvuK6qGVq+ykulnJWVM/kqK186Do/ydfM4onPg6aOZnU9K HI/tfALj1ccx3SRl3STyVVa+0j/UytNZ34zdY+vLyasZJXNWTMfhtPl3vvzp+kugzt2IR1/y dP4Exvn1249iJsFfJd/rrwXk67XR2o6Qs7Vl5Pl85KusfKWL82IKhznT6CaZU9e1CRAgQGBu geQ+pnA4ZDMJPvficX0CBAgQaE8guY8pHBQO7d1hIiZAgEBlAgqHcEKT4OHQDEeAAAECDQgk 9zEdBx2HBm4pIRIgQKBuAYVDOL9J8HBohiNAgACBBgSS+5iOg45DA7eUEAkQIFC3gMIhnN8k eDg0wxEgQIBAAwLJfUzHQcehgVtKiAQIEKhbQOEQzm8SPBya4QgQIECgAYHkPqbjoOPQwC0l RAIECNQtoHAI5zcJHg7NcAQIECDQgEByH9Nx0HFo4JYSIgECBOoWUDiE85sED4dmOAIECBBo QCC5j+k46Dg0cEsJkQABAnULKBzC+U2Ch0MzHAECBAg0IJDcx3QcdBwauKWESIAAgboFFA7h /CbBw6EZjgABAgQaEEjuYzoOOg4N3FJCJECAQN0CCodwfpPg4dAMR4AAAQINCCT3MR0HHYcG bikhEiBAoG4BhUM4v0nwcGiGI0CAAIEGBJL7mI6DjkMDt5QQCRAgULeAwiGc3yR4ODTDESBA gEADAsl9TMdBx6GBW0qIBAgQqFtA4RDObxI8HJrhCBAgQKABgeQ+puOg49DALSVEAgQI1C2g cAjnNwkeDs1wBAgQINCAQHIf03HQcWjglhIiAQIE6hZQOITzmwQPh2Y4AgQIEGhAILmP6Tjo ODRwSwmRAAECdQsoHML5TYKHQzMcAQIECDQgkNzHdBx0HBq4pYRIgACBugUUDuH8JsHDoRmO AAECBBoQSO5jOg46Dg3cUkIkQIBA3QIKh3B+k+Dh0AxHgAABAg0IJPcxHQcdhwZuKSESIECg bgGFQzi/SfBwaIYjQIAAgQYEkvuYjoOOQwO3lBAJECBQt4DCIZ3fj0P99Ox3ej7GI0CAAAEC AwQUDgOwpjj0JfirwuLR61NMzjUIECBAgMALgZf72ISCHlXM+ahCwTHhUnUpAgQIEHgkoHAI r40keK/Q+hYcvS7mIAIECBCoXSC5j+k4zNlxmHulXhcYc4/n+gQIECCwSgGFQzgtSfBZQ7vX qZh1QBcnQIAAgTUIJPcxHYeSOw59VquuRB8lxxAgQKBoAYVDOH1J8HBot8MpJBZPgQkQIEBg aoHkPqbjUHvH4dXq9HjjlZDXCRAgsHoBhUM4RUnwcGjjhtOVGOfmLAIECCwkkNzHdBxa7zj0 WeS6En2UHEOAAIHFBBQOYfokeDi0+YbTlZjP1pUJECAwUCC5j+k46DgMXJ4PDldITOPoKgQI EBghoHAYgfbOKUnwd+ZZ1LkKiaLSZbIECJQtkNzHdBx0HDJ3S7eQyIxoFAIECDQjoHAIpzoJ Hg5tncNdioh1zs6sCBAgUJxAch/TcdBxWO4G0YVYzt7IBAhUJaBwCKczCR4OrZzhFBHl5MpM CRBYnUByH9Nx0HFY3Q2w9yhjfTkxIwIEVi2gcAinJwkeDq3s4XQhys6f2RMgEBNI7mM6DjoO sYX91kCKiLf4nEyAQN0CCodwfpPg4dDqHM6jjDrzKioCBEYLJPexsjoOX7v95rBpHIGOv7ef d4xPx2z3f1/62u82l/OuX9ufruVXgQK6EAUmzZQJEJhDILmPFbRjfu633WLhc3vY8Df73dff FHxujwXC3+Lg9G/fVUb375czk+BzLBjXPD1v+v0NhAABAo0JJPexcgqHY6Gw2e1/64RzF+FP 1+F0zOaq43AsODoFxp2ORBK8sbW8TLgeZSzjblQCBBYTSO5j5RQON+m46kAcSord5tBpuC4M bgqFq0Li9H9WC2ZYbJkWMLAuRAFJMkUCBKYQSO5jxe6YX7vNnw7E8X9vjs8tRhYOl/dNdP+c IpmusRIBRcRKEmEaBAi8I3Bvr7r82zvXHXJukYXDqWj48z6GQxfh8hhjZOEwBM2xhQt4lFF4 Ak2fAIFrAR2HJ2viXDT8fVPk8Q2PP+91UDi4o/oK6EL0lXIcAQIrF1A4PEjQbafheOD5vQ73 2jfnYsKbI1e+3tcxPUXEOvJgFgQIjBJQONxjO3USbj9+eXPonU9N+DjmqHXY7kkeZbSbe5ET KFRA4XAncefvZ7j9ffMlUHe/AKrblfAFUIXeF/lpKyDy5kYkQGCUgMJhFNv4k5Lg42fpzMUE FBCL0RuYAIF+Asl9rMhPVfRj7H9UErz/rBy5OgEFxOpSYkIECJwFkvuYwiEMbpFXIKCAqCCJ QiBQl4DCIZzPJHg4NMPNKaCAmFPXtQkQGCCQ3Md0HHQcBixNh94VUEBYGAQILCygcAgnIAke Ds1wSQEFRFLbWAQIdASS+5iOg46Dm29qAQXE1KKuR4DACwGFQ3iJJMHDoRluSQEFxJL6xibQ lEByH9Nx0HFo6uZaJFgFxCLsBiXQkoDCIZztJHg4NMOtSUABsaZsmAuBqgSS+5iOg45DVTdP EcEoIIpIk0kSKElA4RDOVhI8HJrh1iyggFhzdsyNQFECyX1Mx0HHoaibo8rJKiCqTKugCCQF FA5JbYVDWNtwDwUUEBYHAQIjBRQOI+HGnpYEHztH5zUkoIBoKNlCJTCNQHIf86hCx2GaVesq 0wsoIKY3dUUClQooHMKJTYKHQzNcDQIKiBqyKAYCswok9zEdBx2HWRezi08ooICYENOlCNQl oHAI5zMJHg7NcDUKKCBqzKqYCLwlkNzHdBx0HN5arE5eUOBYQPhFgACB8D7mJ08Y3AonMKmA 7sOknC5GoFQBHYdw5pLg4dAM14qA7kMrmRYngbsCyX1Mx0HHwW1Yi4DuQy2ZFAeBwQIKh8Fk 752QBH9vps4m0ENAAdEDySEE6hJI7mM6DjoOdd09ovkV8PjCaiDQjIDCIZzqJHg4NMO1LqD7 0PoKEH8jAsl9TMdBx6GR26rxMHUfGl8Awq9dQOEQznASPBya4Qj8fXShgLAiCFQpkNzHdBx0 HKq8iQT1RMDjC8uDQHUCCodwSpPg4dAMR+CxgO6D1UGgGoHkPqbjoONQzY0jkBECug8j0JxC YH0CCodwTpLg4dAMR6CfgO5DPydHEVipQHIf03HQcVjpbWBacQHdhzi5AQlMJaBwmEqy53WS 4D2n5DACywkoIJazNzKBkQLJfUzHQcdh5DJ1WvUCHl9Un2IB1iOgcAjnMgkeDs1wBN4T0H14 z8/ZBEICyX1Mx0HHIbSsDVO0gO5D0ekz+foFFA7hHCfBw6EZjsB0AroP01m6EoGJBZL7mI6D jsPEy9flqhdQQFSfYgGWJ6BwCOcsCR4OzXAE5hPw+GI+W1cmMFAguY/pOOg4DFyeDifQEdB9 sBwIrEJA4RBOQxI8HJrhCGQEdB8yzkYh8EAguY/pOOg4uBEJTCOg+zCNo6sQGCGgcBiB9s4p SfB35ulcAkUIKCCKSJNJ1iWQ3Md0HHQc6rp7RLMeAY8v1pMLM6leQOEQTnESPBya4QgsK6D7 sKy/0ZsRSO5jOg46Ds3cWAJdUED3YUF8Q7cgoHAIZzkJHg7NcATWI6D7sJ5cmEl1Asl9TMdB x6G6G0hAKxfQfVh5gkyvRAGFQzhrSfBwaIYjsE4B3Yd15sWsihVI7mM6DjoOxd4oJl6BgO5D BUkUwhoEFA7hLCTBw6EZjsD6BRQP68+RGa5eILmP6TjoOKz+hjDBBgQ8umggyUKcU0DhMKfu nWsnwcOhGY5AWQK6D2Xly2xXI5Dcx3QcdBxWs/BNhMBJQPfBQiAwWEDhMJjsvROS4O/N1NkE GhLQfWgo2UJ9VyC5j+k46Di8u16dT2A+Ad2H+WxduSoBhUM4nUnwcGiGI1CHgO5DHXkUxWwC yX1Mx0HHYbaF7MIEJhVQPEzK6WJ1CSgcwvlMgodDMxyBugQ8uqgrn6KZTCC5j5XVcfja7TeH HxxHoOPv7WfH/HP78+8fH5v97qubj6/9bnM5b7vvnnY8Kgk+2SpxIQItC+g+tJx9sd8RSO5j BRUOn/ttt1g4FQrfBcKpoOgUC6fXfguEz+2haPiuMrp/v9gnwa14AgQmEtB9mAjSZWoQSO5j 5RQOx2Jgs9v/NhLOXYQ/XYef7B+LjEsh0f374YBTkfG365AEr2GBioHAqgR0H1aVDpNZRiC5 j5VTONzk4qoD0Xn9a7f5LTJuCoWrQsKjimVWuVEJTCmg+zClpmsVKKBw6JG0P8XB5fif90B0 Hlv0LBwu75vo/tljGg4hQGBNAroPa8qGucwgcG+vuvzbDMPdvWSRHYdT0XD1uOFPdN33OPQs HFLgxiFAYGYBxcPMwC6/RgEdhydZORcN15+auD6h8zhC4bDGNW5OBOYV8OhiXl9XX52AwuFB Sl52Gn7O8+bI1a1qEyKwhIDuwxLqxlxAQOFwD/36I5fdY64+fnn65ETnExg+jrnAKjYkgbUI 6D6sJRPmMaOAwuEO7mnz73z50/WXQJ27EY++5On8CYzz674Aasa169IE1iug+7De3JjZ2wIK h7cJh10gCT5sZo4mQGBSAd2HSTldbD0CyX2syE9VTJ2qJPjUc3c9AgRGCOg+jEBzypoFkvuY wuGwEpLga1545kagKQHFQ1Pprj3Y5D6mcFA41H4/iY/AYwGPLqyOSgQUDuFEJsHDoRmOAIE+ AroPfZQcs2KB5D6m46DjsOJbwdQIBAV0H4LYhppaQOEwteiL6yXBw6EZjgCBoQK6D0PFHL8C geQ+puOg47CCJW8KBFYmoPuwsoSYzisBhcMroYlfT4JPPHWXI0BgTgHdhzl1XXtCgeQ+puOg 4zDh0nUpAhUKKB4qTGp9ISkcwjlNgodDMxwBAlMIeHQxhaJrzCiQ3Md0HHQcZlzKLk2gMgHd h8oSWk84CodwLpPg4dAMR4DA1AKKh6lFXW8CgeQ+puOg4zDBknUJAo0JeHTRWMLXH67CIZyj JHg4NMMRIDCngO7DnLquPUAguY/pOOg4DFiaDiVA4EZA8WBRrEBA4RBOQhI8HJrhCBBICHh0 kVA2xhOB5D6m46Dj4GYkQGAqAd2HqSRdZ6CAwmEg2LuHJ8HfnavzCRBYuYDiYeUJqnN6yX1M x0HHoc67SFQElhTw6GJJ/SbHVjiE054ED4dmOAIElhTQfVhSv6mxk/uYjoOOQ1M3l2AJxAUU D3HyFgdUOISzngQPh2Y4AgTWIODRxRqyUPUckvtYpOPwtdvsN7uv+0n72u03289FE5oEXzRQ gxMgsKyA7sOy/hWPntzHAoXD5377sd3/lAbHQqH7vw+J/Nx+7JesHZLgFa9boREg0EdA8dBH yTEDBZL72OyFw0234U7hcKgc9h+b3f5BT2Ig3/DDk+DDZ+cMAgSqE/DoorqULh1Qch+buXD4 2u82m/3vU4pj9+Fjfwzw4+P637v/O5uCJHg2MqMRILBqAd2HVaenpMkl97GXhcN///vf743+ suGf//z3v//91/ReJ6Hvvx16DbvNco8rkuAlLURzJUAgIKB4CCDXP0RyH3tZOPzrX//a//PP P/v//Oc/p4Lh+Ofx9//+97/fTBwfNZy6CJ33MhxfPf371b/dKyZOh348fgPlzDlPgs8cissT IFCigEcXJWZtVXNO7mMvC4euzL2JHTf802OHz9s3Pd5974LCYVWLzWQIEFiRgO7DipJR1lRW WTgcOwxPJ9b3sYTCoazVaLYECGQFFA9Z70pGW2XhcHlU8dB4UOFw/UZI73GoZO0KgwCBKQQ8 uphCsalrrLJwuLxJclDhcPdNj+ci4Rjk73c3HD9t4VMVTa1ywRIg8FpA9+G1kSNOAqssHF7m 5sEjiKffGnm5qO9xeMnrAAIEGhVQPDSa+GFhV1U4HD4v8febI+9Y+ObIYQvE0QQINCbg0UVj CR8ebmWFw37/8r9VseC3RqZbPMOXgzMIECDwLaD7YCk8ECizcCg4nUnwgplMnQCBNQgoHtaQ hdXNIbmPDfoeh9VJTTShJPhEU3YZAgRaFvDoouXs3409uY8pHA4pSIJb7QQIEJhMQPdhMsrS L5TcxxQOCofS7xfzJ9C2gOKh7fx/R69wCC+DJHg4NMMRINCCgOKhhSw/jTG5j+k46Dg0f8MB IFCFgPc9VJHGsUEoHMbKjTwvCT5yik4jQIBAPwHdh35OlR2V3Md0HHQcKrt9hEOAwOEd3xAa E1hH4XBpe6X/XCDZSfAFwjMkAQItCigemsp6ch9Tluo4NHVzCZZAUwLe99BMuhUO4VQnwcOh GY4AAQLHL6uhULlAch+zmnQcKr+dhEeAwElA8VD1QlA4hNObBA+HZjgCBAj8Cnh0Ue1qSO5j Og46DtXeSAIjQOCBgO5DdUtD4RBOaRI8HJrhCBAgcF9A8VDVykjuYzoOOg5V3TyCIUBggIDi YQDWug9VOITzkwQPh2Y4AgQIPBfwvocqVkhyH9Nx0HGo4qYRBAECbwroPrwJuOzpCoewfxI8 HJrhCBAg0F9A8dDfamVHJvcxHQcdh5Utf9MhQGBRAcXDovxjB1c4jJUbeV4SfOQUnUaAAIGc gPc95KwnGim5j+k46DhMtGxdhgCB6gR0H4pJqcIhnKokeDg0wxEgQOA9AcXDe36hs5P7mI6D jkNoWRuGAIFiBRQPq0+dwiGcoiR4ODTDESBAYBoB73uYxnGmqyT3sbI6Dl+7/eaweI9Ax9/b z04Gnr22/9rvNpfztvvuaccrJMFnWjMuS4AAgYyA7kPGeeAoyX2soMLhc7/tFguf28OGv9nv vo66z147vLo9FA3fVUb375e8JMEHrgWHEyBAYH0CiofV5SS5j5VTOBwLhc3u0Du4/Dp3EU71 wLPXTkXFpcA4HHvqTPztOiTBV7faTIgAAQJjBBQPY9RmOye5j5VTONxwX3UZ/rzeee2mULgq JA7nJcFnWzUuTIAAgbSA9z2kxR+Ol9zHii0cvnabqw7Er+ef13oWDpf3TXT/XM2KMBECBAis WUD3IZade3vV5d9SkyiycDgVBlePG34eYFy/1rNwSIEbhwABAlUKKB4WTauOwxP+c9HQec9C 59i7rykcFl3MBidAoCEBjy4WS7bC4QH9oE7DzzW8OXKxlWxgAgTaFNB9iOdd4XCP/NQ5uN9p OH9S4sFrh2v5OGZ8DRuQAIHWBRQP0RWgcLjDfdr8O1/+1P0SqGevnS91/pTF+RxfABVdzQYj QKBdAcVDLPcKhxj1eaAkeDg0wxEgQGBZAe97iPgn97EiP1UxdRaS4FPP3fUIECBQhIDuw6xp Su5jCgcdh1kXs4sTIEDgR0DxMNtiUDjMRnv/wknwcGiGI0CAwLoEFA+z5CO5j+k46DjMsohd lAABAg8FvO9h8sWhcJic9PkFk+Dh0AxHgACB9QroPkyWm+Q+puOg4zDZwnUhAgQIDBZQPAwm u3eCwmESxv4XSYL3n5UjCRAg0IiARxdvJzq5j+k46Di8vWBdgAABApMI6D6MZlQ4jKYbd2IS fNwMnUWAAIFGBBQPoxKd3Md0HHQcRi1SJxEgQGA2AY8uBtMqHAaTvXdCEvy9mTqbAAECDQno PvROdnIf03HQcei9MB1IgACBuIDioRe5wqEX03QHJcGnm7UrESBAoBEBxcPLRCf3MR0HHYeX C9IBBAgQWFzA+x6epkDhEF6hSfBwaIYjQIBAXQK6D3fzmdzHdBx0HOr6oSIaAgTqF1A83ORY 4RBe9knwcGiGI0CAQJ0CHl38yWtyH9Nx0HGo84eKqAgQaENA9+GUZ4VDeLknwcOhGY4AAQL1 CygeFA7pVa5wSIsbjwABAhMLNF48JPcxjyrCLZ6JbxWXI0CAAIGLQMPve1A4hG+DJHg4NMMR IECgPYEGuw/JfUzHQcehvR8qIiZAoH6BxooHhUN4SSfBw6EZjgABAu0KNPToIrmP6TjoOLT7 Q0XkBAi0IdBA90HhEF7KSfBwaIYjQIAAgaNA5cVDch/TcdBx8EOFAAECbQhU/OhC4RBewknw cGiGI0CAAIFrgQq7D8l9TMdBx8EPFQIECLQnUFnxoHAIL+EkeDg0wxEgQIDAI4GKiofkPqbj oOPghwoBAgTaFajkfQ8Kh/ASToKHQzMcAQIECPQRKLz7kNzHdBx0HPrcUo4hQIBA/QIFFw8K h/DyTIKHQzMcAQIECAwRKPTRRXIf03HQcRhySzmWAAECbQgU1n1QOISXZRI8HJrhCBAgQGCs QEHFQ3If03HQcRh7SzmPAAEC9QsUUjwoHMJLMQkeDs1wBAgQIPCuQAHve0juYzoOOg7v3lLO J0CAQBsCK+4+KBzCSzAJHg7NcAQIECAwpcBKi4fkPqbjoOMw5S3lWgQIEKhfYIWPLhQO4WWX BA+HZjgCBAgQmEtgRd2H5D6m46DjMNct5boECBCoX2AlxYPCIbzUkuDh0AxHgAABAnMLrODR RXIf03HQcZj7lnJ9AgQItCGwYPdB4RBeYknwcGiGI0CAAIGkwELFQ3If03HQcUjeUsYiQIBA /QILFA8Kh/CySoKHQzMcAQIECCwhEH7fQ3If03HQcVjiljImAQIE2hAIdR8UDuHllAQPh2Y4 AgQIEFhaIFA8JPcxHQcdh6VvKeMTIECgfoGZH10oHMJLKAkeDs1wBAgQILAmgZm6D8l9TMdB x2FNt5S5ECBAoH6BGYoHhUN42STBw6EZjgABAgTWKDDxo4vkPqbjoOOwxlvKnAgQINCGwETd B4VDeLkkwcOhGY4AAQIE1i4wQfGQ3Md0HHQc1n5LmR8BAgTqF3jz0YXCIbxEkuDh0AxHgAAB AiUJjOw+JPcxHQcdh5JuKXMlQIBA/QIjigeFw6Nl8bXbbw6gR6Dj7+3nnQNPx2z3f1/62u82 l/OuX9ufruUXAQIECBBYjcDAfSm5jxW0Y37ut91i4XN72PA3+91XN83nYz6uCofP7eHfvquM 7t8vZybBV7MoTYQAAQIE1i0w4H0PyX2snMLhWChsdvvfOuHcRbh0Hb52m1PnYLPdXnUcjsVE p8C405FIgq97lZodAQIECKxOoEf3IbmPlVM43GTybwfi6/PzXFRcFwY3hcJVIXE4JQm+ugVp QgQIECCwfoEXxUNyHyu2cDh1GP50IL7zPrJwuLxvovvn+leSGRIgQIBAMwLfjy7u7VcKhxer 4PxY4vZNjqfTRhYOzSw8gRIgQIBA2QJ3ug8KhycpPRcN12+K7JygcCj7hjB7AgQIEHgtcFU8 KBwekD3tNFzOefWeBm+OfL0gHUGAAAEC6xfofOpC4XAvXacN/0mn4WHhsN/7OOb6178ZEiBA gMBIge/vNhp59uDTinlz5Gnz73z508Mvgbr7BVCX73e4/Y6Ho1iyUhucIScQIECAAIEXAsl9 rJjCYc5VkwSfMw7XJkCAAIE2BZL7mMJBx6HNu0zUBAgQqEhA4RBOZhI8HJrhCBAgQKABgeQ+ puOg49DALSVEAgQI1C2gcAjnNwkeDs1wBAgQINCAQHIf03HQcWjglhIiAQIE6hZQOITzmwQP h2Y4AgQIEGhAILmP6TjoODRwSwmRAAECdQsoHML5TYKHQzMcAQIECDQgkNzHdBx0HBq4pYRI gACBugUUDuH8JsHDoRmOAAECBBoQSO5jOg46Dg3cUkIkQIBA3QIKh3B+k+Dh0AxHgAABAg0I JPcxHQcdhwZuKSESIECgbgGFQzi/SfBwaIYjQIAAgQYEkvuYjoOOQwO3lBAJECBQt4DCIZzf JHg4NMMRIECAQAMCyX1Mx0HHoYFbSogECBCoW0DhEM5vEjwcmuEIECBAoAGB5D6m46Dj0MAt JUQCBAjULaBwCOc3CR4OzXAECBAg0IBAch/TcdBxaOCWEiIBAgTqFlA4hPObBA+HZjgCBAgQ aEAguY/pOOg4NHBLCZEAAQJ1CygcwvlNgodDMxwBAgQINCCQ3Md0HHQcGrilhEiAAIG6BRQO 4fwmwcOhGY4AAQIEGhBI7mM6DjoODdxSQiRAgEDdAgqHcH6T4OHQDEeAAAECDQgk9zEdBx2H Bm4pIRIgQKBuAYVDOL9J8HBohiNAgACBBgSS+5iOg45DA7eUEAkQIFC3gMIhnN8keDg0wxEg QIBAAwLJfUzHQcehgVtKiAQIEKhbQOEQzm8SPBya4QgQIECgAYHkPqbjoOPQwC0lRAIECNQt oHAI5zcJHg7NcAQIECDQgEByH9Nx0HFo4JYSIgECBOoWUDiE85sED4dmOAIECBBoQCC5j+k4 6Dg0cEsJkQABAnULKBzC+U2Ch0MzHAECBAg0IJDcx3QcdBwauKWESIAAgboFFA7h/CbBw6EZ jgABAgQaEEjuYzoOOg4N3FJCJECAQN0CCodwfpPg4dAMR4AAAQINCCT3MR0HHYcGbikhEiBA oG4BhUM4v0nwcGiGI0CAAIEGBJL7mI6DjkMDt5QQCRAgULeAwiGc3yR4ODTDESBAgEADAsl9 TMdBx6GBW0qIBAgQqFtA4RDObxI8HJrhCBAgQKABgeQ+puOg49DALSVEAgQI1C2gcAjnNwke Ds1wBAgQINCAQHIf03HQcWjglhIiAQIE6hZQOITzmwQPh2Y4AgQIEGhAILmP6TjoODRwSwmR AAECdQsoHML5TYKHQzMcAQIECDQgkNzHdBx0HBq4pYRIgACBugUUDuH8JsHDoVU5nHyVl1Y5 Kytn8lVWvo6zTeZMxyEMXt5yXN+MkzfI+qIvc0ZyVlbe5KusfCkcnuXra7fffHycKqvj7+1n 9+Cv/W5zeW27//PS/tlr2UqtvOW4vhn7oba+nLyakZy9ElrX6/K1rnz0mU0yZwV1HD73226x 8Lk9FA+b/e7rTPq5PRQN35VE9++vXktXan0WgGOeCyRvELmYRkDOpnFMXUW+UtLTjZPMWTmF w7FQ2OwOvYPLr3MX4VwrHIuK3yJif+pMXLoOz147XysJPt0yafdK8lVe7uWsrJzJV1n5Su9j 5RQON3nsdCD+FApXhcSz176v6SYp6yaRr7Lylf6hVp7O+mbsHltfTl7NKJmzYguHr93mtwMx QeFwed+EP3/fQ8KChTVgDVgD5ayBV8XFVK8XWTicioafRxEHijcLh6kwXYcAAQIECNQuUFzh cC4aOu9nOGZI4VD7OhUfAQIECKxEoKjC4abT8IP43psjV5IL0yBAgAABAqsXKKdwOHUVrjoN Hd53Po65+iyZIAECBAgQWIlAMYXDqTDofPnT7ZdAnT9lcf736y+AevbaSjJhGgQIECBAoACB YgqH+S2ff7vk/OMb4VdgSC6eHHv1TaN/vweE97wCQ3L4PZOb9yrNO8O2rz5RftxjCy6jATl8 +q3Lw0NQOHybPXvUMZzVGe8IDMnF02OPXxr293vJ35mWcwcIDMnh+bKXruB1t3DAoA7tLTBZ ftxjvc2nPrB/Dp9/6/KYeSkcfn5oPfrmyTGszhkv8PqbPn+v/fzY4421uXwn+fgJOXOwwJAc Hj8Udfyk1CFX223nG18HD+qE3gLT5cc91ht94gMH5PDpty6Pm5bC4ejW49slx/E6a7DAkFw8 PfbYxnv8ZtrB83JCf4EhOTzefp+f56+S96iiv/E7R06WH/fYO2l469yBOfw71lUHYsREFA4K hxHLZsZThtwQT489V+Sbn/9iqiJixqz9vfSQHHbPVDhkUjRZftxjmYTdGWVsDk/1eedbl0cG oHBQOIxcOjOdNuSGePnFX91i4fhDzvPzmbKmcIjATjTIkHvsWWF38xF599hEGXp9mZE5fPxd SK+H7B6hcFA4DFsxcx895IYYcuz1f0F17jhavv6gvHSgdBwyq2a2/Fw9d89E0+YoI3J491uX R+opHE5wA95oMhLaaX0FhuTijWP7TsdxIwSG5EXhMAL4zVPmyo/C4c3EDDh9WA6n6jRcJqhw +Jbo/9GWAbl16CiBIbl4eOzxncTX/yG0ze78Jjy/ZhcYksOfyeg4zJ6XywCT5Mc9FsvXvYF6 5/DFty6PCULh8KPm2yXHLKB5znmci9uPfz0+9vIxv/vfJjrPzF31Z2t6+E2uDz/Cp3AILp8h 99j3tO7kxz0WTNnNUP1y+Ppbl4fHoHAYbuYMAgQIECDQrIDCodnUC5wAAQIECAwXUDgMN3MG AQIECBBoVkDh0GzqBU6AAAECBIYLKByGmzmDAAECBAg0K6BwaDb1AidAgAABAsMFFA7DzZxB gAABAgSaFVA4NJt6gRMgQIAAgeECCofhZs4gQIAAAQLNCigcmk29wAkQIECAwHABhcNwM2cQ IECAAIFmBRQOzaZe4AQIECBAYLiAwmG4mTMIECBAgECzAgqHZlMvcAJBAf/lyyC2oQjMK6Bw mNfX1QkQOAooHKwDAtUIKByqSaVACKxV4HO//fjYf5x+b/a7r7XO07wIEOgjoHDoo+QYAgTe E9BxeM/P2QRWJKBwWFEyTIVAtQIKh2pTK7D2BBQO7eVcxATyAgqHvLkRCcwkoHCYCdZlCRDo CCgcLAcC1QgoHKpJpUAIrFjgVDh4Y+SKM2RqBHoLKBx6UzmQAIHxAl/73eb8yYrt5/irOJMA geUFFA7L58AMCBAgQIBAMQIKh2JSZaIECBAgQGB5AYXD8jkwAwIECBAgUIyAwqGYVJkoAQIE CBBYXuD//64pYfxUIGgAAAAASUVORK5CYII=</item> <item item-id="530" content-encoding="gzip">H4sIAAAAAAAA/4xTz28SURCetwvsQqFQhCpdYGutHjwQXK3RxgOaxnjwR0JvXpotrC1GCm63 pkcOxqP/gh78G7ybeDbGfwi/mVmwevJt5r2Zed/MfG/e2yIRGcg+pCC6jdmN3vajo9HkJEs8 7kDyw8lAfRnx3WfYePDi8HU0SMRDfYm3MOdOj6ePJufqfgpx4Ogvgc8gn4H7+Z7oF9K9/PDH 5jFzlJRFli1KdVn8YZLEo8OzJDKC3IWU6eLI7G79ZWclQSaJo8gTRwApTUXNBY1vqJZ1gk9Y ezlXVyevq1vQNb8SWCjyDv1xjROgHbepQztowV2ioux9Xex14e2gxg7d4zqSYJZfDZhlr8Rs RZ2VhEAlqP6A4a5JkmEFlLLf7Q7dohOKcOzgI4jOKnRJ9r9U0RKjPaxpZqeuFGvrutYvK9V1 Rpou0RWlt7SpoYH1DaXUgMtTSg1J3FSjJkZLwbm2Zm/5urY3tYqPxhq7Kwemq1rJX1ba0uD2 Na3E17KtyfWGruuhWotD3ZCnUx4GB0dxOD0+eDWJx2HiCLbOL1Dce2ES6s1upDdsbWKy03f8 AHJTdLYK4fno9LHk0Vfb5PdoUqyOOT4yzf/3LpI7SRwOomDPli0vBfqmQsYzc9aM8XCkuW8s 49kI9Y1tvMycPRlgaA4lC8ysh60cYzjKEQwUlzEMznMeDi8AI+ErwEh4ERgJL0ktKKuCgVJm DIOVbvn52TiKR4PwjTbEFdpPIEMa4bPTX6mQdvOfUbxo/AYAAP//AwCU4++4NgQAAA==</item> <item item-id="531">iVBORw0KGgoAAAANSUhEUgAAAjIAAAGKCAYAAAAWvavcAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACn6SURBVHhe7d3ZcTPJsQZQ2gWDYIVM 0AOswdv4oFcFnZAHEBaCbCwE0YnGV72cifhjRkNkI/t8xVt5C8t87PxFgAABAgQIEJiowMdE +9Y2AQIECBAgQGBnkLEICBAgQIAAgckKGGQmG53GCRAgQIAAAYOMNUCAAAECBAhMVsAgM9no NE6AAAECBAgYZKwBAgQIECBAYLICBpnJRqdxAgQIECBAwCBjDRAgQIAAAQKTFTDITDY6jRMg QIAAAQIGGWuAAAECBAgQmKyAQWay0WmcAAECBAgQmPcg87nZrT4+dh9ff9bbTuBXP/tYbXaf 3z/+3G1W57r1rltmyRAgQIAAAQLjEZjxILPdrfcDzPfwsl3vB5rVbnOeVg7/+2Ky+Qllu94P MV8/6/7zeGLTCQECBAgQIHAQmO8gcxhU7pyynGeXw4Cy+p5quovhMAB1Bp7jyY1TGb8uBAgQ IEBgjALzHWRutLsnNIeXjjrDSvexN4PL1WAzxhT1RIAAAQIEFiqwmEHmc7PqnNCchpPV9/tg Hp3A3A4y5/fc+PvP+49YsLAGrAFrwBroroHUXLWIQeY4xHRfHjqeunRPZA7DytfLR0+cyByC 8tf0BeQ4/QzPdyDLeWQpx3nkeHzfSnCfnP2OfBpifnkZ6XvNdE5dDDLz+U36406Sv2iLQW10 o7JsBD/w08pxYNCGl0tmOetB5uYk5tdQuy8f/f1m32RADdfh7J9ajvOJWJbzyFKO88jRicxQ Od68fNS58PGj2J1PIh0e2/mE018fv/bLNlRIba8jx7b+Qz67LIfUbHctObazH/qZk1nO9kTm OIx0vgzv+kvxTqc1v33p3ekTTqef3370OhnQ0IvL9X4E5Dif1SDLeWQpx3nk6ERmAjn6ZZtA SFokQIAAgWYCyX1yticy70wvGdA778O1CRAgQIDAOwSS+6RBppBgMqBCe0oIECBAgEBTgeQ+ aZApRJ0MqNCeEgIECBAg0FQguU8aZApRJwMqtKeEAAECBAg0FUjukwaZQtTJgArtKSFAgAAB Ak0FkvukQaYQdTKgQntKCBAgQIBAU4HkPmmQKUSdDKjQnhICBAgQINBUILlPGmQKUScDKrSn hAABAgQINBVI7pMGmULUyYAK7SkhQIAAAQJNBZL7pEGmEHUyoEJ7SggQIECAQFOB5D5pkClE nQyo0J4SAgQIECDQVCC5TxpkClEnAyq0p4QAAQIECDQVSO6TBplC1MmACu0pIUCAAAECTQWS +6RBphB1MqBCe0oIECBAgEBTgeQ+aZApRJ0MqNCeEgIECBAg0FQguU8aZApRJwMqtKeEAAEC BAg0FUjukwaZQtTJgArtKSFAgAABAk0FkvukQaYQdTKgQntKCBAgQIBAU4HkPmmQKUSdDKjQ nhICBAgQINBUILlPGmQKUScDKrSnhAABAgQINBVI7pMGmULUyYAK7SkhQIAAAQJNBZL7pEGm EHUyoEJ7SggQIECAQFOB5D5pkClEnQyo0J4SAgQIECDQVCC5TxpkClEnAyq0p4QAAQIECDQV SO6TBplC1MmACu0pIUCAAAECTQWS+6RBphB1MqBCe0oIECBAgEBTgeQ+aZApRJ0MqNCeEgIE CBAg0FQguU8aZApRJwMqtKeEAAECBAg0FUjukwaZQtTJgArtKSFAgAABAk0FkvukQaYQdTKg QntKCBAgQIBAU4HkPmmQKUSdDKjQnhICBAgQINBUILlPGmQKUScDKrSnhAABAgQINBVI7pMG mULUyYAK7SkhQIAAAQJNBZL7pEGmEHUyoEJ7SggQIECAQFOB5D5pkClEnQyo0J4SAgQIECDQ VCC5TxpkClEnAyq0p4QAAQIECDQVSO6TBplK1B97tkd/KtdUQ4AAAQIEZiJgkBl5kH8G9Neg 89fPR37/2iNAgAABAo8E/twnB+RzIlPAfHtAfw06ToMKqSkhQIAAgZTA2/fJzo0YZAqpJgPq 3d6zQ1DvCysgQIAAAQLPCST3SYPMc5lcPCoZUKG950quB57nqjyKAAECBAj8KZDcJw0yf8Zx +4BkQIX2aiX3TnJqV1JFgAABAgsXSO6TBpnCYksGVGhvuBLDzXCWrkSAAIEFCST3SYNMYWEl Ayq0994SL0m919fVCRAgMAOB5D5pkCksmGRAhfayJU5tst6ejQABAhMQSO6TBpnCgkgGVGiv fYlTm/YZ6IAAAQINBZL7pEGmEHQyoEJ74ytxajO+THREgACBNwok90mDTCHIZECF9qZRYriZ Rk66JECAQEEguU8aZEYeUKG96ZZ4SWq62emcAAECHQGDzMiXQzKgkVO8tz2DzXt9XZ0AAQJv Ekjuk05kCiEmAyq0N9+S7mAz37t0ZwQIEJi8QHKfNMgUlksyoEJ7yygx1CwjZ3dJgMAkBZL7 pEGmsESSARXaW16JoWZ5mbtjAgRGLZDcJw0yhaWQDKjQ3rJLDDXLzt/dEyAwCoHkPmmQKUSe DKjQnpKzgKHGWiBAgEATgeQ+aZApRJwMqNCeknsChhrrggABAjGB5D5pkCnEmgyo0J6SvwQM NX8J+TkBAgReEkjuk/MeZD43u9V+0zqAHv6st3dyOT5mvbv80eduszrXXf9sd7yWv2YiYKiZ SZBugwCBMQkk98kZ78jb3bo7vGzX+wFktdt8Xka9XR8Glsth5fjvvqae7j+fK5MBjWlhzr4X Q83sI3aDBAhkBJL75HwHmcPgstrsfuaW0ynLxanM8TGrqxOZwwDUGXjunNgkA8osOc9yI2Co sSgIECBQFkjuk/MdZG74r05o9iPOZrU/ibkeVG4Gl6vBZn/dZEDlVaRwOAFDzXCWrkSAwCIE kvvkYgaZz83q4oTm8L9Xh9eZioPM+X033b8vYnUu/SYNNUtfAe6fAIGOwL298PzvUlCLGGSO Q8zF+2D2pyznl52Kg0wqIM8zYgFDzYjD0RoBAi0FnMgMqH8aYi7f5Ht4A+/3e2UMMgNqL/hS hpoFh+/WCRC4FjDIDLQmbk9iDhc+vVfm3nHYabjxZt+B+Jd7GUPNcrN35wQIHAUMMkMshONJ y+3HrW8ufedTST5+PUQArvH123z4jYZBgACBRQkYZAaI+/T9MLd/br4U7+4X4nVPbXwh3gBx uMT5lIYEAQIEFiBgkBl5yMmARk6hvb4CBpq+Yh5PgMAEBZL7pDPvwgJJBlRoT8kUBAw0U0hJ jwQIFAWS+6RBphBSMqBCe0qmJOCNwVNKS68ECDwpkNwnDTJPhtJ9WDKgQntKpirglGaqyemb AIErgeQ+aZApLL9kQIX2lExdwEAz9QT1T2DxAsl90iBTWG7JgArtKZmLgIFmLkm6DwKLE0ju kwaZwvJKBlRoT8ncBAw0c0vU/RCYvUBynzTIFJZTMqBCe0rmKuCNwXNN1n0RmJ1Acp80yBSW TzKgQntKliDglGYJKbtHApMVSO6TBpnCMkkGVGhPyZIEDDRLStu9EpiMQHKfNMgUlkUyoEJ7 SpYoYKBZYurumcBoBZL7pEGmsAySARXaU7JkAQPNktN37wRGI5DcJw0yhdiTARXaU0Lg9F/c 9l/dthIIEGgkkNwnDTKFkJMBFdpTQuBHwCedrAYCBBoIJPdJg0wh4GRAhfaUELgv4JTGyiBA ICSQ3CcNMoVQkwEV2lNC4LGAgcYKIUDgzQLJfdIgUwgzGVChPSUEnhMw0Dzn5FEECPQWSO6T Bpne8RzeQ4mtwKZkrAIGmrEmoy8CkxVI7pN25MIySQZUaE8JgZqAgabmpooAgRuB5D5pkCks wGRAhfaUEHhNwEDzmp9qAgSir1wYZAoLziBTQFMyPQEDzfQy0zGBkQgk90mDTCH0ZECF9pQQ GFbAQDOsp6sRWIBAcp80yBQWVDKgQntKCLxHwEDzHldXJTBDgeQ+aZApLKBkQIX2lBB4r4CB 5r2+rk5gBgLJfdIgU1gwyYAK7SkhkBHwNQQZZ89CYIICyX3SIFNYIMmACu0pIZATcDqTs/ZM BCYkkNwnDTKFhZEMqNCeEgJ5AQNN3twzEhixQHKfNMgUFkIyoEJ7Sgi0EzDQtLP3zARGJJDc Jw0yheCTARXaU0KgvYCBpn0GOiDQUCC5TxpkCkEnAyq0p4TAeAQMNOPJQicEggLJfdIgUwg2 GVChPSUExidgoBlfJjoi8EaB5D5pkCkEmQyo0J4SAuMV8JHt8WajMwIDCiT3SYNMIbhkQIX2 lBAYt4DTmXHnozsCAwgk90mDTCGwZECF9pQQmIaAgWYaOemSQEEguU8aZEYeUKE9JQSmJWCg mVZeuiXwhIBB5gmklg9JBtTyPj03gaiAgSbK7ckIvFMguU86kSkkmQyo0J4SAtMWMNBMOz/d E9gLJPdJg0xhySUDKrSnhMA8BHzCaR45uotFCiT3SYNMYYklAyq0p4TAfASczswnS3eyKIHk PmmQKSytZECF9pQQmJ+AgWZ+mbqjWQsk90mDTGEpJQMqtKeEwHwFDDTzzdadzUoguU8aZApL JxlQoT0lBOYvYKCZf8bucNICyX3SIFNYKsmACu0pIbAcAQPNcrJ2p5MSSO6TBpnC0kgGVGhP CYHlCfiE0/Iyd8ejFkjukwaZwlJIBlRoTwmBZQo4nVlm7u56lALJfdIgU1gCyYAK7SkhsGwB pzPLzt/dj0IguU8aZAqRJwMqtKeEAAGnM9YAgaYCyX3SIFOIOhlQoT0lBAicBQw01gKBJgLJ fdIgU4g4GVChPSUECFwLeLnJmiAQFUjukwaZQrTJgArtKSFA4J6A0xnrgkBMILlPGmQKsSYD KrSnhACBRwJOZ6wPAm8XSO6TBplCnMmACu0pIUDgLwGnM38J+TmBlwSS+6RBphBVMqBCe0oI EHhWwEDzrJTHEeglkNwnDTK9ojk9OBlQoT0lBAj0FfByU18xjyfwUCC5TxpkCosxGVChPSUE CFQEnM5U1NQQuCuQ3CcNMoVFmAyo0J4SAgReEXA684qeWgLxVy4MMoVFZ5ApoCkhMCUBpzNT SkuvIxRI7pPzHmQ+N7vV/v8gHUAPf9bbTtrb9fe///hY7Taf3ZXwudusznXrXbfs8KhkQCNc n1oisBwBA81ysnangwok98kZDzLb3bo7vBwHl6+B5TjgdIaX489+Bpbtej/EfE093X8+p5wM aNCV5WIECNQEvNxUc1O1WIHkPjnfQeYwnKw2u5+DltMpy8WpzPcSOww958Gm+8/7BxyHnstT mWRAi/0tcOMExibgdGZsiehnxALJfXK+g8xNwFcnNJ2ff25WP0PPzeByNdh4aWnEvzpaIxAQ cDoTQPYUUxcwyLwhwYth5Xz97/fQdF5menKQOb/vpvv3N7TtkgQIjFHA6cwYU9FTA4F7e+H5 36XaWcSJzHGIuXp56AK4+x6ZJweZVECehwCBEQs4nRlxOFprKeBEZkD90xBz/amk6yfovHxk kBlQ36UILEDA6cwCQnaLfQUMMn3Ffnn8nycx33Xe7DsQucsQWK6AgWa52bvzGwGDzBCL4voj 1t1rXn3c+vjJpM4nnHz8eogAXIPAQgW83LTQ4N12V8AgM8B6OA4jnS/Du/5SvNNpzW9fenf6 hNPp574Qb4A4XILAsgScziwrb3frRGZqayA5aU7NRr8ECHQEnM5YDgsVSO6Ti/jU0tDrKBnQ 0L27HgECYQGnM2FwTzcGgeQ+aZApJJ4MqNCeEgIExihgoBljKnp6k0BynzTIFEJMBlRoTwkB AmMW8HLTmNPR20ACyX3SIFMILRlQoT0lBAiMXcDpzNgT0t+LAsl90iBTCCsZUKE9JQQITEXA 6cxUktJnT4HkPmmQ6RnO4eHJgArtKSFAYEoCTmemlJZenxRI7pMGmSdD6T4sGVChPSUECExR wOnMFFPT8y8CyX3SIFNYhsmACu0pIUBgqgJOZ6aanL6vBJL7pEGmsPySARXaU0KAwNQFnM5M PcHF95/cJw0yheWWDKjQnhICBOYg4HRmDiku9h6S+6RBprDMkgEV2lNCgMCcBJzOzCnNxdxL cp80yBSWVTKgQntKCBCYm4DTmbklOvv7Se6TBpnCckoGVGhPCQECcxVwOjPXZGd3X8l90iBT WD7JgArtKSFAYM4CTmfmnO5s7i25TxpkCssmGVChPSUECCxBwOnMElKe7D0m90mDTGGZJAMq tKeEAIGlCDidWUrSk7vP5D5pkCksj2RAhfaUECCwNAGnM0tLfPT3m9wnDTKF5ZAMqNCeEgIE lijgdGaJqY/2npP7pEGmsAySARXaU0KAwJIFnM4sOf3R3HtynzTIFGJPBlRoTwkBAksXcDqz 9BXQ/P6T++SoB5nPzWq32nzeD+Rzs1utt03CSgbU5AY9KQEC8xBwOjOPHCd4F8l9csSDzHa3 /ljvvkeVw+DS/d/7YLfrj12LWSYZ0ATXr5YJEBiTgGFmTGksppfkPjnaQebmNObOILOfZHYf q83ulzObty2YZEBvuwkXJkBgOQJealpO1iO50+Q+OdJB5nO3Wa12P68qHU5nPnYHmI+P63/f /d+ZBJMBZe7IsxAgsAgBpzOLiHkMN5ncJ/8cZP773/9+DRDnQeL093//+9+XVvdOTKqa9651 9/qHgSf/8lIyoCqhOgIECNwVcDpjYQQEkvvkn4PMv/71r90///yz+89//nMcYA5/P/z53//+ 90NxeInneFrSeU/LK1DH611d65dB6fA+mV/fEPxKDw9qkwG96RZclgCBpQs4nVn6Cnjr/Sf3 yT8Hme6d3mvsMEgcX+7ZXr0Z9zB47N+/sjn+/PTn8o253ZeLroaWe+99Mci8ddG5OAECCxRw OrPA0DO3PMpB5nAC87Cx60Hj+L87pyVXw0n3JOXwxt6P7pTz9EtLp08uOZHJLEzPQoDATAWc zsw02Ha3NcpB5vzS0q8sdweZ3z4+fTiNuX7T7uOPWu+O179+Y6/3yLRbpp6ZAIFZCTidmVWc rW9mlIPM+U2/ww0yl28evvw00r0B5fTvLl+iuh6IMtElA8rckWchQIDAl4DTGUthAIHkPtnr PTIP7633iczjNwY//FbfcyO+R2aA5eYSBAgQuBJwOmNJvCiwgEHm6r0tdweSq2/2vYPqm31f XGnKCRAg8EjA6Yz1URRYxCCzH2V++ZK7H7U//1tLDb7V99BdMqDiGlJGgACBYQSczgzjuLCr JPfJ4V5aWlBIyYAWxOpWCRAYs4DTmTGnM7rekvukQaYQfzKgQntKCBAg8B4BpzPvcZ3hVZP7 pEGmsICSARXaU0KAAIH3Cjidea/vDK6e3CcNMoUFkwyo0J4SAgQIvF/A6cz7jSf8DMl90iBT WCjJgArtKSFAgEBOwOlMznpCz5TcJw0yhYWRDKjQnhICBAhkBQwzWe8JPFtynzTIFBZEMqBC e0oIECCQF/BSU958xM+Y3CcNMoWFkAyo0J4SAgQItBNwOtPOfkTPnNwnfx9kztN1+u8jCuK3 VpIBTYBDiwQIELgUMMwsfkUk90knMoXllgyo0J4SAgQItBfwUlP7DBp2kNwnDTKFoJMBFdpT QoAAgfEIOJ0ZTxbBTpL7pEGmEGwyoEJ7SggQIDAuAcPMuPIIdJPcJw0yhUCTARXaU0KAAIHx CXipaXyZvLGj5D5pkCkEmQyo0J4SAgQIjFfA6cx4sxmws+Q+aZApBJcMqNCeEgIECIxbwOnM uPMZoLvkPmmQKQSWDKjQnhICBAhMQ8DpzDRyKnSZ3CcNMiMPqNCeEgIECExHwDAznax6dGqQ 6YHV4qHJgFrcn+ckQIBAVMBLTVHuxJMl90knMoVEkwEV2lNCgACBaQo4nZlmbne6Tu6TBpnC skkGVGhPCQECBKYrYJiZbnadzpP7pEGmsGSSARXaU0KAAIFpC3ipadr57btP7pMGmcJySQZU aE8JAQIE5iHgdGayOSb3SYNMYZkkAyq0p4QAAQLzETDMTDLL5D4570Hmc7Nb7X8JDqCHP+tt Zz08+tnuc7dZnevWu27Z4QrJgCa5gjVNgACBIQW81DSkZuRayX1yxoPMdrfuDi/b9X4AWe02 n4cMH/1s/9P1foj5mnq6/3xOPxlQZMV5EgIECExBwOnMFFI69pjcJ+c7yBwGl9Vmf7Zy/ut0 ynKcTx797DjknAee/WOPJzeXpzLJgCazajVKgACBhIDTmYTyy8+R3CfnO8jcxHB1CnPx887P bgaXq8EmPGm+vJpcgAABAnMUcDoz6lQNMm+I53Ozujqh+XmSi589Ocic33fT/fsb2nZJAgQI EPhNwDDTfG3c2wvP/y7V3CJOZI6DytXLQ98vOF3/7MlBJhWQ5yFAgACBBwJeahrl8nAiM2As pyGm856XzrXv/swgM6C+SxEgQCAk4HQmBP3c0xhknnP681G9TmK+r+bNvn/CegABAgTGKGCY GU0qBpkhojierNw/iTl9EumXn+2f28evhwjANQgQINBAwEtNDdBvn9IgM0AMx2Gk82V43S/F e/Sz01OfPsV0qvGFeAPE4RIECBDICjidyXpfPZtBpin/30+eDOjvbjyCAAECBO4KGGaaLYzk PrmITy0NnWQyoKF7dz0CBAgsSsBLTU3iTu6TBplCxMmACu0pIUCAAIFrAacz0TWR3CcNMoVo kwEV2lNCgAABAvcEnM7E1kVynzTIFGJNBlRoTwkBAgQIPBJwOvP29ZHcJw0yhTiTARXaU0KA AAECfwk4nflL6KWfJ/dJg0whqmRAhfaUECBAgMCzAk5nnpXq9bjkPmmQ6RXN6cHJgArtKSFA gACBPgKGmT5aTz02uU8aZJ6K5PJByYAK7SkhQIAAgb4CXmrqK/bw8cl90iBTiC4ZUKE9JQQI ECBQFXA6U5W7qEvukwaZQmTJgArtKSFAgACBVwSczryid6xN7pMGmUJcyYAK7SkhQIAAgSEE nM6UFZP7pEGmEFMyoEJ7SggQIEBgKAGnMyXJ5D5pkClElAyo0J4SAgQIEBhawOlML9HkPmmQ 6RXN6cHJgArtKSFAgACBdwgYZp5WTe6TBpmnY/l5YDKgQntKCBAgQOBdAl5qeko2uU8aZJ6K 5PJByYAK7SkhQIAAgXcLOJ15KJzcJw0yhcWeDKjQnhICBAgQSAg4nflVOblPGmQKiz0ZUKE9 JQQIECCQFHA6c6Od3CcNMoXFngyo0J4SAgQIEEgLOJ25EE/ukwaZwmJPBlRoTwkBAgQItBJw OnOUT+6TBpnCYk8GVGhPCQECBAi0FHA6Y5Bpuf6eeW6DzDNKHkOAAIGFCyz4dCa5TzqRKfye JQMqtKeEAAECBMYisNBhJrlPGmQKiz0ZUKE9JQQIECAwJoEFvtSU3CcNMoXFngyo0J4SAgQI EBijwIJOZ5L7pEGmsNiTARXaU0KAAAECYxVYyOlMcp80yBQWezKgQntKCBAgQGDsAjM/nUnu kwaZwmJPBlRoTwkBAgQITEFgxqczyX3SIFNY7MmACu0pIUCAAIEpCczwdCa5TxpkCos9GVCh PSUECBAgMDWBmQ0zyX3SIFNY7MmACu0pIUCAAIEpCszopabkPmmQKSz2ZECF9pQQIECAwJQF ZnA6k9wnDTKFxZ4MqNCeEgIECBCYusDET2eS+6RBprDYkwEV2lNCgAABAnMRmOjpTHKfNMgU FnsyoEJ7SggQIEBgTgITPJ1J7pMGmcJiTwZUaE8JAQIECMxRYEKnM8l90iBTWOzJgArtKSFA gACBuQpM5HQmuU8aZAqLPRlQoT0lBAgQIDB3gZGfziT3SYNMYbEnAyq0p4QAAQIEliAw4mEm uU8aZAqLPRlQoT0lBAgQILAUgZG+1JTcJw0yhcWeDKjQnhICBAgQWJrAyE5nkvukQaaw2JMB FdpTQoAAAQJLFBjR6UxynzTIFBZ7MqBCe0oIECBAYMkCIzidSe6TBpnCYk8GVGhPCQECBAgs XaDx6UxynzTIFBZ7MqBCe0oIECBAgMBJoNHpTHKfNMgUFnsyoEJ7SggQIECAwI9Ag2EmuU8a ZAqLPRlQoT0lBAgQIEDgUiD8UlNynzTIFBZ7MqBCe0oIECBAgMB9gdDpTHKfNMgUFnsyoEJ7 SggQIECAwO8CgdOZ5D5pkCks9mRAhfaUECBAgACBvwXeeDqT3CcNMn9HffOIZECF9pQQIECA AIHnBN50OpPcJw0yz0V98ahkQIX2lBAgQIAAgX4CA5/OJPdJg0y/qI+PTgZUaE8JAQIECBDo LzDg6UxynzTI9I/aIFMwU0KAAAECExEY4HTGIDPyrJMBjZxCewQIECAwR4EXh5nkPulEprAA kwEV2lNCgAABAgReF3jhpabkPjnvQeZzs1vtgziAHv6st3dyPT5mvbv80eduszrXXf/Me2Re /+1wBQIECBCYjEDhdMYgM0i62926O7xs1/thZrXbfHYvfnrMx9Ugs13v/93X1NP953NlMqBB KFyEAAECBAi8ItDzdCa5T873ROYwuKw2u5+55XTKcj6V+dysjqc0q/X66kTmMNx0Bp47JzbJ gF5Zd2oJECBAgMCgAk+eziT3yfkOMjfJXZ7QfG63pyHnelC5GVyuBpt9STKgQRegixEgQIAA gVcFnjidSe6TixlkjicwFyc0X0kWB5nz+266f391bagnQIAAAQKTEei8B7XlnriIQeb0MtLt m3aPi6U4yExmoWmUAAECBAi8S+CXl5qcyAwIfhpirt/k23kCg8yA2i5FgAABAosTuPNSk0Fm oFXw8CTm/Bx/vSfGm30HSsNlCBAgQGDWAp3TGYPMEEkfB5AHJzG/DjK7nY9fDxGAaxAgQIDA 4gS+TmcMMgMkfxxG7rwR6eZL8e5+Id75+2Vuv2Pm0FoyoAEoXIIAAQIECEQFkvvkIt7sO3R6 yYCG7t31CBAgQIDAuwWS+6RBppBmMqBCe0oIECBAgEBTgeQ+aZApRJ0MqNCeEgIECBAg0FQg uU8aZApRJwMqtKeEAAECBAg0FUjukwaZQtTJgArtKSFAgAABAk0FkvukQaYQdTKgQntKCBAg QIBAU4HkPmmQKUSdDKjQnhICBAgQINBUILlPGmQKUScDKrSnhAABAgQINBVI7pMGmULUyYAK 7SkhQIAAAQJNBZL7pEGmEHUyoEJ7SggQIECAQFOB5D5pkClEnQyo0J4SAgQIECDQVCC5Txpk ClEnAyq0p4QAAQIECDQVSO6TBplC1MmACu0pIUCAAAECTQWS+6RBphB1MqBCe0oIECBAgEBT geQ+aZApRJ0MqNCeEgIECBAg0FQguU8aZApRJwMqtKeEAAECBAg0FUjukwaZQtTJgArtKSFA gAABAk0FkvukQaYQdTKgQntKCBAgQIBAU4HkPmmQKUSdDKjQnhICBAgQINBUILlPGmQKUScD KrSnhAABAgQINBVI7pMGmULUyYAK7SkhQIAAAQJNBZL7pEGmEHUyoEJ7SggQIECAQFOB5D5p kClEnQyo0J4SAgQIECDQVCC5TxpkClEnAyq0p4QAAQIECDQVSO6TBplC1MmACu0pIUCAAAEC TQWS+6RBphB1MqBCe0oIECBAgEBTgeQ+aZApRJ0MqNCeEgIECBAg0FQguU8aZApRJwMqtKeE AAECBAg0FUjukwaZQtTJgArtKSFAgAABAk0FkvukQaYQdTKgQntKCBAgQIBAU4HkPmmQKUSd DKjQnhICBAgQINBUILlPGmQKUScDKrSnhAABAgQINBVI7pMGmULUyYAK7SkhQIAAAQJNBZL7 pEGmEHUyoEJ7SggQIECAQFOB5D5pkClEnQyo0J4SAgQIECDQVCC5TxpkClEnAyq0p4QAAQIE CDQVSO6TBplC1MmACu0pIUCAAAECTQWS+6RBphB1MqBCe0oIECBAgEBTgeQ+aZApRJ0MqNCe EgIECBAg0FQguU8aZApRJwMqtKeEAAECBAg0FUjukwaZQtTJgArtKSFAgAABAk0FkvukQaYQ dTKgQntKCBAgQIBAU4HkPmmQKUSdDKjQnhICBAgQINBUILlPGmQKUScDKrSnhAABAgQINBVI 7pMGmULUyYAK7SkhQIAAAQJNBZL7pEGmEHUyoEJ7SggQIECAQFOB5D5pkClEnQyo0J4SAgQI ECDQVCC5TxpkClEnAyq0p4QAAQIECDQVSO6TBplC1MmACu0pIUCAAAECTQWS+6RBphB1MqBC e0oIECBAgEBTgeQ+aZApRJ0MqNCeEgIECBAg0FQguU8aZApRJwMqtKeEAAECBAg0FUjukwaZ QtTJgArtKSFAgAABAk0FkvukQaYQdTKgQntKCBAgQIBAU4HkPmmQKUSdDKjQnhICBAgQINBU ILlPGmQKUScDKrSn5EkBOT4JNYGHyXICIT3RohyfQJrIQ5JZGmQKiyIZUKE9JU8KyPFJqAk8 TJYTCOmJFuX4BNJEHpLMct6DzOdmt/r42B1AD3/W2+4K+NxtVuefrXcXP9o9+tnueC1/TV9A jtPP8HwHspxHlnKcR46Hu0hmOeMdebtbd4eX7XoPu9ptPk8LZbveDzFfk033n//6WTqg+Szr 8d1J8hdtfHc/r45kOY885TiPHNP75HwHmcPgstrsz1bOf51OWU6zy2HI+RlqdseTm/OpzKOf na7ll20ev2xynEeOfiflOB+B+dxJ8v++zneQuVkPnROai8HlarB59LOvayYDms+yHt+dyHF8 mVQ7kmVVblx1chxXHq90k8xyMYPM52b1c0IzwCBzft+Nv/+8B4kFC2vAGrAGrIHzGnhlEOpT u4hB5jjEfL90tOd5cZDpA+yxBAgQIECAwPsEZj/InIaYzvthDpYGmfetKFcmQIAAAQJBgVkP MjcnMd+wr73ZN5iPpyJAgAABAgQeCMx3kDmeulydxHQgXvn4tRVFgAABAgQIjENgtoPMcVDp fBne7ZfinT7FdPr311+I9+hn4whOFwQIECBAgMD+K1EgVAUef/tv9arqhhTok9GDx159Q/Tl 9xMN2a9rPS/QJ9uvq968N+75Z/PIoQQGys3v5FCBDHidHtk+/Nb9/i0ZZPqbHSsevTRVvKSy gQX6ZPTwsYcvV7z871sM3KnL9RXok+3p2udT1uvT177P7PGvCAyWm9/JV2J4S+3z2T7+1v1K cwaZitrDbwYuXVDR4AJ/f0Pzz1M+fuzhF3R1/m9bDN6nC/YX6JPt4UOKh08u7jNcrzvf4N3/ WVW8KjBcbn4nX81i6Poe2T781v1aXwaZitsT3/5buayaAQX6ZPTwsYfj0t/fND5gxy71rECf bPfX/NxuT/+pEi8tPSv8nscNlpvfyfcE9MJVe2Z7+UxXJzSFNgwyBbSH30NTuZ6a4QX6/GI9 fOzp/9NYff+X0g01w4fV84p9su1e2iDTE3rghw+Wm9/JgZN5/XLVbI///0XnW/eLnRhkKnAv hFZ5OjUFgT4Z/fkFid3h5fB/RL3PopDIcCV9sjXIDOf+6pWGyu3mqzX8Tr4azcv1xWx//663 fh0ZZPp5nR5dDK3yVGqKAn0y6vPY6/dHFdtT9oJAr7w6z+NE5gX0AUrfltvV+zMGaNUlegoU sr37rfs9n/b8cINMCa7HG5tK11f0ukCfjF547OuNukJvgT55GWR6876t4F25GWTeFtnTF+6X 7VAnMQaZpwO6/8DnP2r24hMpLwv0yejXxx7eYX/9HxxdbU5vHvVXM4E+2X436USmWV7nJx4k N7+TzXO818DT2d68NPj67TiRKRv69t8yXazw94xuP775+2PPH9+9/y3QsZvxRBcCfbL9KjTI jGANDZOb38kRRHnTwnPZ/v2t+/3vzSDT30wFAQIECBAgMBIBg8xIgtAGAQIECBAg0F/AINPf TAUBAgQIECAwEgGDzEiC0AYBAgQIECDQX8Ag099MBQECBAgQIDASAYPMSILQBgECBAgQINBf wCDT30wFAQIECBAgMBIBg8xIgtAGAQIECBAg0F/AINPfTAUBAgQIECAwEgGDzEiC0AYBAgQI ECDQX8Ag099MBQECBAgQIDASAYPMSILQBgECBAgQINBfwCDT30wFAQIECBAgMBIBg8xIgtAG AQIvCPgvW7+Ap5TAtAUMMtPOT/cECBwEDDLWAYHFChhkFhu9GycwF4Htbv3xsfs4/lntNp9z uS/3QYDAMwIGmWeUPIYAgXELOJEZdz66I/BGAYPMG3FdmgCBkIBBJgTtaQiMT8AgM75MdESA QF8Bg0xfMY8nMBsBg8xsonQjBBYsYJBZcPhufekCBpmlrwD3T2AOAsdBxht95xCleyDQV8Ag 01fM4wkQGKHA526zOn1yab0dYXtaIkDgbQIGmbfRujABAgQIECDwbgGDzLuFXZ8AAQIECBB4 m4BB5m20LkyAAAECBAi8W8Ag825h1ydAgAABAgTeJvB/5zkni81yS3kAAAAASUVORK5C YII=</item> <item item-id="532">iVBORw0KGgoAAAANSUhEUgAAAqkAAAAnCAYAAAAsA9FGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAsCSURBVHhe7Z2J0eMsDIa/ulKQ69gS Uo2bSTFZfMWYwxKnBbw7888/u8a2eHQgBCZ/X/wBARAAARAAARAAARAAAWEE/oTJA3FAAARA AARAAARAAARA4IskFUYAAiAAAiAAAiAAAiAgjgCSVHEqkSXQZ56/H1kiQRoQYBL4fOcZ1suE hWYgAAIgII5A50nq5/t+/X2nWRz3NgT6vL/TG4N8G8qClC4Cn/f0rWfCiDf9WCF02Y8u0ZOW CXScpG5B5u8PSWqsgc7vN6qosfBwnxACKg68a8xSEW+EKDyDGNBlBoh4BAhkIdBlkvp5v9bk 9O81faeRKqmq8vla+r3/l1ZBntXgPnAVNSvLLL6Kh0QS+KjJVsk0FfGmn2IAdNmPLiPDBW4T RqDTJPUYlEZaspm/k141nieVrL7ilzrnd/y9wow8XJzMLMMFwB05CShfSJuw3QtzJsGIN63P a6FLZeupY0dO38WzhifQZZJ6anWgQWMJLC99eT6t7/M0Fa0+ifa8zCxF93UI4dSko2SW+mOY 5nNNqaJ7H4Euq7hMU0YPYZ8ggCT1CepV3mlUA4PeuQTogZNUi1UKyyDwaFyEgNLfZQJX5CXq oQMlNt37CHSJJLVUnMBzQwggSQ2h1VDbdW9V9MBca1BvA2gayzb62LeUtSZd4yY2/fkIdDnw Fwl9h8PGeocktTGFccTdNv8nVEKXj4YwjV5RJ7PkKAxtihOYp4T92Wzpxkxs+vQR6JJt9mgI AgUJIEktCPeJR28DRuKAvOw3Q5K6J6iJLJ8wArzTXoyeahxFN15ikyXeiLRX6FKkWiDUcASK JKmfj5SFgn4CDYdptopG50lqVZadhxQOSwkIZpWkvop/eo54I0HXeWSALvNwHOcprcRCrkak 9EdLUj0fhxznRXoqa0vwPy9tjn0OBsszO65ErUd1JCyre6wliumqpzys12S3k0rq0yy5AaGF dlEshXSsTpJauLOdxht15tH1+LzCGEU8vltdiqB7CiGJcw40A/aHSFLvg4edzJhJqtLKkjxF f8CTQ6sFn1HAYGKZLoPwcYi//v+YXHORoXzVqaBe9kdLYFm+l3XeEMuyjnT0W7qw6U7jDZJU 2n45LWJ9NOfYwZGzahtBPpOl3wP25yZJpWa3y3W9inj+lNyaJGnZURdVjNXCNiZbEqiqlup3 wa+VVOO6OhD/FVRplcHUO6Abv8JU9idn+2DpDUxgGRazE3m1maSOEW9+Sar6ZbDzF/Pyr1CF GVzu1qPoci9MHeNk9QJVb5xH64/td54kld6P414SdlRS19zOPGjeFGRThOzqnWsrw5KsHsGU uk4HvbxM6ff5WrjlsCct2wy8xGDSKEv2LxuB5Tbn4/4SVDovdpLKlinev3h3Uj5AXaffIiXe nJP/M5Zk2V8PXRrb73abIMdj2nb8LXRf9eQDKY+/vZfyCeo6LVhdn6Hkpa631h+3vM4k9Sj/ +5eKfcbn+/cO9qa6yuz6vzmuewPtWhUykztBTLkfTpl9zvV79xyWa5ujqi2EZcqg6FvGcdoK HXx+LSSzzMpLqzg4qjfs1ZwUmQLUQjbNEW9u/VFQvHHuSTUnJvf6dfLsSZcS450LOrkcHaFH 0lm05NscV1seo3PEAEl2Q/Vnq1ycq9V7HLeS1GMJ975K5tsKcB/4OPsjfftjzC0EXLvN1c55 WLWWQFDXr0mDqwJZjmkwg9skVV9+0PthTEQSPuQiWRqJmz27fYhl8KDoY6kH3bRqtWiW2Xhd V35c1Y7rR183HhEsU7B3sW6g9EZd34K99iGl5Y8P+Yg7m3R8YKuPJbR+JSeplK6o6+t3HVry JSbeOaA7+/JrF6lHlsfsZ1qbE9SGx2jKLqjr0uyGlNf4xb7Dzq0k9fpl/nVv6Wkrvspo6Oyc aX3MZq4Ph8x/8z5qrzr4EmkKMHV9nSOsy+Nq4HDuVa3IlOjratwWiDOh+tmIOUs17vEmBoms LR1a1cZ6LOMmVQRL0lY0Ao2xLMPL2MvtqD7fHeYfJ9PX+aGimHjjmGhe/bGej2yD5d05tS5Z 9LGE1u/hEV3q0gx4D8Y7Spf3SWpZPVJjMHW9+hidGLs5/bmYTmm7SezPNrHWVkV3ee+/7t9L xXbiVm4WHhtkmHlsfDOqVE1d19/sXMItxzS800oWc0bq2sd0u7STsMUjhKXqnJjKArcKF8Ky wHL/ukfcs5e4KstcvKwTREzbWxIe5t5prkzhThV2B+UD1HXrbSYTYfHGSmI1+Uj9etB2qsuq Phpmtdv3J77vFGL1yJWB8gnqurQxmpKXum5we9xuKHk99kGek+reVxlaMU1IWLgGWrzdfnrB L2M/qmHXD6fOUw3M62b1S8g+Sic3x6BuGthvv5vrbNbUDfMU611orwwP2Sd3UAxhmZqk7kso pF0+wTIXLyvpdySp01uRYPzhysR4VFoTygeo65cR1/EBzUM+4oRix8q1WHFMlEn9Ck9SSR9k 6vIJHw024uvk55IYxeqRLQPFkboubYym5KWuSxsnCXk99kEmqapOtQY4c3bk/srt+K1zY5uA q3J0MbzNsGV/3b8IfLDwHUGlX1fLW5NnVulJPPIyZXu2e9hw/Nb5tcq9JNmuakwuXTJZrtLb k6BHWAYkODyWi8mFHmPmUqdQlrl4kRUaZR+cDfGrKU3aj5Ok+VD63Tnijd8fH/ERb5J6bIPa P4bUV3JI/UpPUjOOHZLinc/Af8m0kTfE6jHIkXL4jD/u1veZTP0RYzc3/aErqUGW4EwMfE9g f1kbKoL09r6lD2/iwa84F2caM1iTe88SFHa7tWDb73vNQwSxTOh2niTVEKA7lsReN2WX7zlF CY3c66nQ+/PzVnyEv5exEU3RYnbno0cxwd5z+KhrtjxGu6yoabsh9qT+/dOKqqrznL/7ZhUX dlZ2TPtneotj+ch3RFH6G1hPCHYA1/5Kx5uqMJ3VjxWwFkg3AUsmqGt806rSzGUjufbJsh6N K3M/Jfex3bG8Ll2bev+oQ+LLDoQC4w3TH9vwkXv9cs2e106gLruJdzX1yNO2dw/tzQqWaJ9p Ora77WPNTJeEVE9K+X+/HilhmwV/ps40KUYze3nLva+W8ajUJhFJ6rGlIEf1I1l8Nbhz09SN sf3TrNxVVlJWg+X1fa59sWvmvG5VkcCS7J+vQZblfuPhXbLUkovLR3/KBoqWUWXGG74/tuIj Pv1Ge5bjRpm63GoAenxtOd7V0GOATTQ+Rls9bT622/bxS1KPZDXm/wEmUb6p0+ieSJbLd7X4 G0ZZJi0OEi94jIA67i1kQSBYTsSbYGRib4AuxaoGgo1L4C+ugroBM7cEiMW4VqN8s0+xUosQ bA6opooQGEKAwI9A6SqqBzXiTT82CF32o0v0pEkClyTVlXhSe1Pl99o89kC+xJAQBECgVQKI N61qzpYbuuxHl+hJqwSuX0u12guv3Agy3akUHQIBsQQQb8SqJlgw6DIYGW4AgQIE+k1S969b 5Z+9WkCreCQIgEBdAog3dXmXfBt0WZIung0CQQT6TFLXDfDYgxpkCWgMAiAQRwDxJo6bxLug S4lagUwDE+gvScVG94HNGV0HgcoEEG8qAy/4OuiyIFw8GgTiCHSXpPrOB1zO8Mx2Zmcca9wF AiDQGQHEm34UCl32o0v0pB8C3SWp/agGPQEBEAABEAABEACBcQkgSR1X9+g5CIAACIAACIAA CIglgCRVrGogGAiAAAiAAAiAAAiMSwBJ6ri6R89BAARAAARAAARAQCyB/wXEUV+DVs4fAAAA AElFTkSuQmCC</item> <item item-id="533">iVBORw0KGgoAAAANSUhEUgAAAEQAAAAVCAYAAAD/wUjgAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHQSURBVFhH7ZeNjcMgDIWZi4GYh2my TIahmF9jTFwCuouqVKrUC8HA5+dnTrn30xBQL4+WwAuEKOIxQM7zfIRYr4Ecxill3LF5q4dR zpSgp7NaOW0zkMMZpV358/baEAev812gPwdyWu1UpeF3SYHAI+u0tn5k5bMFSAyiwtdnyVKF kPHDb3xKQTAfKy7CiOv5LwIFKqqquQMmAbGwx7yGrHakEE66ECgHkcblTffqgDmMQuAxlOuS SnLyKoSwvpDACoTzC/yMGe8WAKmXbND6HRx8BMQ715qXcCVDnyHFJ/gFSDgczUg4YCQsjfuU tgcIc7E5jmr6GlRjN7II0RscULxW/J3jZ/XuAwIKIrtvu8ko47PKSWdOahwDk4AQP0vJXyqZ UOfDmqQb+g+F0LJFe+g6WdxvZ6o1y9SUUkcoKelNq+qVy/qsEvZ4CE4YKLbYQmfaHZDq+OO2 27ZJYziFRFBcy+S7TPIn0nb3dBnvYeFqkNou9khZIVOOFV+mJXOrrvl11+8h0nkkD5Hmc+MY iAgjBhippAm/5aYqHagt4a7LSNPZcQQk3knQrTP97rtA2+76uKveMXOSi3vITJhffvcx//4/ BfILhGTiBUKAfADLuEdYo2qKMwAAAABJRU5ErkJggg==</item> <item item-id="534">iVBORw0KGgoAAAANSUhEUgAAAJoAAAAqCAYAAABLNUJiAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQqSURBVHhe7ZzplYQgDICty4Ksx2ps xmJYDo8ICQHFjK6Z9+bPOgImX+6Z7Yy+VAICEugE9tAtVAJGQVMIRCSgoImIWTdR0JQBEQko aCJi1k0UNGVARAIKGibmaTBdN5hJRAXf2ERBU9BESFfQvJgnM3Sd9WLu3ZtxVI/Wmj4Fzcxm 7DvTj/Mi2xU6DZ0tYVPQsHxMc7SWjPm1Pg/aPPam60fr18BrHk1fWAxMY3RvcxW9bUEbIca0 jFLQLoDmIB20NE0twUaEPRUJlx8F2jwf/IqMKZ8NndbrDVteJ3PU3C4/kV3mQLMtqKB4AGhx UozW/aA6cxUalTCHtXLWPg3wOpaQ2+pPhLuwd7cdtqwYiAWJyvymXE9GdkEOpz12ZIgVoIWN oUv0+U0C26K4zCH9fYcnQCB3eVKcO93mOPYzl7U33OcLqtIbQJOT3UXQXMsI6K8cNFRo7jC7 5wngWe9glTCQHs3dA5UElQw9i+1uWa8Xx/rbWKtZmDQCrh8XXZ/Ki45wPEnZLaDZYqffeowF xrXJ0el1Z6McNEwRvjqDoI3L2IYOnalFuoWJsO3gznq11MvW8HL6s+5cSUzh+nHcdf40bWXH 7ZemEHgEo9eBIf4CaHFuc+gPEDkalQdSfz96TE40UtdRhXNFBXI9UZw33HVCEedH0rLDQmf8 N+ChEYcAI9JJ0HKQ7R4qTSSpuJ8XYklC6h4qjJCQd8kCFZQ6QOKQzvXjuOshLIICKIoW65gs fZTrssMfHTNyuNcxamHGB+VUD9pidfnciQqdlIeqtdYKKm74KCXUXOOXBQ0Jx8fqsrHsFj3S NsiBFuWLSJP7PGje/Ze0HXKgYSXzdas869FIL4h4xpXZVqHTVjuZFlGs6PuiAe3RYl2BMyQF UQrmudCZuPJs+/Bf52geEKIYoPtxNf06zPBqvf7V/DYtBrwxr7lYUqjhoK1iSkInleNsrQvE 0qm8AXPLeOVk6861NQJvemrVSbY3uH7csZUzDJhHoyvptrLjcooFHN+CWfJemPCzHo1sb3Ab t7pebmmP7aP5dkxNT4mQXRw6T+VNROC7vQfJ5WhWRsP+hYOfzDopyzyITHQyUG9ERSMoblkI GgtZWOw5sjuG8uRc9AiKk0rL63RDN+xS7vVaniqbdSYD/8l+HebiMBaARqUmNWmJvOzoPlpm qC6lshfscwhpVBLuvMs6CXnBM4keMTXCn4RO0Wc+s1khaN7zig3+zzzIL+7B81cFbQvV2I9T 6IH/L1T45j0VNPbHKXTofLPipc+uoHHDcOqbJdKaevl+nweNnUEqaE0QV9DYH6do6GxB2udB QwfbxVVnCxV8Yw0FbQmN3DD8kV8pfxGjCloY7IRfQhH/ewMd+L9IyU84qoL2BC184AwK2geU /IRHVNCeoIUPnEFB+4CSn/CIf0zOGWFqT0oeAAAAAElFTkSuQmCC</item> <item item-id="535">iVBORw0KGgoAAAANSUhEUgAAAIoAAAAVCAYAAACZt3byAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALPSURBVGhD7VqJccQgDKQuF0QdKcHV uBkXQ/h8FiCJz3DOhMxkcncy32q1krgItX4WAgUIiIJn1iMLAbWIskhQhMCriHKeZ9Gm/9ND b8EEEOVU+ybUtnPOOpQUQonPr1QH6jU3l8SNdsQhoT1e26yzKXYrI9lySH1G6mx287y9cW9z MHE+5HyDbb+CKG4BSKRz3xDAnNMNmajN2HGBESHpuatt29VXNCZHhJy9gSjzMBlNFBScMPId cTRJNqkkqShmDIzWm1h2LCCQiTBe4Ro8gg6BSqmVbI8Vo9J+aJJzipTsYSYmnii72eOVHRj1 9HutUBQEYRP1IEWcenGXbejUk0bO/XxCCkNOVlVSlaunDpb2DIAXeL32/I6exSS33kX6mxx4 Zgjn6SCKVwI0v1BEoeog6vMJtQqmlPCzBnsCvA2ou7YLIZuNCZZ64s+AgvpAbSQKRxJOUaj8 yINVUniZNHUX2dFrZgLr1Fi1rGNdxPXadeUbFuaRCjs7Vs/1Y4JrCxZ8cK0wyC+1qyeKjw6+ dqAUhVKI2qjKyWu5vZcIufG2Q4qIGnY3D2Pi/UPHRo4oUb3kg6aOKFaGS9pWjihjoqdVUdBW tzP18O1z7KhvKErsA7CHpNt0+y0nSiKZXNT+oRrFF9531MfFXpxma+0QJ0w5a9W0t25Li1kb ZFf6TRoIgihontc69ml9gws36r6ktuvxtUDUHtvIHN713DWVOzvWHsMWPmfX0SqxCzm6Q8O7 nlZMcmnXE8228L6WgxjnFSW3wFP28oiYd4/y1Nn8PHGn1FQ3EKXo8LulTI0ifsKvfUa+pyIo gOabN7O9vIFEyZLELfYeTMJUGHQ9hhSQGDPe898FlatOr0+HjAdEoVJ22pXkvh+biQlxj3KR ZPbfIU5akw5BQMxWkjilDTnVmvRxBAKimNlH1ibY/I+faE04BIFX/ePSkBOuSR9B4BcqPeVV NSSo2QAAAABJRU5ErkJggg==</item> <item item-id="536">iVBORw0KGgoAAAANSUhEUgAAAJAAAAAtCAYAAABBEuITAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPmSURBVHhe7VoLjoQgDOVcHsjzeBov 42EYQB2hFCkWHHG6ySabjXz6eLSvLUrLjyDAQEAxxspQQUALgYQELASEQCz4ZLAQSDjAQkAI xIJPBguBhAMsBM4JNI9aqVHPrCVk8JsREAK9+XRvsA0QaNajUsbr2N9BT5N4oBvOoOslPAIt ehqUHqZlM2gnk4Swrk+48eYPAmF6RzRQY/j7n/5LoGUatBomvfsfZ9oy6eGhInqewF77P4uH W2Ai1BSnU10SyJJ9lNTwfsKZiHRInHX5/kKY8YrjV6fdj2HLFZcl8P8tl7o892ISKx/+SESr 79V+poiGBlxG4scD51F5XhRLYEwW/EQ+gQsM0vjVkOem8XZ//WeFTm8GMRgSaNOfUJP+mPTr 8saxePvqq5VhRT0Kqk98cwGaAg9qZXNpomHH+5cA7N0jlvVSUHPU4RAHLzv28I59EciWFSL1 HN9eNKOsgjy/VhZ7H5fughrcXooz9lIvg8GGlljw8fLDb1cEQsFHa1UrSDHXSr0FYB2yltuT 71Fc6WOXAXAPCaKkCGTDhe0IULQQlUAkvDwvixDY94zdEQi69PUAjwPz/w6+dcDZ765rqHyt DBy4I5NPgPVgYk9xTiySZyESKI9XePmwS2v/t2PbHYFgCKOEK3tjXG8vp1c275E6sCyBkBAb Zlspj1LqmTY56+xK/CaMyOMFNBpSTEYJlNxIaoM3/n8PJPQQlhA83Mp6cbsHEub3Hkjn2lNR ohKTvtsQ5oxPiOhAbDqQEO3AJdCmVWi1MsyrlHqaBhpot8HXNj5e9u9A9+AE2o+hqxDmenOU ND4lPNkEOjKm3WOPI/bkZfU0WAqOZ2G27bhpOf+CRId5kkoSNdA6A0jjfbyyHqjnNN4Zfl0E N2kOw5CQ0VGuEEfMrNrVgc5qGjkNZM5gPBrZfXkgV6ANezFF5Z0qHugktc+SZ7v/USUasSLp bYssvvBxGGYjj3neyriwXqUh9EbibJ4VUAojiUNhpPGoqZ4HSqXIqbQ9nZ7TvVQl+OGtOF6m Aslw0kxFtpJT7Bd3z20kLuYtkLzmuAg+a1h8eW9/VF+nkRg29FiYyGAiArj+LHxU/4ZGIhEv +YyEQMGj+gc3EkmmykctEKC/SHxyI7EFMjInCQHym+hsHwjWN+5sJJJMlY9aIFCPQDc3EluA IXOWI8AKYeeNuRsbieV2y4hKCBQ8qt/6J6RH9zc3EiuBIdOUI1D4qD5swj2mkVhut4yohACv F/a6RmIlVP9omnoEekUj8Y9OvpKp1Qj0nkZiJWT/ZBoegf4EJDEzjYAQSNjBQkAIxIJPBguB hAMsBD4SNzd7LfdBSQAAAABJRU5ErkJggg==</item> <item item-id="537">iVBORw0KGgoAAAANSUhEUgAAAIsAAAAVCAYAAAB2dR3MAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKOSURBVGhD7ZoNcoQgDIU5lwfiHD2C p/EyHobyI0oIMUHB1Rl2pu3YdQE/Xl4SWmXGaxAQElDC+8Ztg4AZYhkiEBNoLpZ1XcWTjxsx