Mathcad Professional 14.0 <description/> <author>mos50</author> <company/> <keywords/> <revisedBy>mos50</revisedBy> </userData> <identityInfo> <revision>6</revision> <documentID>34AE2923-51FB-4096-818E-0619A9151F2A</documentID> <versionID>C8299F35-30E9-439B-91CD-7E6F7D204B48</versionID> <parentVersionID>00000000-0000-0000-0000-000000000000</parentVersionID> <branchID>00000000-0000-0000-0000-000000000000</branchID> </identityInfo> </metadata> <settings> <presentation> <textRendering> <textStyles> <textStyle name="Normal"> <blockAttr margin-left="0" margin-right="0" text-indent="0" text-align="left" list-style-type="none" tabs="inherit"/> <inlineAttr font-family="Arial" font-charset="238" font-size="11" font-weight="normal" font-style="italic" underline="false" line-through="false" vertical-align="baseline" color="#000080"/> </textStyle> </textStyles> </textRendering> <mathRendering equation-color="#000"> <operators multiplication="narrow-dot" derivative="derivative" literal-subscript="large" definition="colon-equal" global-definition="triple-equal" local-definition="left-arrow" equality="bold-equal" symbolic-evaluation="right-arrow"/> <mathStyles> <mathStyle name="Variables" font-family="Arial" font-charset="0" font-size="11" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="Constants" font-family="Arial" font-charset="0" font-size="11" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 1" font-family="Arial" font-charset="0" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 2" font-family="Courier New" font-charset="0" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 3" font-family="System" font-charset="238" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 4" font-family="Script" font-charset="255" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 5" font-family="Roman" font-charset="255" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 6" font-family="Modern" font-charset="255" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="User 7" font-family="Times New Roman" font-charset="0" font-size="10" font-weight="normal" font-style="normal" underline="false"/> <mathStyle name="Math Text Font" font-family="Arial" font-charset="0" font-size="11" font-weight="normal" font-style="normal" underline="false"/> </mathStyles> <dimensionNames mass="mass" length="length" time="time" current="charge" thermodynamic-temperature="temperature" luminous-intensity="luminosity" amount-of-substance="substance" display="false"/> <symbolics derivation-steps-style="vertical-insert" show-comments="false" evaluate-in-place="false"/> <results numeric-only="true"> <general precision="5" show-trailing-zeros="false" radix="dec" complex-threshold="10" zero-threshold="15" imaginary-value="i" exponential-threshold="3"/> <matrix display-style="auto" expand-nested-arrays="false"/> <unit format-units="false" simplify-units="false" fractional-unit-exponent="false"/> </results> </mathRendering> <pageModel show-page-frame="false" show-header-frame="false" show-footer-frame="false" header-footer-start-page="1" paper-code="1" orientation="portrait" print-single-page-width="false" page-width="612" page-height="792"> <margins left="86.4" right="71.24998" top="86.4" bottom="86.4"/> <header use-full-page-width="true"/> <footer use-full-page-width="true"/> </pageModel> <colorModel background-color="#fff" default-highlight-color="#ffff80"/> <language math="en" UI="en"/> </presentation> <calculation> <builtInVariables array-origin="1" convergence-tolerance="0.001" constraint-tolerance="0.001" random-seed="1" prn-precision="4" prn-col-width="8"/> <calculationBehavior automatic-recalculation="true" matrix-strict-singularity-check="true" optimize-expressions="false" exact-boolean="false" strings-use-origin="false" zero-over-zero="0"> <compatibility multiple-assignment="MC11" local-assignment="MC11"/> </calculationBehavior> <units> <currentUnitSystem name="mks" customized="false"/> </units> </calculation> <editor view-annotations="false" view-regions="false"> <ruler is-visible="false" ruler-unit="in"/> <grid granularity-x="6" granularity-y="6"/> </editor> <fileFormat image-type="image/png" image-quality="75" save-numeric-results="true" exclude-large-results="true" save-text-images="false" screen-dpi="96"/> <miscellaneous> <handbook handbook-region-tag-ub="1346" can-delete-original-handbook-regions="true" can-delete-user-regions="true" can-print="true" can-copy="true" can-save="true" file-permission-mask="4294967295"/> </miscellaneous> </settings> <regions> <region region-id="638" left="24" top="24" width="359.25" height="403.5" align-x="24" align-y="24" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <png item-idref="1" display-width="357.75" display-height="402"/> </picture> <rendering item-idref="2"/> </region> <region region-id="636" left="468" top="24" width="365.25" height="402.75" align-x="468" align-y="24" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <ole clsid="{7EFFBE60-44F5-11CE-83C5-08003601A74E}" type="embedded" item-idref="3"/> <rendering item-idref="4"/> </region> <region region-id="1347" left="90" top="446.25" width="118.5" height="12" align-x="90" align-y="456" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">3D Model v Pro/Engineer</inlineAttr> </f> </p> </text> </region> <region region-id="1348" left="492" top="446.25" width="174" height="12" align-x="492" align-y="456" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Zjednodušená kinematická struktura</inlineAttr> </f> </p> </text> </region> <region region-id="377" left="24" top="488.25" width="193.5" height="96" align-x="24" align-y="498" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Tabulka parametrů (Denavit-Hartenberg)</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"/> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <sp count="10"/>theta<sp count="8"/>d<sp count="11"/>a<sp count="9"/>alfa</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">0<sp count="10"/>0<sp count="8"/>0.554<sp count="9"/>0<sp count="11"/>0</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">1<sp count="9"/>q1<sp count="11"/>0<sp count="12"/>0<sp count="10"/>0</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">2<sp count="10"/>0<sp count="11"/>q2<sp count="8"/>0.065<sp count="3"/>Pi/2</p> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">3<sp count="10"/>0<sp count="11"/>q3<sp count="11"/>0<sp count="10"/>0</p> </text> </region> <region region-id="420" left="264" top="488.25" width="57.75" height="13.5" align-x="306.75" align-y="498" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">ORIGIN</ml:id> <ml:real>1</ml:real> </ml:define> </math> <rendering item-idref="5"/> </region> <region region-id="691" left="24" top="626.25" width="412.5" height="39" align-x="24" align-y="636" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výchozí poloha - pro výchozí polohu a výpočet inverzní úlohy jsou na místě kloubových proměnných použity proměnné s<sub>1</sub>, s<sub>2</sub>, a s<sub>3</sub>. Kloubové proměnné q<sub>1</sub>, q<sub>2</sub> a q<sub>3</sub> jsou použity pro kontrolu správnosti výpočtu</p> </text> </region> <region