gTfzS8SyGK2UUYUvvZS3ddHKHO+tZp6UmeYoFjfeZPbLoQxE4Gv8kFiQMBZtBYQ3fZ0no8DN uVgsm3U20zSb4TUFB/kgP14sdquhY7gHd66h7ff4CvfsrpSIyEXP4TY97SVbQ1eRpi5sA2mx QQF4cM/5Bn71vMRiSU0Eu4qDUxKV05V1ptONC+DvCQrP7dfYRTCldOsCJQ2ec7G05ZfMZVlT JQNc0TVevFhQGiJEQYnFu1Dn2sWvMd+ssE4Ez6XGio0tFBpoLr/56Zh+jsNp4Ro68pOKRcQr cc8t6AQFbr7RYRCs4HMIEsW7lFUqsP3vTgYIm1X+LHAsD6nOBXKxFB0LCDALDv9eyrAfP+fi Es48Lxho0Ql5Z8GhRThFbcRweV3+viTlBCEK6ovNFSjorFicILMPw66Hctpr/K4EGM8rq6m2 YLgolnc5i6+LpKmlQxo6nz8Xx++dheWFutjwDBfEUhsBD9QsW70EClqi5fftvFRYRXPbuojd PWJuLxW4JVYd+QnTUGxGSF6oKbksFnd8kp+xBKp7Lkxt+JFu6OjGjtqFKKpviwXPpXXJ2egu ry2/K90Qw4t3FnmNEM5ZZB3Oc+cswvU3EUs2V54Gmbrn/fyYmkX9wT8TcddUdACMbzzB7S0W ViiJC3Oty8/4wVQJuiEnjFQckuuY9+jnlbuP0BPa3NZZLFRbSh01vJcfcc4ShVL7s83ujVG+ QkDVOkqenr7yoGOd9wkAsbjhuFpliOU+9K+O0Pyfn74KYqybJ/APjmj4CMa3LU4AAAAASUVO RK5CYII=</item> <item item-id="538">iVBORw0KGgoAAAANSUhEUgAAAE4AAAAVCAYAAADo49gpAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGuSURBVFhH7ZhREgMRDIady4Gcx2lc xmHSxRYhUXSHfdCZvnSF5MufxFbA+UwREFNWxwgOuEkRvAqctXYyjPVmGTgLWgqQuuW8ASUE iPhVYJDPYY/4XOGn+VKjBKTH5dnuHAlNV9azQicOgAvQcrBWywtSgudgiEiDT4S3Q1CJtVaD lBreqsF+cEYhSAF/pgwXaKESD6gK3tnkSuVV6hLRroCnZFf40JGwfnCUjwSstIxWXK02Z8Go 0yWrGURdBeMo67PphOOd/wB3Z6nqY1n2qqC58uV+X9DryEoK/tShuaoK1TIJjoNW5LtyKiik nhltoI0ZEw/0/RUNrr4hFfo0bYvahI/FrZsF58uzt/eUmeMUNKrE8YLkLHrKMiTlmvJmVnGe OnNNYIdHrrD3KQ5IvxnMXjSjimsOgtTgUVlVzX1UWQt63D2Y0BDiBNICR9b7RaPVC8qLbNyD mIj0VL3m6rfX5OSXTNWU9BQ7U1U0uOf6RnunfhWtu8d1xr4X3K2uX6PyjW8Ou8F9L7w8u35V dmrlmWX7wT0Tx85dXvW30k4Qo2cfcKPE7vUH3CS4D4sQmcWtCG4YAAAAAElFTkSuQmCC</item> <item item-id="539">iVBORw0KGgoAAAANSUhEUgAAAKEAAAAVCAYAAAAuCo7VAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAMISURBVGhD7VnLkcMgDKUu95A2XE0O rsZ15JpxBbmlA4LAxrL4CRxwMoNndmbXGBBPT08SK2R/OgIXIyAu3r9v3xGQnYSdBJcj0IyE y7JcfthfM6BjYjxShYTzKOQ4by5f5DQIOUwbCWc5ikHaP1szYx6lEKO05tH9U+OF9rbBBLDF 2Bca23ja10m4TIMUOwPVcSgJ4dUkh2FSIxc8KZKlxgtMbodJJ6FyD4CAVcYQUKjo1D+InKAM uzoWeJY9xTjG2KAUeKJKmDk+qwCKKaljV0tMVhJOYON25ojqszHM+ZD4nCE2X1VCN+LBeI8S wmtQnKiBBtBzRPWVAuCczTFnx9PO+S4mqf22gNqJp/fPChrPHspXh+QWNMP1td4/QURLwsfj sSuWjSIh7/f7viWkUTR2NCxAthAJtWpWrg19qRW/Kxh3nPpTmPjSMX2HlJ+hUtr5XBJ6SxnD C4fEGjcTLJqE7/dbExCICD+3283+/nq9VhIS0uhFMIlC9UicnJwIg9RtUzoKApriaYB6oxAd /uy4KT8QBg0x8YuRL7Ax/kdC+FW6XAlNgPp9dchomqx7RrIkBCJuD3zgljZqImHMseMLKVuu QqZSDn/8LMlS83VJ0RKTVXXDgZsiIalPUUBSVEsCn5N6zboqcFFt7bDt+XxqlqYfeuDfU0JN EloPnUzH3jUtWO0wCSshTX3IL86tBLMkOpWOA0yi6Rh/ttWGcRL61C1X8ZgApKMh8sXaqVnp oIX72XG89S9g4jYmWnm22s9pBpk+4JJwrf8PjYgOek/tHyNhWgnDXWuoxrC1As4jTbpjIAm+ MvBd0eSMK5UZfZfdrTBJReRKKp3q1toMNx+1lVCbR65oQs1njITRYxbVJIHE0eyeMOW4zHGa 4v8KE35NmIlK/udFJEyCbexgdVxX/sckH67jDEzCv8PkWDKwfHUWr9D8EhKG2m+3UwvcCwWL 91qnrLQuIuF/YlJwT1gDyhIS1rCjr9kRAAQ4dzEdqY5AVQQ6CavC2xfnINBJyEGpf1MVgQ+v eLNeP14q8QAAAABJRU5ErkJggg==</item> <item item-id="540" content-encoding="gzip">H4sIAAAAAAAA/4xTS2/TQBCe9frdpAkhKaRO4lIe4oSCBQfKJaAKceCl8AMq1zGtESHBdVGP 5ggH/gIXfgLijsS5f8nMw00LJ9Ya78y338x83l03AEChvUbz2df4dtMP0/QgW7y3gMY9NG+2 SAQzGXtAtHnycv9tmhSMwJTzDXzbR4fLx4sTgZ+hOQhMV8TnlIv26jMa8k+/nMc0PjkiygBD s9NZNX9UFHm2f1ykipk7aC24OMyd7b9iiwuYRZ6mAQMRWnPJrh31fwGUlhN9w3liuzI7nsyu L7O3FhnYpMD9sZR5F+7jMwZoMPrjHB0TCk1OKr31iJRNmqSQ3bLJTdtR5xQD9xKnz9ooTv/W d0hXJ/qKwso2XOa17x3cAiV71pWqTk8kdTdk7l1h5scNYipsf5Xjn6sY+pLY2xQ5fYQCkdPn wgMJuhwMhWyPpPowlHm0JV1C1Kr0GFjsNekUrjptS/LounSiY7ghxeVEbspHDc8+6hZfldYs 2jvI4+Xh3ptFPo8Lh7k9unEM78ZFLCe5WZ+osYUvXd/bh2i32afIj0+yoydcR27pgO6fqrky KnxADf4fPSvuFHmcpNGu5qWgJoaqDSpQFXlKBfhJVagMFWhMDZVWgVkRYiIHKnQs5JQTXLKJ Q1kOc9BxiUNkj+pQuo8cTl9DDqc3kMPpTe6Fzjpz0GkRh8git/XieJ7mWRK/kw1xWfZTtBlk +Oj61/Hr3fxnNC4GfwAAAP//AwAUJ4osJgQAAA==</item> <item item-id="541">iVBORw0KGgoAAAANSUhEUgAAAkgAAAF+CAYAAAB51eWCAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACiTSURBVHhe7d1RcuJYEgVQr4sFsYpZ wnywGv56D/M7wSZmBxoLGwxCIGHwRck7E1HR1QVIqfOuO3Mkofro/I8AAQIECBAgQOBM4IMH AQIECBAgQIDAuYABSSIIECBAgAABAgMBA5JIECBAgAABAgQMSDJAgAABAgQIELgt4AyShBAg QIAAAQIEnEGSAQIECBAgQICAM0gyQIAAAQIECBC4S8Altru4vJkAAQIECBBoQcCAtKRV3q67 j4+P71/rbruk2tRCgAABAgQaEjAgLWWxd5tu9fEzFO02q+5jbURayvKogwABAgTaEjAgLXW9 BwPTUstUFwECBAgQeEcBA9JCV9UZpIUujLIIECBAoAkBA9LSlnl/5qi/D2nVbXZLK049BAgQ IECgDQED0mLXedutDUmLXR2FESBAgMB7CxiQFry+2/VH5z7tBS+Q0ggQIEDgbQXee0Cac6Pz 8ZLW99frV5vueGXr1mtzIjG6/123WY18lb//iv/pvj+/5O8M0hxk7yFAgAABAs8XeOMBqR8w +kFk4nlC/WBy7TTNrdcm12J8//1ZocP+Tn/fb25/Y/bxOUjuQZok9gYCBAgQIPBHAm85IB0G jdV6ffZsoTHDfkhZXbkb+tZrt9bj+v4HZ4XmnOH6o4W3WQIECBAgQOC6wHsOSNvt12WyyQGk v9x17UzNrdduR2p3bf8X9biM5oeTAAECBAgsUeAtB6Qj9OSA9DWgrI73BJ0OS9de6/98cNmu 38/Z/UPfFQz3/+CA9HP57XAPk38ykQEZkAEZaCsDqWGq7QFpP7AMh6Lv4efWa/sbqE/eNzYc jZ3BesKAlAqG/TxfoP+PuP/VFrCG1q+2QP3qkz+D7/1f7MkzSMOw3LrkNXzt+ybsa8ORAan+ T+KTjyD5g/3k0m3uW8Aa1o6C9au9fn31yTU0IJ3l5Y8HpOFX9+8c4JLBqP9jtLwjsH7LW5N7 K7KG94ot6/3Wb1nr8ZtqkmvY9oDUf43/9H6i03uJbr3220tsn2m49TX/qbAkgzFVi9fvF7B+ 95st7RPWcGkrcl891u8+ryW+O7mGzQ1Iw6/unz976Pzm6/HXHrhJe5+2w/ORZjyjaZDOZDCW +INRvSbrV30Fs6f362st7wj8DC5vTe6tKLmG7z0g3Su/8Pcng7FwCuURIECAQIMCyT5oQCoU sGQwCrEolQABAgQaEUj2QQNSoVAlg1GIRakECBAg0IhAsg8akAqFKhmMQixKJUCAAIFGBJJ9 0IBUKFTJYBRiUSoBAgQINCKQ7IMGpEKhSgajEItSCRAgQKARgWQfNCAVClUyGIVYlEqAAAEC jQgk+6ABqVCoksEoxKJUAgQIEGhEINkHDUiFQpUMRiEWpRIgQIBAIwLJPmhAKhSqZDAKsSiV AAECBBoRSPZBA1KhUCWDUYhFqQQIECDQiECyDxqQCoUqGYxCLEolQIAAgUYEkn3QgFQoVMlg FGJRKgECBAg0IpDsgwakQqFKBqMQi1IJECBAoBGBZB80IBUKVTIYhViUSoAAAQKNCCT7oAGp UKiSwSjEolQCBAgQaEQg2QcNSIVClQxGIRalEiBAgEAjAsk+aEAqFKpkMAqxKJUAAQIEGhFI 9kEDUqFQJYNRiEWpBAgQINCIQLIPGpAKhSoZjEIsSiVAgACBRgSSfdCAVChUyWAUYlEqAQIE CDQikOyDBqRCoUoGoxCLUgkQIECgEYFkHzQgFQpVMhiFWJRKgAABAo0IJPugAalQqJLBKMSi VAIECBBoRCDZBw1IhUKVDEYhFqUSIECAQCMCyT5oQCoUqmQwCrEolQABAgQaEUj2QQNSoVAl g1GIRakECBAg0IhAsg8akAqFKhmMQixKJUCAAIFGBJJ90IBUKFTJYBRiUSoBAgQINCKQ7IMG pEKhSgajEItSCRAgQKARgWQfNCAVClUyGIVYlEqAAAECjQgk+6ABqVCoksEoxKJUAgQIEGhE INkHDUiFQpUMRiEWpRIgQIBAIwLJPmhAKhSqZDAKsSiVAAECBBoRSPZBA1KhUCWDUYhFqQQI ECDQiECyDxqQCoUqGYxCLEolQIAAgUYEkn3QgFQoVMlgFGJRKgECBAg0IpDsgwakQqFKBqMQ i1IJECBAoBGBZB80IBUKVTIYhViUSoAAAQKNCCT7oAGpUKiSwSjEolQCBAgQaEQg2QcNSIVC lQxGIRalEiBAgEAjAsk+aEAqFKpkMAqxKJUAAQIEGhFI9kEDUqFQJYNRiEWpBAgQINCIQLIP GpAKhSoZjEIsSiVAgACBRgSSfdCAVChUyWAUYlEqAQIECDQikOyDBqRCoUoGoxCLUgkQIECg EYFkHzQgFQpVMhiFWJRKgAABAo0IJPugAWlJodquu37xv36tu+2gtmQwlsSiFgIECBAg0Ask +6ABaSmZ22261clQtNusuo/1+YiUDMZSWNRBgAABAgQOAsk+aEBaau4GA1N6cl4qi7oIECBA oF0BA1K7a388cmeQhIAAAQIECJwLGJBaTsT+zFF/D9Kq2+xeF4yWl8CxEyBAgMAyBQxIy1yX cFXbbj0YkpLBCB+s3REgQIAAgUmBZB90D9LkcrzuDdv1R3d6n3YyGK87ansmQIAAAQLjAsk+ +N4D0siNzhfkx0ta31+vX226wZWtrpuznbG1HP3crtusRr7K33/F/2zfziD5DwQBAgQIEDgV MCA9JQ/9gDH+PKGzzfeDyeDr9MPd92dyxp5LdLvM8f3vt/W9v9Pf99va35h9fA6Se5CeEgMb IUCAAIG3ETAgPbiUh0FjtV6fPVtobLP9kLIa3g19+sb9mZ3V5HZOP3J9/4OzQneemUoG48El 8HECBAgQIPB0gWQffMtLbLvt9usy2eQA0l/uujxT87Oi/eufT7Se3M55Bq7u/2I7l5fRbqUp GYynp9oGCRAgQIDAgwLJPviWA9LRf3Kw+RpQVsd7gs6Hpf5M0P7s0tl2+s8M/hqQ/vU59y49 YUD6uQR3uI/pvZfwwZ8lHydAgACBggJjve7wZ6nDee/uOjUg7V8/HYpOh5/P3x+GntHB5ntI ujYcjZ3BesKAlAqG/RAgQIAAgaUJOIP0rBWZGpAu9vNzyevsK/aj2/m+CXvszNFhu8PPGZCe tbK2Q4AAAQINChiQnrXovx6QDt9A+7mMdTi19/OFt18MSJ2btJ+1tLZDgAABAu0JGJCeteZT A1L/DbXT+4nm3ku0H3R+cYnt87hufc1/6rCTwZiqxesECBAgQCAtkOyDzd2DNPxa//mzhwY3 X49eKnvgJu399k7PTl3Z35XEJYORDr39ESBAgACBKYFkH3zvAWlKutjryWAUo1EuAQIECDQg kOyDBqRCgUoGoxCLUgkQIECgEYFkHzQgFQpVMhiFWJRKgAABAo0IJPugAalQqJLBKMSiVAIE CBBoRCDZBw1IhUKVDEYhFqUSIECAQCMCyT5oQCoUqmQwCrEolQABAgQaEUj2QQNSoVAlg1GI RakECBAg0IhAsg8akAqFKhmMQixKJUCAAIFGBJJ90IBUKFTJYBRiUSoBAgQINCKQ7IMGpEKh SgajEItSCRAgQKARgWQfNCAVClUyGIVYlEqAAAECjQgk+6ABqVCoksEoxKJUAgQIEGhEINkH DUiFQpUMRiEWpRIgQIBAIwLJPmhAKhSqZDAKsSiVAAECBBoRSPZBA1KhUCWDUYhFqQQIECDQ iECyDxqQCoUqGYxCLEolQIAAgUYEkn3QgFQoVMlgFGJRKgECBAg0IpDsgwakQqFKBqMQi1IJ ECBAoBGBZB80IBUKVTIYhViUSoAAAQKNCCT7oAGpUKiSwSjEolQCBAgQaEQg2QcNSIVClQxG IRalEiBAgEAjAsk+aEAqFKpkMAqxKJUAAQIEGhFI9kEDUqFQJYNRiEWpBAgQINCIQLIPGpAK hSoZjEIsSiVAgACBRgSSfdCAVChUyWAUYlEqAQIECDQikOyDBqRCoUoGoxCLUgkQIECgEYFk HzQgFQpVMhiFWJRKgAABAo0IJPugAalQqJLBKMSiVAIECBBoRCDZBw1IhUKVDEYhFqUSIECA QCMCyT5oQCoUqmQwCrEolQABAgQaEUj2QQNSoVAlg1GIRakECBAg0IhAsg8akAqFKhmMQixK JUCAAIFGBJJ90IBUKFTJYBRiUSoBAgQINCKQ7IMGpEKhSgajEItSCRAgQKARgWQfNCAVClUy GIVYlEqAAAECjQgk+6ABqVCoksEoxKJUAgQIEGhEINkHDUiFQpUMRiEWpRIgQIBAIwLJPmhA KhSqZDAKsSiVAAECBBoRSPZBA1KhUCWDUYhFqQQIECDQiECyDxqQCoUqGYxCLEolQIAAgUYE kn3QgFQoVMlgFGJRKgECBAg0IpDsgwakQqFKBqMQi1IJECBAoBGBZB80IBUKVTIYhViUSoAA AQKNCCT7oAGpUKiSwSjEolQCBAgQaEQg2QcNSIVClQxGIRalEiBAgEAjAsk+aEAqFKpkMAqx KJUAAQIEGhFI9kEDUqFQJYNRiEWpBAgQINCIQLIPGpCWFKrtuusX/+vXutsOaksGY0ksaiFA gAABAr1Asg8akJaSud2mW50MRbvNqvtYn49IyWAshUUdBAgQIEDgIJDsgwakpeZuMDClJ+el sqiLAAECBNoVMCC1u/bHI3cGSQgIECBAgMC5gAGp5UTszxz19yCtus3udcFoeQkcOwECBAgs U8CAtMx1CVe17daDISkZjPDB2h0BAgQIEJgUSPZB9yBNLsfr3rBdf3Sn92kng/G6o7ZnAgQI ECAwLpDsg+89II3c6HxBfryk9f31+tWmO17ZOvva/eUlr8kAj+5/121WI1/l7/d1uu/PL/k7 gzQp7A0ECBAg0JCAAekpi90PGOPPEzrbfD+YDL5Ov399P9ycDEX7Yeny2UTXSx3ff39W6LC/ 099/7fLzq/3H5yC5B+kpMbARAgQIEHgbAQPSg0t5GDRW6/XZs4XGNtsPKavh3dCj+788o3Ot zOv7H2xjzhmuk50kg/HgEvg4AQIECBB4ukCyD77lJbbddvt1mWxyAOkvd827dLYfes4ugV1f 96v7v6hn/tDV7y0ZjKen2gYJECBAgMCDAsk++JYD0tF/ckD6GlBWx3uCRoali6/d958ZXGrr 3zM2PA33/4QB6ecS3OE+pvdewgd/lnycAAECBAoKjPW6w5+lDue9u+vUgDS8z2h/Y/SV+4zO 7kE6ed+14WjsDNYTBqRUMOyHAAECBAgsTcAZpGetyNSAdLGfW5e8hq9934R967LbH5xBehaN 7RAgQIAAgWoCBqRnrdjSBqThV/fvrC8ZjGctge0QIECAAIFnCST7YNuX2IZf3T+9XHbrtdNL cfdcYvtMyK2v+U8FKBmMqVq8ToAAAQIE0gLJPtjcgDT8Wv/5s4fO7z8af+2Bm7T3STo8H2nG M5oGyUsGIx16+yNAgAABAlMCyT743gPSlHSx15PBKEajXAIECBBoQCDZBw1IhQKVDEYhFqUS IECAQCMCyT5oQCoUqmQwCrEolQABAgQaEUj2QQNSoVAlg1GIRakECBAg0IhAsg8akAqFKhmM QixKJUCAAIFGBJJ90IBUKFTJYBRiUSoBAgQINCKQ7IMGpEKhSgajEItSCRAgQKARgWQfNCAV ClUyGIVYlEqAAAECjQgk+6ABqVCoksEoxKJUAgQIEGhEINkHDUiFQpUMRiEWpRIgQIBAIwLJ PmhAKhSqZDAKsSiVAAECBBoRSPZBA1KhUCWDUYhFqQQIECDQiECyDxqQCoUqGYxCLEolQIAA gUYEkn3QgFQoVMlgFGJRKgECBAg0IpDsgwakQqFKBqMQi1IJECBAoBGBZB80IBUKVTIYhViU SoAAAQKNCCT7oAGpUKiSwSjEolQCBAgQaEQg2QcNSIVClQxGIRalEiBAgEAjAsk+aEAqFKpk MAqxKJUAAQIEGhFI9kEDUqFQJYNRiEWpBAgQINCIQLIPRgak3WbVrTa78eXbbbrVetvI0j52 mMlgPFapTxMgQIAAgecLJPtgYEDaduuPdXccgfqB6PTfP/2264/OjDQdpGQwpqvxDgIECBAg kBVI9sE/H5Auzh6NDEifE1L3sdp0V84xZfUXvLdkMBbMoDQCBAgQaFQg2Qf/eEDadZvVqvu5 utafTfro+gP8+Bj++em/N7ryE4edDIYVIECAAAECSxNI9sHJAem///3v90BzGGy+/vnvf//7 y21/RujntbNLZWNni8b+7PPc0WblMttUEJPBmKrF6wQIECBAIC2Q7IOTA9K//vWv7p9//un+ 85//7Aej/p/9r//973+fLv0ZoZMzP/vh5+Tf+0tng/uNvgaqk3uSvnX7+5Cu3sidXoGF7i8Z jIUSKIsAAQIEGhZI9sHJAel0HS4K6wegwd3VZzdcj91bZED6dbSTwfh1kT5IgAABAgT+SCDZ B2cPSP0Zo+nCxs4oDc4WGZB+HZtp/19v2gcJECBAgMDiBZJ9cPaAdLjEdl3v6z6is8tkV+9B Gt6Q7R6kOalMBmNOPd5DgAABAgSSAsk+OHtAOtysPQ7x9e20y3uIxgafrz/rD/Ln6tzgzFNS u9C+ksEoxKJUAgQIEGhEINkHZw9IV+2/v8V27UGPN5+ifdio5yDNinYyGLMK8iYCBAgQIBAU SPbBxwakieHoy2zwJO0RSE/SnpeuZDDmVeRdBAgQIEAgJ5Dsgw8NSP3Zoa+HPp7/Gp5Nmvy7 2DxFe1a6ksGYVZA3ESBAgACBoECyDz40IAVN7OpTIBkM4AQIECBAYGkCyT5oQFra6t+oJxmM QixKJUCAAIFGBJJ90IBUKFTJYBRiUSoBAgQINCKQ7IMGpEKhSgajEItSCRAgQKARgWQfNCAV ClUyGIVYlEqAAAECjQgk+6ABqVCoksEoxKJUAgQIEGhEINkHDUiFQpUMRiEWpRIgQIBAIwLJ PmhAKhSqZDAKsSiVAAECBBoRSPbB6wPS58MfPx+8k//VyCL/5jCTwfhNfT5DgAABAgT+UiDZ B51B+suVfPK2k8F4cuk2R4AAAQIEHhZI9kED0sPLldtAMhi5o7InAgQIECAwTyDZBw1I89Zk Ee9KBmMRB6wIAgQIECBwIpDsgwakQtFLBqMQi1IJECBAoBGBZB80IBUKVTIYhViUSoAAAQKN CCT7oAFpSaHarj+/OPjx/WvdbQe1JYOxJBa1ECBAgACBXiDZBw1IS8ncbtOtPn6Got1m1X2s z0ekZDCWwqIOAgQIECBwEEj2QQPSUnM3GJjSk/NSWdRFgAABAu0KGJDaXfvjkTuDJAQECBAg QOBcwIDUciL2Z476+5BW3Wb3umC0vASOnQABAgSWKWBAWua6hKvaduvBkJQMRvhg7Y4AAQIE CEwKJPuge5Aml+N1b9iuP7rT+7STwXjdUdszAQIECBAYF0j2wfcekEZudL4gP17S+v56/WrT Ha9sDV4bfKlsOr+j+991m9XIV/n7r/if7vvzS/7OIE0TewcBAgQItCNgQHrKWvcDRj+IXD5P 6Gzz/WAyOvl8ff740v4ZRZf3BV0vdXz//Vmhw/5Of99vZ39j9vE5SO5BekoMbIQAAQIE3kbA gPTgUh4GjdV6ffZsobHN9kPKang3dP/GizM6X2d+5pxFur7/wVmhOWe4TopOBuPBJfBxAgQI ECDwdIFkH3zLS2y77fbrMtnkANIPPXPPCg3OKN1Y9qv7v6jn8jLarTQlg/H0VNsgAQIECBB4 UCDZB99yQDr6Tw5IXwPK6nhP0PVhaX9WaH+PUP+ZwWW7fj9n9w99VzDc/xMGpJ9LcIf7mN57 CR/8WfJxAgQIECgoMNbrDn+WOpz37q5TA9L+9dOhaGT42Z+I6u8NOh2KTt53bTgaO4P1hAEp FQz7IUCAAAECSxNwBulZKzI1IF3s5/KS19dwNHZm6fsm7LEzR4ft/sEZpGfR2A4BAgQIEKgm YEB61oo9OCBdnjk6LewXA9Lwq/t31pcMxrOWwHYIECBAgMCzBJJ9sO1LbPuv7p9cOju9XHZx +W04HH1/7p5LbJ+buPU1/6kAJYMxVYvXCRAgQIBAWiDZB5sbkIZf6z9/9tDPsLQfZI7PJPr5 /frzG3K/vkl7n6TD85FmPKNpkLxkMNKhtz8CBAgQIDAlkOyD7z0gTUkXez0ZjGI0yiVAgACB BgSSfdCAVChQyWAUYlEqAQIECDQikOyDBqRCoUoGoxCLUgkQIECgEYFkHzQgFQpVMhiFWJRK gAABAo0IJPugAalQqJLBKMSiVAIECBBoRCDZBw1IhUKVDEYhFqUSIECAQCMCyT5oQCoUqmQw CrEolQABAgQaEUj2QQNSoVAlg1GIRakECBAg0IhAsg8akAqFKhmMQixKJUCAAIFGBJJ90IBU KFTJYBRiUSoBAgQINCKQ7IMGpEKhSgajEItSCRAgQKARgWQfNCAVClUyGIVYlEqAAAECjQgk +6ABqVCoksEoxKJUAgQIEGhEINkHDUiFQpUMRiEWpRIgQIBAIwLJPmhAKhSqZDAKsSiVAAEC BBoRSPZBA1KhUCWDUYhFqQQIECDQiECyDxqQCoUqGYxCLEolQIAAgUYEkn3QgFQoVMlgFGJR KgECBAg0IpDsgwakQqFKBqMQi1IJECBAoBGBZB80IBUKVTIYhViUSoAAAQKNCCT7oAGpUKiS wSjEolQCBAgQaEQg2QcNSIVClQxGIRalEiBAgEAjAsk+aEAqFKpkMAqxKJUAAQIEGhFI9kED UqFQJYNRiEWpBAgQINCIQLIPGpAKhSoZjEIsSiVAgACBRgSSfdCAVChUyWAUYlEqAQIECDQi kOyDBqRCoUoGoxCLUgkQIECgEYFkHzQgFQpVMhiFWJRKgAABAo0IJPugAalQqJLBKMSiVAIE CBBoRCDZBw1IhUKVDEYhFqUSIECAQCMCyT5oQCoUqmQwCrEolQABAgQaEUj2QQNSoVAlg1GI RakECBAg0IhAsg8akAqFKhmMQixKJUCAAIFGBJJ90IBUKFTJYBRiUSoBAgQINCKQ7IMGpEKh SgajEItSCRAgQKARgWQfNCAVClUyGIVYlEqAAAECjQgk+6ABqVCoksEoxKJUAgQIEGhEINkH DUiFQpUMRiEWpRIgQIBAIwLJPmhAKhSqZDAKsSiVAAECBBoRSPZBA1KhUCWDUYhFqQQIECDQ iECyDxqQCoUqGYxCLEolQIAAgUYEkn3QgFQpVB+fy+UXAxmQARmQgUYzYECqNLQEa00GI3hY dkWAAAECBGYJJPugM0izlmQZb0oGYxlHrAoCBAgQIPAjkOyDBqRCyUsGoxCLUgkQIECgEYFk HzQgFQpVMhiFWJRKgAABAo0IJPugAalQqJLBKMSiVAIECBBoRCDZBw1ISwrVdv35JbWP71/r bjuoLRmMJbGohQABAgQI9ALJPmhAWkrmdptu9fEzFO02q+5jfT4iJYOxFBZ1ECBAgACBg0Cy DxqQlpq7wcCUnpyXyqIuAgQIEGhXwIDU7tofj9wZJCEgQIAAAQLnAgaklhOxP3PU34e06ja7 1wWj5SVw7AQIECCwTAED0jLXJVzVtlsPhqRkMMIHa3cECBAgQGBSINkH3YM0uRyve8N2/dGd 3qedDMbrjtqeCRAgQIDAuECyD773gDRyo/MF+fGS1vfX61ebbnBlq+vmbGdsLUc/t+s2q5Gv 8vdf8T/btzNI/gNBgAABAgROBQxIT8lDP2D0g8jl84TONt8PJoOv05/vfuZ2Lmoe/1x/Vuiw v9Pf9x/f35h9fA6Se5CeEgMbIUCAAIG3ETAgPbiUh0FjtV6fPVtobLP9kLIa3g39/cZ7tnO6 7eufG5wVuvPMVDIYDy6BjxMgQIAAgacLJPvgW15i2223X5fJJgeQ/nLX5Zmaw4rO3855Bq5+ 7qKey8tot9KUDMbTU22DBAgQIEDgQYFkH3zLAenoPzkgfQ0oq+M9QVeGpbPt9J8ZXLbrX59z 79ITBqSfS3CH+5jeewkf/FnycQIECBAoKDDW6w5/ljqc9+6uUwPS/vXToWhk+Bk9E3XyvmvD 0djnnjAgpYJhPwQIECBAYGkCziA9a0WmBqSL/Vy55DW6ne+bsMfOHB2v0Z3//WqXl/xcYnvW UtsOAQIECLy/gAHpWWu8tAGpc5P2s5bWdggQIECgPQED0rPWfGpA6r/if3o/0dx7ifaDzvd9 SPdcYvs8rltf85867GQwpmrxOgECBAgQSAsk+2Bz9yANv9Z//uyhK89MetZN2vskHZ6PNOMZ TYPkJYORDr39ESBAgACBKYFkH3zvAWlKutjryWAUo1EuAQIECDQgkOyDBqRCgUoGoxCLUgkQ IECgEYFkHzQgFQpVMhiFWJRKgAABAo0IJPugAalQqJLBKMSiVAIECBBoRCDZBw1IhUKVDEYh FqUSIECAQCMCyT5oQCoUqmQwCrEolQABAgQaEUj2QQNSoVAlg1GIRakECBAg0IhAsg8akAqF KhmMQixKJUCAAIFGBJJ90IBUKFTJYBRiUSoBAgQINCKQ7IMGpEKhSgajEItSCRAgQKARgWQf NCAVClUyGIVYlEqAAAECjQgk+6ABqVCoksEoxKJUAgQIEGhEINkHDUiFQpUMRiEWpRIgQIBA IwLJPmhAKhSqZDAKsSiVAAECBBoRSPZBA1KhUCWDUYhFqQQIECDQiECyDxqQCoUqGYxCLEol QIAAgUYEkn3QgFQoVMlgFGJRKgECBAg0IpDsgwakQqFKBqMQi1IJECBAoBGBZB80IBUKVTIY hViUSoAAAQKNCCT7oAGpUKiSwSjEolQCBAgQaEQg2QcNSIVClQxGIRalEiBAgEAjAsk+aEAq FKpkMAqxKJUAAQIEGhFI9kEDUqFQJYNRiEWpBAgQINCIQLIPGpAKhSoZjEIsSiVAgACBRgSS fdCAVChUyWAUYlEqAQIECDQikOyDBqRCoUoGoxCLUgkQIECgEYFkHzQgFQpVMhiFWJRKgAAB Ao0IJPugAalQqJLBKMSiVAIECBBoRCDZBw1IhUKVDEYhFqUSIECAQCMCyT5oQCoUqmQwCrEo lQABAgQaEUj2QQNSoVAlg1GIRakECBAg0IhAsg8akAqFKhmMQixKJUCAAIFGBJJ90IBUKFTJ YBRiUSoBAgQINCKQ7IMGpEKhSgajEItSCRAgQKARgWQfNCAVClUyGIVYlEqAAAECjQgk+6AB qVCoksEoxKJUAgQIEGhEINkHDUiFQpUMRiEWpRIgQIBAIwLJPmhAKhSqZDAKsSiVAAECBBoR SPZBA1KhUCWDUYhFqQQIECDQiECyDxqQCoUqGYxCLEolQIAAgUYEkn3QgFQoVMlgFGJRKgEC BAg0IpDsgwakQqFKBqMQi1IJECBAoBGBZB80IBUKVTIYhViUSoAAAQKNCCT7oAGpUKiSwSjE olQCBAgQaEQg2QcNSIVClQxGIRalEiBAgEAjAsk+aEAqFKpkMAqxKJUAAQIEGhFI9kEDUqFQ JYNRiEWpBAgQINCIQLIPGpCWFKrtuusX/+vXutsOaksGY0ksaiFAgAABAr1Asg8akJaSud2m W50MRbvNqvtYn49IyWAshUUdBAgQIEDgIJDsgwakpeZuMDClJ+elsqiLAAECBNoVMCC1u/bH I3cGSQgIECBAgMC5gAGp5UTszxz19yCtus3udcFoeQkcOwECBAgsU8CAtMx1CVe17daDISkZ jPDBNrE761d/ma1h7TW0frXXr68+uYbuQVpwXrbrj+70Pu1kMBbMUrY061d26Y6FW8Paa2j9 aq+fASm1fiM3QV/s+ni56/ur96tNN7jqdbva0X3sus1q5Kv8/Vf8z7bvDFIqCqn9+I9zSvrv 9mMN/842sWXrl1D+230k17DRM0j98DH+rKGzpe2HlsFX7ecv/fg++rNCh22e/r7f7v7G7ONz kNyDNN+6xjuTP9g1ROpVaQ3rrdlpxdav9vo5g/TH63cYQlbr9dlzh8Z22w8wq+Gd0jPqu76P wVmhOWexTvbnh3sG/oLfYv0WvDgzS7OGM6EW+jbrt9CFuaOs5Bo2dwZpt91+XSabHE76S2GX Z3HmrOPVfVzs8/Iy2q3tJ4Mx5zi95z4B63ef1xLfbQ2XuCrza7J+862W+s7kGjY3IB0XfXJA +hpeVsf7hQ7DUv/ng78GpN/W2P1Jw308YUD6uQR3uI/JP5nIgAzIgAy0k4HU8GZAuia9H2ZO zyCdDkYnv782HI2dpXpwQEqFwn4IECBAgEDrAgak2QkYXg77vgn71jfbnnwGaXap3kiAAAEC BAg8JGBAms33hAGpe+wm7dmleiMBAgQIECDwkIAB6Rpf/xX/03uNzi6l/fIS2+e+bn3N/6GV 9GECBAgQIEDgaQIGpBPK4df6z59LdLgx+4GbtPf7OjwfacZzmJ62zDZEgAABAgQI3CPQ7oB0 j9Ki3nvlSdyLqrHVYu5ZmxvvffQJ7q3y/8lx37Om3wVMfkP2Twq10b3Ak9bLz+CC8nTHmg7W 7dfPef4+egPSgmIwpxSX6OYoveY996zNzfc+9AT31xz7u+71njX9Mpj5lP53BXvxcT1tvfwM vnglf3Y/f02/fvaOQ9H+NpnfPcvwsHcD0mJiMKcQN3nPUXrNe+5Zm9vv/e0T3F9z3O+813vW 9OevCprzlP53VnvdsT1vvfwMvm4Vz/d8x5pe/H2mX2eeHjmLZEBaSg7m1OE5SnOUXvOee9bm 5nt//wT31xz4G+/1njX9ZJj/lP43NnvloT1tvfwMvnIZz/Z955peDlcGpMWs5Z8X8lBY/ry6 tndwz9rcfO+1J7i3zfuSo79nTU8LdA/SS5br8q+PmvlXOV1Z58u/ReE1h9X0Xn/7M9j/H5b+ L3+/9ZzCGbDOIM1AWsxbHgjLYo7hXQu5Z21uvffmE9zfFW+hx3XPmhqQXr+Iz1ovP4OvX8tD Bb9c069voA/+SrBfHJUB6RdoL/vIL8Pysnpb2vE9a3PPe4cPF23J9NXHetc6nRTrDNJrVu7P 1mvmmajXHPV77/UXa/o1HD12c/YB1YBUKl533LBW6rjeodh71uaB974DVZljuGedDEivX9a/ Wi8D0uvW9r41fdaZIwPS61b8oT3P/8rjQ7vx4V8I3LM2V9978wnuvyjKRx4SuGdNjztyBukh 80c+/JT18jP4yBI8/bOz1/Ti0ujjpTiD9LhheAuexB0Gv2N319fm8mvD1987/gT3O8rw1icK 3LOm37s1ID3R/95NPWe9/Aze6/6X75+3pvtB6vM5SMNfvub/l2tj2wQIECBAgEBzAs4gNbfk DpgAAQIECBCYEjAgTQl5nQABAgQIEGhOwIDU3JI7YAIECBAgQGBKwIA0JeR1AgQIECBAoDkB A1JzS+6ACRAgQIAAgSkBA9KUkNcJECBAgACB5gQMSM0tuQMmQIAAAQIEpgQMSFNCXidAgAAB AgSaEzAgNbfkDpgAAQIECBCYEjAgTQl5nQABAgQIEGhOwIDU3JI7YAIECBAgQGBKwIA0JeR1 AgQIECBAoDkBA1JzS+6ACRD4tcBu060+1t321xvwQQIEqggYkKqslDoJEHi9gAHp9WugAgIh AQNSCNpuCBCoLrDt1h8f3cf+16rb7Kofj/oJELglYECSDwIECMwVcAZprpT3ESgvYEAqv4QO gACBmIABKUZtRwReLWBAevUK2D8BAnUEDEh11kqlBB4UMCA9COjjBAg0JGBAamixHWrrAgak 1hPg+AkQmC+wH5DcoD0fzDsJ1BUwINVdO5UTIBAX2HWb1dc32dYehhTXt0MCSQEDUlLbvggQ IECAAIESAgakEsukSAIECBAgQCApYEBKatsXAQIECBAgUELAgFRimRRJgAABAgQIJAX+D5bI WfEy9QpoAAAAAElFTkSuQmCC</item> <item item-id="542" content-encoding="gzip">H4sIAAAAAAAA/4xTy27TUBCd60fspEkTQlJIncSlvHYoWCBBVwFViAUPKWzYVW7itkGkCa6L uozEChaIP2DDJyD2SCxRfymcmXHTwoprje/M8ZmZcx8uE5GBvYKVxLfx9pN3g2R/PD10icc9 WHE0HSrmCPaQaZPhy903yTAThAaSb+FdODqYPZ6eKPwM5gEYLInPYV/Ae/2R6DfKnX46j3l8 8FSURZYtTn3Z/FGWpePd4ywxwtyCVenicLY2/4pdKeBkaZIEAkSwykzcQtT6STR3vegr5n7B 19kr6uyXdC6uRBaaZNgf1zh36T6eHlFZ0O/naI9RqkjSvLgasbJ+hRWKO69I01pUP0XgX5L0 UQ0y3F/2Heg6pARLjT5D3LxGl+X7tzq2wei+NbSy11RZjTWdm1eE+X6NmQYSrkr8YxlTSxOb 6yqpBShQSS0p3NagIUFHyYWuVu+EOnc3tEuIzTR2j1gwXdNO4bLTpiZ3r2snPoobWlxP5aYu qnO2qFtyXaqjaGc/jWcHO3vTdBJnnnCbfOsE3o6zWE9zPT9VawMvO7+7D2C3xeeoFJ+Mj55I Hb2pbb6DJufqWOAh0/5/9Ky4l6XxMIm2bfkU5MTQ1MgEZsGeMQGWtAiNZQIbqaGxTeAsGHHA oQUcF5x5H58KzOEsTzhwfOYwuch1OL0EjqSvgCPpZXAkvSK94KwKB06VOUxWudUXx5MkHQ/j t7ohvsh+ChvRGI+d/z6lfDf/GeWLwR8AAAD//wMAAD5fmCoEAAA=</item> <item item-id="543">iVBORw0KGgoAAAANSUhEUgAAAjwAAAF2CAYAAABqJEINAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACn3SURBVHhe7d3bcSO7kgVQ2UWDaMWY MB+yRn/Xh/mdkBPjAYdFiWqyWHyAKmwC0LoRHadPq4hKrEwe5EU9+m3nfwQIECBAgACBwQXe Bp+f6REgQIAAAQIEdhoeRUCAAAECBAgML6DhGT7FJkiAAAECBAhoeNQAAQIECBAgMLyAhmf4 FJsgAQIECBAgoOFRAwQIECBAgMDwAhqe4VNsggQIECBAgICGRw0QIECAAAECwwtoeHpO8cd2 9/b29v1ru/voeS5iJ0CAAAECFQU0PBVxqw79+b7bvP1rcj7fN7u3rZanqrnBCRAgQKBbAQ1P t6mbBT5rgEaZlnkQIECAAIE1BDQ8ayg2MIYdngaSIAQCBAgQaFZAw9Nsah4M7LCzM93Hs9m9 fz74GYcRIECAAIE/JqDhGSbhH7utpmeYbJoIAQIECKwroOFZ1/Olo31s33buW35pCpycAAEC BBoV0PCcJuaRG39/LiF9Pw6+ed/9XEm69bNHCmDx/J+7983Co+fTI+mn594/lG6H5xFkxxAg QIDAXxTQ8PxkfWoYpsbizvtspkbj2jbKrZ/dra7l80+7Nsfznf5+Gu5wo/LPe3jcw3OX2AEE CBAg8GcFNDwnjcNmuz17t81SVUxNx+bK3cG3fnarwo6Ny+X5Z7s2j+xA/dlSNnECBAgQIHBd QMMzNTwfH1+Xpe42FNPlpWs7Kbd+drsEr57/Ih6XrXyZCRAgQIDAMwIanlO1uw3PV8Ox+bmn 5rT5ufaz6c9nl8mm85zdf/MdxPz8v2x4/l3uOt4D5J9M1IAaUANqoK0aeKZ5eeYzGp6ShufQ gMybnO9m5tbPDjcUnxy31Ows7TCt0PA8UxQ+kxWY/uPrf30IyJU89SHQT5TJ75T/0pY0PBc1 dOsS0/xn3zclX2t2NDz9fENXjjT5hV859D83nFz1kXJ56iNPU5TJXGl4Wm545o+a373kdl7k yULq5+vVXqTy1F5OrkUkV33kSp76yJOG55V5utdQTI+dn96Pc3ovzq2fPXtJa29x67H0e1S+ 9PeE2vi5PLWRh0eikKtHlF5/jDy9PgePRpDMlR2eOzs880fNz999c34z8vLPfnHT8iG24/t5 HnhH0KzCkoX0aHE77lJAnvqpCrnqI1fy1Eee7PD0k6fmI/Wlbz5FAiRAgMCfFkiuU3Z4Bi61 ZCENzGhqBAgQIFBJILlOaXgqJbGFYZOF1MJ8xUCAAAECfQkk1ykNT1+1URRtspCKAnMwAQIE CBDYCyTXKQ3PwCWXLKSBGU2NAAECBCoJJNcpDU+lJLYwbLKQWpivGAgQIECgL4HkOqXh6as2 iqJNFlJRYA4mQIAAAQIuaamBtQQ0PGtJGocAAQIEaggk1yk7PDUy2MiYyUJqZMrCIECAAIGO BJLrlIano8IoDTVZSKWxOZ4AAQIECCTXKQ3PwPWWLKSBGU2NAAECBCoJJNcpDU+lJLYwbLKQ WpivGAgQIECgL4HkOqXh6as2iqJNFlJRYA4mQIAAAQJ7geQ6peEZuOSShTQwo6kRIECAQCWB 5Dql4amUxBaGTRZSC/MVAwECBAj0JZBcpzQ8fdVGUbTJQioKzMEECBAgQMAlLTWwloCGZy1J 4xAgQIBADYHkOmWHp0YGGxkzWUiNTFkYBAgQINCRQHKd0vB0VBiloSYLqTQ2xxMgQIAAgeQ6 peEZuN6ShTQwo6kRIECAQCWB5Dql4amUxBaGTRZSC/MVAwECBAj0JZBcpzQ8fdVGUbTJQioK zMEECBAgQGAvkFynNDwDl1yykAZmNDUCBAgQqCSQXKc0PJWS2MKwyUJqYb5iIECAAIG+BJLr lIanr9ooijZZSEWBOZgAAQIECLikpQbWEtDwrCVpHAIECBCoIZBcp+zw1MhgI2MmC6mRKQuD AAECBDoSSK5TGp6OCqM01GQhlcbmeAIECBAgkFynNDwD11uykAZmNDUCBAgQqCSQXKc0PJWS 2MKwyUJqYb5iIECAAIG+BJLrlIanr9ooijZZSEWBOZgAAQIECOwFkuuUhmfgkksW0sCMpkaA AAEClQSS65SGp1ISWxg2WUgtzFcMBAgQINCXQHKd0vD0VRtF0SYLqSgwBxMgQIAAAZe01MBa AhqetSSNQ4AAAQI1BJLrlB2eGhlsZMxkITUyZWEQIECAQEcCyXVKw9NRYZSGmiyk0tgcT4AA AQIEkuuUhmfgeksW0sCMpkaAAAEClQSS65SGp1ISWxg2WUgtzFcMBAgQINCXQHKd0vD0VRtF 0SYLqSgwBxMgQIAAgb1Acp3S8AxccslCGpjR1AgQIECgkkByndLwVEpiC8MmC6mF+YqBAAEC BPoSSK5TGp6+aqMo2mQhFQXmYAIECBAg4JKWGlhLQMOzlqRxCBAgQKCGQHKdssNTI4ONjJks pEamLAwCBAgQ6EgguU5peDoqjNJQk4VUGpvjCRAgQIBAcp3S8PRcbx/bwyN9X7+2u4/ZXJKF 1DOj2AkQIEDgNQLJdUrD85oc//6sn++7zUmT8/m+2b1tz1ueZCH9fkJGIECAAIG/JpBcpzQ8 o1TXrAGappUspFEYzYMAAQIEcgLJdUrDk8tr1TPZ4anKa3ACBAgQqCCg4amAOuyQh52d6R6e ze7983yWyUIa1tfECBAgQKCaQHKdssNTLY3pgT9221nTkyyk9GydjwABAgT6F0iuUxqe/uvl ZwYf27fd6X3LyUIaiNFUCBAgQCAkkFynNDynSV248fci5z+XkL4fB9+872ZXkna7R8ZZKqbF z33u3jcLj55Pj6SfndsOT+j76TQECBAgsJKAhmclyLJhpoZh+X02Z+NMjcbs8e/5eaadlqX3 4tyOZ/n8h7G+z3f6+2msw43KP+/hcQ9PWb4dTYAAAQKvFtDwhDNwbBw22+3Zu22Wwpiajs38 7uDTAw87L5u745xvLH01Lpfnn+3aFO4cJQspnDKnI0CAAIEBBJLrlEta007Jx8fXZam7DcV0 eelyJ+VfzU0/37/x+O4451V69fwX41xetrpV78lCGuB7ZwoECBAgEBZIrlManvOtljs7M18N x+bnnprz5mfaKTrs/pw1KtNnZn/tw/TzR+79WaHh+XfJ63gfkJSHv89OR4AAgT8vsLQWHf8s hWP1K2l4Dg3IaZNz2szsf39sYhYble+m51qzs7TDtELDkyok5yFAgAABAqUCdnhKxdY6vvBS 1G7/13Ue331z9kj44jjfNyUv7ewc459/TsOzVmaNQ4AAAQINCmh4XpWUpxue4xNW/y4bHbfq /j3Q9UTDc9JQHUgK40sW0qtS5rwECBAg0K9Acp1ySavkktb0BNbp/TiP3otzaFyeuKS1j+3W Y+n3SjxZSPdi8XMCBAgQIDAXSK5TGp47Dc/8MfTzd9/MbkZevDT1i5uWD+Od7h5dOd+V71Cy kHyNCRAgQIBAqUByndLwlGano+OThdQRi1AJECBAoBGB5Dql4Wkk6TXCSBZSjfiNSYAAAQJj CyTXKQ3PwLWULKSBGU2NAAECBCoJJNcpDU+lJLYwbLKQWpivGAgQIECgL4HkOqXh6as2iqJN FlJRYA4mQIAAAQJ7geQ6peEZuOSShTQwo6kRIECAQCWB5Dql4amUxBaGTRZSC/MVAwECBAj0 JZBcpzQ8fdVGUbTJQioKzMEECBAgQMAlLTWwloCGZy1J4xAgQIBADYHkOmWHp0YGGxkzWUiN TFkYBAgQINCRQHKd0vB0VBiloSYLqTQ2xxMgQIAAgeQ6peEZuN6ShTQwo6kRIECAQCWB5Dql 4amUxBaGTRZSC/MVAwECBAj0JZBcpzQ8fdVGUbTJQioKzMEECBAgQGAvkFynNDwDl1yykAZm NDUCBAgQqCSQXKc0PJWS2MKwyUJqYb5iIECAAIG+BJLrlIanr9ooijZZSEWBOZgAAQIECLik pQbWEtDwrCVpHAIECBCoIZBcp+zw1MhgI2MmC6mRKQuDAAECBDoSSK5TGp6OCqM01GQhlcbm eAIECBAgkFynNDwD11uykAZmNDUCBAgQqCSQXKc0PJWS2MKwyUJqYb5iIECAAIG+BJLrlIan r9ooijZZSEWBOZgAAQIECOwFkuuUhmfgkksW0sCMpkaAAAEClQSS65SGp1ISWxg2WUgtzFcM BAgQINCXQHKd0vD0VRtF0SYLqSgwBxMgQIAAAZe01MBaAhqetSSNQ4AAAQI1BJLrlB2eGhls ZMxkITUyZWEQIECAQEcCyXVKw9NRYZSGmiyk0tgcT4AAAQIEkuuUhmfgeksW0sCMpkaAAAEC lQSS65SGp1ISWxg2WUgtzFcMBAgQINCXQHKd0vD0VRtF0SYLqSgwBxMgQIAAgb1Acp3S8Axc cslCGpjR1AgQIECgkkByndLwVEpiC8MmC6mF+YqBAAECBPoSSK5TGp6+aqMo2mQhFQXmYAIE CBAg4JKWGlhLQMOzlqRxCBAgQKCGQHKdssNTI4ONjJkspEamLAwCBAgQ6EgguU5peDoqjNJQ k4VUGpvjCRAgQIBAcp3S8Axcb8lCGpjR1AgQIECgkkByndLwVEpiC8MmC6mF+YqBAAECBPoS SK5TGp6+aqMo2mQhFQXmYAIECBAgsBdIrlManoFLLllIAzOaGgECBAhUEkiuUxqeSklsYdhk IbUwXzEQIECAQF8CyXVKw9NXbRRFmyykosAcTIAAAQIEXNJSA2sJaHjWkjQOAQIECNQQSK5T dnhqZDA15sf2cMPX16/t7mN23mQhpabsPAQIECAwjkByndLw9Fo3n++7zUmT8/m+2b1tz1ue ZCH1yihuAgQIEHidQHKd0vC8Ls/rnnnWAE2DJwtp3ckYjQABAgT+gkByndLwDFJRdngGSaRp ECBA4A8JaHj+ULJ/PdXDzs50D89m9/55PlqykH49DwMQIECAwJ8TSK5TdniGKa+P3XbW9CQL aRhGEyFAgACBmEByndLwxNJa/0Qf27fd6X3LyUKqPztnIECAAIHRBJLrlIbntHoWbvy9KK6f S0jfj4Nv3nc/V5LOHhO/vMR0t1AXz/+5e98sPHo+nev03PuH0u3w3BV2AAECBAg0JKDheUky poZh+X02Z+FMjcbs8e/Dzw/NykmTc2h+Lt+Nc31qy+efdm2O5zv9/dcp94+i/7yHxz08Lykb JyVAgACBpwU0PE/TPffBY+Ow2W7P3m2zNNrUdGzmdwcvnvZyx+VadNfPPxvjkR2ok5MkC+k5 eZ8iQIAAgb8skFynXNKadko+Pr4uS91tKKbLS49dqjo0MWeXnK6X9NXzX8TzeBM1nS1ZSH/5 C2vuBAgQIPCcQHKd0vCc5uhuw/PVcGx+7qlZaH4uHhOfPjO7tDUds9QMzc+/QsPz75LX8T4g KX/ua+lTBAgQIPCswNJadPyzZ8cs/ZzVr6Thmd+nc7hR+Mp9Omf38Jwcd63ZWdphWqHhKS0I xxMgQIAAgZSAHZ6U9Pw8d3d45h+4dYlp/rPvm5JvXeaqsMPzKkrnJUCAAAEC9wQ0PPeEav28 tYZn/qh5YXzJQqqVEuMSIECAwLgCyXXKJa2SS1rzR81PL0/d+tnppa+SS1r72G49ln7vK5As pHux+DkBAgQIEJgLJNcpDc+dhmf+GPr5u2/O799Z/tkvblo+xHZ8P88D7wiaVVKykHyNCRAg QIBAqUByndLwlGano+OThdQRi1AJECBAoBGB5Dql4Wkk6TXCSBZSjfiNSYAAAQJjCyTXKQ3P wLWULKSBGU2NAAECBCoJJNcpDU+lJLYwbLKQWpivGAgQIECgL4HkOqXh6as2iqJNFlJRYA4m QIAAAQJ7geQ6peEZuOSShTQwo6kRIECAQCWB5Dql4amUxBaGTRZSC/MVAwECBAj0JZBcpzQ8 fdVGUbTJQioKzMEECBAgQMAlLTWwloCGZy1J4xAgQIBADYHkOmWHp0YGGxkzWUiNTFkYBAgQ INCRQHKd0vB0VBiloSYLqTQ2xxMgQIAAgeQ6peEZuN6ShTQwo6kRIECAQCWB5Dql4amUxBaG TRZSC/MVAwECBAj0JZBcpzQ8fdVGUbTJQioKzMEECBAgQGAvkFynNDwDl1yykAZmNDUCBAgQ qCSQXKc0PJWS2MKwyUJqYb5iIECAAIG+BJLrlIanr9ooijZZSEWBOZgAAQIECLikpQbWEtDw rCVpHAIECBCoIZBcp+zw1MhgI2MmC6mRKQuDAAECBDoSSK5TTTc8n++b3eb9czl1n++7zfaj o7TmQ00WUn52zkiAAAECvQsk16mGG56P3fZtu/tpaaYG5/Tf91n+2L7t9DzXyz1ZSL1/6cRP gAABAnmB5DrVbMNzsbuz0PDsO57d2+Z9d2UPKJ+5xs6YLKTGpi4cAgQIEOhAILlONdrwfO7e N5vdv6tZ027P2+EFRW9v8z8//fcOshsMMVlIwWk5FQECBAgMIpBcp+42PP/7v//73WgcG46v f/73f//3F/dh5+Xfz1a5xLS0m7P0Z/u9nfeNy1rX6j5ZSIN890yDAAECBIICyXXqbsPzX//1 X7v//Oc/u//5n/85NDrTP6df//d//7cnmXZeTnZYDk3JCjsu06Wq2f06X43VyT093wmZ7uO5 emNzMGktnipZSC3OX0wECBAg0LZAcp262/CcUl0ENjUmsy2dnxuJpwZlf3/N+74h+boUNd+J Ob1MNWtklu7N0fAUV22ykIqD8wECBAgQ+PMCyXXq4YZn2tG5H9jJjs/3pa6f3ZdZE3O6MzPd oHzWOD18SevrSS07PMvfmfv5+vPfNQAECBAg8EKB5Dr1cMNzvKR13eXrfpqf5mPetJz9++xS 2OHS2O1H0L8uac0vl7mH51adJgvphd8XpyZAgACBTgWS69TDDc/x5uVl06/LU2c7LXcbnvOb oM+fvlpqZL7+7PzS2Lxx6jTjlcJOFlKlKRiWAAECBAYWSK5TDzc8V72/L11dPJ11t+G5vAH5 9Bw337J8PNB7eG5+DZKFNPD30dQIECBAoJJAcp36XcNzrdmZYG42PLN7bxYbl9llrgVsb1q+ XYHJQqr0XTAsAQIECAwskFynftXwHG42PnkHz9nTWHcanq9H2pdeJvgvs3f/Li1vWbbDM/B/ CEyNAAECowt00/CMnoje55cspN6txE+AAAECeYHkOvWrHZ48jTOWCCQLqSQuxxIgQIAAgUkg uU5peAauuWQhDcxoagQIECBQSSC5Tml4KiWxhWGThdTCfMVAgAABAn0JJNcpDU9ftVEUbbKQ igJzMAECBAgQcElLDawloOFZS9I4BAgQIFBDILlO2eGpkcFGxkwWUiNTFgYBAgQIdCSQXKc0 PB0VRmmoyUIqjc3xBAgQIEAguU5db3j2LwXcPy+W/yX/qwkkC2m1oA1EgAABAn9GILlO2eEZ uKyShTQwo6kRIECAQCWB5Dql4amUxBaGTRZSC/MVAwECBAj0JZBcpzQ8fdVGUbTJQioKzMEE CBAgQGAvkFynNDwDl1yykAZmNDUCBAgQqCSQXKc0PJWS2MKwyUJqYb5iIECAAIG+BJLrlIan r9o4j/Zje9gO/Pq13X3M5pIspJ4ZxU6AAAECrxFIrlMantfk+Pdn/XzfbU6anM/3ze5te97y JAvp9xMyAgECBAj8NYHkOqXhGaW6Zg3QNK1kIY3CaB4ECBAgkBNIrlManlxeq57JDk9VXoMT IECAQAUBDU8F1GGHPOzsTPfwbHbvn+ezTBbSsL4mRoAAAQLVBJLrlB2eamlMD/yx286anmQh pWfrfAQIECDQv0ByndLw9F8vPzP42L7tTu9bThbSQIymQoAAAQIhgeQ6peE5TerCjb8XOf+5 hPT9OPjmffdzJWn2s9lDU/fLZ/H8n7v3zcKj59Mj6afn3j+UbofnPrEjCBAgQKAdAQ3PS3Ix NQzL77M5C2dqNBY7ma/P//zo8I6cy/tqrk9t+fzTrs3xfKe/n8Y53Kj88x4e9/C8pGyclAAB AgSeFtDwPE333AePjcNmuz17t83SaFPTsZnfHTwdeLHj8rUz88guz/Xzz3ZtHtmBOgk6WUjP yfsUAQIECPxlgeQ65ZLWtFPy8fF1WepuQzE1MY/u2sx2fG5U9NXzX8Rzednq1hclWUh/+Qtr 7gQIECDwnEByndLwnObobsPz1XBsfu6pud78HHZtDvfYTJ+Z/bUP03nO7r/5DmJ+/hUann+X vI73AUn5c19LnyJAgACBZwWW1qLjnz07ZunnrH4lDc+hATltchaamcNG0XRvzWmTc3LctWZn aYdphYantCAcT4AAAQIEUgJ2eFLS8/Pc3eGZf+DyEtNXs7O08/N9U/LSzs5x2Ao7PK+idF4C BAgQIHBPQMNzT6jWz3/Z8Fzu7JwG+kTDM3/UvDC+ZCHVSolxCRAgQGBcgeQ65ZLWaR3daygO j5qfXKo6vTx1cblr3ux8f67kktZ+iFuPpd/7CiQL6V4sfk6AAAECBOYCyXVKw3On4Zk/hn7+ 7pt/zc+hMfl5J86/32/3T4A9fdPyIbbj+3keeEfQrJKSheRrTIAAAQIESgWS65SGpzQ7HR2f LKSOWIRKgAABAo0IJNcpDU8jSa8RRrKQasRvTAIECBAYWyC5Tml4Bq6lZCENzGhqBAgQIFBJ ILlOaXgqJbGFYZOF1MJ8xUCAAAECfQkk1ykNT1+1URRtspCKAnMwAQIECBDYCyTXKQ3PwCWX LKSBGU2NAAECBCoJJNcpDU+lJLYwbLKQWpivGAgQIECgL4HkOqXh6as2iqJNFlJRYA4mQIAA AQIuaamBtQQ0PGtJGocAAQIEaggk1yk7PDUy2MiYyUJqZMrCIECAAIGOBJLrlIano8IoDTVZ SKWxOZ4AAQIECCTXKQ3PwPWWLKSBGU2NAAECBCoJJNcpDU+lJLYwbLKQWpivGAgQIECgL4Hk OqXh6as2iqJNFlJRYA4mQIAAAQJ7geQ6peEZuOSShTQwo6kRIECAQCWB5Dql4amUxBaGTRZS C/MVAwECBAj0JZBcpzQ8fdVGUbTJQioKzMEECBAgQMAlLTWwloCGZy1J4xAgQIBADYHkOmWH p0YGGxkzWUiNTFkYBAgQINCRQHKd0vB0VBiloSYLqTQ2xxMgQIAAgeQ6peEZuN6ShTQwo6kR IECAQCWB5Dql4amUxBaGTRZSC/MVAwECBAj0JZBcpzQ8fdVGUbTJQioKzMEECBAgQGAvkFyn NDwDl1yykAZmNDUCBAgQqCSQXKc0PJWS2MKwyUJqYb5iIECAAIG+BJLrlIanr9ooijZZSEWB OZgAAQIECLikpQbWEtDwrCVpHAIECBCoIZBcp+zw1MhgI2MmC6mRKQuDAAECBDoSSK5TGp6O CqM01GQhlcbmeAIECBAgkFynNDwD11uykAZmNDUCBAgQqCSQXKc0PJWS2MKwyUJqYb5iIECA AIG+BJLrlIanr9ooijZZSEWBOZgAAQIECOwFkuuUhmfgkksW0sCMpkaAAAEClQSS65SGp1IS Wxg2WUgtzFcMBAgQINCXQHKd0vD0VRtF0SYLqSgwBxMgQIAAAZe01MBaAhqetSSNQ4AAAQI1 BJLrlB2eGhlsZMxkITUyZWEQIECAQEcCyXVKw9NRYZSGmiyk0tgcT4AAAQIEkuuUhmfgeksW 0sCMpkaAAAEClQSS65SGp1ISmxj2bZ9evxioATWgBtRAozWg4WmiW+g/iGQh9a9lBgQIECCQ FkiuU3Z40tkNni9ZSMFpORUBAgQIDCKQXKc0PIMUzdI0koU0MKOpESBAgEAlgeQ6peGplMQW hk0WUgvzFQMBAgQI9CWQXKc0PH3VRlG0yUIqCszBBAgQIEBgL5BcpzQ8PZfcx/ZQLF+/truP 2VyShdQzo9gJECBA4DUCyXVKw/OaHP/+rJ/vu81Jk/P5vtm9bc9bnmQh/X5CRiBAgACBvyaQ XKc0PKNU16wBmqaVLKRRGM2DAAECBHICyXVKw5PLa9Uz2eGpymtwAgQIEKggoOGpgDrskIed nekens3u/fN8lslCGtbXxAgQIECgmkBynbLDUy2N6YE/dttZ05MspPRsnY8AAQIE+hdIrlMa nv7r5WcGH9u33el9y8lCGojRVAgQIEAgJJBcpzQ8p0lduPH3Iuc/l5C+HwffvO9mV5J2u0fG WSqmxc997t43C4+eT4+kn53bDk/o++k0BAgQILCSgIZnJciyYaaGYfl9NmfjTI3G7PHv8/M8 OM5FcMufm3Ztjuc7/f308cONyj/v4XEPT1m+HU2AAAECrxbQ8IQzcGwcNtvt2bttlsKYmo7N /O7g7wNLxjnfWPpqXC7PP9u1Kdw5ShZSOGVOR4AAAQIDCCTXKZe0pp2Sj4+vy1J3G4rp8tLl Tsqx5h4f57xKr37uIp7Ly1a36j1ZSAN870yBAAECBMICyXVKw3O+1XJnh+er4dj83FNzpfk5 a1Smz8z+2ofp54/c+7NCw/PvktfxPiApD3+fnY4AAQJ/XmBpLTr+WQrH6lfS8BwakNMmZ6GZ WdwpOjnuWrOz9LkVGp5UITkPAQIECBAoFbDDUyq21vF3L2nNT3TlEtPiON83JS/t7PxcEzv/ +7EuL7G5pLVWqo1DgAABAq8X0PC8KgetNTz7v//87GWChfElC+lVKXNeAgQIEOhXILlOuaRV cklreiT99H6cR+/FOTQu3/fxlFzS2sd267H0eyWeLKR7sfg5AQIECBCYCyTXKQ3PnYZn/hj6 +btvZjcjL16a+sVNy4fxju/neeAdQbNKShaSrzEBAgQIECgVSK5TGp7S7HR0fLKQOmIRKgEC BAg0IpBcpzQ8jSS9RhjJQqoRvzEJECBAYGyB5Dql4Rm4lpKFNDCjqREgQIBAJYHkOqXhqZTE FoZNFlIL8xUDAQIECPQlkFynNDx91UZRtMlCKgrMwQQIECBAYC+QXKc0PAOXXLKQBmY0NQIE CBCoJJBcpzQ8lZLYwrDJQmphvmIgQIAAgb4EkuuUhqev2iiKNllIRYE5mAABAgQIuKSlBtYS 0PCsJWkcAgQIEKghkFyn7PDUyGAjYyYLqZEpC4MAAQIEOhJIrlMano4KozTUZCGVxuZ4AgQI ECCQXKc0PAPXW7KQBmY0NQIECBCoJJBcpzQ8lZLYwrDJQmphvmIgQIAAgb4EkuuUhqev2iiK NllIRYE5mAABAgQI7AWS65SGZ+CSSxbSwIymRoAAAQKVBJLrlIanUhJbGDZZSC3MVwwECBAg 0JdAcp3S8PRVG0XRJgupKDAHEyBAgAABl7TUwFoCGp61JI1DgAABAjUEkuuUHZ4aGWxkzGQh NTJlYRAgQIBARwLJdUrD01FhlIaaLKTS2BxPgAABAgSS65SGZ+B6SxbSwIymRoAAAQKVBJLr lIanUhJbGDZZSC3MVwwECBAg0JdAcp3S8PRVG0XRJgupKDAHEyBAgACBvUByndLwDFxyyUIa mNHUCBAgQKCSQHKd0vBUSmILwyYLqYX5ioEAAQIE+hJIrlManr5qoyjaZCEVBeZgAgQIECDg kpYaWEtAw7OWpHEIECBAoIZAcp2yw1Mjg42MmSykRqYsDAIECBDoSCC5Tml4OiqM0lCThVQa m+MJECBAgEByndLwDFxvyUIamNHUCBAgQKCSQHKd0vBUSmILwyYLqYX5ioEAAQIE+hJIrlMa nr5qoyjaZCEVBeZgAgQIECCwF0iuUxqegUsuWUgDM5oaAQIECFQSSK5TGp5KSWxh2GQhtTBf MRAgQIBAXwLJdUrD01dtFEWbLKSiwBxMgAABAgRc0lIDawloeNaSNA4BAgQI1BBIrlN2eGpk sJExk4XUyJSFQYAAAQIdCSTXKQ1PR4VRGmqykEpjczwBAgQIEEiuUxqegestWUgDM5oaAQIE CFQSSK5TGp5KSWxh2GQhtTBfMRAgQIBAXwLJdUrD01dtFEWbLKSiwBxMgAABAgT2Asl1SsMz cMklC2lgRlMjQIAAgUoCyXVKw1MpiS0MmyykFuYrBgIECBDoSyC5Tml4+qqNomiThVQUmIMJ ECBAgIBLWmpgLQENz1qSxiFAgACBGgLJdcoOT40Mpsb82B5u+Pr6td19zM6bLKTUlJ2HAAEC BMYRSK5TGp5e6+bzfbc5aXI+3ze7t+15y5MspF4ZxU2AAAECrxNIrlMantfled0zzxqgafBk Ia07GaMRIECAwF8QSK5TGp5BKsoOzyCJNA0CBAj8IQENzx9K9q+netjZme7h2ezeP89HSxbS r+dhAAIECBD4cwLJdcoOzzDl9bHbzpqeZCENw/iCicjTC9CfPKVcPQkX/pg8hcF/cbpkrjQ8 v0hUax/92L7tTu9bThZSaxY9xSNP/WRLrvrIlTz1kacpymSuNDyP1sXCTcEXH/25vPT9qPjm fTe7ynT7bIvn+Ny9bxYePZ8eST8b3w7Po6ls7bjkF761ufcWj1z1kTF56iNPGp4m8zQ1E8vv ujkLd2pCZo+GPz6d5XNMuzbHMU9/P417uFH55z087uF53LqtI/3Hua183IpGrvrIlTz1kScN T2N5OjYVm+327L03S2FODclmfufwA/O5fo7Zrs0ju0wn5/OlfwC/gUPkqYEkPBiCXD0I9eLD 5OnFCSg4fTJXLmndScznx8fXZam7zcZ06elyl+WRvF89x8U5Ly9b+X+jjwi3fUzyC9+2RPvR yVX7OUrvGvQh0m6Uye+UhufROrjb8Hw1I5uf+22Ozc/057O/9mEaa+n+nvk5Vmh4/l3yOt4H 5J9M1IAaUANqoJ0aeHQZ/u1xGp5HBe81PIefn+7wnDY6J7+/1uws7SL9suF5dGqOI0CAAAEC owtoeB7N8L2G52Kc+eWn75uSbz25tfIOz6NTcxwBAgQIEBhdQMPzaIZf0fDs//7zs5cJFsfw 6OQcR4AAAQIExhbQ8Dya33vNxvRI+um9OmeXrp68pLWP7dZj6Y+G7jgCBAgQIPDXBTQ8j1bA QsMzfwz9/L04xxuVf3HT8iG24/t5HngP0KNzcRwBAgQIEPhjAhqe4RN+5U3Nw8+7pQmW5ODG sb99k3dLJN3EUpK770nd2w3uZu4tB7pSXnynXpDkgtzN8vP0e32/Z6nheUG6k6d0SSypvXyu khzcPPZXb/J+vUOPEZTk7mt+D76VvUeMhmJeLS++U/GsPp67r+/ST5NzuG3kuXfdHSep4Ymn O3lCNz0nta+0OwU3nt/O17Nv8n69Qa8RlH1/St7K3qtIG3GvlxffqXRGC3J38fdFfu0M/WaX R8OTznfyfN7jk9RePldJDm4e+/ybvF+P0GkEJbnbT/Hxt7J36tFK2KvlxXcqntLC3J3HN9vx eSJ4Dc8TaN185FfF1c0s2w60JAc3j732Ju+2p991dCW5O52oe3jqpn21vPhO1U3UwujP5m76 PxTTX5Z96z12D0xGw/MAUreH/KK4up1za4GX5ODWsTff5N3apAeJpyR3Gp5c0tfKi+9ULmfH Mz2Zu6/LxbO/oumJ6DU8T6B185Eni6ub+fUQaEkOSo6dv5SyB4veYizKx8nk7PDUzXS1vJT9 5cx1Jzno6E/k7qvZ+d3NykdNDc+gdfU1rYIbxIZ2eOXkSnLwi2NfOcVhz12SDw1Prgxq5UXD Uz+HZblba2dHw1M/s02c4fFHAJsId8ggSnJw9dibb/Iekq2JSZXk7idgOzzVc7dKXnynqudp 6QQP5+7ikuPvw7XD83vDxkfwpubXJ+h6Di4fi71+7PKbvF8/u7EjKMndt4SGJ1AS6+TFdyqQ qotTPJa7Q2O0fw/P/JfH0l+RM+ckQIAAAQIEuhGww9NNqgRKgAABAgQIPCug4XlWzucIECBA gACBbgQ0PN2kSqAECBAgQIDAswIanmflfI4AAQIECBDoRkDD002qBEqAAAECBAg8K6DheVbO 5wgQIECAAIFuBDQ83aRKoAQIECBAgMCzAhqeZ+V8jgABAgQIEOhGQMPTTaoESoAAAQIECDwr oOF5Vs7nCBAgQIAAgW4ENDzdpEqgBAgQIECAwLMCGp5n5XyOAAECBAgQ6EZAw9NNqgRKgMDL BfxN6C9PgQAIPCug4XlWzucIEPh7Ahqev5dzMx5GQMMzTCpNhACBugIfu+3b2+7t8Guze/+s ezajEyCwroCGZ11PoxEgMLKAHZ6Rs2tugwtoeAZPsOkRILCigIZnRUxDEcgKaHiy3s5GgEDP AhqenrMn9j8uoOH54wVg+gQIFAhoeAqwHEqgLQENT1v5EA0BAi0LHBoeNyy3nCKxEbgmoOFR GwQIEHhY4HP3vvl6Umv78fCHHEiAQAMCGp4GkiAEAgQIECBAoK6Ahqeur9EJECBAgACBBgQ0 PA0kQQgECBAgQIBAXQENT11foxMgQIAAAQINCPw/mc9Ff32tEnMAAAAASUVORK5CYII=</item> <item item-id="544">iVBORw0KGgoAAAANSUhEUgAAAqkAAAAnCAYAAAAsA9FGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAsCSURBVHhe7Z2J0eMsDIa/ulKQ69gS Uo2bSTFZfMWYwxKnBbw7888/u8a2eHQgBCZ/X/wBARAAARAAARAAARAAAWEE/oTJA3FAAARA AARAAARAAARA4IskFUYAAiAAAiAAAiAAAiAgjgCSVHEqkSXQZ56/H1kiQRoQYBL4fOcZ1suE hWYgAAIgII5A50nq5/t+/X2nWRz3NgT6vL/TG4N8G8qClC4Cn/f0rWfCiDf9WCF02Y8u0ZOW CXScpG5B5u8PSWqsgc7vN6qosfBwnxACKg68a8xSEW+EKDyDGNBlBoh4BAhkIdBlkvp5v9bk 9O81faeRKqmq8vla+r3/l1ZBntXgPnAVNSvLLL6Kh0QS+KjJVsk0FfGmn2IAdNmPLiPDBW4T RqDTJPUYlEZaspm/k141nieVrL7ilzrnd/y9wow8XJzMLMMFwB05CShfSJuw3QtzJsGIN63P a6FLZeupY0dO38WzhifQZZJ6anWgQWMJLC99eT6t7/M0Fa0+ifa8zCxF93UI4dSko2SW+mOY 5nNNqaJ7H4Euq7hMU0YPYZ8ggCT1CepV3mlUA4PeuQTogZNUi1UKyyDwaFyEgNLfZQJX5CXq oQMlNt37CHSJJLVUnMBzQwggSQ2h1VDbdW9V9MBca1BvA2gayzb62LeUtSZd4yY2/fkIdDnw Fwl9h8PGeocktTGFccTdNv8nVEKXj4YwjV5RJ7PkKAxtihOYp4T92Wzpxkxs+vQR6JJt9mgI AgUJIEktCPeJR28DRuKAvOw3Q5K6J6iJLJ8wArzTXoyeahxFN15ikyXeiLRX6FKkWiDUcASK JKmfj5SFgn4CDYdptopG50lqVZadhxQOSwkIZpWkvop/eo54I0HXeWSALvNwHOcprcRCrkak 9EdLUj0fhxznRXoqa0vwPy9tjn0OBsszO65ErUd1JCyre6wliumqpzys12S3k0rq0yy5AaGF dlEshXSsTpJauLOdxht15tH1+LzCGEU8vltdiqB7CiGJcw40A/aHSFLvg4edzJhJqtLKkjxF f8CTQ6sFn1HAYGKZLoPwcYi//v+YXHORoXzVqaBe9kdLYFm+l3XeEMuyjnT0W7qw6U7jDZJU 2n45LWJ9NOfYwZGzahtBPpOl3wP25yZJpWa3y3W9inj+lNyaJGnZURdVjNXCNiZbEqiqlup3 wa+VVOO6OhD/FVRplcHUO6Abv8JU9idn+2DpDUxgGRazE3m1maSOEW9+Sar6ZbDzF/Pyr1CF GVzu1qPoci9MHeNk9QJVb5xH64/td54kld6P414SdlRS19zOPGjeFGRThOzqnWsrw5KsHsGU uk4HvbxM6ff5WrjlsCct2wy8xGDSKEv2LxuB5Tbn4/4SVDovdpLKlinev3h3Uj5AXaffIiXe nJP/M5Zk2V8PXRrb73abIMdj2nb8LXRf9eQDKY+/vZfyCeo6LVhdn6Hkpa631h+3vM4k9Sj/ +5eKfcbn+/cO9qa6yuz6vzmuewPtWhUykztBTLkfTpl9zvV79xyWa5ujqi2EZcqg6FvGcdoK HXx+LSSzzMpLqzg4qjfs1ZwUmQLUQjbNEW9u/VFQvHHuSTUnJvf6dfLsSZcS450LOrkcHaFH 0lm05NscV1seo3PEAEl2Q/Vnq1ycq9V7HLeS1GMJ975K5tsKcB/4OPsjfftjzC0EXLvN1c55 WLWWQFDXr0mDqwJZjmkwg9skVV9+0PthTEQSPuQiWRqJmz27fYhl8KDoY6kH3bRqtWiW2Xhd V35c1Y7rR183HhEsU7B3sW6g9EZd34K99iGl5Y8P+Yg7m3R8YKuPJbR+JSeplK6o6+t3HVry JSbeOaA7+/JrF6lHlsfsZ1qbE9SGx2jKLqjr0uyGlNf4xb7Dzq0k9fpl/nVv6Wkrvspo6Oyc aX3MZq4Ph8x/8z5qrzr4EmkKMHV9nSOsy+Nq4HDuVa3IlOjratwWiDOh+tmIOUs17vEmBoms LR1a1cZ6LOMmVQRL0lY0Ao2xLMPL2MvtqD7fHeYfJ9PX+aGimHjjmGhe/bGej2yD5d05tS5Z 9LGE1u/hEV3q0gx4D8Y7Spf3SWpZPVJjMHW9+hidGLs5/bmYTmm7SezPNrHWVkV3ee+/7t9L xXbiVm4WHhtkmHlsfDOqVE1d19/sXMItxzS800oWc0bq2sd0u7STsMUjhKXqnJjKArcKF8Ky wHL/ukfcs5e4KstcvKwTREzbWxIe5t5prkzhThV2B+UD1HXrbSYTYfHGSmI1+Uj9etB2qsuq Phpmtdv3J77vFGL1yJWB8gnqurQxmpKXum5we9xuKHk99kGek+reVxlaMU1IWLgGWrzdfnrB L2M/qmHXD6fOUw3M62b1S8g+Sic3x6BuGthvv5vrbNbUDfMU611orwwP2Sd3UAxhmZqk7kso pF0+wTIXLyvpdySp01uRYPzhysR4VFoTygeo65cR1/EBzUM+4oRix8q1WHFMlEn9Ck9SSR9k 6vIJHw024uvk55IYxeqRLQPFkboubYym5KWuSxsnCXk99kEmqapOtQY4c3bk/srt+K1zY5uA q3J0MbzNsGV/3b8IfLDwHUGlX1fLW5NnVulJPPIyZXu2e9hw/Nb5tcq9JNmuakwuXTJZrtLb k6BHWAYkODyWi8mFHmPmUqdQlrl4kRUaZR+cDfGrKU3aj5Ok+VD63Tnijd8fH/ERb5J6bIPa P4bUV3JI/UpPUjOOHZLinc/Af8m0kTfE6jHIkXL4jD/u1veZTP0RYzc3/aErqUGW4EwMfE9g f1kbKoL09r6lD2/iwa84F2caM1iTe88SFHa7tWDb73vNQwSxTOh2niTVEKA7lsReN2WX7zlF CY3c66nQ+/PzVnyEv5exEU3RYnbno0cxwd5z+KhrtjxGu6yoabsh9qT+/dOKqqrznL/7ZhUX dlZ2TPtneotj+ch3RFH6G1hPCHYA1/5Kx5uqMJ3VjxWwFkg3AUsmqGt806rSzGUjufbJsh6N K3M/Jfex3bG8Ll2bev+oQ+LLDoQC4w3TH9vwkXv9cs2e106gLruJdzX1yNO2dw/tzQqWaJ9p Ora77WPNTJeEVE9K+X+/HilhmwV/ps40KUYze3nLva+W8ajUJhFJ6rGlIEf1I1l8Nbhz09SN sf3TrNxVVlJWg+X1fa59sWvmvG5VkcCS7J+vQZblfuPhXbLUkovLR3/KBoqWUWXGG74/tuIj Pv1Ge5bjRpm63GoAenxtOd7V0GOATTQ+Rls9bT622/bxS1KPZDXm/wEmUb6p0+ieSJbLd7X4 G0ZZJi0OEi94jIA67i1kQSBYTsSbYGRib4AuxaoGgo1L4C+ugroBM7cEiMW4VqN8s0+xUosQ bA6opooQGEKAwI9A6SqqBzXiTT82CF32o0v0pEkClyTVlXhSe1Pl99o89kC+xJAQBECgVQKI N61qzpYbuuxHl+hJqwSuX0u12guv3Agy3akUHQIBsQQQb8SqJlgw6DIYGW4AgQIE+k1S969b 5Z+9WkCreCQIgEBdAog3dXmXfBt0WZIung0CQQT6TFLXDfDYgxpkCWgMAiAQRwDxJo6bxLug S4lagUwDE+gvScVG94HNGV0HgcoEEG8qAy/4OuiyIFw8GgTiCHSXpPrOB1zO8Mx2Zmcca9wF AiDQGQHEm34UCl32o0v0pB8C3SWp/agGPQEBEAABEAABEACBcQkgSR1X9+g5CIAACIAACIAA CIglgCRVrGogGAiAAAiAAAiAAAiMSwBJ6ri6R89BAARAAARAAARAQCyB/wXEUV+DVs4fAAAA AElFTkSuQmCC</item> <item item-id="545">iVBORw0KGgoAAAANSUhEUgAAAJcAAAAVCAYAAABL53yqAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAALGSURBVGhD7VmLEYMgDGUuB3Iep3EZ h6F8RCAkBgHRq/Sud60okJfHy0chx2cgcBMC4qZ5x7QDATnINUhwGwKvIde2bbcZ+bWJ34Ll ObnWWQoxy7Wxd9ZZyPmYdJPLJOS0OHKtchaTPP42Xvux6f4Nywx7upNrWyYpPLOUryG59KVF TtOiRv7ok+GMq9Y+imWGPYBcWjWEUiv9VeqxQOUC46siwSVl08+HSmiJZddT34B0Wt28ml2F fb9fk9TN3Z2sf4alil/n3Eh9FJALC0/a6Y4M3DhPgPSk6WcQ5dKX9cmoIoQFw/KVWIPfcuEd HFbcOL9sXyzL9uvJhclceA0ZNwaGSmTucUoEczXKwdT1ytyLle3gJFaRGCFCCyzdtEZ9X4hl YmOK50EuQxQIcmAYN27ypACE9GSFShI65Jx0UXrGH+jjDnS/ftSEYzc3rgIXFgO3clhx48d0 x2GF5HoBlpG/rQ8hnu3IBX2RnDhKia4qWpxPUeQ7JxfI/VB1sOvo3M+rMfhNLM6Rhxv366q8 F81rX4BlhBmOZ1VYNHkRkdA/rVxne0ur0coQDA9WQVgk94sSv69yoXsLbUyqe4tnktD7is3F 0Dihp8dhhQZ7VVcVqtbhsQMisifFQu1aiWzbKvhQtkIsTS3ygpxrL4hIewg8QSsibA1grYi4 dTDPZ03W1GFUbmMLg7gVUV8tOscgBQZx0to2bhthSYTs7lg6gmFtKl65ChJYpiKLO/Emk8ju vjfpc5Em5edcBaiUPUJhSeaDb8HS+TUoOvY9171bhK2KqNrEjc+qzG7v0MchOmtPZZTJf+oy uXTEhG87kOVux9LE7ugVnttXO3KZKLSHNyed6PubuGxN4cg/kfmew+68sc9VsrECcjmn0u2a Xlg69dpTkF1k6shVAuJ45jMIDHJ9xtX9DR3k6o/5Z1Yc5PqMq/sb+gMclZyjuU6IIAAAAABJ RU5ErkJggg==</item> <item item-id="546">iVBORw0KGgoAAAANSUhEUgAAAK8AAAAqCAYAAADF7wseAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARESURBVHhe7VuLsaUgDLUuC7Ieq7EZ i+EB/iAEE8Trk5id2ZmdxYvJySGcBOyM/lEEGkWga9RuNVsRMEpeJUGzCCh5mw2dGq7kVQ40 i4CSt9nQqeFKXuVAswick3caTNcNZmrWPTVcMgJKXsnRFe4bIO9khq6z2db97c04auYVHv+m 3QvIO5ux70w/zqtDG5FVNjQdYcHGH+TF9K1qXsGhb9+1nbzz2JuuH82Wd71r82h6ZsE2jeC3 7WOjHrwGAasKxrRtcAt5HfEHbUm8JtQiDbEq4JC0i4f1ssFm52HXyf8P2zxHe8f/G9SwBW/D crYNhJBqScHW7SmUV7DBCdFY/Ug7T0MXZHys4LQdE2lcloZliT8gUYJW2UIAfqvMPc/oRpQY yMxUXqNHWgWSd9XsUMcz53/tY9KwLPLHJtQgnnXHw66gQ8lB9YvB+MQvDBdSud+HiyZcdHbx BaR22RlqpWJi+sJ1XdSPLwZhWPrYlSTIMFouzsduWkdet2qSSo3qF1PjNLXSrOtbI6BPvc7j bKwi3AL24mbmHbTJF5+gsKLG6dc+i2W9vaFUrCIv6jjVL0bG/TxhJvXPbKsTypIcgXL/78hX oX3JbS3IJFWLBCHaHVhu06Jtzxdgmfh4jme4k1aTF27JVL+YGoe95XSBhJkQbimYRFgCdLWV h9q7vzaeG89idPbLPUFhRY3v8+7JACaCF2AZLSoaT+fzxrlq8kLZQAFKjSeBTDJGLpOWZpH1 TauezZH7nLxAe58c6riMcewm4N+Zl1NYUeO+OvDvtTsPWle8AMsIMxpPlLxZYPft+wD82Ilg xe/RSq9Rhv9HjQP2/nfmRf0Jt+JIKlRKFLhyKayo8WhjworiZzMvyY2kAZDieZts8MZkCrZ8 v3jtDFD95L3Ch3q1NMPWEioOcLSYkmKw9l2QvRRW1Hgw3xs071rwZrnBwPO2gs3rU7RIofrF cWtrGM6uXqaEyGnLpfCLW2V+gdUWUmGrLCwsGZniuuLd0zvRe2dimZE0j2O5ERi7dkvieWer zBvCOKSgIkhU9PFJmldy7A7CLX3erP20RqNcv308h2VWj78Fyy2uAZ8Smy3fhuMCWFXB5l7H Oh6mIgQ1MUNHsir77M5AGcQdjyUMyybu1FefKyaviyFSuyQKJrfLXjUU+x2B5/nxMG1Iellj stfVKi8QAMD37X/bWtDpqRYYP6PQXp898cM+7xXDLpB3O3zJtxOfwnLLvvhp5snFHASpCIj8 6dJs7/LqjcgrTNPf8BFIk2TBB5hnR6PxhQm+QfqkIsBBAK+tmB9g5i++cF6tzygCv0Cg4APM py+l/MJdnVMSAgVfUih5JQVegi8F37ApeSUEXJIPSl5J0fyYLyobPhZwSe4WfICpskFS4CX4 UvQBJnrxRQIK6kOTCFTfbWjSazVaBAJKXhFh/KYTSt5vxl2E10peEWH8phN/kIxlU2OpHJsA AAAASUVORK5CYII=</item> <item item-id="547">iVBORw0KGgoAAAANSUhEUgAAALMAAAAqCAYAAAD4fWp4AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQOSURBVHhe7VuLkYUgDLQuC7Ieq7EZ i+E9PyhfkxhUdPZmbubmDAK7S0gCNgY/QOAjCDQfmQemAQQMxAwRfAYBiPkzVGIiEDM08BkE IObPUImJQMzQwGcQOBbz0Jmm6czwmem+cCLggE0axMyG6iFDiJkNfCDmwXRN8/fG029r+h6e mY1kMUNwcBZKR8yj6dvGtP24vsuCijDjLLjyduBAjtneYhdzajvDFqfBVt4WHMgxc1psYh77 1jRtb6xfnm3G3rRIAFUASxqDAwlasS3ErMOvaGuIWQfnq8OMcfT2ER0SNbR+YZhREwdRAth0 tqp8MgG8KM4eusZsQ/sHQ3Gy+q++vF7by7zAQcKzMHQVlOZWMDWlOUanUic4b7+7kqdgPhDz Gt+HMb+0oyrswUGSBoauChxnU3XR4PkgTSqn9m550CXb9WLGTN57Ly0qlDknvmu9/RUL5IMc /M+dpWceSjFTdVHqOS242CvPZZbYM0//nlavWnwLiMtGkOmHHvaNFhTG1HN6qPdzcG7MOjFT CUvi+QyM62lnG3vqGB7Q5MSU+/8kRGXsTG5njsdQLxxaSKRFCQ5sJ8lSbCUcRPOMeVCJmSol Uc/DOnbsAVwv6dJ6DLAXXpNq8A2SY95Mln7t+9MeS9ih0pzCmHq+db85ldChVMKBt9DSPDwr 5pDIyDPkPK3UWzgdrfFwTvDHYg7i94NDpSl+33ec4G/Nagswo8RKPV+is/UuTjKfqYQDD+s0 D5uYs8BvIcBOiL+ag5XsbgfUFpgixiP6fq8wx925U88JUC+0KBDWOBg8zkFycVbCgctLhgeV Z7YJUr4uyqybbtWDMN6VeuAS4vLJ80KJKMEs0Z8yzliTVDUHc76bqjQ9wQGhmwwPSjHvGX/+ 2qhfSuu6o2ulsThycemSSPqluTLVDEtqIim92DOflzVVm2ZykAmbHuHALtLUmcc1nvkE/ES1 wD/pmyM6doWiWJ05Oy1+zHwCmfua5DjI5gA1cWA14YS367gLeGYhB2FMzYhBWVWDaLUKx8Uy 97dc1rhY773ZSCzmKQIJT2ETY76Fgz0asAdkdmxiMasvlgRAbuGC3U6S9yv8UkwMI99z6GXz fJ25NAcbJodXfmviwHpn/5RW8A3gG07D9FKt7g3e4gcHR/xAzNWpNxgQxMxmiPlBa/5yD7sn GDIRyF2wAQcUgIIPWrHFUWDqn1MXbMABL8wgT+sApF6sxBvAgQpiwTeAELMKaUZj+h4FOGB5 ZgDJUNvFJuBAB7Dgg1Z4BR3UjNYIMxgg5U0EH7RCzCqkWY2pi1nggBVmLEbHF1aSl3tYJMGI jwA44GPlW4qPs892hHZA4GoEIOarEcb7b0MAYr4NanR0NQIQ89UI4/23IfADHWJln6dZcTwA AAAASUVORK5CYII=</item> <item item-id="548">iVBORw0KGgoAAAANSUhEUgAAAOUAAAAVCAYAAAC5WykPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOxSURBVHhe7VqJka4gDLYuC7Ieq7EZ i3HlEDkSEkCOf5adeTNvl8PkS74cwHLNn4nARGAoBJahpJnCTAQmAtck5XSCicBgCAxFyvM8 B4OnvzgTk3Y2GAVri5Tnta/Lte4xYqg5y6L/bQeCmJqHDt+rjs0e9799XNuyXlFRatrq2G4d twvT7hY+Pp4p29CYZOpELqOwpMbJD8ATumHN0CeJlEKRxTANI/FLXIyU575a+wjQgL3O/VrX /R7p8EMBR41niDw8Jhk6sZZQWFLjrI+4k7pizdCHT0pBEi97SeUs4sjfRRZdt2tDM6XIgnYW wrOvCALxzJ1hEXCJkOmpAO4MvfuZMHH8EFhFMm0gQ2NMpC21vs0DXyKWlC1Gx/qut+K+FTok n5TB2jC7nfuuSz68fA2jFJIpxZ9FVIk6jVK4jLhQ6Swc9iFV6TgdOL7FhPqewkxVMZyWhdov ZbwUS2o9LUtbrPPkzSClldlQwmCkjJe8Ibka9JZQOWH/LWNcVQxWppR7PJnYz6CNMSHLJyuy f51FM7B0+ndgfYD1w0tZDQyIdaBDiHcGKa1ohBoYI6Udpe2oFnfM2IHRs4vsd43je/+PbOCX 4HI/y6Cl4/Zeamu/n66HCZQ3QH3MRNducFahsxE2oxRLar35rgmCPikHwNoJFjDeZaTU5U/o 8zFSQqeqqdki3zH8lZShS8fDqt+P4Fg1kImJ7hejh2xoBvR6WzDbKI1ygmApltT6V67bx8Be cwCsHUxhvPmkBLNiPPKEjlEvUuU4ifau8HqjsHyNXZn0zpTR65zgxPvj9qFC+YrqAwaUev4H pglKXwRvPimhrIgexPxQT6n1eq96nhrfPejJH9fmMieefqWQmhFLieI6phMkAnuWfiuoS9Q9 t4nWlbD2WpBXitZY6/MXTF8E74CUYF/m3U2aOckHPVBPpSAz1yl2em1y+iq/bj2KgK5EUsbv k80t9rggdHSsd8vDhFHa21ci9mFI7UypLN0Ga6T0bo51TF86UzKM+ckUfvRtd0/5iWLvJsQJ p/uaRHZC7BdMdTHh95QfI5a/HYY12g+PgvVjd+swSsvc5e0r61Sv54uefBd5TkHePpVZEo6B iVvesWQqxap0fTIp8WrNEaWJ/8F4dyHlU8LgNxX8aFZq0yrrPUcxZai8ssHe9OIPLjTT2dm0 TKeK95RlgsGrM0g5lv9F7ylrIDb3nAhMBFIR6JQpU8Wc8ycC/weBScr/Y+up6Y8gMEn5I4aa Yv4fBP4AbqogSYcU0tMAAAAASUVORK5CYII=</item> <item item-id="549">iVBORw0KGgoAAAANSUhEUgAAAOoAAAAnCAYAAAAB4tQkAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARkSURBVHhe7ZwNsqsgDIVdlwtyPa6m m+lirOBPMSYmoKLouTNv3kxBhc+cJATaqsMfCIDA7QlUtx8hBggCINBBqDACECiAAIRawEvC EEFAEeq3a+uqaz4ABQIgcCWBDaEOIq0qCPXKF4Rng4AjwAr129ZeoFXddM2bIuq37Wo37/Ef MokTRQLWUXAFobbdkO2+KfX9dE2YPXyaXrB1136jeKKziQBYmzAFnbBGnWA4YdZt75qmvzc5 qViz2dkfrKMBQqgiMuL1o9HiAjsBsNZYQagCIb9OX0RYDSXaUwmAtU4OQmUYDcW0Zlyn6xDR I50AWNvYQaiE02A4KCLZzGdfL7C283uNUL9fvXwL7243nK2eYJ3GcYvbtUcI/RbI8SnmpwkP aQzV23reZ3GFCyZi+n29B0dSsE5Tz0lXxdro44Tqo+LipAIVak/eiZIUihy46aBD+P9jDj2c IFSwTlNxCrfMQh3K8IMQ+ujV0ohK2j8uysVEXHd92P9/DNI/M1CdE+Y/yqYB37yKnLzJfxQT rE94q/0tr7HRjELlUlAn2ElYWruOfe2p3DVMRHUfrzbd9fvbe6z3BYeIHeN0mKf1Y7ZFeI2l 1q7P9PGsWQTXccsnVC71Cj9j2sXijo9W1OgFQUpC9Z4x45pUSj3ZuQhCsQoVrJdO8ahzxRYb 9X2mrPE4G80mVHZTOzBSrX023RkEhSCdbtkWsC1C6RGG7xGmSUxEFeeyT6gaS639WayJQ95R NFS5Eae7zjrSbXQhVK6YQj8TTXb0WpLha5PU2odsdVzbsmtXKULGRlqDKJW5huuYeR1MvPH2 XP5jkIpcdM0djlpjqbU/irXjToxyWXENyO204ZXlrLKldBvNFlH9mpCmq0rqy17jl51c6pvu rQzSjOvCrX9vnvq+grV/izuWPJoNEys5LaLGWWNs77ECO3u3KS1cFpP+3o+2U893XP4fOxO1 P32h8xpJ2r81Fpmsa9RxXS6z1N7FQ1mL9Qr1jY4djNzE9x2b3f2dSr6I6qcabpdw2zPL7ZSm EQ5ECAUYvhLpAvD4RfgwBTq16jul6WFRQYj4ZxSTwHr53eI5kh6xJWe0USF6p9poZqFaPdfY LzpdtKc1p++jWqcaI1TrPVP6PZm1WlNIAabY6NxMf8oozUYFoSrVyh3ziro02njG6KmVcpmT SVHjOrJzsUIthPWZIvVL3iDrW2VpvCilqLowK2KjjFAHkYandi47rJ4gVP3nY+we7Ug9ivcq WKglsJ6XPcFvYR16SozY6PJ50j699ushaxtdC5UVx82MO4uC8BAQuA8B2xp1xybxfaaKkYBA uQQMQqUl6XIni5GDQKkETF8cpyc7Sp0sxg0CpRKQhTpWy079Klip1DBuEMhMgBeqLyhl/GZJ 5knjcSBQGoG1UFE4Ku0dYrwvILASqrTvdOje0wvAYoogcCQBQ9X3yMfhXiAAAikEINQUargG BDITgFAzA8fjQCCFAISaQg3XgEBmAj8BwyHJ1buaAgAAAABJRU5ErkJggg==</item> <item item-id="550">iVBORw0KGgoAAAANSUhEUgAAAQsAAAAnCAYAAAAYTG2rAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAWgSURBVHhe7V1blqwgDOx19YJcj6vp zfRiHAS1eSQSJIg6NefcH0UeRVEkIfR9TfgDAkAACAgQeAnKoAgQAAJAYIJYgARAAAiIEIBY iGBCISAABCAWJAe+0/h+TcMHBAECQGBFAGKRcMEJxesFscAyAQI+AhALD43v+LYi8XoP0/Cf LIvvOL3ncS//YFFBJCgEIBaBWIyT8zz+kxvymQbfivoMRjTe0/jFggECIQIQi/8es5jF4T0a eVz//pNQQg5KEIBY/HexSMYfWRolbELZRyMAsYBYBAjYuE1gaTya/xhcAQIQC4jFzwGxAd5h idsUsIgo+hl916auLnzdAwHjjo5h7gDEAmLhQrpWKHQCm3NdOFHpscCV2zTxrLcX6b6UWHy/ VwnBPyfIJ8HUCYWORWFUZxpwlKK8attUJ+PGsJ2MeWLhFoivJGkXfwlL9kw+2T5ccGw9r98j 4Gfwk57itud6dHa5NjBX1mqPJ5UWp9eVQ5jaHAs9rL/jj1yVKCl+LuelYqOXquoQN5zJuYl/ kVjMDf4EglrgodhwO5Z9HggNIVQziZ8aaGsgFkcxtXMaCHxN9uo8j/oiWLfqnFD4m6CqJVXX uVO+PsoN1zmD37IO5WJB7EBB5JxcAJSFMD/zCcVbKzOR9y2dU7BWaMTf2cwubnbf0LKI3n/m 3b5k0V0EU07gowzRU1PpxbwsmOZTx9ObG/P6dJanXCwSLAVuCycwifvC1JUkDMWdSHeNgik/ qShtgf3EIvc+381057D2I+1WZjHNt8eWmOtmXFP/sbNmSsSQaNG0dTiIWuV6pXkoKuMhQb0G N1YX5oBYeJbArpuwlMu5GxYkTngeELugdjb/GfGeNZMtyeNFxmF3Pqa0aNELnRQLcnyMNB0W C4qXFQJpLfXIUtS6ayPhhi2zupJtuLFa+AfEwgOW9b25CeGyA/cJL9lBON+bDsRWkqPgczLJ yVsUufdbUxspYkK0w7RgmE7yTSyKdxszQUZ2fJpioSkU3HiiDa7CislyIxLXVKx1uLHOa51Y UBeuFlWlScNZCqW7YymN98tTAb74GVvDMl5O0HITnnvvNq555zB+IxnLOBFTyVh3Tsg2TkSb zP74fshXbQi7vPRmNzNGG/BbdnJyPIQrFp5EyNuScCPgZWKZ6XCjXCzYQJF3BJq9saijdNTC rSKSrvaEtR1wQxKzdq2RNNPbYVoKC+mGUDESziJt5YZkeVkw0pLx2GorXOkcd6Jut7IsDrgh RKKSD5zI3Cq1ICqALpj/tkVj03fdmVZ3Ivc+3ona+KUqGFABTtafJ3I7WoiFiJcFoy8ZDxuL k7Yn5MYWI4kx1VlvbICTNMk30zI65vQCnNsPx2TO7Lkg2PZ9GDbPXGq6w2mI9ea3X9+y7kRy dBriOgxM0hazmHQxlRKZKMccnYZW3yx2jDXUQCykvCwZtWw8WtwUcoOxYuq5QR6dlsBVU1Zu LTwnz6IQr2Iz/SqYViZllYhFIaSnFs/GPSp6wx4quDrT+EgtN8ycDu5SYJe7IaIjti4ZnJmI fcUcF31aLBbLRbDcsdEJmFalez9BLFoKhVODX45KEj+hhaFqvZnxrHd9uohF/mfr5GpYtAh3 C6dmY7e04ANicR1MP8bNOngh8AFiwbk9OR0X8zjiRtged8eHiDcGDfLrzRf/TmIhhua8guxp j94lq/MG07elr/ktC/wvCn3nQKf1UPghFnuoakfSdWbwBrWYneqplwBvgL5OF9P4E8SCRVYz 209n+lALEOiJAMSCRB9C0ZOUaPuaCEAs4nmRpgVfcz7RKyDQDAGIhQ+tZlpwsylDxUCgDwIQ ixV3BDP7MBCt3gYBiMUyVS3Sgm/DAnQUCAgQgFgIQEIRIAAEOqV7A3ggAATuhwAsi/vNGXoM BLogALHoAjsaBQL3Q+APupGrkbe+2ccAAAAASUVORK5CYII=</item> <item item-id="551">iVBORw0KGgoAAAANSUhEUgAAAJAAAAAtCAYAAABBEuITAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQhSURBVHhe7VwBjoQgDORdPsj3+Bo/ 42NYQFEoRYoVV0wv2eSyJ0KHoZ225JSWH0GAgYBijJWhgoAWAgkJWAgIgVjwyWAhkHCAhYAQ iAWfDBYCCQdYCJwTaB61UqOeWVPI4C8jIAT68u4+YBsg0KxHpYzXsZ9BT5N4oAf2oOspAgIt ehqUHqZlM8iTSUJY1zvcePEHgTC9IxqoMfz9v34n0DINWg2T9v7HmbZMenipiJ4nsNb+9+Ll FpgINaXpVJcEsmQfJTV8nnAmIh0SZ52+vxBmvOK467TnMWw547JE/r/lVJffvZjEKoQ/EdFq P9rvFNHQgMtI/HngPKrAi2IJjMmC38gncIBBGr8a8t403q6v/6zQ6c0oBkMCbfoTatI/k36d 3jiWYF19tTKsqEdBDYlvDkBT4EGtbK5NNOz48BCAtQfEsl4Kao57OMTBy449vGNfBLJlhUQ9 p6cXzShvQZ5fK0u9j0t3QQ3Ol+KMvdTDYLChJRZ8vMLw2xWBUPDRWtUKUsq1Wm8BWIfM5dYU ehRX+vAyAK4hQ5QcgWy4sB0BihaiEoiEV+BlEQKHnrE7AkGXvm7gsWHh79GzDjj73HUNVa6V gQ13ZAoJsG5M6inOiUXyLEQClfGKDx92aO13HtvuCARDGCVc2RPjenslvbJ5j9yGFQmEhNg4 28p5lFrPtMlZZ1fmkzGijBfQaEgxGSVQdiG5BT74vQ8k9BCWETzcynp1uwcS5v8eSJfaU0mi kpK+2xDmjM+I6EhsOpAQ7cAl0KZVaLUyzKvUepoGGsjbEGqbEC/7e6R7cAL5begqhLneHCWN zwlPNoGOjMl77HHErrysngZLwfEszLYdNy0XHpBkM09SSaIGWt8A0vgQr6IH6jmNd4ZfF8FN msMwJBR0lCvEETOrdnWgs5pGSQOZPRiPRnZfHsgVaONeTFV55xYPdJLaF8mznf+kEo1YkfW2 VRZfeDgOs4nHPG9lXJjvpiH0RuJsrhVQCiOZTWGk8aipgQfKpci5tD2fntO91E3ww1Nx3EwF kuGkmYospaTYL66e20hczF0guc1xEXzWsPTwPn6p/p5GYtzQY2Eig4kI4Pqz8lL9FxqJRLzk MRICFZfqX9xIJJkqD7VAgH4jkdJI3PtNWM+pYRGtBTLyThIC5DvRxT4QSJFTrdOwjE8yVR5q gcB9BIKrS2ou9zYSW4Ah76xHgBXCzhpz4oHqN6PHERWX6rf+SenS/X6hCjYzRQP1SJDSmisv 1cdNOLyR6KdMQ1azRmLJSvl7MwR4vbBCpTquOFsb6CX6/zQSm+H82RffRyDCPRKLYs4LRQj/ rZH42X1uZth9BPLkCP89DNrzzFx4302ke6lmqMiLyQjwCESeRh78KgJCoK/u7EN2CYEeAvqr 0wiBvrqzD9n1A7K0PnRyUYA9AAAAAElFTkSuQmCC</item> <item item-id="552">iVBORw0KGgoAAAANSUhEUgAAAbkAAAAnCAYAAACSTzavAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfJSURBVHhe7Z3ZceQgEIYnrslh01A0 fphoJg6/uhSB35yBVqBjONWcDZJ+V23VlnVAf93wQwPyY8IPCIAACIAACFyUwOOidsEsEAAB EAABEJggcggCEAABEACByxKAyF3WtTAMBEAABEAAIocYAIHLEBin1/MxDe/LGARDQCCbAEQu GyFeAAI9EFgE7vGAyPXgDdShHwIQuX58gZqAQBKB8fWU4vZ4DtNwp5nc+Jqewu71H2awSeFz +Ycgcpd3MQy8OoHx9ZqWDOWd0pXvaVBnre9hFrvn9Bqv7m3YF0sAIhdLDPeDQLcEbiRyQtSe r1nWt58b2d5t/PVZMYhcn35BrUAggcCdO3pjZpdAD49ckwBE7pp+hVW3JHBfkZPrktrM7pYB AKMdBCByCAsQuAyBe4rcsvFmWNcl85z5ntc3sayXx7Dt03MbeOlnaCBybT2C0kGgIIH7idwi cGU2nIh3YYdmwXBs9ap5vfap7EBiE7lxxPjI9DmY8LWCe7C+jsiF+KvkDG6ajyMM2JrJ1yAz SgqLjWHfaVtF5N6DeiB1aXgfZRULxGVGXkmc5Fbjg9QGdT2p0GnqmkmiTeRjFEvqOlmA+4Zm rCvZk4ih/GOV7EvylzwjV64fGV+fTrE8uNQ3LptptnOApVKyqbVp8VxSbIiKKoOW4iInR1fa nN8UuaUCz1aLxFRDpa4neLp7Jgk2BT1CsaSuBxWi39SUdQV7EhDUe6SCfan+Ep3fp/PPPRAu +qgya3rl4C8Cp6bdis5cy1W02ptSY2Op0Mxv1ZjCIiccowbL51NDMiAV8RNBqjqwGilh7D4a mkd+84hNHxFFXn+LEWRMg2Bmon4Fgn0gEcmS8kXvrMnYqhfVPG+O9Gf3/vJQ8w26jS+qsH4y zTmgyMyCsdpjxA57bAjtWWb6RUXOVl45bzTSlWugWYc5zQC0RzLxDduVKhWjvk2kcq/TNSrL hCpPPSvk4U69Ivl6LkvqebpivKzz60tb1PIOyj7qOl13Xn8d1Ef0RdaOE/vc3TJ7jBngOsqc y0re3JKVoq1kjxNrH7GxpTp3kfv+/nZO/7++vj5myNHFlhowne3rVH2/zxyV0G1ILITZQan+ LuG6lTLoiQmZTlJGV6VneQksNf84nvemZ2Rjbxx/lL1bymRrL6V5h8R/zj2UfWfz1wELt9i6 Bcopcs549BSYLHJrVixZIQPsKfUt0JDYYOg3t2yhFLm/vz8pXkLoxL9///7t///9/V3oGI60 A8P3xYFj8QvxmS//bqZATTc6D4gqduReb8nE1YSOD8TqO++CG3ZgR5nLknp+r8beOEyRqxd/ way1NlKXd6Bbkm+j/EFd781fRyCELf6lE2LzhzceS4pcSYHz2WNMOjJmjWRsMGnJ5tdd5ITQ bT9CPMgfa/Tim5nFzvDIkoNvoGDnXrcqUpvJOtLyDQyORc5YGzwYfaYMKnJZUs8L1ku95jy7 M79fOP5SWGtM6/IWPFwbL8zfeRtLpn3d+etYxeRfKzhsN550peC5C6AxQzmOx0+FUtrT/vTq J3L/AuFPuRFjzSo47XGkbPWdjQrgzNjh6jc1kVML/fn5kY2H+jnDTK5GutL5zhUWJxOnf47S ldbieuF0cUJ6i0pXelk7BZp3JkfGVm3eVAPNvZ7rT7X8Hvx1wMOZ1XDtGfC1r1rpSlleoWMS MfZIVhn9AxU7hi9q9ZtaulItc1ubo0aANvzYGVsGxOAGbE7zt9GMvvHks+gce31Xt/XvWpkB yc1E7+i14LGCvDR/JtYCeQ9rcuuGKm/sVOcd3AgSb8z1pznyb7yGekTBtfHE7Kj39SqH6NQQ uYx0YdAA+Mge32bB4EiiYoen37Q2nmz1D53JuZTet86zbCDQjxDIkfDhYnyJ3ZWyR9z/YrIU Zmvbesz1OeUxHB0mt4WjLJOAKNMWj5WOhWVmEcOS8sUBa0+nws76KLZYeAfEQ9YtMf48g788 MCxfLffpaUbRljzZggoit/eZ2mHwvL/8HmZPjX63Rb9Z6AiBnbMNnx3wnZPLauX2w8QOxn6Z hK8RFSaW/rro9FBP8XdC3ume2lTBvcXeKwK9+CvzMHiMyOUyrvk8ua6XUTh7vzn7dFg+tk0v vm12BaZfgnbteUZOGQj5HlWddSomeuo0yE98VN0lRYucyGSaX9xxvJol/jh5EzsAufx4Yn9l fdbrCiJXU+CWafFnAMTRb872bN8iDRc5kfjb0o5yCu1bENW3TjumQm2/XZnb4I2GfC4mFc/J 5XJ1PZ/QaW7paf/RlPDZQ75JHLzt9NISk5mHllOMP7W/3vNSRuJH5C8gcr70aMgRr6BQYe43 1UFLlMgFGYObQAAE+Ag4hYVTyPlMrV3SOP8tOf0vkdUuEe+vQ0AfsEDk6lDGW0GgHYHSO/Pa WcJc8jw4ONuXaZgJ9V+cvb4Kkevfa6ghCEQQKPl1jIhicSsIdEoAItepY1AtEIgnAIGLZ4Yn rk4AInd1D8O+exAI/fzTPWjAShDYCUDkEAwgcHYCJT//dHYWqD8IGAQgcggJEDgzAWwyObP3 UHcGAhA5BsgoAgRqEajx+adadcV7QaAFAYhcC+ooEwRAAARAgIUARI4FMwoBARAAARBoQQAi 14I6ygQBEAABEGAhAJFjwYxCQAAEQAAEWhD4D1FIOlopGJsPAAAAAElFTkSuQmCC</item> <item item-id="553" content-encoding="gzip">H4sIAAAAAAAA/4xTzW7TQBCe9Tr+a9KEkBRSJ3Ebfo5VcCkSPQVUIQ78SOEBKtcxjREhwXVR j36CijfgwjNwR+LMo/AKZn7cUDix1uzOzH4z8+3sug4ACuUNise6xtlJPk6T03T5oQY0HqK4 s2UsPpN9jwm2iF+fvEvinD0w5XgDZ+tsvnq6vBD3CxQbHdM18CXFoswvAX5h9dHnPzaNXS2k DDA0K+118Sd5nqUn53miGHmI0oTrwzwc/WXXOIGZZ0nisyNEaaxYtcLed4CiZodfcJ1Yjqy2 K6vjyepuhAYW+YT9cZS9D/twAHvwCEiDOu99k70Q20J7B/g9oDqcoHA3Q2I5aRBbVosGE2iF 7Z9oODc4yayFRPUPvUd52+ElkixacJP3vraxHUr615GsdlfodbZk7d4SmluEVGOA20JtbUNP ArvbQqeHLl/o9DhxX4wOGwMBW0PJPghkHe5IlQC5Kj3Gw2JDd6VSsK40kuDhHalEV3JXksvt 3JNDDa4OdZ+fTXMWHp9m0Wp+/HaZLaLcZmyXXh+7j6I8klvdrm7X2MFJV2+YnumYdbK86CI9 e8Z55MX26S2qCiujxA9U//+9V8ntPIviJDzSvOVXwEC1QPmqJE0pH49UBspQvsbQQGnlmyV5 TMRAiUoNMcUEtyzCUJTNGFQcwhDYpTwU7iGGwzcQw+F1xHB4g2uhsskYVJqEIbDQbb46XyRZ GkfvpSEO036OMoMUP139Rl7VzX9G/brxGwAA//8DAOMLZSQyBAAA</item> <item item-id="554">iVBORw0KGgoAAAANSUhEUgAAAeYAAAG6CAYAAADd3+VDAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAChLSURBVHhe7d3bdSJJFgVQ2YVBWDEm zAfW6K99mN9ZcmI8YAQICSEk8hF5IjJy91q9urqUGY99A526gKiXo38IECBAgACBZgRemlmJ hRAgQIAAAQJHwewQECBAgACBhgQEc0PFsBQCBAgQICCYnQECBAgQINCQgGBuqBiWQoAAAQIE BLMzQIAAAQIEGhIQzA0Vw1IIECBAgIBgdgYIECBAgEBDAoK5oWJYCgECBAgQEMzOAAECBAgQ aEhAMDdUDEshQIAAAQLrCubX/fHl5eXj393x8PaggG+H4+5lf3z99qW342F3ve/+aw4BAQIE CBBoR2A9wXwO3JswPof0z5B93Z8C+Pvvn39vf4nq21+3UwYrIUCAAAECF4H1BPOPir0e97dB fUnd48tud9cx3133sKN2HAgQIECAQBsCqw3mt8PuPYQPx69ns09PV793yvfB+yOIHwR6G7Ww CgIECBAgsMKO+Ry0p6erv7/GfArq3elF5wnB/PW69fV1aP9l4gw4A86AM/D9DKT+zLDajvn8 tPXna8nvXfC1e54YzClw8/wucPom4J82BNRCHdoQaGcVycfEir8Tfj0lfXpD18d7uyZ3zO2U f7srSR787SoP27laDHNa+ip1WFp4+PjJWnQQzKeAfvyU0yWsn7/5Kwk+/Bhs70p1aKfmatFG LdShjTqcVpGsxXqC+f7Ho05PWX9789dHAR+86/rZj0slwds5Zu2tRB3aqYlatFELdWijDoL5 jzqc34n92R3/8kEhD38c6rar/nmfw9/G4VeHNuqQ/ibUzq7bW4nHRDs1SdZiPR3zgvVJgi+4 DUMTIECAwEICyZwQzOHXDhY6M4YlQIAAgQUFBPOCuI+GToKHt2Y6AgQIECggkMwJHbOOucCR NQQBAgT6FhDM4fomwcNbMx0BAgQIFBBI5oSOWcdc4MgaggABAn0LCOZwfZPg4a2ZjgABAgQK CCRzQsesYy5wZA1BgACBvgUEc7i+SfDw1kxHgAABAgUEkjmhY9YxFziyhiBAgEDfAoI5XN8k eHhrpiNAgACBAgLJnNAx65gLHFlDECBAoG8BwRyubxI8vDXTESBAgEABgWRO6Jh1zAWOrCEI ECDQt4BgDtc3CR7emukIECBAoIBAMid0zDrmAkfWEAQIEOhbQDCH65sED2/NdAQIECBQQCCZ EzpmHXOBI2sIAgQI9C0gmMP1TYKHt2Y6AgQIECggkMwJHbOOucCRNQQBAgT6FhDM4fomwcNb Mx0BAgQIFBBI5oSOWcdc4MgaggABAn0LCOZwfZPg4a2ZjgABAgQKCCRzQsesYy5wZA1BgACB vgUEc7i+SfDw1kxHgAABAgUEkjmhY9YxFziyhiBAgEDfAoI5XN8keHhrpiNAgACBAgLJnNAx 65gLHFlDECBAoG8BwRyubxI8vDXTESBAgEABgWRO6Jh1zAWOrCEIECDQscDLy1Ewh+ubBA9v zXQECBAgMEfgPZRP/yRzQsccBp9zPtxLgAABAmEBwRwG/5gu+SehOjs0KwECBAiMFvgIZR3z aLn5Nwjm+YZGIECAQFcCN6EsmCtUVjBXQDclAQIEWhW4C2XBXKFQgrkCuikJECDQosCDUBbM FQolmCugm5IAAQKtCfwSyoK5QqEEcwV0UxIgQKA1AcHcTkUEczu1sBICBAhUEfgjlHXMFSoi mCugm5IAAQKtCDwJZcFcoVCCuQK6KQkQINCCwIBQFswVCiWYK6CbkgABArUFBoayYK5QKMFc Ad2UBAgQqCkwIpQFc4VCCeYK6KYkQIBATQHBXFP/+dyC+bmRKwgQINCNwMhQ1jFXqLxgroBu SgIECNQQmBDKgrlCoQRzBXRTEiBAIC0wMZQFc7pQ7/MJ5gropiRAgEBSYEYoC+ZkoT7mEswV 0E1JgACBlMDMUBbMqULdzCOYK6CbkgABAikBwZySLjePYC5naSQCBAg0JVAglHXMFSoqmCug m5IAAQJLCxQKZcG8dKEejC+YK6CbkgABAksKFAxlwbxkoX4ZWzBXQDclAQIElhIoHMqCealC /TGuYK6AbkoCBAgsIbBAKAvmJQr1ZEzBXAHdlAQIEFhCQDAvoZofUzDnzc1IgACB4gILhbKO uXilng8omJ8buYIAAQJNCywYyoK5QuUFcwV0UxIgQKCUwMKhLJhLFWrEOIJ5BJZLCRAg0JJA IJQFc4WCC+YK6KYkQIDAXIFQKAvmuYWacL9gnoDmFgIECNQWEMy1K7Dc/IJ5OVsjEyBAYBGB YCjrmBep4N+DCuYK6KYkQIDAVIFwKAvmqYWacZ9gnoHnVgIECCQFKoSyYE4W+GMuwVwB3ZQE CBAYK1AplAXz2EIVuF4wF0A0BAECBJYUqBjKgvmvwr7uj6cQvfy7Ox7ebi7+62vHt+Nhd71v f3y9m0MwL/loMjYBAgQKCAjmAoilh3g7HHe3YXwO4o+Q/etr7+t43b+H8v4Sx7e/vi5RMJcu lvEIECBQUKByKOuYB9fy9bi/75o/77392t115xD/3jUL5sHoLiRAgEBWoIFQFswDS/522B1f dof3J6l//vPtaz+C+GegC+aB6C4jQIBAUqCRUBbMz4p+DtoHrzGf7nv0tYHB/PXa9fW16Jdn K/F1AgQIEFhKoFIoP8qC6+8ttdX7cdebPrevMd/v6sfrz7dPXeuYU4fLPAQIEJgkUCmU/1pr 8pnV9Qbz+3urB73GPLBjnnR43ESAAAEC5QUEc3nTzIgDg/k+wL35K1MesxAgQGCKQIOhfNqG jvlRMe+fuj4F7PXNX3997X0sPy415dHhHgIECIQFGg1lwfzHOTi/2/rzA0a+/8jTX197j+b3 p719wEj4IWY6AgQIDBdoOJQF8/AyFrsy+RRFsUUbiAABAr0INB7KgrnCQRPMFdBNSYAAgUvi rcIhmRPrEFm4bEnwhbdieAIECKxLQDD/qJdgPv+BDcO6HslWS4BAFwIr+t6bzAmJJJi7eHzb BAECKxNYUSh7jbnC2Ur+SajC9kxJgACBtgRWFsqCucLxEcwV0E1JgMA2BVYYyoK5wlEVzBXQ TUmAwPYEVhrKgrnCURXMFdBNSYDAtgRWHMqCucJRFcwV0E1JgMB2BFYeyoK5wlEVzBXQTUmA wHYEBPOoWvtxqXcuwTzqzLiYAAECwwU6CGUd8/ByF7tSMBejNBABAgS+BDoJZcFc4VAL5gro piRAoG+BjkJZMFc4qoK5AropCRDoV6CzUBbMFY6qYK6AbkoCBPoU6DCUBXOFoyqYK6CbkgCB /gQ6DWXBXOGoCuYK6KYkQKAvgY5DWTBXOKqCuQK6KQkQ6EtAMBerp59jfqcUzMXOk4EIENii QOehrGOucKgFcwV0UxIg0IfABkJZMFc4qoK5AropCRBYv8BGQlkwVziqgrkCuikJEFi3wIZC WTBXOKqCuQK6KQkQWK/AxkJZMFc4qoK5AropCRBYp8AGQ1kwVziqgrkCuikJEFingGBevG5+ XOqdWDAvfs5MQIBADwIbDWUdc4XDK5groJuSAIF1CWw4lAVzhaMqmCugm5IAgfUIbDyUBXOF oyqYK6CbkgCBdQgI5XOdkjnhNeYw+DoeiVZJgACB8zdHDB8Cgjl8FJLg4a2ZjgABAtMEhPI3 t2RO+OOQjnnag9ZdBAj0KyCUf9RWMIePexI8vDXTESBAYLyAYBbM409N2TsEc1lPoxEgsGIB ofyweMmc8FS2p7JX/B3E0gkQKCoglH/lFMxFT9rzwZLgz1fjCgIECFQQEMp/oidzQsesY67w HcCUBAg0JSCUn5ZDMD8lKntBErzsyo1GgACBmQJCeRBgMid0zDrmQYfSRQQIdCgglAcXVTAP pipzYRK8zIqNQoAAgZkCQnkUYDIndMw65lGH08UECHQiIJhHFVIwj+Kaf3ESfP5qjUCAAIGZ AkJ5NGAyJ3TMOubRB9QNBAisWEAoTyqeYJ7ENv2mJPj0VbqTAAECMwWE8mTAZE7omHXMkw+q GwkQWJGAUJ5VLME8i2/8zUnw8atzBwECBGYKCOWZgKe/mjrXx+Zmms2y3ABJ8OV2YWQCBAg8 EAgGSs/+yZwQzJ7K7vmxZG8Eti0glIvVXzAXoxw2UBJ82IpcRYAAgQICgrkA4mWIZE7omMPg xU6JgQgQIPCXgFAuej4Ec1HO54MlwZ+vxhUECBCYKSCUZwL+vD2ZEzpmHXPxA2xAAgQqCgjl RfAF8yKsvw+aBA9vzXQECGxJQCgvVu1kTuiYdcyLHWQDEyAQFBDKi2IL5kV56752EN6a6QgQ 2IKAUF68yoJ5ceLvEyTBw1szHQECvQsI5UiFkznhqWxPZUcOtUkIEFhAQCgvgPp4SMEco75M lAQPb810BAj0LCCYY9VN5oSOWTDHDraJCBAoKCCUC2I+H0owPzcqekUSvOjCDUaAwDYFhHK8 7smc0DHrmOMH3IQECMwQEMoz8KbfKpin2026Mwk+aYFuIkCAwElAKFc7B8mc0DHrmKsddBMT IDBCQCiPwCp/qWAub/rniEnw8NZMR4BADwJCuXoVkzmhY9YxVz/wFkCAwB8CQrmJ4yGYw2VI goe3ZjoCBNYsIJSbqV4yJ9bVMb/uzx8Gcvl3dzy83dTs7XDcfX7t5bh/va3n2/Gwu963P377 ko65mYNvIQQI3AkI5maOhGB+VIpz8N6E8TmkryH7ety/H+DPMD5/7eva1/17KH988fbX12mS 4M2cMgshQKBtAaHcVH2SObGujvlbmU5h/BG+pyDeHY5fDfSlQ75k8c11p/89B/z3rjkJ3tRJ sxgCBNoUEMrN1SWZE6sN5rfD7i6Mb+t400H/COK7oPZUdnMPAAsisGkBodxk+QXzX2X5fC35 7jXmm3u+hfbAYP567fr6WvRq/8zS5KG2KAIEBggI5QFIy17yKAuuv7fszF+jrzd9vr3G/LWh cyjfPlU9MJhT4OYhQIDAQwGh3PTB0DEPKs/Pp6Qvofzo3dq3ryl7KnsQr4sIEMgJCOWc9cSZ BPMguO8B+6NT/hzDm78GcbqIAIE6AkK5jvvIWQXzI7D7p65PT1Ff34l9/6NUd/f7camRJ9Dl BAjkBARzznrGTIL5F7xLV/zzg0LOwXvz4SLXX399yMjlXdqX3/cBIzPOplsJECgpIJRLai46 lmBelPfn4Enw8NZMR4BAqwJCudXKPFxXMifW+67sgiVNghdctqEIEFirgFBeXeWSOSGY349H Enx1p9GCCRAoKyCUy3qGRkvmhGAWzKFjbRoCBN67AAgrFRDM4cIlwcNbMx0BAq0ICOVWKjFp Hcmc8Mc3HfOkQ+omAgRGCAjlEVhtXiqYw3VJgoe3ZjoCBGoLCOXaFSgyfzIndMw65iKH1iAE CPwiIJi7OBqCOVzGJHh4a6YjQKCmgFCuqV907mRO6Jh1zEUPr8EIEPgQEMpdHQXBHC5nEjy8 NdMRIFBDQCjXUF90zmRO6Jh1zIseZoMT2JyAUO6y5II5XNYkeHhrpiNAICkglJPa0bmSOaFj 1jFHD7fJCHQrIJS7Le1pY4I5XN4keHhrpiNAICEglBPKVedI5oSOOfwnoaony+QECJQXEMrl TRscUTCHi5IED2/NdAQILCkglJfUbWrsZE7omHXMTR1+iyGwGgGhvJpSlVioYC6hOGKMJPiI ZbmUAIFWBYRyq5VZbF3JnNAx65gXO8gGJtClgFDusqzPNiWYnwkV/noSvPDSDUeAQFJAKCe1 m5ormRM6Zh1zU4ffYgg0KyCUmy1NYmGCOaF8M0cSPLw10xEgUEJAKJdQXPUYyZzQMeuYV/1g sXgCiwsI5cWJ1zCBYA5XKQke3prpCBCYIyCU5+h1dW8yJ3TMOuauHjw2Q6CYgFAuRtnDQN0F 89thd9wd3h7X5u1w3O1fq9YtCV51oyYnQGCYgFAe5rShq5I5EeiYX4/7l/3xM3pPQXz7/++F fd2/HGtmcxJ8Q+fYVgmsU0Aor7NuC686mROLB/OPbvlBML8n8/Fldzj+0lMvzJ3967wW34wJ CBCYLiCUp9t1fmdHwfx2POx2x69nsU/d88v577V8ebn//dv/z1Y4CZ7dmdkIEBgsIJQHU23x wmROPO2Y//vf/34E6TVQL//997//fanNqdv9DNubp6xPX3vUHT/6vfde+bCr93R2EnyLB9qe CTQvIJSbL1HtBSZz4mkw/+tf/zr+888/x//85z/nAD799/Tv//73vx/Be3ra+uX2xeJzaA8I 63O+v/z+BrGFK5IEX3grhidAYKyAUB4rtsnrkznxNJhvK/B0Yffd8KPXjh92zIJ5kyfdpgm0 ICCYW6hC82t4mn8FdzA4mE8d8rOF/eiYBz+VLZgL1tRQBAgMFRDKQ6U2f92z/CsJNDiYr09l P5z8HMD3b+h6v/LXYL5/o5fXmEsW1VgECAwQEMoDkFxyFWgymK9vAvu7TKd3Xd+G7qPAvfze aZNfL0ff35c9DEnw7M7MRoDAQwGh7GCMFEjmxOCOeege7j8s5M9P/boO6ueYh/K6jgCBuQJC ea7gJu9fTzD/CNRHne/dJ389KKlP/trkObdpAnkBoZw372TG9QTzO/j5DV8PPzTkqxpPPyu7 4qd+nVaZBO/kjNoGgfUJCOX11ayhFSdzovhT2Q05Dl5KEnzwolxIgEA5AaFcznKjIyVzQjDr mDf6MLPtzQgI5c2UesmNCuYldR+MnQQPb810BLYtIJS3Xf+Cu0/mhI5Zx1zw6BqKQEMCQrmh Yqx/KYI5XMMkeHhrpiOwTQGhvM26L7jrZE7omHXMCx5lQxOoICCUK6D3P6VgDtc4CR7emukI bEtAKG+r3sHdJnNCx6xjDh5tUxFYUEAoL4hr6DaC+XTIa/xbof5J8ArbMyWB/gWEcv81rrzD ZE7omHXMlY+76QnMFBDKMwHdPkRAMA9RKnhNErzgsg1FgIBQdgZCAsmc0DHrmEPH2jQECgsI 5cKghvtLQDCHz0cSPLw10xHoU0Ao91nXhneVzAkds4654YeCpRF4ICCUHYsKAoI5jJ4ED2/N dAT6EhDKfdVzRbtJ5oSOWce8ooeGpW5aQChvuvy1Ny+YwxVIgoe3ZjoCfQgI5T7quOJdJHNC x6xjXvFDxdI3ISCUN1Hm1jcpmMMVSoKHt2Y6AusWEMrrrl9Hq0/mhI5Zx9zRQ8dWuhIQyl2V c+2bEczhCibBw1szHYF1Cgjlddat41Unc0LHrGPu+KFka6sUEMqrLFvvixbM4QonwcNbMx2B 9Qhc/za79azYSjckkMwJHbOOeUMPLVttVkCX3GxpLOwiIJjDJyEJHt6a6Qi0LyCU26+RFQrm 9BkQzGlx8xH4EBDKjsJKBJI54ans8FMUKzmDlklgeQGhvLyxGYoJCOZilMMGSoIPW5GrCHQu IJQ7L3B/20vmxLo65tf9+Xn+y7+74+HtQfHfDsfdy/74+u1Lb8fD7nrf/deyL+r3d1ztiMBI AaE8EszlLQgI5kdVOAfuTRifQ/o+ZF+P+3Nof//91/377+0vUX376+s0SfAWDpg1EKgmIJSr 0Zt4nkAyJ9bVMX9zPYXwV1C/HXbnTnq33991zN+vOz7oqJPg846GuwmsWEAor7h4lp7MidUG 8zmId4fj9dnst9fXy6/vg/dHEN8F9fstSXDHm8AmBYTyJsve06aTObG+YD4H7YjXmAcG89dr 19fXotdH09ODwF46EhDKHRWz/608yoLr76V2v970efgas445dXDMQ2CQgFAexOSi9gV0zINq 9PMp6fNtnsoepOciAosLCOXFiU2QExDMg6wHBvP7D07dvknMm78G4bqIwDwBoTzPz93NCQjm RyW5f+r61BnfvPnr85YH77r241LNnXEL6llAKPdc3c3uTTD/Uvrrj0RdXoj/+UEhD5/KPv/m 9eebH9+XBN/sqbbxbQgI5W3UeYO7TObEet/8VfBgJMELLttQBNoSEMpt1cNqigokc0Iwv5cu CV70pBiMQCsCQrmVSljHQgLJnBDMgnmhY2zYzQgI5c2UessbFczh6ifBw1szHYHlBE6BLJSX 8zVyUwLJnNAx65ibOvwWsxIBgbySQllmKQHBXEpy4DhJ8IFLchmBdgWEcru1sbLFBJI5oWPW MS92kA3coYBQ7rCotjREQDAPUSp4TRK84LINRSArIJSz3mZrSiCZEzpmHXNTh99iGhUQyo0W xrJSAoI5Jf0xTxI8vDXTEZgvIJTnGxph9QLJnNAx65hX/4CxgQUFhPKCuIZek4BgDlcrCR7e mukITBcQytPt3NmdQDIndMw65u4eQDZUQEAoF0A0RE8CgjlczSR4eGumIzBeQCiPN3NH9wLJ nNAx65i7f0DZ4EABH7E5EMplWxQQzOGqJ8HDWzMdgWECuuRhTq7arEAyJ3TMOubNPtBs/ENA KDsKBJ4KCOanRGUvSIKXXbnRCMwUEMozAd2+FYFkTuiYdcxbeVzZ572AUHYmCAwWEMyDqcpc mAQvs2KjEJgh4E1eM/DculWBZE7omHXMW32cbXPfuuRt1t2uZwsI5tmE4wZIgo9bmasJFBQQ ygUxDbU1gWRO6Jh1zFt7fG1zv0J5m3W362ICgrkY5bCBkuDDVuQqAoUEvJ5cCNIwWxdI5oSO Wce89cdbv/vXJfdbWzuLCwjmMHkSPLw1021VQChvtfL2vZBAMid0zDrmhY6xYasJCOVq9Cbu V0Awh2ubBA9vzXRbExDKW6u4/YYEkjmhY9Yxh461aRYV8CavRXkNTkAwh89AEjy8NdNtQUCX vIUq22NlgWRO6Jh1zJWPu+lnCQjlWXxuJjBUQDAPlSp0XRK80JINQ+B4FMpOAYGYQDIndMw6 5tjBNlFBAaFcENNQBJ4LCObnRkWvSIIXXbjBtifgTV7bq7kdNyGQzAkds465iUNvEQMEdMkD kFxCYBkBwbyM66+jJsHDWzNdLwJCuZdK2sdKBZI5oWPWMa/0YbKhZQvlDRXbVlsVEMzhyiTB w1sz3ZoFvJ685upZe2cCyZzQMeuYO3v4dLIdXXInhbSNXgQEc7iSSfDw1ky3RgGhvMaqWXPn Asmc0DHrmDt/OK1se0J5ZQWz3K0ICOZwpZPg4a2Zbk0CQnlN1bLWjQkkc0LHrGPe2MOrwe16 k1eDRbEkAt8FBHP4RCTBw1szXesCuuTWK2R9BM4CyZzQMYfBnXECnwJC2WEgsBoBwRwuVRI8 vDXTtSjgqesWq2JNBP4USOaEjlnH7OGYFNAlJ7XNRaCYgGAuRjlsoCT4sBW5qjsBXXJ3JbWh bQkkc0LHrGPe1qOrxm51yTXUzUmgqIBgLsr5fLAk+PPVuKIbAV1yN6W0EQLJnNAx65g94koL COTSosYjUF1AMIdLkAQPb810aQFPW6fFzUcgIpDMCR2zjjlyqLufRJfcfYltcNsCgjlc/yR4 eGumSwjokhPK5iBQVSCZEzpmHXPVw77qyXXJqy6fxRMYIyCYx2gVuDYJXmC5hmhBQJfcQhWs gUBMIJkTOmYdc+xgdzGRLrmLMtoEgbECgnms2Mzrk+Azl+r2mgK65Jr65iZQVSCZEzpmHXPV w76KyXXJqyiTRRJYUkAwL6n7YOwkeHhrppsroEueK+h+Al0IJHNCx6xj7uJBU3wTuuTipAYk sGYBwRyuXhI8vDXTTRHQJU9Rcw+BrgWSOaFj1jF3/WAatTld8iguFxPYkoBgDlc7CR7emumG CAjkIUquIbBpgWRO6Jh1zJt+sB09bb3t+ts9gYECgnkgVKnLkuCl1mycmQK65JmAbiewLYFk TuiYdczbenSddqtL3l7N7ZjATAHB/Bvg6/79e+rLx7+74+Ht9sK342F3/dr++PptjL++dvo+ 7c8nM8/sOm7XJa+jTlZJoEGBZE6sJ5HeDsfdy00Yn0P6K4Bf9++hvL/E8e2v7////muXBmo9 DA2e13UsSY3XUSerJNCoQDInVpxIr8f9Z1Df/vq9qucQv4b2X1+7nIAkeKNnrt9l6ZL7ra2d EQgKJHNitcH8dtgdX3aH4/nZ7G9BfO6Rv0L7r699FDUJHjxH255KIG+7/nZPoLBAMifWF8zn oD29lnzztHaBYP567fr6OvX6aAqfw3UOJ5DXWTerJtCIwKMsuP5eaonrTZ/b15gLBHMK3DwL CQjkhWANS4DASUDHPOgcDHy62lPZgzRXe5FAXm3pLJzAmgQE86BqefPXIKZeLxLIvVbWvgg0 KSCYH5Xl7sejzm/4ur756/16Py7V5FkuvyiBXN7UiAQIPBUQzL8Qnd+J/fkBI/cfInLqoH/7 gJG/vpZ97eBp9V3wWEAgOxkECFQUEMxh/CR4eGvrn04gr7+GdkCgA4FkTqz3XdkFC50EL7js vocSyH3X1+4IrEwgmROC+f1wJMFXdhbzyxXIeXMzEiDwVCCZE4JZMD89kJELBHKE2SQECEwT EMzT3CbflQSfvMhebxTIvVbWvgh0JZDMCR2zjrnOg0cg13E3KwECkwQE8yS26TclwaevspM7 BXInhbQNAtsSSOaEjlnHnHl0CeSMs1kIEFhEQDAvwvr7oEnw8NbqTyeQ69fACggQmC2QzAkd s4559oF9OIBAXsbVqAQIVBEQzGH2JHh4a/npBHLe3IwECCwukMwJHbOOucyBFshlHI1CgECT AoI5XJYkeHhry053DePTf/1DgACBjgWSOeE7qo55+EPpNoiF8XA3VxIgsHoBwRwuYRI8vLV5 0wnieX7uJkCgG4FkTuiYdczfHzienu7mG4mNECBQTkAwl7McNFISfNCCkhfpipPa5iJAYKUC yZzQMW+tYxbEK/22YNkECNQUEMxh/SR4eGuX6Tw9XYXdpAQI9COQzAkdc48ds664n+8GdkKA QBMCgjlchiT4YlvTFS9Ga2ACBAgkc0LHvNaOWVfsOwUBAgRiAoI5Rn19CXYFfz4RxOFTYToC BAh8CQjm8GlIgj/d2n0A+wzqp2QuIECAwNICyZxYQau4NPfpTcsBht8CVye8fIHNQIAAgZkC kZz4WGMgkWZqBG6fBS5wAxUyBQECBOoKzMqJkUsXzO9gD8EF7sij5HICBAj0KyCY07V9FMLp NZiPAAECBJoVEMzh0iTBw1szHQECBAgUEEjmhKeyf3squ0AhDUGAAAECfQgI5nAdk+DhrZmO AAECBAoIJHNCx6xjLnBkDUGAAIG+BQRzuL5J8PDWTEeAAAECBQSSOaFj1jEXOLKGIECAQN8C gjlc3yR4eGumI0CAAIECAsmc0DHrmAscWUMQIECgbwHBHK5vEjy8NdMRIECAQAGBZE7omHXM BY6sIQgQINC3gGAO1zcJHt6a6QgQIECggEAyJ3TMOuYCR9YQBAgQ6FtAMIfrmwQPb810BAgQ IFBAIJkTOmYdc4EjawgCBAj0LSCYw/VNgoe3ZjoCBAgQKCCQzAkds465wJE1BAECBPoWEMzh +ibBw1szHQECBAgUEEjmhI5Zx1zgyBqCAAECfQsI5nB9k+DhrZmOAAECBAoIJHNCx6xjLnBk DUGAAIG+BQRzuL5J8PDWTEeAAAECBQSSOaFj1jEXOLKGIECAQN8Cgjlc3yR4eGumI0CAAIEC Asmc0DHrmAscWUMQIECgbwHBHK5vEjy8NdMRIECAQAGBZE7omHXMBY6sIQgQINC3gGAO1zcJ Ht6a6QgQIECggEAyJ3TMOuYCR9YQBAgQ6FtAMIfrmwQPb810BAgQIFBAIJkTOmYdc4EjawgC BAj0LSCYw/VNgoe3ZjoCBAgQKCCQzAkds465wJE1BAECBPoWEMzh+ibBw1szHQECBAgUEEjm hI5Zx1zgyBqCAAECfQsI5nB9k+DhrZmOAAECBAoIJHNCx6xjLnBkDUGAAIG+BQRzuL5J8PDW VjWdOrRTLrVooxbq0EYdTqtI1kLHHAZv55i1t5LkwW9v922tSC3aqIc6tFEHwfxXHd4Ox93L y/lPLqd/9683F99+bXc4vn0b5+142F3v2x9vb0uDt3PM2luJb0Lt1EQt2qiFOrRRh3ROrKhj fj3ub8P4df8ezrvj4ZzAl6/tLv9zfDvsji83qf26fw/lj/+//fW15A5/G4dfHdqoQ/qbUDu7 bm8lHhPt1CRZi/UE8ymIv3XCly74nLfnbvm2Ez4F9W1oX3/96NrsawftHLP2VpI8+O3tvq0V qUUb9VCHNuqQ/sPqeoL5R31uOui/gvnP0L4M6vC3cfjVoY06eEyoQzsC7awk+f1ptcF8frr6 s4P+/jT3+WvXp70HBvP1dWv//XoNnwULZ8AZcAa+zkDqjwmrDOZL8N69ievmzV+7w+vAp7lT zOYhQIAAAQLDBFYXzJdQvnnN+OE+b15jHtAxD6NyFQECBAgQWF5gVcH8sFN+ZPQtjG/fCPZ+ 8Y+gXh7ZDAQIECBAYKjAeoL5HKi/dcrfw/f+R6Ke/bjUUCzXESBAgACBpQVWE8zncL35cJEf HzJy/rnmj2t+fMDI5c1hl6///ICRpZGNT4AAAQIEhgqsJpiHbmj6dX9/Otj0cd35JTDG+I9r 7z4B7vvPt/OeJjCmNh8zeFloGvW3uwq5e0wUqMX9ECNq89enUk5YmWD+QPN094TTM/KWMcZ/ Xnt6duTb57GOXIjLfwiMqc3l5uuzUJ6BmnOcirl7TMwpw8N7h9fmr0+lnLYswfz5TebvTweb xuuuL4Exb8L7+9rTA+b68auESwiMqc3HR96ePgJ3v7/7xL0Sa9nSGOXcPSZKn5sRtfnrUykn Lkswn+D8SNXE4zPitjHGf157enrp2Y/LjViXS0ef/7fX18tfEuOp7HmnZ8xj4sT9q7vHxLxC PLh7ZG2+j3DXQU9YnGAWzBOOzYRbxhz0AZ99vvv828KE9IRqfL9lTG1u7xTM8+iLuV+6O4+J eeX4dvfU2pz/vHr7qZTT1iSYBfO0kzP2rjEH/elnn9+G8embktc5x5ajyDchwTyLffIzdffu P36U1GNiXmGmP4s6+LM2nixQMAvm2Wd40AClgvnHZHevBQ1ajIsEcwNnYMxjYtQzFR4Ts6s7 oTbDPpVy2MoE89lpxAv9w1xd9SxA/+y2xtTDN6H5h22M981sOuaZ9Eu5e0zMLMzoTCjVKV/X LZg/JIa/NX5+ybc6whjjX689f5DMzVPXp3D48YEyWxWevu8xtfmcRTBPB5/zfefe3WNidh0e DTD4MfHnp1JOW5pg/nTz6WDTjtCYu343/vnjHr9fe/1rPX2S2xj7Z9eOqc3HWIL5GeqAr5dx 95gYQD36kmG1efqplKPnPR4F8wQ0txAgQIAAgaUEBPNSssYlQIAAAQITBATzBDS3ECBAgACB pQQE81KyxiVAgAABAhMEBPMENLcQIECAAIGlBATzUrLGJUCAAAECEwQE8wQ0txAgQIAAgaUE BPNSssYlQIAAAQITBATzBDS3ECBAgACBpQQE81KyxiVAgAABAhMEBPMENLcQIECAAIGlBATz UrLGJUCAAAECEwQE8wQ0txAgQIAAgaUEBPNSssYlsGYBf3PUmqtn7SsXEMwrL6DlE1hEQDAv wmpQAkMEBPMQJdcQ2JTA7d9Duzse3ja1eZslUF1AMFcvgQUQaFBAx9xgUSxpKwKCeSuVtk8C YwQE8xgt1xIoKiCYi3IajEAnAoK5k0LaxhoFBPMaq2bNBJYWEMxLCxufwK8CgtnhIEDgp8A5 mL3xy9EgUENAMNdQNyeB5gXejofdy/Hl5eW4f21+sRZIoCsBwdxVOW2GAAECBNYuIJjXXkHr J0CAAIGuBARzV+W0GQIECBBYu4BgXnsFrZ8AAQIEuhL4P0/wXEsqoF/AAAAAAElFTkSuQmCC</item> <item item-id="555" content-encoding="gzip">H4sIAAAAAAAA/4xTzW7TQBCetZP4p0kTQlJIncRt+TlwqIJLQfQUUIU48COFB6jcxLRBpAmu iypOuXCteAMuPAN3JM68Uvhmxg2FE2vN7szsNzPfzq7LRGQgbyC+6DZmN/kwSI7G05Mi8XgA 8UbTofoK4nvMsMnw9eG7ZJiJhwYSb2EunR7Pnk7P1f0C4sAxWAJfQmbAzS6IPiHdvS9/bB6f HSVlkWWLUl8Wf5Jl6fjwLEuMIPcgVbo6Cntbf9lFSVDI0iQJxBFBKjNRS1HrB9G86ERfsfZL rq6Op6vr6+qtRBaKfER/XOPs0A7t0jY9JNaoLHvfdS9CW3hvF999riMJ5t5qxCz7FWYr6rwi BGpR/RcM95okGdVAqfjT3kbeE0pw7OgCROc1ui773+poidEeNjSz01SKjTVdmzeU6hojTY/o ptJb2tTSwOa6UmrBFSilliRuq9EQo6PgUlezd0JduxtaJURjjd3DgdHUTa0ULittaXD3llbi a7mtyfWG7uihOpeHuitPpzqKDo7SeHZ88HaaTuLMEWyTX6C49+Ms1ptdz2/Y2sBk5+/4EaQn Olt+fD4+fSZ59NW2+T2aHKtjgY9M+/+9l8mdLI2HSbRvy1aQA0NTIxOYBWvGBDjSIjSWCWyE hsY2QWHBngIwtIBSBGbex1aJMRzlCAaKyxgGe5yHw31gJHwFGAkvAyPhFakFZVUwUKqMYbDS rb46myTpeBi/14a4Qvs5ZERjfHb+K/l5N/8Z5avGbwAAAP//AwBcCiAhNgQAAA==</item> <item item-id="556">iVBORw0KGgoAAAANSUhEUgAAAgoAAAG6CAYAAABp4269AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACzFSURBVHhe7d1RdhpNk4RhrYsFsYpZ wlywGt39e5jbOdrE7IARICxACEHSHVRVPz7H57NNZ3X0G4kzvuoGv239QAABBBBAAAEEfiHw hgwCCCCAAAIIIPAbAUFBbyCAAAIIIIDArwQEBc2BAAIIIIAAAoKCHkAAAQQQQACBxwnYUXic mQoEEEAAAQQWQ0BQWIzVLhQBBBBAAIHHCQgKjzNTgQACCCCAwGIICAqLsdqFIoAAAggg8DgB QeFxZioQQAABBBBYDAFBYTFWu1AEEEAAAQQeJyAoPM5MBQIIIIAAAoshMHZQeF9v397evn6u tpuPK75+bLart/X2/eylj+1mday7fG0xveFCEUAAAQQQ2I4bFPYB4CQc7EPDz6H/vt4FgvM/ 3//Z+hAdTn+tXxBAAAEEEFgagXGDwg8n37fr0+BwSAHbt9XqYkfh4rirOw5LaxPXiwACCCCw VAKLCQofm9VnKNhsv+8+7G4vfO4kXAaBH8HgSsBYare4bgQQQACBxREYPyjsB//u9sL5Mwq7 4LDaPbRQCArfzz0cn2PwX0z0gB7QA3og2wOpxDJ+UDiSPHtG4XOX4Li7UAwKKYOc53ECu7+s /GibAI/40zaB9tUl30ML+hv1+xbC7gHFr2cVyzsK7bfRchUm30DLpfzclfPoOX5zV/NnbsLP r5/0aIFBYRcYrm8PHcLD3w8zJg16vp2WtwJ/2vecR217xJ+2/dmpS3o0blC4/Djk7hbD2cOM X41w5VMNf308MmlQ++3ankL+tOfJpSIete0Rf9r2R1CY0J/9Jx3+7R788sVJVz/+eLrr8LPO m2hCk2ZYij8zQJ14SR5NDHTi5fgzMdAZlkt6NO6OwgzGHJdMGjTjZVgaAQQQQKBTAsk5JCgU miRpUEGeEgQQQACBwQkk55CgUGimpEEFeUoQQAABBAYnkJxDgkKhmZIGFeQpQQABBBAYnEBy DgkKhWZKGlSQpwQBBBBAYHACyTkkKBSaKWlQQZ4SBBBAAIHBCSTnkKBQaKakQQV5ShBAAAEE BieQnEOCQqGZkgYV5ClBAAEEEBicQHIOCQqFZkoaVJCnBAEEEEBgcALJOSQoFJopaVBBnhIE EEAAgcEJJOeQoFBopqRBBXlKEEAAAQQGJ5CcQ4JCoZmSBhXkKUEAAQQQGJxAcg4JCoVmShpU kKcEAQQQQGBwAsk5JCgUmilpUEGeEgQQQACBwQkk55CgUGimpEEFeUoQQAABBAYnkJxDgkKh mZIGFeQpQQABBBAYnEByDgkKhWZKGlSQpwQBBBBAYHACyTkkKBSaKWlQQZ4SBBBAAIHBCSTn kKBQaKakQQV5ShBAAAEEBieQnEOCQqGZkgYV5ClBAAEEEBicQHIOCQqFZkoaVJCnBAEEEEBg cALJOSQoFJopaVBBnhIEEEAAgcEJJOeQoFBopqRBBXlKEEAAAQQGJ5CcQ4JCoZmSBhXkKUEA AQQQGJxAcg4JCoVmShpUkKcEAQQQQGBwAsk5JCgUmilpUEGeEgQQQACBwQkk55CgUGimpEEF eUoQQAABBAYnkJxDgkKhmZIGFeQpQQABBBAYnEByDgkKhWZKGlSQpwQBBBBAYHACyTkkKBSa KWlQQZ4SBBBAAIGRCby9bZNzSFAoNFPSoII8JQgggAACoxL4DAm7H8k5JCgUmilpUEGeEgQQ QACBEQl8hQRBoQNzBYUOTCIRAQQQGInASUgQFDowVlDowCQSEUAAgZEICAp9uSko9OUXtQgg gEDXBC5Cgh2FDtwUFDowiUQEEEBgBAJXQoKg0IGxgkIHJpGIAAII9E7gl5AgKHRgrKDQgUkk IoAAAj0TuBESBIUOjBUUOjCJRAQQQKBXAn+EBEGhA2MFhQ5MIhEBBBDokcAdIUFQ6MBYQaED k0hEAAEEeiNwZ0gQFDowVlDowCQSEUAAgZ4IPBASBIUOjBUUOjCJRAQQQKAXAg+GBEGhA2MF hQ5MIhEBBBDohYCg0ItT9+sUFO5n5UgEEEAAgRsECiHBjkIHHSUodGASiQgggEDrBIohQVBo 3dhPfYJCByaRiAACCLRM4ImQICi0bOyXNkGhA5NIRAABBFol8GRIEBRaNfZEl6DQgUkkIoAA Ai0SmCAkCAotGnuhSVDowCQSEUAAgdYITBQSBIXWjL2iR1DowCQSEUAAgZYITBgSBIWWjP1F i6DQgUkkIoAAAq0QmDgkCAqtGHtDh6DQgUkkIoAAAq0QEBRacSKnQ1DIsXYmBBBAoGsCM4QE OwoddISg0IFJJCKAAAKvJjBTSBAUXm3sHecXFO6A5BAEEEBgyQRmDAmCQgeNJSh0YBKJCCCA wKsIzBwSBIVXGfvAeQWFB2A5FAEEEFgSgUBIEBQ6aChBoQOTSEQAAQTSBEIhQVBIG1s4n6BQ gKYEAQQQGJlAMCQICh00kqDQgUkkIoAAAikC4ZAgKKSMfeI8gsIT8JQigAACoxEQFEZz9Pnr ERSeZ2gFBBBAYAgCLwgJdhQ66BxBoQOTSEQAAQTmJvCikCAozG3sBOsLChNAtAQCCCDQM4EX hgRBoYPGERQ6MIlEBBBAYC4CLw4JgsJcxk64rqAwIUxLIYAAAj0RaCAkCApTNsz7ersb6oef q+3m42TxW69tP7ab1bFuvX2/0CQoTGmStRBAAIFOCDQSEgSFqfrlY7NdnYaDfTD4Gvq3Xvs8 //v6MySsD/Hg9NdHaYLCVCZZBwEEEOiEQEMhQVCYrWfet+vLXYV/5zp97eK4fag431UQFGYz ycIIIIBAewQaCwmCwkwt8rFZbd9Wm8+bCj9/nL32Ixj8DBiCwkwmWRYBBBBojUCDIUFQmLpJ 9oP/yjMKu/Nce+3OoPD97MPxWYa3qZVbDwEEEEDg1QReHBSuzZrjn6XQLGe6nT6jcEn3x/ML p7ca7CikmtF5EEAAgaYIvDgk3GKR3NleTlD4/OzCXc8o3Lmj0FQzE4MAAgggMC2BhkOCWw/T Wn2y2p1B4TJQeJhxNkcsjAACCDRJoPGQIChM1TWXtxp2A//4MOOt1z7P7+ORU5lgHQQQQKAz Ah2EBEFhwp7af5rh3xcunX/E8dZrn1Hh8zaFL1ya0ApLIYAAAu0T6CQkCArtt9I+fPiBAAII IDAQgc7+Xk/OIROv0OdJgwrylCCAAAIIPEKgs5BgR+ERc190rKDwIvBOiwACCExNoMOQIChM 3QQzrCcozADVkggggECaQKchQVBIN0rhfIJCAZoSBBBAoDUCgsJdjnhG4S5M5wcJCgVoShBA AIGWCHQcEuwotNRIv2gRFDowiUQEEEDgNwKdhwRBoYPWFhQ6MIlEBBBA4BqBAUKCoNBBawsK HZhEIgIIIHBJYJCQICh00NqCQgcmkYgAAgicEhgoJAgKHbS2oNCBSSQigAACRwKDhQRBoYPW FhQ6MIlEBBBA4DBRh+SQnENjEpy5LZIGzXwplkcAAQTGJTBoSLCj0EHLCgodmEQiAggsm8DA IUFQ6KC1BYUOTCIRAQSWS2DwkCAodNDagkIHJpGIAALLJLCAkCAodNDagkIHJpGIAALLJCAo TO67hxkLSAWFAjQlCCCAwNwEFhIS7CjM3UgTrC8oTADREggggMCUBBYUEgSFKRtnprUEhZnA WhYBBBCoEFhYSBAUKk0SrhEUwsCdDgEEEPiNwAJDgqDQwdtBUOjAJBIRQGB8AgsNCYJCB60t KHRgEokIIDA2gQWHBEGhg9YWFDowiUQEEBiXwMJDgqDQQWsLCh2YRCICCIxJQEjY+5qcQ75H ofBWShpUkKcEAQQQGJOAkPDP1+QcEhQKb6ekQQV5ShBAAIHxCAgJZ54m55CgUHg7JQ0qyFOC AAIIjEdAUBAUeupqQaEnt2hFAIHuCQgJPyxMziE7CoV3UNKggjwlCCCAwDgEhISrXibnkKBQ eDslDSrIU4IAAgiMQUBI+NXH5BwSFApvp6RBBXlKEEAAgf4JCAk3PUzOIUGh8HZKGlSQpwQB BBDom4CQ8Kd/yTkkKPxpx88DkgYV5ClBAAEE+iUgJNzlXXIOCQp3WXJ+UNKggjwlCCCAQJ8E hIS7fUvOIUHhblu+D0waVJCnBAEEEOiPgJDwkGfJOSQoPGTN4eCkQQV5ShBAAIG+CAgJD/uV nEOCwsP2CAoFZEoQQACB6wSEhFJnCAolbLmipEG5q3ImBBBAIExASCgDT84hOwoFm5IGFeQp QQABBPogICiUfUrOIUGhYFPSoII8JQgggED7BISEpzxKziFBoWBV0qCCPCUIIIBA2wSEhKf9 Sc4hQaFgV9KggjwlCCCAQLsEhIRJvEnOIUGhYFnSoII8JQgggECbBISEyXxJziFBoWBb0qCC PCUIIIBAewSEhEk9Sc4hQaFgXdKggjwlCCCAQFsEhITJ/UjOIUGhYF/SoII8JQgggEA7BISE WbxIziFBoWBh0qCCPCUIIIBAGwSEhNl8SM4hQaFgY9KggjwlCCCAwOsJCAmzepCcQ4JCwcqk QQV5ShBAAIHXEhASZuefnEOCQsHOpEEFeUoQQACB1xEQEiLsk3NIUChYmjSoIE8JAggg8BoC QkKMe3IOCQoFW5MGFeQpQQABBF5DQFCIcU/OIUGhYGvSoII8JQgggECegJAQZZ6cQ4JCwdqk QQV5ShBAAIEsASEhy/vzbMk5JCgU7E0aVJCnBAEEEMgREBJyrE/OlJxDgkLB4qRBBXlKEEAA gQwBISHD+cpZknNIUCjYnDSoIE8JAgggMD8BIWF+xjfOkJxDgkLB6qRBBXlKEEAAgXkJCAnz 8r1j9eQcEhTuMOTykKRBBXlKEEAAgfkICAnzsX1g5eQcEhQeMOZ4aNKggjwlCCCAwDwEhIR5 uBZWTc4hQaFxgwrylCCAAALTExASpmf6xIqCwhPwEqVJgxLX4xwIIIDATQJCQnMNkpxDdhQK 9icNKshTggACCExHQEiYjuWEKyXnkKBQMC5pUEGeEgQQQGAaAkLCNBxnWCU5hwSFgoFJgwry lCCAAALPExASnmc44wrJOSQoFIxMGlSQpwQBBBB4joCQ8By/QHVyDo0dFN7X+3844/Bztd18 nLj3sdmu/r32tl2/nzr7sd2sjnXr7dlLn4clDQr0m1MggAAC5wQEheY7IjmHxg0K+yBwEg72 oeE49N+36883wr9wsH/t+9j39WdI+Hrx9NfHzkka1Hy3EogAAmMREBK68DM5h8YNCj+s3oWD rzCwCwarzfZ7g+Gwg3DIBifH7X67DxznuwpJg7roWCIRQGAMAkJCNz4m59BigsLHZnURDk77 4WSH4UcwuAgObj1080YiFAEEHiAgJDwA6/WHCgpTevDvWYSLZxROznEWIu4MCt/PPhyfZVhM 5prSHWshgEALBISEFly4quHarDn+WUr0cqbb2TMK33j3IeH01sKdQSFlkPMggAACsxIQEmbF O9fidhRmIfvzFsIhJFz7NMTpMwluPcxih0URQOD1BISE13tQVCAoFMHdLjsf+D92Ev4Ve5hx FvwWRQCBtggICW358aAaQeFBYFcPv7zVsLulcPykw+VHJy8W8PHIKQywBgIINEtASGjWmnuF CQr3kvrjuMOuwc8vTtoHgZMvWzr++vtLlw6fgjj8uS9cmsgOyyCAQAsEhIQWXHhag6DwNMJ5 F0gaNO+VWB0BBBZFQEgYxu7kHFrOpx4mbI+kQRPKthQCCCyZgJAwlPvJOSQoFFonaVBBnhIE EEDgnICQMFxHJOeQoFBon6RBBXlKEEAAgW8CQsKQ3ZCcQ4JCoYWSBhXkKUEAAQQEhcF7IDmH BIVCMyUNKshTggACCBwI2E0YthOSc0hQKLRR0qCCPCUIIICAkDB4DyTnkKBQaKakQQV5ShBA YOkE7CQM3wHJOSQoFNopaVBBnhIEEFgyASFhEe4n55CgUGippEEFeUoQQGCpBISExTifnEOC QqGtkgYV5ClBAIElEhASFuV6cg4JCoXWShpUkKcEAQSWRkBIWJrj+3+LKPUjd6bUFQXOkzQo cDlOgQACPRMIDoyeMY2mPTmHBIVC9yQNKshTggACSyEgJCzF6R/XmZxDgkKhzZIGFeQpQQCB JRAQEpbg8q/XmJxDgkKh1ZIGFeQpQQCB0QkICaM7/Of1JeeQoPCnHT8PSBpUkKcEAQRGJiAk jOzu3deWnEOCwt22fB+YNKggTwkCCIxKQEgY1dmHrys5hwSFh+3ZfYU6bAVsShBA4BkC/t55 ht5wtck5ZOIV2idpUEGeEgQQGI2AkDCao09fT3IOCQoFu5IGFeQpQQCBkQgICSO5Odm1JOeQ oFCwLWlQQZ4SBBAYhYCQMIqTk19Hcg4JCgX7kgYV5ClBAIERCAgJI7g42zUk55CgULAxaVBB nhIEEOidgJDQu4Oz60/OIUGhYGfSoII8JQgg0DMBIaFn92Lak3NIUCjYmjSoIE8JAgj0SkBI 6NW5uO7kHGo6KHxsVtvV5uO6AR+b7Wr9Hjdnd8KkQS+5QCdFAIE8ASEhz7zjMybnUMNB4X27 fltv/0WBXTA4/f2nwe/rt+0rskLSoI77mHQEELiXgJBwLynHfRFIzqFmg8KP3YQrQeEzKWzf VpvtL3sOszVU0qDZLsLCCCDQBgEhoQ0fOlORnEONBoWP7Wa12n7fddjtLrztt/zf3i7//PT3 GaeTBmWuyFkQQOAlBISEl2Af4aTJOfRnUPjf//3frwF9HNSH//73f//3gfXu/+r/DfGTWwXP OHFt9+Dan33uJWxW+dsPSYOewagWAQQaJiAkNGxO+9KSc+jPoPBf//Vf2//85z/b//mf/9kH gt1/dz//7//+b7u9GN672wVvUzw0sA8fF6HjalA4PKfw6wOPM3mdNGimS7AsAgi8isAuIAgJ r6I/zHmTc+jPoHBK9U9hp8N89+vP5wc2n4P8uONwniFObydchIJrzx4ICsM0uAtBYLEEBITF Wj/1hf85jyc84d1BYbeD8Jewsx2F/WA/+b/9i+F/uhPwYyfi7lsPdhQm7AVLIYDAnASEhDnp Lm7tv+bxlEDuDgrHWw9XT/4VCs4eNLwc9me/3+0mXD6UePujkIfbHJcPLnpGYcpmsBYCCMxE QEiYCexyl20yKBwfarxty0kA+DMonD8cef5phmsB4PBnOzjftzAuA0emaZIGZa7IWRBAYDYC QsJsaJe8cHIO3b2jcK8h/74E6c+gcPsTEje/lfEoxvco3GuL4xBA4BUEhIRXUF/EOfsJCj8G 9b07ChfPFlwd+BffzHjFet/MuIj3g4tEoE8CQkKfvnWiup+g8Al0/yDitS9DurmjsHPity9R +nbpz3/r4QXfyrhTlzSok54lEwEETgkICfphZgLJOTT5rYeZ2TSxfNKgJi6YCAQQuJ+AkHA/ K0eWCSTnkKBQsClpUEGeEgQQeBUBIeFV5Bd33uQcEhQK7ZU0qCBPCQIIvIKAkPAK6os9Z3IO CQqFNksaVJCnBAEE0gSEhDTxxZ8vOYcEhUK7JQ0qyFOCAAJJAkJCkrZzfRFIziFBodB2SYMK 8pQggECKgJCQIu08FwSSc0hQKLRf0qCCPCUIIJAgICQkKDvHLwSSc0hQKLRh0qCCPCUIIDA3 ASFhbsLW/4NAcg79HhSO/2Z6+r8dtEfSoA5wkIjAsggICcvyu9GrTc4hOwqFJkgaVJCnBAEE 5iIgJMxF1roPEkjOIUHhQXN2hycNKshTggACcxAQEuagas0igeQcEhQKJiUNKshTggACUxMQ EqYmar0nCSTnkKBQMCtpUEGeEgQQmJKAkDAlTWtNRCA5hwSFgmlJgwrylCCAwFQEhISpSFpn YgLJOSQoFMxLGlSQpwQBBKYgICRMQdEaMxFIziFBoWBi0qCCPCUIIPAsASHhWYLqZyaQnEOC QsHMpEEFeUoQQOAZAkLCM/TUhggk55CgUDA1aVBBnhIEEKgQOH65XKVWDQJhAsk5JCgUzE0a VJCnBAEEHiVgF+FRYo5/MYHkHBIUCmYnDSrIU4IAAo8QEBIeoeXYRggk55CgUDA9aVBBnhIE ELiXgJBwLynHNUYgOYcEhYL5SYMK8pQggMA9BISEeyg5plECyTkkKBSaIGlQQZ4SBBD4i4CQ 