region-id="445" left="30" top="680.25" width="35.25" height="17.25" align-x="48.75" align-y="690" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:id xml:space="preserve">π</ml:id> </ml:define> </math> <rendering item-idref="6"/> </region> <region region-id="446" left="78" top="680.25" width="42.75" height="17.25" align-x="96.75" align-y="690" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>0.9</ml:real> </ml:define> </math> <rendering item-idref="7"/> </region> <region region-id="447" left="132" top="680.25" width="48.75" height="17.25" align-x="150.75" align-y="690" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>1.01</ml:real> </ml:define> </math> <rendering item-idref="8"/> </region> <region region-id="665" left="12" top="707.25" width="120" height="67.5" align-x="39" align-y="744" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.554</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="9"/> </region> <region region-id="667" left="180" top="703.5" width="162" height="75" align-x="207" align-y="744" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="10"/> </region> <region region-id="669" left="390" top="705.75" width="126" height="71.25" align-x="417" align-y="744" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.065</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="11"/> </region> <region region-id="671" left="564" top="705.75" width="104.25" height="71.25" align-x="591" align-y="744" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="12"/> </region> <region region-id="692" left="30" top="794.25" width="124.5" height="17.25" align-x="56.25" align-y="804" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="13"/> </region> <region region-id="448" left="24" top="827.25" width="136.5" height="67.5" align-x="49.5" align-y="864" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-1</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.064999999999999877</ml:real> <ml:real>1.01</ml:real> <ml:real>1.4540000000000002</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="14"/> </region> <region region-id="450" left="24" top="923.25" width="126" height="67.5" align-x="45" align-y="960" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TV</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.065</ml:real> <ml:real>1.01</ml:real> <ml:real>1.454</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="15"/> </region> <region region-id="465" left="42" top="1016.25" width="72" height="12" align-x="42" align-y="1026" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Žádaná poloha</p> </text> </region> <region region-id="466" left="42" top="1040.25" width="34.5" height="17.25" align-x="61.5" align-y="1050" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">q</ml:id> <ml:real>3</ml:real> </ml:define> </math> <rendering item-idref="16"/> </region> <region region-id="467" left="90" top="1040.25" width="43.5" height="17.25" align-x="109.5" align-y="1050" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:real>0.6</ml:real> </ml:define> </math> <rendering item-idref="17"/> </region> <region region-id="468" left="144" top="1040.25" width="43.5" height="17.25" align-x="163.5" align-y="1050" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:real>0.8</ml:real> </ml:define> </math> <rendering item-idref="18"/> </region> <region region-id="664" left="12" top="1067.25" width="120" height="67.5" align-x="39" align-y="1104" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.554</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="19"/> </region> <region region-id="666" left="180" top="1063.5" width="163.5" height="75" align-x="207" align-y="1104" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">q</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">q</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">q</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">q</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="20"/> </region> <region region-id="668" left="390" top="1065.75" width="126" height="71.25" align-x="417" align-y="1104" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.065</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">q</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="21"/> </region> <region region-id="670" left="564" top="1065.75" width="105" height="71.25" align-x="591" align-y="1104" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="3">q</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="22"/> </region> <region region-id="693" left="42" top="1154.25" width="124.5" height="17.25" align-x="68.25" align-y="1164" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="23"/> </region> <region region-id="568" left="432" top="1154.25" width="49.5" height="17.25" align-x="453.75" align-y="1164" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TD</ml:id> <ml:id xml:space="preserve" subscript="b3">T</ml:id> </ml:define> </math> <rendering item-idref="24"/> </region> <region region-id="477" left="36" top="1187.25" width="204" height="67.5" align-x="57" align-y="1224" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TD</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-0.98999249660044542</ml:real> <ml:real>0.14112000805986721</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0.14112000805986721</ml:real> <ml:real>0.98999249660044542</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.04854649416886482</ml:real> <ml:real>0.80116679780424771</ml:real> <ml:real>1.154</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="25"/> </region> <region region-id="414" left="36" top="1292.25" width="494.25" height="24" align-x="36" align-y="1302" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit"> <f family="Arial CE" charset="238"> <inlineAttr line-through="false">Řešení soustavy transcendentních rovnic je provedeno jako kontrolní řešení správnosti výpočtu pomocí Taylorova rozvoje transformační matice</inlineAttr> </f> </p> </text> </region> <region region-id="690" left="48" top="1346.25" width="113.25" height="12" align-x="66.75" align-y="1356" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Definice inverzní funkce</p> </text> </region> <region region-id="415" left="42" top="1364.25" width="28.5" height="13.5" align-x="55.5" align-y="1374" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:id xml:space="preserve" xmlns:ml="http://schemas.mathsoft.com/math30">Given</ml:id> </math> <rendering item-idref="26"/> </region> <region region-id="686" left="78" top="1382.25" width="147" height="17.25" align-x="212.25" align-y="1392" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:equal/> <ml:apply> <ml:plus/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:real>0.065</ml:real> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve">x</ml:id> </ml:apply> </math> <rendering item-idref="27"/> </region> <region region-id="685" left="78" top="1406.25" width="147.75" height="17.25" align-x="212.25" align-y="1416" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:equal/> <ml:apply> <ml:minus/> <ml:apply> <ml:mult/> <ml:real>0.065</ml:real> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> </ml:apply> <ml:id xml:space="preserve">y</ml:id> </ml:apply> </math> <rendering item-idref="28"/> </region> <region