8BchrzdOIDmHBIVCMyQNKshTggACtwgICfpjAALJOSQoFBomaVBBnhIEELhGwMcf9cVABJJz SFAoNE7SoII8JQggcEnALoKeGIxAcg4JCoXmSRpUkKcEAQROCQgJ+mFAAsk5JCgUGihpUEGe EgQQOBIQEvTCoASSc2jsoPC+3u5gHn6utpuPKx3zsdmu3tbb97OXPrab1bHu8rXtfj0/EECg cQLep40bRN4zBJJzaNyJtw8AJ+FgHxouh/77dr0PEed//r7+/LP1ITqc/vr7f1LGxfZM46pF oBkCQkIzVhAyDwFBYRauu1DwHRw+Nqv9zsBqvb7YUTg/bntlxyFp0CwoLIrAyASEhJHddW1f BJJzaDH/a7wPBqvN9nj34eP9/fDryyDwIxhcBIfPkqRB3hUIIHAnAR9/vBOUw0YgkJxD4weF /eB/4BmFO4PC97MPx2cZxkc5wpvLNQxKwC7CoMa6rGuz5vhnKTrLmW5Xn1Gwo5BqNOdBYDYC QsJsaC3cLgE7CrN48/MWwv40bj3MQtuiCEQICAkRzE7SHgFBYRZP7gwKnx+UPH3o0cOMs5hh UQSeJyAkPM/QCt0SEBSmsO7yVsNu5+DkYcZ/p7jyqQYfj5zCAGsgMCMBIWFGuJbugYCgMJFL x49AHh78+PnFSVdvPez/8Pj9CtfrkgZNhMIyCIxDQEgYx0tXUiaQnEPLeZixbMfPwqRBE8q2 FAL9ExAS+vfQFUxCIDmHBIWCZUmDCvKUIDAeAd+RMJ6nrugpAsk5JCgUrEoaVJCnBIGxCNhF GMtPVzMJgeQcEhQKliUNKshTgsA4BISEcbx0JZMSSM4hQaFgXdKggjwlCIxBQEgYw0dXMQuB 5BwSFAoWJg0qyFOCQP8EhIT+PXQFsxJIziFBoWBl0qCCPCUI9E1ASOjbP+ojBJJzSFAoWJo0 qCBPCQL9EhAS+vWO8iiB5BwSFArWJg0qyFOCQH8EfPyxP88ofimB5BwSFApWJw0qyFOCQF8E 7CL05Re1TRBIziFBoWB50qCCPCUI9ENASOjHK0qbIpCcQ4JCwfqkQQV5ShDog4CQ0IdPVDZJ IDmHBIVCCyQNKshTgkD7BISE9j2isGkCyTkkKBRaIWlQQZ4SBNomICS07Q91XRBIziFBodAS SYMK8pQg0CYBn2xo0xequiSQnEOCQqFFkgYV5ClBoD0CdhHa84Sirgkk55CgUGiVpEEFeUoQ aIuAkNCWH9QMQSA5hwSFQsskDSrIU4JAGwTcamjDByqGJJCcQ4JCoYWSBhXkKUHg9QTsIrze AwqGJpCcQ4JCoZWSBhXkKUHgtQSEhNfyd/ZFEEjOIUGh0FJJgwrylCDwGgJuNbyGu7MukkBy DgkKhRZLGlSQpwSBPAG7CHnmzrhoAsk5JCgUWi1pUEGeEgSyBISELG9nQ+CTQHIOCQqFlksa VJCnBIEMAbcaMpydBYErBJJzSFAotGDSoII8JQjMT8AuwvyMnQGBGwSSc0hQKLRi0qCCPCUI zEtASJiXr9URuINAcg4JCncYcnlI0qCCPCUIzEPArYZ5uFoVgQKB5BwSFBo3qCBPCQLTE7CL MD1TKyLwBAFB4Ql4idKkQYnrcQ4EbhIQEjQIAs0RSM4hOwoF+5MGFeQpQWA6AkLCdCythMCE BJJzSFAoGJc0qCBPCQLPE/A8wvMMrYDAjASSc0hQKBiZNKggTwkCzxGwi/AcP9UIBAgk55Cg UDA0aVBBnhIE6gSEhDo7lQgECSTnkKBQMDZpUEGeEgQeJ+BWw+PMVCDwQgLJOSQoFIxOGlSQ pwSBxwjYRXiMl6MRaIBAcg4JCgXDkwYV5ClB4H4CQsL9rByJQEMEknNIUCgYnzSoIE8JAn8T cKvhb0aOQKBhAsk5JCgUGiFpUEGeEgRuE7CLoEMQ6J5Acg4JCoV2SRpUkKcEgd8JCAm6A4Eh CCTnkKBQaJmkQQV5ShD4ScCtBl2BwFAEknNIUCi0TtKggjwlCJwTsIugIxAYjkByDgkKhfZJ GlSQpwSBbwJCgm5AYEgCyTkkKBRaKGlQQZ4SBLZbtxp0AQJDE0jOIUGh0EpJgwrylCydgF2E pXeA618AgeQcEhQKDZU0qCBPyZIJCAlLdt+1L4hAcg4JCoXGShpUkKdkiQTcalii6655wQSS c0hQKDRa0qCCPCVLIiAgLMlt14rAPwLJOSQoFBovaVBBnpKlEHCbYSlOu04EfhBIziFBodCA SYMK8pSMTsAuwugOuz4E/iSQnEOCwp92/DwgaVBBnpKRCdhFGNld14bA3QSSc0hQuNuW7wOT BhXkKRmRgF2EEV11TQiUCSTnkKBQsClpUEGekpEICAgjuelaEJiMQHIOCQoF25IGFeQpGYWA 2wyjOOk6EJicQHIOCQoF+5IGFeQp6Z2AXYTeHaQfgdkJJOeQoFCwM2lQQZ6SngnYRejZPdoR iBFIziFBoWBr0qCCPCU9ErCL0KNrNCPwMgLJOSQoFGxOGlSQp6QnAgJCT27RikAzBJJzSFAo 2J40qCBPSS8E3GboxSk6EWiOQHIOCQoF+5MGFeQpaZ2AXYTWHaIPgeYJJOeQoFBoh6RBBXlK WiUgILTqDF0IdEcgOYcEhUJ7JA0qyFPSIgG3GVp0hSYEuiWQnEOCQqFNkgYV5ClpiYBdhJbc oAWBYQgk55CgUGibpEEFeUpaIWAXoRUn6EBgOALJOSQoFNonaVBBnpJXE7CL8GoHnB+B4Qkk 55CgUGinpEEFeUpeRUBAeBV550VgcQSSc0hQKLRX0qCCPCWvIOA2wyuoOycCiyWQnEOCQqHN kgYV5ClJErCLkKTtXAgg8EUgOYfGDgrv6+0O5uHnarv5OO2xj+1mdXxtvX0/a79br2336/mB wGcjgIAAAgi8hEByDo37N93HZrs6DQf70PAdCN7XnyFhfYgHp7++/P3la7vXkwa9pAOd9DYB uwg6BAEEXkwgOYfGDQo/THzfrv8Fh9Nffx64DxXHEHHrtcOiSYNe3ItOf0pAQNAPCCDQCIHk HFpMUPjYrLZvq812f/fhLBjs9xC+Q8St174aJGlQIz25bBkCwrL9d/UINEggOYfGDwr7wX/x jMIEQeH72Yfjcw7jo2zwvTKvJAFhXr5WRwCBPwlcmzXHP/uzeKIDljPdTp9RmCAoTMTfMi0S EBBadIUmBBA4IWBHYZZ2uPP2glsPs9DvYlEBoQubiEQAgeyzcsvZUTh9DuHs158t52HGZb/v BIRl++/qEeiQgB2FKUy7+DjkPgwcH2b8XN/HI6eA3PkaAkLnBpKPwHIJCAoTeb//pMO/L1y6 /FKl3a2I375w6dZr2S2fiVBY5kjgGA58WZKeQACBjgkICo2blzSocRT9yLN70I9XlCKAwJ8E knNoQc8o/Mn97gOSBt0tyoHXCQgIOgMBBAYkkJxDgkKhgZIGFeQp2REQEPQBAggMTCA5hwSF QiMlDSrIW3aJgLBs/109AgshkJxDgkKhqZIGFeQts0RAWKbvrhqBhRJIziFBodBkSYMK8pZV IiAsy29XiwACewLJOSQoFJouaVBB3vglPuI4vseuEAEEbhJIziFBodCMSYMK8sYtsXswrreu DAEEHiKQnEOCwkPWHA5OGlSQN16JgDCep64IAQSeIpCcQ4JCwaqkQQV545QICON46UoQQGBS Ask5JCgUrEsaVJDXf4mA0L+HrgABBGYlkJxDgkLByqRBBXn9lggI/XpHOQIIRAkk55CgULA2 aVBBXl8lPsHQl1/UIoBAEwSSc0hQKFieNKggr+2S02DgX3Bs2yvqEECgWQLJOSQoFNogaVBB XlslgkFbflCDAAJDEEjOIUGh0DJJgwryXlsiGLyWv7MjgMAiCCTnkKBQaKmkQQV52RLBIMvb 2RBAAIFPAsk5JCgUWi5pUEHevCWCwbx8rY4AAgjcQSA5hwSFOwy5PCRpUEHe9CU+mTA9Uysi gAACTxBIziFBoWBU0qCCvOdL7Bo8z9AKCCCAwIwEknNIUCgYmTSoIO/xEsHgcWYqEEAAgRcS SM4hQaFgdNKggry/SwSDvxk5AgEEEGiYQHIOCQqFRkgaVJD3s0QwmASjRRBAAIFWCCTnkKBQ cD1p0N3yLsOABxDvRudABBBAoDcCyTkkKBS6I2nQ54dldx+Y/ftn4TqUIIAAAgj0SSA5hwSF Qo88bdA9g9+/pFhwRgkCCCCwDAJPz6EHMAkKD8A6HvqrQfcGgMI5lSCAAAIIIPDnHJoBkaBQ gfpbIKispQYBBBBAAIEHCdhReBBY+vCkQelrcz4EEEAAgfYJJOeQHYVCPyQNKshTggACCCAw OIHkHBIUCs2UNKggTwkCCCCAwOAEknNIUCg0U9KggjwlCCCAAAKDE0jOIUGh0ExJgwrylCCA AAIIDE4gOYcEhUIzJQ0qyFOCAAIIIDA4geQcEhQKzZQ0qCBPCQIIIIDA4ASSc0hQKDRT0qCC PCUIIIAAAoMTSM4hQaHQTEmDCvKUIIAAAggMTiA5hwSFQjMlDSrIU4IAAgggMDiB5BwSFArN lDSoIE8JAggggMDgBJJzSFAoNFPSoII8JQgggAACgxNIziFBodBMSYMK8pQggAACCAxOIDmH BIVCMyUNKshTggACCCAwOIHkHBIUCs2UNKggTwkCCCCAwOAEknNIUCg0U9KggjwlCCCAAAKD E0jOIUGh0ExJgwrylCCAAAIIDE4gOYcEhUIzJQ0qyFOCAAIIIDA4geQcEhQKzZQ0qCBPCQII IIDA4ASSc0hQKDRT0qCCPCUIIIAAAoMTSM4hQaHQTEmDCvKUIIAAAggMTiA5hwSFQjMlDSrI U4IAAgggMDiB5BwSFArNlDSoIE8JAggggMDgBJJzSFAoNFPSoII8JQgggAACgxNIziFBodBM SYMK8pQggAACCAxOIDmHBIVCMyUNKshTggACCCAwOIHkHBIUCs2UNKggTwkCCCCAwOAEknNI UCg0U9KggjwlCCCAAAKDE0jOIUGh0ExJgwrylCCAAAIIDE4gOYcEhUIzJQ0qyFOCAAIIIDA4 geQcEhQKzZQ0qCBPCQIIIIDA4ASSc0hQKDRT0qCCPCUIIIAAAoMTSM4hQaHQTEmDCvKUIIAA AggMTiA5hwSFQjMlDSrIU4IAAgggMDiB5BwSFArNlDSoIE8JAggggMDgBJJzSFAoNFPSoII8 JQgggAACgxNIziFBodBMSYMK8hZfwp/2W4BHbXvEn7b92alLeiQoFPohaVBB3uJL+NN+C/Co bY/407Y/gsKU/nxstqu3t33y2v1cv58sfvraarP9ODvvx3azOtatt6dlaYOmxLGUtfwl177T PGrbI/607U96Dg28o/C+XZ+Gg/f1Z1hYbTf7RHB4bXX4zfZjs9q+naSI9/VnSPj6/emvj63j TdT2m4g/bfuT/kuufRrtKfQeas+TS0VJj8YNCrtgcLZTcNgl2M///W7C6U7BLjichojjr68d m7031H67tqcw+QZq7+r7UMSjtn3iT9v+pMP2uEHhh88nOwy3gsLNEHFY1Juo7TcRf9r2x3uI P+0TaF9h8u+5xQSF/e2FfzsM57cl9q8db1PcGRSOzz347/czIFhgoQf0gB7I9UAqziwiKByC wMVDiScPM64273felkjZ4jwIIIAAAgi0QWD4oHAICSfPHFzlfvKMwh07Cm1YRwUCCCCAAALz Exg6KFzdSbjG9CwcnD7Y+Hnwj+AwvynOgAACCCCAQCsExg0K+wH/207CeRi4/AjkXx+PbMU8 OhBAAAEEEJibwLBBYT/sT75s6ceXLu2/V+HrmB9fuHR42PHw+s8vXJrbFOsjgAACCCDQCoFh g8L8gG9/e+P851/yGR5hf+PYi2/uPP/ejSXznePaH/Hs6/xu+81hxBHuzW+fvXria354D83o 0eXSD7yHbn0rcUGxoFCAtitxe6IIboKyR9jfPHa3q3T2vd4TiLPEVQKPeHZY4LirZ0dvjpaa zA/voTnsefI9dOtbiWtyBYUSNw88lrBNUvQI+9vH7v6yPH6N9yTSLPILgUc8+/pK9d1XrK/X F9+gCvA0BKbzw3toGkf+XuUBz259K/HfJ7p6hKBQAecjlBVq09Q8wv7msbttvL8+NjuN5MWv 8ohnn7A+3t8P/0ibWw/ztM5kfngPzWPQlVUf9Ox8hYsdhoJoQaEA7fa/FVFZUM3dBB55w9zx b3qs/v0roULD3R48euAjnp2uLSg8Svq+4yfz4/B/ud5D92F/6qiqZ/u8ffqtxDUVgkKF2xOm VU6n5oTAI+z//Dc9TsPB7i8998Nn6bVHPBMUZrHgbNGp/PjxEXTvodnMK3p293cJ/SFcUKg4 WzStcio1FwQeYf/IsfuH5+wqzNJvD/lwKxTOom55i87mh/fQbM1U8Oy+byW+T7GgcB+ni6Me eLCktL6i3wk8wv6JY1kwIYFHfBAUJgT/y1Jz+SEozOfdY55NtZNwvB5Boejs4x8vKp5I2Q8C j7D/9dj9F26d3GrYJfYfX7wF/lQEHvHs3zk9ozAV/qfeQ7/64T00mz/XFr77PfTjltDzMgWF MkPf3lhG93Th7+x/flzr92OP/7y4b+B82pA7FnjEs6/lBIU7uFYPmcYP76Eq/0rdfZ79+a3E hVMLCgVoShBAAAEEEFgKAUFhKU67TgQQQAABBAoEBIUCNCUIIIAAAggshYCgsBSnXScCCCCA AAIFAoJCAZoSBBBAAAEElkJAUFiK064TAQQQQACBAgFBoQBNCQIIIIAAAkshICgsxWnXiQAC CCCAQIGAoFCApgQBBBBAAIGlEBAUluK060QAAQQQQKBAQFAoQFOCAAIIIIDAUggICktx2nUi gAACCCBQICAoFKApQQABBBBAYCkEBIWlOO06EWiJgH8ZsiU3aEHgJgFBQYMggECegKCQZ+6M CBQJCApFcMoQQKBK4H27fnvbvu1/rrabj+o66hBAIEFAUEhQdg4EEDgnYEdBRyDQDQFBoRur CEVgIAKCwkBmupTRCQgKozvs+hBokYCg0KIrNCFwlYCgoDEQQCBPQFDIM3dGBIoEBIUiOGUI IPAEgX1Q8CDjEwSVIhAjICjEUDsRAgh8E/jYblaHTz6s33FBAIGWCQgKLbtDGwIIIIAAAi8m ICi82ACnRwABBBBAoGUCgkLL7tCGAAIIIIDAiwkICi82wOkRQAABBBBomcD/A3UP+HWwmI3S AAAAAElFTkSuQmCC</item> <item item-id="557">iVBORw0KGgoAAAANSUhEUgAAAngAAAAdCAYAAAA5MRH6AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAlwSURBVHhe7Z3ZsdwqEIYnrsnBaUwc NwA/KBrFcV5dE4HfnMFcQMsgFnWzI/SfKpftow0+upufBqHHBz8gAAIgAAIgAAIgAAJDEXgM VRtUZifwnufPGzxA4JIE3p95hvVesulQaBAAgW4IQOB10xQZC/KePq8JHWRGorhVZQLv6fWB CVeGjseBAAgMRQACb6jmXCozTxOydwO2672q9P5M03yvKqO2IAACIJCRAAReRph93GoWHeON s3cie/l8PD6P9c8LGqEPs4woxVsMVNB8EeBwCQiAAAgIAhB4o5nBPN14amv+vISw20Xd/BJC 73ljHhc3btF+EOgXb0MUHwRAoBkBCLxm6Ms8eH697pv1kILuqU9Pi2m+pyb4yiDHXYsREIId Cq8YXdwYBEBgbAIQeEO1rxQ0NxZ4VlsaGb2h2voOlRHtdxDsd6gz6ggCIAACeQhA4OXh2Mld 0CHqDfGenkZGr5NmQjGYBDBgYYLCaSAAAiBgEYDAG8ko5AsGmNJSLarE3QPZzKub9/zCGsqr t2Fs+bEbQCy5Xq7Dm/CtWwICr3UL5Hy+XIMGgbeKOwiDnKbV6l7zC2soW7Fv+Vw5QEMoa9kC mZ4t+qTnnXd1yIQx9jbVBN77feOtOzytk53J4AKPwwuZO14o4LDk3ansWVLgjdRBXIU7t1WL 1AcbtXPxf4rwZz+dd+IdNy3vpV2KCLzjqHt5k/EbpOXC94bZFbV1xsnUHXWcZ9PWWTWYKHEz yLA3ipfaA6+hbUXaRunLoliWLhTz/lUE3oV93onx4vVxC4Llhaltf8s7Lr+4rB/XEuyU3VPH mTHJPK1ZuzDqk13g2SLDFHgCj+yIW70dR0GhjkcYQS0m8jkjZDtieUlH+3YA2OxYmmosywgz L3JJFZu+sM/XEnj17Mj1Ys0i7vTYdrdMfT3+Jdy40st/lB9TxyOq3rRdGPXJLPCkI+rZsUXc 7Z2ull2qMjJXDaaP/ER2R3zj8jj6CzwuNhJ+Bi3er8fE2xkaX3eQ7VEu0Wfw7JhXhD8vg5ND JgEsTzkm8ioj8Mbx+YX9QPVxDf6dHVniTFCiXYbFjgFiYhIvqQNKzKwE2j3V93ffV1H1ta0y q8BzTxE6MngqJpmb0lqJT2vUFuZUKn/hmB6WgnMToanH6RLlZXL+PPez7L3glkxXiTdMKZ59 8dpLw/5iAlgueoL7hYl0XmyBxy4TZaPU8d5smCovdbyz+nDXESctx0i3S5radkbH/Nk+k84r /8tSFNfU43QL1+zbaS3jLu8u8H5+fpzTW79//7avVM5lCgSPkLNE1na7xBEYzX8RkWY59d9F HPdODfTAhBsczXrn+n6rg6fFS52zZXU7sSF2oHMYnS9N7rQHjtGu5/TMMisvbVTqWLbBzvRz yzSizwfGuJ59kreOeJ0ZyjkNcceYyPUZV9gKjHtsP+aGyAg/PuiBnuMrl7dVBzuWKoH3798/ 1elKkSf//Pr1a//3379/j4/bO2izc/Z9NeBc+HF81Le2SgmFkxs4N7rVOt7U43oGaBEt9Zg4 /eBU4PkWKRtCO2FkTPFcpje/jOxgXs6GTuNGcKAjFnx7fYQbvda1c6bg0fm1ZJmN1/FTcq7O nT3yZ5aJslHqeG8+T5WXOt6bT9IZ25zi7uYxkekz36gVH/foduXHRnkmZdepx3v0i+NnOBUE rT91x9Jd4EmRt/1IseIWkVLEiLl051y1LyMXmtkLa+izs1MbmbpePnsRn5WYrJk2r6Z1bnT8 dcp9kbKZxTRu6O1UiedzeB3ay8py1bOhuEEDwZK0B632F2NZhpexPtWR9Tzb6DimTJSNUsd7 83mqvNRxK36W9kmO3fsC3Hot+SIZFSe1NYt3i4kxPqOv8XTyYsS9M4EXUybKrlOPd+kXZwN+ ZdNagmn1Y0vJ/fnzR2XzTn+c00/lsi8xBqDKXyCN67znMqRwTFuXY+JuH/E80wgkA9fvvGvw EqbOKd5GoS+XwQthWWCK1mt724j20DEWtD3uyJ/iZS2oN20v4FNlIWUKnNLs2ucpn6OOd+aT 3ilaVY9MC/Upu7SC66AxMcRnuH2IJ+5dYYq2m/jqzq6dLzfzxFJLyW1r8cIFXmimLsFp2Ek+ M52/ZWCOL1l8p3lDj5sZmdZryhwdondtiStY+tqQC5zivd5nX/NnlqGRDYUEOmuUtGZwzX28 UwXeunbVb5sNWebiZXW0DoH3mgQJxg+3TCRXpg17B3W1bZgqL3W8oR35OjIzg5ewbMRpOYiJ Cxauz4TwOhF4nOVYDE/fDHbZoWO/aWjffTG/oOKWJ5ZmzOC59txa2mJZ1Gusl3ONog6tuzQY mY4nLULfqsW1TUrIcbElxsuzUbLHsH0j0jgmZGWFz9rC7ZgBlSLUld0pwfuE1xJhrE2va/MK CnQqJpqbrXoyZckCT3nOYZshr+3VZsntGCheZAZPsOX2CgFlOnKlYkL/Pp+tPrXtyBXOLJvQ +g9je6KU7Z54fjx4TAzwGR4v1dl7XsDMlH092ExI353g5z34xaKktP7AqA83g0dLCF8jujts 3/2yp2xZBc9wkmvKY1Gxnv3x+JnKLEwCnHanQa5ZSeDm47Xe0l7vV5lXQtVOL80i8IwnDMeS WIMnGE5zqQYKuG/vPh9QlW1Ac7ZNUlufDJiWD613yPmIiSG0vuf6BB43Ex/31DxXXTq+Emvw Hv8dk3mn/xeNKI/rsXc7n/Wau2OUlqeFKtwlONj7M5vHwUiur3vMYjNn1qTW8viSgUxpfi3j SU7JbUVifHKtdxsqLfCGYHmczjRjx3uaDjGmgne7H9G9zweS6dwnm3+7FDEx0KC0011xT/zu FdInxT897crO/eK8cu5YqlSdFGe6oOP+fxN4x/OPr+vaheJnaNJaq9DVEcF+S636Z5vyMplF x8iVePtUcamvMxi8js/zpe0HsKHSAk9p83Xpg2q7q7LUtl44LOQWNtBF+s4YpOhh5bSNO7bh 7n0ycJCaOdQjJiYAdfhEc8HOrU73fkFVxI6lu8DbhF6Ov6li4HhhAr1MbRWuJm4/MAGxFdMV Bv0Dt0DTqnWTvW1KYYSHtxXrIxBMqcMjJnO3PdCV6UspDK7NRyAki5fvqbgTCOQg0FH2Lkd1 cI8IAo4tnyLugktaEuhkPWVLBI2ffRB4evZOF3F6Gam1eo3rg8eDAAiAAAiAAAiAwO0JEDsa 354PAIAACIAACIAACIDA5Qj8DwMHt8EPsy+bAAAAAElFTkSuQmCC</item> <item item-id="558">iVBORw0KGgoAAAANSUhEUgAAAKEAAAAVCAYAAAAuCo7VAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAM8SURBVGhD7VndsbQgDKUue9g2rOMr YB+sxjr2dccK9m074CMgGEIQ0BW9Ds7cuVf5CycnJ4ErZHsaAicjIE5evy3fEJCNhI0EpyNQ jYTTNJ2+2asZ0DAxHjmEhGMvZD9al09y6ITsBkvCUfaik+61NjPGXgrRS2ceXT/VvtHeOpgA thj7jcZWHvZzEk5DJ8XCQLUdSkL4NMiuG1TLCU+KZKn2DSbXw6SRULkHQMAqYwgoVHTqH0RO UIZFHTd4NnuIcYyxQSnwQJWwsH1UAbSmpIFdNTGZSTiAjXbPK6qfjWFJR+LzDLH5qRKGEQ/G M0oIn0FxVg00gO4jKlcKgHOsY/a2p53zW0xS69mAWoin1y8KGmYN5SsvuUXNCH2t108Q0ZHw 9XotiuWiSMjn87ksCWkUtfmGRcgWI6FWzYNrQy614m8b2gOnXgoTLh3Tb0j5M1RKOz+XhGwp Y3gRkFjjZoJFk/D7/WoCAhHh5/F4uL8/n89MQkIaPQkmUaweWSdnToRB6nYpHQUBTfE0QNko RJvf227KD4RBRUx4MeICG+PvE4JX6e1KaAKU95WX0TRZl4zkSAhEtA90CEsbNZAwxj/xxZSt VCFTKSe/fS/JUuN1SVETk1l144GbIiGpT1FAUlS3BH5O6jXzqsBFtXXAtvf7rVmafuiGr6eE miS0HtqZjtk5HVj1MIkrIU19yC/BrURmSbQrHUeYRNMx7mZrw3UScupWqniZAKSjYaXHfFJz 0kEL973teOkrYBIeTLTy2NovOAxm+iCXhHP97x1EdNAztf8aCdNKGD+1xmoMVyvgPFLldAwk wVcG3BVNSbtSmZ677K6FSSoiZ1LpVDfXZvjwcbQSavPIFU3s8LlGwtVtbqpJIomj2j1hynGF 7TTF/ylM8mvCQlTKu3MkFP/8OpB7h+iyYhbrn3XiOvM/JuVw+SMwCZMENEOvg4lfMmTZtRev 2HhKQiAUJlXs3R2/5/7wDqT0+0fuhaLF+1G7PGheRMLYlUR4er0SJhvuCY+AkiMhrGOJuPf3 ETa3Oe+LgMhRQLv9HMW8L1RtZ0ch4JEQqyEmHl48VTseZWib974I5NxK33f3bWeXQOA/N/5X u+0o9c4AAAAASUVORK5CYII=</item> <item item-id="559">iVBORw0KGgoAAAANSUhEUgAAAbkAAAAnCAYAAACSTzavAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAf4SURBVHhe7Z3bdesqEIZdl3vYbaiO U0AeXI3ryGuWK8hbOtARSMhcNcAAwuj3Wll7J7ox3wz8MIB8m/EBARAAARAAgUEJ3Aa1C2aB AAiAAAiAwAyRQxCAAAiAAAgMSwAiN6xrYRgIgAAIgABEDjEAAsMQeM2P+22ensMYBENAgE0A IsdGiBuAQA8EVoG73SByPXgDZeiHAESuH1+gJCCQReD1uEtxu92nebrSSO71mO/C7u0HI9is 8Bn+Iojc8C6GgaMTeD0e85qhvFK68jlP+qj1OS1id58fr9G9DftSCUDkUonhfBDolsCFRE6I 2v2xyLr6XMj2buOvz4JB5Pr0C0oFAhkErtzQWyO7DHq4ZEwCELkx/QqrLknguiIn5yWNkd0l AwBGewhA5BAWIDAMgWuK3LrwZtrmJXnOfC7zm5jW4zE89+qlDjzMPTQQuXM9gqeDQEEC1xO5 VeDKLDgR98IKzYLheNatlvnau7YCqZnIvV7oH9k+B5N2teAarMcRuRh/lRzBzct2hAlLM9tV SMaT4mJj2lfaVhG556RvSF0r3ltZxQRxmZ5XFie51PggtUEdz3roPHfNJNMm8jKKJXWcfID/ hNNYV7InE0P5yyrZl+UvuUeuXDvyerwbxfLgcu+4LqZR+wBLpWRzS3PGdVmxIQqqdVqKi5zs XRljflvk1gLcz5okpioqdTzD090zybAp6hKKJXU86iHmSaeyrmBPBoJ6l1SwL9dfovF7N/7c DeGijSozp1cO/ipwetqt6Mi1XEGr3Sk3NtYCLfw2jSkscsIxerC8XzUkA1ITPxGkugOrkRLG 7r2hpee39NjMHlHi8afoQaZUiMZM9LdANO9IJLKkfNE7azK26kV1mzsn+rN7fwWohTrd1htV mr4yzduhYGbBmtpjxU7z2BDas470i4qcq7xy3GilK7dAczZz2gHo9mTSK7YvVSp6fUqkuMfp EpVlQj1P3ysU4E7dIvs4lyV1PV2wtqz55aUtOvMMyj7qOF32tv46KI9oi5wVJ+6+u3X0mNLB 9TxzeVb24hZWiraSPV6sfcSGSnXuIvf9/e0d/n99fb3NkL0LlRqwnR1qVEN/Z/ZK6DokJsLc oNT/lnHcSRn0xIRMJ2m9q9KjvAyWhn881wfTM7Kynxx/lL0qZaLqS2neMfHPOYey79P8dcDC L7Z+gfKKnDceAw/MFrktK5atkBH2lHoXaExsNGg3VbZQitzf358ULyF04uffv3/7/39/f1c6 liPdwAi9ceBY/GJ8Fsq/2ylQ243eDaKaHdzjZzLxVaHjDbHmyrvoih3ZUHJZUtfvxdgrhy1y 9eIvmrVRR+ryjnRL9mmUP6jjvfnrCISwJTx1Qiz+CMZjSZErKXAhe6xBB2PUSMZGIy1Rft1F Tgid+gjxID9O7yU0Mksd4ZFPjj6Bgs097hSkNpOtpxXqGByLnDU3eND7zOlUcFlS1wvWa7mW PLs3v184/nJYG0zr8hY8fAsv7L8FKwvTvu78daxi8tsKDutNIF0peO4CaI1QjuPxXaCc+rRf vfmJXL9A+FMuxNiyCl57PClbc2WjBpgZO63aTUPk9If+/PzIykN9PmEkVyNd6b3nBqslE69/ jtKVzuR64XRxRnqLSlcGWXsFuu1Ijoyt2rypCso9zvWn/vwe/HXAw5vV8K0ZCNWvWulK+bxC 2yRS7JGsGO0DFTuWL2q1m0a6Un+mmpujeoAu/NQRGwNidAW2h/mqN2MuPHlPOqce39Vt+14r OyBbMzEbeiN4nCAvzb8Ra4G8hzm5bUFVMHaq846uBJkncv1p9/xPnkM9ouBbeGI31Pt8lUd0 aogcI10Y1QE+sie0WDA6kqjYadNuOgtPVPljR3I+pQ/N86wLCMwtBLInfDgZX2J1pWwR929M lsLsLFtPOb6kPKajzeSucJRlEhFlxuSx1rA0GVmksKR8ccA60Kg0Z30UW014R8QD65QUf36C vwIwHF+t55lpRlGXAtmCCiK3t5nGZnDeN7/H2VOj3T2j3Sy0hcDN2caPDtrtk2PVcvdiYgVj v0zi54gKE8u/XXJ6qKf4+0De+Z5SquBfYh8UgV78xdwMniJyXMY1ryfn9RgPb95uLj6d1pdt 75Nvt//MeTjf7/rISxzXX8+lzo9atRfoOTEQtrtUd1ZkSqoPJmbqNKpM7aj6n5QsciKTab9x x3PrJvHXkjexArCVHz/YX6zXeo0gcjUFbh0WvztALdrNxR71LlKpbEKgdFEL/b4Pobfz1ftM zfPNpdOeodC5767kVnirIptphdAkcS9MKu6T43L1XZ/RaKr0dHhrSvzogW9SC95uemmNSeam 5RzjP9pfz2UqI/Ml8gOIXCg9GrPFKypUGrebeqdlFzkldiX+jTIaJ4EACPAJeIWlpZDzTejl Dq/lu+TMbyLrpWQoRxoBs8NyixnBqQfEjPjSCoOzQQAEihMovTKveAF7veHSOfi0N9P0ivK0 crnzq4bI6aM4Xdj08lJzd6fZhgeDAAgsBEq+HQNAQeDzCdC7vj/fRlgAAhchAIG7iKNhZgIB iFwCLJwKAt0SiH39U7cGoGAgUIcARK4OV9wVBNoRKPn6p3alxpNAoAkBiFwTzHgICFQigEUm lcDitqMQgMiN4knYcUkCNV7/dEmQMHpYAhC5YV0Lw0AABEAABCByiAEQAAEQAIFhCUDkhnUt DAMBEAABEIDIIQZAAARAAASGJfA/HCLdrvrCWjUAAAAASUVORK5CYII=</item> <item item-id="560">iVBORw0KGgoAAAANSUhEUgAAAIYAAAAVCAYAAACDi5Z8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKqSURBVGhD7VgLjsQgCPVcHqjn2CP0 NL3MHMb1LyBKbZplNnGSyaQDBYXHEzRuf3YEmAiYHZUdAS4CGxgbF2wENjA2MBaA8TmdNdad ny+MWlybcQZ+7enGS73cAXWPq23qOrAdoNfUPu60zZ/tgkLsm8MBD97XxH9ciWRfR84zxjcD IyQTJneK3RzUqp+e++RCrHgQVKDR91OS2/v02af5tB5sBRySf8m+nvzfAeM6jLuNi1ytUD8m bmQgMgioeK5Agk4BDtWP+ApgKWybgDP0L9lXlP8hMPrqWj+oQgVZZwG1t+rmrEkVC99h2ASC oKjGZNHjAthByRT8S/YV5e8BQwrYOgqYNxhwBb/THsPXsGeZ0pMM2Yap/sgu1Pb0mKVASFsY +Zfsa8rfAUZt4iaVBNIMA4WayND83T8nssWerkHHQHqCnKTOB997SInByOVA0QM57j37l+xr ym8AI2zucGdsqkLl4WklJdn/dwkU+wpjjI8LFk9DKiYT14gFJCpHxwvT1Er+JfuK8gqMkODa baNA5XFr2nCFqes+MB4zhtjsEeBIiSnqnF6cJJk9Ud24psFoL/mX7CvKKzAQbaENUapODWA3 zi8A4zl5JLpG7DBKap0QcCVHUJK+AdL7/HggR4M41g+Oktvj8FeMq/AiBSYejl+tmeqPaYkx 3phKyjgILriYJON7CnLBxDSqiC071I4vmNKdBblsy88tPpJ/nQustk3e/40rcQoMTcZ4zjX7 zbUIVGCYH4yR9pwRX+SZujl9ON9T+dqytrZ2BCIaQhJhIvHzVeVlKhnpF2Bwcu2Nbv9rEajA KADpfxMwQrNZwPP0d21pW1szAmbMFI1Jyt3/nFkk5tHc5va9GgEEDMgWxdC490gaq/LVBW59 nQjcmEp0Fra96kbgF4caUs3gHyzbAAAAAElFTkSuQmCC</item> <item item-id="561">iVBORw0KGgoAAAANSUhEUgAAAHUAAAAVCAYAAAB48KHmAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKKSURBVGhD7VmLbcQgDGUuBmKOjsA0 WSbD0AA2mI8hBNReUypVpxzYYD+/h8kJs/9elwHxuoh2QGaD+sIi2KD+G1BPbaSQRp9/NeLT aCmMOgb2n8d8KCOEqP5Hv4dRdE6xoN8H+pFFQmft6/7rTP3ToMZA74OKNu1CPtQFkNTG1zrY hEX8cwQuH/cA8uOz9tH/q0A9tfSskMqoAaZaO6lUW50cc5WJ5PdJpIXj1scvasSwPkJRTNo3 /H8IqHkVD8gmmXpqDUkfkF+bHJvopjrlLLrB1ARA2KRbAwujw/SefWN8HlS30XhuVCUvCeYZ YGNWd0G180ByW6AWLI27cZIM8ResDaykoKYS/9TeqQLjfxJUyzCySU4SXNBUuniIaJBFo3L7 kLwHqpNdbF5YUGsstfsv1cXtHfbYSrpfcs5+ElS7uDIazysKoq3gLNE2MPzKA3SBflDZGePc s9k3QEXZxQU4ULnvWfmDIn8sn7P2FyYYkwWgXrXQdiPVG1Lkq6/SQQ7I708xNTRVlWtLUqc1 cBzRaNNTkddazNRm1r7hP4Ca0LnZpZFzKKERJ1O2+/9ApuYSwDCSSmpqwsgne+XJ58/a81cm cqbSiyxlW8k+KrE+0E732gV1Tfcbk16X30SNBkAtXxoEfUtfPuSNC95lQQ26Lx+G7UdePiQB 56BmTIXut9nDdEF9dnJuq3oGAlPFV9oIx2c4U3EcpNmNE0B5ey+/dpy+tcvnb4DWZcAhaRNM k5w+H2HcXzGu+xHMD80GPIcrCOMPQc3XWxfO9uTwRFD5Tw+qvVsh8Ks/NxRrMyB4hkYG4zWl zege4+vja8PZ3hw5m2chSDNN1er5G4b1Gdg/kq/P6a97/AZejn0G6bjCOwAAAABJRU5ErkJg gg==</item> <item item-id="562">iVBORw0KGgoAAAANSUhEUgAAAFEAAAAVCAYAAAA+RgJMAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAH5SURBVFhH7ZiBscMgCIady4Gc443g NFkmw/BExRKiERvt9a7JXS+1UYFP+DU18Fy3CZjbMzwTwANxQhI8EB+IAwR2D9ZY8PvAGGXX 38nEj0AkI96BMSZ93AawibZydb6u2+cgZnBIgOAhSLwWOlEHvoELC2ln1d9C/1/lHI0YIGaB Ygyi3VbkWpzThZnYle1Qtr/mV8x3p8sIRI2PLDYBkQsvQpRtDrUTUZEBDlHMqQxsc1leSGb4 XbsKSlspeVjctXEitjchoiEH3tusn8ddLwUdfttEJqJxETT21XK4k4hHObrwv+NjLbYbEAMo 6yGeGOLKiLItOlr5vdCQ2d5QxzczEQMumnrIqCRVXf+jOw0f75ez1MsdvK2cwWqaWDjhmIkb R4X/jpXCF5q+n/S+4X9IkaaPcyCeS/hUlk2Imp1X06dX4AlC2sSu9B6LScpKx34VYs+fw3OZ 4gOZeDoFDBme1Lnjv8bHGkTzd3x5uW5vgM/LJoGaGNr8jSqO54ZKO614z94kWo1psiZS6aD/ VOoagELvI7kIhEHUtp3Lu3NrfIZI80WNwtLK/cubUWX8eogWiv+s1IuP4jh1JVUFIsHU3vEs ReBX3deB1J0KtPbNOxlI2742Y8mZ0f7aIMb7LYTIs5AHzp3sadns5+OAPj/id/4KW8j2H8zq x6YyARiMAAAAAElFTkSuQmCC</item> <item item-id="563">iVBORw0KGgoAAAANSUhEUgAAAIsAAAAVCAYAAAB2dR3MAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANfSURBVGhD7ViJkd0gDHVdLog6UoKr cTO/GGJx6gQ+a2aSHXYms/GChJCeniQOv3+2BwY9cAzu29u2B/wGywbBsAc2WIZdtTf+MrB8 /HUe3t08sLd3x+GP8s95uiXKlXWpgCmk+8/rw9bZeaa+WXvRcZ/Ln8fpuQm3w/fl6x37gk4s //z/vH5TGaoBpLGJjsEB/VznA4wKmODYIhT1SADkAKVzyn6un6/zb6bnse1beytU8p0pGOA+ xP7bofvq9on9CsArs2SEXqA4oQoEwkHo+x9k4xh8QL/zjjMLcVQ2HgKcHKxkZtD3ZBLniyCt ZTKckfdr5zGZH9lLSOX0p3OUWQymqWIR3BgLwR70BwCbRoYMLCjDMkiyVNeIGRTJrJ/R8rmu VFYsWudVRKfuuKvDLBgYhSRAX2QqHWg0QK/YC/EAgPK4aPaR6/eYBdYfEOKynBJBgKUiiiNQ ItIMLKt53RZgBiGqzAhY+mXBZBULDDhgJrNo2Tprbwxo6FM01nqCe2e2DVWB92hQMGpP0iuD 4QzSswjmQFQdAjMKFiY3yEi0IWPN1TDaes63gML7U1zj6ZrKHOSOqXlktA5lUl5jzl6wofQY RomzexbJ5rRn07Iw3aksfQUWEHb+KuhFDRZkFvOKVQNfI5R6CWMayhnYalyxNY0gdspQ1EKn DXdb+hrnJHYWjXYuP6QEVv/rZRCdY9ovJ6rqkZRk82CJ41RoAtUmMmvmDKVDZCmzBPsMZ5gN sN7kRdpntN7rEzSZ4AYDLA17S3PMR9vMXKotX4ClMRDIaaiMAK0yxEsSqqFKM2WPoW9zi+L8 bhlUZJrB74zO4rxWwzxjL/OZcR4hdwIAowyV6c/2xw/AImf7bqMksPHONMTpUoyFShbSHqK+ 0cQRnI7N4t0iMUJ+UhDJgJ8b2BsP64BE2ewyB/ehmgzsPqLBZY9y4plAX598weWsw5gl1dvh vvRtgtn6lniggOX4Q3HT/r49rJdGFjLp+Q4VLI/NHX1LbrOVLvVAQEgIPAru6Ldz6eUUyQca Td/l5VfRv/RWW/kSDxSwZNCM/obn8gyw2d9LbrSVLvPAMcMo8R2hMki2bpSRlt1mK17qAQIW zCoYANiC73qbWOJa8ktvt5W/6oHJaehVG7ay/8QDfwEvhd/oD+BwhQAAAABJRU5ErkJg gg==</item> <item item-id="564">iVBORw0KGgoAAAANSUhEUgAAAJMAAAAVCAYAAABCDNzQAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANbSURBVGhD7VmJreQgDKWuFEQdW0Kq STNTDBtuX2BgstpoxJe+RhniA/vxbDzG7b8dgYciYB7Ss9XsCLgNpg2CxyKwwfRYKLei3wDT 53SHMc7A/+N0H5bfjzsP4+ylJL6n77LYDrBZ9H7tz+Us3AtzmKwb6+iWLgvjcbgTBSPGIcfr wIt3cDT7WN4k/34DTD7BOkJKANVXh/RVQIbEQfAOydeEYH/S9xWZwe+a8JhoCIDPedzAqIDy /iCAhAOQ16l+qk+zf0PN71fwr4IpnKYbwSc4eV4AnkQ1C/+H6v3meq7FYPuEW2cHmEnTh3aJ EhVXNPm+PzG5cD/h/fyFYC8ySWKfnEdOy9E5ad3rLIdBsS/IB/9ueQImgLgMorwJzcklHPFT Nq/Gn6TDHYC2EUuE+J2pDIyUOV1f9THqw2VCl+/7ozMDr96JCDyAEDCEaErrIbct5pL2CPXW dQameiIoQjlim4lHfQWv5/OA6UkIgPTBWe6ZJvQ1WYIAbMEf2PP0CwIGX2aJK7Nx6L1qDvI6 bqEAGFOodfugb0qx5mWuWAHUGcmb0a+YYoRyzwqAojuYwA0jaaany2vL1xFmkpyU9GknFuqZ 8YeDGfconBVgv5hLaKtn0sE0Y78gLwB2EUzeoL37q9SL5Hot5YGA61lWamlrgWYVTILcVNmf 8KdZhsiNLN0Y6U1MBMt9ry23WK3MjdpHoU8sVb5jwekxU7o65lIi0n3u9/4xM2kNqbDpLtGN 6mv1JqPysRvmo4qRZAYb9LoPWIKVeGBHOtzQpma/U9q/YCZ444hNJxpXlFlLY9OPUdRgQlrJ 493sUIK10oMA22yKJcZqlJkMEJURG/EYHg0o9jsH4AswYZC0r8OU4XgvwYdms0gjQzax+W4w ge8G6VyGDu0EfVyG76sMUSf9YUNDIF/GCnRIi8YJZKjIhpqTQ8sG09H9LQ4tKUAEZgKx1eYu s9DZ778zAgVM5g/GVf/5cn4dDdLu53ARTJRe5SPwqL53hmN79U0EAoICMACYRp+tTbe5hnyk wQgkqv8bp7fsOyNQwJRBNfoJ2SYDZfbznSHZXq1GwKwwUv4taJTBsnP0/VWnt9w7I4DABFkJ AgC6PtdbxRLak39nWLZXKxFYvM2tmNoyvx6Bv6QGS1ThSeqaAAAAAElFTkSuQmCC</item> <item item-id="565">iVBORw0KGgoAAAANSUhEUgAAAwUAAAAdCAYAAAD7CMASAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAtMSURBVHhe7Z3dsdwsDIa3ru0hbbiO r4BcuBrXcW4zW0Hu0sF+YGwvYLDEP4vfM5NJcrANehBCQhg/3vgBARAAARAAARAAARAAARC4 NYHHraUfWPjXsrxfA8sH0UCgLoHXe1kwouoyR20gAAIgAAI1CSAoqEm7Vl2v+T3NcGBq4UY9 9yDwmqc3htU9+hpSggAIgMAdCSAoGLDXl3lGlmDAfoVIrQm83vO8tG4E6gcBEAABEACBIgQQ FBTB2vKhi3BcbpwlEFmS5+Pxfmx/JvhwLZVxuLpfIuCGSg3XrRAIBEAABEBAEEBQMJoaLPON tzgs70kEA0cgsEwiOHjemMdoyt2BPEKnEGh20A9oAgiAAAiAQHYCCAqyI237wGWa7ruSKYOA p751Smz3eGpBQtuuQe1DEBCBJ6KCIXoSQoAACIAACJgEEBQMpRHSCb5xUHDqSytzMFRfQ5g2 BIROGYFnm1agVhAAARAAARDITQBBQW6iTZ8Hh0XH/5qfVuagaeeg8iEIIPAeohshBAiAAAiA wIkAgoKRlEK+ZIutDWuPrgHBA1mTkdS7F1mWCe+p9NIXtduBk91qE89dH04Qy00UzxuLAIKC kfpT7qlHULAFBHDcRlLtnmRZJryn0lN/1GqLXGiAea1Fu2A9Yp583vmEvoJo8ejvJ1AtKHi9 bnxMpkdPsjMZPCjg8EKGgGeUOCx5T7rfVTIoGMmpGE0XisiDD0KyB3oR/uzaeRfe8UOE39Av vN77jqu+lXeRoMBcSVMnwHwmUfnyZ8NV3PWYyottJVR5pD7WYLI6xIMsZUXxWr9R0FC3InWj 9G1RLEs3qvbzM+pGlaDgi+2Qs2u/XB63E6kOMti/iXLH7Ypfa1tqBXmU3lPlkXayWb8UkoeN gaqfKmdXZF5YnXfG+cwWOXtQcHZM7aBANEEK1OoED0opqPIIpanFRNYzwgpmLC85MD8TND5g JlU1lmWEmvd9S0YjWmWcfbEdqhUU1NNt18vlKiDQ7e3dspT1+JcwLZUO5aDGMVUeIXrTfikg TxACqn6qPKgydXET3hnns8JBgTSU+iq8CggOR01bxa6y2rZKq6/miFXk2c4UBJaLj4M9g15g rcfE66xYX/mV/VEuoWDx7JhXxPhXAa2xOgiWlxyr8rpoSUYjWiYoGMcOqV4YSB7XIpbTuUjM glcdKwPY6SRe0jcpkVUO1HvKH+l+/qTkjZplA26i6g8s7573hibjfFY0KHBvX3FkCtY5w/7Q lN2080pMgKbs5Bxbl2SQsgcurq1NIeV0i/Iyua7PXdf5rH61ol7iZB6KZ1+8jtawv1ILlsrf 437VtxAvdv2avmU0ouyggN1OatxQ5b2NK6q9VHln8nDf1UrSsUJjxYmyY/7sMZPOK/+BARTX 1PLOxsWbkodub9oVVP2p5XTravp3RmuSbM21XMf2oZ+fH+fWi9+/f5+fsDbIdio9zv9JcfbH Ja6q0P2lAg+7nfrvIsq9KeIemHAnL1tua8UlOovg4HnitV6zZ4860SH2RORQOl860qkPHKXd rumZZVZe2koOd0thTP0xRtTTh+wsJ7edI9qhQLvbs53gvau1ZcWjjSfDttzBTnPHjMuUBtpi 9jjmmu2IcWz4KD3bfC7vkwwR9r0n3pdjrqHPGzKfceyGNtetQcG/f/9WR00GBvLPr1+/jn// /fvX7KLDqbMdOt/XY6/BcWyob6/46lxePMD58SpN+NRyfaVZObr1mDjHzWVQ4HspzgrOQpTN agTFU229+TA6T7bldOjSzgRPRMQLht4xwrV22z5F20nW+bVkmY2Xsg37EOY5XyGZioRMwUUf slcYmZyocUOV92aHqPZS5b3ZCTozlDMguLmdZo6Zz8iOt8V0v/LttbyS0uvU8h7HxeNqjtoW hIPtOxN7Kk/qfrUFUttidvKNGvkrStmYh6pQMqj5VPdfj6BABgb7j7zAHRhKx1dAcu678q38 h0ZTTI1gXEZ1emq5bIIKWCox2SI+bxwky0+FH6N5vBRnZ0use7xOD1E/xfPUZaeV2Ho6FBdo EixJfbCdVP/7CL2xLMNL8tQC6YvsSlz9vqBA1TuvH7jbxq92YvL1mJZj3r8XOaadVF9T5b3Z Iaq9VHl1O8Gxaz6ju91LHvBA2W7tHYy72emYMaO/s+LkxbDFV0FBTJsovU4t73JcXAYFZe17 Kk/q/tVZvvSNMvsrpI2ImM8IGVxz3cn7//PnzzpRXv44J+9yUVPMAF3bXyCd53zmEbk1zhTI icUepJKB63fedwoStnVRvC2l+rpMQQjLAtuHvLq3r1IZBqzceGS/U0DxkowM3WTqHnM10dge YKysbMHdXnfQtgPXSTQea8lsZ7Kd0quvbJs9q0dp2zY7sxPeDNaqN5leVqXGygk0c6y4V/eu +6cl/5Axw53XUrcBMhYgq/sbtW1+jB7F2vdOeZ8yB1sgf14vSN8d48atnXYWM58pJXV/EsDe PqQ3YH+3IDwoCM0IJBg1rtJs6atPtLev9JovGseX25Fb6z3yDofFdniO/WWuyczXh1zgdhrd 5r09x9uGRjoUMhGdVrbPK82rlKlBAam7DVnm4nVyhJg2gVm/sRJk1GUHTJ6TSJx9KK6dZtE7 jB9mO4WyqFPajtkl1E71aIcyyNOLnXBty2Sn7xl6ss7V1vtvd7XT3DETwusiKOBsX2b2oDT6 ieOYur+hzXdCINoba9/ZwCleqeV6Q1y+SV1/JXk+877fa/orGTMFrvNaFdRVGHv/v2tlxFAG NTGSaVlSgTbF2LcJnI4ACykX2z0mz8fPPIbHt8oUx4QU1rm1wcy0yMDFtYpcgvcFr1WUsxNY m5dqxsQ+opXHMkdQsI4c40hfr+7VZpmLV+xKErt+a2wfnvxZ75xb5nyr7lxPgt1Ou69dRycz daETO2TqboI8tXXbZWJPeqrNadbxxCnHPfNsy+B2OmDM8Hj5bLFnIYCeYokrQvyJLx8XyrvT 5ihLnlj7HtQHNXj7x1xdfyVlPiPsxlWmgNUf3lVQ5krf6oflcPhZrc17UdBWA7fj62tQFiYB RvVoR8hetlCaPl7bc87O2CA6lJwpcIAejiV/z2mo2l1fb+tYQKZA9Ou85G1N1NN6t0OhQnWt 2wFbxkLlDrkedjqE1ufa1IxfXK157up6XFAitrLvVLsuyj0ZKP86UA/+CjGfceyGKyh4/Gcm DS7/Lx4gy/W5cb/eu/9S7wfHyktCN9a9NXgy9mdQjIZnY7KIFyhZmxtU9RyFSSGs82KmE4fQ odJBwRAszfQrq99TdPG4d9ues1t6X9bS0YeveTbsXpbmxDykezsUKFTnduIlMswhZjVQevpy 2Gmake8Kly0Wv5uadihTnM7HxbUUrew7k63rMp03c8yx5q1s/p2z0euummP7qT6fMWXQtzuv kYB06PUggPv/PSgwr1eKkCOySujacrdGTMZ7iq0Wk0U4Ltyw4NjGVOorvRYvsz7fS3oD6FDp oGCN5/bTczzvNaior/PxuO+fFzJwv1OQPLrVysokThFynT50PP7Uh4JlF2kC0cIvsENB3dS9 nQhcbAkSnr4Ydppm5L3CGdw3DvK44nQ/LihBWth3qk0X5Rpv/phrPcf65zO2DHamYA8Icv2d 0CW4NQeBXrY45JAFzwCB7AT4KV+janEU8zcsLmbHhQeq8LqXLBH6I5FA2wAvsfG4HQQsApHz mYfjIyZDsD/LlVFAf/VBICRb0EeL0QoQqEUgxoh2lCWohQn1nCffatkswC9DoJP3Q8oIh6fe kkDMfOYHZQQF8rKgdwsc19+yTyA0CIAACIAACIAACIAACHwxAeIrZV8sGZoOAiAAAiAAAiAA AiAAAiDAIvA/CZQHwyu1MUEAAAAASUVORK5CYII=</item> <item item-id="566">iVBORw0KGgoAAAANSUhEUgAAAUoAAAAVCAYAAAAghqeTAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAXXSURBVHhe7VzZceQgEFVck4PTUBwb gD8UzcThX5ci8J8z0AISDEc33ZxiyrjKtbbR0bzXvD5gdjnm10RgIjARmAhEEVgmPhOBicB7 IPDctmN/D1MLrdyPbXsWPqPu7VMo6+I5nzYRaILAvj2OdSztaDJP89Dnejy2ccJCN6Hc93Em 3Zbhek+fmNXDsteTmnC2b8c6kGh0w3Jbj1Gm3UQon+tiRT+RRj8WKzo8j3V5DANAQLqIZMuy HmjwpsYzveitMcucc7XbKE6o8UxDenG2B4Ih15C9xjInMPptAwWI6kIpS4TFqRF8oRTsCAAe j0H7LdSiosYznO/tMcuYc9VbKE6o8Qxj+nEm148fuP+IUIp0ZR1EJyoLpSTQJvUUyUVEP/Vt CaiMxmP0IE6nO20Uma6I3m5GmTj+FEEglpGGKWw/zGSAMnO0OFFCEnKUoR+dbknkhOJ0dM4C sbiEUmzuPIzvRqqg2qx08yOpHy2qT0+XGGJcVSjDKCsZAjJK+We5OKMGns7QVkyhtoAUDO10 peO0h9bFjHifcnArYGmB1AFML4A72snCFt5mRSkn1P2DcSY5CoDRgeIljsqPkgI0ME8uBx39 yG1vRLjh2g7okcKOEEsjlF9fX6+swkSp5fj8/HxZpwG6xl3+EEHEhFKm1Xf3KqGSzP5bxjjq sAo7P+p3xuzi78WbX8JllHTQvKJ+gjg719EzOFFBWWMP3B9wNpCfw4EU4gnmUlUKjIxJscLl oKYfEb7Crjy5toNtmHMdBvHI8m0llL+/v0okpVjK74+PD/Pzz8/P5dmesAXZB7bI4mLAySIk WKY0tETcL+fpXMC9AowkFjil4+ZtprTl9prKMQOxADmzS5tEoQTnRflJmVCWckLdL9TCDeAd /RxCRtobVlVQkmH7jLvwYbEtzSh9v8nxIwpruZ0BzT/f9jMownri4Oz5thFKKZb6Sz4obKWF JYCbFmMZYmrWlCp3+PWUwFKLpnT8DNJX7xPsg1XGLIj0HjZJQnn2mzfjWG6vCJ0XUCpi5RPF DyYcQYZUM7iR9vflDM8o/d6dvc68vQKwmjnRzeFAbcY61aCPiR1wI35EYh0XyhzbOWU25NuB In5/fyvFpb9i4Nh3l2dHOYDQ9p+lRtDXKSy9wWdKY0BnbZeFl2eUVx9Ml23YznFkEV5Lkddi KSmdWnF2Solnf1/Oskrv4FQJs83F5SBZKK3yP3oCIbSzT+mNqIVfetuX6V5lXGgg8UvNHJnk sRQv96Jr98vU/36TvHTcsmuYHiW3ZPIFAdmBjAol5hMAX9xFevW8XxscDTkD++ud/Zy5maOS CTuoOX1J5lrjcpAhlK8WG7aTDePaajPHqUqUeAO76zGhpDPK0zGh3WisF2L6AnZDUhp3+663 SvWsI0zQ8aCUcdEQXpED64ig1MWMCBjJDh6W27GGt/t23E9AK7mLVN2cwgnFKcZZLz9ncAYe DxLzUu2cq99mXzNcRkn5EYZ1wvGgbP+5WmPQSY+YUEZpo3pgCTvZ7JQ6N1m8677kEpUZ7a9+ UtvjUjZovl0JGSXpJ3eRg7zX54y0vydnEvfUM5L8HmV7Jgg/imIt5r7e+MEUSCiXf25fEvpd Ri+dUWDXs3bYgojXnq5ub0gWyrNhHZ6V8yzujtlV0mrCsQrAz5RJkenGBP9FNmdM+3tyFn6E kZqaW8aybKUemT0e8SMKazF+62fcfaGUomcLH/a72Va/rpe/y3XkXo+cSTJA86NxNjd33pgh lLqUxI9K3YHZ+c511ccpkE9IeEKJHb/gHAO7jTaLM779Pf38KU4fpH4KQPduE85RNiEA9yMK 6/QAUXkCkFDKV2ixLP23srnzcbcgcIc43zLRt3jpLj6u+J7/y1quH+UEh3ZULpxMUr+ek3m2 M3U+uS8CuQ7e18q/8zbBB/cTNkOBkuNHOX3ZtpN2hNLOKm1xtE2gepltzZ1PnwhMBCYC/RHg nCzvb9V840RgIjARGAiB/4CkZmTh+CXYAAAAAElFTkSuQmCC</item> <item item-id="567">iVBORw0KGgoAAAANSUhEUgAAAe0AAAAnCAYAAAAisBCdAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAlJSURBVHhe7V3bkeMqEHVczmHTUBw3 gPlwNI5jfqccwfxNBr4CCYl38xaYM1Vbu7OSTHP60AeaFr698QMEgAAQAAJAAAgMgcBtCCth JBAAAkAACAABIPCGaIMEQAAIAAEgAAQGQQCiPYijYCYQAAJAAAgAAYg2OAAEgECnCLzej/vt vTw7NQ9mAYELEIBoXwA6mgQCQIBCYBPs2w2iTSGF63MhANGey9/oLRDoHoHX487F+nZf3stM K+3X431n/d7/IMPQPVUvMRCifQnsaBQIAAEXAq/H471lxGdKjz/fi5xVeC6reN/fjxd4AgRU BCDaYAQQAAKdIjCRaDORvj/WaYr4majvnbKvV7Mg2r16BnYBgekRmFm4tJX39FwAAAIBiDa4 AASAQKcIzCvafF9fWXl36iKY1RwBiHZzyNs0+Fz3BT9/O2wN6g+8D9SGUVe0Mqdob4V4y76v n4f7HHEgD6O+nzZjHES7b48lWccG/TSVp+te4B3VOkk86f+h+UR7E+wyBWhTxYH+yZxuoRbj mon26/X5675Yr1TBZH1tZJlMxF6PZboq2yrciSVw9fs/R7RD/FVyhf2eMA5Up2OlBsK4cca4 KqL9XOQDEbaBd66GWIFFmZlkEob8VQpP6om6ntTo+90KkxkFrFmAorhBXe+cO4Z5lfqTCEP5 xyr1L2ms83e0y8XFPuPAVlwn3kMvtQVQnhj1PjGJG8wcaRJWXLT5bFHJzeqivRlwv6rIghqo 1PUEf7bDhGFdZi8soZsXPrIGgxZ8orhBXU9AqB13LMZV6E8CBPUeqdC/VH+xYH6KWe4BKz3G gU2w5a2sopmFeiwp9smp3NgMOGNcYdFmjpFF4zyKkBNSEnNG0jZ7kfLsbp3JrqlUdYYXef3J ZsQxwtgQE9dkSD5pqYW4CZqL1QPHfA9EjAM8WEq/Zw8LxrNyq5TTnEhuUNzqmTsiMBwrIdtY yXbUxR8Q6c/u/eWAMyQOtD51zTpBysy6aifI1T3yVuNOc26cMa6oaJszCb6u19LjO9GMwwR0 Apozs/gRb0vNM7EQopt7nbaoLCZEewxTowJNft/T4Qu6G+odaztBhW5iUImbhViL3wumBNW0 U2yHbPfncoN6nraxKXeMcSqCVMwEle7TdXdQ/qCu05a39ZfHHjIO7Gs3vrrP9G9oLLAOsZwt AfM99i1bkdkfK6x9cEPEuEO0v7+/remZr68vaeEhrZAMcFyC4Pr/zFkWPYb2FZ3mRHnGZ5v9 EdeNlI68arwYE2vQIFOA0gwydBUeOlB30T4FXh9oEQdIeHHeagaKZm4SuLFlEHa+WZ53pgM5 TnqwaTyeqP7qK/FQroSM0xb3UP0bzV8ezOyTB8sDrthg5aOjwdBYYDy+Z2GDZv+BBNH7U+os 9xBuNNABEeO4aP/9/XHBZsLN/vz79+/49+/v74aY5kiTGK4A7A8+IT5z7ffoKXfdtdYDCqR+ 5F6/EhP7xPVuCJf/kAa1OjdmsIf4bcNHTlvrE7VA0Sa5x+hp9j1wqNvn1rbDLUpyR7R6DHZd tOuNJxd3jMM8FNwTuZLjhILPZo/1zvzlg8Y/FohiMCcfS4p2ScF29UeLNRlZPYo7rXRA+PUQ bSbc4oeJIfljzMZcK+fYFQPZcvANFNi5183Jo75iKoyJsXJVLbCJrl+0tf12zww7aeIUJdqb LQ/xDU++SlqLnb5AlWJ7Ljeo55nnNrvWSY11f+wC7uirZwXnylxZ8bAVYun/5xz8IWPD07/u /OVXZf5tYK6Js33yfYrbkZHSVpB+Pp4GpYyn4+ndT2RWjPAnL8za9+Wt/bFsETi30DK500oH FNGWG/35+eGDh/oZYaWtpCuVmbI7hUmlOK2fuX92S0ycqyV9JPvS40bBSuCWRWhKLFq02dcx 7ie5eey2BaUR0uNO7lgnS21X2uRYSeUKFUhaXU9Ij3ftLw9uzm0yfdLSOj3O2ytUMMo+K7Q/ HKvA2GbDleKO9kwtHVDS43KbYm+bmtGa4MeuqDNADB7oehpGL67JvX6o9f49uDohG2MSUICi EMogfqBPKor2OeewVIQfe1TmwK9ViHYW9lXiDqNQD3vaeyGas7+pXAkeq7VvLDTWu/GXBy9b HHDu91pEtMaedkZ62trTmP64iqGDKUdxp40OGIVowv7QlbZt5uLaE90KcNRXvvgs1lvMUqJ6 nI8wXr2+pdlsr7HEXF9TUovvcBZT9MpiQrDMWA3pZNKqK1NXT9VEWw0gbiHWca71ylcMNyhu ebjjCJJNucOp4ulvKleCA2OLG2P8OYK/HJg54oCa1mbZRkc2p4JoHxqgHK6yxeWg+hhLV8P6 U0NHrtCBQq98mUE1cKXGkhWlq31bjHmeZfGfqHYtJsyxMa88hO9T1oc3ToiNk4WWAb4gJTod 2dN46okr9dnIWxjWX7FxQMMzRrQbuSKpGXJfPOlTt4ea68Dq0z3GHZvXt//UfWzb7/LKmF2X jyMV9wdVILtWhBkYNntUdlZgyrAlJnHHF6rp+yA7qwG9p5/ld7rl/W0lK2NWhg5x3nq0CGxV 8ea795YgW/0VrJZcISqcq3FQ++CB/RUXBz5QtGsKti7aLXRg7Y+IcVypmeDKIu36/Uhx7PeL 76VQ71dfDTHHV/jqodXYjGpHG8hq2sdVZNESk+dagR3z5SxSgKwe+H1Ib7xYln0rRStY8eGc FaCinJ95c4IIiJS1O4XYcjy14IqZztx8H5NByvSTeHxof8XGAQmzD1hpu9Lxqal4g1GNdUCO cYdoC/Eu8XehIYOPSUTgtX6X9njfMp0qPhnBKRFfPFYRAatQpnKjop0DfPSYcWAAYJubqMa4 W8gKW9gYsiJv3h80aEFgDXKXrppTnJISmDP37lLMxDPtEShdedy+Bxe1OGIcuAiqbps1Y5wi 2vIqWxZquT/U3ne3fYdhQAAIDIhAydOzBuw+TAYCGgL0KSqADAgAASBwCQIQ7EtgR6NdIwDR 7to9MA4ITIpA6HGXk8KDbs+LAER7Xt+j50CgTwRKHnfZZw9hFRBIRgCinQwdHgQCQKA4Aig6 Kw4pPvCzEIBof5Y/0RsgMDQCNY67HBoQGA8ENAQg2qAEEAACQAAIAIFBEIBoD+IomAkEgAAQ AAJAAKINDgABIAAEgAAQGAQBiPYgjoKZQAAIAAEgAAT+B5TQJSxKauNvAAAAAElFTkSuQmCC</item> <item item-id="568">iVBORw0KGgoAAAANSUhEUgAAAFkAAAAVCAYAAAAtkUK4AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHSSURBVFhH7ZiLrcMgDEWZi4GYoyMw DctkGDfmk5hPGvMJfdWjUlSlONgcbi5WBazP4wTE4xlWAliQJ4hgQV6QJxDgpNg0SCFBb5zg PGYpmcNtKGQ7mQBBLmU4VTwU81fqGQfZgNrhUqhGIXAF9ZzdXLL1/bJ7NrIeIgKjojWy5DEO ciHdXlAM2S3cKl1qaLQo1rqKQSPqmQXZbowTaMGTCUgLNCh5Ay1PpW9agmB4iXsbLi7G80HR 5xx99cAMyFYMJzsC+YR7vOaRcnCcWAfZqXZpfnpyXD3dGx3ZheOgUWQWZNx1uFz7b6akZASa WgCFjImicUx239Y0L/CherhKxroPsWWQiV1mFuaFU7SLNPg42T3IbNE8yM0qf6oepl1YOwyi itaeHshoowWxXXlyrDq0BjJhlZJHdBe7G0d+3lNPS3fhzqDcEnJxYZ3Z8fL54LvS3mxPvnsH vlVPCrlCyeIVNxqle9zZ4FM4TruLNP4OUf+4U1qoh9vt9Of1B3KQbunswCSpki0wAvn63ifw 8aFPTuP7F8Kd4Rt9u1OyUuXu4qi8BBkHA+jeby6i34yrP/AFT8EOB0fxvwmupupOyFTNIS3H q2tK/I+x66/OCbv+BqhMui+HLoutAAAAAElFTkSuQmCC</item> <item item-id="569">iVBORw0KGgoAAAANSUhEUgAAAF4AAAAVCAYAAADPTVnBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIDSURBVFhH7ZiNccMgDIWZi4GYoyMw jZfxMBTxU8uC2EKVg3Nx7nqJLyAen8RDqQnPawoBM2XVZ9HwgJ9UBA/4+eCX4IwJbpmkpFn2 bnp0uaCKv9tG76bnavDeBxsr36Q/F+YdgAJ+lp4VONjgvSssIg+wg4U8C/PRVDyGvXorhJ+h Wb8KZcG0HENHD5IRwbHsNIEvsJOcArxOrokRbvHEauhxrzCiIOuDcE1mMnpWo6BnEPyWpP7a Q0ksTgJzCPh4tHY01+Btrdz8eUt4PA2MVRdXbavzfjgfNqqvByqXITuEpqKpHu4dROaVuAPg IQDy/BTgyjvgDDxfjyj5Q+CzFp+sGQoMFQxYFMl00rOd+5OjDUJ29tID07qIaNMpzDV6rqn4 YsGVT7oPXhVl5nZ4uSZoOJgAPNPQO8Pay1VFzyVWQ4sEbJnaJGxxs+7WahbUTmLQQxWv1dVE 8Sp6pF0Nhnfk8e3phyLZO8yeycC/DPieKq/ykZl30kPBk4ovrSlOxB9487PPQe9563BiOxTH 40uDjh9BKBuLOy5oQnhdlmyts1nFFitZ8PjqFh3oEC3RThAR+NfPZYEyvnaedPyZTL3v3/m7 4kh1rnjn2q4m/wjttNIVvOa7HthPicTr8PBuDK/S8xTOyfgUVLo6/wkeV30VxvF+3U18R7SB ruY7gLxrl79JvBMjONIP0gAAAABJRU5ErkJggg==</item> <item item-id="570">iVBORw0KGgoAAAANSUhEUgAAAFwAAAAVCAYAAADLuIn8AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAH3SURBVFhH7ZeBsYMgDIaZi4GY443A NC7jMHkEjASqGKPSXkvvej3aAOHLz99oYLy6EjBddxubwQDeWQQD+ADemUDn7YbC3wp89mCN AYNv62HunEyx3btyifta8N4lDvh2E8BUjZVsmMIncGFxXBsCam8NWK9BntbRzaVT3JULoxKA pbMdvKjQFEygaUwF0aAJW2fgcWEH+zklCF3U/0QuJ4Hn4vDiY7HqcaOA/FYsbFfgs7cNG0mK z0UOsQK5TG4pEBWKfzbmP5ELWoIg5XC5F0tZFYyAg8UU48xiF3dcJws4nikkIASOmzL1V4sd 3dKzv7eBy3NRFfwU8JSLR5hRTLww1akXZjJLweDiT7Su+jZS1YHjrW3YmzKXZxS+2CyxaeT9 ovDamyggosSFFMDPKjvHlz55Sy6PWErt52i9lcrXbit9X/bhvBWrLUQM/I4uBRsl1qKqc9F2 KbVn73n4603HW739X5FihQ8+ct/Uq1o689Ny4cXYUHhR8+DzNDZ/JftyPAOOqbeOV7wZL4Wn iSufEQq70Sx3ac7i4bxn536+4QqRMsLjAPfGax9+EH/pDKLJHZ8Jmvkkm3Buu0uJYlhbYebh BPuuTxGzrwiSdWv8qEaibG47R/FfwVF8iIvAyV6Kihx4de3l4lx/NFDYpfwonQeO/Q/i9bYc X+1jPQAAAABJRU5ErkJggg==</item> <item item-id="571">iVBORw0KGgoAAAANSUhEUgAAADwAAAAVCAYAAAAaX42MAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFeSURBVFhH7ZcBDoMgDEV7Lg7EeTgN l/EwnS0yKIJWohLnlixZFoS+/v4WAV/2gZfx4h/41xWXCnuLAMBf46Zx7JNDAwavCEEAezvD Wj8ONJ58BzDDLuoCWByKfQcwJbdfYY/2TBuMAw4grLxxeJurjwDz2lSdVUfymlC1Gx6e0BnA uMHkjMrf0hq5TQ70BzUwCZI1t9pz30a8C0ybZV7OsnR5VxOBhzgcJZyVzAAJppCUEh7/Csmf 13uNwnSoKOMimw3qXoXpue8oXAFnlmLFWk21EaOqpGnjDuBe9dky8TxxdugjSUiyWm1GBwtW 7w8q4EMKn9GlQ8Crsp1bjfDpMk1kJe+c3wKW6gz0sAikBC4UXrr05n1JByxLRNule0u6/dwy GlMnSqWvgaWNdcB8FRkzhysKW7vu0ixCNoPj75XaeuDz9Tq+o246aPd9wPvw64C12unWPUBh HYh21QfnyCwZOo+LawAAAABJRU5ErkJggg==</item> <item item-id="572">iVBORw0KGgoAAAANSUhEUgAAAtAAAAAdCAYAAACDvlvfAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAqASURBVHhe7Z1dtpwqEIV7XD2HTKPH cQeQB0fjOM5rVo8gb5lBXxC1+SmsAgRR91krK8kBFT6qim2B+vjgBwRAAARAAARAAARAAARA QEzgIa6Jiqci8B7Hz/tULUZjQWAh8P6MI6wX9gACIAACINAvAQjofscmv2Xv4fMaIEDyAeLI owm8h9cHJnz0KOD6IAACIAACMQIQ0Be0jXEYkH2+4Ljeq0vvzzCM9+oyegsCIAACIHAaAhDQ pxkqaUNHJTxunH1W2ffn4/F5zH9e0GBSw+mu3lvdCGL4uhsWNAgEQAAEQEARgIC+mhmMw42X vsfPSwnnVTSPLyWknzfmcXLjVuOHG6CTjyGaDwIgAAIXJQABfbGBHV+v+2bttGB+2ttX1DaA pyWoLzbW1++OuiGCgr7+MKOHIAACIHBCAhDQJxy0eJO1YLyxgA7AeBnpS431HTqjxs+5IbpD n9FHEAABEACBMxCAgD7DKInbCMFho3oPTy8jLQaJil0QwA1hF8OARoAACIAACAQEIKCvZBT6 AToseU8jOonnB7LxZzfv8YU97Gcfw9z2421CueR6OQ5v0ullJNCOOgQgoOtwPeaseg8wBPQs niG8jjHCfa86vrCHfV+i5zibvgFGKDvHWG22Us1Jzzu/FeoCQ4guxAk0E9Dv941frRbhvzuT iwtoCS9knmXhTsJSdqa6tbSAvtIEfBbu0lGt0h98CEqK/1OFv/jqsop3/CjSGcZFNnrnqHUU 7yoC2s0amTchfCdB/WDXgdnB6dVmG0v7XHmmPbVgMonHi6RtsnhN74A+0LYybaP2YVksazdK eP4mAvrEPk9iPHl/aMFlHghe3u9+x+1Zp/XjVjdEnN1z5cKY5Fc7bFwq9UeMgbs+Vy6+kFux Ge+p/SbmxJI4uwvoUMT5AlrB0ELnqKfruUHlyjMGvRUTfZ0rZOtyeWnH+k6w+JiKNtVclhlm XuWQJjZ9Yp9vJaDb2RH14KgRz3Zsu9tKUzv+Ndy40cPtnB9z5RldP3RcKvQnCQF3fa486WKm ckvek55gEpI7C2gd6OzsrhHPq6ixGtMkszQhtzMXKjs5+BnoxHL1oZJn0sNp7ZhExYb3dT49 HvUS1R7Pjnll+K+5+XMyYWC5ybGQVx0BfR2fN+wv1B8quUJOxIUrmYV2mRY7LhATi3hpHVBj ZTDR7rm5v/u5iutvmlWm1+aun1jeMW83GRffsbCrgKa3EBAZ6Cnm+x+98IczzDqkDzi1fUQL +gVIaTnfon2ZbF+Pvlb4LmRjHDXeUMHx7IvX2hrxF+/A0ug16RcCy3mJBbS4TZyNcuW92TDX Xq68s/5In+Mo2q5Vbpc8taVGx/zFPlPOa/+HgTmupeX8CLec21XmhtgKW2sep/rOXb+0vDfe eppLyED//PyQy9+/f/8OezYFL1+ARYRyMPDL6QozCDxvI9L9dtq/yyiPLh32wEQ6+fj99rIL 2dlpgmfAy9pXFIr4g2xIPJEQRhdbpiLtQWK0c52eWe7Ky8paENu6xCtV0jZd0ecTY1zPPil7 jmNe2cwOVAI/vkNMlPoMFbYS457Yj6UhMsOPHT3Qc3yV8g76sB1LpWjJei14b/pce20QCuiQ 75SB/vfv3ySetYjWf379+rX+++/fvy7PVQD5Ajr21bftjktiYGxv67Q1ZOME5Ic0LGFTWm5n MM02lXZMokYe5RF7CMe7kSnI7HA8zfaHL6NwsqxnQ5vBI3kiYR5oivqIPIR1zXI3Xu6n1inx JM5cCdvEceXKe/N5rr1ceW8+ya847Cmebx4ThT7zjVr5cY8fV3ls1DU5uy4t79EvHn6CwZlP +ViaRtitXcqTO95sQ7O2+QQ6pL02cAU0zXcV0FpELz9aDNI3QVokqk6Se1diGeXUO4eSYW49 6HOavxWT+Q4tqpHJD6l8g976EI6fhfdOGBUtzPV5J/HGNsjStrOhvJsyhqXqnjlvzEes/p+M ZR1emqd100lk7bc+pJLTJs5GuXI9gttjvLMNF9qJpD+OV9b2SUl/YgFuPpZ9UJqLk9ae8bvF xByfsffYk7xYnzCCNzZuOW3i7Lq0PFAhPfjFpoDmY+nSpy55E6vnrg5pG1fXOL/GIppvoJT/ /PkzZaM3f8jl6Xp3CDkDPrW/wrIDeU5zS0xsa6nHhB4fdT3fyTQD6nfRPdAFW2s43oF+9l+7 15rX3CBpJiaFZYUtHFHbWzIyjvCoyHIvXsEDY77tJXzKO6VNiVseuvZ5zue48s58MrqFY+rH Tg+ipfixmUjyX73aM/8Un5HOIZG4d4YtHN3EVzp7ub0dlY2lhYlJzo5Ly4Pm+T5XcT6LoHEy 0BG+gVJe9kKnC+jUTHNBUBLbgr/ct2QQ3YcIv9tAUsv9jOLR+8IJweEb9rrPiJqMYmMoBc7x ns8TbcNBNpQykQQZ0znj7H8nqFRAz88OxG3zQJZ78QqEDCGgX4MiIfiRtonlKrTh6E1zaxvm 2suVH2hHMaHgZ6ALtpWRloOYaLBIfSaF14aAlmzXFHj6YrDmDV9OhjB8QUB+eWd+wcUtNpbK ydI1uThSWm5flYqhreOq9xBhhO+OGWjqHX0GinloxduvTGUBnJEzYpZdrmPtYh7YaY8y9Rq7 lHL1yrJX5EMskcARy6jkMWE7q2JiKIzDV7JQd3M1eG/wMhE8yOy05pU0kUxzjv8xh8idcbGA njzHeQ1k1PZas5ROvBwvNmui2Epn3YQ2uVy5mNC/z+/Wn9Z2RIWzwCas+cN7fWTJ6zhlfnzx mJjgMzJe02QfecHATqsHjs2kzN0Fft6DXxglZc0HXn/YWMprB75GC95xn2utDbIy0DzEmJPQ gih2vt2XdEQN36EStVRh7hIi74eWZ9p3YZIQFFca7J7BAm4xXvMpw/3WjXkVdG3z0F0EtHeF y7Fk9u0phsNYa4ASztu7zyd0xWiB7a+xHuuTCdt2UvudUh8xMYXWt25MQEtXkvKuus9RXfsF 10X5HmjuTM3KIysb8ZzJkdqA2QP9+M9NRm/+XzmJLrfntqW+6DVERJah2aCVXih5Mo1n5p2m 7MZkVB+LES16m8vXnCj8yVq4zHQJG6otoC/B0l2W88f9PQxOjCl13ezju/f5xJ7Z/enQjuhP eSf2saQ6YmI+PSruqd+9Uuak/KuXHdm5X2x3bjuWloGpdLTNW+hzx2kDmu+kmrX4tQWz9P+L gHbru6/7CNHL7yIqDVvZaTMm02XpZY87K0njRyU8pBJ63UpS6+t6Hi/3erFlvQvYUG0BPd37 zFujlu1J5KD3znJ57kDFIOdBJdXuLtLPCvQJfF4SF9Y63ftkYhIgqfN8ZcREnlG0BhH3Dr8h knane7/gOhKLpdxxB5VbvOU+d+R8FvJdBfQipPf4+6DhwGUXAr0sfWNEQCCXgHpV5hmSVrnd w3FMPq2X1QcMVCGBY2+GChuPw0Fgk8AjJ/O8nJHKVIN3HwRSstB9tBitAIH1DrCf7DMG5SAC xCs5D2oJLptLoJP97LnNx3EgwBBwBLSdfbZFsn0Obq80iIMACIAACIAACIAACIDAlQkwX0y5 ctfRNxAAARAAARAAARAAARBIJ/A/v/41myCZKCIAAAAASUVORK5CYII=</item> <item item-id="573">iVBORw0KGgoAAAANSUhEUgAAAQEAAAAVCAYAAABG3FvEAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAARKSURBVHhe7ZrbseMgDIZdl3tIG65j C8iDq0kdec2kgrylAy93CxAWFxv7TJSZM7sJYOBD/JLAw8IfJsAEfprA8NOz58kzASawsAiw ETCBHyfQTQTe7/ePoy6fPjMrZ1bSgvlqWoeIwGMalulhl+O9zOOwjLMVgccyDePivpasWo+6 j2kZhmlxww/7pMorx9iNmRr/oP7WNakcdE0zih9VXtOnaNOHr7RtaPuVg+3cbHcReM/jMqwK IKYTioD8aV7GcRYlF/xQRkiVV0ypJzO5Gfz1qRhwSxOKH1Ve0Xc/viwCUm+FEkIvqgXAeh5o fNIYT/FEkRHphdNjFBHKHEYCheUPIXBbkQTafx9mSgDcXDeinYqNlm5SyI/if2G+2v5FJDBL G7Cse3H2I2+3zhnOdtdIIFZcOTAkEpA/S8XfHKAGeqxQYKmKXDy7cK3l9G7alxnd3y6RgFg7 L9hLdtvKj2pPz7cvXyt468ZX/Rc5BWRO1bxl0C36J4TAicDz+QReYvUY9/t9HZUM453ChblP YrOnRECp5slnA1joCX+rKE8uumIXeoX+zGIRAJ46w2soY8g1ygp+yjlYTkj7iO+lbBJLB8Lf OvM2+y8SbWCPSgS+368SACkE8u92u7n/fz4fIwLBplUPgZs4lQ9tG3qOR/HDWBjStuW3qEoC OK3lTj3dYVwoAscxS/lIXwT02tg1wL1mvWdq5Ue11+E3sMGONonzxRwbtP8OvIGTXlO/IKIO 7NGJgBQC+5GN49RVKHSwY/0T15RnL/V2dIiXW4MSD8rIWsu10zRnDWguuzMz4xW3hNUXgeAM B41WNG2KJbYmrfyo9ipq6GmTJF9KBE7gHSwMZo/Rbn+9XioqoD/hhI/zajUGSI9fh7VRvtaY DqDPlINBN9hxzLIigeiWJjNFOzEdSPLVUhWkmL35EunAGbxThhCmA7CePRvY3kSYdy/1+JkG l7WbayuZ2wvnTcKDndZyMK4rnglEh7OZa5IrAiYfXb31gXzRs6feNhkfDCoHZs9aevGGZzvK qSFnb1siQEcC6VP7VE6pD3OC/P0StwPKRYNrTOyKsKRc5NdT4mWjRKi9LzNaDL104GjPpIZT wo/in+LbyyYpvkZEVepnzq7ghuzO26Si2As5WyKwOc2qnAh/4nXeE6AWtrA89bJLMt/O9L4m L9/3yjQ/Ry2kcFz1kO+fsskL8cZEYPjnnwNg36W62cg5VT/rhPnKbwy2mm+xCJi7XOqa5BBm frictXatfFrbQ76kAOjOsuZ1CN9wshfiHYqA3NBwU6e+uysHU19+l7br1/evQeI1z/d8rfZy SvsKEbAhc1oHjmRWcW99CljTKeDr0szgWizmeCWbvAhvTAQkYisErf+eaSPcNxNgAmUEhpwI wD4yJ2Io655rMwEmcDYBTwRgNAA3PhwkdXZw9oS4fybABMoI5LwVVPZErs0EmMCfIvAf2Idy whVSVI8AAAAASUVORK5CYII=</item> <item item-id="574">iVBORw0KGgoAAAANSUhEUgAAAbkAAAAnCAYAAACSTzavAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAf4SURBVHhe7Z3bdesqEIZdl3vYbaiO U0AeXI3ryGuWK8hbOtARSMhcNcAAwuj3Wll7J7ox3wz8MIB8m/EBARAAARAAgUEJ3Aa1C2aB AAiAAAiAwAyRQxCAAAiAAAgMSwAiN6xrYRgIgAAIgABEDjEAAsMQeM2P+22ensMYBENAgE0A IsdGiBuAQA8EVoG73SByPXgDZeiHAESuH1+gJCCQReD1uEtxu92nebrSSO71mO/C7u0HI9is 8Bn+Iojc8C6GgaMTeD0e85qhvFK68jlP+qj1OS1id58fr9G9DftSCUDkUonhfBDolsCFRE6I 2v2xyLr6XMj2buOvz4JB5Pr0C0oFAhkErtzQWyO7DHq4ZEwCELkx/QqrLknguiIn5yWNkd0l AwBGewhA5BAWIDAMgWuK3LrwZtrmJXnOfC7zm5jW4zE89+qlDjzMPTQQuXM9gqeDQEEC1xO5 VeDKLDgR98IKzYLheNatlvnau7YCqZnIvV7oH9k+B5N2teAarMcRuRh/lRzBzct2hAlLM9tV SMaT4mJj2lfaVhG556RvSF0r3ltZxQRxmZ5XFie51PggtUEdz3roPHfNJNMm8jKKJXWcfID/ hNNYV7InE0P5yyrZl+UvuUeuXDvyerwbxfLgcu+4LqZR+wBLpWRzS3PGdVmxIQqqdVqKi5zs XRljflvk1gLcz5okpioqdTzD090zybAp6hKKJXU86iHmSaeyrmBPBoJ6l1SwL9dfovF7N/7c DeGijSozp1cO/ipwetqt6Mi1XEGr3Sk3NtYCLfw2jSkscsIxerC8XzUkA1ITPxGkugOrkRLG 7r2hpee39NjMHlHi8afoQaZUiMZM9LdANO9IJLKkfNE7azK26kV1mzsn+rN7fwWohTrd1htV mr4yzduhYGbBmtpjxU7z2BDas470i4qcq7xy3GilK7dAczZz2gHo9mTSK7YvVSp6fUqkuMfp EpVlQj1P3ysU4E7dIvs4lyV1PV2wtqz55aUtOvMMyj7qOF32tv46KI9oi5wVJ+6+u3X0mNLB 9TxzeVb24hZWiraSPV6sfcSGSnXuIvf9/e0d/n99fb3NkL0LlRqwnR1qVEN/Z/ZK6DokJsLc oNT/lnHcSRn0xIRMJ2m9q9KjvAyWhn881wfTM7Kynxx/lL0qZaLqS2neMfHPOYey79P8dcDC L7Z+gfKKnDceAw/MFrktK5atkBH2lHoXaExsNGg3VbZQitzf358ULyF04uffv3/7/39/f1c6 liPdwAi9ceBY/GJ8Fsq/2ylQ243eDaKaHdzjZzLxVaHjDbHmyrvoih3ZUHJZUtfvxdgrhy1y 9eIvmrVRR+ryjnRL9mmUP6jjvfnrCISwJTx1Qiz+CMZjSZErKXAhe6xBB2PUSMZGIy1Rft1F Tgid+gjxID9O7yU0Mksd4ZFPjj6Bgs097hSkNpOtpxXqGByLnDU3eND7zOlUcFlS1wvWa7mW PLs3v184/nJYG0zr8hY8fAsv7L8FKwvTvu78daxi8tsKDutNIF0peO4CaI1QjuPxXaCc+rRf vfmJXL9A+FMuxNiyCl57PClbc2WjBpgZO63aTUPk9If+/PzIykN9PmEkVyNd6b3nBqslE69/ jtKVzuR64XRxRnqLSlcGWXsFuu1Ijoyt2rypCso9zvWn/vwe/HXAw5vV8K0ZCNWvWulK+bxC 2yRS7JGsGO0DFTuWL2q1m0a6Un+mmpujeoAu/NQRGwNidAW2h/mqN2MuPHlPOqce39Vt+14r OyBbMzEbeiN4nCAvzb8Ra4G8hzm5bUFVMHaq846uBJkncv1p9/xPnkM9ouBbeGI31Pt8lUd0 aogcI10Y1QE+sie0WDA6kqjYadNuOgtPVPljR3I+pQ/N86wLCMwtBLInfDgZX2J1pWwR929M lsLsLFtPOb6kPKajzeSucJRlEhFlxuSx1rA0GVmksKR8ccA60Kg0Z30UW014R8QD65QUf36C vwIwHF+t55lpRlGXAtmCCiK3t5nGZnDeN7/H2VOj3T2j3Sy0hcDN2caPDtrtk2PVcvdiYgVj v0zi54gKE8u/XXJ6qKf4+0De+Z5SquBfYh8UgV78xdwMniJyXMY1ryfn9RgPb95uLj6d1pdt 75Nvt//MeTjf7/rISxzXX8+lzo9atRfoOTEQtrtUd1ZkSqoPJmbqNKpM7aj6n5QsciKTab9x x3PrJvHXkjexArCVHz/YX6zXeo0gcjUFbh0WvztALdrNxR71LlKpbEKgdFEL/b4Pobfz1ftM zfPNpdOeodC5767kVnirIptphdAkcS9MKu6T43L1XZ/RaKr0dHhrSvzogW9SC95uemmNSeam 5RzjP9pfz2UqI/Ml8gOIXCg9GrPFKypUGrebeqdlFzkldiX+jTIaJ4EACPAJeIWlpZDzTejl Dq/lu+TMbyLrpWQoRxoBs8NyixnBqQfEjPjSCoOzQQAEihMovTKveAF7veHSOfi0N9P0ivK0 crnzq4bI6aM4Xdj08lJzd6fZhgeDAAgsBEq+HQNAQeDzCdC7vj/fRlgAAhchAIG7iKNhZgIB iFwCLJwKAt0SiH39U7cGoGAgUIcARK4OV9wVBNoRKPn6p3alxpNAoAkBiFwTzHgICFQigEUm lcDitqMQgMiN4knYcUkCNV7/dEmQMHpYAhC5YV0Lw0AABEAABCByiAEQAAEQAIFhCUDkhnUt DAMBEAABEIDIIQZAAARAAASGJfA/HCLdrvrCWjUAAAAASUVORK5CYII=</item> <item item-id="575" content-encoding="gzip">H4sIAAAAAAAA/+zdCZwU1aHv8QKDS/I0iSQ+jShBRQliK4sbOijKosAQdkEWEQURWWRRFImg XuON0RsTNb4xNy/6yfvkvSQmuXrNYq4i7ntAEBhg2GZfWASne0Zvknmn+vTU1FRVV1d3V3dX nf7V52t7urqqTp+u7j+nTnXXdNGO07Sjjr3hS5qmHZml33YT/32lq5Yo/Y+ut59f3Vd/5Oqv flv7UMz5oMsvuuiP6vP1//cR/+lzPhD/ddFO1mdpz7xyrGadyr6hPdIdAFQjpt+fpD1zuu7Z 0xOFbDzrKtvtn5adLDbu3q5ns1/d/VU9zU2WOyU119qzfW7uW8jumQf5zZzbT0qWzy2LfZrt my3rPf7LeOFnpybybcMp2vb+x+4YefyeSV/bfu2Xy4d+ycWuIZq7ipJcGuJmV0kK2VSdeuPu zy2Xr1uWG8929ezkdqdk8XZK+Y7K8s1cyI3nsuFZ7pTs304bL9Ze7qennDnfaiaceHDBSbsm H9v43WNcHL5GA4DAEhG37jz9oMmcbzLcyhv2A0B4yYhzybcNu/Zs3LXn4917N7X72MlGfbF9 0oZdey3+ttuZfPRDVx9UWL1fsQcAhHfbvbdT9/7OPe/s3PX29t1vbd/lJd/e377T3Xvlzt4u 3+HiLZM3t1m9vlVnLne2fT2AIvPa1h2GpItt2b6unZd8a+9o7dmwe7eUuGuIz/xoV2pe0liG 8LsVVu/stNgFoNi8tXO34c2duyTz3Td26F546522tjYv+ba1qkbYVp2wRarqsNXkk8pqi80m myqrLD6urNbtq9Lpd6s27qsWNkh7qxI6z/loH4AiVC18sLeqw55qXfvd99r9p+d8q2hoEHY3 NAqyvLO+UbKUhR11nZQnt7Wu3tGWGt0nNXWGzTYfVwMoRpuq68XtxvitLAgbTP5WpXvx7fc8 5ltlY5Nhb5O0v51+1/jtw57Gpl3tjJkVDU2CLOw0zd/e0CQZc2TubatrFOWt9fp8mXjGAlvq GgRZ2FzbKIiyLBjkkua75vnmRy0POc6xzExWKYAC2lij+7hOJ8t/fPt9j/lWtd+qsunAvv37 JbGKpbxn/wFR2G1KP1E2bkX0VTTuF0RZxp243R4nyjvicWfknrzdKo6RhfpEWd5+Ut/0SXyO LFjuyoLlrvtDMtOSrQUgmDbXN22q6yBT7k+e861m/4FkzKFnzjpZMHXzOuWbKAhGN09knYi4 nabcE1m3I16Qt+aeXkfi1TclEi9eMDNm2gtG2eUhly0DCAhxECfDzUKm3B/f+cBjvtUfPFi/ /0C7g7Xt7FknVpdlrfMk+nvGrXky+nUy68z9OqNrl26+ueSVMW1NlW+EGxB8MuJ0dTpzvv3q ry97zbdDhzqIrBMOHao7dKjmYIKRG+Y51QcOSnqymW73Hjho9PHkkay4lT06c+JVmPpv4lbY 3nhAdu1kXfK5GQXLXVmwPOr4kHkZl4cABMpWky0mMvF+u+41X/LNHGsGGWuJztuBg0a+7TXN F7EmmbtzMt+0+EGrkWzGAiLiZL5ZUs7Mkn6Wsv0he75ZVgQQQO759ofX3sppvhks+Wb034x8 M/pv5l6cPFbdYRIPtwPb209GeHkFXDKK+AJCzT3fnn/D6/ffvOebUSbfAOSUe755//1CBuNv 2eSbZD4+zTjfAKgqvXw7PfN883J8KqWVb9n33wCoyj3frL/PIt8AhId7vll/n5U835o+PWTW aI47kzobmXVVNuasMzMnnlTRdNBsR7vtAIpP565OwtbOPmncL1h/n+XSf9vfVNfUWNNQL1XX 11c3tKuvr2q3z2SvyZ64XSYVUp1uZ61uR12H7bV1wrbaekfy1/fxH+ADKCKbq+vMNplV1Qob qmo3VidYf5+VPN/2VFft2LN7e8VOaduO7Vu3lwufCOXlm8u3bdZv9cLG8nKLDYZt5R919qHJ +1u3fbBl6/tbynVbde9u0b2zZZvF259sewtAsXpz89Y3Ptlm9uaW8tc/2Sa8saX8zW3bJevv s5Ln26Ytm9/78IM333lbeu3NN1994/V1r7+me2292cuG9a8Kf12/3vBS3F9eXf8nVy+uM7wq /Oe6dS+se9XRf7wCoOj8obPfv7wuQdx99bXnX39T+uPb7738t41e8u3J//OrR3/2vx9+6mnp X5986vuP//TBx58EgIAQoSSi6eH/9bT0o5//QgSXl3wDgJAi3wCoyiXfIgMGAkB4kW8AVEW+ AVCVQ74NOIZ8A6AAPd+GaM+eRr4BUA35BkBV5BsAVZFvAFRFvgFQFfkGQFXkGwBVZZxvbZqG lLLcO1pbm5njTMujAAz034LMEmuOBZINSIZ8CzIjwbwEHQAL8i3IzMHlHmtEHGBHvgVWsuE1 8g3wiHwLMi+pxSgckIxDvnF9pFDh/CmQDNd/A6Aq8g2Aqsg3AKoi3wCoinwDoKqM863wv+0M gyz3Tsrfn9rvhk6SX9Oikzy8kYyZBX9L+Ij+W5BZ3o3JCo53AYP3N5Ji7yLyLcgsPTTzzAj5 Bs+8v5EUexeRb0Hm+MZzLCj2toS/PL6RIuQb8sVxzCRC/w1pSuuNpNi7iHwLsrTebIq9M+Ej L+8NewAqgHwLO8d/moHMKPYuIt8AqMqeb+X9uT4SABXIfHuWfAOgHPINgKrINygj2fcc3Muc oFEY+QZlZJBvxJrayDcoI7N8K/jTRu6Qb1BGxv03OnKqIt+gDC/9NJf+G/mmHvINyvByHiFi G3aj86Yw8g3KIKNgQb4h7OzDaPTHIJFvAFRFvgFQFfkGQFX2fOP6SADUIPJt1xDtmdPINwCq Id8AqIp8A6CqIsw3l78C6fK19gy+VeW9IvcVs6krrTZmUFEk+S8F7IuFulHJnoMvjbK/Yjlq lEtFvr/Vc9GodBVbvlle25TzLXO87460Kkq2zSzrsizg/jbzsSL3Z+57XTnaU8kq8vhk0q3L 5U3ib6McX7cc7SmXLWfQqAwUbb55LNtf/3R3emaV+lKXZab9n/IcVeS+zVzUlbdGeZ+TQV2O /zrkolEen3+O6sq4URkg31zKxr+e+c83e70Z1GWZmed8y0+jcrenXGY6Vh3qPZWHRmW/pzJA vrmUk/176ntFGdficcXg5JvvjcrdnvI4U409ldlLl+c9lYFiy7eI6S3k+OnTOo8MpFzLl4os D0XS3+MuddlbZMzxt1GOFTm2zt+6crqnXLbj2MZs6rK/AXK0p5K9YrnYUy5bzqBR6SrOfEuW LfZPjfkNlu6O8FiRcddxZpZ1GY+6V519o9wrymmjcrenXCrKuLp03xW+7yn397m/e8r3z1S6 ijDfABQJ8g2AqpzyjeuHAFCBzLfO1w8h3wCogHwDoKrizLe2XJ6ysXj4iZ8qVhGNCktFqjbK O/JNmbpoVFjqolF5Q74pUxeNCktdNCpvyDdl6qJRYamLRuUN+ZZrSg6A0KhQVKRqo7wj35Sp i0aFpS4alTfkWwDXCvjTo1FheXrBfylyjXwL4FoBf3o0KixPL/gvRa6RbwFcK+BPj0aF5enl cy3G34Ij4G+VgD89GhWWpxf8lyLXijbfmJiY/J0K/rkuYL55v3CffQGPKxJfTEwFnAqeZo75 VjFEeyZf+eYeVvYFPMZjWs8kzzv94Sd+qlhF+ayLRoWlrsCOv+Ui3xyvTW2OqWQJ5phpXlbM IN8K/uIDyKlC9d8i5BuAHCPfAKgqD/nmeL7AMuDmsoB5O+4repTnfFPyB4A0KhQVqdoo7/Lc f4ukf/402fyM/7gY/TegSOQt34KDfAOKBPkGQFXkW64pOQBCo0JRkaqN8o58A6Aq8g2Aqsg3 AKoi33JNyQEQGhWKilRtlHfkGwBV6ddHKiHfACiIfAOgqiLJN8crVuWnaiUHQGhUKCpStVHe FUm+mdF/A4oE+QZAVeQbAFWRb7mm5AAIjQpFRao2yjvyDYCqyDcAqiLfAKiKfMs1JQdAaFQo KlK1Ud6RbwBURb4BUFUi304j3wCohnzLNSUHQGhUKCpStVHekW8AVEW+AVAV+QZAVeRbrik5 AEKjQlGRqo3yLv/5prW1SY53HRfwuKLBfilLx8m+XyhTppx9OTgK2H+zh1XElmbmhc3zky3m BcenQJHIT745ppBjgjlmmr2c7CEvyDegSBSk/2b0wYoh35QcAKFRoahI1UZ5V6h8sxQi6uYb gEIpbL5FTLFmCT37Ia1lfrLFUiLfgCJR2ONTS9n+aLK1XBZLiXwDigTff8s1JQdAaFQoKlK1 Ud6JfKso0Z7l+kgAlEO+AVAV+QZAVeRbrik5AEKjQlGRqo3yjnwDoCryDYCqyDcAqiLfck3J ARAaFYqKVG2Ud+QbAFUVSb7ZL25JvgHKK5J8MyPfgCJBvuWakgMgNCoUFanaKO/INwCqcsq3 Y8k3AAog3wCoinzLNSUHQGhUKCpStVHekW8AVEW+AVAV+QZAVeRbrik5AEKjQlGRqo3yjnwD oCryDYCqyDcAqiLfck3JARAaFYqKVG2Ud+QbgOy1tWkFfw525BuA7JFvHmnilYoz7iabb77b +aX2NMmFzf1qypQpZ1AWH0SOT72wxFey+ckW84LxtxDVRaNCUVeQ823XEO3Z0wKXb+7lZA95 2xccnwK+CeaRqUS+AcgG+eYd+QaEi8w3LZApF7R8i7TnlX1gzTI/2WIedgfjb6Gpi0YFvC6j 80a+eZTsxKj386ep9gj9N8Af5FvQkG+AL8wjb+RbQJBvgC8C3nmLkG+5x6hOKCqiURkw5xvf fwsI+m9A9oJ/cBoh3wBkhHwLJvINyJLlO73kW3Aw/haiumhUMOuy5xvjbwFB/w3IUigOTiPy +iFDAnT9kLzsGvIN4db+3faCMT8Z8i1QyDcUPB98jJeCI98Kzn5xS8bfnF6lwn9yC5gPIdpT gapL5ltgx9+KId/M4tlW+I9YABV81yCM6L8FCsengI/It0Ah3wC/BDncIuRb7jGqE4qKaFRm jHxj/C0g6L8BfqH/FjTkG+AX8i1oyDfAL+Rb0DD+FqK6aFSQ6zKHG+NvAUH/DfBFwDtvEfIN QKbItwAi3wBfkG8BxPhbiOqiUUGuS+3xN/svGAveHC/ovwG+ULX/FqI0syPfgOwFP9wiWfTf whtx5BuQPbXzrb2N4Us5xt9CVBeNCmxdlnxTb/zN1NI0Us4yWGcfu7Mv4HFFg+PVLO2Tfb9Q pkzZY9nyN2VUzbeMTy7YwypiSzPzwo7VZVA1x6dA9pQ/Ps3y4NQxwRwzzV5O9pAX5BuQPbXz LftkK5J8Y1QnFBXRqLTYw02l49Msv/ZmH1uLqJtvgHpC0XmL+HT+NN2gc4w1S+jZN2iZn2yx lNr0VTRkoOBvVwREWN4MWY6/RTLKGXMepjx/mmx+xr1H+m8ZK3jAkrQBEZZd4Fe+RdI/TiwU xt9CVFeyikIdpArsKfsro9L4W3sbyTcoLqQRmoeXpeDPwQsff79AvgEZCF14hiXcIlwfCVBa iGIzF3z8fRb9N0cFH6oKdV00Kix1qTr+FrENxAUc/TegSJBvAFTF9XsBqIrzC7mm5AAIjQpF Rao2yjvyDYCqiiTfXK5vCUBVfL8XgKr4fVauKTkAQqNCUZGqjfKO74cAUJVf+RaWcIuQb0DR KJLzC2bkG1AkfPx+b8Hb4hHjbyGqi0aFpS71xt8swhJx9N+AIkG+AVAV+QZAVfy+PteUHACh UaGoSNVGecf5UwCqIt8AqIrjUwCqyv739QVvQroYfwtRXTQqLHWpN/4WxnCL0H8DioYv10cK 0cFphHwDioZf10dKGXGWH+Mnu+u4gMcVDfZLWTpOcmFzv5oyZcrZl4Mjb9d/sy9sDyv7ApbV XVb0jvG3ENVFo8JSV5sWxD/6XKh8iyRJMMdM87JiGjuC41PAb+rlWySd65OTb4DClMw378g3 QGFFm2+O5wssA24uC5i3476i1x3B+Ft46qJRYamraPNNyvj8abL5GX8vhf4b4Lsiz7fgIN8A 35FvAUG+Ab4j3wKC8bcQ1UWjQlGXCDf1vt8bUvTfAH8Fs/MWId8AZI18Cw7yDfAX+RYcjL+F qC4aFYq6GH8LDvpvgL9C1H8rJ98ApIN8Cw7yDfAX+Vbg199pyk/VjOqEoiIalY0Qjb8pmW+d 9gX9N8BX9N+Cg3wDfBTYcIuQbwCyQ74FCuNvIaqLRgW/LplvjL8FBP03wEf03wKFfAN8RL4F CvkG+Ih8CxTG30JUF40Kfl2MvwUK/TfAR/TfAoV8A3wUrnzbPuAY8g2AR0HPtxLtGfItZxjV CUVFNCpjQR9/I98AZCTInbcI+QYgC+Rb0JBvgF/It6Bh/C1EddGogNdl5FuRj79p7XkiCpLj XccFPK7Y8Zp7m+z7hTJlymmVyTfJHkT2sIrY0sy+umPKpfVMOD4F/MLxqeSeb8YCjplmLyd7 yNMeId8An5BvkuMRaDHkG6M6oaiIRmWG41Mp2cGmZaZ6+QYojP5bsq6auWw/oWAfWLPMT7ZY 6j1CvgE+Id+kZGdIU54/TTbf5fxpij1CvgE+Id+ChvG3ENVFo4JclzncwjL+xvWRAHgR8M5b hHwDkCnyLYDIN8AX5FsAMf4WorpoVJDrYvwtgOi/Ab6g/xZA5BvgC/ItgMg3wBfkWwAx/hai umhUkOti/C2A6L8BvqD/FhD2i1uSb0A2gh9ukaLJt077hXwDska+BRPjbyGqi0YFti5LvjH+ FhD034Ds0X8LJvINyF5I843rIwFIKSz5tot8yyVGdUJREY1KV1jG38g3AOmi/xZM5BuQPfIt mMg3IHvkWzAx/haiumhUYOti/C2Y6L8BWQpF5y1CvgFIH/kWWOQbkCXyLbAYfwtRXTQqmHXZ 843xt4Cg/wZkif5bYJFvQJbIN0lrazNY5jjedVzA44odL763SS5s7ldTpkzZS1nmW7JlgiMP /TdLdhkFe1jZF/C+oneMv4WoLhoVzLpCPP6Wg+sj2TtjkSQJ5phpXlZMY9dwfApkJ0THp9br I+Xm+m+O8UW+AWFEvlmQb4AyyDeDfWAtYhtws59QsA+spVzR665h/C08ddGoANblGG6BHX/L Q75lc/7U43bS2Dv034AshKXzFsnj8WlwkG9ANsi3INOjTdMAZKzgn2LyzS3fGH8LSV00Kix1 Fe34W9BwfAoUCfINgKrINwCqIt9yTckBEBoViopUbZR35BsAVdnzrZx8A6CERL6dRr4BUE2R 5JvL9S1zTckBEBoViopUbZR3RZJvZvTfgCJBvgFQFfkGQFXkW64pOQBCo0JRkaqN8o58A6Aq 8g2Aqsg3AKoi33JNyQEQGhWKilRtlHfkGwBVkW8AVEW+AVCVU74dQ775SMkBEBoViopUbZR3 It92lWjPnk6+AVAN+QZAVeQbAFWRb7mm5AAIjQpFRao2yrtc55vW1mawzHG867iAxxUN9ktZ 2ifH/UKZMuXsy8GRh/6bYwRF2gPKUrbPsWzEMeUK/jICCKD8HJ86RpBjgjlmmr2c7CEAMORt /M3xCJR8A5A7hcq3ZDPJNwB+ydv4m3tw2U8o2AfWLPOTLQYAUn7yzeUMacrzp8nmu5w/BYBI UX7/DUCRIN8AqMop3xS/PhKAIqFfH2mI9mwxXf8NQJEg3wCoinwDoCryDYCqyDcAqiLfAKiK fEOo8QMWuCDfEGrkG1yQbwg18g0uyDdILpdZdpzpeA15+wIpr4HgsmSyzUaSXEbG5apZxGBx It8gec+3lJfyc9maZRmPG7fXlayccl0UFfINksd8S5ZImeWb+0yXbabMVfINEed84/ohxSjP +ealOvs27fFFvsGFnm8l2jNcH6noZZlvEddoyqy6DIb+yDeYkW+QXAb5vRwn2svu5xcyHqCz rO4yFudYRlEh3yDZ08k833520nvupazOfRnHqh2X8TIfRYV8g+TLAV2yw0MvNea0OShO5Bsk lz5SBhvx5fshfjUHRYt8g5RyxMzjRtLdmi/1ujwTFDPyDf4KSLAE5GmgsMg3AKoi3wCoinwD oCryDYCqyDcAqnLJt/KG/QAQXuQbAFWRbwBURb4BUBX5BkBV5BsAVeU538r+33NtbW0Fb7UC eCWBlMi3kOKVBFIi30KKVxJIiXwLKV5JIKVQ5Jtmmwr+uhVcZq8kUFTSzbcyz5Pz6ml+KmWa rV+/XtyuXasz7hZJyp0/eLGQ/SsJFKG08m1eOpNjxJUl/1SuteWVmNMWn9bqk2ayVs53aVfZ QM0jH1/MZFmU8RMTWztzwk/INyAz3vNNRNa7W7Z5lCziytLvvyXLN/f+W9nARDaK6YW33inT tIEDB7ZVf3jwwzIzH/PNJYuSPTH3yX2D7q+keNkK/tYCCi7dfNNEUpRpiXL8jmPuyXATt5aN lDl9KmXPLdmtMeZmHJ96OTjNc755DLdyz/lmbFCUHZ+k4yspiXCTyp2GLhnGRPGw59v2/se6 59u8tkSmfanHe0L2+ZbSWnOu6UG3NuUq9hjRs7iszBJxvuSb93BzfGIvvvjiQNMkw236b/4s wy3dfDMlm0y5pHFKvkF5iXw7zWu+eT8+TTffHMffUs5JxhojZZpjxGWfb0YWZfbExEskM82Y xF1zuGWQb+ayjLe1nSfyDUUirXxL9/yCX/23DHSKkTLNKFgiznu+iV6WuXXibnn64WZ5YmIj V111lXxBLBHXKZvTPD41MyKO/huKULH030wpJyPOe74ZyWbpd4lpb31dWuFmeWIyx8o7h5s9 4rLLN01G3Pr1682dN/INxcB7vpWbIs7yYbd88M2nUC1bKCts/62t40DVe765NzabJ5affItH mUMvjnyD8tLKt3LTUarLR948WVYvS//8abJbd86nKc1BFz9ETZlvsvNmpJBxCsBorDxQ9c6e b5bJqMjHfIt/I9rahSPfoLx0802SH3n7mFtbqi5NWUH6b5Zka2sTyeYx3yxJbsm3lO11f2J5 yzfHiXyD8rLJN8cp43zL+fibLdzSyreBtin7fDPOL9jDTTzkV77x/TcUrWLpv5mSLa3vh+Q0 3+TqlogTdy3/fJBvQGaKpP9mT7Z0882cct7bm/KJtdm+32vuuWWWb+6ZRr6hePjSf2vr3Jdz WbEsj/03e4/LPnk/v2DJt/L4gWSW5xc8Thnkm7GuJdDMmyXfoDy/+m/GnAzybW1uzp/6df2Q 3H0/JHf5Rv8NKPc730Tfxr26shBe1cfl+73pdt7KPXcsU3Yyw/hKAnmWcb45TimrK8vX+Jvv HH+flQHvHUv3TqbLKwlAsufbjkHHBe365Coh34C8Id9CilcSSIl8CyleSSAl8i2keCWBlMi3 kOKVBFJyybd0v6bFxMTEFKgpz/03AMgb8g2Aqsg3AKoi3wCoKq18y8UPtIPzo+8gPAcAPqL/ BkBV6fbfHOcY8zPu/5hXcdlasnJa2zfPNG8/2XNI9qwscwq+KwFYOOXbMZnlW8bh47iue9qk W0WyZ+69xmTLkGxAYIl823GZ9utePudbWuydQI91ea+RfAOKkL/5ltkQfbJ8s2wtCPlmeWJp PQcAeZZuvqXMHGNJ788hZf/NcYG0akn2zC3bd48196cNIGh87L+VZ3R+wT3H0s0cL7WYZ9q3 b+k9lnfOPce10m0ygPzIMt/c53uRca8v41rCsmUAWfLx+DQzLv03H9mfuY9bLvhOBOAorXxL hs84gADyJd8AIIDINwCqIt8AqIp8A6Aq8g2Aqsg3AKqy5tu3tL2XxY3WNlwtddk4LG5416SG JZYRC8vljQJyrX03IXe6IMdyte9ElFVEtNcGaD/5pjXfPizRFzCSrXyUJlWUdpH2jtOqSrXK cQn7JnaUJfEoEHZ7RyCXRmtVo50fqrhaq7gyriRhx5D2u1cmyDnidvtgXfkl8dsL9YK4FVHW eImebz809d+aRsf37CStdqquaaq2f4Z2cLZ25Abt8NyjpOb5Hb4QFnSx+Mdc7fObu+hma8id vyPHCr6LFTcj/iLP0FqnadHrtc+marHrtJapOlFonqw1j2+/lYV2n47XDo3Rb+Wjn43RHRpp 5ZhvB6dqR6Ynbg/PPkqI3ZiIss8XHC39fWHCf992lN0/F3QVvpDph5wR/44Afvnved2afzYv 3T+j/PcDNWItsW6WGzlSNq/lxm4y9FpmdjvyZPob2V/z6U/mHR7bTWZd4whrvlWa8i06u4uI tc/ndhVksok0+8eSY3TLEv659GhD27KjEhYnyJTL0gMnf1nwZVMAXER/Pu/wjo1vTOnzpyuO f2XY1/9r+IkvDf/GS8NOfHl491dGdF83/Gvrhx//2vAvvzHs2PVDj15/xVFvXNFl3WXaS2N7 HijfINbNfiMiGEVCih5dc9m8jVsP9hn2x+PP/dXXL3juxP6//caAX594wa+7D3iu+4Dffa3/ 74+/4PkvR1449rwXj+77/FF9nu9yzovaWb/veflzGz5pFBEne3T2/puRbyLcZL7JfoIl2f65 wiZJxGUrPol8822Dain4JwIqEZ2oPbP67Plu9z2TT628vte+Gb33zjx734yzKmedWTmrV+Ws 02tuOLVm1km1M7vXTD+hdupxtZO+VDm2y+bh2l/G9hSfU182IvNNbKTPtR91v+TDU4d82GvY ht4jN5w9csNZIzacOXJjrxEfnz5806nDt5x01ZbuV249oWTLcZdu/dKFW7pc8LHW9/Wel/9W bMRLvsnOmwg3cbz5xRI932SIOeRb8nDL8gU38q3gux5QnvisHRh3wqHpPT69qc+n888/fNvA wwsHHVnY/8ii/keWRI7c3vez23t/tqRn86JTmhd0b553/Gezj/n0+q6VpdpLgzUj37LciBz2 FIUTLi7vcfXOPmN2nT9h98DJewZdt7f/5L39p+yNTNnXd3Jl74nVPcdVnzKmpvs1NcdfXXPM kOqul+zVzv9YO/M3Yl1jOE7mmzx/uqmn6fj0Bj3iRL6tXbtWSzUl8k0G2sIuOtOLJg8wDZb5 7ksa+ea+esqHHBdI9gQK/jZDcBR8TCyf9GSY8o3mOb2bb+vfvPTS6IqS2IqS6B2XRe+8NLry 4thdA1ru6teysnfLnT1blp3SuvjrLfO/0jy7W+3ErutKusiuV/YbkacbROEbl+/qPXpv/0n7 Lp1eVTKruuSG6stmVV86q+biWTUDZtb2m17X+7r6npMaThnX8PVRDV8ZVt+tpLrrwK1dzv6D zDdj/O3t/ol823qmfn6hbrR+zlTmm+jCiXwTy2vxnHG8lQFodNWM86f/iJ9CtQwAygAx5suy ZF/S4+qWTcm79m1a1rXMtKwISAU/gZtPejJMO7l5fqR56eDoyqvanKbW1X1bV53VuvK01uXf bF14QvNNx9VN6fbqFV3NXa+UG+m0wc4bkedSReHkK3dHxu8bPKPqqjnVL77WLOZcPbd26Nza kptrL5lTN2B2fd8ZDWdNaxTzn/1L7IRrGo67sqbbRdu6nvMfYo48eVo/VM+3d/t1yjcRek3j 9XyTEafHV/xpJLvVF4hHnH4OIn4yIvHemK0lEqP9XHBHEHUuuzzke9nLwkBx0qNp5unNiy+K 3nlV9J5rHeOo5Xvnta7q3bry9Nbl/7Nl0dfFAWbdtK+sH3q08Um3b6Tl3lGxe6+JrRkeWzs0 tuayljUXGhvRH+28kc+m6l/5EIXTh++5aGqlCLdrb6kxah8+v3boLXWX3Vx34Zz682Y1GvNF F+74YbVfuWzb0ec+L/NN5JjIN3FAaj4+FflWLTp1k/XvvMmIM/pvyQ5U18YnURDJJvp7kghG IzHkqQrLHMujyR7yvexl4TC5XgP8oseLOK5cXhK955rY2rHO+bb6vNa7z25Z+e2W5ae0LDmp +dbu9TO/9uow/ZOVbCOx+8bG1o6OrRkZW3NVbM3lLWsuMjaib7DzRg5P1g7H800cnJbMqrrm lpqxC2vHLao1nsBV8+sun1t30Zx6Y444RD1pTH33kdVfu6L8y+fp+SaSTYZbRUT7c9+OfKso 0fOtZnLia70y34x+2vr160XUWW7b400zks1opkyMI9M1yTzH8qhx1xxBLqtkXPayMGAQ3Yni IT4CzfPOjd41LLZmbOz+CbEHJsbuH99yX2lsjeh9XR27tyS2+sKWVee1rDy7ZUWvlqWntiw+ uXnByXU3nLR+5Ffb4l0v+0b0fEu+ET3fOm/kcPy7u6Jw7nf3DbupeuxttROW1E1cUjd+cUfE lcytk4XDzf/oNan+1HH1J5fWnTyq+qSrtn21/wsy3/Zdmfh9lpFv735b/12Dnm/jO362YO6/ 2cNN3Br9N/lNYPmuODi1IzFE2bgrJvNd+ai8bes8mWf6WPayMFCc9Gi6bUD0e6NjD0xq+Zcp LQ9M1lNubWnse9fEVl8VW3V57K5BsTvPa1l+dsvSXrElPWKLejQv6FF7Y49XrznR/NE2bySe b0k3oj/aeSNN4/XxMVEYMKly9K01k26vm7K0bvLt9SLlShd2RJyczp5c12tCXY+xtT1Ka3uM qeoxYuuJA/Xxt8r470zLL9TH3ES+ye+HmPOtsb0L573/tn/mUQkz9HWNxGiK/8jLwhw4xjLm /ptlsYznW5ZJuaLjsw0ssZsAv+jRtPji2H3jWx68ruX708Rt7L4JsXtLY/eMjN09NLrysuiK QbFl/WJLzo4tOiN22+mxBT0/W9Crdk6vddeeJNZ13IieYMk3oj/aeSMi3Gri+XbxtKrxi+qu W1Y/bXn9dUvrJiyuLV1QO9I0FtfvupqzJ9acMa7m9NKanqU1vcZW9rp260kX/kE8JI5D5Q9R N35He+7sRL69/C1t00X671Urx+m/PK2fpjXMSKP/Zg63+mkdiZHslTSmZHMsM1POz2CblpnJ ni1QDPRoWnZ57KFpLQ/PbPnBTJFOsfsmxu4dG101MnrX0OiKwdFlg6JL+kUXnhNbcGbs1m9H 559x5NbetXN6rxt9Sqd8M20knm9JNyIetWxEXtZAFC6fWTVtRf3MlfUz76yftkwcotaOva2m rfN0zvjqM79b/e0xVWeUVvX+7r7eo7accrGeb/L39SLNRL6J/tv3TuiUbxWj9AitmazHVLr9 NxGJYi1zvgliU5LlbsaMjXucn/EGgeKhp83dI1oemd366JyWH85ueWh6y/2TYqvHxu4aGV0x NLp0cPPiQdHbzove2id6y1nReWdEb+l9ZP53qm/6ziujTxXrOm5E3HXZiL5w543olxMZrW9k xNya2avq56yuF7fTV9RPWlxnxNrgGVVG+azSyjNGV/YurfzOuL3fGfPJqZf+3sg3EW7imFT0 3+z5VjVJf6oy39q89d8aZnaVySbIa4+YI844HvRrR7jkm48bBIqHjKbWn8xvfXxB64/mtvxg VssD18XuHRe7e1T0jqujS0v0b33cdn701nOjt/SJzjsnOr/vkVv7Vc/p+8qYHpZ8MzbSlmqy bES/JlV7vs2/r2HBA41z722YtbLjbOnVN1aXzKy+aGpHxJ0ztrLvuMp+4/f2Ld3c49LfyXyT nTdLvn1wsbbpMj3f9k3Un2rd9Zrstsl+2nqnyei/iYUlGW5GY82TjzvCx63lYoNQxPgiIj4C sXtLW59a3Fp2u55Oj8xp+f70lrWTYveUxlaOjC67MrpkcPOiQc23XdB8q+iA9Yveet6RWyM1 N/V7ecxp+sfHaSOp863zRox8K11Qu/ihptsfbhIRZyxcOr9m5M3VV95QPXh61aAplcb88yZU Ribs6Ve6+bTBer6JcBPe7afn26/OSuTbb0/Wf8uw6Qr9Opb65SsnJfJNfvjbu3AOkww4x3wD EBZt8XOdrb+4u/XZ1a1lS1t/fIt+lPpgfBTuntLoyhHR5UObRcQtvqR54aDmhQOab+t/+NYL que055vTRlLmm2UjRr5NWFJ394/3r358/9KHm17/MCbm6KNwi+pExI24uXpoPOIumab34p77 62f9J1deMHFPv7EO+Wb03xzzTZ5iMH+bN9mvUMk3INT0aPr+1M9/84PPf/do6y/X6BH3+IKW f7u55eFZ+rmG+yfF1o6Prh4dXT0qetew6B1XNC8bfGThoKob+/7XNSd3yrcsNmLk29QV9T/4 +cFHnz205skDS+O9uJu/1zDrrvppy+smLakbv6h29PyaUfNrht1UfcXs6sEzRHdub98xm06+ 6DmXfHttgH5l8m0jtR0TtT3Xa9Uir2ZpDbO0xhu7GJpuPEoWGmZ21W/jC+hmdMo3Ii4PxL9B yKl9E4uISIaWx+Z+/uJTX/z5aRFQrc+san16WeuTi1p/Mr/lR3Nb/m1Oy6M3tjw8M/bQtNgD E2L3jomuvPrI4ourbujz0ohvinV92YjoWcl8m7um4alff/r0c4dFyq368f5lP2xa9GDj/Psa 5t5bP2d1w433NMxcWT9tRf2EJbVjFtRcfVP1xdP29Rm16ZsD9euHfHCxPtRmPz6V+bZxeFeR b+aI03NsTuK2aW4XIRFxcqYp3Mz5VvA3J5ClgmdOnvOt9d/v/PwPj33+whOt//fB1n+/o/Wp xS0ilx6bp+fSIze0/HBW7F+nxR6cErt/XHT1taL3deS2AVUzznxrxgX/vb/Gl43o+TZO38id j+5/7JeHnvjVpw8+ffCOR5sWPyTCrXHemgYRbjfcXT/r7vppd9RPWVY3bnHttfNrRBduwOS9 Z47YeMHoP33eWCPCTRyKinx76YyOfBMFkW/vD9U2juliyTeRY0aymcn5MuLqJI5S6b8ppOCZ k0/1j8/7R01F69PLWx6ZHfuXybF7S6OrrtF/Ji8OJJcP0S29TGheOFC34ILmm/scmtlz7y2D juzcJNb1ZSOV8XyrfWxexb4vlv+wafY9DZOX1pUuqL1mXs1VN1aLo9EhN+gum1ElDJxSKVww sbJP6d6ewysGTdy4qfzQ7ofmiXATRJqZ803ctefbniT5duAWzWBkXcfhqu1YFUDA1Uzr1vjk PNGJSnlSwDKJtcS62W7kiXmVU7qJf1NExO2Z0E1E3BdNaW9EhNuHg7vJ/ptIsz/31cffnvlm It8qRmkfjdZkuDnmm5FpR27tYMm6g7M1af8M5FYDEHLGEZ/50E8em8gOoTxiTfxl0lGaVG6y baRu89W6TVfoI2ySSDnZZ5P5Vt3UJDpvIt9krJnDTSbb4YVdpejio5IRj5r/eqDxJwUBIKX9 N+nkScyGmV0F+2CXZfSgIwBNcScKIu5ExP32ZD3ZjHwTnUPRc7MchMpM+2LJUf9cccw/lmvy 7yzIsvwTDHKmLCRmxv9SQ8cfZQBCKHG9feSGfIVlesjokL5YoP9xBNlBis7uol9r9/r4FSmn J/70lSibjxPlH2hunJy47oQ8uhEBKCJOv+Zbe74JG8fosdl8y9Ei00RMta3qrrv/W7of9NI9 ek7bY+d2eKJ/gnkmAKQkwkQy333wzARRlpljEDPNd2UuGWRYreou/9jfZ1P1X2PJWDPyTUac ICJO74AZ4SareyQeZT8erHuyRPfUFUnJBZA7Li8+fFHwXaw8+wsus8W4TUZkkYVMxVXd/77w 6E1X6KcYjEwz55v00WhNBp1xPCuJQ11xzCu/N9Lx7bhZiR87yJOnUsEvj6a8gl8RUXnGJSOQ C5Y3s/UdHr/WZU38tm504key+h/AGq//mT9RqBqtX69SqIrf1R8arf/lBRFuljQT+XZU/GdW /x8AAP//AwCF07StEL4IAA==</item> <item item-id="576">iVBORw0KGgoAAAANSUhEUgAAAaEAAAHNCAYAAAC3nsTjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEuhSURBVHhe7Z0JvB1Fne9PQEjUD44a zSMDBJFVBCQBRcGw7yHIFhAhbErEyCKLG+rIjOM4MjDjxvhw3ryBz7yP76koo8M44wxCEEFF nLBlJSHbvbk3C0EgG47O/1V1n7q3Tt/eu8/p6j7fm0/lnNNLdfW/fvX/9r+qursl/GEBLIAF sAAWqMgCLX3cDRsGxqTWjN/IuDOe8FLrlEV+On3xaDprpbTOXSWtDwxI65Khkc9xl69Xv9ep 32rZxepTf9efJr1/g7RIDbTBJnVOpMbZ4MJhaZGaZYMx/le32xC/fLZa5qVB/3OG8uned5W8 73pZe/mMNdI6WbFAJ/1dr/eSWn+yYsIxT4VyRvNnDIQMeHb+8GYZf8MfZOLNIn/8Z37a+4si +98uMvU2lb4hcuRX/TT9Dj8d883kZLblc9RuTbBFmrpnm+T24ZqNmqBNzmGsrwnTmbaT8ef2 p/HzUZ8eD0KS5oVOmiE7X/17D0StqY92wGgMhDSAdpi9TjSAdrj6RRl/0397Gdgg2uvLIjpp GL39K51Jg8mk4Dp+j7UXNsEmaAAN9FoD2nebZI5tfhtwmIDD+Hv7U68LLjeBiv1p2KE/x1/3 By+13v+ytI4ajYo6INQ67jFpnbVadbEtlXFXbvBS68PPjyQNpR2v3SI7Xvc7D06tG/8gO94g XjK/9ae9znzX2+rvO1+v1qvoyuzHp28/EjZwVQPjrv5vITXLBlpruk6ND9efdho393eyw5Wv yI5XbZYdr3xRxl22RVqXvqSGWNqfF73kLRtZfpnqzjPp4o3+d739LNUNZ7r59HKdzlNddSc8 La3py7yIaCyE1DhQ6wMrOpMe77li3QiUNIxM8qCUkDx46ZOxkzoxfXIkbIAG0AAacEQDH9wo O+p0uQpC1Ni+7hXTyRvff/9aP81S40EmaaCYpOcH6KTnCqg0buYyNX9AJzWPwJ5ToAF0xK+l tev3OiHUmvaQv4OGkIqERpIBUhtENoxGoqSPKOLZyYqe9DZeRBUkpaEin/7VQSNSYAKKPRmF 752Tc7AH9qhaAxosYcmARsMlBCyjcLEgY09YM8DRsNFJjwNNf3w0aQBp3uj05rtGI6GRhapL zpsNZ0AUASHTXRfssjPQ8Zbr6MnMlDMz5MxJG6ryOXqFgS2wBRpolAZ2unBQ5tyxXgY3/lfh yc86H52fiUhKzfsbKu/z1VCMBo8aktnpnBUy5ytrZXDD74qX+0vPyU5HKghp+KhJCR5rDvxX ae13TwBC+3zbXxkKofYUbAUVEwnZEBoZPzLrR8CjSOtN3bZSWEhnh3d87wx362QPOzTn+2g3 Rd1tYa6G+RyNDFLaYs7Xh2XZ4B/kxm9tl8tu2yaz/nyrzPyTrXLqzVvk+E9skRM/tUWOvtFP R13vp8Ou3uylQ+dulgM+tFn2nP2CHP7hlfLUsy+Jzs9EJ13JW88JUF1pGkC/W6XGbP7qRln3 mctk6PpZsnbuTBmcc6oMXH68DHzwRBm49Ggvrbn4KC+tPv8wP517qKyceYAsO2lPeeLcw+WF xU/JHAUiD0AGQm/9ibQ0c173OSsSUv1zHoRU2LTDScFIyIeQF9WY6KY9RuQBSC3vWBeMeuz+ RA2hujdKyk8d9pMGUjrcka4bth8Bhfawn/hf2+Ur974i3/jRK/LF/7tdPq5+X/vN7XLV17Yp Z79NrvjrbXKpAtQlf7VNLvzLrXL+F7fKWX+2VU777BY55uNbZNpHX5K9L14jh178iBdRGTt3 Je/2eI7Oe+Ptn5AX/vEr8ttvf0M2feuLsuH2j8v6L10r6//0Kln3+Tmy7rNXyPCnL1XpEhn+ +IUydMP5svbas2TwqtNk4LJjZOWsafLEyXvLj2ccKoPrXxmNhA76pbSSIOQNIunuOK8rrh0F KbAY2JhPM3hlBrA6ut7iut/qdHVPWdNHZv3kmPvpXIFK5gjIBsWVCjTfvO8V+da//k6+/N1X 5Oa7tssNKjK65g4Nou1y5d/4ILr89m0y+1YFoi9tlXO+sFXOUBHTCZ/cIkdc+5IccOkaefPJ P/GjhnZ96O+l560hNGOld5x1n79Sfvudb8qL93xLNv39l2XjV29WkdENsv6L18g6BaLhP7nS A9G6z1wuw5+cLcM3XShrrztHBueeoSKlE2TVhUfIU6cfIN897M1+uXV3nE4aQm9RKTQS0qGS HkTSg0y6MLqhtZ96cMstt0ir1RpJwd/2upHvdMOld+DADluhgcZpQDvf9//FVg8+t3//Ffn8 P26X6+/cLnO/vl0+pMBziYbOX2yT81Tkc/YtW2WGin5OV0l30+ko6MgbNsvhV78kB16+RnY9 9T98Z97WSVfynqmfdOBDaPim93vweeHu2+X5Oz4vG269XtZ/Ya6s+9yHZPhTl8jQjSr6ue48 WXvN2Sr6maHS6X43nYqC1lx8pKw8/3B56owD5Z537eqX+12KLToZCOkxoTHdcREQ0sBpP1jB +/R/R/+NAAoINa5RdUzPxGlSv2ggVgPaS56jAPPpf9gun73bB9CHv6rGh3TX2xe3ybl/qsaI PrNVTlYRz3FqXOjI6zbLu6/V4Nks01Sa+lE1NvSRF+WgKwZkjzPuHwOhYN6xjjmwMjRvC0JD KqrZ+NVPy8avf9YD0NbHf+blMHSDgs815yrozJSBD52sxoWOkzUXHSlrLny3t/7lf79HVs+a KivU2NDTZx4k3z9yj5QQ+uP7/VBJ3cnqTdXWIZ8WmAKJhsq8efO8ZH83y+xPD0AmaoqBUJix uu3gzDG7fRydfy+P1Yvz4RjWvRH95njNs8L4HH1uWkpbaD+gJyLoMaCPtSOgK27bLhfp6OeW bR6ATvnkVjn2Bg2gLXL4NQo6CjwHf2SzHPSRLepzixyibn856IODoxBqHzss7ywQCs3bgpCe iLBBjQFtuPVjXgRk//kAOkUB6FgPQKtV1GP/rT7nYFlxziHy9MwYCI3pjtMQ0qHSse2537or Tjc29eDC0cjHj4L0w+Y0eMI+9XoTCXk3OdkPPmzPjDOFfc2uXxCTeuG07eOGOdUyy5B0LJx6 Hzv1foNYH5+v9gMnf3qLN/aju+Cu/JvtcsmXt8kFX9gmZyk4nf5pNe6jut2mq1lx71IR0Ds+ ukXersBzwIe3yP5ztsiBV21RMFLdcSoS2v2Mn46JhIJ5Z4FQaN4WhAavPNkb+/G64NT4z/An L+nIfuDyE2Rg9nRZ8/53dQLozP1l9VkHysqzD1IQOlC+/57d/XK/Ww3zaMa8TU1802NCY7rj ghDStO2AkPec05FIKApEdiS042x1561K3tOz2zAKAsh2xgZI3XLQSWBIWp+lXGXmleW4bAvc 0IA7GjAQ0tOzr7jd74a76Et6DGibnPlZFQV9aqscd5OKghSEDlcQOlhB6AAFoX0UhN6qILSv +nzbVS/J2z44ILvNCIeQnbc+Xpq89XaheXtPv/bHhDSEhm++TIb1LDj9edNFMnTteR3A0WM/ 9t/qmfvI6hlvldUz95WVZ71NnjnjbfKD9+w2CqF3KhClgpCeK66jFg0OBZC8kdAohBSI9POD VH6dzllN+dbPFgpJQaKbbaKW6/Vhf3becevLOF7YsTRYo86R5dH1j22wTRM0oP3Ke9XkAj3j Tc98m62iID0RQY8FnakioVPU/ULHqUkIRyoQHa665A5SXXL7X71F9p67Vd7yka3yVhUJ7asi oX2vWCuTZzzgO/O2vwzLWy9Lk7feLjRvHQmppP/WzH6vN+PNm/n2idneWNDa69RY0EfPDPW1 A2fvLwPv21vWnPEWWTPzrbLqffvKgtP3lXuPmNwJIRMN6RtWOyYm6PBIh0v6XRBeFNR+8Jx6 nIw9McGMCWWJhPxoyAdRB4Ri3ilkb6e/e868vf2YLrz2cnsfvY35M/vlXR92vCx59c27kyIu KJrgTDgHoJhHA9pPHKEinLMVdC5QExE0gPTnOXpCgoaQGhM6TnXJHaUmJhyuQHTQDVtlv+sU fK7ZKlM+ulX2VDDaa+7LspeC0KTTxkIomLc+Xpq89XahebffHeRBSE2xHlIz34ZvuECG9Uy4 6y9Q9wGd49+0+uFTOkA0eMFBMnjufjJ41ltlcOYUlfaU1WfuJQtP20vufeckH0LqgaWtI5dI y0RDujtu4l/567z/ghDSjr39NNTckdBl6qF8KrXUE1e9pF541gkh/wVo9p95IVhwOx9CndsG t+nl76zHatyLznh5HS/wQwOJGtB+YpqaaDDjc1vkPHXvz/l/rp6aoMaD9Ky2mWpK9qmf2yrH q2659968VQ5XXXMHf0JB6MZtstf122R3BaPdFYx2V09O2P3ytfLGUx/0HXbb7mF5exBKkbfe LjTv9kvs9PrV502TwY/MkKGPnacAdL4Mf2yWmpKtIHT1zA6fbX4MzdpPhs7ZS9aeubusnbm7 ioh2l4Un7y7/dNgb/XIfpXrYjlK3/mgI7b3Qf3RPB4T21A+ZU6TSkZAeCzIQUo/jzh0JXb5V PY11q/+4b/0IcJU6nLeBk/oMLg/bzl5mRzoeoFLkkXSMLOuzbDsCYet8Wda+MMEmoxdprtpC v/+FlMsG2k+8fc5m776fMz+vbkJVgDhXwehsDYo/3SanqmUnqDRdRUXvVDA6+OZtst8nFYRu 2ia7KRDteq1KCkKTLh2SPzplXhtCfn2E5a2Xpclbbxea9ywVNJz9Wy/vVe97u3ffz1rV/abh M6S64tZee3YHgIaunD7y+w+bX5Th8/aS4bN2k6GZu8rA6bvKouMnyY+m/pFf7uPU8M6xata1 BtEhijUaQm/+mr/O+09DSK/0IKRCbx0F6fdBjEDI3zTpJtWO2XH6fRRtEBkY2c7bvI9CfwaX h22XtE0v12c9ln2uTf1uLjT4HL3owhb9bQvtJ/a94mWZfuNmOfUzCkQq+on7O/izCkKf3i5v USCarCKiSddtk4lquvbrZw/La0580HfY1gV9WN5nqq6+Geo4pyi4Ha/Se1V61+e3iZ23zic0 bw0hlfTfyhn7yppLpquut1NV9HOmuin1rI6iD111vAxdqcaNruicHbfurMkyfMYkGThloiw+ 5vXyw4NfMwohDSIdEYVCSIdHHoQUgHRI1gaQdpjBm1X9kviz5YKfPoT8JyvseJX/YiSdxn3I T63LXhk5Ef3dJNup29t4UU57u6Rterk+67Hsc+X7aL1jC2zRZA1oPzFl9sve9Gv9wNLTFIhi IfS5bbLvzdtlyie3y/+4cbu84ZptsouKpF574ZDsfFw7ErL8YVjep/+JirBUZHWSgs9xCkZH qc93aghZeesyhOatI95Zm70irjhpiqxW068Hrjhegei0jmKvveokGfrwcTL0oaMUhN4p6y85 uGP9utPfIGtP3EUWHfVa+eHbd/ZJccoLPl8MiLxXOdiRkIHQDP3yIh9CGkA6grHHhOIAZEdK O14rssPc//aSfkufTq0r1dv7VNIwCvszEwDs9XqZAVjcfnnytEFijmGWBX/b25oyBc/BLr9d Hrv8fB+9IMEW9bBF67LfqwtBUh4baB+x64UvyyHqhZ5HXq9ApCYgxP0d+Nntso+C0B4KQm9W EHrd1dvl1R/crF6zMCQ7HPOg78zbdZE17+BxQ/O+WF0UXbjd2/S5Y3eVVWcf4j2CR4No80P3 ecvXXnmCSsfJ2g9Nl6Er3i3Dl02TdRcfKOsv3Mdbv/Xf7pZ1p75OBo99tSx6107yT/vvMAoh DSINoXcrGOnH94ztjlNh0gwFID3w1YaQjmKSuuCCz43Tr/DWSYNIJ/NqYAMl82nfrGq+29uE LdPro/YLgiJNnlm2ids2qazBc+e3f4FCct8G5uKRT/8iOkvSPulN57+suuT8R/C8R4FoupoF N/0mFaGom1Tfo6KjIxSYpqlJCQd9SkVBqhtuz0+orrgbtskbrt0ur71qm+x02WbZ4dy1Mm56 e3ZcuwxdyVsDToFI/y1/75u8LrlV501VT0V4jwyorrmBS1W65CgZvOQ9Kh0ha2dPk6GLDpLh C/aVdeftKborTkdBwye+Vgam7yQLD9tB7t1vnA+hM1SUZaIhDSH9mLgOCP3xfL+vrg0hEwX5 7xn/nez40f+Sna/7nYy/7g8eYHQaf8MfZPxN6jOQRiCk3mOu32XupTaQzGc3nI8NoW7kT57u O0zqiDpySQPaJ73urOdl94tekAM++Ft5x1W/lcM++qJ6NtyLMlU9mHTqNS/JIdepJyJ8TN0L 9LGXZc/rXpbJ6tE9E9VkBN0NN/6yl2WHD/xW3bujfPOR/lO0zfl1I287ylp8xOvk2RN2l+Vn HCDPnfMOWTHrMFl5weHqFQ1T1cNJp8qq8w9Rz4g7UAbO3VcGztpTBs+YLIOnTpTBE3aRgaPH y8p37yBPvqMl393bH7rxIGRApCE0pjsuBEIGRB6EVNr56t97EPKSBlAEhDSU0oAoCKaiv20I Fc2L/cdeOCTZxKXGT1mAkQsaGHz+93LAJStk4vtWyG6zVsheH1gt+168SvabvVL2UZ97X7Ja 9lJpikq7XTooky4ZlImz18rrLhqUV6sHBrzqPBUBnakAdNLTsueZ/9YBoW7k7UV5KhrSef/m tAPk8XdPlMeP3k3mn7iXzD9lX5X2k/kn7yNPnLK3PHnyXvKUGjdacNJuskDNglt47ERZMP11 svA9r5YF73yVPHnoOPnZgS353nv39CF09uaxEOqYoh2AkJ5CbEdDJiLaee4r4TBSQDLgSQJQ N8UR1S3WzWOSNw4PDaCBMA3M+fst8sTSF+WA8x+WXY75sbzhxJ/KG0/6D3nTST+RN574E5l4 0v0y8eSfyutPekB2OWmevOakh2TCiQ97kxB2PGaejDvmYdVD9YAC0E9k/uLnRednjlN63n+n INGG0Jw7N8umhU/Iv5x4gHz77bvIPYe+Qb439Y3ynWlvku8c+ka5Z9pE+b5KP5iqZr8duov8 6JDXyH0HT5AfHriz/PCAHeW+/cfJD/ZpyT0KQOufmS9zvqaiuXQQ0i80ao8JtW8u1TDSN5x6 SU+3VgNsXlSkYWSSipB0lKST7raLSsZ4JrLi048wm5Ky9JWzbbaxBexVT3vtNOe/ZI5y7kX/ dGSi89H5GS2UmvedL8lOl2/zZyKrMaGdZqu3vt4xev9m3vIPblTlVgDa6Uw19Ts4JqS748ZG Qm0I6ecH6adot596PXLj6mX+hIUdr1RAMsmDkp38mXBhycyMM1O1mzw1sz/PjRlUeWZQub8P 08gb1571LLj2JAQ9G86790hPz75gq/pUMNJJf1fTtb0Ixnya7/q3Serm1tYZatab/jTb2eM/ ejJCMJkxoVAI6XuF1FNUW9Mfl9YJ82XciU/IDif5yXvjajuNm7lMTPLewqrBpR98apJ+H5H9 23xvPyDP256EDdCA+xo4Wd8/SGqUDbSP10/MjqvXE9RTDfSrfXTST9Mx6eilo8vMev1plutP /Yw4nfTzSM3z4vR3/cgezZhUEFIA8iDUBpENIwOlsE+93Uiy9w/k1bGdvQ/fR+1XM1tovZCa ZwPPB5AaZ4PK2qp5bM+Y2XGT58v4w5fKpLmbZMKs5bJx3WISNkADaAANoIFSNdA6VY0PHaWi pb2+o8aEbvNnznn/AaFSDQ3EuYhBA2gADYzVABDiqgbYogE0gAYq0wAQQnyViY+rQiIDNIAG gBAQAkJoAA2ggco0AIQQX2Xi4yqYq2A0gAa6DiH9RG2EhtDQABpAA2ggTAOFIRR8bYOBTvCz LAEGodat4ySVN+q8k/Yruh6o05CLaoj90ZBLGigFQnEnVLbTjIJQr41a9nmlLX9Vx01bPrbD waEBNJBFA12DUFiEYkcPWQppb5smEgo7jr1f1PcsZYqDQdzxbbuY7fRx7e+mHFH5hG2bpexs i5NAA2jAFQ2UAqFg15RxqmGftoPNa4QowNnHCx6nGxCKO++w46cpQxTcqup2zFtH7IeTQwNo II0GSoFQ2IHCxobCnHaaQga3SYJQFijm7d5KgkUcBIOwjINTMBrKW948dmYfnAgaQAPd1kBP IVTWySRBKC0UwyKntGXsNoTSdDumLSvb4UjQABpwVQOVQajoFX1aJx03/lOkDECIRu1qo6Zc aLNOGoiF0KtTPEU7yRkHIVDWoHoUhEx0EzXQb1dONyAUdfyk8oaNlUV1X5ZlwzoJlbLiWNFA MzXgQUi/m2iPu8Y+RTsNhBBGM4VBvVKvaAAN9EIDhSEUvFrv9lV6r49XViWUNSmjrPKQDw4G DaABFzRQGEIunARloDGhATSABuqpASDEA0x5th8aQANooDINACHEV5n4uHKt55Ur9Ua9lakB IASEgBAaQANooDINpIaQ8IcFsAAWwAJYoGQLpIZQmeFXmrzu+X93eqeaZlu2cad7gHpzpy5o F9RFHTQAhAjDSwU9EMLx1cHxUUZ3dAqEgBAQQgOlagAH746Dr0NdACEcUKkOiEgIB1QHx0cZ 3dEpEOozCLUOu1PKSFGNGAi507hxtNRFHTQQC6EJU5fIpLmbZMKs5amulufMmSNxKYtB0jiz VuuW0HJlXZ6lXN3e9r777htjQ72srOOWASCdBxDCwZWlSfLpby2VDqGw2XsaTPrvsMMOS+1M 00CoSeK14RO0oQF7GTDSANH1UCQBof52Gk1qd5xL9VruKYS0c9UONU3Fx0HIRDpFP9OUQ2+T N3pIm7/ezoA6bgp+WtvFHVefS9G/ohCKeght0vIs9mTb6p0LdUAdpNFAVyBkd8kZ8NjL0hTM pUgoT/QQ56iD52+iIBsOJlIx90oZOxaNhlyBkH2uYfAJgrLIu5/S6I1tcJhooBoNdAVCZVzN p4FQ1rGfqO2TxBfmuO98fJM8PiBe0t+DKQuEwqIgG0K2PYtGQ1EQ0nALdtHpZWF/RELVNNYk nbKeeqmjBroCoajJCWV1x/Xa0HHRQxSM8kIoaqzGwKAbENJ5Hn/88WN4o5eFAbIohIL1l9QN 1+13VPVaTxwPWKCBUQ10BUL9EAkFz9HAyEREdYGQjnbCAKQbiZlMEoyIgBBOFCeKBsrSQFcg 1A+RUCtkfN8GUV4IGbj1qjtOHyfqzwZRxxhOyVO0daST9MeYEE6vLKdHPm5pqRQIBSciJEVC QUiFicK12XFR5xSEkRkjygIhe2KC7fiDgNB2K3tigksQmjdvnogCkv685ZZbvGT+gJBbjgNH Tn2UpYHCENKOcdGCX3op7TRje/uoMY40ExPKMkJSPsExoSB4zO+W+pKnO67KKdoGQgZ+YbAN gqob3XHecXVEFBEVASGcXlI7ZX09NVIIQjaADFjSfup977zzzsj7htJAqMrZcZ7PtLrkPACp 88kLoTQ3qw4Nr5Rrj3xHqvusohpkEKjOQKgNoLAoyOdTq9B546Dq6aCot+bXW2EIJT2qJ259 UQj1SqBxkZAGkQGQPV07S3ecfR5xj+3RAPrX715UCETBc7EnJoRFQ2HddWVHQnEREN1xzXdC vWrHHMdNLRWGUNrIJ7hd3SOhji44FQEF7xfKC6GkhlIURGHTzXVdhMFGLzPQK2tiggaOfY42 gMw4kP0JhNx0HEk6ZT31llYDpUCodWdLVMea17WmYfOr3V/lpbjuujIglOYktUML3oeil6XZ 12wTdZ9QWASUtzsuS3k0iL52zt65IqIsN6tqANjQGwFCgdlxBjpe1NXugmN2HA4ri/7Ztll6 iYXQ+KmLY5+ibSCjIaST+X2nci46dQtC6Z8Zp8qlyuElDaMAkNKKOei4f/HIj7wuOB0plPHE hLTlsLfLC6I8j+2xj+WNzxSAkA0fExVxs2qznEoePbNP/2pgBEJT7pLWxNv8OUref5PnS1oI 5emSM2NFelwoTIBpJibECddcXXuRUCCZqb9pB7tdhJA+9zwgygMhExGlib7S1luwWw4n1L9O iLrv77ovBCEtnqITE6IEmMaZxc2OM11HcRDS26RpANpx50lp8i66jQZRlhlzec7DRD5poJem 3oqeM/v3t9Oi/ptV/4UhpAXhTU3OkeLEVNSZmS4ePeU32B03soxpv6kgHOwGjINe0XrDwTTL wVCf1GeSBkqBUNJB8qwvy5lFjTfkKRP7JDeosuoNWyfbGhthoyZooPEQakIl1ekcgBCOsU56 pazV6xUIqe5EhFieDYBQebZEl9iyHzQAhIBQqRAGQjjOfnCcnGN5OgdCQAgIoYFSNYCDLs9B 94MtnYVQPxifc6SxogE00O8aAEJcBXMVjAbQABqoTANACPFVJr5+vwLk/ImC0MBiAUJACAih ATSABirTABBCfJWJj6tAIgE0gAaAEBACQmgADaCByjSQGkKHTTtESNgADaABNIAGytQAEAKu XFygATSABirTABBCfJWJr8yrKfLi6hwN1FMDQAgIASE0gAbQQGUaAEKIrzLxceVazytX6o16 K1MDQAgIAaEIDeg33ZfZ2HqRVx3L3Au7cAx3wQmEgFDtHK1xKNrhBlNZzsZ25nmPk3e/IucA hNx1tkXqtcn7AiEgVGsI2Y3TOP0yGmwQQlnyjCtHtyHR7fyz2IFtAWIaDQAhINQYCGnBl+WE i0IoTePrxjZlnX83ykaeQClMA0AICDUGQsEIxDjksMjE7ioLNoygI8/i2LNsa0MzrozBaM/s F7VP3HpAAAhc0wAQAkK1hlASTMKgkASZsPVpx57yQChpn7DxqeC4WNrfrjkgygMUgRAQqjWE 4pxYGgDZzjvse9YuvixASco7DLBJ55S0HqeP03dNA0AICAEhayypqBMvA0JR3YpR0Eoav0oq k2tOifL0FyhjITRh6mKZNHeTTJi1vLaOCkE3V9BJzjULUOzxo6QxoiRNxZUrqSswDDRZIJPl nJPOg/XNbTsu1a0HoaOXSWuPu6U18TY1uci/DJPW5PkChBChS2LNCocoGMSBoAwnHjZhIEtX X9YxoLCJC0nLXK5XytZffgcI0R1X2yg3TyQUHMBPijKCM83iABMGyaQJDXGgtKOzYKQWNl6U prsOB99fDr4O9Q2EgFBtIVSHBlZ2GZPAW/bxyA9odVsDQAgIAaEaaQAIAYVuQ6HX+QOhGjmg XouD47nn8ICQe3VCOylWJ0AICBEJoQE0gAYq0wAQQnyViY8ryGJXkNgP+zVBA0AICAEhNIAG 0EBlGgBCiK8y8TXhKo5zIBpBA8U0AISAEBBCA2gADVSmASCE+CoTH1eQxa4gsR/2a4IGgBAQ AkJoAA2ggco0EAuh8TzAtLKKacIVDufAlToaQANJGvCfor1cWlNCHmAKhBBQkoBYj0bQABoo ogFnIBT3QEb7oZFpt4t7mKRZF5VXEYOyLw0SDaABNJBeA05BSFdc0vtWwp4sbO8X9ZTjNE8k RjjphYOtsBUaQANlaMAZCNnRiX1icY/aj3oRWRqQJW1ThnHJg0aKBtAAGojXQC0glPTulCSg hK1P2gfh4DzQABpAA93XgFMQintCcFg3G5FQ9wVCI8TGaAANdFMDzkAo6RH1QQgFJysEJxvE denF5dVNY5M3jRkNoAE00KkBJyAU9QrksG64LLPjguNJUfCJj8DUXIkMf7bA/vYbt3bcZ8Rv 7IE+Rh0Q7aHc9lBXuDkBoboarzPaGiWVK+cTbORVlsulsmg7uFQel8qCbeIjNZfqyqWyFPEt QKikx3XYwVKRCmFfumvQABroJw0AISDEo4lK0kA/OQ7OFVCWpQEgVJIDIhKiUZbVKMkHLfWT BoBQgyHkUp+xS2Vh3INxj7xO3iUdu1SWvPbU+8VCaAJP0U7dVUUkxNVrkYbIvuinXzXgQ2iZ tPa4S1oTb/Ncacv7b/J8AULpGwYQSm+rfm1snDcaQQNjNQCEGtwdh+BxemgADbiuASDUYAi5 1GfsUlkYE2JMKK9jdknHLpUlrz1Hx4Tojks99hNlbLrjuOIs0hDZF/30qwaIhBocCfWrqDlv HDoaqI8GgBAQKhwF0uDr0+CpK+rKNQ0AoQZDyKU+Y5fKwpgQY0J5HbFLOnapLHntyZhQSQDS hmRMiCvMIg2RfdFPv2qASKgkEAEhnEi/OhHOG+0X0QAQAkKMCZWkgSINkX1x5P2qASCU0wHF vefOFTG51GfsUlkYE2JMKG8bdUnHLpUlrz0ZE8oJoDCD0x3HlWyRhsi+6KdfNUAkVBKIgBBO pF+dCOeN9otoIAFCS2TS3E0yYdZyxg0SYAWEaIhFGiL7op9+1cAIhKaEPkUbCKUVhosQcqnP 2KWyMCbEmFDadh3cziUdu1SWvPbsGBMCQsWuxFyEUBFhsG8xPWA/7IcG0mmASIgxIbpaS9IA Tied08FO2MnWABAqyQERCdGwcK5oAA1k1wAQajCEXOozdqksjAkxJpQXFi7p2KWy5LUnY0Il AUgb0nslunoxOgkboAE0UKYGijj4OuxLJFQSiOiOyx6G16GBUEbqtUoNaJhVefxeHNsZCKlr Jx1LeMmceNplfiQydn/bgFnyymN4IISzyqMb9kE3cRoAQlN7d5+QgU8QQjZgzPfgsrjlNtDS 5pXHMbgIIZf6jF0qC2NCjAnlaeNV6CYOQq61qbw2dSYSCoNFWCQTXGYDKJhH3G8bdmF5ZDWo ixDKeg5sz1U5GnBPA02PhoBQe0woCKWsjREIudd4s9Yh21OHLmoACPXw2XFhXXF2NBMVvSRF NWHrk/bJKkYghAPLqhm2RzNpNNDXEBo/rfdjQmFdaHGTCoJdacHJDVHrwyZApBFE1DYuQsil PmOXylJF336ctrBNNIywzSHebR9h+nHNNnn9p98dt1xaYc+O6xWEbMiUOTsub16d405xr68L X2f2D4qE37d2NCbsgT3stoYewvVgIJRkn7wQqHo/JyBUtRHKOL6LkVAZ50UedBmhgWo10B/d cRVHQk0QORCqtqE2QUOcAxoK0wAQ6uHEhDo3Qhch5FKfsUtlYUyI+4Ty+poqdMyYEBBK9dgM FyGUt6GxH1fkaMAdDRAJASEgVNLz9XBs7jg26qI+dQGEgBAQAkKpNIBjr49jr1NdASEglMoB udgdV0X/dVTjdqksjAkxJpQXQlXpOAxEVZUlr+2i9mOKdklX+S5CqGyxkB9X+migGg00ORoC QkAoVaSH86nG+WB37K41AIRmLcdRJcCKSAhnATDQQLc0AISAUCKEXYSQS33GLpWFMSHGhPLC oiodMyYEhGoJobwNjf24okcDbmmgbyOhCVMXyyRmxyUCSDdYFyMhHIlbjoT6oD7yaqD5EFoW /hRtIJS+0QCh9LbK2xDZDxv3qwaAEN1xidGQixCqqv86zFG4VBbGhBgTyguzqnTc/DEhIqFE yCSJ1kUIJZWZ9UQWaKAeGiASIhIaA6m4V93RsOvRsKkn6qkuGgBCQCgxUiISwqHVxaFRznpq takg8p+YQHdcImSSGq6LEKqq/5oxoWxOzqV6YrzM3fGyIIRc002Sj4xaD4R4bE9hAOcVH/tl gxX26m97EQmV5Kyb2pBcjISaamvOq7+dcb/WPxACQrERAxDCMfarc+S8e6N9IASEagchl/qM XSoL4x7ujnsEgYZuRuuKMSEgVDsIcYXamytU7Iyde6EBIiEgBITQAJM40EBlGgBCiA8IoYHK HFAvrrQ5htsRXV9CaPy0JTxFO6XjdXFigkv96S6VhTEhxoTyArdKHfflmFAVEBJpdVxt6t8m aeEEfxsxRS2PW5+0TxahugihLOVnW7evgqkf6kdroInRUOzNqr2EUBxc7AZoIGWDycDJhlSw 0YbtF5VXngYPhHASeXTDPugmiwaAUMquqSxGjYKFHcGEfQ+CJwxUcfuFRVzFyj2KoSL5sC9O CQ2ggSgNAKGKIJQUJSUBJaqLLw5cWR2Bi5FQlf3XQfu5VBZdNpfK41JZsI3b42U2hFzTTVaf abZ3pjsuKmqxl0fBBghx5Zi3AbAf2qmTBoiEKoiEoiAUnKyQBlb2mJENruD4Uh5RuhgJ5TkP 9sEpowF3NQCEegyhsG64LLPjwkCTtGzsGFXc6+vC15k8guEyv2/tmPmIPbCH3d7QQ7Ie6I7r AYTqehXmYiTkUp+xS2Vh3MPtcY84MFXtH6rWMRACQpF3zLsIoaobLMd3t1uHuqln3dAdB4SA EBrg0T1ooDINACHEB4TQQGUOiOilntFLmfUGhHBAtYJQ1f3X9O2nc5ou1RPjZe6PlxkQuaab vLB17j6hvCdS9X6MCaVzuFXXE8ennuqugaZFQ7EQmjB1MU/RThn9ASGcW92dG+Wvh4YbCaGj l0lryt3Smnib50r1Y6ulNXm+AKH0ogRC6W2Fs8NWaCC/BoBQysig30TmIoRc6jN2qSyMe7g/ 7hF1w3fVfsUFHTdyTIhIKP9ViWkULkKo6gbL8YvrChtiw6AGiISIhEJnyAEhnAXAQAO90AAQ AkJACA1wrxAaqEwDQAjx1QZCLvRf07efHB24VE+Ml7k/XsaYEBCqDYR60TXAMZIhg42wUZka IBICQkAIDVTWFVOmMyOvesIRCOGAgBAaAEJooFINNAlE3hMTmKKd/Yoo7lV3rlxhujTW4FJZ GPdwf9yDscT4OtIQcq1N5fV7QKikKzqmaGcHeV7Rsh+27ncNEAmV5LibJCQghGNskp45F7f1 3EcQWsIDTFMCFwi53WhxqtRPkzQAhFI65iZVetK5uAghl/qMXSoLY0KMCSW156j1rui4j8aE iITSitVFCKUtO9sRJaCBemmASIhIaMz0TCBUr0aM06W+6qwBIASEgBAaqPQ+kTo7UMpe/AIA COGAagEhV/qvXRuDca08LtUTtqnHeBljQkCoFhDiirP4FSc2xIauaqAp0VDCzapMTEgrQMaE cFZptcJ2aKUMDQChLkVDIq2RKEN/N8lUWtgyvS5qedx+SftkEQoQwrFk0QvbopeiGgBCJUMo Cjg2YMz34LK45TaE0uaVRxwuQsilsQaXysK4Rz3GPVyrJ9fKA4RKhlAYLGwYBCOiIHiC2yb9 tiMuO688APL3H/3Lmwf7cXWMBtBAWg0AoQQIhXWjpTGugUMYJKLAkQSULHmlKWPYNkAI55FX O+yHdvJoAAjFQCgMJEEQRBkdCNEg8zRI9kE3/aYBINRDCMVNUAh2pcV129ljQmETIIqI2MVI yKVxGJfK4lrfPraJBii2ibYNEMoAoTAwJEVCScCI6mILwsUea0o7065zPCnu9XXh68z+wQbE 71s77q/CHtjDbmvooZgeilxEV7lv1+4TsqOXtF1xVRqi6LFdjISKnhP708WFBtBAtzXQFQj1 A3SCFQOEaKzdbqzkj8aaqIGuQCg4TtNEw9UBQi71p7tUFsaEuE8or09yScculSWvPfV+XYFQ sCsuy5hQkZOpcl8iIa5Sq9Qfx0Z/ddVAVyBUV2MUKTcQwgkU0Q/7op9+1QAQKunJD0AIJ9Kv ToTzRvtFNNAVCNEd54YoXeozdqksjAkxJpTXabqkY5fKkteeXRsTCitQ02fMEQm5Ad4ijYF9 qUM00HsNdCUSAkK9r0gaDzZHA2igjhoAQowJjXlLbB2FTJlxwGignhroCoTCxoSaLhAXu+Nc 6jN2qSyMCTEmlNcfuaRjl8qS1549HRMqUsg67OsihOpgN8pYz6tX6o16K0sDXYuETAH74UZV fa5AiEZZVqMkH7TUTxroCYR8J91q9NgDEMJx9JPj4FzRe1ka6CqEol6rUFbhXcrHRQi51Gfs UlkYE2JMKK/vcEnHLpUlrz27OiaU9/XeRU6myn1dhFCV9uDYXCmjATSQRgNdiYTSHLju28S9 6q7u50b5cR5oAA30SgNAiPuEGj1W16uGxHFw2mggnwaAUIMh5FKfsUtlYUyIMaG8wHBJxy6V Ja89uzYmxANM810RFKlI9sXmaAAN1FEDXYmEwmbFMUWbBlLHBkKZ0S0a6K4GgFCDu+NoPN1t PNgX+6KB4hroCoTsirG75ppcYS5O0Xapz9ilsjAmxJhQXl/kko5dKktee3ZtTKhIgeq6r4sQ qqstKXfxq0ts2B0bttSTX3r9r+l12bVIiJtVu9MImi5Izg/dJGmg1xCwj5dUtrLX62OXnadr +XUFQmYSAo/twaG4JnjKU0yTVQLAHLvf6rDpIAJCDZ6Y4FKfsUtlqduYkAuOvyoAoJtDvO6/ MPC6Zpu8Fwc9gVCR1zkEJzZETXRImgARtj5pnyxGZUyo2BV2Flvn3dYlZ56lLHnPl/3c12Sa OiISmrtJJsxanrlfsqy3qwbvL7K7+qLuRwq7Jylsv6i80ggjuI2GUBbHwra9t0CeemWfZjjy OtcjEMoAobLAYwsmblwpbOxJ7xsFLpNvWGRW9GZaIiGcVZ0dHWV3V79AKAOEwgBQVNxBsIUB Kg10gvsl7ZO13C5CyKU+Y5fKUrcxoaxaLLq9S3XlUlmq0g1jQhkhZEBUNLIY293VioxwkoAS tj5pn6wN2UUIZT0Htnf3api66e+6aXI01JWJCcFurzKAFHbfUdRU8DjAxE1QKNLQgVB/O4ki 2mFftJOkASCUY2JC3PhLksHjIJZldlxwPCkKZHGQjHt5XdQ6U/5gVwK/b+2Y4II9sIftC9BD tB40hJLsk9avurZd1yKhsMF/106+zPK4GAm51J/uUlmq6tuP0hu2iY6EsI1vm7BIyDXb5PWn pUOo3+AzGrWNYihvZbAf3TJoAA2EaYDuuJTdcf0KIH8yBhDCgeJA0UB3NACEUkIobCwnagyn aWIFQt1pfE3TCeeDTvJqoKkgKr07Lq+B676fixByqc/YpbIwJsT7hPL6myp1HIRQlWXJa7/Q rsZTX5TW0cukNeVuaU28zXOl+oYcaU2eLxOmLpFJOe4TKrOAdcnLRQjVxXaUk+gADSRrgEio pKdNN1VsQCi5ETW17jkv6r4XGgBCQCj2Ia5ACEfUC0fEMfpXZ0AICNUOQi71GbtUFsaEGBPK C/MqdcyYEBCqHYTyNjT269+rbere7bpvYjTE7LiS4Ep3nNuNF+dK/TRBA0CoJIfdBDEEzwEI 4eSaqGvOyS1dAyEgFNkl5yKEquy/Djovl8rCmBBjQnnhWrWObQhVXZa8NgzuR3dcSWB1EUJl iYR83Loapj76tz6IhEpy2E1sRECofx1DE/XMObmr56aBiEioJLCaR034738l9coGOEt3nSV1 0526AUIlOe26CzTuZXeunJtLfcbdKkuvYNe048RptFt1ladduFQWV8YSDYRcs02e+tX7EAmV BFW647pz1ZdX2OwXXx9Ng2rW86mzPoiESnLadRZBWNmBEBBqmqabfD5ZoVXl9mNmk6kO/ybV DZFQSVAFQkCoSY6Bc3FHzxqAdn0QCZXktJsmchch5FKfsUtlcaVv37QBbBPt8LGNGjMJQMgb R1H/XLNNXp/uR0LLpbUH7xMqFOK6CKG8omA/d66CqQvqIgpCTdEGECopsgNCOIumOAXOwz0t