region-id="684" left="78" top="1430.25" width="71.25" height="17.25" align-x="135.75" align-y="1440" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:apply xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:equal/> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>0.554</ml:real> </ml:apply> <ml:id xml:space="preserve">z</ml:id> </ml:apply> </math> <rendering item-idref="29"/> </region> <region region-id="419" left="36" top="1454.25" width="136.5" height="17.25" align-x="88.5" align-y="1464" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">Q</ml:id> <ml:boundVars> <ml:id xml:space="preserve">x</ml:id> <ml:id xml:space="preserve">y</ml:id> <ml:id xml:space="preserve">z</ml:id> </ml:boundVars> </ml:function> <ml:apply> <ml:Find auto-method="false" method="levenberg" derivative-estimation="central" variable-estimation="tangent" linear-check="false" multistart="false" evolutionary="false"/> <ml:sequence> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:id xml:space="preserve" subscript="3">s</ml:id> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="30"/> </region> <region region-id="480" left="36" top="1490.25" width="186" height="49.5" align-x="177.75" align-y="1518" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">Q</ml:id> <ml:sequence> <ml:real>0.04855</ml:real> <ml:real>0.80117</ml:real> <ml:real>1.154</ml:real> </ml:sequence> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>2.9999962264509237</ml:real> <ml:real>0.59999999999999987</ml:real> <ml:real>0.80000341961769139</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="31"/> </region> <region region-id="482" left="36" top="1586.25" width="268.5" height="12" align-x="36" align-y="1596" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Řešení metodou Taylorova rozvoje transformační matice </p> </text> </region> <region region-id="53" left="24" top="1634.25" width="108" height="12" align-x="24" align-y="1644" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Diferenciální operátory</p> </text> </region> <region region-id="43" left="18" top="1688.25" width="62.25" height="12" align-x="18" align-y="1698" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">rotační kloub</p> </text> </region> <region region-id="44" left="120" top="1661.25" width="97.5" height="67.5" align-x="139.5" align-y="1698" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="r">D</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="32"/> </region> <region region-id="45" left="240" top="1688.25" width="78.75" height="12" align-x="240" align-y="1698" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Translační kloub</p> </text> </region> <region region-id="46" left="348" top="1661.25" width="90" height="67.5" align-x="366" align-y="1698" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="t">D</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="33"/> </region> <region region-id="971" left="24" top="1748.25" width="87" height="12" align-x="24" align-y="1758" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">První iterační krok</p> </text> </region> <region region-id="972" left="24" top="1784.25" width="72.75" height="12" align-x="24" align-y="1794" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výchozí poloha</p> </text> </region> <region region-id="1281" left="24" top="1814.25" width="35.25" height="17.25" align-x="42.75" align-y="1824" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:id xml:space="preserve">π</ml:id> </ml:define> </math> <rendering item-idref="34"/> </region> <region region-id="1282" left="72" top="1814.25" width="42.75" height="17.25" align-x="90.75" align-y="1824" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>0.9</ml:real> </ml:define> </math> <rendering item-idref="35"/> </region> <region region-id="1283" left="126" top="1814.25" width="48.75" height="17.25" align-x="144.75" align-y="1824" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>1.01</ml:real> </ml:define> </math> <rendering item-idref="36"/> </region> <region region-id="499" left="0" top="1859.25" width="120" height="67.5" align-x="27" align-y="1896" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.554</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="37"/> </region> <region region-id="706" left="138" top="1855.5" width="162" height="75" align-x="165" align-y="1896" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="38"/> </region> <region region-id="717" left="318" top="1857.75" width="126" height="71.25" align-x="345" align-y="1896" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.065</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="39"/> </region> <region region-id="723" left="462" top="1857.75" width="104.25" height="71.25" align-x="489" align-y="1896" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="40"/> </region> <region region-id="808" left="30" top="1952.25" width="124.5" height="17.25" align-x="56.25" align-y="1962" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="41"/> </region> <region region-id="816" left="174" top="1952.25" width="48.75" height="17.25" align-x="195" align-y="1962" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TV</ml:id> <ml:id xml:space="preserve" subscript="b3">T</ml:id> </ml:define> </math> <rendering item-idref="42"/> </region> <region region-id="818" left="24" top="1988.25" width="525" height="24" align-x="28.5" align-y="1998" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Je vypočtena transformační matice Tb3 ve výchozí poloze a je uložena jako matice TV, matice TD - žádaná poloha zústává konstantní</p> </text> </region> <region region-id="512" left="30" top="2033.25" width="131.25" height="67.5" align-x="50.25" align-y="2070" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TV</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-1</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.064999999999999877</ml:real> <ml:real>1.01</ml:real> <ml:real>1.4540000000000002</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="43"/> </region> <region region-id="513" left="174" top="2033.25" width="204" height="67.5" align-x="195" align-y="2070" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TD</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-0.98999249660044542</ml:real> <ml:real>0.14112000805986721</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0.14112000805986721</ml:real> <ml:real>0.98999249660044542</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.04854649416886482</ml:real> <ml:real>0.80116679780424771</ml:real> <ml:real>1.154</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="44"/> </region> <region region-id="70" left="18" top="2120.25" width="287.25" height="12" align-x="18" align-y="2130" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Jednotlivé parciální derivace do rozvoje transformační matice</p> </text> </region> <region region-id="838" left="30" top="2174.25" width="140.25" height="17.25" align-x="56.25" align-y="2184" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="r">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="45"/> </region> <region