N7lLDggBoUIRIA7LPYdFnTSvToDQrOU4qgRYuRgJudRn7FJZGBPi2XF5QV2ljm0QMSZUUvSQ Vwgu7ucihFy0E2Vq3lU6ddqbOg1CqCl2pzuuJKACod40xKY0PM4DvWTVQFO75BoDIftpbeE3 k47ebmbWJ+2TRSRACKeSRS9si17yaKCJ0VCjIKQr1YAlWMF6eXB92LI8wvDzHf3Lm0fZ+1XZ fx08F5fKwpgQY0J521rVOgZCJXVd5RVA1H4GJnaEY28btj5pn6xldBFCWc+B7bk6RwPua8CA qClPTmhEJJQEFCDkfsPC+VFHaCCdBsJuXq2z7YBQO7oLgiprpRIJpWtAWe3K9tgVDXRqAAg5 2CVnAyRsTChsfdI+WYXvIoSq7r+2behSWRgTYkwoa/s227uiYw0iV8qS15Zmv0ZEQvaEgyBc 7HGiIKDSzI6Le3ld1LoowQZFw+9bO26Cxh7YI+7CBX2M6qNxEJq+TFpTeIBpoadCuBgJFb1C YX+6wtCAuxpoSrecFwkBoeJCA0LFbYjDw4ZoIL0GgJCDY0NVCthFCLnUZ+xSWRgTYkwor69w ScculSWvPfV+REIlwdRFCBURBvumvyLFVtgKDeTXABACQoXGwmh8+RsftsN2aIBIqDQHTCSE Q8GhoAE0kF0DREINjoRc6jN2qSyMCTEmlBcWLunYpbLktSdjQiUByL9Pyb0HmBYRBvtmv6LD ZtgMDWTXAJFQSSACQtnFR4PFZmgADQAhIFTauBgOBYeCBtBAVg0AoQZDyKU+Y5fKwpgQY0JZ HaXZ3iUdu1SWvPZkTKgkADEmxNVfkUbIvuinnzVAJFQSiBgTwpH0syPh3NF/Xg3EQmj81CUy ae4mmTBrOeMGCbACQjTCvI2Q/dBOP2sACDU4EnKpz9ilsjAmxJhQXqfvko5dKkteeyaOCREJ pb9CIxJKb6sigmVf7IwGmqUBIqGckVDcy+5oJM1qJNQn9YkGuqcBIJQTQkFREgl1T6Q4AGyL BpqrASDUYAi51GfsUlkYE2JMKC/UXNKxS2XJa0/GhEoCEPcJNfcqrUjjYl90gQaSNUAkVBKI 6I5LFhsNEhuhATQQ1AAQAkLcA1aSBnCwOFg0kF0DQKgkB+RiJORSn7FLZWFMiDGhvLBwSccu lSWvPRkTKglAjAllv/opIlr2xd5ooDkaIBIqCUQuRkI01OY0VOqSumyqBoAQEGJMqCQNNNVJ cF4AsJsaAEIlOSAXIyGX+oxdKgtjQowJ5XWqLunYpbLktWctxoREWsq/+8kfe+n8bU4+annc +qR9shjWRQhlKT/bcrWLBtBAFRrwI6Hl0trjLmlNvM1zpdrLS2vyfHHhAaYGPjZMbBglLY9b HwRbkQoAQjTgIvphX/TTrxqoFYTigGRXYNR2wagobp+sggBCOJGsmmF7NIMGDpFaQCiuC85E RUBobIN2qc/YpbIwJsSYUF7n75KOXSpLXnuOjgk50h1nj/0ETypsnd2dBoS4qizSENgX/aCB ajTgfCQU1YUWnKyQtqstLKqKg19aYdIdV42A09YP21E/aMBNDTgNoThghI37BGFib5Mlr86o Ku71deHrzP7BcJnft3bck4Q9sIfd1tBDMT3UFbJOQ6hORnUxEnKpz9ilsjAmxJhQXt/iko5d Kkteezo3JlTkRKre10UIVW0Tju9m9wf1Qr24pAEioQY/McEloVEWHB8aQANhGgBCQIhnx5Wk AZwsThYNZNcAECrJAbnYHedSn7FLZWFMiDGhvLBwScculSWvPRkTKglA2pAuQqiIMNg3+xUd NsNmaCC7BoiESgIREMouPhosNkMDaAAIASHGhErSAA4Vh4oGsmtgBEJTHH2Kdl0q1cVIyKU+ Y5fKwpgQY0J5/YpLOnapLHnt2TEmBISyE9w2vIsQKiIM9i2mB+yH/dBAOg0QCZXUFQOE0gmO homd0AAasDUAhIAQY0IlaQDninNFA9k1AIRKckAuRkIu9Rm7VBbGhBgTygsLl3TsUlny2pMx oZIAxH1C2a9+ioiWfbE3GmiOBoiESgKRi5EQDbU5DZW6pC6bqgEgBIQYEypJA011EpwXAOym BoBQTgcU96q7blZYlrxd6jN2qSyMCTEmlKUd2du6pGOXypLXnowJ5QRQmMHpjuNqsUhDZF/0 068aIBIqCURACCfSr06E80b7RTQAhIAQY0IlaaBIQ2RfHHm/agAIleSAXIyEXOozdqksjAkx JpTX4bukY5fKkteeI2NCRy+TFs+OK3Yl5iKEigiDfYvpAfthPzSQTgNeJASE0hkrTlRAqLgN abTYEA30nwaAUIO742jQ/degqXPqvG4aAEINhpBLfcYulYUxIcaE8jpql3TsUlny2pMxoZIA pA1JdxxXoEUaIvuin37VAJFQSSACQjiRfnUinDfaL6IB5yAk0hq5b0V/N8mcZNgyPxIZu61t mCx55TEoEKIh5tEN+6CbfteAMxCKgoQNGPM9uCxuuQ2vtHnlEYWLEHKpz9ilsjAmxJhQnjaO brpzweAMhMJgERbJBJfZAArmEffbjrjC8sgqUhchlPUc2L47jQy7Ylc0EK0BINQeEwpCKato gBCOJqtm2B7NoIFDpDIIBcd6iIRokDRINIAG+k8DlUEoSmwmIkk7QSHYlRYGtyx55W0Ece8X qmqdHodx5c+lsmibuFQel8qCbeJbjEt15do4a17f6SyE7EkESRCJ29aOsNLOtOscd3LFjVMO LIAFsECnBfI6fpf2cw5CLhkna1loIFgAC2CBXlogq49ycXsfQsvVU7TvltbE2zzz6RtupDV5 voyfukQmzd0kE2Yt550zKW5q1XYro5JdyselsvgRrzs2dqks2CZ+LKWJdVXWOZXhs4rkAYRS wCWtgcsShUv5uFQWHG19HC266X5dNWtMiEiocRFMWQ4bZxLtTLANtkl7gRrcrgztlJFH3vKX uR+REJFQLIDLEnoT82niOXHx0v0IxjUblwmUPHkBIQchlKciw/Ypy0mWUR6XylKWEyjDLq6V xbXyoJvuR5tl6ThvPkCowRByqc/YpbLoxuJSeVwqC7bhuXp5YZJ3PyDUYAi5dBXpUlm42u9N l1Nep2Tvh26IhJiinQFSNJj6NBiX6sqlsgBoAF3GxUOWPIiEMkAmybA4EyCUpBHXx+6AEBDK o+Ei+wChBkPIpbEGl8rCuAfjHnmdpks6dqksee2p9wNCJUKoSEWwb/89PZg6p87RABAq5SZV hIQzQQNoAA3k0wCREJEQIEYDaAANVKaBWAhN4AGmlVUMV1X5rqqwG3ZDA/XSwAiE9rhr7FO0 gVC9KpPGR32hATRQNw0AoZLCcPPCPPsFfJ033ek3ZPgpbnlSPmkElpRH2Hp7WZ6X/8WVK6k8 Zt+klxemzacXZbHLHPWq+jLqKsw2/jTqTj1VZZtgWWxbFC1T0v5JOi6rjsLsHazbqLJmXZ5G M2WWJ8nGactTZDsgVCKEbHGEiTRsfRiU4vJJU9n2K9LDoJi03hw/ygGmKUMQtEm2CQNfcJ80 5U4qW1IeUY4taJMqbRNWlqTzSrKLnWcUVNM6LLssaY4btU3SOYUdJ2yfpHzSlDEpj6hzTlqe 5thh2xQtT1C/RS6k8p6D2Q8IlQChKJBEOSp7+6jvUU4vqcKLlCVNeZOOHwXfNE47rsEmnVea cmXJIw7eYYBNc/wybBNmxyznleTws9RTnHPMq988GnRdN3EXDXXXTZ7yB/cBQg5AKOoKM8wR JlV6kkPKut40oLxXSknHC3PoYftkyadbjjYKTL20je2ke6mbNOCNqrdu6LhOuomCUBN0k+SP 0qwHQhVDKOhU0jT2uIpNctZZ13e7PHVxJkmONGl9UtSQFDlE5R/myKosS5rzTOOYknSaNiJM m0+RNpUUPcbVRzfrKum4ZdgmTV0mbQOESoZQklOIuvoJLi/jKilrWZIaRNL6JAeUdE4mf/s4 YVf7SfmkiYSS8giWIakh9co2wXL0SjdJFyNJDi/JfmHnFXeBFhVdhEWKSfkklS1Mj3HlTbJV lvV521SSHsvSTZLt0qwHQiVAyDSIsIpN0yiSnG6aigwKO09ZogSf5LCTyhcFkjSOpxe2iXNo dtnDrhz72TZxEUBYnSfpJAqwYRcEUfUSd9GS5Jjjyhd1PsFyROm1Fzq2L+LS2qGMespar8Ht gVBJECpaEezP/R1oAA30owaAEBDiqRBoAA2ggco0AIQQX2Xi68erPs6ZaAcNdGoACAEhIIQG 0AAaqEwDsRAaP3Uxr/dGnJWJkytGogY00HwNeBCavkxaU+4e+wBTINR8AdDIqWM0gAaq1AAQ ItIh0kEDaAANVKYBIIT4KhNflVdfdT522L0pLtzvUWebUvbqokEgBISAUI01UOQGTBxvdY4X 24/aHgjV2AEhZJxI2FMcgk/PME+ECLuj3n7qQdGnP6BH9JhHA0AICBEJ1VgDaSAU9tibIHzC wJXHobAPIMqqASBUYweUtbLZvnkOIg2E4gATNb6EVpqnFVfrFAgBISKhGmugLAi56qAoV/Nh CIRq7IBooM1voEl1XBaEmOCAlpK01q31QAgIEQnVWANlQMieuMDkBGDULdhE5QuEauyAei0W joeDQgNooGwNACEgRCSEBtAAGqhMA0AI8VUmvrKvqMiPq3Q0UD8NxEJowtQlPEUbSAEpNIAG 0EDXNDAKobvGPkUbCNXvqsKlK8HgPSgulY2yoO0qNMAsxLG6A0Jc4aS+winSgIrsW4Wz4JhA Kk4DWfXMA2aj9QSEgFAqCIXdWR91J35YA83aaIEAEHBVA0XaAu2ASCiVw3VV/FWXK+6elKjn k3HfCTCpWrfdOH6etmDux+pGeeqcJ5EQkVBqMCc9hdk0BCIhwFNnp5im7HnbApEQkVBqh5tG iP22TTCqiYt+grah8QGmJrWXvG2BdtADCLWEfy5YoBsNPq4vPGwmXL/PjmtJmMVY1mu7uNAW 4noJulG+OuVJdxzdcUSHaAANoIHKNACEEF9l4qvT1RplpTsRDXRHA0AICAEhNIAG0EBlGgBC iK8y8XFl2Z0rS+yKXeukASAEhIAQGkADaKAyDQAhxNc18fGoEq7I63RFTlmr0WsshMZP4yna CHNUmFnvcbBv6MOO1TRw7I7dXdeAB6Gjl0lrj7vHPkUbCCFg+/6GuPt+om5c5VElaMh1J0j5 qtUoEKI7LnV3HM/Lqrax4iyxfxM1AISAUGYIhY31ZHmETxMbEucEINBAPg0AISCUCUJpYMNY UL7GiBPDbv2ogdIh1FIPhiJVb4NuiDnLs+P6/blx3bA/eQKpJmqgdAg10UicE40fDaABNNAd DQAhuuNSd8fRCLvTCLErdu1nDQAhIASE0AAaQAOVaQAIIb7KxNfPV3+cO9EPGvA1AISAEBBC A2gADVSmASCE+CoTH1eCRANoAA0AISAEhNAAGkADlWkACCG+ysTHVTBXwWgADcRCaMJUnqJN I6GRoAE0gAa6pwHeJ0QkRCSEBtAAGqhMA0AI8VUmPq4uu3d1iW2xbV00kBpCG9ctFhI2QANo AA2ggTI1AISAKxcXaAANoIHKNJAZQt/+P3fI//672+Vb37x1JH3zjr+Uv/36X8gdX/8iCRug ATSABtDAiAY0GzQjvvU/FTPa6R/+/m9Es0RHVJkh9PSCp+TXj/9KHv3Fz0fSz3/+kPzs4Qfl oZ894KV5D4Wl+9VyPz04z0/z5v17IP1E/VbpwX9T6cfp0gP3ybx2elB96vTAA/+sPn8Un376 T/IgCRugATSABgpq4F61f2d64P4fiEkP/vQH8tCD98rPf/bDkfSrR/9FnvjP+/NBaM3ACnlu xVJ5dtmSkbRk6SJZvGRhOz0jixc/I4sWP60+/eR/fyIizVfL22mR+lz0m5D0uFo2mhYtfEwW Lvi1LF7wmJ/Uby8t+KWXFi34RXh65lFZ9MwjJGyABtAAGihJAwuf/rmy5cNj0uIFevnPvLR4 wcOyZNHPR9Kvf/Evov9yRUIbNg7L+g1DMrxucDQND6jvVtK/h9dYaZX6bqeV6redVqjfOi0P pGXqt0pD7bT2WRnWaWhpRxpau0R0Gl67KD4NLpDhkfSM+k7CBmgADaCBPBoYGnhaxqan1LLR tHbNU+Kn+bJ24ImR9NijP84PoRd+u0HGpBfWywsvDMekIbUuJG0alBe8tCY0bXp+tfhpZWh6 fuMKCUubNiyTsWmpWmbSEvWdhA3QABpAA0U0sHH9UtHp+fVLQtJCtawzbVz/jNr+GXlMdcfl joSCsNm0aVh08pcr0IyAxQBm7Oem5wcUVOxkYNMJnY0bV4lOQdBs3PCchKb1y9QJ6uQbJmig DcpQJpU5xZC8mLKKBtAAGtAaWBhIC9Tv0bRh+BnR6VeP3geEEAxOAw2gATRQtgbSQegXj/xz byDUarXEJDtCioqE9LZ291ueSEjnQSRUtrDID2eFBtBAGg2khdCPug8hDQMbPPbvsiHkgUd3 0XWxO847RsINbWm2ScqD9WmEzjboBA24qYECENrjLmlNvM2DU8v7b/J8sZ+ibU447ZhQEELd jISAEA3SzQZJvVAv/aaBlBB6+IdjI6FeQ8juqjOz4OzuOHu9PTHBXm4mJ5hlOhKyu+M68mhP StDL9OSEkX0iopvg+qjfdvRjbxOMiqK2o5H2WyPlfNF8kzWQDkKPPHRv9yGkI5+oMSEfNqOz 4wx8Oj9XejPjdNLLNYjMpw0f/d2OhAyEbBjp6YNR8AnrQgsCw7uhKqY7zqwL2880uDTb0Dib 3Dg5N/TdDxpIB6GHHvhefgjp6djPqxtWTdqkvm/auHYkPb9xUK3rTBs3rmkDxF9uw8l8f37D an+b9mdwGxs2G9YvV9HM8pExIB8wz3rJfPc+16kp2e1kfvswWKimCfrJW97+bn8Gl4f9tssY zCtu/6hjhpWDZaN1hS2wBRpwXwPrhhZ407C9NNROw0+r3yoNPeWl+//92/khFAaZMOho8Iwm P5qxIxvv+wYV7VjJRDQ+SBRk2vcDGej40c2yEeCYiQgmytGz4uxIqAiE4qASBRh7eRqI0aDc b1DUEXWEBtJrYBRAbegY+AQgFPrYnrRjQp1wGQWNjmAMZEwXWthv062mAbNBAUgnGz4m4gmL dEYjHv+mUz+68cETFfGYqMdEQKORkE9qHxZtarc/7WXme9gys1/SNiZiCh4v7NjBsvC7s26w B/ZAA3XRwGjkYyKg9UNPik6hj+1JC6EN61crAFipDRI7orHhMuKA16/wohs7qhlZt05FNyr5 MPEjnY6urkC3mlm3bmix6LR+aNFIt5peNzy00Et2HprQOull+nP92qe9pH+b7/an2Te4zN7P zj8sPzsP+zjBvIPrksoWVl6W+fVJwgZowCENDD4h63Vqw8f7rlLoY3vSQmidgoRO69c956WR 38PPyvp28tYHfnvbqQePjk0+SOKSgUrkZ/uhpEPqgaSdST1gbzAkDTypHrJHwgZoAA2ggaIa GPYeWPqkDKsHlJq89Hc/ze9Ma/5ThlUKfWxPWggNrlkoXhpYZKUF6rtKa4KpvW17n4HVz0h4 elotH01rVj8lYWlg9ZNquydlzap20t/1slVPtNN89Tlf1qwcTfq3SSPLV/1G5UHCBmgADaCB IhoYUH5UpzUrf92RBlb8WnTqXP4r9dtPoY/tSQuhlc/9p+i0Yvl8ee650WSW6eUmjaxf/ht5 LkNasewxyZSe/ZWs0GnZL8PTs79Q6zvTcvWbhA3QABpAA8U08Nyzj4idlj/7c+Vb/WSWjyxb +rAsV+kXj4Q8ticthJ5d8pikTot/Jc/GpKWLH5V06RG1nZXUy5GWhqWFP5OlOpl15nfgc4n6 vWThPBI2QANoAA0U0MDShQ8pnzuaEv3qAuV3FzwwkjpeapcWQn6U84SKhp5U6Skr6d/hSW+/ ykorVR6hqR1lmWhrzOfIfo+r/VOkZb+WlSEpU5SVNSpj+2xRLPbCXmigoRqweqZMb9Wzj3k9 UM8teVSWL3mk882qaSHEXc/9cNcz54jO0QAa6I0GWqe+KK3panZ0FITeeM6gTJq7SSbMWi7j 37c+VfIyJWEDNIAG0AAaSNKABtDBD0RDaJdTlsrrz1shrzltibzquMWpUuvo5ZI66QJUlY5W x06TpqvzSZ3KPp8Mx05zLt42FdZPN47djTxT13eG+ild5104dmoNaZ2nPX7ZbaImx67Ulmnr Rm+Xtn6y5Jl2W3XsI56Q1kH3S2vKPwZe5TDpB2qher+Dl+62vptlZX3qvNOkso5n5aPDv7LT iM0Sypv2uKls07ZfN/JMfT6qDHukSGnzG9FdGm1k2CZNGbNsk+V80uabpc5Tb9uF9tO3x+6C LVNrI+2xM7SJ1PXYjTz1+Sj46DLs9ncBCL3pTm8BCRugATSABtBArzQw8lI77xGn/GEBLIAF sAAW6LEF/j99niX3RaDYeAAAAABJRU5ErkJggg==</item> <item item-id="577">iVBORw0KGgoAAAANSUhEUgAAAFgAAAAVCAYAAADCUymGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHgSURBVFhH7VjbjQMhDKQuCqIeqqGZ Lca35rEYYx7ZgHSnI1I+og1je2Zskyg4r60MqK3oBxwOwZtNcAj+lwRfFrRSoOhbW7geMhwY +sy4AU3s+8oAP+EMjafB5mAE+wKrFQzDkRO/08HOgGpWEYrMz/lnznUgVxPGLqtv8TLJSC59 Dhi/EiHGubHeEyw45xOwVd2GBTfjSsX7vBuuE8lC0uP3e2djQUGQW1RtwLx3cFCaFhbapm6n VUTKOOgUDRpdmsYAGQ++2GJcIEqdezdHSioKUOGVpy9r40hZPSK4+szhe9xdtzRg3ERC08Gz rVuOlCSYSy71orZMtYTg1kIgbYUCD1qrXBpsYX2sDHVozI9gpFhj2Hpep/Yfz2Bf9DdLLhP7 BKNuERZPd1YunSO8sNIExk0UHruvINL7RBo5LbyJOKzufIuQZpG4IBICczQDfu3g0VKShPPk dXaFx+wswWoG7yKYJvnMWymxkAB3wxrTCsVR8avRNMhleEtoxBMF+8bBuIuLyzY6QtrOwhJa wyxBYXuAO8w7Ms91LjS91z5XLP7Dpbgx5TtuwN265DpsRVePl8lyxv8s4PwvuUPuK5GnCW61 2nFzn/dpgl/Jdw6d/4N3e+A4eDPDh+DNBP8APEKom6gfQ6oAAAAASUVORK5CYII=</item> <item item-id="578">iVBORw0KGgoAAAANSUhEUgAAAFAAAAAVCAYAAADRhGlyAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGbSURBVFhH7ZaLkcQgCIaty4Ksx2ps JsVwQWNWiMQHm9m7PTOTye6MIHz8oAbWoyJgVNbLGBZApQgWwH8PcPNgjQW/lSQ28NaAMcfr QgNTAJfX4re5/uXujyswg6IAgyshpDWWEi6AHj5OaPz/PXsKMFazqNz+e6AYymYYN9+8Besc VWBFkbjOWA9EpHm74HalOiAaraq6Hl8BMMm4BBYryZ2P5/mMBSaJUJrJ3iuwDvfKQkrivoVr 1UFPMWhWtWcwCV4RytG2IsBiDkrqQ++iAvu6rwKQDVQOKm7YVmZSr/Aq50Js3TzTmgoUIJ2l OfItYsqx94R5aWFM+gyOVSc53isfnlNgE3xu3QygB+A+/fAgkYFQ0bjQWl87hREWl7qihZsg Jls+zixB2RFQNeb+mRbDGhhRLwXyjc8Tmd+xxjaY5NRvdlFgRT01cYgKbl17aGhkBlLV4CEh VG6gQv0kJlf2XKRZZ2Ge5F54zvU0s+U74zXGuYv0bwI4yf1dZgugkuQC+BGAyk2/yXxOgd9E QJnLArgAKgkozX8AgfGNFHHq5PUAAAAASUVORK5CYII=</item> <item item-id="579">iVBORw0KGgoAAAANSUhEUgAAAFgAAAAVCAYAAADCUymGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIJSURBVFhH7ZeBjcMgDEWZi4GYJ9Nk mQzDBYODDQaXa2gjlZOqk9pi7Ofv79T49TeVgJkafQX3C/BkESzAPw/42Lw11m8HJXH4zRpv THq5XcG0e4ffhf/Olyd2R+JV9xXn1ftyOg9XMILkgAHGVWT8juUdIMAjHPr5sVkGOcRj53dH Pk85FPfl+/u95YBBLbSTxg806/ZhCyCsc1zBgqIBmN08Ezlmw2Bdb57QU9PECaH9obDT+9oZ cpwAjp2mQOPY1ON0O0kpYCgiQFOL0RQsBKcxQwNazTmPys2rWbWY9C2i6j7xok5S7zcgQNMU Rnx4KBc+8ghwB9vA6SWikiYgTfor0y0Abi2EmBgGhcQ6N/ClwW1H8y+wBvRUVcFnO0UbEMci LkeSd/TjngcnHuQM1jYIOIO9imOJh89JZ6HwCfaB1oB8XgF8ui9tvjhBSXXlMpQtoIzHRef2 F+5LSWQFS15EAZeFnw8616IQKvqvglFReVyz+kExzaXVWchwpnzUS0mLHqwAHBAXB1wpNBSX EqsS6QN+34dbG1sovreo1AloxEMW1fmxpco8mKsujD/ZloMKngc4RC5+aBRLjj7XqhMBiRbx SuuDCciT1H7mrqse+KHxIQ++rTPPCDQAmI+G9hTxjPK+n8UA4JDsp56Dvw/mrgwGAd917e/E WYAn93oBXoAnE5gc/g8ZPJIX93MzIAAAAABJRU5ErkJggg==</item> <item item-id="580">iVBORw0KGgoAAAANSUhEUgAAAFAAAAAVCAYAAADRhGlyAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAG/SURBVFhH7VeBscMgCHUuB3Iep8ky GYavqAkqEY1N039n73q91iDweA+ogvWaQkBNWS9jWABOkmAB+CiAmwGlDGyTTqbMdwtaabB7 65YdrFYu1vDW1cPCOfo47fEebaHpMobTZuDrAKbEWwDGZ0wq8wYmA1E6d0j4PA/7sXIXAAbn oZIuaPsuA3erQRvTZiDHUA9IYpB0jvgpuIkfHSKhUif9E5gvSdgn7kGQJEzBSuRBmxi3dO6E arUrFGkBvfL17k4GcnKtfiMM7ewRY4I4EMCksJUJAHqWVgkTG+nc8a+QfPTZmd8B4LWjxMDA 0ER1fL7Bey+L1NSrT0EvKN00CB4HkCtxALVH1gMA+kuJnKlM7tGMt0rSzeTYGCKSRKVzNoqc LK30+iVcJobUv07sLgOR2eVKEb+zjOAKWQ2Roo/Tc3bTaOdGASVTmB/3xx5YVbLfyRRBpSGC Q8C1i9trDMM2jrUXSRRrDF04izVmkIFToFFjBkDP7nxZnlyk4yA5mN85QPIpLGb8pR4oxvFb Dwz8F873RGkK/1aaz0UzAKAP4lt74HMJf/rmQQA/7f7/37cAnKzhAnABOInApPkfp51Ep2ke tfAAAAAASUVORK5CYII=</item> <item item-id="581">iVBORw0KGgoAAAANSUhEUgAAAEwAAAAVCAYAAADsFggUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGXSURBVFhH7ZjZEcMgDESpi4JUD9W4 GYpRwhmBLSxNIPEHmcnkAgk9dmUcg/uhImBUo/dg3MCUItjAvgJ2ABpj4tM6rww1Y7hHZw3C oYjlHVpjsS6X1FBqKa+fuAdCrjP+pkjYKOwA3WRFWYKhCVYoQL7+MocAu8gU67IOkwTynJok fZYKpAKLQSt1QM0mC2gMh3hnU24LCAqFhXkWoFVYnykqjtaT1EU3JeYX7tIjFOadyxuksGSw YlBNb8kG2JV6Jiks5Dlbkni9SvpbPY3mS4GFcdmGI2AndX1yU0cJxRUnDxTWLv5Otq2lqb01 fVEGLFqxdHkWGNebkghoz9L07gGwEJh4Py5sdW8TACtWLGLhgHHfB9X1bhnaunUED6xf2LvL AL18d876lcLqBYIeC/L7xlpXYFLfWQTsFHgMbE5nEyisT8Sog7cZY0lhj56msJXAQvHsOWkA jD9bdQdXIaxT02+L/kcPm4N9ZZTBvWR7lbm7Sq5c5JNi39x8//oc9iQ012vZ/1Yo92gD28CU BJTDt8KUwF4bEUR2++lF2QAAAABJRU5ErkJggg==</item> <item item-id="582">iVBORw0KGgoAAAANSUhEUgAAAGAAAAAVCAYAAAC5d+tKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIFSURBVGhD7ViLjcMwCM1cHsjzeJos k2F8/iQ+IMZATxc3kitVakPC5z14pt3iek1FYJsafQWPi4DJTbAI+B4C9ui3Lfp9ckYlfM1l a2+frsCXYD9CdOj55MuFeLClSfHAg8W3i+FytnuQJ8xZhyWYgG8hoObhWoUxHsGlIi8SJHvm L4Gi7iSFv4b/EYPLIAMCOqTuXiL896E7AQF2D+28B6ajdFSv48+iJXvBX9d9ddiEeKj5XXTe 4wmgkHT98bjdCIDF4857AHwuBB17eh+y5y5NQJVOPd9D+ekE7cXL17KfYS51QuD0SqgJEkRl CWiltSgpE9Z+jj0rKdR+l5SkYRU8VQ69eJXUooojAozdn9MhBFBtg4zWzxcOZToGOlt0kB6E 13e1PlvB5xDWnm/9eLnW1tUsAfbuNxKQiwDaXBL5xzPi3GTYcZbsiAvcPF2aOH90ejgCJJlk ekMvQbcxzoTw28CfJqCM8mDTGNkNh2rDZOCvnoP9aUaDnH2oZW6wBcFDGK1TtwBjAlRy27tJ 6iTJnpQeSmXbdDhwRH8kSeb+gpVaWlkCUtftYA2FSRsn4FMCpI6T7DUu+WFFwM9gXdKm84d2 0e4aCn1aajf8FfHwGWCp4sX3GgjAp7y0Bb0Yk0dTNxBARvuDA+fRyl4SzEjAS6p6UZqLgMlk LQIWAZMRmBz+BwbzDVngsA+fAAAAAElFTkSuQmCC</item> <item item-id="583">iVBORw0KGgoAAAANSUhEUgAAAIAAAAAVCAYAAACOleY7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAKCSURBVGhD7ZiBccMgDEU9FwMxD9N4 GQ9DDQgQEiBCase50Lter8YgIT2+hDe7fn46AttP735t3i4AfhyCBcAC4MkROKxRm9U79TE8 37bwq8xBXpDG4+ut9am93Wqw5W0yhyR7nfm7TvuI+4l/sxnJPvL3MFZtyrKQNNL8YAXIQS3j Dc/TwxCcDIE0XibfBZsDhqNF1wv/j9uT5vPM7PqETBkbsK7P5xCid+cBKEnOTtyrEodR4VQo bTVVgBrh7hTFgEnjLqS99dlWA2AYEj8/PhDtCfOZ2DhF0DaJnlcI9L/Pc/2UO7+U1rMKQMmG QCUS74PgMAYCUJFonOx0mF1AIEjSuI9fZ322TeEEi/ZeUYDRHHCoPBQuV9MloEYayA8veSjg l3LBAfCnj0KJNi2Nl+6O9gDWelmGPoCpQcefaK81v/CnloOmAmBVcvuAuj8LQJJF3OzUmqzU tBBZIiDgDdPmpl6/aiQ9AQDaYwAMQIEMXH9+3jU//WEMGkBEXYxtrkKn9Meu7y0ABLkPhk/S 9s8pwHkUGwowXgJo0LtNYNMenLhpf0in3k1ceQvQOzoYUfqLcjhzC6iWgIa+e2c/owChASK2 WRPYGS+2NFACJAAkf6T5uUZwsFvlFdnsKXf/dhMWR9dAaFawCngoKjQNAPA/rUEtQdI1TxrH ng0AABKMvzX0r2lU8hslgKitX7OWMaYMrVIB+5otAWE6uQa27pMfBYD7+d8fglwyyjXJhxhW Kl/8EFQptdwmApV8LOL7Re++B8Dgub0NgEF/1mvTEZj7ErgAmA740yYuAJ6WkZv9mQPgZieX uesisAC4LrZfsfIC4CvSdJ2TC4DrYvsVK/8Bpj6EOaxyZWMAAAAASUVORK5CYII=</item> <item item-id="584">iVBORw0KGgoAAAANSUhEUgAAAF8AAAAVCAYAAAAgjzL/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHpSURBVGhD7ZdRksMgCIY9lwfyPJ4m l8lh2KrRgIJoOxu3O3amDw0W8AN/jIH9WUbALIu8A8OGv7AJNvwNnyNwgrcG3CHRkezpuTHp a/2p4D3AXWvjf5qA1F9rBzjcHc8YC2rIK6M/2vn3hnn4kv16Xv6UwMoFqNen33h9BFv88Xbi /3CvojsQewa1AoV/erC5C6wHrWd+48Se3qautQ4c0/lde8y/6rwAQ9xLKg4ucPSfHzD+oj37 4+JNQEHwcSJthSd8frT09P7qGl5WunYOdAQkdaLe+XQzFZduYXUMN3z1uCBtfORUzGs+6cq8 94HuxJqtyRw+RTnekU9rVI0xyQnpFfhs4qV4FAQ5mkyB6QDCw4gbaLMDtVBtBvI8/HYmUI1n N1cAZwn8WPP78EOSqKLdo6wft7EV853/una0+t7LVVzfu7HcefHMtLzv3Y/JTtgAkZpQDDnB VZ0PHOieLmvwWSlGs5H1/Q7815jDk59ISxOkD3+ss7VV2iY4++xVU5Cd0mhMDMJCsA/qvnzV rGVmovM1rGP2d+AHz/2XrHAq6b2/eslqLhPVS5ZmHwRPBm4fyArNHyvRN68afMOl91vttvPN QJ7MfRB+SOnpe/6TGNbEmoC/JsH/HHXDX1jdDX/DX0hgYegf8K7pjOfRSmcAAAAASUVORK5C YII=</item> <item item-id="585" content-encoding="gzip">H4sIAAAAAAAA/+xXzU8TQRR/u6XttrT0Qyy1oNaKRVS+1uIHQa0WDiZCTWu4EtpuoKalUNYo 8dJ44oBGY+CsifHiRW8e1RATYyJ49qL/gCfjwUTqm3nLstsQQeVi4DVvPt68j5nfTmfeuABA QE4jO3lbxLJOLStKMzCSkaViNpm5rmRVLoEUcj8axS2y7QdApU5+9gZ7VjmAVcUmz7/Gyi67 41xb0voO2f8BtSSnLHoAcg6MYlmydEIPQL18bwpVHODiY0/qAUSBB3OTT6mBQrg9MqBCvAGH vBS8wSfzuXgB/HzujsRIenD6sqoUBR7fhWwzCtzIe7iqpEynlPF8adLKB2LMOlfKkqyOy87q mNhmJqYulW4RBFeQ7ShI6aAMIXcj314AmMNaWQS4gPXcAo17AwS0CGIjb/j1SBdVtZzP3FAV ml8fsgeMtLcvYuoH1rBtImwDQcK2aR9hGzRgGyJsg9BM2IZ0bFvkxSUcadpPmLag6ABvVlpM 0Q7y5bsQ1kSpmCkxILUlMRBQvC5h0+530qZ5gAsfwPotcrXKtFE1WVAShbwyqXIbgTRp2bxE 25Vl3+fHL0JfoIbOgwVWqw6wGWSCbk3TEbX+apVFJKru0n9FP5FXDbxLO4tSUMKfCmEYhEms yzBbexT8lgJg1f/z7Cy4A71CxPfJ97AC7pG31pBR9+rIuag0/F6wYPuVdpAkMDqLq/By5o9i M8JbSDCuZ6t2c8LmOlulv4m/nfQv8emSBGDfhN3B7G5mZ/7uWbAzyIoJmt0OcLOR9oPTtDNM HcwTeYrhJ1FAa+Ygz3ePR7O2aCZ5gznLCl8if6uad+h9CvKVFUOYFYeRJ/AsKOAvjMEKMI61 bNqxDnHjnfx9G3wzej7qCZr7mGWxxrX5dz3ZFd/Tu/Coddn6cS0bkqAGK43M+LFJ87wWmUGN l62Ja2YtCqLgT+NZXIQMnpCFjZe8CW3Fnn+tMCWiXh6Y0uW0Us6PFUYH8jNThbHZ4VJOIf0k X80hMnCTLKK9NQ5TPhwx5MOtlA9H4Ajlw616PhzV3hpt9NaIHqW8uA2H2umt0XaM3hrtbJ8d p4jtfIrxJAgnSBDlM+jQnHSSkw4UdZGTjm5y0sWc9JBNl+5ENjg5uW4b02x7yTbGbE+Raky3 PW0YPGMYZP1fAAAA//8DAF4CFZvoDQAA</item> <item item-id="586">iVBORw0KGgoAAAANSUhEUgAAAFgAAADqCAYAAAAml4JKAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAwSSURBVHhe7Z3ZkeQgDIY7rs5h0+ho 9qGjmTjmdWsi2LfNoNf4BKELGnWBramaqjmwsD/UMtZvxO3lX6YEbqbW3fjLARs7wccA//z8 GF9Kn+ZNAH89bq/H13bBP6/n/fa6PzfAX6/H7f7af+2TS7Ozag7453l/3Q6604lCwOFPz9f9 /pz+c/6vxoCDdz5eu/OucG+322v+jsAHLz+8+rygmwLOvTeAQzw4/Pnr8bpdwIt3wN/f34uX ge/fv3/n7hU+4omnMiApwJOfXyEWz4D//fs3gw2Qw/evX7/2n//+/ZsCDp43D0IcCmaXnIDF NzfqJpf+PQnXSKQIoQQbeBhyeg0yO+AAefsKJ499LRc7zQC+MA+mPJIIEaRn94qq7rwykn/+ /Jk9hv1CQ4R7MMYsI7nF4nLApZ56oRgcw6z34DC9hXPgxfL8dzBNu9wsoijCoCFiu9HpntJ8 HswRJwHTXpyY8yc5wZ8ZwNuDBT39ukbs3WdkRaHBGxcTaPqoXNz7BQ5wwMaD7IAdsDEBY/O7 B5MJFSTDdoW2rbgngFsZHd2OmIspuEAHjMBywAUeVNPUAddQKzimY8BLTvi4CULVY7rKXRGZ 2u2a3JLqhDdP/HG7ro89o5ecH56Y6hfwlKN4RC88zBcVCZvw98OpFsCSfLTmPiv7AC7M5FP6 BQw/hslFQEk/blwAuLqP9EAuXToM4MRjZ5n+PqnRRyg43ovIQ4TKmydm+j4iwGw28CVLZiXx fE+rSTpcgdGlKdDo5tgbx2RKw9vitCZxX9eHlOwfwIOXC0/e3EFeNKEvVBMyKvsQvDe4RueA Cc/MPDhMKKjXpxjvxj4d26dL0YfkvZ0D5sAAj5s9aQ0DAUwUdOFsY34fY5+NVPYRyCm8t2/A 8Rw3upkd7NI57P73+cLp+XMCuLaPghddOg8RxXfD7g5wwMZD4oBHBXyFRLr2GluNoeeDEZIe Ilq5F2HHATtgYwLG5jv24LpkeMILedxFeaKJ+/2ZGax2OpJPx02OTib1C7g64b6C2Z/oECUk okwn7pf8BrqGBDu3bJ3J0km/gKGrqRPum4cFr+IS81s7fgCWVKnQ5gyKhj4ZHqcnBThs4p4L Eenon0DR0CfD04tVABYT97SNQ/ykPXyAEFGSDP9CFeV5uRi2mFmVuD91iHg34V7qwVjiXgGY WWnasQe/kQzfQ2QOB0u473JUnLhnbITQkAipzHSwX8DVyfD4BiQBzue0MTi49DYdCOGlmPU0 +gVs/IT1KfMO2Ji0A3bAxgSMzZt5sDbbf4V2rcbQFQ2EpJkHtxq10e04YOMRdMDXBVyraCiO g1ARRYNfJgD7uJKiISgheR4/XZpAOnScVHdFI9GEkLps+mT63pKrLngtRSP1QU5zW2r9UEsR tIPEvZs8jCanVzSAmEMUuFtbKZciUJLQBRWNWLZAlBDs5gZqXmYwNS9ajxsiahUNadkA5cH5 x12zTGBRnkdbiEjWrzyS5LgSwcMtUjQIz7y2oiEoISlgTtGgqg9OxwjLFOJI5E9y132SM77y D5l3DzYG7YBHBXwFpUJ7ja3G0BUNVzRa+ZLejsdgPauqlg64Cpv+oI4Bc8qEUPgoeZrjinFo Cihxb1fKb172C5hVJpgiG+ANySWlSL0gzRfrINdoTA7M/W/MR+Uk8UKDoTaYwuv2aKuhUAM0 sgeDMJcqE3ThI9UOXrttTQGls4aIBLCQ351jblTxBNnFS7VbV2xn7//0gBXKxFqBZAsDmOSu K+2FhYxTA1YqE2JyXloLF6vMsGrgaQEzcIXCR0d0yZPmWc0epoDSYuesgDllglUU0hsXDA0J YE0BJbS6YDxNW9ZqUDG+33mw/mGp65YO2Hh4HLADNiZgbN7Mg7XZ/iu0azWGrmi4otHKl/R2 zEKE/hTO3dIBG49vx4BrFQ2NSpHmHo4bbV62/PhfrIzo++gXcK2iATJrrINyfbDrMDSJ+qXn fgFDMkpFQ94HlEHOvWyt7j+1PwxgraKxAY7n17pcMNjmAYxD+iK2RgkZyoMLFA3ooKhKgXkx 3odmHcay5c9wb7inNyJe8uFioiZeKlQTdq0G3UfnIaKVosHtbVTSB/WOBW2jY8CVikajbR7Y dRhqRaXnWUStoqFRKbalW0Z9xBG+Yw82fsT6kHkHbAzaATtgYwLG5s08+ApKhfYaW42hKxqu aLTyJb0dsxChP4Vzt3TAxuPbMWBl9SisOLJ6jcZEl2sLnvTyosxbDeETVp2aHQ/bK6NkjQbX FlbDjn8v6KNjDwaf3SxduFUZSV8vLVmjwbbNPhlHSrKkj2EAY4rG8pHVAcbyyfx6jlW1iBND 688l60AGAZymLtm9MgjPQxP2QttlUI+yX3sMLuhjAMBQbcAl81iyKVmjQbbN9thIB1nbR+eA NWqDtFZN+n8c64+2eRiQNsfG14F0DFgDN4/B6a1RWKORNAZtsz01qPNhiidN9vsFLO6jEYui sfcUrNFYX1LZkjaZvE/Og/k+XNEwfnpzwA74gwSMu+o3Bhtf+KfMmwHWZvuv0K7VYLqi4YpG K1/S2zELEfpTOHdLB2w8vh0DrlU04HFc1SlB0dgfFsP7vyDXoFRN+gWs2Q+DUDQe0Ra0bNUp jTLxpmrSL2D40VUqGtknnnlxWlYm3ldNhgGsVTQgYK7IvUbReFc1GQRwgaKxEtavrcgzcUH9 aKWaDAC4XNFI07xPZquddWVRVDYmAHl8tVNNOgesSbpLisUWRzXzMcqWpo+LKBrSHhf5Ng8b eE6Z4ABfTdEoWaMhKRq700PArmho4sFH2nQegz/CwLQTB2yKt2dV2fjCP2XezIOvoFRor7HV YLqi4YpGK1/S2zELEfpTOHdLB2w8vh0D5hQNWrXgd/TOkpnzrrXHzSpWP0r6pyts9wu4uiIU gCgUOiLVj9L+we6221n0C1hUNKIGDETdrrJ7EplObaorUqUnPgxgbodvEiJbZycPvqL6QXgp d26DAMbzwpJqofVeyc6y0Iaq+8PnrAcADBUN5LaPeWqh985W0WO4/uVz6xywRtEIZHLVQuu9 6XBBO/WeO8BNjr44SbXAPXG55FjR4O28Dzf0168H11aEWlUKqpCdeh8Nrn/1+pGeARs/YX3K fL8e/CkCxv04YAdsTMDYvJkHa7P9V2jXagxd0UBImnlwq1Eb3Y4DNh5BB+yAMQIlagNcoxEf y+31ya310K8DGdODS9WGfQELqLUOKlknQ8nto8HusTFowp39JKvVBvCWZElKU93HCQGr1Q4I qQAwl/7k/jdmiEicpEDtIFcq0Z8PTu2QlZDhs2myopDkht/wYC7HzP1vYA+uUTveiMGIanL4 Pb0OZFDAtWoHP4vQqh2iohJFnDEBV6sdm363vc2TzoPVaoewDiSO6GMCNn76amneAbek6dk0 Y5oO+ESAr6BUaK+x1bC6ouEhopUv6e34LELPqqqlA67Cpj+oY8AlqoV2R28IhuuDf+pj998Y 4lG5VLXY3j4vUBtCFixbo7G/xc7kLTTVqlbIHXsw8LZKRYFNM0KHTvqgM29ytarD8DCAOdVC rWgIoTOxw+SOT7+PRsqpQNFgAQM7nPpx7n00YkqFigYJGLEjqB8X2EejRtHACFN2StQP0HaI WUTl0ilJbUirTnGDpH2H4oxVp95QNBLA4loL6i0grzqlf9QybjnMNM2Yg5l5B2yGdjHsgEcF rM32X6FdqzF0RcMVjVa+pLfjMVjPqqqlA67Cpj9oUMCSErGpEcQajPgJjigTcyAk8gzD76PB OQmrRKw1IeZyXTlgLncMu5wfqzE7p1Q0BOD3DCbmeXTWizafH3NKRYPnGzaYfk6lOGCuGNke J9qIOngnVbiDCxEnVDQ4vMp87hyW4Z5Empwy4vXnUjRkuLgXEmCAp8vFk/CwchJFQ4ab7YW8 H6LxPG63782QJm4PqWi8A5eapgHtDcwG8D02JMCjKhos3xBL46qpy8+bNx/Tq+XvaQhJ59Dx JwACpu24oqF/1DJuOeiTnDGVhuYdcEOYmCkHPCrgKygVmmtsOX67otHSqNs6CDhgY29wwA7Y mICxefdgB2xMwNi8e7ADNiZgbN492AEbEzA27x7sgI0JGJt3D3bAxgSMzf8HVhPV9cmMwCcA AAAASUVORK5CYII=</item> <item item-id="587" content-encoding="gzip">H4sIAAAAAAAA/+wXTU8TUXC2pe0WWvoBlFJQsWIRFJC1+EEIKVQOGqVJMVwNtBtdUyiU1Ui8 NJ44oNEYiMdqDDHxYLwZjYkaYmJMBM960P9gPJjYOu/NsmxrVVAvBqaZfTvf82Zf35vnAAAB cQSxkr+b8FmhZmS5ERhIiOJEIjZ+QU6onANxxD40ipgl61eAbIX04CVSFsmHQ9Yqzb/AwSY5 I1xb1Gi75H2LWmKlZHIBJO0Yxbxs7mQBqqTrU6hiBweX3asCMAk8mJN8itUUwumSABUi1Shy U/Bqj8RzcQN4ee726OjI0PQJVZ4QeHwHotXIcCLWcFVRno7L55T0pIULwsw6mU4Qr4Lzjuk1 sc6cnxpMX6YSnEK0ISOuF+U0Yg7xygJAno2LAA9xnFsgucdHhTaBqZa/ePVIA6qaUcYvqjLl 14voAiPU9QaLaN9abeuptj4/1ba+gWrrN9Q2QLX1QyPVNqDXtklaXEZJ/Q6qaROydvLXbFNR tF18+g4sazQ9MZ5mhSSBmxUB2esclnYfLqO7ON7EiZ/E8QNiocC0UTWWkqMpRZ5UuQ3Ot05b f9oTbVdXPB/vPAp8ghLoBzPkC3awGniCbk3pmDQ6X2ARCQrb8F/BN8S8Abdha0Ec0vhToRmG YBLHDMyWbgW/BB9Y9P882wuuQo8Q9Lz33MqCc/SVJWDUzTX0h8ThN4IZ359rG0kUo7O4Mn/O bCo2AzyFBON8Nmo3J/xeZ6PwJ/H/JfxNfDokAdg3YWcwO5vZnr+9F2wNsGCDtmQDeOaj9VBZ tDKKCOwTeYtRS6xaDZOg8NXj0qzNmoliMGdd4WPEz4WyK5SHGsC9R4ExSJUIc09rvEa63VJ+ JX/ZhO/b6FN0/+ibwf1LLn8xjV0Wezkz/7o7sepZuga5lhXLu7VuSISSWhkD6wT7j/G+Fqhq eNgW4RrcILMnZpMQXM+6GQb5qCKdKD/9MvCzihqBf61makTdLEeB2uUROaOMpc4eV2amUmOz w+mkTPoxPpvdZOAkXlC7a+yhfjho6IdbqB8Owl7qh1v0fjik3TVa6a4R2kd9cSuK2uiu0dpO d402tsvvp4htPMVIDIQDxAjxDDo0J53kpANZXeSk4yA56WJOusmmS3ciGZwcWrcNa7Y9ZBtm todJNazbHjEIjxqEjP4OAAD//wMAPYBpL+gNAAA=</item> <item item-id="588">iVBORw0KGgoAAAANSUhEUgAAAF4AAAEACAYAAAA6IcFdAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAnWSURBVHhe7Z3bces6DEVdl3s4bbia fLia1JHfjCvIXzrQEfUkKT4ACQgkc2fmzNybwCC1sEXR3KJ06/BjQuBm0ioa7QDeSAR/Bv71 ehkd4jmbVQH/+bh1j8/5gF/d837r7s8Z/Gf3uN275X/PyUW9V+LgX897d1up9wcQg3e/enb3 +7P/S7s/wuCdmh/dIvYJ+u1264Z/XkHcWbGeBe0VQBT8Vu0OaELx7tefj+7WsOoX8F9fX6Mq o38fHx+rHN0Q4f09GFFygLO/b3usH8D//v4OwB189+/fv3/Lf//8/EzgI1BDEfyLpPu7f1HN XVzD34fF2w45bkhKCSIeuq42WC3gHfz5xx3U5scNDRGlcPaSU3BmqMmeCVdDuK+/G8Lf39+D wuo/MWgovs5sjdgQnsf6cpKUirnKxhgfMK4rflR2aiqYntW4aXs/t4+mk5jVcM6PaVaTvyDS VYx5PBV8FfqYKKf6oBl8c6WvTi7DRTTP36p/HOslzgqqJq4YR5m+XPG4Tt9ngDcqEcADvBEB o2aheGvw2YWoxIply7FSdVoUT1ufkWr2mnkkGQE8QwMAz4AlGQrwkjSnXL7hkvvWfT7wRUsw QWmI903xYZGnYCtOOVKfyxUhGTuurA6TA9/vDUye2LD31tBJPgVNFQJjfM0SjDriDnI4eB88 IUfyc5mDTMaGa0j5xbyrgK9agiuc8XTufdrPSPGVHNnPJbjnYyOgiTNiHm5yt52cb6gJABDW 5KtDRiZH9XNeR+LYzVJ0vp/ubEjBPzH4nP0XSbMIsJAjo9KkQuPYzX08Hvj+b36Oi4HPW4Kb ESELvpJDUfHBbSSZac35FE90p5YCFGY1xftsjoDvbywMbi/k5Jo6fi7wXOjuIFLjb/JmKM4Q VYsNhzCSRRmlPBX4oiWYU1X0e7KtyFEpZx5Pm3oT7zeiJROYx9MaeoeoUyn+HYBSjwHgqaSE 4wBeGCg1HcBTSQnHqYFv2dKjHrtULTGrYZBUUzyjD02GArxR2QFeATysv8maSy6WaS0ZwPqb pLzZUdj/HtZfdJ7D+ts18ClMJ2H9USohDB7WHwW6ixEED+uPCl0OPNeFgvUnoHgudFduWH/H wcP64wwwa6zgGL+vA1f6FJYMjKoF8ABvRMCoWSge4I0IGDWrpniq79hynFTNMZ1kkFRTPKMP TYYCvFHZAV4BPDxXeK5UWRG2SvqpsN1yoHF8VgPPlarQIO44+E2z8FwplRAGD8+VAl1mqFla gudKhS4Hnmv/wXMVuLhyobtyw3M9Dh6eK2eAWWOFL677OnGVT2HJwKhSAA/wRgSMmoXiAd6I gFGzaopv2UulHrtUzTGdZJBUUzyjD02GArxR2QFeATw8V3iuVFnBc6WS8uOOz2rgue7hfnxZ eNsqPFdKJY4rPmgFnisFupz1N7QGz5UKXQ481/6D5yowxnOhu3LDcz0OHp4rZ4BZY4Uvrvs6 cZVPYcnAqFIAD/BGBIyaheIB3oiAUbNqiqf6ji3HSdUc00kGSTXFM/rQZCjAG5Ud4BXAw3OF 50qVFTxXKik/7visBp7rHu7Hl4W3rcJzpVTiuOKDVuC5UqDLWX9Da/BcqdDlwHPtP3iuAmM8 F7orNzzX4+DhuXIGmDVW+OK6rxNX+RSWDIwqBfAAb0TAqFkoHuCNCBg1q6b4lr1U6rFL1RzT SQZJNcUz+tBkKMAblR3gFcDDc015rtNC3HwBTL7rNS5G8t2v49L1kOf+7F7zZ/A+14lE8D5X pqc7WAOPEe7t0bsE889o0sxFGxb3khV07fmf8xa2+pxSP8dnNdqeKyP/yNwBv3fPz2d3DwBG QBNnxDzc3J/LuRBwPvkYr+i5DhgI+V1Yas3fH14KedzZkIJ/YvDKnms/KrvhwofiVJpUaAze nTk58P3f/BwXA6/tuTLy71C8P6tJj/39M99PNcYvB7leuKoXIK7nKmEvDkOLd9HkvPF+OqBz gZeAUsqxJ39K8dEwlZ/V5GVzKvDanmsxf+nU4szjq6foGHAq8MQ+v0UYwBuVEeAB3oiAUbNQ PMAbETBqVk3xVN+x5Tipmh9fnZTqyQXyqCn+Asdu2kWAN8IP8Arg4bnCc6XKiumJst/nyszv ug3PNSxe1g8t+arwXHeeAamPVU2Ikq8KzzWBFJ4rVZ6CX6AYnmhW8aUcjPwpB8q1WbjLAJ7r egfSKp499t+muPBceftc90BPKR6ea08lUmPJV4XnSr1qvHEclgyMigvwAG9EwKhZKB7gjQgY Naum+Ja9VOqxS9VccMlAqkvnzaOm+PMe8jl6BvBGdQB4BfDwXFOe62LlxVsoCxXg3B+Pfa4T SH+fa2pBrbbDGJ6rgOcai7piG2Kfa3qP7ojxgOdK3ruEfa4pazbede3HZHzb5XkG/a5tr6jY 5/oXzxYe6qNzlwE815TnGp00DlLt+rodzuC58jzX0lb40nx+cx0JhzDytcJr41RfoLT3uY7X 4v4RJ/NzZtyTOUoX7hkUZx5P/EJ2KvDEPr9FGMAblRHgAd6IgFGzUDzAGxEwalZN8VTfseU4 qZrDc2WQVFM8ow9NhgK8UdkBXgE8PFd4rlRZMfehcve5wnPNFIKxD3XXPte4WXiuuTOC4BDB cz3+rr8Qv+I+V3iuJaVnHrBMHi4oe1kJZ9TonoSPMcc+1wSUBRTBS+1j4bkygS3CT6mxn0am X2BQePx4aeIFzzXx2gfGPtextvBcqZP7t4zDkoFRWQEe4I0IGDULxQO8EQGjZtUU37KXSj12 qZrDc2WQVFM8ow9NhgK8UdkBXgE8PNeU57qurgWvBi3y59wfj32uE0p/n6tHd14sq27DwT7X UJOHPNfByHh0D+9luCnFY5+r6D5XZym6LTjhW4hZQ03FgfJzXey1osPK+eZ9q0k4RbN7m2MF sQWPfa5a+1wDpeopHvtco32uuV2FufdqZ+1FvM918PK2dwDkPNdgrDqgeDxbeAue/vzgI+Bd BcfbR4YFseCR5rRvZPjmSuMkHgXw4khpCQGexkk8CuDFkdISAjyNk3gUwIsjpSVUA0/1HVuO o5WoHgXPtc5oiVBTPKMPTYYCvFHZAV4BPDxXeK5UWSnvc/W6Ac/Vr8lf7XOF51o7Ewi78tj7 XOG5VqjDc63Jcv674Bcoyh7Vqdms4hM54LkWasl99WcKfCYHPNccdy50lwee6/FnGfzFs4XX msNzpV5D3ioOSwZG5QR4gDciYNQsFA/wRgSMmlVTfMteKuXYJeu9LBlIJkWuOgGArzNSiQB4 Faz1pABfZ6QSAfAqWOtJAb7OSCUC4FWw1pMCfJ2RSgTAq2CtJwX4OiOVCIBXwVpPCvB1RioR AK+CtZ4U4OuMVCL+A6jKWN+WUMp2AAAAAElFTkSuQmCC</item> <item item-id="589" content-encoding="gzip">H4sIAAAAAAAA/+wXTU8TUXB2S0tbWvoBtLWg1opFlA9Zih+EEKByMFEai+FkYqDd6JpCoayJ xEvjiQMajYGbiUZjSDzpyZiYqCFGYyJ4loP+Aw/Gg4nUeW+2y7apCurFwDSzb+d73uzre/Mc ACAgDiPa+buIzwo1K8v1wEBCtI4n42MX5aTKOZBA7EGjPpNk+QaQq5AevkTKLPlwyFmkuRc4 VErOPq5t1Wib5H2HWla7JLoAUjaMYloytUEnQJV0fRJVbODgsvtVAKLAgznJp7WaQjhdEqBC XzWK3BS82iPxXNwAXp67LTYyPDh1QpXHBR7fgWgxMpyINVzVKk8l5PNKZsLMBVFmncokiVfB ecf0mlimL0wOZC5TCU4iViIjoRflFPOHAa7MA5xl4wKAH8fZeZJ7fVRoEcRa/uLVI/WralYZ u6TKlF83oguMUNcdLqJ9hdr6qba+ANXWv4NqGzDUNki1DUA91Tao17ZBWlhCiX8n1bQBWbv4 a66hKNpuPn0HljWWGR/LsEKSwM2KgOx1Dku7B5eRHWdyEyfOslxFzOeZNqrG03IsrcgTKrdB rTpt/WlPtF1Z9ny8+yj4CUqgF0ywlreBxcATdGtKR9TotTyLSJDfhv8KviOuGXAbthYkIIM/ FUIwCBM4ZmGmdCv4JfjArP/n2V5wFbqEsOeD51YOnCOvzEGj7ufV3oh16K1gwvfn2kYSw+gs rsyf05uKzQBPIcE4n43azQq/19ko/En8fwl/E58OSQD2TdgZzM5mtudv7wVbA8zYoN3GD/7M R+vBXrQyigjsE3mLUUusWg1ToPDV49KsTZqJYjBnXeETxC/5siuUh+rHvUeBUUiXCEOPa7xG +p5YfiV/3YTvAPq0uot9vz7tCrBxsYXGAiy2YJfFXs7MvelIrngeXIM7jcvm94VuyAoltTIG 1gmWNO9rgaqGh20RFuAGmT01iUJ4PesQDPBRRTpZfvpl4GcVNQL/WiFqRN0sR4Ha5WE5q4ym zx1XpifTozNDmZRM+nE+mz1k4CReWLtr7KV+OGzohxupHw7DPuqHG/V+OKLdNZrorhHZT31x E4qa6a7RdIDuGs1slz9IEZt5in1xEFqIEeEZtGpO2shJK7LayUnrIXLSzpx0kE277kQyOOlc t41qtl1kG2W2h0k1qtseMQiPGoSM/gEAAP//AwA4t5Go6A0AAA==</item> <item item-id="590">iVBORw0KGgoAAAANSUhEUgAAAFQAAAEACAYAAAAtA1GUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAzPSURBVHhe7Z3bkds6DIZd1/aQNlxN HraarSOvma0gb+nAsUhdeAF+QDJsQwx2JjPnrLWw9BG8CD8BXm7xY0rgYmotjN0CqLETvAzo 9/e38a37NPcUoF/Xy+36tTzw9+3z43L7+FyAft2ul4/b+r8+uRy+K3Og358ft8tG835jLdDp V5+3j4/P+yfj/RgDnbzveludc4Z5uVxu6V8BevLizWvHAWsKtPfOCRThodOvv663y4BeugL9 9etX9qLm38+fPzf3mSCsn5eeCMBxQO9+POJYmoD+/fs3gZqgTv9+/Pix/vefP38y0GncK7pz 740ToHIy4ial+vfVcEv0/GlooBq6HUK8DBor0Anq8jPdrPjTAL73YcbjmC7Peq74za4v6Mj9 /v07eYT0Ex5KE+rILWMpCzR55tQN27XkXk8ceAwt4Wk9lOri9Cw/Db/3tWmzbBp+lpe6OPV5 /UaU1kLqmTvWod26kYbHeWnVIPGmtKyc5q5LjqHa5ZDei4/0mnf/jTydv/sOT/b9AdS4wQJo ADUmYGwuPPRZQNkABBGBGvFaK66rh2re362+1Jsdy2cPoPfWDaDGLh5ARwe6RpMaeaT/fY6+ b1H6HOVPkxzUl8B1azixtT3FapBks7WKOw/to06MC1UBlhw/XeDyQRV0XRMXSHDnOK0o2bgF Oj2wZuNCGxRpJOdOUlkeGFw3NVAjSrGNy9p3NykV3XHuvpTw1nlgF8JjolDa6xJ/PpKFwoq+ unzZzdJDUR5LPKgyvtpH9neKgaxk47bL9+Nl1+2oTQ1az1Ndl3sJ3onCe68vDyXmnxYoLXcY jKGpQ2TRUNL304BQbWLz6qGd901dvt3fRE1atUoqzfKL91XXIZjaIcXjm1K93mzhIcmDWV+S myj69aq0zsX35dVDjd9a3mHO/Rj6DiiPfGcAfYQe8bcBNIAaEzA29zQPHVHa0D6TVRtFxN7j OtSqdd9l52ld/l0P9O7vDaDGLeAO6HEJZCYDgr8VO+q6SgLZYgjSa2lp1x3QYxLI/Eir7tOm 6TRuSF5XZ54kiJw2BfKinAE9KoHkcFraq/9Vp+y0PZq9ThUrTYE7uLPaGdCDEkhJ7WiXVwKV dlX7AnpUArEAmjyvUU677BR5x7QvoMSMq5JATIDejRST0sfnV6/AKnJKTwdUzPg42uW7xmyz ofM4LWU9+wJ6WAIpaBwGWndnOldf3jPgC2jqdSg7RB7D2sTc7v8X9hT4crtNt2RSfHe8yxu/ JgXQAGpPwNiiuzHU+Plebi6AGiMPoGcBqtVfRrzOqo1CU4plk5UvbXZiDDVmGkBHB/qwpjTX cOI3zea9pHkybIIdjKaUmP9faTWbmy0NwgGt4qtVdIuINi0Bkv8vrWYGmmSM6+1a5CzVPbqP ca6fkxIII/YNn1aTqCwCX53cVQGdoX2uNfDKLg88tBlnx0+rmeOoOZouAC2TEkivBOmN/2da jeyhWzXcwitbgTBNQpy+P3haDbezo9d/7iCqSHwBZkemR5706fQbX+tQC01JWDZVIMoujzx0 B2xfQOexcAuY7EmrWWaOpsujtJq2S1drzfq7I63G+A1Ia86dh2pv3Ot1AdS4ZQJoADUmYGwu PPQsQEfUirTPZNVGoSndSUaXt3Kn2U4ADaDGBIzNufNQTlPKMeTlZIYpZtmG1kAJthIaow2J uUjjaUoooq4s1bZDG6pqPO34O2ceCvKUoOajLTPUaRnVMUTbp8Ju5TE0JUGV5ALHYIyE542A 4k0DaUrMOLkjAFyPxVQSAvDOoTQlFFFXZsH1zqqpo0e5+AiaEvTCg2MooQ1pcpHG0JSgKqks 1SYODcykKP7d5sXOZnkhTwloPjlLmNDUqSXPWo5Yr1mFpmT8BqQ1585DtTfu9boAatwyATSA GhMwNhceehagWv1lxOus2ig0pdCUrHzJ8ZuS/SO+1mJMSsa83QE9rClBvakSlfhjgpCN6jP+ 8AB3QPnad0hT0mZwSMf/NIWwVhWgiX92BbvcjqEHNSV1jhGIm6Ig9Y6jgZx5KKp9Z+ChCNqu qP9ZIvZdV2o9FmnvCl1ejPpLte/S5oCUK8pVGHPmoYTqs6SvSJpSmQjL5RhJXlhMPGTtuzmI jcq1nQco8i61RLFHe6KulY8G8gUU5SlZeGjTXWt9nRijt1MD1ecs+QKati+B2ndIU+I+Q3lK bX07pvaduO+pGKncATV+cXm5uQBqjDyABlBjAsbmwkMDqDEBY3NP89ARtSLtM1m1UWhKoSlZ +ZLbeKj9A77a4tPG0Fc/iJfvcwf0iKa05117iWfmCYbaH8rUbVJqVu6AYk2J03wa/wRndvC1 7yS9aYOPzlpyBnSvprQziyMFiFFxq+KzMkql1qzcZSMDTUmKts9OCs87mm2Qte+gfa2q6g0o 1JQy7C3mO8VN9XvkE+95HFxzukqIYtRfoVmdYR3aVQKbEw4OnXd0VPWEGSj1+O1sDAUiXfdR Px7KOUag9l07vpZjqOi9Xhf2sPYd0Hxyf+5P6CIWp2ztO6Q3ndlD1ZqS9rwjpCntybmHOVJe PdTL684D9+F+DH3g2d7ypwHUGHsADaDGBIzNhYeeBahWfxnxOqs2Ck3pDO/yVq39KjsxhhqT DqDjAwXnHXF1RYpYZ57kuKj8EkRhzlNa4RLHXwxR+66KPtloPrymtLlqdyYTVQiGqTzmrMs/ W/NB9megKQh9BWcyLZF/uhf4AvpszQfZr2Kq4MSbxPMuv5zCQ5+t+SD7Myh4JtOqzVNqa/Zw lx7KnnfEVWDURtTVmhL20Fx0i4bqC+h0o2zZSpBjpNZ8ePv6M5myJ57jPKX2RiuPAvXttB4K 7ZcL0sZD1Q3mrcvntt/y2S00n12a0gK17/JR+874DUhrztkYqr1tv9cFUOO2CaAB1JiAsbnw 0LMAHVEr0j6TVRuFpuTuXd6qad9oJ8ZQY/gBdHygQFOqcoXaCjW6PfDwTCaYi4S0rq1V3Hko r/mg+nPK85SaOGadb4QzPTRalL8AM8ojgvXnlPWYUL4RzEVSaFGzk/ryUFHzKQe8wqOUOUxt pF3toTvuyx/QIhcpjXfdXvoJalN/bkcAmD0zpI3Flt8raFFlM/sDKp7clSefqv6c1kNRZF/6 TLyvjNUXUKgpTY6ZT03sFVzlGHq4fh7Suup1lzOgjfhVeh4Lsx8CWN1c8kJQ4ZHPb3IOlNOU 5Jx4Zh3aakpH6ue14yvYO+XOQ41fXF5uLoAaIw+gAdSYgLG58NAAakzA2NzTPFSrv4x4nVUb habk79XTqm3fZ+dpXf59j/Tebw6gxvwdAgXajSpXSLOdm6lvx+RByXGErVXcAWW1G2WuUJdj VHkg0p60utTdIKit5wyoXrvJsdEmV0jMMUJxU2VMFSQs+Asw79Bu+pjnUrcJdHl1FsiEhs70 gLX13C2bNNoNkys0PSjMMUqMrrcLJ2WodCk+nWYZWXx1ea02tAZ851whIluETHR71EPB2OkT qKQpNUucZQLT5xg9NobKtfXciXRAU1J1yU1folMxQa4TPGtpscunJDr10GUyWPLZ61lclyvU TEooT4msn4fWqKcEavzq8mJzvialFz/8M74ugBpTDaAB1JiAsbnw0LMAHVEr0j6TVRuFpuQu OGLVtG+0E2OoMfwAOj5QTT4QIVfMR1qUEwcKkOTrmiN9kA2VnuU92sTEH7FuhDUfbb5RFYxW 6ln+JBB43tHcN1W6ERcV0mpWQmSe0rPm2/M1hoqakqwbHT5PqRhLJd1ojNp39weWdSONZxVZ JGQeFLDB6FnlvObSQ+Xad4yyKWk+Gs1KstHqWc0qwRdQoClpdCNZ85HzjWQbmeAAte9KV6A8 9NHzlIBupNazHC6bcO27BSoFlBn7kKZE1tajVwg6PcslUONXlxebczaGvvjpn/B1AdQYagAN oMYEjM2Fh54FqFZ/GfE6qzYKTSk0JStf2uzEGGrMNICODxRpSgq9CUTTU/hjOhil0o7KPaiP 23fnoUjzEfWgVUjjD6jiwm5dSI6KiyrsOwO64zylpqtOoJKK+UXkL63XohAf1pt09r1Fm5Cm JOpNMzXY5ctjMfLW71VqNrHvEShX+06Tw5QHyT7Dbg2jTp+V8c7CYy3su1uHPppHJAElZvR1 TNXoTQr7/sZQdJ6SpqCfMMu3TLdJStab0t8K9p0BBXlK92dR1Z9DD9zN3FOX31YED9t31+WT CyjPU+Lqz7VAqW006zq01Y/Qd2smPW+TkvFbyzvMuevy74Bg+Z0B1JKmzzHU+AlfbC481Bh4 AD0L0BG1Is0zWbbPqilZGv2fbQVQ49YPoAHUmICxufDQAGpMwNhceGgANSZgbC48NIAaEzA2 Fx4aQI0JGJsLDw2gxgSMzf0DUG41YrbG/e0AAAAASUVORK5CYII=</item> <item item-id="591" content-encoding="gzip">H4sIAAAAAAAA/+wXTU8TUXB2S0sprdBSK4JgrbV+oBI2epAQLRQOJkKTYrgaaDewprBQ1gjx 0nhCg1Fj4IwXY+LJm/GExpAYDuAZD/oHPBkPJlJn3izLbgOK4sXAbObNe/Pm483s27fz/AAg IfYj+kRfxrbCKKhqIxAoiN7RbHroppo1BAcyiB2olHQpnu8AxQrlxVscuZUIkqJHmX2DpFIJ JIW01xxXKXINQM4LIEtoyMfS3mpW9vkVwOlkNWoE2Gz1AUV4CQDO0KqqUgP9PRNXDXVUEpb9 iB47AyWhVoh61YmMOqzpY24xcYG0c3qWeRWCd8mK1jM5Mt6lT3Fw1xArkZGxwu1FnEEHd+YA lpGq8wD3kM7M8XxdhFMogxwUnZDlqdMwCtrQLUPl9bUDhWKHUHvMMa7byFqYs1Z3kLMWNrMW UebfITt8iLOFnqFedIsRh53DIjA/Jiyljw7plCKeqKXwkL3JoQV14Ku/j2t8jCG14ngJsVQi aRRN59VUXlPHDKGDUm3mnjFb1F1dCX56+rLhM5TBZXDBeqkKPDaeZGnzcmRzvF4ijwylffiv 4Afiug33YW9BBnR8DIhCD4whLcB0+VHwS4iA2/rm6Sy4CxelWHAt+KQIgYEld4NdNrlwJeHt W5Zc2F80D5IUeie/qmgn/8g3QQhPV3s8O9WbkX4vs1P4G///Enbjn39/APRO6O9Kf1068/fP gr0Bbiy9PuKLvx3m/eBz7AzHgAo8KjFCzIqY3RxoYvfUmNouU0WzqVO99wrxa8m5Qx+xky/U 9GIlG0UcwbMgj08UurEdRqo4duzzbb7cb7u0vfiwpp7oVIHpBkwVsMqizvXZ923Z1eCzB7AQ X3F/2KiGvOW5MsGZP/rGRMWKSKnGn60Dy1b92iVLsU48jTUYFOvtEtTAcXbr8LeATf3tQbyt Bi5EqQiXJS6E+9WCNpi/0a1NjucHp/v0nMryaRFNIyuYm+WI837QZN4Pmvl+0HSUK95mlIzy /aD5GN8PorRrYmwrKpwn0yAdZ0aTsB03jZxgI3FkJdhI/CQbSZCRU6yTsIycthk5s6nbYuqe Zd0W0j3Hoi2W7nnbZKttksY/AQAA//8DAAP2AmN2DQAA</item> <item item-id="592">iVBORw0KGgoAAAANSUhEUgAAAEMAAADqCAYAAAD52fhVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZYSURBVHhe7V2LleMgDExdLij1pJpt JsX4gj8E2yCEIziEZt/b925vMWuGkZDGsvKY8eUReACLLwIAI2DDBYz3+22WLAEY7/k1Pebp BTA+bAAYGzNWIB6P7fv5Z9JUYCZxBwozKWbG3zMwp92sBjGvYjBGdibFYIAZI9MhFYG+X9N6 vOJoNbL9xDKRqFGJmmV+gBlgRpz/YAaYAWZkzwZvJl7LOCdfCn7OrpI54AAG85quhrlNlPoC GDEHKomw1E5x5pG8bzBDBzP+5qd33s85JVEbYMaqx3ol4e+ZlBUMgOFYEbDh/Zqn8OeQ2sOf JufFA4zQTzimTHPsyef4ZgJmhFEFfEaABk6TU8CJOIMTgR/GjO9ACyABGC2CLq0CTwGRyKHI WnVkrbz9hs9o4TN4e9HXqM6ZwQuWVkhTY8P/d2VTKsUdfhi9151GBZxPovYMUtSlbmR6fSpV r18dM4OfYK2s4Ak4s0o9oyD1viyQWLBOZlwWlBZlrrudGrv6j1RlVb9mIs6MFQiquL9fMEr8 QHYszYjdlXYMBn2aLDWk/lSgxvKAcIB0DAYVO3zOjwMYxFj3nCTy9D/mNzoHo22ECjCQm8QZ B2a0YAaUrg1lSbq1dKGS9w3ZD7JfwhnXCGthJh4BCaUrgHOJRi0rXTsWSxasVvYrUK9YWasr UDnNebLBfk8TMT0jzGhHAWPZ/Xj5EaV0uez2K+iMAgaha6Y10FOTAp/Kq6vpkvQZu3PQyoyt B0eqmJWvdIVeUi0YQkrX4cRQDUbL+LN7DRRgtEWghbjz31b0wx+uFoFC6YLS5XkJpQtKF5Su rJuuYCaCSlf4zFVfGZNQTddnD6lqnXCLqx2tWR5lB0hlrXQ+ogMMKaXLmcc0bfrn2jEuVb3T LzOkarouini6eEUPGLeUro8RLMw41n0epcCvofQLRlbxJkSbELjIsxKFYMjWdHk/sQClTgOV VLqO9eP66kCzR6/8gI59hvxiczMCDChdiUyzVssIKF1QuqB0xYyugp6R8/+yv8dpouc0EVK6 Tm8WKIxAhZSucy6iMzcRUrouWesJZBVmIqV0bXUeXtOI6Bs7Hv06UCmlywvCX+lPn8+QYsaF CRplPyGla3lMcKKCXaXrcnqoZIag0qU/zpANtTmz9XuacO5eeAzAUBF0Ce86Z7pqzIDSBaUL SheUrowTguwXnkw1UuH0BpSoYHs0m35z0Y2odppwjrL7Y0pUsK3xSObNRcVglKhgO+T52i6d zCjROjz9rIBBvdloDgyq3mt4MIpUsNF9RtGbjcODUaaCnT8kV19R7P0g5PaVOo/W28ulLwQY ULriDKnGDChdULqgdEHpgtLFP9MryH4SatbxjQIDfboINcteR3p+MjZ+R/oCzWL8jvRsMCx0 pGeBYaYjfc5n8BqxV8tN+CdyamTJ24sUGDwgFDw3SccZ5470STULHenv8bJjM7m3oF+uAhhQ uqB0RT/a46zI/WJm4bUVslapW+PNA58Bn9HYZ/CI2deozs1EQukKALfRkZ5Rt2WnIz0na7XS kZ7UM6x1pCfAsNeRPgmGyY70OZ/B+33HR6uU0hXGMqqbsAsoXYe4TjUYbSPUjs2kLRAKBOG2 gIAZLVJ41HRtKEvSraWhSN43ZL/Q5PZ/SyIMZrREoIUDlVmPoNJlpyM9rXQZ60hPZaX5F/Vq +DrZ00TqDUVzHekp2c9cR/ocGLY60hM+w15H+pwDDT65QmfXR7dAKaULHemL4z7JNEL2aC1e yu8XAAw9ucnvu10yQzVmQOmC0uWJCAcKpSvulcCMuswQUrr0d4oV6sVlryN9SdY6ekd6Ss8w 15GeBGP/iFIrHemLlC6Vfcdl+vcZ7EhPOFCLHenJXlz644yS5FtmbLUUXub22s4CMKB0JTJN fPbi+ong+7eUYSKFr5vCS+0Tbx44UDjQxg6UR8xfRnFVsCH6dFFAFahgY/TposC4k9Fu8xFt uXU60Fv1XisYOvt0kVbymqdH+IkUjinuvdWcD9Lap6sEDHZH+qCCJzK/TjMp7kjPa0+lFIyS Nxt5QDiiKAXD3Tqz3gt9unKOdLgI9N6CqasUmwnAkEegRdaqsaZLEmmvdElOqnUugBGT/bTu puR9gxlgRiKAk6SZ9rlgJjATmEnWimEmMBOYCcwkiwDMJA7RPygj8n1L7yZYAAAAAElFTkSu QmCC</item> <item item-id="593" content-encoding="gzip">H4sIAAAAAAAA/4xTz28SURCetwu7sEApCEhZhApVqkCF12piT9g0xoM/EvwDmi2sLUYE6db0 yMmjR+PNi3cvxrvRkzH+Pd5wfgCtnnxkdubNft/Mm499cQBQaE/RHI5NfEb8V13/aDB6GQZa O2jR/qgnuRDn7hJs2Hty+NzvBZyBLvMNfFonx+O90ZmkH6LZmOgugY/Q8mi/3wFsIv7N+/M9 rU+2HMoAw+QgvWx+Lwgmg8PTwFeM3EVLwsUV2q38tQ9zgVAw8X2XExotMebQ0mtfAaZhW39A 37Ei4u2o+IgjPhrT1g+APSeuDWwWxJCpwhq2oI3VUJyEDv/EOrEVeZ8AMJXRhhaejTOfMWMo tU36rHLmC2ptK0tjhTtch+RMcbtpNK1ppk4KU5c4nKb4uBntfMNNJMu+k8np9C/02ctcsp/D Mc3vJlWDvH6LI05zsMbvPubpAKx+gUnTrCukwoKEshSFVIArQiouSVASVqYsrNKChSOtC6sE V4W1fs6CikxkV0XIyob46jWGvt5gWVCm6yLKcg81IVY3RYoapm6IFDUufFM28lfXBWw1pHq9 Kb6xJV2aeFhltoBnvCWdmstOLSE32tKJUlqKt7j4tkxVX0y1wx94sq8Pjibe+Pjg2Wgy9AKb sVm6J5ze9wJPJCjMv0MDdeG7RZ/jbRqBY9o53tng5D7XkbtVpFuj5lhZM/yBKv5/dlHcDiZe z9f7Jr9y58CyWgXlqhlFSrk40qysDOWaSC0rU7mhGWVCiIEZBmHETDv4yiIMsWzGYBAhDIGj VIfoDmKYHkMM0+OIYXqCe2GwwhgMkoQhsBw3+fh06E8GPe+FCBLhYz9A68MAf9ScLrwzV/Of Fb+4+QMAAP//AwAd9h573AQAAA==</item> <item item-id="594">iVBORw0KGgoAAAANSUhEUgAAAhAAAAGOCAYAAADGhDonAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACpjSURBVHhe7d3ddSLXEgZQ4iIgonAI fiAa3iYHv3opCWeAaRAS4r+h+FTA9l2zPJbgdJ39tW7VNA0zWfqHAAECBAgQIDBSYDLy8R5O gAABAgQIEFgaIJwEBAgQIECAwGgBA8RoMk8gQIAAAQIEDBDOAQIECBAgQGC0gAFiNJknECBA gAABAgYI5wABAgQIECAwWsAAMZrMEwgQIECAAAEDhHOAAAECBAgQGC1ggBhNdscTFrPlZDL5 /DVbLu5YylMJECBAgMBvChggUvof8+V08j00fMyny8nMCJHidxwCBAgQqBUwQNR6Xr/a3kBx /RM9kgABAgQI/L6AAeKXMnAF4pfgHZYAAQIESgQMECWMIxZZX3kY7oOYLucfI57noQQIECBA oJGAAeLXwlgsZ4aIX9N3YAIECBC4T8AAcZ/fXc9ezCZL91HeRejJBAgQIPBLAq83QHy9RLB5 u+TZBr332Ml0vhz1qsLRGyE/lvPpkbdqDm/h/LG+KxC/dM47LAECBAgUCLzYADE05Z2hYf25 C2fuNRi+f/MlgM2xJjtvzRzyGK4qbNfc/f3wvfWNk1+fA+EeiILz1xIECBAg8EsCrzVAHPwp f3M14NSMMDT46Q13Mm4Hgels9uOzHVbjw8/7GrxV85dOa4clQIAAgUcLvNYAcaC1d0Xix/eH 4eK2qwAfi8XmpY79AeFgYPAyxaNPYOsTIECAwO8IvPQAsb5ScPK+hk1zn37dr7AdJoav733M 9DAYHFuneID4fnljew+FfzNxDjgHnAPOgXHnQGqceNkBYvMyw5m/b2Ld/HevQOwODju/PzU8 POAKxPBD4p8+AvLok8W2Epn0ykQevfIYqklm8pIdazM8jH15Yv/lhs+bJM+9M+MBVyD6nY7v W1HyB/F9lcftXCbjvB79aHk8Wnj8+slMXm6AuHjl4WQeBQPEnTdRJoMff1q+3zPk0S9zmfTK RB698nAF4p48Dl6WOLPY+i2eOy9x/Hip4saXMFaHO/c2zktb88N4SSj7fXlkva85mkyuUco9 Rh4562uPlMzkpa5ArJv31+csfP9++zbO/bdt/vxchu0wccdNlOuEt58PcfgZEZdOgGTwl2rx /exribyvE/Azcp1T6lHySElff5xkJi81QFxP3PORyeB7CqiKAAECBO4RSPYRA8Q9SRU/Nxl8 cemWI0CAAIEGAsk+YoBoEPi2hGTwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZ RwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIE CBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFM MviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZ RwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIE CBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFM MviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZ RwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIE CBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFM MviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZ RwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIE CBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFM MviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZ RwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIE CBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFM MviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZ RwwQjbJPBt9o20ohQIDA2wtMVt14+LX/z/iv59p67khvf3pcBhh/olSdcNYZ0uG/OUc5cNj9 fyvnQ+Z8uNwhrntE8g+iBojrMok8Khl8ZEMOQoAAAQJRgWQfMUBEoz1/sGTwjbatFAIECBAo Ekj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviK eq1BgAABAr0Ekn3EAJHMfjFb3eE++fw1Wy72jp0MPrltxyJAgACBjECyjxggMpkulx/z5XTy PTR8zKfLyeznCJEMPrVtxyFAgACBnECyjxggcrn+PNLeQDF8Mxn8b23bcQkQIEDgcQLJPmKA eFyOZ1d2BeKX4B2WAAECLyxggHjhcDcvZQz3QUyX84+fG00G/8rE9kaAAIF3FUj2EVcgfu0s Wyxne0NEMvhf27YDEyBAgMDDBJJ9xADxsBgvL7yYTZa791Emg79cnUcQIECAwLMJJPvIew8Q Xy8nbN5aufemiMvnzZEbIVdvt1jOp0feqjm8hXM6X313+48rEJeBPYIAAQIExggYIMZo3fzY oYHvDA3rz2g4vC/h9PKb50923po5PHa4qrB9e+bu74fvrW+c/PocCPdA3BydJxIgQIDAUQED ROLEOLgisLlycM1ViO0gMJ3Nfny2w2p8+Hlfw9ErFKc3lww+QewYBAgQIJAVSPaR934J40eu e1ckzmT+sVhsXorYHxAOBobDlynOnUrJ4LOntKMRIECAQEIg2UcMEJ+Jrq8qrO9RGJr+3sdM D4PBj/sXvp708wpEwQDx/RLH9j4KESV+6ByDAAECzyRwrFdsv5bah+60vpAw3JuwOzTsDBGn hgdXIFLnqOMQIECAwJUCrkBcCVXxsM3wcOzmyc+bJI9dedge2EsYFRFYgwABAgSKBAwQRZCX ljm88rD7jBsGCDdRXiL3fQIECBB4oIAB4oG4X0uvrx6cetvmjS9hrBY/9zbOS9tKBn+pFt8n QIAAgecTSPaRt70HYt3ovz6T4fv3s9U7LG6+iXJ9rm0/H+LwMyIunYrJ4C/V4vsECBAg8HwC yT7ytgNEx9MiGXzH/auJAAECBO4TSPYRA8R9WZU+Oxl8aeEWI0CAAIEWAsk+YoBoEfmmiGTw jbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8x QBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQI ECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2Tw jbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8x QBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQI ECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2Tw jbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8x QBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQI ECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2Tw jbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8x QBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQI ECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2Tw jbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8x QBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQI ECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2Tw jbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQIECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8x QBSFVrFMMviKeq1BgAABAr0Ekn3EANEo+2TwjbatFAIECBAoEkj2EQNEUWgVyySDr6jXGgQI ECDQSyDZRwwQjbJPBt9o20ohQIAAgSKBZB8xQBSFVrFMMviKeq1BgAABAr0Ekn3EAJHMfjFb DuFufs2Wi71jJ4NPbtuxCBAgQCAjkOwjBohMpsvlx3w53RkaPubT5WT2c4RIBp/atuMQIECA QE4g2UcMELlcfx5pb6AYvpkM/re27bgECBAg8DiBZB+JDBDDn7an84/jYkMj3fuT+ONo+6zs CkSfLFRCgACBVxF4sQFisZztvt5/5E/ei9lk+TYzxHr/wz0Q0+X+TJUM/lV+WOyDAAECBL4F kn3k4VcgDq4+HBkglsPNhdP58sQ1ihc9N4bB6ucQkQz+RVFtiwABAm8tkOwjDx4gPpbz6W6T HJrm9l0I+18//BP5q58F+1deksG/uq39ESBA4B0Fkn3k4gDx77//7rz1cNv8J8u///77ZzbH rixc+7XVtYf5tPhljGPH3j+bvl5O+NzX2KsgR4+x2cvBWzUPrrK4AvGOP9z2TIAAgUcKtBog /vrrr+WfP3+W//zzz7opDv8efv3333/fBl+fb7D32Qbrr+997URjH/40fvJGy9Ha2ysdh5+1 8GOpob6bb744foxhH9s1d38/HHd94+TRKzCbqpLBjyb1BAIECBBoL5DsIxevQOxqHSts3SSH 1/IXPz/nYP28Y/c2PHiA2Dbp6Wz243MXjqV+69By+hh7VxWuuQqyU1gy+PY/BQokQIAAgdEC yT5y9QAxXHE4W9i1L1c8eoBYLDY3Y15s3vv3Z1yf08epYxwc8/BlinNHSQZ//W49kgABAgSe RSDZR64eILYvYZxEHDVA7N8w+Rv3QGya+/TrfoVtTXtvO90OI8fuj9jfc8EA8f0Sx/f9Js9y 4qqTAAECBDICx3rF9muZClYvu197oO3NlKMGiKM3R37fZPh9+8G4P6lfVfOlKxDr7++/E2R7 z8TOEDE87tTNlQ8YIK7amwcRIECAAIEjAi2vQFxM6kTDPvsplNtFH/E5EJcGiIMN7Q8xnzdJ nntnhgHi4mnhAQQIECCQE3ipAWJ1J+XPT6I84viQT6L8jQFivdedqxoja0gGnzudHYkAAQIE UgLJPnL1SxgXN3+mWV78uzDGfv7CxWJWD7jUvPffYvrjpYobX8JYHfbc2zgvlZ0M/lItvk+A AAECzyeQ7CN1A0Q35xN/58buZ038/FyGI/c/bPd06j6Io0PK7qdtXvgcij2zZPDd4lIPAQIE CNwvkOwjrztA3J9DfIVk8PHNOSABAgQIPFwg2UcMEA+P8/oDJIO/viqPJECAAIFnEUj2EQNE o7MiGXyjbSuFAAECBIoEkn3EAFEUWsUyyeAr6rUGAQIECPQSSPYRA0Sj7JPBN9q2UggQIECg SCDZRwwQRaFVLJMMvqJeaxAgQIBAL4FkHzFANMo+GXyjbSuFAAECBIoEkn3k9AAxWX3rN34V IT7jMsngn9FHzQQIECBwXiDZR1yBaHQ2JoNvtG2lECBAgECRQLKPGCCKQqtYJhl8Rb3WIECA AIFeAsk+YoBolH0y+EbbVgoBAgQIFAkk+4gBoii0imWSwVfUaw0CBAgQ6CWQ7CMGiEbZJ4Nv tG2lECBAgECRQLKPGCCKQqtYJhl8Rb3WIECAAIFeAsk+YoBolH0y+EbbVgoBAgQIFAkk+4gB oii0imWSwVfUaw0CBAgQ6CWQ7CORAeJjPl1O5x/HlT/my+ls0SuBX6omGfwvbdFhCRAgQOCB Ask+EhggFsvZZLb8GhGGgWH3v1eQi9lkaYYYPvgzEMcDT1xLEyBAgMDvCiT7yMM71sHVhyMD xGqCWE6m8+WJaxS/m0bw6Mngg9tyKAIECBAICST7yIMHiI/lfDpdfr96MVyNmKz/pD2Z7H99 979D0s0Okwy+2daVQ4AAAQIFAsk+cnGA+Pfffz8b/rbxb/79999/b7a6vqLw/b0fL0Ucu9pw 7Guraw/zqZcxksEXnKeWIECAAIFmAsk+cnGA+Ouvv5Z//vxZ/vPPP+vBYfj38Ou///5bsQ1X FHauHKyHg53/Hl6a2LvfYTNw7NwT8Yk/3Adx8kbLZgE9qpxk8I/ag3UJECBA4PcEkn3k4gCx y3BQ2DAg7N39+OOGyGP3NhggTp5ZyeB/7/R2ZAIECBB4lECyj1w9QAxXHC4XduyKxN7VBgOE AeJRPznWJUCAwJsLXO7TdUBXDxDblzBOH3pzH8OPlyFO3gOxf8OkeyAG12TwdaeQlQgQIECg i0Cyj1w9QGxvpjyOtHl3xeE9DMcGg83Xhk1+v/qxd+WiSxLhOpLBh7fmcAQIECAQEEj2kasH iJP7/nwXxqkPgjr7KZTbRX0OxFoiGXzgPHYIAgQIEAgLJPvIfQPEheFh47b3SZRHMH0S5QYl GXz4nHY4AgQIEAgIJPvIXQPEcHVh86FQP3/tX424+Hdh+BRKA0TgB8shCBAg8OoCTzNAvHoQ 6f0lg0/vzfEIECBA4PECyT5y1xWIx1O81xGSwb+XrN0SIEDgPQSSfcQA0eicSgbfaNtKIUCA AIEigWQfMUAUhVaxTDL4inqtQYAAAQK9BJJ9xADRKPtk8I22rRQCBAgQKBJI9hEDRFFoFcsk g6+o1xoECBAg0Esg2UcMEI2yTwbfaNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAAAQK9BJJ9 5OQAsfpsqNUHRB3CPPrrvaLIVpMMPrszRyNAgACBhECyj7gCkUj0ymMkg7+yJA8jQIAAgScS SPYRA0SjEyMZfKNtK4UAAQIEigSSfcQAURRaxTLJ4CvqtQYBAgQI9BJI9hEDRKPsk8E32rZS CBAgQKBIINlHDBBFoVUskwy+ol5rECBAgEAvgWQfMUA0yj4ZfKNtK4UAAQIEigSSfcQAURRa xTLJ4CvqtQYBAgQI9BJI9hEDRKPsk8E32rZSCBAgQKBIINlHIgPEx3y6nM4/jvN8zJfT2aKI 7rmXSQb/3FKqJ0CAAIFjAsk+EhggFsvZZLb8GhGGgWH3v1cCi9lkaYYYPvkzEIefOQIECBB4 WYFkH3l4xzq4+nBkgFhNEMvJdL48cY3iZYPe31gy+LdBtVECBAi8kUCyjzx4gPhYzqfT5fer F8PViMn6T9qTyf7Xd//7jdLe2Woy+PcUtmsCBAi8tkCyj1wcIP7999/Phr9t/Jt///3335sU hqsHX0PBzksVw/eOXW049rXVtYf59A1exjhnteJKBv/aP0J2R4AAgfcUSPaRiwPEX3/9tfzz 58/yn3/+WTe44d/Dr//+++9gQBherpjs3sywbphXDBXrOWRy+kbLVzgP9ganAysDxCukbA8E CBD4VYFWA8SuxMXC9q8uHLu34egViDcYIPZPqSMOF31/9bR0cAIECBDoLpDsIxevQGyxhisO lwo7+FP11S9hvN8A4QpE9x9D9REgQOD5BC716codXT1AbF/COHrw9aCwf2Pk6pEnB4j9Gybf 5B6IAe+UlZcwKs9raxEgQOAtBVoOENubKc8nMrzLYnc4ODYYbL42bPL7don9571D7od7Tgb/ DsL2SIAAgXcTSPaRq69AXBvC/odCnf0Uyu2ib/o5EPtWyeCvzdPjCBAgQOB5BJJ95L4B4qDx H7uSsPdJlEdy+PVPojxxY+fFU+bMW1I3b23deQfKFVbJ4C/uzQMIECBA4OkEkn3kvgFiRbu+ GfDoh0N9u1/8uzB+9VMotx9utfd204unzfHnDcPQ9q2su78flrtklQz+4vY8gAABAgSeTiDZ R+4eIJ5Od6fgbUOfzmYHfz/HuX2dft7eFZiRVzaSwT9zbmonQIAAgeMCyT7y3gPEYrH5+zdG NvqPU887WGfczaHJ4P3wESBAgMDrCST7yFsPEF+nzo/Gf+SejeH7x15m2R8YCgaI75eDvj86 /PVOcTsiQIAAgXsEjvWK7dfuWXfMcw0QR69A7AwRp4aHY88rGCDGhOexBAgQIEBgV8AViPT5 cPQljM+bJM/d4PmAKxDprTseAQIECLyOgAEinWXVALF0E2U6OscjQIAAgW8BA0T6bDj60sPn 2zrHvISxqvvc2zgvbSsZ/KVafJ8AAQIEnk8g2UfcAzGcH1U3Ua7Pte3nQ+x9kNQV52Ey+CvK 8RACBAgQeDKBZB85OUCs2t/d/zvnfmz1J8upvNxk8OXFW5AAAQIEfl0g2Udcgfj1uL8LSAbf aNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAAAQK9BJJ9xADRKPtk8I22rRQCBAgQKBJI9hED RFFoFcskg6+o1xoECBAg0Esg2UcMEI2yTwbfaNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAA AQK9BJJ9xADRKPtk8I22rRQCBAgQKBJI9hEDRFFoFcskg6+o1xoECBAg0Esg2UcMEI2yTwbf aNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAAAQK9BJJ9xADRKPtk8I22rRQCBAgQKBJI9hED RFFoFcskg6+o1xoECBAg0Esg2UcMEI2yTwbfaNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAA AQK9BJJ9xADRKPtk8I22rRQCBAgQKBJI9hEDRFFoFcskg6+o1xoECBAg0Esg2UcMEI2yTwbf aNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAAAQK9BJJ9xADRKPtk8I22rRQCBAgQKBJI9hED RFFoFcskg6+o1xoECBAg0Esg2UcMEI2yTwbfaNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAA AQK9BJJ9xADRKPtk8I22rRQCBAgQKBJI9hEDRFFoFcskg6+o1xoECBAg0Esg2UcMEI2yTwbf aNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAAAQK9BJJ9xADRKPtk8I22rRQCBAgQKBJI9hED RFFoFcskg6+o1xoECBAg0Esg2UcMEI2yTwbfaNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAA AQK9BJJ9xADRKPtk8I22rRQCBAgQKBJI9hEDRFFoFcskg6+o1xoECBAg0Esg2UcMEI2yTwbf aNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAAAQK9BJJ9xADRKPtk8I22rRQCBAgQKBJI9hED RFFoFcskg6+o1xoECBAg0Esg2UcMEI2yTwbfaNtKIUCAAIEigWQfMUAUhVaxTDL4inqtQYAA AQK9BJJ9xADRKPtk8I22rRQCBAgQuEJgsjz/v2GJZB8xQFwRWuohyeBTe3IcAgQIvIvANQ3+ lMWl5w7fv+afZB+5rqJrqvaYuwWSwd9drAUIECDwZAKXmvS57Vx67rUN/tFkyT5igHh0miPW TwY/oiwPJUCAQHuBZ2nwj4ZM9hEDxKPTHLF+MvgRZXkoAQIE7ha4psFfeszdRbzBAsk+YoBo dEIlg2+0baUQIPAkAhp8/6CSfcQA0eh8SAbfaNtKIUDgCoFLzfua7587zL3Pv2ILHhIQSPYR A0Qg0GsPkQz+2po8jsA7CVxqovc24HvWf6cc7PV2gWQfMUDcnlP5M5PBlxdvQQLNBS417y53 0TdnVF5zgWQfMUA0OhmSwTfatlJeSOBSk/Yn+BcK21ZaCiT7iAGi0SmQDL7RtpVSJHCpeV/z /XsbfNFWLEOAwI0CyT5igLgxpEc8LRn8I+p/hzUvNeF7G/A967+Dvz0SIHBeINlHDBCNzsZL zeOa7/9mA7umvkuP6V5/o9NFKQQIEDgQMEC86UmRDP5NiW2bAAECLy2Q7COuQDQ6lZLBN9q2 UggQIECgSCDZRwwQRaFVLJMMvqJeaxAgQIBAL4FkHzFANMo+GXyjbSuFAAECBIoEkn3EAFEU WsUyyeAr6rUGAQIECPQSSPYRA8Qt2X/Ml9PJ6v0E21/T+fLja52P5Xy6/d5sufix/rnvLdfr +YcAAQIECNwqkOwjOtYtKS1my8ns52iwXWYxWw0Pn9/b/f3w/XPfG76fDP6WbXsOAQIECPQW SPYRA8QN58IwCEzn39ccvpdYLGeT6fLrW+srFdurEOe+t1khGfwN2/YUAgQIEGgukOwjBojR J8PwMsTOkLD7/B8Dw/qaw/dAce57n2skgx+9bU8gQIAAgfYCyT5igBh9OmyGgunXfQ6nrjjc NkB83Vexc4/F6BI9gQABAgReWuBYr9h+LbVxA8RY6fWVhN0rEMNA8fkyhSsQYzU9ngABAgQK BVyBKMR8/FJXvkzhJYzHR+EIBAgQeHMBA8RTnQC7N0e6ifKpolMsAQIEXkzAANE50OEtnF/v rFgVOlxZ2PkcCG/j7Bye2ggQIPDaAgaI5vl+zKffHyK1O0ys6x6uQpz6IKlz3/M2zuaxK48A AQLtBQwQ7SN6TIHJ4B+zA6sSIECAwG8KJPuId2H8ZtJ7x04G32jbSiFAgACBIoFkHzFAFIVW sUwy+Ip6rUGAAAECvQSSfcQA0Sj7ZPCNtq0UAgQIECgSSPYRA0RRaBXLJIOvqNcaBAgQINBL INlHDBCNsk8G32jbSiFAgACBIoFkHzFAFIVWsUwy+Ip6rUGAAAECvQSSfcQA0Sj7ZPCNtq0U AgQIECgSSPYRA0RRaBXLJIOvqNcaBAgQINBLINlHDBCNsk8G32jbSiFAgACBIoFkHzFAFIVW sUwy+Ip6rUGAAAECvQSSfcQA0Sj7ZPCNtq0UAgQIECgSSPYRA0RRaBXLJIOvqNcaBAgQINBL INlHDBCNsk8G32jbSiFAgACBIoFkHzFAFIVWsUwy+Ip6rUGAAAECvQSSfcQA0Sj7ZPCNtq0U AgQIECgSSPYRA0RRaBXLJIOvqNcaBAgQINBLINlHDBCNsk8G32jbSiFAgACBIoFkHzFAFIVW sUwy+Ip6rUGAAAECvQSSfcQA0Sj7ZPCNtq0UAgQIECgSSPYRA0RRaBXLJIOvqNcaBAgQINBL INlHDBCNsk8G32jbSiFAgACBIoFkHzFAFIVWsUwy+Ip6rUGAAAECvQSSfcQA0Sj7ZPCNtq0U AgQIECgSSPYRA0RRaBXLJIOvqNcaBAgQINBLINlHDBCdsp+s4ni3X5381UKAAIEnFzBAPHmA t5afDP7WGsuf924D0yP2Wx6KBQkQeFaBZB9xBaLRWZIMvtG2lXKvwCOGknda815/zyfQSCDZ RwwQbxp8o20rhcDvCnQfln5Xx9GfTMAA8WSBVZWbDL6qZusQIPBgAQPOg4Ffa/lkH3EFotG5 kwy+0baVQoDAMwt0H3CG+t7on2QfeS/Z5idRMvjmFMojQIBAnUD3Iadup6s38uXaeu5IhUCv ulQy+Fc1tC8CBAg8nUDhgJPsIwaIRmdaMvhG21YKAQIECBQJJPuIAaIotIplksFX1GsNAgQI EOglkOwjBohG2SeDb7RtpRAgQIBAkUCyjxggikKrWCYZfEW91iBAgACBXgLJPmKAaJR9MvhG 21YKAQIECBQJJPuIAaIotIplksFX1GsNAgQIEOglkOwjBohG2SeDb7RtpRAgQIBAkUCyjxgg ikKrWCYZfEW91iBAgACBXgLJPmKAaJR9MvhG21YKAQIECBQJJPuIAaIotIplksFX1GsNAgQI EOglkOwjBohG2SeDb7RtpRAgQIBAkUCyjxggikKrWCYZfEW91iBAgACBXgLJPmKAaJR9MvhG 21YKAQIECBQJJPuIAaIotIplksFX1GsNAgQIEOglkOwjBohG2SeDb7RtpRAgQIBAkUCyjxgg ikKrWCYZfEW91iBAgACBXgLJPmKAaJR9MvhG21YKAQIECBQJJPuIAaIotIplksFX1GsNAgQI EOglkOwjBohG2SeDb7RtpRAgQIBAkUCyjxggikKrWCYZfEW91iBAgACBXgLJPmKAaJR9MvhG 21YKAQIECBQJJPuIAaIotIplksFX1GsNAgQIEOglkOwjBohG2SeDb7TttqXIo180MumViTx6 5TFUk8zEANEo/2TwjbbdthR59ItGJr0ykUevPAwQ/fIorOhjOZ9O1hPiZDJbLvZW9sNYSF2w lDwKEIuXkEkx6J3LyeNOwAc8PZmJKxAPCPDUkovZanCYbcaG3d9vH58MPrjtpz2UPPpFJ5Ne mcijVx6uQPTLo6iixXI2mS7nH5/LfcyX072rEH4Yi6iLlpFHEWThMjIpxCxYSh4FiMVLJDNx BaI4vJPLHQwMewPF6onJ4FPbfubjyKNfejLplYk8euXhCkS/PGoqunKA2Nwf4RcD54BzwDng HLjtHKhpWpdXcQXislHNI64YIGoOZBUCBAgQIPB4AQPE4403RzBApKQdhwABAgQCAgaIAPLm EJdvooyV4kAECBAgQOBOAQPEnYBjnn7pbZxj1vJYAgQIECDwmwIGiKj+cBXi9AdJRUtxMAIE CBAgcIeAAeIOvMc89fynVT7mmO+66hjrM49d39+yc7f0dL7cftzHu8rW7XtMRp9HPfIZK3X1 vNtKRf5+Rh544ozIaC+Hz881vLk2A8TNdI95opc5HuN6bNUx1mcfu5h9fcJorvr3ONKYjDYi 26t8hx8V/x5itbss8/czUhvMzmrXZ7T52fgaGoZMdj/c8IYKDRA3oD3uKW60fJzt/spjrM8/ dvgBnn59xGhuB69/pDEZDW90mq4/Q2U6mx18yuvrWz1ih3X+fkYekc92YD7/CcdfRx4Ghh9X RzdXLu65CmGAeFSut6zrrZ63qN32nDHWZx87/BDu/ADfVo1nHRMYk9Hq+R+LxealIy9h1JxP Zf5+RmoCObLKyIx+rrB3ReKGIg0QN6A97Cl3nQwPq+o1Fx5jffaxmz+lTb/+llXDRNkJMyaj 3YMaIGoiKPP3M1ITSO0Asb5id+f9WgaIhyV7w8K3/sDecKi3f8oY63OPXX9vd2gY/s/S6+8l 59eYjAwQJeQ/Fqny9zNSn812xRsz2rzcd///TxkgHhft+JVvPBnGH8gzRn0y6KhcDv+SNNo3 Coxy3zmGKxA3gu897WH+fkZqAlqtckNGm+Gh5kqpAaIsyYqFxt20VHHE911jjPUdj31f4IKd j3E3QBSA7y3xKH8DRF1W4zKquvKwrd8AUZdkyUrXvyWn5HBvvcgY65OPXb8VaudS4PAngjtf V3zrUPZb2OodLpPP28R3Mzhr5ApE2Sk05mfk66D7/n5GyvI4ttDVGR28lHR/WQaI+w2LV/Bp lcWgZ5Y7bX34trPTj92+fXDzVw/f/7pibv/PcKQxGX3uxwBRGGyNv5+RwkgOlrouo/WgsfuB d5+/9zbOR2ZjbQIECBAgQOBAwBUIJwUBAgQIECAwWsAAMZrMEwgQIECAAAEDhHOAAAECBAgQ GC1ggBhN5gkECBAgQICAAcI5QIAAAQIECIwWMECMJvMEAgQIECBAwADhHCBAgAABAgRGCxgg RpN5AgECBAgQIGCAcA4QIECAAAECowUMEKPJPIEAAQIECBAwQDgHCBAgQIAAgdECBojRZJ5A gAABAgQIGCCcAwQIPI+Av2nzebJS6csLGCBePmIbJPBCAgaIFwrTVp5dwADx7Amqn8DbCCyW s8lkOVn/mi7nH2+zcRsl0FLAANEyFkURIHBUwBUIJwaBNgIGiDZRKIQAgYsCBoiLRB5AICVg gEhJOw4BAvcLGCDuN7QCgSIBA0QRpGUIEAgIGCACyA5B4DoBA8R1Th5FgEAHgfUA4QbKDlGo gYABwjlAgMATCXws59PNOzFmiycqW6kEXlDAAPGCodoSAQIECBB4tIAB4tHC1idAgAABAi8o YIB4wVBtiQABAgQIPFrAAPFoYesTIECAAIEXFPgfMhyg5IcE20kAAAAASUVORK5CYII=</item> <item item-id="595" content-encoding="gzip">H4sIAAAAAAAA/4xUz28SQRR+swu7sEApCNiyWCpU0QIVhsbEnrBpTA9WE/wDmi2sLUYK0q3p kZNHj8abF48ejXejJ2P8e7zh+wG0enLI2/fm7fd9b+btDHEAUGjP0ByOTXxG/Fcd/7g/PA0D jW20aG/YlVyIcw8INug+PXrhdwPOQIf5Bj6ts5PR7vBC0o/RbEx0FsADtH3E/X6HhVHuzfvL OY1PtizKAMPkIL0o/jAIxv2j88BXjNxBS8LVEdop/TUPs0AoGPu+ywmNlhhxaOnVrwCTsK0/ oG9bEfF2VHzEER+NaesHwK4T1wYWC2LIVGENW9BENWxOQod/ok5sSd4nAExlNKGBa+PMZ8wY SrWoP8uc+YK9tpWlUeE+61A7U1xuEk1r2lM7halrHE5SvNyMdr7hJJJl387kdPoX+ux1luzl UNL6bpLaKfiAW1zRb/E5ycEqIz6u0DL4G+SZOsm6Qs3PqXpOLQg1DzeEWlhQYU24maJw1+bc 1py7Ltw1uCnc9UsulGSPdllaW9oQX77F0Ncb3Chs3G1p02IOFSGW70hzKpi6K82psPCmTOTj VwVs1US9Whdf25IqdTwQymwA7RfuSaX6olJDyLWmVKKUFvEGi7dkV9X5rrb5yCd7+vB47I1O Dp8PxwMvsBmbpZvD6T0v8KQF+dnJNLAvfNvU7FRuckwzx7vonz1iHbltBbpHaoaVMcUfqML/ Z+fidjD2ur7eM/mVOwMW1TIoV00pUsrFLU2LylCuidSiMpUbmlImhBiYYhBGzKSNryzCEMtm DAYRwhA4SjpEdxDD9BhimB5HDNMTXAuDJcZgkCQMgWW5ySfnA3/c73ovpSERXvY+Wg/6+KPi 9BfgzLr5z4hfnfwBAAD//wMA951uzO4EAAA=</item> <item item-id="596">iVBORw0KGgoAAAANSUhEUgAAAgsAAAGOCAYAAAAZykA4AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACu1SURBVHhe7d3dldrIEgBg4iIgonAI fiAa3pyDX30mic1Ai2BgQAgktUSpu/n2Hp/d60FS9Vc1rZrWz2wa/xAgQIAAAQIEXghs6BAg QIAAAQIEXgloFtQHAQIECBAg8FJAs6BACBAgQIAAAc2CGiBAgAABAgTSBawspNvZkgABAgQI fISAZuEj0myQBAgQIEAgXUCzkG5nSwIECBAg8BECmoWPSLNBEiBAgACBdAHNQrrdulseds1m s/n+s2sO60bj6AQIECBQsYBmocTkfu2b7eanQfjab5vNTrtQYirFTIAAgRIENAslZGkoxk7z MPRxXydAgAABAlMENAtTtDL9rJWFTBMjLAIECFQioFkoOZGnFYX2voVts/8qeSBiJ0CAAIGc BTQLOWdndGyHZqdhGK3lgwQIECAwTUCzMM0r208fdpvGPY7ZpkdgBAgQKFpAs/Aqfddl/vMj ii9Pxp3Pbrb7ZtKVgd6bFL+a/bbn8cj2scm7/VtZKPq7UPAECBDIXECz8DRB7Qn4pkE4vdfg xb0B7deTf7Q/H2tz8zhkG1a7WnDZ5+1/t1873dR4fc+CexYy/z4THgECBIoW0Cw8S9/DT+/n n/Kf9QPtyXybcJfh5aS/3e3u3p1wbBXu70PweGTR32iCJ0CAQMkCmoXR2eusNNxt1zYSaT/d fx0O58sV3WbgoTlwqWF0qnyQAAECBBYV0CyM5DytADy9D+F8It9e7y+4NA7t33dexdw2AX37 WbhZ+LlEcbnnwb+ZqAE1oAZqq4GRp7DZH9MsjCA8Xyp48fsXTif625WF2ybh5r+fNQpvWFlo vyH8Ey/APd78ckT269hzX8e9PWqkvTPKQJ7PjcLUSwzdSwbfNzC+ekLiDSsL65Xw5x458pv3 c5X7R85+nYrgvo67ZmE994cjD64oPI11gWZh5g2OvoHXKSTu67hHT5zrjTK/I6v59XISaW9l 4VmeHy4tvCiI02OVN5cp7i43JF6GOB7u1aOTQ+UZWURDsXzS17mvl23269hzX8c9ukHWLDzJ 8+lEfX2Pwc9/Xx6d7D4qef/eg0vjMOMGx1Ncl/cvPL6DYag8fQMPCb3n69zf4zpmr+zHKC3/ Ge7Lm47dY6S9ZmFsVgr7XGQRFUYjXAIECFQhEDnPaxaqKJnHQUQWUaWEhkWAAIGsBSLnec1C 1qWQHlxkEaVHaUsCBAgQSBWInOc1C6lZyny7yCLKnEJ4BAgQqFIgcp7XLFRZQrEv66iU0LAI ECCQtYBmIev0lBFcZBGVISJKAgQI1CUQOc9bWairdq6jiSyiSgkNiwABAlkLRM7zmoWsSyE9 uMgiSo/SlgQIECCQKhA5z2sWUrOU+XaRRZQ5hfAIECBQpUDkPK9ZqLKE3OBYaVoNiwABAqtc btYsVFp4kR1npYSGRYAAgawFIud5zULWpZAeXGQRpUdpSwIECBBIFYic5zULqVnKfLvIIsqc QngECBCoUiByntcsVFlC7lmoNK2GRYAAAfcsqIHlBCI7zuWiticCBAgQGCsQOc9bWRiblcI+ F1lEhdEIlwABAlUIRM7zmoUqSuZxEJFFVCmhYREgQCBrgch5XrOQdSmkBxdZROlR2pIAAQIE UgUi53nNQmqWMt8usogypxAeAQIEqhSInOc1C1WWkKchKk2rYREgQOAqoFlQDLMFIotodrB2 QIAAAQKTBSLneSsLk9NTxgaRRVSGiCgJECBQl0DkPK9ZqKt2VlmeqpTQsAgQIJC1gGYh6/SU EVxkEZUhIkoCBAjUJRA5z1tZqKt2rCxUmk/DIkCAQFdAs6AmZgtEFtHsYO2AAAECBCYLRM7z VhYmp6eMDSKLqAwRURIgQKAugch5XrNQV+24DFFpPg2LAAECLkOogcUFIjvOxYO3QwIECBAY FIic560sDKajzA9EFlGZQqImQIBA2QKR87xmoexaeRp9ZBFVSmhYBAgQyFogcp7XLGRdCunB RRZRepS2JECAAIFUgch5XrOQmqXMt4ssoswphEeAAIEqBSLnec1ClSXkt05WmlbDIkCAwFVA s6AYZgtEFtHsYO2AAAECBCYLRM7zVhYmp6eMDSKLqAwRURIgQKAugch5XrNQV+2ssjxVKaFh ESBAIGsBzULW6SkjuMgiKkNElAQIEKhLIHKet7JQV+1YWag0n4ZFgACBroBmQU3MFogsotnB 2gEBAgQITBaInOetLExOTxkbRBZRGSKiJECAQF0CkfO8ZqGu2nEZotJ8GhYBAgRchlADiwtE dpyLB2+HBAgQIDAoEDnPW1kYTEeZH4gsojKFRE2AAIGyBSLnec1C2bXyNPrIIqqU0LAIECDw FoHN8czb/nm8rDD17+NO4XFHegu5nT4TWK4Ypxavz7c54X+uTA4cbuco9bDsOSvyh0LNwrK5 y2ZvkUWUzaAFQoAAgQ8SiJznNQuVFlZkEVVKaFgECBDIWiByntcsZF0K6cFFFlF6lLYkQIAA gVSByHles5Capcy3iyyizCmER4AAgSoFIud5zUKVJdTeWCa1labWsAgQIHASiJznnVFKLbrD 7lQo5z+75tAZR2QRlUoobgIECJQsEDnPaxZKrJSvfbO9aRC+9ttms7tvFyKLqERCMRMgQKB0 gch5XrNQerW08Xeah+jlqRoIjYEAAQKlCWgWSsvYyvFaWVg5AQ5PgACBFQQ0CyugF3nI04pC e8/Cttl/3Y8gsoiKtBM0AQIECheInOddhii8WM7hH5pdp2GILKIqCA2CAAEChQlEzvOahcKK 41m4h92mub3HMbKIKiE0DAIECBQlEDnPaxaWKo3rJYHz44ydhxOGj9Jzk+LxzsVmv+15PLJ9 bHK7P3718o+VhWFgnyBAgEBdApqF4vLZnqxvGoTTOxAe7yN4Pqzz9t33JbSrBZdHIm//u93P 6abG63sW3LNQXMkImAABAjMFNAszAcM3f/hJ/7wiMGZ14XLS3+52d+9OeLgPoXfl4flII4so 3NsBCRAgQMAbHMuvgc5Kw4sBfR0O58sJ3WbgoTl4vNTwykmzUH4VGQEBAgRymefds/CGWjyt FpzuKWhP8J1XMbdNwN39Bt8BvKFZ+LlMcbnvQbrfkG67JECAwFsF+ubyy9+99cA3O3f2WFj6 fFnhtkG4aRieNQpWFhbOgt0RIECgfoHIFWTNwoL1dG4U+m5s/L6BsW9F4XL8N6wsLDg0uyJA gACBzAQ0C5klZEw4jysKt1slNAvdFy25wXFMGnyGAAECHyOgWSgt1acT+bNHJRMvQxwNXj06 OUQUWURDsfg6AQIECCwvEDnPuwyxQP5OJ/XrOw9+/nt3fNIh+QbHU1yX9y88voNhKOzIIhqK xdcJECBAYHmByHles7B8/rLYY2QRZTFgQRAgQODDBCLnec1CpcUVWUSVEhoWAQIEshaInOc1 C1mXQnpwkUWUHqUtCRAgQCBVIHKe1yykZinz7SKLKHMK4REgQKBKgch5XrNQZQk1oe8Mr5TQ sAgQIJC1gGYh6/SUEVxkEZUhIkoCBAjUJRA5z1tZqKt2rqOJLKJKCQ2LAAECWQtEzvOahaxL IT24yCJKj9KWBAgQIJAqEDnPaxZSs5T5dpFFlDmF8AgQIFClQOQ8r1mosoTc4FhpWg2LAAEC q1xu1ixUWniRHWelhIZFgACBrAUi53nNQtalkB5cZBGlR2lLAgQIEEgViJznNQupWcp8u8gi ypxCeAQIEKhSIHKe1yxUWULuWag0rYZFgAAB9yyogeUEIjvO5aK2JwIECBAYKxA5z1tZGJuV wj4XWUSF0QiXAAECVQhEzvOahSpK5nEQkUVUKaFhESBAIGuByHles5B1KaQHF1lE6VHakgAB AgRSBSLnec1CapYy3y6yiDKnEB4BAgSqFIic5zULVZaQpyEqTathESBA4CqgWVAMswUii2h2 sHZAgAABApMFIud5KwuT01PGBpFFVIaIKAkQIFCXQOQ8r1moq3ZWWZ6qlNCwCBAgkLWAZiHr 9JQRXGQRlSEiSgIECNQlEDnPW1moq3asLFSaT8MiQIBAV0CzoCZmC0QW0exg7YAAAQIEJgtE zvNWFianp4wNIouoDBFREiBAoC6ByHles1BX7bgMUWk+DYsAAQIuQ6iBxQUiO87Fg7dDAgQI EBgUiJznrSwMpqPMD0QWUZlCoiZAgEDZApHzvGah7Fp5Gn1kEVVKaFgECBDIWiByntcsZF0K 6cFFFlF6lLYkQIAAgVSByHles5Capcy3iyyizCmER4AAgSoFIud5zUKVJeS3TlaaVsMiQIDA VUCzoBhmC0QW0exg7YAAAQIEJgtEzvNWFianp4wNIouoDBFREiBAoC6ByHles1BX7ayyPFUp oWERIEAgawHNQtbpKSO4yCIqQ0SUBAgQqEsgcp63slBX7VhZqDSfhkWAAIGugGZBTcwWiCyi 2cHaAQECBAhMFoic560sTE5PGRtEFlEZIqIkQIBAXQKR87xmoa7acRmi0nwaFgECBFyGUAOL C0R2nIsHb4cECBAgMCgQOc9bWRhMR5kfiCyiMoVETYAAgbIFIud5zULZtfI0+sgiqpTQsAgQ IJC1QOQ8r1nIuhTSg4ssovQobUmAAAECqQKR87xmITVLmW8XWUSZUwiPAAECVQpEzvOahSpL yG+drDSthkWAAIGrgGZBMcwWiCyi2cHaAQECBAhMFoic560sTE5PGRtEFlEZIqIkQIBAXQKR 87xmodTaOeyatlDOf3bNoTOOyCIqlVDcBAgQKFkgcp7XLJRYKV/7ZnvTIHztt81md98uRBZR iYRiJkCAQOkCkfO8ZqH0amnj7zQP7V9FFlENhMZAgACB0gQi5/lim4X2p+nt/qs/t+3Js/OT dmlFMCVeKwtTtHyWAAECdQhoFgbzeGh2t9fpe36yPuw2TfX9wmnc7T0L26bbN0UW0WC6fIAA AQIEFheInOeLXFl4WFXoaRaa9gbA7b55svaweNLW3WHbPN03DJFFtO7YHZ0AAQKfKRA5zxfY LHw1++3tibE9UV6eCuj+/eNP3LWWVHclJbKIajU1LgIECOQsEDnPDzYL//79u3lE73JS3jS/ f/++N+z76f4dyn3H6T1221QsdClizNiulwS+jaauarwYw8PjkQ+rJlYW3lFq9kmAAIGcBbJq Fn79+tX8+fOn+fv376lpaP/d/vnvv/9+DK/P/D8+77849OlYneM8OZm3P20/vQlydGCXlYuB sbVxJd8k0X+MNv7LPm//uw39dFNj74rKeWCRRTSa0gcJECBAYDGByHl+cGXhdlR9gZ1OYu31 8sP9s/+nx/mOP13vT18//7k/l95ePrg9EZ9vXtxfT4adSwl99yK8qVm4nJC3u93dew36Mp3a mDw/Rme1YMzqxk1gkUW0WOXbEQECBAiMFoic50c3C+1KwsvAuiez72X560/2nZP87cn1/tG/ 7ybisozfXUkYfRmiOd7jOG9l4etwON8gOXii7t5HMTrXzdNjPBzz8VLDq6NEFtH40fokAQIE CCwlEDnPj24WLpchng6yt1m4WTG4+3r3xHf7KOS5WfhZheiciJ82C92bGSPvWTiPZ3u8R+K8 inKJpfOI56Xx6LufYcjv+ELn7hMPQ83Cz2WKn9WdpYrUfggQIEAgRqBvLr/8XUwEx0vbYw90 udFxuWbh5wT2eIK9P/Hf3+nf1wSc/+7+Use0k+tLh6GVhdPXu09iXBqlm4bh+9JM7+Ocb2gW xubW5wgQIECgPIEsVxYGGYdOdg8rC89uGOye5B+X+F++vfES6JLvWRhqFh5w+lZOjs3Mqyck hvwSVhYGc+YDBAgQIFCswAc0C537Ce5O7N/3LFyuQ/Se9HuW9zvpXvQNjms0C93mYGIMkUVU 7HeawAkQIFCwQOQ8P/oyxKDn0E/GvTfsPX+Z0m53eTSw/8VKg78bYup7Dl4NcOhE3XcT5vX4 iZchjvG8enRyKB+RRTQUi68TIECAwPICkfP8cs3CYg4L3muwVEw9zUL3SYv79x703K9wieXZ fQu9Dcmzx0uHBxZZRMPR+AQBAgQILC0QOc9rFpbOXib7iyyiTIYsDAIECHyUQOQ8n2Gz8FG5 fttgI4vobYOwYwIECBB4KhA5z2sWKi3EyCKqlNCwCBAgkLVA5DyvWci6FNKDiyyi9ChtSYAA AQKpApHzvGYhNUuZbxdZRJlTCI8AAQJVCkTO85qFKkvIb52sNK2GRYAAgauAZkExzBaILKLZ wdoBAQIECEwWiJznn68sHH8h0vGXLcT/mcxlgz6ByCKSAQIECBCIF4ic512GiM9vyBEjiyhk QA5CgAABAncCkfO8ZqHS4ossokoJDYsAAQJZC0TO85qFrEshPbjIIkqP0pYECBAgkCoQOc9r FlKzlPl2kUWUOYXwCBAgUKVA5DyvWaiyhDw6WWlaDYsAAQJXAc2CYpgtEFlEs4O1AwIECBCY LBA5z1tZmJyeMjaILKIyRERJgACBugQi53nNQl21s8ryVKWEhkWAAIGsBTQLI9Lztd822/1X /ye/9s12dxixl3o/EllE9SoaGQECBPIViJznC11ZODS7za65tgNtc3D7/4+5Pew2zSf3C5FF lO+3ksgIECBQr0DkPF9ks/CwqtDTLBy7hWaz3TdP1h7qrZ7vkUUWUfWYBkiAAIEMBSLn+QKb ha9mv902P1cg2lWGzfHXWLR/un9/+/8zzPQbQ4osojcOw64JECBA4IlA5Dw/2Cz8+/fv+0R8 OSGf//379+9z+Kef6n++9val/75VhL6/O64p7Lefeykisoh8JxMgQIBAvEDkPD/YLPz69av5 8+dP8/fv31OT0P67/fPff/8dZdqf6m9+ej+dtN/803x7eaFzf8K5Ybm5h+E7Z+19C09vgozP a+gRI4sodGAORoAAAQIngch5frBZuM3JQ2DtibuzlHC9sbA9gR/vGdgfT9jnSwTdn/JvLx/c nujPNy/uj087PF5aaPuTnnsRNAsP3zqRReT7lgABAgTiBSLn+dHNQruSMBzYzUrD9+WJ60/2 nZP87U/97Q2LP03HdxNxuTmxu5Iw+jLE+YkIKwvxBeyIBAgQIPB+geFz8nIxjG4WLpchnh/6 fI/A9eTcPanf/f/O5YvT5YzL6sK5WfhZsOjc0Pi0Wehe/nDPwnJlYk8ECBAgkJtAls3C5UbH fqzzCf7up/jBZuH+hsmfJxm6jUT3nQl9TcD57+4vdTzuJ7dEvzOeyCJ65zjsmwABAgT6BSLn +dErC0+T9X254eEpiMFm4fGGxPMxuif57qOS7QMYL97eeAnUexZ8fxEgQIBAxQLlNAvPGoU2 OS+bhc79BHcn9u97Fi7dR+9Jv/MGx55i8AbH+X1gxd9jhkaAAIHiBYppFk43Jt68Y+HuqYeB ZuG8gvD8ZUq73ZOnIb7TO/i7IT747Y0tUWQRFf8dZwAECBAoUCByns/wx8/PvtdgqXqNLKKl YrYfAgQIEBgvEDnPaxbG56WoT0YWUVEwgiVAgEAlApHzfIbNQiVZXHkYkUW08lAdngABAh8p EDnPaxYqLbHIIqqU0LAIECCQtUDkPK9ZyLoU0oOLLKL0KG1JgAABAqkCkfO8ZiE1S5lvF1lE mVMIjwABAlUKRM7zmoUqS8ijk5Wm1bAIECBwFdAsKIbZApFFNDtYOyBAgACByQKR8/zTlYXj +5KOL/Z5jP3dfz9Zywa9ApFFJAUECBAgEC8QOc+7DBGf35AjRhZRyIAchAABAgTuBCLnec1C pcUXWUSVEhoWAQIEshaInOc1C1mXQnpwkUWUHqUtCRAgQCBVIHKe1yykZinz7SKLKHMK4REg QKBKgch5XrNQZQl5dLLStBoWAQIErgKaBcUwWyCyiGYHawcECBAgMFkgcp63sjA5PWVsEFlE ZYiIkgABAnUJRM7zmoW6ameV5alKCQ2LAAECWQtoFkak52u/bbb7r/5Pfu2b7e4wYi/1fiSy iOpVNDICBAjkKxA5zxe6snBodptdc20H2ubg9v8fc3vYbZpP7hciiyjfbyWRESBAoF6ByHm+ yGbhYVWhp1k4dgvNZrtvnqw91Fs93yOLLKLqMQ2QAAECGQpEzvMFNgtfzX67bX6uQLSrDJvj 77Fo/3T//vb/Z5jpN4YUWURvHIZdEyBAgMATgch5frBZ+Pfv3/eJ+HJCPv/79+/f5/Dbn+Cv J+ubSwPvSm/fKkLf3x3XFPbbii9FDLhHFtG7Um2/BAgQIPBcIHKeH2wWfv361fz586f5+/fv qSlo/93++e+//5qmc5JuLw9s3n2jwOkk2WlKepuF830LT2+CLLkCR7hHFlHJlGInQIBAqQKR 8/xgs3CLOBjY7Ums/e/jPQP74wn7svJw30fcXj64Pfmfb17ct43Hw6WF75WM7r0In9YsdCu7 Z/yDuSr1u0PcBAgQIHASiJznRzcL7UrCUGB3KwunE9jNT/adGw5vf+q/X5H4biIuDUF3JWH0 ZYiKVxY63yh9KzpDufK9RoAAAQJlC0TO86ObhctliF7a78bg7gbD7kn97v+3DUH3ZsTL6sK5 WfhZhejc0Pi0WejezFj5PQttIvrcvxMUWURlf7uJngABAmUKRM7zo5uFy42Or0lvmoDBZuH+ hsmfRqPbSHTfmdDXBJz/roX7aTIe91NmOYyJ+nGskUU0JkKfIUCAAIFlBSLn+dHNwtghXl+G NNgsPHtyonvi6z4q2f5A/eLtjZdAP+w9C92XUEUW0dja8DkCBAgQWE4gcp6f1yw8nJDHrix0 7ie428/3PQuXJYLek37nDY499qu9wfHJzZaD5fHi8c/zjZ43zdUrd5chBql9gAABAjUIlNMs HLVPN9f1vRTp5cpCm6bXL1Pa7Z48DfGd4cHfDbHK2xsvY5r6von+7dqG5/Io6u1/twRP3TUL NcwBxkCAAIFBgaKahcHRTP5AmfcaXE7e293u4fdUvCJ4vl3HYeKKRWQRTU6xDQgQIEBgtkDk PD/vMsTsofbtoNBm4XA4/x6KiSf1r2fbPexnmktkEb2lDOyUAAECBF4KRM7zGTYLhVfHwyOi PW+b7LtEMuqyzfjfdfFzaej+qZPCdYVPgACBjxN4Np9rFkouhd4Vge+G4futlr2/CfMNzULJ jGInQIAAgdcCmoWSK6T3MkTnrZR949MslJx1sRMgQCBcQLMQTr7gAZdqFk5Pi9xcdph4L0Rk ES2oZ1cECBAgMFIgcp53z8LIpIz+2FKXIY4HfPXo5FA8kUU0FIuvEyBAgMDyApHzvGZh6fwt dYPjKa5nv5lzOOjIIhqOxicIECBAYGmByHn+abNwvId+9v9ewfTtfWnIT95fZBF9srOxEyBA YC2ByHneysJaWX7zcSOL6M1DsXsCBAgQ6BGInOc1C5WWYGQRVUpoWAQIEMhaIHKe1yxkXQrp wUUWUXqUtiRAgACBVIHIeV6zkJqlzLeLLKLMKYRHgACBKgUi53nNQpUl1Jx+E6h/CBAgQKBe gch53hml0jqKLKJKCQ2LAAECWQtEzvOahaxLIT24yCJKj9KWBAgQIJAqEDnPaxZSs5T5dpFF lDmF8AgQIFClQOQ8r1mosoTcs1BpWg2LAAECVwHNgmKYLRBZRLODtQMCBAgQmCwQOc9bWZic njI2iCyiMkRESYAAgboEIud5zUJdtbPK8lSlhIZFgACBrAU0C1mnp4zgIouoDBFREiBAoC6B yHneykJdtWNlodJ8GhYBAgS6ApoFNTFbILKIZgdrBwQIECAwWSBynreyMDk9ZWwQWURliIiS AAECdQlEzvOahbpqx2WISvNpWAQIEHAZQg0sLhDZcS4evB0SIECAwKBA5DxvZWEwHWV+ILKI yhQSNQECBMoWiJznNQtl18rT6COLqFJCwyJAgEDWApHzvGYh61JIDy6yiNKjtCUBAgQIpApE zvOahdQsZb5dZBFlTiE8AgQIVCkQOc9rFqosIb91stK0GhYBAgSuApoFxTBbILKIZgdrBwQI ECAwWSBynreyMDk9ZWwQWURliIiSAAECdQlEzvOahbpqZ5XlqUoJDYsAAQJZC2gWsk5PGcFF FlEZIqIkQIBAXQKR87yVhbpqx8pCpfk0LAIECHQFNAtqYrZAZBHNDtYOCBAgQGCyQOQ8b2Vh cnrK2CCyiMoQESUBAgTqEoic5zULddWOyxCV5tOwCBAg4DKEGlhcILLjXDx4OyRAgACBQYHI ed7KwmA6yvxAZBGVKSRqAgQIlC0QOc9rFsqulafRRxZRpYSGRYAAgawFIud5zULWpZAeXGQR pUdpSwIECBBIFYic5zULqVnKfLvIIsqcQngECBCoUiByntcsVFlCfutkpWk1LAIECFwFNAuK YbZAZBHNDtYOCBAgQGCyQOQ8b2VhcnrK2CCyiMoQESUBAgTKEdg0r//XjiRyntcslFM7kyKN LKJJgfkwAQIEKhF4dTp/NcShRqD9+ph/Iuf5cRGNidpnshKILKKsBi4YAgQIzBQYczIfe0Kf GcrLzSPnec3COzO54r4ji2jFYTo0AQIfKDD2ZJ76k38ppJHzvGahlKqYGGdkEU0MzccJEPhg gbEn+g8mGj30yHleszA6LWV9MLKIypIRLQECYwSGTuqv9lH7T/Rj/CI+EznPaxYiMrrCMSKL aIXhOSSBjxd418n8st+PBy4AIHKe1ywUUBApIUYWUUp8tiFQm8DQybv79dSfzJ3Ma6uc9PFE zvOahfQ8Zb1lZBFlDSE4Ak8Ehk7uU0/moAlEC0TO85qF6OwGHS+yiIKG5DAfJrD0yXzKT/Yf Rm24hQpEzvOahUKLZCjsyCIaisXX1xF498n23ftfR81RCZQjEDnPaxbKqYtJkUYW0aTAPuTD QyfSMV+fugzuJ+cPKS7DJPAtEDnPaxYqLbsxJ6Ohz8w9WX3y/istK8MiQCAjAc1CRskoNZTI IirVSNwECBAoWSBynreyUHKlvIg9sogqJTQsAgQIZC0QOc9rFrIuhfTgIosoPUpbEiBAgECq QOQ8r1lIzVLm20UWUeYUwiNAgECVApHzvGahyhJqmsgiqpTQsAgQIJC1QOQ8r1lYuxS+9s12 c3xu4PJnu2++rjF9Nfvt5Wu75nAX66uvaRbWTqvjEyBA4N0CmoV3C+e0/8Ou2ezu24BLeIfd sVH4/trtf7dff/W19uuRRZQTp1gIECDwKQKR87yVhZWrqj3pb/c/awk/4Rya3WbbXL90WoG4 rC68+tp5D5FFtDKhwxMgQOAjBSLnec3CqiXWXkq4aQhuY7lrDk5rCT/Nw6uvfe8jsohWJXRw AgQIfKhA5DyvWVi1yM4NwPZ6X8KzlYS0ZuF6H8TNPRGrDtfBCRAgQGCyQN9cfvm7yTtL3ECz kAi3yGanFYLblYW2efi+1GBlYRFiOyFAgECtAlYWas3s4LhGXmpwGWJQ0gcIECBQu4BmofYM Px3f7Y2LbnD82DIwcAIECIwQ0CyMQKriI+1jk9cnHI4jalcMbt6z4NHJKrJsEAQIEHiLgGbh Lax57vRrv/15IdNt43AKt11dePZSpldf8+hkntkWFQECBJYT0CwsZ/mxe4osoo9FNnACBAis KBA5z3saYsVEv/PQkUX0znHYNwECBAj0C0TO85qFSqswsogqJTQsAgQIZC0QOc9rFrIuhfTg IosoPUpbEiBAgECqQOQ8r1lIzVLm20UWUeYUwiNAgECVApHzvGahyhLyNESlaTUsAgQIXAU0 C4phtkBkEc0O1g4IECBAYLJA5DxvZWFyesrYILKIyhARJQECBOoSiJznNQt11c4qy1OVEhoW AQIEshbQLGSdnjKCiyyiMkRESYAAgboEIud5Kwt11Y6VhUrzaVgECBDoCmgW1MRsgcgimh2s HRAgQIDAZIHIed7KwuT0lLFBZBGVISJKAgQI1CUQOc9rFuqqHZchKs2nYREgQMBlCDWwuEBk x7l48HZIgAABAoMCkfO8lYXBdJT5gcgiKlNI1AQIEChbIHKe1yyUXStPo48sokoJDYsAAQJZ C0TO85qFrEshPbjIIkqP0pYECBAgkCoQOc9rFlKzlPl2kUWUOYXwCBAgUKVA5DyvWaiyhPzW yUrTalgECBC4CmgWFMNsgcgimh2sHRAgQIDAZIHIed7KwuT0lLFBZBGVISJKAgQI1CUQOc9r FuqqnVWWpyolNCwCBAhkLaBZyDo9ZQQXWURliIiSAAECdQlEzvNWFuqqHSsLlebTsAgQINAV 0CyoifkCm2Mf+Al/5kvZAwECBIoU0CwUmba8go4solVH/gkN0VJjXDVRDk6AwNICkfO8yxBL Zy+T/UUWUSZDFsaQwFJNx6fsZ8jT1wmsLBA5z2sWVk72uw4fWUTvGoP9ElhVINemaFUUB89J IHKe1yzklPkFY4ksogXDtisCBIYEcmxihmL29bcIRM7zmoW3pHD9nUYW0fqjFQEBAqsK5NjA tDFV/k/kPF+/ZuXF8mx4kUX0ocSGTYBA7gKVNzGR87xmIfdiT4wvsogSQ7QZAQIEPlNgoSYm cp7XLFRaqpFFVCmhYREgQCBrgch5XrOQdSmkBxdZROlR2pIAAQIEUgUi53nNQmqWMt8usogy pxAeAQIEqhSInOc1C1WWUPumZ6mtNLWGRYAAgZNA5DzvjFJp0UUWUaWEhkWAAIGsBSLnec1C 1qWQHlxkEaVHaUsCBAgQSBWInOc1C6lZyny7yCLKnEJ4BAgQqFIgcp7XLFRZQrHXsiolNCwC BAhkLaBZyDo9ZQQXWURliIiSAAECdQlEzvNWFuqqnetoIouoUkLDIkCAQNYCkfO8ZiHrUkgP LrKI0qO0JQECBAikCkTO85qF1Cxlvl1kEWVOITwCBAhUKRA5z2sWqiwhNzhWmlbDIkCAwCqX mzULlRZeZMdZKaFhESBAIGuByHles5B1KaQHF1lE6VHakgABAgRSBSLnec1CapYy3y6yiDKn EB4BAgSqFIic5zULVZaQexYqTathESBAwD0LamA5gciOc7mo7YkAAQIExgpEzvNWFsZmpbDP RRZRYTTCJUCAQBUCkfO8ZqGKknkcRGQRVUpoWAQIEMhaIHKe1yxkXQrpwUUWUXqUtiRAgACB VIHIeV6zkJqlzLeLLKLMKYRHgACBKgUi53nNQpUl5GmItdIa+c271hhzPS77dTLDfR339qiR 9pqF9fL81iNHFtFbB1LYzrmvlzD269hzX8dds7Cee2FH/mr2282ps9xsds2hE71v4HXSyX0d 9+iJc71R5ndkNb9eTiLtrSysl+dZRz7sjk3C7twi3P73ZaeRRTRrIJVtzH29hLJfx577Ou7R DbJmYb08zzjyodltts3+63sXX/tm21ld8A08g3fGptxn4M3clP1MwMTNuSfCLbBZpL1mYYGE he/ioTnoNA/HgCKLKHz8GR+Q+3rJYb+OPfd13K0srOdezpFHNgvn+xn8YaAG1IAaqLUGok5c VhaipJc8zohmYcnD2RcBAgQIfLaAZqHE/GsWSsyamAkQIFCsgGahyNQN3+BY5LAETYAAAQJZ CmgWskzLcFBDj04O78EnCBAgQIDAOAHNwjinDD/Vri48fylThgELiQABAgQKFdAsFJq4cWG/ fsvjuH341L3AFNMXnz3dd3Jzh/p231xem0F8rMCUXHzvs+edJGOP9rmfW8hZzS9QQhNy0fH+ fodfcgyahWS6/Dd0qWL5HE0xffnZw+76Bs7lo/yMPU7JxVnkshr3+Hr0zxBLG+Vizmo+LQE3 W43PxbnWrw1Ca3/7Ir+ESDQLCWhlbOImyOXzNMX09Wfbb/rt9RWcy0da/x6n5KJpvvbb0ztH trvdw9tO67eaM8LlnNX8nDxcmt3Xb+69HqFtDu5WK88rEnNWFzQLc/OX6/Yer1w+M1NMX362 /ca9+aZfPtL69zglF0eNr8PhfJnHZYhptbGYs5qfBt/z6Ym5uN9DZ6UhIRjNQgJaEZvMKqwi Rhgf5BTTl589/7S2vf7WUI3D5GROycXtzjUL06gXc1bz0+CXbRZOK2sz74vSLMzOYKY7SP0m z3Q4WYQ1xfTVZ09fu20Q2onUdfRJOZ6SC83CJNq7Dy/lrObTc3DZMjEX50tw8+cXzcL8FOa5 h8TCynMwmUQ1xXTKZ0833lldmJTlSb43e7ayMIn58bLNyFoddB65n2nR1v3phJo/NwrLzC2a hWrLa9qNSdUyLDqwKaYzPrtozLXubIqvZiG9Ct7lrFmYnpNpuVhqReESp2ZhesaK2WL8YzbF DGn1QKeYPv3s6TGmm2XB9ieGmdcTV4dZIYApubiGN/gT7woDyfyQizir+UWyPDoXD5d95h9e szDfMOM9eMvj8sl5bvr4aNjzz14e5Tv/2tz51xOXH2cJe5ySi+/xaBYSEruMs5pPoH/YZFwu Tk3F7Uvfvv/bo5NL5MA+CBAgQIAAgV4BKwsKgwABAgQIEHgpoFlQIAQIECBAgIBmQQ0QIECA AAEC6QJWFtLtbEmAAAECBD5CQLPwEWk2SAIECBAgkC6gWUi3syUBAgQIEPgIAc3CR6TZIAkQ IECAQLqAZiHdzpYECBAgQOAjBDQLH5FmgyRAgAABAukCmoV0O1sSIECAAIGPENAsfESaDZIA AQIECKQLaBbS7WxJgAABAgQ+QkCz8BFpNkgCHyDgN0p+QJINcS0BzcJa8o5LgMCyApqFZT3t jcCNgGZBORAgUIHAodltNs3m9Gfb7L8qGJIhEMhIQLOQUTKEQoDADAErCzPwbErgtYBmQYUQ IFCHgGahjjwaRZYCmoUs0yIoAgQmC2gWJpPZgMBYAc3CWCmfI0AgbwHNQt75EV3RApqFotMn eAIErgKnZsHNjSqCwDsENAvvULVPAgRWEPhq9tvzExG7wwqHd0gCFQtoFipOrqERIECAAIEl BDQLSyjaBwECBAgQqFhAs1Bxcg2NAAECBAgsIaBZWELRPggQIECAQMUC/wNWWJrmdwbqJQAA AABJRU5ErkJggg==</item> <item item-id="597">iVBORw0KGgoAAAANSUhEUgAAAsAAAABaCAYAAAC2TeDjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABzjSURBVHhe7V3LteQ2Dn0JdA7jXcfw cvCidx1B5eG9F7V2IG/VzsFbn0rCGdSIUn0ofgSAIERSun1Onxl38QNeQOAlCJIfd/wBAkAA CAABIAAEgAAQAAInQuDjOGP9ul8+Pu4fib+Xr+OMEiMBAkAACIyDAPzyOLralvTrer3fjjKY U47jdr9eYzL0dUnzpo+DEKet8R2LAH/iAz3ld41BAwEg0CkCEwGGX+5UN3yxbtfP+0H4EH/Q Ryz5dbl/XhnLmNv1/nlkhT/GBwJ8RCPHmIAAEAACXSDQNwG+3RhkoAsceUKYjGciCxcOaeKJ eOhSJvhXRux2vdxJdYIAV0bdvLm+Ha358NEBEAACQKA7BAr88hSl+vi43Gtnrrmt0HdQa9oO /vzwomEuVeOTJgYl+A4+njRhClNb6uurBOo96zSzJ+0gOQsaEGAtynvXFzpaI6e096jRHxA4 LwIhiTkvEv2OXOiX3UAMfLPbwl/nNCZsx036FukaQ4/H4RSS24X8+lvpM74Gi5Ze7bqpPalB YXyTIMBqlHdugKHUWaLF8R0lwXtnkNEdEOgOgbNNvt0pYFMgjl/2o4lTFHbaol2TqeD3r4mo isiWq++TuMcc8Dww7eU6uqgeK0eSGvPrMPbg40ktCpKEXhlBd/0EB9jtUlBHs6eEsanwcvZP 7HaAAI/lZqewAeOwBUPxow0b8gIBIODChgHJASh9IED55VQqgjuV/iSs1O/0KONo3TsQEpFd R+5UUWBKXur3zsbj8OAw0ZmQlaaQLITU72Y5uW+RVtEx/hPWHKgXX6fDa52+kSHYPGFog+2x xBkPwZFK71FRFjIFq8cj27kFfGizUwSstrA7He4YYhEEOBVN9P8t8Xs24j/7tZA05dJkcv+u jGTWGM/cxvNqqrbjSS8eQssz2FUNcaw1Z3HsqRX+bAKc+PJzaTbJb8JlGRE7HYgAj+Fe31Iy HC2Y3iNS5q0e5w+ndOU+mo1A3qMj4CZs/RZ2BiWDXM52+tgrf3rbL88EK4y4epM29fsLvxdp Seerxq5/mxiXThWUvNTv94CwxAQ0jv4tGNiNZ/t7qkl+cwfrgkWJItrcNf5iAkwcRMx+E5O1 UH4SBLiday7recvRphL5y3oZvla0xbc4sFKHPzweGMDBELBIhag5yfcFt33+tD0BXrbLp0V8 Mjc4F9GVRoYfentEInP+kiJY1O+RdUQRvAbjyQ92ztslF5wEZs8tfRf1frUV7gIEMmR3c5X6 2Rv/7CMNbgcgOym/iW8SLxfm2vwmQIDnheaE7znuAT76akY1p+YiCqpGURkINEOg7qX9Y54b kN1HarFoeKqfsTMXpi0QKRDZWyKS2737RkyTspWOx8V1o9sr9h1PNgWi5s5hKu96c7dFkaZC pagEXmtX/LkRYAleSIFIz0NnIsB1J8Rm87pJx8mIhElPaBQI7IRAxQWv6NwAlSJB/V4IT5X7 SM3yp3mH4N7Rrmd0a30ILv+7B1oPOcDRLUOF43nlvIbpadLItYIsOmhTh+AUKQhJE8/m+6ZS 87SpO+FuTqifdaQ/Tg80xF9CgP1FY9ZW5hVU8sYU0q9V9KGbbq2aTxTaxXkIMNIfcgZov/1Z OKOjGhBQIVDpm09N/ltyUc6c+r1gzDXvIyXzAgvk49/O8zz0lbo2bH1t2eWSeSgjM9nnopiL /wu2mlPRNfG4fXkV45n7jQnsruNJLIxeuAXXljksS1Pp1qkAbvGTinQv/0amXJD6YtrT3vhz CfC8Lnl+L8/bMjI7A9lFYetr0GzSytic5jwEmIpAkF/LIQsshoLDb4dULgY1TRBa2+aQaP8Q CuO+1+7vt7VIhTDwv8IT7ykSmftEyNPxFt8WsTCKo3X8qK5+PJzvwAKUoE0yj1ghQ9f4K8bl quYI8OU67VVs/DGNAFunlTH82GkIsKkilcZpUJ2T+8deJRnIN1KTHCxHGs+ZZFWnPZF+g7pP VPs7rS2L+23VuEVi90CAU7m0CXzN0kAIXYY5wqtbMdJkl3U9WaXxpJ9Cpu2zWglL8jsH2b0d hWgHoD3+KhxTBHj6t8t1k/4uxLk0nE+aO3enYB2pF0X+KdsHAVaZVReVi3L/audvdYGEXogi LPXd9tXC69qcGtuMiqFVSBXQEjmyPnWYpuD37MJ0z9zW6hNfHwT4eU1Yfk7nR1UVlp2uGtjK OsUgt5NB3d5Tczxf0+t8BGGqDsq7wVzKRTV+1j3+CnATvoO1oKnuBx5jYKeVpXO1JSR4M6Xr eAT4j/v3bz/uv0Jb4ax2FPbVqmpp7l/u2pVqzqQVIIp+S7FUdNll1dk2ejCE5gSY3valrrPS /v4ykNeiZK/7bemxy4w345dljaB0YwRu1+uUlYs/4yPAW8x8/fzf/beftTUu8C2pQJ04Pz+f CvEc3/GvQeMS4NdJyndyuR0XCHIHu3/bXvjZA0sZYLvilQtChYcqZEPQlaZyaeWtkxHczSbp qKWW4FL1nXi73m/r4aHPn/bBpbGUaxc19kcAetwf89o98gloXR/wGIckqpwiu5lDrlso5eaB 5/hAgGf04hOUp3yLfMuS2CdUgeViUhfmieg98dp2qG0iwFSubNkkoCLAHEddkOIQ5Rpu3X/r Dzvp+DOnviu8CKbCLlIXiFOZBaMWEGiHgAUBlviVfIBAeLg548tBgCnbyt5NuETKiqPDiYkz yv3zcjE/Wr9t/8SJTegSwIpPbVPKefzeM5ZV8fIipOGzsUyoOMViArxDvxSR9Bao85VVzPFL nG2EDYcAq+97Zd5H6oTbMwd47u6z3L+BAHM+NZQBAl0jUJ8A86PPi8vLPZEuJMCznw7Tx1x8 amnn+BHgXz/u339EmcEZ4/O3Yp/3683hvOn+QQ94xUEycuszmOzi/FS7yM/mFykmdDksffLq Yyz3B11jWQ2v9WEX1ulvOZQLzVzlAO/TL6nDB9F8Lji54//149v9+x+FQHDTpp4keL4Plbrv lfp9WlRf+rjfFgS40G5QDQgcBIH6BFi4E1QpBWKZ12LSfB4CzJrM3mTtbG+Rb32vrd4pf8lE XH9Dk6dgdFEkLXdSWvraz9KPDV5BIn9BHhRXtjUB3qdfWodlcqhIHMtnGMx04p0S/kl/yX2w KuwiWIQTnwGsaBIIAAEZAtUJMGtXzZMxNc+JD8Et7aX8GQiwbw8pYDdPovMnnng+SER5Nvoa LgIswbKQzL0wZW2fvzWwK5bcCDCFV3SfocL2CB+4IsB79UvpsFAOFYkbhgDb3G+rwg4EWMY0 UBoIdIhAcwKcSTGTXIP2hBUEmLrDMJvve7K3yLfDwby8QAmWWgJM5mE+BvS6ZSHUpzTSKyCf EgK89a57RJAFMggd64oA79YvkQtbKIeKxA1EgC3ut1VhBwIs/OpQHAj0h4AFASYf34hgUDyE sQomx2caEAEOwOa9rb2kSpSsQtbddfoWeQ0CPLXBw3Lem7h/Rof8pM6gUyy5BJjCqzACKkXR lW8SAZ4F9XUY5MoWjl9F4kTnBkqQ7ruOKn8aBLhv5UI6IMBAoA8CzBCUUQQRYCoCzABxIWuK 2x8Ichnf9vCu0PYteA44hWWqEOBoJTMdSIpPfT5LjYdlWQ5soUa8aq36DSUvk0NFgFtFgPVK q9KCCjsQ4Co6QCNAoCUCIMAt0S/qO3PYosZkZkl+3Vj9tAHmli/rNHwUPSsC1q6SNQE+BJbr NA2W3qtorFW/ofBlcqhIXA2fUUUHbRpRYQcC3EZp6BUIVEQABLgimPs0ZUeAl3t6/ZeylHcB R0Gu9cG4dX89vAVvpEFrAjyJfQwsd7iPN6niVv2mosCP72+ne4Dl+WpG30iDZkGAG4COLoFA RwhUJ8AN08pSKV3IAe7I2CAKEAACdRFQkThEgHkHXlkqwzVoLJhQCAh0hEB1AtzQpyIHuEYO cEfGCVGAABDYRgAEuNxCVNhF3YIAl2sCNYFAGwRAgNvgrujVLgVCIRSqAgEg0AABFYlrGK1o AFXUpQo7EOAeVGgsQ53rqYyFRPMKBECAFeC1qQoC3AZ39AoE+kNAReJAgJEC0Z9JdyJR+t5u /dWgnQwPYswIgAAPZwggwMOpDAIDASMEQIDLgVVhhwhwOfAj1JwPLgcHswufqB1huGeVEQR4 OM2DAA+nMggMBIwQUJE4RIARATayy+GbTZFdi9t8hgdq7AGAAA+nPxDg4VQGgYGAEQIgwOXA qrBDBLgc+AFqztdKhlcRpqLCA4wFIuYRAAEezjpAgIdTGQQGAkYIqEgcIsCIABvZ5ejNggCP rkGe/CDAPJw6KgUC3JEyIAoQaIoACHA5/CrsEAEuB36EmkiBGEFLahlBgNUQ7t0ACPDeiKM/ INArAioSd4AI8O12K1aNCjsQ4GLch6iYyvfFIbghVCcREgRYglairMYBl3UNAlyGG2oBgeMh oCJxpQTYEYGPy/0rByf1e6Eavi4fXsrCck3V+1oq95x17jn1dIcq7ECAC7U4SjVcgzaKpjRy no4A//vvv5Pz/tj8+/vvvycxre2AyxQHAlyGG2oBgeMhoCJxAxHgOSfz4lPukABPunVRu/Dg 0obKVdiBAB/vY4pGhIcwjq7k0xHgv/766/7333+/9Or+2xFi/0/43+43CwdcZlwgwGW4oRYQ OB4CKhLHJsAuuvoMGkxR1msYARb+/uXuWN2IIKfI5ar8mpj4xNgFKbiPFaiwAwE+3seEEZ0O gXYEOPBhgoV7Tkkpf/Yc34vhOsL733//bRJgV2b9xzl432HXccBl1gYCXIYbagGB4yGgInEs ApxKNXBk+OkPtb/TOomDD3NIIkiBeLQjyNNUYQcCTCsOJYBA5wi0IcCx70reOiLEjkWA//nn n1WzqQhwWKauA16iJdwoRYwBCLDQLuyLzzmPS4SsXK/2Yp6rh+U7W+2aNwXAZjtVReI4BDiV z+v/W8Hvsz/1AwrzgaN3WtpaZxmimyPAU2YyNxeYjd00RtqOMn65qc2hcyAABLYQYBNglg9w 6/Lr/XIlDuYmz0gsfi7yM4LHV1gEOAQjRYDXZewccJlpggCX4WZXy227rvMT7fpCy1wEeiLA dgdq2CQuBRvDWefvQ10iwNrf7yFhjR4byOlx2y/ThHWRnVPuzpr8QIC5XybKAYFeEGhBgJcA QPoc2iqA9gqs8dLFjAiwnQOeiVPuQF7WM4MA9/LxODnWOuQZak/yH1eWx3d79aOLjfSTekFK sFW/pSM2ieuVADscAl+3Pmyci+hKAxMxAGzsQICP6yYwslMj0IwAEzm/C6+YzlsIzksYEuDU 9Tp6B1xmeSDAZbjZ1UIE2A7b8pafB7PepDfaei9vXFbT8FL9TRL3SC3IrqUZEWAX/YyuPFOm QCTbfCEaEl67AMQWdvLgBCLAso8CpYFAewS2CLDcB8xbYoUpEBks2qdA2DngIoDdlmFq9cAB vr29HVKCmAB7p+IrnO48JGjmg0p9t+G/7aOnfJqA7N7adBCXuY1fGAF+HjZ7R2nDhUU6vSM8 JJev7wuWCipIAw3IATb/tNABEDgIAi0iwC+f6nODOaiQmA/aE2A7B1xmQyDAZbjZ1VoT4HUy e/oApZ0saPmJQIoI+d/yfnoamwA7PP0DfKlr0CS/Twc9LqmHNPKHg3Pf0CuXzg9xC1JLkAIB bwEEzo1AGwIc+tRHukPq7JwVAXY3PTwPwLk83D///HP+71yUJXXIqcwB4xaIkT45TpR+TYCd fr1cU4EBj4RL/7JSBHhHPbVKgaCU1GrXKEyroFI1BDc7mNwDjBxgypLwOxAYEoF2BJgJl4A/ FOUA88Tgb6tJHDCv77AUIsBluNnVWhHg6DUqvu3YSXjGlokUiD31lHJigkjllvbYUcz0yp7O V7MwHZ8Ak+R3EYC1k4KX4Cy0hTaBwGERYBNgLgK1gwp9EGAbB8zFdF0OBLgMN7taKwIcERsQ YDvkt1qOD8HNenrmXe2qp3GvQTPRnUeAc1cCxQf3MvdkvgSUf2eqxUMEDA7BmdgKGgUChgiA ALPBre+A2V2vCoIAl+FmVwsRYDtsy1t+EKL5GpnHdYP+oYM9I8BLDHO+6Lz2gykqElc7WlGu rCY1VdiBADfRGToFAjUR6J4ACwZrmAIhkMK8KAiwOcSqDnbMLVXJefbKx9CTisSBAPMewmB9 KogAs2BCISDQEQIgwB0pgycKCDAPp1al1reGsHIXW4l66n6PoScQ4HIjVmGHCHA58KgJBDpB AAS4E0XwxQAB5mPVquQ+98u2Gt1x+h1fTyoShwjwoBFgKh3vOF8oRgIELBEAAbZE16RtEGAT WNEoEBgQARDgcqWpsGsWAX7nkmdf+CuHBDWBwKkQAAEeTt0gwMOpDAIDASMEVCQOEeChIsCv GzM+L9NroNODIl9GRtVbs4+r8p4HSE8z7t70cEB5QICHUyoI8HAqg8BAwAgBEOByYFXYNYgA 367X6UkQ9+dMKRDBfd65J2PLzQA1T4wACPBwygcBHk5lEBgIGCGgInGIAFeMou55C8SJCHB0 X/eJxm7kM9DsGwEQ4OGsAQR4OJVBYCBghAAIcDmwKuwaRIDfXZ6ZBKZeeCy3AdQ8NwIgwMPp HwR4OJVBYCBghICKxCEC3E0EeH5M5/lgS/i/UdLreQnwnAftP2hj9F2h2XMgAAI8nJ5BgIdT GQQGAkYIgACXA6vCDhHgcuALay6HAC+PPOjCRh7VvqZ86puuCdRuisC0CLzqT4FWJ8C/fty/ //jVBJlfP77dv/+x7vo5vo8mEpl0CgJsAisaBQIDIqAicYgAdxMBlpne+SLAC/n9vF8rsFbV NyNTFEpbIjDlh38qDaI6AW7oU/EUstIYLG0VbQMBIFAfAdVk3tBZ10dC3qIKO0SA5YAnatxu NKOtGfm9n9zmqyhtp0Z4tnFRLYpAgHdSZr1uEAGuhyVaAgJjI6AicQ2362qhzpkkc32ltgzL 5drzFohyKVk156vG6qQa+P25POd3OvP6KfL7lNhwSUV45zuA60R+nSy3q44wsfATF/JepJzz v+tjLxZp5wpFtrEo9H5RBP5AgHdWtL47EGA9hmgBCBwDARUBLp08KIJE/V4IffEkmelPhV3U JgjwllrnKO7qMF9IgBcy8xkccMsdDix7DMP12Ru5XMivv5VfNeJd+K3tWa3UNhYZdd9dHwT4 /bqjOwhbmtaBFAjFSmhPg0dfQAAI1EFAReIGIsC6STKNtQq7QxFgPwI5RVunKOk6Chn8/uWi shIi6er75dcTvk+MHeEtJQDkF5Ug2HOd4KU5R0LKCDYpQVwguVjMRMO5ze86nta24WypfIfA ggB/iozn8S286sQLIr7aPyO7xSE4LnooBwSAwHAIqEgcmwALCdIgBEqF3WEIcCoVwd+Gp36n P5l48TKzzom4JMhu9PAF3T67hGs7IifxvcJL1FlC8BMSTH2JeJDfhCrtw2g8SZD7sI31zhDb GuaCzQlwSteF38C5I8AHyOeTmS5KAwEgoMpjZRFgapLT/k7r0IpAgQDPDCAme/6/JX7PbtHP k3lIHDNEN0eAc7nAtJmQJdJ2lCavSQKcHF+m22ICHEYEyWHRBUIdBhHiYqLOsY25zPOOaxvb 0OwaVCfA0pSMFNmV2Jmn/dRYEAGmPw+UqIWAUe5jLfHO3U6dPKveMFSROOdoqdmvgCCtSFUn k2RKbyrsogZ1uYit7Cr5sIQ3AVO/v+R+EZ2Q5ORebtsmxpRZluDlxpJPryAOomXHV5MA1yS/ ufEE6RWKaDNpGwGRixcgdWxjW6/bllKfAMvyzPMYStM60v2CAJd4CtQpQwAEuAw381r18qzM RRV2oCJxDAJMTXLa35f8yzdpspokeybA2Rfgci/DJf49azaPaF+OUKr1NweRXYRvmrCTucG5 fFZpZJjxYXDGmkmBWB0+Cvz49vjecsle8wvG85CdzH8mxrjcprFEXF9thRH9AINsCgEHz/BV vq3oZfRbHdvoiwC7lPI4FzdnvdUIcMaXH5AA/3H//u3HPXprhLWdyXAiKCJAgMqNFDSFonYI VMyzEgnpbzUaPd8qcbax7HTUUkuQqPqRTEaTZEpvdaM/Gb8sMpgGhbURfl/kJPmpE+WrgUwy BSK1BZ0LZEi2piUpEHN/0ohfPvIcPRW9GZhRHLijbCfi+OFNIHVsQ5UC8fO3+/9+6l+UWw2V EVh4la+UApGbB74e48NLcDU8CNrwEKByHwFWNwhUcjKy8fjOPRftkrVYP4rJ2K6jJjnt7ztN kjF2jLGL1EMvJkTN7VY4vTvyzoGlfvddYt85wHNqThgBzubHJgipBQFWpCAkTUQynmweNtf4 