region-id="839" left="216" top="2147.25" width="142.5" height="67.5" align-x="241.5" align-y="2184" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="31">U</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-1.2246063538223773E-16</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1.01</ml:real> <ml:real>-0.064999999999999877</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="46"/> </region> <region region-id="840" left="30" top="2198.25" width="138.75" height="17.25" align-x="56.25" align-y="2208" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="47"/> </region> <region region-id="860" left="372" top="2171.25" width="103.5" height="67.5" align-x="397.5" align-y="2208" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="32">U</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="48"/> </region> <region region-id="841" left="30" top="2222.25" width="138.75" height="17.25" align-x="56.25" align-y="2232" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="49"/> </region> <region region-id="873" left="492" top="2195.25" width="103.5" height="67.5" align-x="517.5" align-y="2232" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="33">U</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1.2246063538223773E-16</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="50"/> </region> <region region-id="77" left="12" top="2270.25" width="432" height="12" align-x="12" align-y="2280" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Sestavená soustava rovnic (obrázek z učebního textu) bude řešena maticově</p> </text> </region> <region region-id="880" left="30" top="2304" width="248.25" height="85.5" align-x="30" align-y="2304" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <picture> <png item-idref="51" display-width="246.75" display-height="84"/> </picture> <rendering item-idref="52"/> </region> <region region-id="81" left="18" top="2420.25" width="156.75" height="12" align-x="18" align-y="2430" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Matice koeficientů u proměnných</p> </text> </region> <region region-id="1297" left="222" top="2420.25" width="123" height="12" align-x="238.5" align-y="2430" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Inverze matice koeficientů</p> </text> </region> <region region-id="1300" left="378" top="2420.25" width="98.25" height="12" align-x="378" align-y="2430" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Matice pravých stran</p> </text> </region> <region region-id="82" left="6" top="2444.25" width="160.5" height="74.25" align-x="21" align-y="2484" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedBIUnit" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">C</ml:id> <ml:matrix rows="3" cols="3"> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="53"/> </region> <region region-id="899" left="192" top="2456.25" width="129.75" height="49.5" align-x="219" align-y="2484" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:pow/> <ml:id xml:space="preserve">C</ml:id> <ml:real>-1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>-0.99009900990099009</ml:real> <ml:real>0</ml:real> <ml:real>-0.064356435643564233</ml:real> <ml:real>1.2124815384379974E-16</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="54"/> </region> <region region-id="910" left="348" top="2447.25" width="111" height="67.5" align-x="362.25" align-y="2484" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">B</ml:id> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="55"/> </region> <region region-id="913" left="486" top="2456.25" width="87.75" height="49.5" align-x="499.5" align-y="2484" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">B</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0.1135464941688647</ml:real> <ml:real>-0.2088332021957523</ml:real> <ml:real>-0.30000000000000027</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="56"/> </region> <region region-id="371" left="30" top="2558.25" width="172.5" height="12" align-x="30" align-y="2568" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Řešením soustavy rovnic je matice D</p> </text> </region> <region region-id="517" left="30" top="2588.25" width="54.75" height="19.5" align-x="45" align-y="2604" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">D</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:id xml:space="preserve">C</ml:id> <ml:real>-1</ml:real> </ml:apply> <ml:id xml:space="preserve">B</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="57"/> </region> <region region-id="518" left="156" top="2576.25" width="88.5" height="49.5" align-x="170.25" align-y="2604" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">D</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.11242227145432152</ml:real> <ml:real>-0.30000000000000027</ml:real> <ml:real>-0.21614064984028319</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="58"/> </region> <region region-id="931" left="24" top="2642.25" width="333.75" height="12" align-x="34.5" align-y="2652" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Krok, který je potřeba udělat z výchozí polohy směrem k řešení je tedy</p> </text> </region> <region region-id="919" left="42" top="2666.25" width="61.5" height="19.5" align-x="70.5" align-y="2676" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">Δs</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="59"/> </region> <region region-id="922" left="42" top="2684.25" width="61.5" height="19.5" align-x="70.5" align-y="2694" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">Δs</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="60"/> </region> <region region-id="926" left="42" top="2702.25" width="61.5" height="19.5" align-x="70.5" align-y="2712" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">Δs</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="61"/> </region> <region region-id="933" left="24" top="2732.25" width="145.5" height="12" align-x="47.25" align-y="2742" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Vypočtení nové výchozí polohy</p> </text> </region> <region region-id="133" left="36" top="2762.25" width="72.75" height="17.25" align-x="54.75" align-y="2772" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:id xml:space="preserve" subscript="1">Δs</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="62"/> </region> <region region-id="134" left="36" top="2780.25" width="72.75" height="17.25" align-x="54.75" align-y="2790" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:id xml:space="preserve" subscript="2">Δs</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="63"/> </region> <region region-id="135" left="36" top="2798.25" width="72.75" height="17.25" align-x="54.75" align-y="2808" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:id xml:space="preserve" subscript="3">Δs</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="64"/> </region> <region region-id="116" left="240" top="2798.25" width="207.75" height="24" align-x="240" align-y="2808" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Pro kontrolu porovnání s již předem vypočtenými referenčními hodnotami</p> </text> </region> <region region-id="136" left="36" top="2834.25" width="72" height="17.25" align-x="54" align-y="2844" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>3.0291703821354714</ml:real> </result> </ml:eval> </math> <rendering