mLbxCgSEmEp3AdJkXXMIbt6Bqp5vI/AtKZsSH4Lb6O8xvlMQ4PqK5H4IJyxHTfwzJF6E2CgC eELkxUOuts0k6ZlMh6ljG7oIMGe7jprktL8/QDWeJCPVVZ/4RiXADhk/Pz51Ddo6f/5yyTyU kSGIucNny2G6abveJyDiyV/wUTr5En54nbrg0nEykUkDAvzCIJHWUsrLeOMpv25rjTjTNl7z 4ZoE621Ddw2aDQF2U3/qxpFkCGO+DeX9Dcj1spkCAgIscBAoykaA3tpdHMPTibFPILMlQEEu Ai0IcLLPl8D1bENLgHkTgIQgKQiU2SSZiP8K8vR4djYyAeaN8FVKnCLA32bXbGfToxBE5pJc RXr/MS1RkxJkHrFCKmLhH0drtbYx6fRynZZwhX+qL4TfcvAj04oD2plF3XuqWSLcx48AS6/f KLSXs1SjDjTQBNh92N6JaEn04Cwg7zXOBikQ2wS4nm3o81iVpKBEh7tPkqGQFmO2IMDEzQQl 2NeoIybAy05DfAdvIAw1mVeQXfUU8hF8uCX5dfoJD9ytIu5psquyDe3ZJ0MCvOysVMrtTtp+ MI/kFm3nIMAWTr2CxzlqE1QKROTM+Svdo0LWbFxV8qyE0m+RvGq2UembZ2/XCTHIFd97kox4 1tZ1WKVjrE2A463QZbtc+UBD6fD8egUE+Jlmkd/W38s/fk0v3RXGCw9AgHMpF6XpFpE5Bbax 7i9HBtc7YrGJ5m1DtaBxHZkS4LkDIxLMIL/e+E4QAebk89XwfmhjQYDIfYyijns5eOgnRqDF NWjrPMJVlKOWbVR03vztugr2tfMkuZLYLMpYmQAnSSZ8SAXrmzjPddovxZ/xEVAsZp6Dr+hD 83g+UxxqLF6FbZ0mB3iX1cz4n0zdEWzkRlaL8tWV+LytKfKsSkF7HewKnlatZBvq/N81MzSK VJSCZ1GPGTUp6royAU7JUPvGgKJxHqHSDro6Akxdj6HS7tcuBLghkKciwHNUssYqo6HCDtN1 vTzPw0CCgTwQqGEbFt+61XZdD4q3JL9ufNakKtzF6AFTyAAEBkcABHg0BRKOdu98vtHg203e ZcJ6vsbDSvTfTTZ01BYBvW1oXj/aHrtwi60tkIze9xqPJQEG+WUoGkWAgBwBEGA5Zm1r0I52 13y+tmB03rt3ihv3AHeuq73FU9iGWR7r3hgcqT/aLxeN9pFGQz6RW9Q4KgGBkyMAAjyaAXAc 7ZG3MkfTF+QFAjURsN7Krynrmdri+GUhHvNBOMtrlITyoDgQOBoCIMCjaZTraEGCR9Ms5AUC 2wiA/PZrIVy/zBwBDrwxgUIxIKBAAARYAV6TqhJHu1f+WxMg0CkQOAkC+I77V7TEL9OjsXgi l+4VJYDAyRAAAR5N4XUd7Wijh7xAAAgAgf4QgF/uTyeQCAgQCIAAj2YicLSjaQzyAgEgcHQE 4JePrmGM74AIgACPplTv9PiHu2D//bfac4ajQQJ5gQAQAAJNEYBfbgo/OgcCBALudiyfL73+ /0GI09b4DvQUMuwcCAABIAAEgAAQAAJAAAjQCPwfPDOEQVQMrkkAAAAASUVORK5CYII=</item> <item item-id="598">iVBORw0KGgoAAAANSUhEUgAAAtsAAABlCAYAAACcLy+EAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABjaSURBVHhe7Z3N1fOmFkbdQHpIZqnB PWSQWSpwHTfzDDROIR4lPWSa5SbSga6QZBsh0AEhBIj9rpV172f9AJsDPBwO6NbzBwEIQAAC EIAABCAAAQgkIXBL8tYsL332j9utv1n+ezyXGXo9n/0rSx5JFAKxBF7984n1xlLkeQhAAAIQ gMCRBJ4Puwa9DSL0WmL73ski+tX1jw6xcqSB8a5zCby6R48Jn8uc1CAAAQhAAALBBAbNeW9R bD87D0EeTJMHIHAmgVffdcZyzZnJkxYEIAABCEAAAjKBNsX2cxApDXu1VaVrYTZmeI1sNdxR CoHXMGlEbpdSG+QDAhCAAAQgYCHQpNh+dg0vv08x7R+B/XwM8e33hnlU3i0M9cdkqfI6JPsQ gAAEIHBtAi2K7efj0a43UInrRUz7EIpw18T3tc39gqUbJk+o7QvWK0WCAAQgAIHLEGhPbCtx 2bDYXlmu4em+jGW3UpCh/nw2BLeCg3JCAAIQgAAESiPQnthGnOg2+Oruhqe7NAslP9sEmDxi IRCAAAQgAIGiCTQntucCF10pJ2VuFNo3vPwn4U6WzPNBzH0yuLwYAhCAQCICnIqWCOxprw04 Eaw5sa1ilolx7SehjUg7rU0mTEgdoI9JJwTMqyEAAQgcTECNwfTbB0PN8bpBU959TrdDbOeo nXRpvl7ykYZ4tP34+7D0e1Pau5TY9mrsabOR5O211EGSwp/wUvieAFlLogXeVytjkvLwUT3v hpeEv3fqfjd6fWCuNbE9Cs2LTCeXHs3pVJGv6FIbHy2e6/GMbTzaZhPaxdKvHSa/63CxPR4H uRFeJF3fWeKsdTCWafrEbvKJi8RPul4j33WDOy+ETeIpXYe3k0C2Nlt5ndnF2XRYwbsfajHE M5s97Wzjn8d8Jk8tiu3kg2lsxXk8v540mGJ7eImqXOOkCmXM38b8/f8XmX94kFvfspflrsQS PKTyf6hNSwOZdH1HGXPXwdguzmoEEj/peoV8V1lOUMYNRXj65DG3PZ/BO2sZE9jPeeWxbWqf hLbej7e2An0e/x0dqPiIx8EbiO2ZovFVRSVI0429+gx28DIPH9m5B21UVM/rnsdJaH9EtJbx w72eotHNIn8xQ4flJrZI24sX24Y9dqZnO/B6Zfa8nICm2DAcyE/iXxnfyfYlBj4di+89UlqB 1y/Ju7Yx6EJ1ZnGC9dbJg2N12rcZRI4rvslY23eNbSaKl9JgQsRAi2J77cFanzU9DcApBl5b uEdYWvZQGItnexzjzI/YhDWhz93eXyqE5aQtfL/sGM8rTmxL9hh7Xba3LPZsZCudZzuWn/R8 DXzjyyCX8n2HlFbsdTknyezZu0+puIxWvBcrj+8hDVEhn/Hjimzpvm1OflP+NhPPSzyooDWx PYpPH5e1OdM0Zj0+r7CamGUGu1ou0uJH14LfIap71++Rs+N3Ibw7ekupXUt+I9OICU3JLA/l pXl1LB+wiVq9sNWN/tuO687lT2t9Z7JnUWxvM5eHj/mOHfwWXi4fG9/smwrgKzEwPd8xH2mS 0tpxvZj+2bdPOaKMHx1l66NPtqkjylPQmOq3b2xerd4tNDzG4RY0jW+bsXXogbpFHIevJ7Z/ 73/+4df+L9douCm2XRsUDMEaMeO0fkRGFyGGIFk3TNcXH7c7wOg2G2y0wmaPT+e3X2wXzfIw XlO9vuvP1lGLM+oNZSgxjL2ur4xMYU5mfWey502xLTP3Fdux/KTnp/AMbfly1Tfl5yuXoSLe Oftnzz5F4i1dL63NSvmVro97l7R+J/eYKq9EHim0G9c0nm3m25/v1y1SvT5/+7H/6bdnf/Md PMq/TwhUt37U5gv4s0HB9O4ZatUpcObZokvcih2DCXjlDXR5qkO9DXJNujZTjqLJqd4FlmOE hRJdHrHqlbFMw8uIz7d4hzc/ahPJULJX6bqysu36Ptae99XBnMePTcvMP60nN1+L82DZN+Xn K9tIRbxP7p/32LPEW7p+dpudxLB7X4+UX+n6aqRLPab6lMctEEYW4oZ3IQ19j0RrmmZPmxF5 ieOYOo9i+6CC9zjdjthWniBzmVINWLbfnCEOEaEZ0pKY0TPknoXrXg4v73gIywRhJPaNJlMp TmXpO6OWeK0205i2F/m5dskeY6/r9myt7/ye14+4+C4fGKf4JGzvR/L9hGPoG3UK4CuVUbRx 2TGw9MYaqyeRYVFV9inm2BXCoLQ2K9mPdL2wMdUZRjKW46BjeaVxZdWkEvZxOfkfNQ6LbWJy 2GxNkhoU2xZxYjbWTyyTzfBdHmTfAcFcInp7go0BwpmHUA92RCPSixRitHpHv8UyVmzPcepf L3tBLI/iteo0LWL70Q0k9v5J9hh7XctXLTHbIvMQ1rH8pOcXo4Bx1v44xbT8tvX7Qf3FApFQ hhp55+ifffsUsV8MsKki2qyUX+n6bIw56szWVdhCWSNCU629EZpmwuLbZkJ4OXSLFM7ZoNhW /Ncien38l80jNP0mLvGIY/HcOczH4z0eWx8RWQ9+rpnxtJHHCPGwzXDF/Flu8DXa0b7Ng/kd 3rVosf0VDe9jD4theRQv0es3sPVactiqdN0eh7axOnou5PqwHOyyZ0d9Z7FnA8fiNBKReWgD CuEn8XfxdfdNJfB9i/6pnRplrJL32wZO7J8D+pRN3mPWPcegYtpsSBva6IMmBbb64NupbWRl 7/Oqq3Fc7mdMe4b2N2+d6TMOX1zTBLSZON2i7HN7VaJJse0921k4jbbjyvY1h/kp2zKY9sL1 jMnf+yQtbUTlO/bhQ8T2SjVtHtlYH0shnnVg2O3sjGOrz/m8y56d9V2aPQfEECeDuPFihxfG Pecqja9Ztsp4WyZqS/al87Y7U6xH3VbTZmsaByJD/47qc8S474iErqxpXKs9wgpzm2J7mNl2 XcDCe0qjHCfammfbc0nVGfdlThBijtGKaGtej6YW25dguQwDMOv91XWDNRf2Fyy2bfH0ljJZ PEJpSr7NPE2aAW/V+Xr2TWX3FxXxvkSfcoTYLq3NbojtAuvM/rn2gD4g9lbPfmN3MlfWNDbd Mvz2EDRlo2J70LeDSPGV25/wjFRfRTTEyTI919LE8risdaPw967sblCxD6YW20P+rsHyHYs+ LAsuJk+DDRTn1jYmj+bkz7npuDR7djGPNfoDntf6C/++qTS+Nu/2vOxdmoOghf55xwT5HYpy xIrKAa1i+Yri6yzQ4XcwIP9+Y2fCxfPfWS71mEW3+EyemhXbCliJOiXCBHi0NQLDJ3FDFmha w0N5IQABCJRKoMhVyVJhFZ0vv4lTu2JbOeACvNtF1zWZa5BAoV7tBmuCIkMAAhAIJ2A5hjj8 JTyRlYB//H3TYjtrHZE4BCAAAQhAAAIQgMDlCSC2L1/FFBACEIAABCAAAQhAIBcBxHYu8qQL AQhAAAIQgAAEIHB5Aojty1cxBYQABCAAAQhAAAIQyEUAsZ2LPOlCAAIQgAAEIAABCFyeAGL7 8lVMASEAAQhAAAIQgAAEchFAbOciT7oQgAAEIAABCEAAApcngNi+fBVTQAhAAAIQgAAEIACB XAQQ27nIky4EIAABCEAAAhCAwOUJILYvX8UUEAIQgAAEIAABCEAgFwHEdi7ypAsBCEAAAhCA AAQgcHkCiO3LVzEFhAAEaifwer1qL0JV+Yd3VdVFZiFQPAHEdvFVRAYhAIEPgeejv91u43/3 LrEAHdN69E8Xfun6zmp7Pm7945Poq+/uelmf/eN279MUXb1bT3tnAfY+JvGUru9MNx/vnRnm MQhAoDoCiO3qqowMQ6BdAkoY3b5KNC0ISdxJ13fk7tXdjfKZYnt46avr7/euP36q0Z7Yzst7 h4HwCAQgUCUBxHaV1UamIdAegVFoz17tTY/zbjST2JzSGLzHnenZDrz+HETxlmd8lU/1ft2T PgntT5m1SYZicbxnfxbbncr3O90Nz/5uzu8HA3lK9VEdb8XBqOMkk6joiuIFEIBAJAHEdiRA HocABM4jkM6zbQvXUILzLTZjr8uM1l7WrxhbCWvlVfcVZsO9fosBb/H7FdhjnoImDHI5pzti eUrPy/nIz3u9ajHmybde5SJyBwQgUAgBxHYhFUE2IAABmcBabGve0RiRYgsJ0X/bcd0pVFUY yErAWsJFrKJU9wp7xm4Hiu2lMDdDSyriPXL+rgwsy1UAb2sY0pSv1eTIajNye+EOCECgDALJ xfb5u7qHwSBm0C2jXsgFBCBgIbAU20thYvdU+mG0ehQ1gRN7/ZOLzwZPMzzDFS+9LQq9PNZB YtsU8Hr6NfE2NpKOdamXLT/vaTKmh0Z9//9iJcNpM362zV0QgEB+Aiux/e+//zo7gHfH8Msv v1hzXsaubsR2frMiBxAIJ7CMyTZEyKwql2LbiHHe8v7NXk6XOI0V09LzisZUvkHwWWOLXaeM hHpgJ+4+LNc1ZMuDnn5FvJVANSp7OT7l5+0TMrJtM+FtjCcgAIE8BFZi+88//+z//vvvT27U v5XI1v/Mf6tr5ezqRmznMSVShUB6AguxvTqVI+JYvB1hIoOi/cYzS8/raKyTgvye1kGiW47+ 036rlfc0/TCOTCyAd8hpNoSRpO9cSAECCQlYxfZ///23KbaVAF/+5d5Fr+cGsZ3QXng1BLIS WIjt1SbBCLH9PhXi4w01NwvOp0bsvq5hKzxmW98QOfJ+h+XVynu1GXN0Dxnnl7/rx/V7gG15 h+3MNqWHPY4C3BKLj9jO2u+QOARiCazE9j///LN4p82zbd5z7K7uaZDbf6wVYjvWKHgeAqUS SObZHgusH8NmO/ov5Pqwye3h+CiOQzi5Ys4/sb16WESy00jeYS5zGI8uBI/0bJ/G2z2e5Odt 2twcZmQ7QB2xXWqXRL4g4EVA3CBpE9vLNyf0EHgVwbwJsb0LGw9BoDoCATHEOcrmChNwCid/ 72mac7YlSJXxFuL016El7vLn4S2thkj1xXUIQKAUAgeI7XSxb7s3+XAaSSn2RT4gkJDAcqIf cxpJkkwGi23b3hdLzpJ9QVKiUBFvUWhPZfWymWy8EduSRXIdArUQOEhs2857DfV4H4UMz/ZR JHkPBMoncNC5zykKukNsv0NZ3Ef6+Xu/UxTpvYlyPJmqNKeGxtt1rN6aq+Nc6w+83LznjBBG ksaceSsETiJwkNi2HMIvbEDxOR8Wz/ZJVkAyEIAABCAAAQhAAAJJCBwgtkM92Kk9BXi2k1gK L4UABCAAAQhAAAIQCCbgFNvqxJH35ki1ZPjHH3+M/7b9Hburm9NIgmuRByAAAQhAAAIQgAAE iiQgerb9cu3vrU6/qxvPtl+dcRcEIAABCEAAAhCAQGoCK7F9+5/xtUjPf5ezqxuxndpoeD8E IAABCEAAAhCAgB+BhdhWQlsX22H/LmVXN2Lbr+q5CwIQgAAEIAABCEAgNYGV2FYJvgV36P+m zqzf+xHbfpy4CwIQgAAEIAABCEAgNYGP2N7v0f6K89SZ9Xs/YtuPE3dBAAIQgAAEIAABCKQm YBXbunf7nQEpljt1Rv3fj9j2Z8WdEIAABCAAAQhAAAIpCRx0GknKLIa+G7EdSoz7IQABCEAA AhCAAATSEEBsp+HKWyEAAQhAAAIQgAAEINAjtjECCEAAAhCAAAQgAAEIJCKA2E4EltdCAAIQ gAAEIAABCEAAsY0NQAACEIAABCAAAQhAIBEBxHYisLwWAhCAQN0EpA+V1V06cg8BCEDgLAKI 7bNIkw4EIACBaghMQvt2u/WPZzWZJqMQgAAEiiSA2C6yWsgUBCAAgTwEXt19FNm3+6N/DIK7 GbH96vq7Kvf8XzPlzmNmpAqBpgggtpuqbgoLAQhAYJvAq+v6yZndUhjJ8H0G3Yv/fAyi+953 L6wFAhCAQDwBxHY8Q94AAQhA4IIEGhLbSlzfu2F68f5rqOwXtFyKBIHSCCC2S6sR8gMBCECg CAItC07D011EfZAJCECgVgKI7VprjnxDAAIQSEqgXbE9xq0vPN1JQfNyCEDg4gQQ2xevYIoH AQhAYB+BNsX2tEH0Mcet7yP3fuo5xL8T9h3HMO/TQxvoOI4nbx1cI3XE9jXqkVJAAAIQOJhA e2J7EtrHbIxU7+JEk4NNMsfrhnj+Oztlc5C/VJqI7UtVJ4WBwDkEXi/8deeQHs4Eycb6OmLb h+GRHu1+OEbwgUDzaiI+deP1ooQ3vboHJ9Mk5NvCqxHbLdQyZUxHYDwi7JglZzGTUlrSdTEB +w3Ph37W8iTAvp4etZHsGE/gzuyleUxiKV3fmaumWJfEcDxj+zg7touzadPl+xzv0/qNnbaY 4rFq7ZvJUwpzaOqdiO2mqpvCHk4gkWCw5lNKS7q+o/Cjt2+xFm6K7eGlSqhcbTOZxFK6DmuZ QEEMlQj8iuDYD9uoNmJOwCehrYcjHOpJl2lnv6PuvmSov6v1cdktoq0MILbbqm9KG01A904N nrBheTGdh0pKK/D6U3nvQrzw6v36/d9PeI/CRBPhSqwkiWvUv+qXdLALZLmqd+P5GllHtw3p BYGMa2Vom3xaJxaRq0LGFy9Vm0wXI34B+47ipfq+41Y+pJbC9esRQGxfr04pUTICthAK5QUL EbC+mZPSir0u52PtiVLPWDzb6ufVR0E23j/c6ycK9LOOHenKxfC4I5al9LychWSs5aRPukNi JF2Xs1kMQ9UWfAw8KnRlfQ745J3P0RdlrJtdfcmU31BeyxAYuczcAQGdAGIbe4CALwGbd2r1 m+YBivHESmntuO5cth4HfXOQdolb1+8BXjrfAVIMM6iI9ViWd3jCiax9bTv1fTXbayAbu+g3 XzKvEvmIct/0TcaGJ3d3Upa6W/Uluezbty+xMXT1L9b+cBLnSVbvfOuX+6omgNiuuvrI/JkE rB+6WHTMy9Mb/AZdewmktGKvf1L9DJL2GNP1AL0twr0GdM8BcvvDIhWxNgbvtV24vlZ4AOsz G8hGWlXbayBDVdZtUXak0HZtujQmvxFedKnuxj0b2mT9VPv27Eu+VShsUnX2h2prilSvgYbC 7U0RQGw3Vd0UdouAa5PUOz5ZHHSGz2AsYpwdHpIxD7PXySVOpbRir6ssTOUd4hCtsbEuT3Wo x3siLrG11cu22K6L9aJ8K7vIz1rlz7ZB0PzN2X4S2/PZ9rrZU/qU1d2wB2Hq4SEV0hha1Odk k4+w1z21llAWZxiET3nMVTqxb9Mn7yXYt8BL7A8R26iHOAIXFNu/9z//8Gv/VxwXnobAmoC0 FL7aGBUQWmGmJqUVe11PzzpwJvS2+nqjtsJIamU9zrPME14Ssi6lHddsr4EMnStaI4ODNtnZ 9khshl0l7IsMPqfad0hfYk4YCCMJtGxujyHw/O2n/sffnv0t5iVlPcsRPWXVx5VyYy7/vr0l sxdnNQBGDHDzRsTvRisjrejrWr2UGrM9e+/eTsLFIF4j608MrSm4QlcLYuwqV3sU2o5ozxnt NRSZxas8rWQdJLQnN/9yM6TTttTNsZuLpbqbAeWw7xCxre9L2eK1EbPtFSYXai/c3wYBZVeD ASG226huShlNQD/+zjj670hv65jPjbSCrw/Hgj0cxxQ6BheXh27aHLU8+i/NaSSjG3hcdp/C GbSl6VpZj/W2FsvJWEfb+5EvCLHnguw1FMHKNufVjMUHbWLP8jZDs1TbsK2QTL/Fb+xbHvvp 7EvOtm9fsT3OT8wPCjlWlJzOhwMnS6E2xf31E0Bs11+HlKAUAgFxxDmyHLhsahOFrmyfv1O/ UtYzwHX8rL+3+nzWOYx1VEf2o+yc8cKlMLR91CYDQzHuOyJPmyErk7BdeoFLqRuPMrvE9qMb 3B/8QWAnAcT2TnA8BoEVgeVybcxpJEngBosXW3yxJWcWT16S/C9eWhFrz5AXL3s5hbVwYkP6 yp1SqNhe7Z9rPwvckE5KoW3WTXX2LdSDTWwPvz06pPaJFny9pBDb16tTSpSTwEFnP6cowg7x 8g5lcccq+nusji9SPaw/oTdjKIFrOXp5nOGa1xms12EHzvPZj6/Q5Rurttfn8HXZfOJsaW/x ISurqjbqph779jBai9jOPnnyyDa3FE4AsV14BZE9CEAAAmcRsArcM0T+WQU8L51X1w1R1PzV TyDvxKl+fpRgJIDYxhAgAAEIQMBJ4OiTNJpBzclY9Vd1IfH39YOkBIhtbAACEIAABOwEjvza IYwhAAEINEoAsd1oxVNsCEAAApsEENoYCAQgAIFDCCC2D8HISyAAAQhch8B8mkX8+czXQUJJ IAABCOwmgNjejY4HIQABCFyPwJGfFb8eHUoEAQhAIJwAYjucGU9AAAIQuCQBNkNeslopFAQg kJkAYjtzBZA8BCAAgUIIuM5nvg3ng7vPWi8k82QDAhCAQKkEENul1gz5ggAEIAABCEAAAhCo ngBiu/oqpAAQgAAEIAABCEAAAqUSuKTYHj+JvP6PZdBSrZB8QQACEIAABCAAgfoJPB92DXob ROit/uJRAghAAAIQgAAEIAABCJRJ4P8DEd68J4sSfgAAAABJRU5ErkJggg==</item> <item item-id="599">iVBORw0KGgoAAAANSUhEUgAABAUAAABeCAYAAABb/61TAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACZQSURBVHhe7V3JsRs5EqUD7cP0TTZ8 H3TQTRbQj77rQGv+SUboqqAFuskDTi0ssgoFVC5IrPV+hGImmtjyZRaQeEgkLg/8AQEgAASA ABAAAkAACAABIAAEgAAQAAKnROBySqlZQn8+rpfL4+L5d/1kNYBCQAAIAAEgAASAABAAAkAA CAABIAAEiiPwefXvbS/D5hakQFA9AynwcXvci6sPAwACQAAIAAEgAASAABAAAkAACAABIGCM wP32+AApcAQqSAFjk0NzQAAIAAEgAASAABAAAkAACAABIFALAiAFKE2AFKAQwu9AAAgYITBO yJfrAzeTjPBEM0AACAABIAAEgAAQcBGAv7W3CZAC1HcCUoBCCL8DASBggcCSv0RLCoTznyAn ioV+yrbxecM1trIaiO39/rjd9nTf0b3O2B5rqN+7fDVgjDEAASAgRSDW35L210h5kAKUokAK UAjhdyAABOIQuN8+pmSmH9drRKSAb67C/BWnmTpqj/aBxLZ16CJqFJ/D931jZCh6OmZRfdVc uXf5asYeYwMCJ0fAxt/qFESQApRi4VRTCOF3IAAE4hC4f37OyUyjwtnaIwXud8YGKQ7arLWT yDPYxJWzkcwqaZ2dJcHfWNT77fog1dn7prl3+YxtBs0BASBgh4CNv2U3nqpaAilAqQOkAIUQ fgcCQMAIgRpIgeE085Igr8EYRvw+7R5CqT+GyIjX7mgM5fugN0samBuXx7+JdK+KaK+caACt o04xe4oVn0Py9L5p7l2+WBtBfSAABNIjEOVvpR9ekR5AClCwG5MCiRxUSgr8DgSAgBUC7obW qt2hnahFyihSIMEcNYXrbeLfPRiOsqd4/rVpeUac3A3/TAisw9DncMjzEANF7Sn6c2f4FL1v mnPJl+Dbj1Y/GgACQECAQK3+lkCEloqCFKC0xVjAqSam32fD3jrGrIooBASAQIUIHG/Ent/7 sHnbJfk7uhxehBRYnzoPp/VDePN2g+n8/il9IWGsv96wOtis8BhPf1l3rg/toSN5fESJd6MT GWkx2d3WVtPlMGjNnjzGFoXXaP9EVEyuTXOpeTW5fPC3SqkW/QKBFAjU52+lkLKCNkEKUEqw IAUYTgA1DPwOBIBAhQi4G97IIWYnBXxh/OPmcNnEU7/T8u5Pdd8k6Y4AGDe8UdEC1Hip3yuT Z8SDszuf7EZ7/WLepK+7mTPGp4g8qBj/AWsO1I/hwdBYvLZXHwKkA28wtMHWWCIpKQB/q0aV Y0xAIB6BmvyteGmqbAGkAKWWeFKAdACoIfTyu3O60rPP04vKIAcDAcuw99ykgO/Uef3fPL8H GXvv2EOhf6H/HnnibSHP1MZyau5ujPPK4ydUXJtMcCrq4mg1d3PsqRT+bFLAMyeEwtQD3zMZ EZN008yY01IXSSgf/K2n8qy+2dS2gPaBgASBavwtyaAbKgtSgFJWJCnAPemhhtH8787pyuRE aU+2mgcDAnSGwLh5iw97H0DJTApMm073ZH41Bur3lxpfGzn//fc9AXi8udYShtR4qd9d/Peb 8v0p8YxBOnmO7cqSEAglL3SImoiohKrxF5MCRLLH4DcxfubEfJFw01zF1JtKPvhbT/XC36rC zjGIJAiQ8ye31yh/66CTqnKZCHMygBSgrCeGFPAliaL66/T3XVjwbKha579TlCBWswgYh7Wp cJAnGqQ2adTv4zDnUPOB4PPmGgid/EtP3J+APE+/QvMGNV7q9x3sO6ehgDxhYac8ACQZRWC2 hMOP0RGvttxoEWcMwdPYSP3kxn+23cC/4OL0JgO8eJHfBEiBiXwzX/zhb21I2g3ZC39LtaSi UqUI1OBv+aCxJOltoWcnIwYpQAEfQQokWfio8bbye+jErZXxY5xAYIvAOOma+7kikOWkwLCj 398dJ64PeOuM4/Sy7nlP1k3lmURyX03IK0/w+oBlpJUvj8PhSUfEFQ/K3hx7z4o/N1JAgheu D/hnsBS+UYo2RfNvzYXhb9WsHYxNjkB5f8sdc5lcJvf7XQAeg0wBKUDhqScF6jNaStZ8v3tP 7PJ1j56AgD0CxZ1SBSmwexVlOQXdJhp8J7tzf1/BWENOASt5Xvdx3StO0giHiA30CK0vHDoi fN9r9MH8Ab7rXcJQxF2H7klKwJ5K4C8hBdZJGINjDRFlc3TNIYGYay4xC3MV2kUC+eBvhZc0 +Fv2yz1aLIxAgjkkRiJyTo9p/Fl324cvaS/jSjaVkwGkAKWp/x5f/vn2+EkV8zo/KbI3iwdS XQV2GEt1I8eAgMARAqXDVzWkwCjP+olA35OE2ycEr1dPdMHUjP+pwtBp9zwPOM+0+k5hxUZn JM/U735Tn1UezwL+ws0T9q6NVNmG0Y/rlu9kcf5v5HUFUl9Me8qNP5cUmLia9ZWDEF6hb4Jx opTc4U0T5spe283lKz33kkZfrABbJ8VGiI6BgAaBir75DLlM9n6Hh4ilNvxPmI9yMnx+/9/j 3++fj4tGJeeoo40U0NbrG9V5gWKwWX3DAOk6ReDzWtK2taSAUBnCTOu+jXWoRzIru3CorOLE aen+BIB/+h8vTyWOD5mXgIW0v1DV+EfIFSTKBp1ebwMVd/Bnvmle98UgJaLE5oeoRnWzqQx/ y4cl/C07C0NL9SFQ1t9a8MixRrtz6pZYXz9bzPM5wnP0gilIgaC9KxebpIt6fR8n514LGGue 3jhY8lpCqdwIlA1hrZUU8N3N92iGyXKb69TNobBJ0OUnAIJ3/Td7ryFywn3ZQTH4++36uEmu DSr6OKySkhAYO64c/yg4fdEzw3+7UgpN6D/ww1y3jqcoQoT6lq3ls24vSunpK3N8BPhbPD1w sOS1hFK5ESjrbz2lzTD3+P2NwJUtZrRlCDuQAqQVgxRwIVLda7G+B0vqrY0CKizbEI0/ytfT XRahyfxudyUN7teWXaTqJQWWKwrh8Hb+6XuEhv1VHb1vw/NDkR9UNm9LeT4fN2oTaQ7Ku8HQ dQXtVQXqu6sP/whwPaQAi+RJ5Wiyw1z9uR8kxMBRiKr56wOp8IpQvVVVlY8Af8sLvwpLK0XW 0g78LVNNUD7fr1+/vC/c/PjxYz+OnHmZAnMmSAHSPPSkAHkaQPZdXwHtvZbQ009mjmV9UJEj 0mJJNtxYgck2ajCE5kkBX/4TbU6Uxoyo8+Heb7fhlj/+2keAR/As9zpt5RWEufo2lcwTqPeY D0JUn/dWzeTjRF+YdZavIa2PAH/Lt99yX5LR38nOZwH2PcHfssT0eE79+/fvRAiMxMD47+vX r6///+fPn+1AXmSNm4su1YtH/rGDFCDtIzEp8Mpc/E5clG5/tGR6PnpX/AgQ63stJPiyAsCy Yrz8Q9sn7JKJEFfa+R6GMO3LOqu4onGKNVY0KaiSKVJAMCIUtUJAuQ5ZdY92DBDgb8qT3JWV nKb7CIBAItEjYKgQVQNQ5ya4pAB8BDPI58Sy64SbxIsaUT134LtmxQv+VpS5sSsfr8sjKTD+ W/5GgsD3N/vBQ1Tipy9ZcyjqUPoS0r5n3zoDUoBUvtIZYy1SewZoNo4Urxb4nq+Q9ZXiXgsN /5X59juwnLBkZ9DOidexlssw1/Hfg08qkALkF40CQAAIEAikIAUkc9O01rv5MDQh6USIqpkh wN/a60sDbpX+Q/xancx3rRIv+Fsa01fVERCtv3//nqIGDv+8xGuqSIE515N7CA1SgLSElKSA p/Pgm9EzI6uOIvCERu8S0azuGu2JCSkrZXSnlj3pMrBciihOPDat14ylKV4rdt4gYVroU9uT Ahn69V0V2P03+Tgkjjc59YgLIFJADBkqAIEKEbAnBfhRCiMcZqTA9Nzp/pDDXD4WKcDwEZzT XPhbgo9D/CoNs234W0ygeMXgb/FwYpUSkAJLbgE5KZBu7wVSgKVlt5CSFPj57fHl209mj+vQ qPXpvbOx1jD1zxGEF/nngu1slPfMajq26hAk8SY3hOWzl+C9HaaqDh2mCrA0w2ubSI2VbZ0P ocOxrHMK5OmX/B4mZ/ZNwnHl//ntn8eX/5RARFcDKRANIRoAAhUgYL5pHjJSXCXErtH1gRHK oxBVM6jhb23WKzWuZv4D/C2/DkL+qc7f0Oh5Swrk6bdPf2vaDNAvyTyVpI8UCL/e9ErKu2Yv BblfQApoviDpYrr0wTKW9wTxyurrPs/kUNXB54SeDHeI2aY/Sgec3Wl6unstOxpmukIR+Bek 7gksJ+eEmUuhMSxDSYUmDNV4OfkjlNEVnLFtF6k8/dLfg24ciBRQTbKoBASAwAoBc1JAcKI1 DcM33wuczbUyjxxPM6XD35pIAcnrEAv2nDV6ryf4W14fFf7W3ncfMOnT35KRAqy5Luhn8yOv x++ZOw+AFGBpZbdFlTHsElLAt8geZkDnG8ZOVFa49LtWc5ECEiyVG9wXOjVjyWX6KbxGjBjv tas+KafShhTI1S+lQ+U4QApYWATaAALnRqA4KfCMlHqTyvMmkOtsVkkKUGve3mkaZA49SUrY J7W+7M5g3Mz4lUdmSrCEvzXletrl6FjbiNLf0MyS8Lc0qAXqsMhIQX8H3worWnVnR8d9gxQQ 6OZdVBh2JyUF1kkFX/fZfAtR6F4JVyj/u8O73AHBMaS713IogWSTy8UydpEKOExVYGmF124R iyCkSP9pFdGQrV/ie1COA6QAdz5COSAABEIIpCAF5E8kP+fIZ9SehhAY5asmUsDdqMPf2puf lf+wZYWGVwpikmdX7Lta4aX0NzQz6IYUyNZvj/7WNLmxrw+wdHW4N9le9fB8vGISE6QASytu oYSkwNDV/kk2H0OsZ+m30mwX+ev16Am2/SYwxFTF3msxIQXYWM4fctwiNbk6U7jeEkJWDZbc RYrCq3fmejK6tQ4HIm79JKFSfpACqkkWlYAAEFghUAcpYKOSakgBas17iQt/i6N5nu8Kf2vB 8hAvpb/B0dNuRzNeo12uOWTstz9/a0BWlMtEo620dXw5sPD6AIl5WlKA7J64307WPypweFVh Jiy2V6T4p8WSey1RMmgqm5ACTsfdYam7U69Rx7ZOqX53S+fAuq5ON5g2A1Ig3gLQAhA4OwIg BYQWYHViB39LCDyjOHPtZLT0LgJ/SwRXuDD8rSggreadqEHoKyNSQIVdQVIg5QI1YuEmNWTc IU9xr0WllphKqRcpZkhW3Vhur4uwxhqjk1fdUv26g9eNA6SAiRGgESBwagRACgjVb+Gcw98S gs4sDn+LAZTO32A0TBQp1W8P/tYgg8W8E69EdQsgBVTQlSMFXmH5TiZ+9du5rvwO27rtL5Rg x/5ei0otMZVSL1LTXDEkDnrprVUsV8/nSJ6zitHNVLdUv7sPZEquNemRKT9IgWjlowEgcHoE zEmBgmGuRyGqZoo2cM7hb5lpY9sQ/C0msKX8nlL9tu5vgRRgGnZvxcqRAr0hCXmAQO8IgBTo XcOQDwikR8CcFDDYNGulrimngFYG1AMCQKA+BMr6WyAF6rOILCMCKZAFZnQCBDpAoOwi5Zur lPNXB7qACECgVQRACgg1V5D0EI4UxYEAEDBCoKy/BVLASI2tNaN0qrFItaZojBcIRCNQdpEC KRCtwCYasHkqrglRTzpIkAJCxcPfEgKG4kCgfQTK+lsgBdq3IJUEIAVUsKESEDghAmUXKZAC /Zuc/71n7Rvy/ePVpoQgBYR6AykgBAzFgUD7CJT1t0AKtG9BKglACqhgQyUgcEIEyi5SIAW6 N7kpaZeTuHT32kn3KHQvIEgBoYpBCggBQ3Eg0D4CZf0tkALtW5BKApACKthQCQicEIGyixRI ge5NzkcApMju3T2QdQsIUkCoH5ACQsBQHAi0j0BZfwukQPsWpJIApIAKNlQCAidEoOwiBVKg d5Obnk1zn8f0RQ/0DkTn8oEUECoYpIAQMBQHAu0jUNbfAinQvgWpJAApoIINlYDACREou0iB FOjd5EAK9K7hWT6QAkI9gxQQAobiQKB9BMr6WyAF2rcglQQgBVSwoRIQOCECZRcpkALdmxyu D3SvYpACChWDFFCAhipAoG0EyvpbIAXath716EEKqKFDRSBwMgTKLlIgBbo3N1/+ACQa7E7t iBQQqhSkgBAwFAcC7SNQ1t+qgxS43+9qRfrwW9aei7rVzBVjANANFaSADjfUAgLnQ6DsIgVS oH+Lw5OE/esY1wfEOgYpIIYMFYBA6wiU9bfykwKf18vj+rlobfYF3s8RD/6f+zIRoWAmKfB0 Oi6Xx2Xzz3kG6cEttxVg0+ZbOu/QrQHQfQAgBXS4oRYQOB8CZRcpkALnsLjt2vt2Cs4h/Rmk RKSAUMsgBYSAoTgQaB+Bsv5WXlJgyie02TO7pMA8ng83EfGBmkWkwG6/PoYoDiSBy1LQ5Z4D Heq6zsu46b9cro8X8bEafAoAdJ8ASAEdbqgFBM6HQNlFCqTA+SwOEveIQDlSwDnsETiYIT0c OZ5mugMpYAYlGgICrSBQ1t/KSQqMUQDrvbIzT6824uO+mntQEEcKTPKvn0OaB+U77PeVCw1y Igb2zEISAHSGDlJAhxtqAYHzIVB2kQIpcD6Lg8Q9IlCGFNifPHlfuxACDlJACBiKAwEgwEKg rL+VjxTYH5KP8HgiBcb/LMgxFE0KTKEJrzsLYVJgU86XGGmtbs/vtgCMDAufOdlbIkgB1tdZ U6FnVMsY2cJlzGoafp9jmb9D4sZQRtHThGCXXaRACmQ0IHQFBJIhwCYFhrWONadyTtKnddON 3Az4eZRft0ImihSwlC+Ztk7eMPytCg0A/lYWpTDm1V+/fjlX8eer+T9+/HgPcZpP31f2t3N6 YPMfIgWG2HtuboF4UmDqbHHsD0iBdTmStXAFSAeAzkhACuhwK1fLH31SbjzoeaIvKyIF0iVr AykAawcCQCAWgRKkwHQYs8slNTuqG3L9tQn0X/10ZQcpEGsNddeHv1WjfuBvZdEKQQr8/ft3 mj9HYmD89/Xr19f///Pnz3OIzh54c/h+5Dsf75U5ZHEjpEDImOMBmHMYBP4FEQQpkOXjMupk q2Oe02LUNZo5ROD5Xd/WjGgh/ewm3ZGzGE7JEt2fzWcYiBTIhzV6AgLpEChGChBz4Ly+Dkmn P8d5nDd/gxRIZyelW4a/VVoDof7hb2XRDIMUGImB5W/cf+7+Rt/T2X9uk+yHTv6lB+j7ruNJ gSzXB9IBoDMSPylAEgyMsBLdeFCLQgDMNYVQid/nRWodnjqfTPEcS9MR+wgAQTjs0ViSRwo8 w8z8HCZIAVM7QWNAoBACR6QA6Xv4xszxR7zXBwIACOZLKSmQTL5Cuuy9W/hbNWoY/paJVg79 raEHzrz6HMjv37+nQ2n6z90DpzsojyYFzBINrpiR/YSSDgDVYjOGPWtOEAXGQhsJSkgQCNnU FCWi0aWkc5QNIOD7rt3/tixkafXkTZ7lix5Q6DI5KXA4JpACCpWhChCoDoESkQJL4qrNGjkR Be5z1LMzjEiB6symyIDgbxWBnegU/lYWrQj2eUtugeNx+U7/pREBuXIKGD9J+N6guwtOOgB0 RgJSQIdbuVrbRWqb+8KfxLLcWM/Ts2+iWn/r+fQEUuA8VgdJgUCLCJQhBUaknKeufITAVAyk QIt2lWLM8LdSoBrbJvytWARZ9QWkAB0pMBM5vuTooX3LKw/MOnRUcBVWFCmwv3vv37zT5RZo 3cVmfbd/27YtAGGgWUpHpAAPpkylONEe20Vq1P8qRF3gzGQS6STdUItURj21fH3g0FoQKXCS jwlido5AOVKACaxgHZVeH9iMAK8PMBWSphj8rTS4pm8V/lZ6jGdy9Hq7x3dFXVMQvCgwfrPc V9eYpEC8fOIWhqQ1W1z54Q8SAMTjmiogUkCHW7laG1Jg/Ng2Vwb4tlVOgh57JsLZcurJ59AK 2NUj7eD6QI+2C5mAQF4E2KQAd1hWzuvSXy5SoJR83H5RbsjROxzwLSeVOddxYH+AAPytLOZh Ma+ShMAsCSvKeff9HaNQLyngGXcKAHRGAlJAh1u5WptFarfZAylQRjP7xDeTnhbCJque8CRh GRtAr0AACHAQACnAQWlVxsI5F3aJ4jMC8LdqtAT4W1m0YjDvhJ6C3SeT3l6x3csn39s0RQos d9vCby3KAdAZCUgBHW7laoG5Lod9uOfn9zo9ZfW8OrSO4Mh+wrC9zsQNt6KQRaQAhRB+BwJA gEKgelKAEmCzX/94uH5cT/IJoOiyKPytGtUKfyuLVgxIgSzjDHTSGClQEqp13yAFatGEbhwZ 76rrBoha83lDF7kfQArAnIEAEIhFoKdNc1ROAS6QjTvnXDHrL9fHOl4/zrEj7ENPZf2tQQeN zzsgBVTfEUgBFWzVVNq+ZsG6llLN2M80kD70VHaRQqLBM30xkLVfBEAKCHXbuHMulLbi4n2s 4xUDbDS0PvRU1t8CKWBkjK01A1KgNY3tx7vcr1rdYW9fqA4laF9PZRep0qQAdeetQ5OFSEAg AQIgBYSgghQQApayePvreEp06mm7fT2V9bdACtRjy1lHAlIgK9zoDAg0jEDZRaokKfDO0RDO A9OwYjF0IJARAZACQrBBCggBQ3Eg0D4CZf0tkALtW5BKApACKthQCQicEIGyi1QZUuCVPffj +rh+XHZJxbo1g+dTQpdn4kyQId1qOrtgIAWEkIMUEAKG4kCgfQTK+lsgBdq3IJUEIAVUsKES EDghAmUXqVKkwG1IEzn+nen6gPMO9Pik5uXjcbuf0OghsjkCIAWEkIIUEAKG4kCgfQTK+lsg Bdq3IJUEIAVUsKESEDghAmUXqTKkwFvNJyIFRhJg/aTmqQiRE37YmUUGKSAEHKSAEDAUBwLt I1DW3wIp0L4FqSQAKaCCDZWAwAkRKLtIgRQoZ3JO5EC5gaDnDhAAKSBUIkgBIWAoDgTaR6Cs vwVSoH0LUkkAUkAFGyoBgRMiUHaRsicFPq/Dix3PO/O7/91doj9RpIBj21NehU3kwAmNHyKb IQBSQAglSAEhYCgOBNpHoKy/BVKgfQtSSQBSQAUbKgGBEyJQdpGyJwVkKjwnKTAnWrw+8yrI EHNLf95uw0UE/LWLwPAN3OYMGzF/5qTAz2+PL99+xgxJXffnt38eX/7bVjeXD6SAWj+oCARa RaCsvwVSoFW7iRw3SIFIAFEdCJwGgbKLFEiB3IY2EwI2CQbL2k5u5Drub8g38RGZcbKnTbPP rnuSr2NLhmhAoGoEiq+ZjZORR3PzpWrNFx0cSIGi8KNzINAQAmUXKZACVqZyv9Pn9ZYRAo/G nQsr3Ftoh2cb16iXKHraNIMUaMGqMUYg0B4CZf0tRAq0ZzEmIwYpYAIjGgECJ0Cg7CJVmhRI rODp2T+bMP31SMe8Ce/0CPMViPdJ75hA0BMJMGziP4wiBMax3G9xm8g0yM/JE9+5JOyxTzNu u1ZVtjEr9HGNiBYAKSDUYSTewt5QHAgAgQoQKOtvDQAUvJa1wM8hqUOqOrrahUiBoIGDFKjg 28cQgEATCJRdpEAKSI1kOu3fJEx0SYF5g/fhJBEMJWDc5V5kDWjss7YN90wIrMPgTSMjWLiU LaS1jXnUSr/hKXIdpMD8LSykkPZKBCIFytoxegcCvSJQ1t+KJ3+lelGT1IGOcH1AqoGYxR3M tQptVAICLSNQdpHqjRRYn1QPp/XDafo2UsD5/XM8vZdsrsf66/LbTdCaLBgXY+2miLRnD+kw 1ZmiEbavP+hIB3IE+wLeqIxA1AS3+azylLaN0Zb0uSZSkAIfIuN5fguvOnuSiK/2j1UkzpMy ueqx8fYLf4urDpQDAt0gUNbfyksKxJHUfpWDFFB9CkrGH4uUCm1UAgItI1B2keqJFPCF8Y8b 5GUTT/1OW9F+kZ124s71gWc74yY51ZODY9u7Ddu8CVv/5zk6QUJ6eDAY+hLtDddNRF2ZSCSP f4fouQIiw87CNranOrQ9rksUJwV8ulZ+A4gUkOkepYEAEOAhUNbfykkKpDnAACnAszOnlJIU qOCuiUpcVAICQECNgO+OlroxccWOSAHfSfX6v3l+D4a3TxscdzMd2PyHSIExHNwwh8B2r+1e YQgoPpRTwStfuA0dKeCeHIuNc1/BlceJJNCNc+iGYxtTmSUKI41txESXmJMC0usMPgJAYmcr bftkMZcP/pbBB4kmgEBbCJT1t/KRAhYktU+zIAVU9q4kBRApoELbtFKixGSmYzxtYzb3VWuD ryxz3Q8pMC2C7sn8alNC/f6yi9fmz9347U+u5zrHZIF6o3pgqKMs4asJRLK/oHyWpIAlIRCS xyFdIqISSNtwNrd7h8vGNo71ejxzmW+aJ7vmR5mEMZSG/fv7NZcP/lb5pRD+VnkdBEcAfyuJ csa1hHAKfv36tSKg39cBf/z48R5SBpIapICZBYAUMIMyd0NYpHIjzuzP7r4qs8NsxXoiBd4n qdt77ZL/HvZR5vvyofWU2thRv4/9zuH2wybGm2sgdPIvjSBgmNbzBPxQ1sD1gRHrF2HgzGfH 8q39jQP9USzHc+xkPgVCxinx3vNk3iuP5wpFMPyeg+cBobTT2O4E3MY26iIFxhQV+7v9Ies1 IwUCTjNIAca80VoR+FuVagz+VjLFEKTA379/J0JgJAbGf1+/fn39/z9//jzPIbaRjKlIapAC Zlbw3+PLP98eP6XtgbmWImZQnkpMZtAFmohHwPC+qmgw6/DkRPfDJY63aOyswr65Sjl/sfpL WEhxfcAXNj6N0Bv2bHMabIGANzTQF76d+/rA1J/0ZDiAiESeqYmI6xqU7ThDTOWERV0f+P7v 43/fPy3M690G41TrVdjo+kBoPvy0lg/+lq2tsFqDv8WCqXQh+FsJNXB8aDySAuO/5W8kCMi/ RCS1r1/v1a7n3MwYKSlKpwUQKdCGYuMTj7UhZwejNHI4ZUisN4Gh02BZi77SZUmBfq4PLGH8 7wR8iwO6TTQY/n2lncpzCkxkhntiH7xv79mkS+56cxMNRoTve78iiTzBKxzc79N/MrZL0vgi CV1MpdEifgIjJtHgRGRRURxcOF7lBFcIfDYlTjR40J+1fCAFxNYQVwH+Vhx+GWvD30oINn9O /f379xQ1QP2lIqn3/QbG/pyb6ZFSknT7u54UsF/UuwU5XjDW6dCK2U50UhwvSP8tmIWmSqAi QxttbAOkgEQpVNn1PUjfk4Tbe5LXq/tk4bP9wKbZn7xnDrOerkhsU/+ne31gHJ9nPpqvB6yT 4QWiGxKQAi8MnCcRx/Fo96o8eWYZyesKlOk8iYUFv6BtTO3sN/XxthH3JGEaUmAU1ffShZfe nF5wcEk3iV4Or08kIAXgb5EfhV0B+Ft2WCZuCf5WWoC5Pt+SWyA4msQk9a7f0BwMUoAyGJAC FEI1/E7fMZ43EItDG3L6apCl9zGUWKS8fb6AtrMN7gKRRsc9RQooEBKH1/ND1GNCwWlJ+KcN 3rYkpAA9mHIlyLwEEUMjSMH9qX6sbQw6vd4GakL5Z71pXg2DH8EQkZwsQHS9p1zjSIiEeCk1 2HU1+FvtqBf+VmJdMecebqRAGpJ6j0HQVwUpQBmMkhSQPgFEDePkv29PmZzEWcNOn16kRidv lX25F0e6RbsoEM52TArY2YZ5Ai2RfnORAkRGfNGYDQuLSYFnVAB19E1tcAxEuN+uj5t2B9nD XJaSEBj1s7aN3fzjJwBYxHHINmLD2ZmOps70IqMYyE6d+dRX3lw+rZ9GCnPKAvC3OlI7/K3E yowk9T2jsyep3U7oq124PhA0G+1iY28oiS277eapcLad88Y/CWobmApHb3JfVSjX0UmhmW2U /uZzkAL78O451Jz/3JlQc/ziClJgyV0Q5gVyzROfj5uWFeiAFAhdV6D4GrZxOLax7S+UTHEb QbTvK2wbUSTP2JH5ptnnFBolkdw0zSAEkshXeu5lW2IfBeFvtaNH+FvpdcW+luVlAJyriQlI aqdbztUukALmpIDsCaD0Vtt7D0RyKebpUO8o1SFfiSdytvexN6eAVraR3JGntJeBFPBuvHNt nCn52/79frsN8WX4ax+BCIJnET7LXLJcD7Ag9IRtJZCv7NWt9q1WJgH8LRleJUvD38qBPv9a 1n40qUnqTY9U5COuD1Dmoo0UyMH2U2M/2+8HicnMToPPhmkqeSPuq2qH9ErkMl4/ca6SbBK9 6Ta55Z3SDKSAD/sJ1xSnjlpFt1ovYq1pVeTuxm10Yp1g01wV1CnkS9FmVaDVNhj4W7VpJDwe +FvpdZX6WpaFBIxILpACFNAxjpqRg0ANEb8zELC7N87oDEWaQsDCNmr41kuQAu4pRFOKx2CB QJ0I9L7BTSJfDXNwneaUf1QWa2r+UaPHHAhY2Eat33rNxACDEBjVD1KA+ghiSIGh7Zi7JtTQ 8LsAgXnzsjypxEoiJWgdRVtGIN42Du9oZYMmNykAQiCbatHRuRBIsmmuCMJU8sHfqkTJ8Wtq JYJgGOYIxNtGHf5WCBjhVSpzfN0GheMBKUBpJJIUmHgB/dvO1OjwuwSBVdZ0z7vgkpZQtjcE ImyDuqOVDaqMpMDzKobk3fJsMKAjINA6Aqk2zbXgklA++Fu1KDliTa1FBIwjEQIRtlGNv5UI mtLNghSgNBBPCswZrnHnlkIavwOB9hBghmRlESwTKTAlG8R8lkWl6OScCCTcNFcBaFL54G9V oWMMAgiYI1CTv2UuXB0NghSg9GBBCox9YKGikMbvQKAtBGpboDKQAkgq2JaJYrRtIpB001wB JMnlg79VgZYxBCBgiEBt/pahaDU1BVKA0oYVKbAQA07mc6p7/A4EgEBlCAjvaGUbfXpSIPSe /OWCK1LZ1IyO+kcg+aa5MIRZ5Kt1ni6MPboHAk0hgO84q7pAClBwW5ICVF/4HQgAASCgRSA9 KaAdGeoBASAgQCDLplkwHuuivctnjRfaAwJAAAjkQACkAIUySAEKIfwOBIBADQiAFKhBCxgD EIhGoPdNc+/yRRsAGgACQAAIFEAApAAF+ipL5hAiO4bJLv+un1Rd/A4EgAAQyIVAeK5az1uY v3LpA/0AARqBMVu+7/u8dOJg9C4frWGUAAJAAAjUh8DR3Hypb7gYERAAAkAACAABIAAEgAAQ AAJAAAgAASCQA4H/AwzQtKjkakShAAAAAElFTkSuQmCC</item> <item item-id="600" content-encoding="gzip">H4sIAAAAAAAA/4xUzXISQRDuYXdZIBD+xBiWSAQjCjHAApFED5iiLA/+lPgAqQ2sCZYIkk0q R57AF9AqLz6C5d3y7htZ2D9kg56crd7+ma/7m+nZ2SgAKJTXKBG2NXyH3A8993g4fm8AjSZK eDDuS0zn2B7BRv2XR2/dvscR6HF+AN/B05PJwfhCws9QTAz0fOBzFJrsfAI4R/bU5yufRtWQ RQUgoLGR8skfe950eHTmuYqR+yhxWB76fuEv3+ACujd1XYsDNkpswmbQXv8BMDNM+wvqTjAk 2gyLDkVEh1fsAJKcY3+CytiFHWhAnRoQ5fh3jBtKtzHe5FbFOG0WXrVpbZ0YrZHNWYxpE3bk JzqhJOtOImXrv1En03bqF+rUNS47SOOytS504RVAxv6IS56l4TrPfc1gcxR3c02KpW7whLdG E6oOsM7+N98HyDLNLGkJTTYnNNYSzYbQWHBTaDZ8mrzQZDeFJs9lsZW3hCZ/RQMF4UkUhadw W3iKSzxbwlOEO8Kz5fOUhKdwV3hKXLcBcE94Sks8UJY+mxU5pvK26Mp9Oa5txtYAduSYfB+q klipyQFVMVSXA6rKJyJOmZ2GgINNqd5oiW7uCksLt6W0Gh4+duOBMLV8prYkN/eEqU2frBRv c/GHsv/G5f4f8fWJD+zD46kzOTl8M56OHM9kbIZuIYe7judIC7KLrzywiS9tcZcJmGabvIhz MTx9wnXk5uboTqoFVsYcH1C5/49eFje9qdN37a7GU9YCmFcJUJaak6WUhVua51VAWRqm5pWm LH1OER0xMEfDQMysg1NBwlCWyRg0QoQhcJjqUHoEMZy+ghhOjyKG02PMhcYqY9CIE4bAstz4 i7OROx32nXfSkBAv+ynKAIb4EDn9TiKLbv4zosvOHwAAAP//AwA/0YeLOgUAAA==</item> <item item-id="601">iVBORw0KGgoAAAANSUhEUgAAAP4AAADSCAYAAABq+H0cAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABGMSURBVHhe7Z0LlqsoEIbvurKgXk+v JpvpxeRG81JEeVj8KfTrOX1mpoNF+T8AkcC/Gz8gAAKnQ+Df6e6YGwYBELhhfEQAAidEAOOf kHRuGQQwPhoAgRMigPFPSDq3DAIYHw2AwAkRwPgnJJ1bBgGMjwZA4IQIYPwTks4tgwDGRwMg cEIEMP4JSeeWQQDjpzRw/bn9+/dv8Xv5/Utdyecg4BYBjF9KzdgQ/NyupddRHgQcIYDxi8i4 3n7uvf8Pri9CjcL+EMD4BZz8/V5u/y6/Nwb5BaBR1CUCGD+blr/b7yXe28fmAPjbcl4ETNKY ZMtxZ0GMnwvg3+/tsvJsPwja04+3fAZsvOXkLR81Rr4U68k9QS7jMH/l4d6biLzloxZ1jozO jhHGz1HJvcz1599t7RWeNxF5ywfj54lMyRvGz+Jk/fkeUWcByFA/AyaMnwGStsjwGu9yW1uz oyQs57695UPjmMOadh6EHj+Pk81SHo1mcFuEECOg1BHGNyBXSZhBuoRwioBSRxjfQARKwgzS JYRTBJQ6wvgGIlASZpAuIZwioNQRxjcQgZIwg3QJ4RQBpY4wvoEIlIQZpEsIpwgodYTxDUSg JMwgXUI4RUCpI4xvIAIlYQbpEsIpAkodYXwDESgJM0iXEE4RUOoI4xuIQEmYQbqEcIqAUkcY 30AESsIM0iWEUwSUOsL4BiJQEmaQLiGcIqDUEcY3EIGSMIN0CeEUAaWOML6BCJSEGaRLCKcI KHWE8Q1EoCTMIF1COEVAqSOMbyACJWEG6RLCGQL3LTjHjJQ6wvgGIlASZpAuIZwgMBj+ZXqM 74SUkjQwfglalA0N/0JEqSN6fAMdKgkzSJcQjRFYM3aqWqWOMH6KjYzPlYRlpEORLyDwMvt0 6F6ahlJHGL+UnUh5JWEG6RLCEIHa3j2WglJHGD9LBI/ttQdiht9wf30lYVnpUqgpAha9O8Zv SpFN8OEwjfdhmeNRWvOttjG+Dc7eo1j27hjfO9u37T31h/QxvnsSdyXY2vCv5JQ6YqifksTG YZnfICyVLp/bIaAy/Dd0hPFTOrn+jMP863Bo5vMZPzw78/X38N+p0Hx+TgTW9EKP70kPg/Gn E3rj//OM74mimlzUvXlOjhg/ByVVmWeP//eub3mAppIw1W0fqZ7pLLxHwzPU96i2xTM+xvdI 0zSn0Oje8/Vp/FH4n3fY0XfZOWVedxeWvT8/f3rTOUV/9+fqtTPpb0Oc8GG7EcPD67x3HuNQ /+c+1//5ocdvBHxm2F6NHt6eUkfpyb3orPbwimtihpwyw11Gno8Hc4dGegAy1DExWKSOwZAa 788X8MQm9zI1SjFDBDwP22tuswPjv0z8NObaK69Z7/hoLGJGHRfIBB8sevtYHYvn7xq491+j JGx/tkTwioBSR5U9/qtHfs5ur77rnix+2TLpYvg89LDTmfNHo/F4zAj/Pp9h/wapSsK+cX/f qvNoPXoKR6WOdhh/Msm1avxPmXFIvzYuD6+PxYvWsZxoe4ObsfBmQUTNNfcgSsJS4un586M8 q9dyoNSRT+NHJtDGybxgUu0xbbD80sxjLmEYHcwn4TYJqbnmGVBJWK2oPF53dqOHnCh1tMP4 k2G89VA/9liQafxxvmB4HLjGG4qYAWqumcZREubRwLk5YfRtpJQ6qjf+tFeumtz7zNovJvey h/orPf6Ab82wveYahvqbam71Fdbcxqanch0Y3+h13nt4HUzQrRo/nMjjGb8nYZNrdz3+cgHP bJ5uZQFPdC5vpezQ2n3Kxwz9eZf+Kbfxldma3rvmmpP2+PTk9s2Yrx7f/v7iEa/X2Wq4zVV7 rwhbrwhrTFxzzcGNH1vnvmdfOZWceqznnMZfMBWs3Iswublyr8bENdcczPhMwH2vycD4T+yT a/U31vnHJ/eeC4Fy1xNkakBJWGZKRcUYthfB1aywUkfpWf1mt/m9wNf7Y4Xlj5KwVN4MzVMI +f1cqaOTGX/jLcAOPagIWzM1PfYO8hxdqtLRcMsnM34bllsTdrY1621Y8h+1tY6mCGB8Az3k 9MSpMgZpEKJzBDB+ZwQqCesMGtItQECpI3r8AmLWiioJM0iXEE4RUOoI4xuIQEmYQbqEcIqA UkcY30AESsIM0iWEUwSUOlo3/n3t/P37rfpfp6RspaUkrEN4SDkTAaWO6PFzSEnsDKwkLCdd yvSJgFJHGD9HI8OXgTa281USlpMuZfpEQKkjjJ+hkej2XpPrlIRlpEuRThFQ6gjjJ0US7vi7 vEBJWDJdCnSLgFJHGD8pk8dmH5dLbHvvx8WfOdBww5LHZ+HPqzx/Pyc+g8Hnv4+dmjF+0ozC AuPEXriXf7B7b+rthzBdquoXAYzvmrvldl9JwlINw9oQwDUOJGeNQFJHhhUy1C8Gs8L4uXXE GojcaynXPQK+jL+yOebsFNucMi9aEu/Ep+wld+BRnJgZHu4x5B/s/NOUsLAx6F7e3MAaAk11 FFSa7vGj+9AZba99T6aH03IfOb4mZJan8ygJW6ymxEeHQUCpo0rj37HefaDGhy9Oy92hXUYE O8DzdWkfxh/Pr+e03EE6SsKSUqUhSELktYBSR/U9/s3pabnBHELRNMARt9emIfDq80VeGL/6 tNxgxn3xDn5DA2c5LXfaEHRjiXMk2onxGw71a0/LjXyZZvPQjaeeTntaLusHXLUofRh/9+Re 49NyR0o3ztaLUX7EoX6OtGkAclBqXqYD4xu9zmt5Wu5zDmK23iBF3VmN/8KFBiClkKafOzR+ b6flBg1TLl1nNz4NQK5SmpTzZfwmtxgJanVa7nNWv2g2/5UOxp8TwwhApf6xnnMafwFxxWm5 e0w/1I/x40KnAZA0ABj/CXNyrX6wZn6+tPbzePLp/Tktd5eCaQB2wZe6GOOnENr5+ZFPy90J Td7lNAB5OBWWwviFgOUX7/u03Pz7FJWkATAFGuObwtk+mJKw9ndTUQMNQAVoy0uUOkqv1Te5 pWMHURLmGkkagF30KHWE8XdR9bhYSZhBuu1D0ABUYazUEcavomh+kZIwg3R1IWgAirBW6gjj F1ETL6wkzCBdfQgagCzMlTrC+FmUbBdSEmaQ7vdC0ABsYq/U0arxv3Xow/dUWV+zkrD6LB1d SQMQJUOpI3p8Az8oCTNI10+I2DFDfrKTZ6LUEcYvoXdlLb+SsJJ0uyhL7/+mSakjjF/gjsdO PV/eXrsg366K0gBIXwtj/Fx3jNuB3Q/PxPi5iNWVO/Hwnx6/TjINrxrW+N97eob6DTGehD5p 74/xNfLKruX99eAN4w+khb/ZFVAwjsBBG4CYVl5/U0mBoX4S6ft3+F/f+6fHT6LVpMBJhv/0 +E3UUxd0tj03xq8D0eKqE5jfl/FzTsLNKfMiv6vTcp879kSG8dM9/ZSEWXio2xgHHfq/+FDq KD3U57Tcj0/o8X20GQft/Tsw/p3/3QdqfDTUzWm5GN+H8YcsDmj+PozPablvEygJ8+M8B5kc bOiv1FHlUH8g3elpue/TeeKr7DblyvbaDtxckcJBen+MX3tabmDccbvt3JM1znJaboWvurjk AObvxPgOT8sNFZrZg5/2tNwuHF2QZOfm78P4uyf32p+WW9Tjj08vv9G1+CnpKQlL5XL6zzt+ 7lfqqPIZ3/lpue+1Apfb71+BFTB+AVjOi3bY+zs0fm+n5b5EOXkcydEpxs9BqZ8ynZnfl/FV NFudlhvkO1tym7oXjJ9CqL/POxr6n9P4C0lVnJY7fmf+9/6ikR6/P4c2zriD3h/jPzVQelru Y37u/grvvbY+fMbntNzG9vId3rn5MX5j+XBabmOAPYd3PPTH+M2Ew2m5zaDtLbDD3h/jdyYi JWGdQeM7XWfmV+oo/R7fN3UuslMS5uKGj5SEo6G/UkcY30DESsIM0iVEDAEHvb9SRxjfwAZK wgzSJcQaAl82v1JHGN/ABkrCDNIlxBYCXxz6K3WE8Q1soCTMIF1C5CDwhd5fqaP103Jv9/X5 O//ZbFgjsXP48FhGSZjH+z9sTmLzK3VEj2+gWiVhBukSogQB4dBfqSOMnyOC2XZey6/6KgnL SZcyDRAQ9P5KHWH8lEbGb+xNzB7ZFkxJWCpdPm+IQGPzK3WE8Yt1svyOv5Kw4nS5wBaBhkN/ pY4wfqEsxm//zb76O2zxDoyFMPZfvAHnSh2h2FwJbmzn9fka8HynotzQlOsUgUrzr+kF43vW Ac/4ntnR51Zp/liiGF9PX0GNPOMXgHWOokbP/RjftVwwvmt6vpnczt4f43+TvLDucGg/POsz ueeJIV+57DA/xvdFZbCP38/9uND5j5IwZ9CQTvxhvQoXpY6Y1a+iCOMbwHbsEBU9P8bvTBJK wjqD5tzpFk76KXVEj28gTSVhBukSQo1AZu+v1BHGNxCBkjCDdAnxDQQyzK/UEcY3EIGSMIN0 CfEtBBLmV+oI4xuIQEmYQbqE+CYCG+ZX6gjjG4hASZhBuoT4NgIr5lfqCOMbiEBJmEG6hPCA QMT8Sh1hfAMRKAkzSJcQXhAIXvcpdYTxDUSgJMwgXUJ4Q+DZ+yt1hPENRKAkzCBdQnhE4Hm0 uyo1jG+ANMY3AJEQ0p2cML6B4DC+AYiEwPi9aQDj98aYz3yVOqLHN9CAkjCDdAnhFAGljjC+ gQiUhBmkSwinCCh1hPENRKAkzCBdQjhFQKkjjG8gAiVhBukSwikCSh1hfAMRKAnLSddbPkPO 3nLylo8aI4yf46REGW8i8paPWtQ5lJ4dI4yfo5L3KTqPk3J+gt02vYnIWz4YP0dk2lERxk9y MuyjPzH7uN32/Khsb0bzlg/GT4psLKDkDeOnOBmMPttH/+/2e5n3+krCUumqBZSTj8ecvHGm xgjj5yr3XS4YAYhb6px0zy5qMEojgPHTGM1KrB2TPZiNXzDYq4FCOVYXx/gF0I2m/7c8Sacg BEVBwAUCGD+Thofp55N6mZdSDATcIYDxMyihp88AiSJdIYDxU3SN7/Dp6VMw8XlfCGD8BF/X n/iEVbiIpy/ayfbsCGB8MwU83u8/ZnVbTwCW1LVRNliROF+vsBeYkhyfdY35WGFnVL8XjBKr R0vZwviliK2UH0cGz2HA9L+Nws/ClNS1WXZYnNRo6FKS4+PmHusjrBpNs/pdYJRePVqqM4xf ili0/EDMZB7AtOcKKyypa7vsYI7L758JAvMgJTnebo/J03suPz9GPb5d/S4wylg9Wkoixi9F LFZ+YfRAeBZ1vGKU1LVZdhgKN5q0LMnxfl9/1+ttbH6sGkyz+v1gtGxYl18WK5EZxi9Ba61s odB2VVlS12bZR+N0ec9LGDYCJTlOwfiS8d8prOTtCqOxfbyPkGbfHylXFMYvx2x5Ra3Qa+ou qWur7OI15dAQGE2sleTo2fgOMbJaU4Lxa8wXXlMr9Jq6S+oqKTtOrhn1+kX1TkBw1+Mn5ldq +Kt5ZHteY7l6FOPvIe99bdlk0r4qS+raUXZXkiX1NjB+2IjlNijJcoaNY2GOVj39C22Mv0vg n4vLXx/VV1xS12rZcUORydB+EP3O58bpHZXkuP6MrcFotX4vGDVYPYrx67UVXPl6D233Lno9 tfW6lq+f1su+XqO1WXRUkuN7LGv0Om+IZ1O/B4xarB7F+GbGJxAI9IMAxu+HKzIFATMEML4Z lAQCgX4QwPj9cEWmIGCGAMY3g5JAINAPAhi/H67IFATMEMD4ZlASCAT6QQDj98MVmYKAGQIY 3wxKAoFAPwhg/H64IlMQMEMA45tBSSAQ6AcBjN8PV2QKAmYIYHwzKAkEAv0ggPH74arvTJPf de/79nrLHuP3xliv+WJ8V8xhfFd0HDWZ6Xfjjbb3OipUovvC+CKgT18NPb4rCWB8V3QcOBmM 74pcjO+KjgMng/FdkYvxXdFx4GQwvityMb4rOg6cTIOdYg+MVvNbw/jNIaaCBwKfY6sbHdAL 0AUIYPwCsCgKAkdBAOMfhUnuAwQKEMD4BWBRFASOggDGPwqT3AcIFCDwH1ggt3Mynyx3AAAA AElFTkSuQmCC</item> <item item-id="602" content-encoding="gzip">H4sIAAAAAAAA/4xT3W4SURCes/9socC2xZZFthYVUKz0tDGxV2ga44XVBB+g2bJrwYjQ7db0 cp/AF9DEG5/Be+O9r4RzZihFrzxkdma+/b6Zc4Y9eQAQaG/RXIp1fDrxeT8+G00+mqDWAVou mgwYMwh7qmjjwZvT9/EgJQT6pNfwaV0Mp88nVwy/QrMR6C+Ix2hD5PW+oAj7eV9vcrW6Jm9K A02nwFs0f5amyej0Mo0FMQ/RirC8jMOdv3KTChhpEsc+ARKtMKXQkls/ATLTlt/Q9yyHvZ1j 77jscytSwyafcD6WMJ/ALuzDnhpAnvAfiJvCkIgf0KgKJMtyq1LtrVdQe6QwK1DbknR/YeKU yfdKnvR+oy+vUbnIwzZmBBGcY8U9gHX5GbebebBB77+v42AETbJCwqx8i4WVZSEec5OFFdhi 4eZCCFVWlnxWVpeV+wA1VlbhNitrN0qo8+nsgIdT32Yf3OEhbSuq6ALs8HAWOTRYGNzlsTQQ usdjaVDh+5zUKWky2Wpx9WabfesBd2njXyr0Lp/zIXdqLzp1WNx6xJ06CO1y8Q4Vf8ynal6f qksfbTGSJ2dJOB2evJsk4zC1ibuhvn2Cj8I05BFU59+Whoej+yLmxDWKVeaGV6OLF1SH70tN 3QQx5/Ka4Q9E7f/R6+J2moSDWB7p9MqfEwNRAuGLmYqE8PFIs0BowtdRGghd+MZMIQZyYIaB iZysh68sxVEqmzgYOIqjyDlVR8ld5JB8BTkkzyOH5AXqhcEqcTAoKo4i83aLry/HcTIahB94 IA5t+yVaBCP8qebqErvzaf6z8svJHwAAAP//AwAABiyksAQAAA==</item> <item item-id="603">iVBORw0KGgoAAAANSUhEUgAAAOoAAADSCAYAAABEvVyOAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAA/3SURBVHhe7Z0LlqSqEkVrXDmgHE+N pibTg8n2k2Yq/lCJQ4C736p136pCCHbEMRARfl78gwAE3BP4cW8hBkIAAi+EShBAoAACCLUA J2EiBBAqMQCBAggg1AKchIkQQKjEAAQKIIBQC3ASJkIAoRIDECiAAEItwEmYCAGESgxAoAAC CLUAJ2EiBOoT6t/z9fPzM/t5/P7D2xAolkB9Qg1d0Qn3+for1kUYDoFX7Wt9/17PJrs+USmx XjiBqjPqv9/H6+fx+2LQW3iUYn7NGfXf6/exnE2XnmH53fy5Hib7TFT3kHoz6r/f12Pl2bQN QE//vNnTsvFmkzd71Ix8RWxC9XTD3pWHU29O92aPOghj3H53RtUK9e/581p7JePN6d7sQagx tw7tqKNSoa4/nxKE/oIwxqK738wqFWr7WubxWlvj4M3p3uzhZhZz6yCjxlG6UMqjMC50h0sz EVDGUaUZddtzSsCZYohmBQSUcYRQBQ6liToJIFRjvyoBG3eF6jMSUMYRGTWjo2m6bAII1dh/ SsDGXaH6jASUcURGzehomi6bAEI19p8SsHFXqD4jAWUckVEzOpqmyyaAUI39pwRs3BWqz0hA GUdk1IyOpumyCSBUY/8pARt3heozElDGERk1o6NpumwCCNXYf0rAxl2h+owElHFERs3oaJou mwBCNfafErBxV6g+A4Fmy7OuVWUckVEzOJomyyTQCnQQKUIV+FB5JxR0hyaMCYQCHZpTxhEZ 1djJVO+fwJoQ9yxHqHuELv5dCfiiqVxuRGAQ53goe7QpZRyRUY96h/JFEzibPZc6jVAvh0K/ XWgLsv0J9/dVAr7cFSq4TCBF9kSol90wr6DdfPtzOFR3tMV061CEagDdYZUpsydCTe7g7T19 1dPqybtHhbsErAXKrO+uCyIKbBwOlQNwhMUUSURAJdAccVTfZFJ7wnhzJupfe0jU+xk1PCtq +H3430TxQjWVEViLF+UjVJ1CHU8gtcLlGbV46aizZQwwhBpDaa3MO6N+TxmfHxilBHylK3e9 djxL61GgDH1TRObsGRWhpsBqWUcoTMu2UtatvOGfGPpuzaruz7geAdUeRrx2xumrFeTKQcWT s1G7oe/z9TdqWAn4SH/vUrZUYYb+UcaRY6G2oh8JbGE2txXkslanCx6WJpPuIgpP/fQ8jD3D CaE21GbZdOm1y+x5NA63EnCcRZQqkYAyjuIyajd8fC/Jez6nhwRv/a0ZcD4/1/12y/pWRquB n9qMOF5NNKpnMoN7bqitBFxiAJ61ubaMucdBGUcRQu1FMgiszXTf1x1bf+uHn59nzLegZ0Jd ypSxv3vNJ4r24LZ/VwKOsafUMrU8a57lr4yjfaHOhpejLLb1t4jZ19cnG08ne/rfB79bWXE0 mTiKJK4EHGlSEcXuLkzXk0ldBm1W+nzfS36FuvW3blZ2IrZp9usWzrfD2L+wXINj6dkTocrF jDC3kStv+HkzasshdpiLUCVCtfokTGK8uBFfQn1PCPl4Rp1+rtao/MAE1deLSsDi2KE5IQFl HO1n1E/WGz7C/p3O+naZbuVv41nfRzNbvDTru5gplwT4fTf6nZBi1jc2LsmUsaTiy/kTarzt GyVXst/KkHZzVdLQCu9RZ7yX1sle2RcoiesrrQShdo4NViYtOHt9ZZKfSQDrGGXCx5rwev0I 9c1md63vZDY63mFKwPFWxZdkGBvPyrKkMo7inlEte5uhbiXgve4xVN0j5PfvyjhCqIZxsCZC MqIhdGHVCNUYtjXgu615NXaX2+qt42jc8Xtm1PdhPzEZj6GpW51kNwyhGrtACdi4K1SfkYAy ju6ZUZsFGvyDwFUCCPUqwZ3rlYCNu0L1GQko4+iWqUUJOGMc0bQxAWUcrQu1HR7m+DGG21av BCzoDk1kIqCMozoz6uhDgW4LmWAFkxJwphiiWQEBZRzVKdR2sf7G5kxKwIJ4oYlMBJRxVKVQ 97ZnUQLOFEM0KyCgjKMKhRruYDj3mBKwIF5oIhMBZRxVKNT+Y/LH58TxcFeI8RzZewvUYUvT 9/xZ6PdhTo3f9+zuxqGb55j89BOSCPXKHXJ2wvjCd617s9lX2ufa2xBAqEldPd+uZRfwnpDX UmxSu6nMO4HdOErYgQqHviGdE0KNBbwk6NhrKVc8AedCdX6aW7h5dzsUVr5HDcVbfDjSgTUC CLUjc/40t/7YjWECINhxv6lZCXi2uou4r4aAMo5ODH01GbXa09zIuAj1BIE4oXKa2wm0kZcg 3EhQ/oo5y6hGp7kF63EnK/5ij7mocad8hOtPkSsW+RKqyWluwfA5fPfJaW7f0BgLt5gQvoeh roRqcprbwqL5yWbanOa2HOm8v3V1B3Al1PkRiAnPR/1gX8qwnI+6GpUI1oVgfQnV+jS393Pm 52Ty1gWrz6ic5jaJUASbVbDOhDoIx+I0t36iaiLSDj2nuR2KQAR7CFeqwv6EmqRngfjes75r 33dzmtsJ6Aj2BLTzl9Qv1B2R9ug4ze10CCHY0+iOXFi9UKdL/L7f+oXZldPcjoTNQlkEexHg 9uWVCtWU2aHKlYAPGWZVGMGakFXGUdwSQpNu5qtUCThfL8mw1uyVcYRQrb3psX4ybBKvINQk GNcrUQI27sq16hHsJX7KOCKjXnJVJRcj2FOORKinsMVfpAQcb5WDkgj2kBOUcURGPeSamxRG sFGORqhRmM4XUgI+b6WDKxHsphOUcbSaUXNtOq0ITyVgRX/M20Cwi4iVccTQ1zzKK2pgaZv8 irp3tCsI9SixtfJLn8s1ZZWAU3XFTT1k148rlHFUdUZtd434+cm8XagbhSU2BMFKb/j1CrXb zqU5LAqhJlZoUN2Nh8Nk1Muh1X772mRShr6XSUZVcNPsilCjomO90OfzuA2htpDDn4vNcnml gl2KleF3KqdXOPRtPjgfzpoho6riaNrOTYbDZNQL4TXZdhShXiB58dIbiNW5UDVnz7RhsrvD w2zDpX6ztKWhyrioEvDFcC/78kqHwoNTlHF0YuirEur509w+0U1G9SH0SrMrQl3KpkuiW9pR fxyaCNWHUFsrKhSrP6FympufgC/ZksqGws6EanSa21j84aKEO5/mVrIQY22vJLv6EqrFaW6B ELvtQ8ezPZzmFhvy5ZarQKyuhGpymlsYXmEG5TS3cgV4xPLCxepKqIrT3GYZNXro2+yn3yy8 n59dsx0tSsBH4vaWZQt+blXGUcTrGaNn1P5FabNovn3vGZzSxmlu99NsgdnVmVDHgmqz12+z qGAkrI/YFv72PrKxW4DQLJJ/Pn5ey4dChe9mOc3tfkot7xWOP6EmiZol8X0rniz921uVNFy2 9x51xW4l4CTo7lRJQUNhZRxFDH1TRclIqFszyZ/mOM0tFfki6ylgKFy/UN8Z87smNzxJvA+t 3bW+w1cyByNRCfigaRQfE3AuVmUcCTOqnxhUAvbT60ItcTwUVsYRQi00fm9ntsPsilCNo1AJ 2Lgr96remViVcURGvVeol99bR0NhhGocTkrAxl25b/UOsqsyjsio9w318nueWawI1TiElICN u0L1GYfCyjgioxLqdRDIkF1dCLVZnXv5f1sRsFS7KmKUgFV9op2GgFisyjgioxLhdREQDoUR 6tXQmWzzMl+eqAR8tStcf5KAILsq46i+jNp9djcS58K2LkrAJ8OMy1IQMBarMo7qE+rMwfN9 iJWAU8QbdVwgYDgUVsZR9UKd7/nEQcYXwr7cSw2yK0JNEQ5r27x0k4PLx16kaJY6HBM4Kda1 eEGoKX3NM2pKmuXXdVKsSx1HqEnDgWfUpDhrqCzRcytCTRoMCDUpzpoqu5hdEeqVYAiHuu2z arBlixLwla5wrYDABbEq46jKWd9upvczYfRsNi2d/lMCFoQaTVwlcFKsyjiqUqh7flMC3rOF vzshcEKsyjhCqE7iBDMcEDg4yYRQjX2mBGzcFaq3IBCZXZVxREa1cDR1lk8gQqwI1djNSsDG XaF6SwI7YlXGERnV0tHUXT6BDbEiVGP3KgEbd4XqFQRWxKqMIzKqwtG0UT6BBbEiVGO3KgEb d4XqlQSC1zfKOCKjKh1NW3UQeGdXhGrsTiVg465QfS4C7yWqqubJqCrStFMdAeUNH6FWFz50 SEUAoRqTVgI27grVZySgjCMyakZH03TZBBCqsf+UgI27QvUZCSjjiIya0dE0XTYBhGrsPyVg 465QfUYCyjgio2Z09NC00uGx3fVmkzd7Wo5KmxBqbOQallM6PLYb3mzyZg9CjY2krXKfXfL7 HfGfwe5m3pzuzR51EMa4/O6MKsyo7T6+I3F224dOj1705nRv9iDUmFsHQ984SmulWmFO9vH9 9/p9TLOqN2F4swehxoWg0m8VZtQQcpBhxZMAMS5XOjzGHoQaR0npt+qFunbsYguZHxhcjYE4 SV8vVbVQ+x3z5zvlX8dGDRDQEqhWqL1Ip5NIWrS0BoF0BKoUKpk0XYBQkw8C9Qm1e4dKJvUR XliRikB1Qv17Lk+QhIseUgGkHggoCFQn1Hho/fvVftbPesLpSFsbZYMVV9P3xfE9Xy55xMZ3 DZ09qdglat8Lo53VcUe9dVuhdpn3nWbH//8owJjyR9raLNsu5jAaGhyxse9z/3461U0uWfsu GO2vjouJm3GZmwq1BTl6jk2aGUIXHGlru2wbzI/ff0d9HFH+iI2v13BQ9OP5TJRR07XvglHE 6rgIp0yK3FOoM2EGgXKU4lb5I21tlm2HhkaTZEdsbPr67+/v1d0uUt3gkrXvh9E0JOar446G GEL9DOMciGAzYPubyePzXJ3Q3oNC+QRZJqGut++QUXc/a97pT9afH5Vp8wHA8UsquOJsYJ7p +pG2tsrOXju1QZloIueIjWMG3oTqkFGqd/oItZiMuvPse+YmMlxTi1BnDBI+0pxglHJ13D2F 2s1YljeZNH/uSTX8PckjVUY964/d9hMK9aCNqTLp4PObCrV5uVDa65nuA/jRULcN0ovPPWPh n+KxK5T4NJ+kfS+MDFbH3Vao3/eA6d4Frofl8M5x3tb8dcJ62eG1iM0ijSM2vnuaUKhb/lh9 5bLQvgdGFqvjbizU+Ls9JSGQmwBCze0B2odABAGEGgGJIhDITQCh5vYA7UMgggBCjYBEEQjk JoBQc3uA9iEQQQChRkCiCARyE0CouT1A+xCIIIBQIyBRBAK5CSDU3B6gfQhEEECoEZAoAoHc BBBqbg/QPgQiCCDUCEgUgUBuAgg1twe8tp/0yxivnSzHLoRajq+0liJULe+d1hCqK3d4MWb8 bWqqXSS89K1MOxBqmX6zt5qMas/4QAsI9QCsWxVFqK7cjVBducORMQjVkTPuuq+vKxc4NQah unIMGdWVOxwZY7CTnqPeFWcKQi3OZSqDv8cgGh0gp+pIFe0g1CrcSCdqJ4BQa/cw/auCAEKt wo10onYCCLV2D9O/Kgj8B/LFodVCkczWAAAAAElFTkSuQmCC</item> </binaryContent> </worksheet>