item-idref="65"/> </region> <region region-id="271" left="234" top="2834.25" width="39.75" height="17.25" align-x="252.75" align-y="2844" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">q</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>3</ml:real> </result> </ml:eval> </math> <rendering item-idref="66"/> </region> <region region-id="137" left="36" top="2852.25" width="48" height="17.25" align-x="54" align-y="2862" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">s</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.59999999999999976</ml:real> </result> </ml:eval> </math> <rendering item-idref="67"/> </region> <region region-id="272" left="234" top="2852.25" width="48.75" height="17.25" align-x="252.75" align-y="2862" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">q</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.6</ml:real> </result> </ml:eval> </math> <rendering item-idref="68"/> </region> <region region-id="138" left="36" top="2870.25" width="72" height="17.25" align-x="54" align-y="2880" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">s</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.79385935015971687</ml:real> </result> </ml:eval> </math> <rendering item-idref="69"/> </region> <region region-id="273" left="234" top="2870.25" width="48.75" height="17.25" align-x="252.75" align-y="2880" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">q</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.8</ml:real> </result> </ml:eval> </math> <rendering item-idref="70"/> </region> <region region-id="1335" left="30" top="2906.25" width="424.5" height="66" align-x="36" align-y="2916" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Při pohledu na vypočtené kloubové proměnné vidíme, že s<sub>1</sub> se liší o 29 tisícin radiánu, s<sub>2</sub> je již vypočtena přesně ( je nastaveno zobrazování na 5 desetinných míst), s<sub>3</sub> se liší zhruba o 7 mm. Je tedy nutná další iterace. Je to způsobeno poměrně velkým rozdílem mezi výchozí a žádanou polohou. Pokud bude tento rozdíl malý, řešení je nalezeno již po jedné iteraci.</p> </text> </region> <region region-id="1336" left="30" top="3008.25" width="281.25" height="12" align-x="30" align-y="3018" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Druhá iterace - výrazy jsou zkopírovány z předchozí iterace</p> </text> </region> <region region-id="954" left="30" top="3032.25" width="137.25" height="12" align-x="30" align-y="3042" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Matice v nové výchozí poloze</p> </text> </region> <region region-id="1105" left="24" top="3065.25" width="120" height="67.5" align-x="51" align-y="3102" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.554</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="71"/> </region> <region region-id="1106" left="162" top="3061.5" width="162" height="75" align-x="189" align-y="3102" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="72"/> </region> <region region-id="1107" left="342" top="3063.75" width="126" height="71.25" align-x="369" align-y="3102" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.065</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="73"/> </region> <region region-id="1108" left="486" top="3063.75" width="104.25" height="71.25" align-x="513" align-y="3102" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="74"/> </region> <region region-id="1109" left="54" top="3158.25" width="124.5" height="17.25" align-x="80.25" align-y="3168" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="75"/> </region> <region region-id="1110" left="198" top="3158.25" width="48.75" height="17.25" align-x="219" align-y="3168" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TV</ml:id> <ml:id xml:space="preserve" subscript="b3">T</ml:id> </ml:define> </math> <rendering item-idref="76"/> </region> <region region-id="1111" left="48" top="3194.25" width="525" height="24" align-x="52.5" align-y="3204" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Je vypočtena transformační matice Tb3 ve výchozí poloze a je uložena jako matice TV, matice TD - žádaná poloha zústává konstantní</p> </text> </region> <region region-id="1112" left="54" top="3239.25" width="203.25" height="67.5" align-x="74.25" align-y="3276" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TV</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-0.99368726940523</ml:real> <ml:real>0.11218560790929398</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0.11218560790929398</ml:real> <ml:real>0.99368726940523</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.024469921280804954</ml:real> <ml:real>0.79613999446612349</ml:real> <ml:real>1.154</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="77"/> </region> <region region-id="1186" left="288" top="3239.25" width="204" height="67.5" align-x="309" align-y="3276" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TD</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-0.98999249660044542</ml:real> <ml:real>0.14112000805986721</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0.14112000805986721</ml:real> <ml:real>0.98999249660044542</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.04854649416886482</ml:real> <ml:real>0.80116679780424771</ml:real> <ml:real>1.154</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="78"/> </region> <region region-id="1114" left="42" top="3326.25" width="287.25" height="12" align-x="42" align-y="3336" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Jednotlivé parciální derivace do rozvoje transformační matice</p> </text> </region> <region region-id="1115" left="54" top="3380.25" width="140.25" height="17.25" align-x="80.25" align-y="3390" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="r">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="79"/> </region> <region region-id="1116" left="240" top="3353.25" width="220.5" height="67.5" align-x="265.5" align-y="3390" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="31">U</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-0.11218560790929398</ml:real> <ml:real>-0.99368726940523</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.99368726940523</ml:real> <ml:real>0.11218560790929398</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.79613999446612349</ml:real> <ml:real>0.024469921280804954</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="80"/> </region> <region region-id="1117" left="54" top="3404.25" width="138.75" height="17.25" align-x="80.25" align-y="3414" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="81"/> </region> <region region-id="1170" left="468" top="3377.25" width="103.5" height="67.5" align-x="493.5" align-y="3414" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="32">U</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="82"/> </region> <region region-id="1119" left="54" top="3428.25" width="138.75" height="17.25" align-x="80.25" align-y="3438" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="83"/> </region> <region region-id="1171" left="588" top="3401.25" width="136.5" height="67.5" align-x="613.5" align-y="3438" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="33">U</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.11218560790929398</ml:real> <ml:real>0.99368726940523</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="84"/> </region> <region region-id="1304" left="48" top="3476.25" width="156.75" height="12" align-x="48" align-y="3486" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Matice koeficientů u proměnných</p> </text> </region> <region region-id="1305" left="252" top="3476.25" width="123" height="12" align-x="268.5" align-y="3486" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Inverze matice koeficientů</p> </text> </region> <region region-id="1306" left="408" top="3476.25" width="98.25" height="12" align-x="408" align-y="3486" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Matice pravých stran</p> </text> </region> <region region-id="1125" left="30" top="3500.25" width="160.5" height="74.25" align-x="45" align-y="3540" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">C</ml:id> <ml:matrix rows="3" cols="3"> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="85"/> </region> <region region-id="1126" left="216" top="3512.25" width="162.75" height="49.5" align-x="243" align-y="3540" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:pow/> <ml:id xml:space="preserve">C</ml:id> <ml:real>-1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>-1.2517170317453712</ml:real> <ml:real>0</ml:real> <ml:real>0.030824000845844853</ml:real> <ml:real>0.14131673058549138</ml:real> <ml:real>0</ml:real> <ml:real>1.002872856893287</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="86"/> </region> <region region-id="1191" left="390" top="3503.25" width="111" height="67.5" align-x="404.25" align-y="3540" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">B</ml:id> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="87"/> </region> <region region-id="1192" left="528" top="3509.25" width="111.75" height="55.5" align-x="541.5" align-y="3540" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">B</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0.024076572888059866</ml:real> <ml:real>0.0050268033381242194</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="88"/> </region> <region region-id="1129" left="54" top="3614.25" width="172.5" height="12" align-x="54" align-y="3624" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Řešením soustavy rovnic je matice D</p> </text> </region> <region region-id="1130" left="54" top="3644.25" width="54.75" height="19.5" align-x="69" align-y="3660" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">D</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:id xml:space="preserve">C</ml:id> <ml:real>-1</ml:real> </ml:apply> <ml:id xml:space="preserve">B</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="89"/> </region> <region region-id="1131" left="180" top="3629.25" width="118.5" height="55.5" align-x="194.25" align-y="3660" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">D</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.029426684937003428</ml:real> <ml:real>0</ml:real> <ml:real>0.00578338092781195</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="90"/> </region> <region region-id="1132" left="48" top="3698.25" width="333.75" height="12" align-x="58.5" align-y="3708" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Krok, který je potřeba udělat z výchozí polohy směrem k řešení je tedy</p> </text> </region> <region region-id="1133" left="66" top="3722.25" width="61.5" height="19.5" align-x="94.5" align-y="3732" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">Δs</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="91"/> </region> <region region-id="1134" left="66" top="3740.25" width="61.5" height="19.5" align-x="94.5" align-y="3750" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">Δs</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="92"/> </region> <region region-id="1135" left="66" top="3758.25" width="61.5" height="19.5" align-x="94.5" align-y="3768" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">Δs</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="93"/> </region> <region region-id="1136" left="48" top="3788.25" width="145.5" height="12" align-x="71.25" align-y="3798" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Vypočtení nové výchozí polohy</p> </text> </region> <region region-id="1137" left="60" top="3818.25" width="72.75" height="17.25" align-x="78.75" align-y="3828" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:id xml:space="preserve" subscript="1">Δs</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="94"/> </region> <region region-id="1138" left="60" top="3836.25" width="72.75" height="17.25" align-x="78.75" align-y="3846" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:id xml:space="preserve" subscript="2">Δs</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="95"/> </region> <region region-id="1139" left="60" top="3854.25" width="72.75" height="17.25" align-x="78.75" align-y="3864" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:id xml:space="preserve" subscript="3">Δs</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="96"/> </region> <region region-id="1140" left="264" top="3854.25" width="207.75" height="24" align-x="264" align-y="3864" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Pro kontrolu porovnání s již předem vypočtenými referenčními hodnotami</p> </text> </region> <region region-id="1141" left="60" top="3890.25" width="72" height="17.25" align-x="78" align-y="3900" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>2.9997436971984679</ml:real> </result> </ml:eval> </math> <rendering item-idref="97"/> </region> <region region-id="1142" left="258" top="3890.25" width="39.75" height="17.25" align-x="276.75" align-y="3900" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">q</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>3</ml:real> </result> </ml:eval> </math> <rendering item-idref="98"/> </region> <region region-id="1143" left="60" top="3908.25" width="48" height="17.25" align-x="78" align-y="3918" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">s</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.59999999999999976</ml:real> </result> </ml:eval> </math> <rendering item-idref="99"/> </region> <region region-id="1144" left="258" top="3908.25" width="48.75" height="17.25" align-x="276.75" align-y="3918" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">q</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.6</ml:real> </result> </ml:eval> </math> <rendering item-idref="100"/> </region> <region region-id="1145" left="60" top="3926.25" width="72" height="17.25" align-x="78" align-y="3936" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">s</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.79964273108752881</ml:real> </result> </ml:eval> </math> <rendering item-idref="101"/> </region> <region region-id="1146" left="258" top="3926.25" width="48.75" height="17.25" align-x="276.75" align-y="3936" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">q</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.8</ml:real> </result> </ml:eval> </math> <rendering item-idref="102"/> </region> <region region-id="1346" left="54" top="3968.25" width="424.5" height="54" align-x="60" align-y="3978" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Při pohledu na vypočtené kloubové proměnné vidíme, že s<sub>1</sub> se liší o necelou tisícinu radiánu, s<sub>2</sub> je vypočtena přesně ( je nastaveno zobrazování na 5 desetinných míst), s<sub>3</sub> se liší zhruba o 4 desetitisíciny mm. To by pro běžnou přesnost v robotice již stačilo. Pro ještě přesnější výpočet je provedena ještě další iterace. </p> </text> </region> <region region-id="1147" left="60" top="4052.25" width="274.5" height="12" align-x="60" align-y="4062" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Třetí iterace - výrazy jsou zkopírovány z předchozí iterace</p> </text> </region> <region region-id="1193" left="42" top="4091.25" width="120" height="67.5" align-x="69" align-y="4128" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.554</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="103"/> </region> <region region-id="1194" left="180" top="4087.5" width="162" height="75" align-x="207" align-y="4128" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="104"/> </region> <region region-id="1195" left="360" top="4089.75" width="126" height="71.25" align-x="387" align-y="4128" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.065</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="105"/> </region> <region region-id="1196" left="504" top="4089.75" width="104.25" height="71.25" align-x="531" align-y="4128" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:define> </math> <rendering item-idref="106"/> </region> <region region-id="1197" left="72" top="4184.25" width="124.5" height="17.25" align-x="98.25" align-y="4194" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="b3">T</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="107"/> </region> <region region-id="1198" left="216" top="4184.25" width="48.75" height="17.25" align-x="237" align-y="4194" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TV</ml:id> <ml:id xml:space="preserve" subscript="b3">T</ml:id> </ml:define> </math> <rendering item-idref="108"/> </region> <region region-id="1199" left="66" top="4220.25" width="525" height="24" align-x="70.5" align-y="4230" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Je vypočtena transformační matice Tb3 ve výchozí poloze a je uložena jako matice TV, matice TD - žádaná poloha zústává konstantní</p> </text> </region> <region region-id="1200" left="72" top="4265.25" width="197.25" height="67.5" align-x="92.25" align-y="4302" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TV</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-0.98995629463056267</ml:real> <ml:real>0.14137374127229754</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0.14137374127229754</ml:real> <ml:real>0.98995629463056267</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.048701325424055128</ml:real> <ml:real>0.80080064827837283</ml:real> <ml:real>1.154</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="109"/> </region> <region region-id="1201" left="216" top="4265.25" width="204" height="67.5" align-x="237" align-y="4302" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TD</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-0.98999249660044542</ml:real> <ml:real>0.14112000805986721</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0.14112000805986721</ml:real> <ml:real>0.98999249660044542</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.04854649416886482</ml:real> <ml:real>0.80116679780424771</ml:real> <ml:real>1.154</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="110"/> </region> <region region-id="1202" left="60" top="4352.25" width="287.25" height="12" align-x="60" align-y="4362" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Jednotlivé parciální derivace do rozvoje transformační matice</p> </text> </region> <region region-id="1203" left="72" top="4406.25" width="140.25" height="17.25" align-x="98.25" align-y="4416" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="r">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="111"/> </region> <region region-id="1204" left="258" top="4379.25" width="214.5" height="67.5" align-x="283.5" align-y="4416" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="31">U</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-0.14137374127229754</ml:real> <ml:real>-0.98995629463056267</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.98995629463056267</ml:real> <ml:real>0.14137374127229754</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-0.80080064827837283</ml:real> <ml:real>0.048701325424055128</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="112"/> </region> <region region-id="1205" left="72" top="4430.25" width="138.75" height="17.25" align-x="98.25" align-y="4440" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="113"/> </region> <region region-id="1256" left="480" top="4403.25" width="103.5" height="67.5" align-x="505.5" align-y="4440" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="32">U</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="114"/> </region> <region region-id="1207" left="72" top="4454.25" width="138.75" height="17.25" align-x="98.25" align-y="4464" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="115"/> </region> <region region-id="1257" left="600" top="4427.25" width="136.5" height="67.5" align-x="625.5" align-y="4464" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="33">U</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.14137374127229754</ml:real> <ml:real>0.98995629463056267</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="116"/> </region> <region region-id="1310" left="54" top="4496.25" width="156.75" height="12" align-x="54" align-y="4506" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Matice koeficientů u proměnných</p> </text> </region> <region region-id="1311" left="258" top="4496.25" width="123" height="12" align-x="274.5" align-y="4506" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Inverze matice koeficientů</p> </text> </region> <region region-id="1312" left="414" top="4496.25" width="98.25" height="12" align-x="414" align-y="4506" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Matice pravých stran</p> </text> </region> <region region-id="1213" left="48" top="4526.25" width="160.5" height="74.25" align-x="63" align-y="4566" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">C</ml:id> <ml:matrix rows="3" cols="3"> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="31">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="32">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="33">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="117"/> </region> <region region-id="1214" left="234" top="4538.25" width="150.75" height="49.5" align-x="261" align-y="4566" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:pow/> <ml:id xml:space="preserve">C</ml:id> <ml:real>-1</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="3"> <ml:real>-1.2379982411447721</ml:real> <ml:real>0</ml:real> <ml:real>0.060903855597887364</ml:real> <ml:real>0.17679613129231683</ml:real> <ml:real>0</ml:real> <ml:real>1.0014480431645634</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="118"/> </region> <region region-id="1215" left="390" top="4529.25" width="111" height="67.5" align-x="404.25" align-y="4566" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">B</ml:id> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:matrix> </ml:define> </math> <rendering item-idref="119"/> </region> <region region-id="1216" left="528" top="4532.25" width="123.75" height="61.5" align-x="541.5" align-y="4566" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">B</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>-0.00015483125519030749</ml:real> <ml:real>0.00036614952587488148</ml:real> <ml:real>0</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="120"/> </region> <region region-id="1217" left="72" top="4640.25" width="172.5" height="12" align-x="72" align-y="4650" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Řešením soustavy rovnic je matice D</p> </text> </region> <region region-id="1218" left="72" top="4670.25" width="54.75" height="19.5" align-x="87" align-y="4686" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">D</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:id xml:space="preserve">C</ml:id> <ml:real>-1</ml:real> </ml:apply> <ml:id xml:space="preserve">B</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="121"/> </region> <region region-id="1219" left="198" top="4652.25" width="118.5" height="61.5" align-x="212.25" align-y="4686" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">D</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>0.00025641464124903315</ml:real> <ml:real>0</ml:real> <ml:real>0.00035724990578488256</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="122"/> </region> <region region-id="1220" left="66" top="4724.25" width="333.75" height="12" align-x="76.5" align-y="4734" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Krok, který je potřeba udělat z výchozí polohy směrem k řešení je tedy</p> </text> </region> <region region-id="1221" left="84" top="4748.25" width="61.5" height="19.5" align-x="112.5" align-y="4758" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">Δs</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="123"/> </region> <region region-id="1222" left="84" top="4766.25" width="61.5" height="19.5" align-x="112.5" align-y="4776" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">Δs</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="124"/> </region> <region region-id="1223" left="84" top="4784.25" width="61.5" height="19.5" align-x="112.5" align-y="4794" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">Δs</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:define> </math> <rendering item-idref="125"/> </region> <region region-id="1224" left="66" top="4814.25" width="145.5" height="12" align-x="89.25" align-y="4824" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Vypočtení nové výchozí polohy</p> </text> </region> <region region-id="1225" left="78" top="4844.25" width="72.75" height="17.25" align-x="96.75" align-y="4854" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:id xml:space="preserve" subscript="1">Δs</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="126"/> </region> <region region-id="1226" left="78" top="4862.25" width="72.75" height="17.25" align-x="96.75" align-y="4872" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:id xml:space="preserve" subscript="2">Δs</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="127"/> </region> <region region-id="1227" left="78" top="4880.25" width="72.75" height="17.25" align-x="96.75" align-y="4890" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:id xml:space="preserve" subscript="3">Δs</ml:id> </ml:apply> </ml:define> </math> <rendering item-idref="128"/> </region> <region region-id="1228" left="282" top="4880.25" width="207.75" height="24" align-x="282" align-y="4890" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="0" text-align="inherit" list-style-type="none" tabs="inherit">Pro kontrolu porovnání s již předem vypočtenými referenčními hodnotami</p> </text> </region> <region region-id="1229" left="78" top="4916.25" width="39" height="17.25" align-x="96" align-y="4926" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>3.000000111839717</ml:real> </result> </ml:eval> </math> <rendering item-idref="129"/> </region> <region region-id="1230" left="276" top="4916.25" width="39.75" height="17.25" align-x="294.75" align-y="4926" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">q</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>3</ml:real> </result> </ml:eval> </math> <rendering item-idref="130"/> </region> <region region-id="1231" left="78" top="4934.25" width="48" height="17.25" align-x="96" align-y="4944" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">s</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.59999999999999976</ml:real> </result> </ml:eval> </math> <rendering item-idref="131"/> </region> <region region-id="1232" left="276" top="4934.25" width="48.75" height="17.25" align-x="294.75" align-y="4944" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">q</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.6</ml:real> </result> </ml:eval> </math> <rendering item-idref="132"/> </region> <region region-id="1233" left="78" top="4952.25" width="48" height="17.25" align-x="96" align-y="4962" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">s</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.79999998099331371</ml:real> </result> </ml:eval> </math> <rendering item-idref="133"/> </region> <region region-id="1234" left="276" top="4952.25" width="48.75" height="17.25" align-x="294.75" align-y="4962" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">q</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:real>0.8</ml:real> </result> </ml:eval> </math> <rendering item-idref="134"/> </region> <region region-id="1321" left="24" top="4988.25" width="418.5" height="36" align-x="24" align-y="4998" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Po třetí iteraci jsou již hodnoty hledaných kloubových proměnných vypočteny naprosto správně (zobrazení výsledku je nastaveno na pět desetinných míst), odpovídají referenčním hodnotám a výpočet může skončit</p> </text> </region> <region region-id="1323" left="30" top="5102.25" width="163.5" height="12" align-x="63" align-y="5112" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Programování v prostředí Mathcad</p> </text> </region> <region region-id="1325" left="30" top="5126.25" width="354.75" height="12" align-x="48" align-y="5136" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Výchozí poloha, pro kterou jsou v programu vyčísleny transformační matice</p> </text> </region> <region region-id="1274" left="66" top="5150.25" width="35.25" height="17.25" align-x="84.75" align-y="5160" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:id xml:space="preserve">π</ml:id> </ml:define> </math> <rendering item-idref="135"/> </region> <region region-id="1275" left="132" top="5150.25" width="42.75" height="17.25" align-x="150.75" align-y="5160" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>0.9</ml:real> </ml:define> </math> <rendering item-idref="136"/> </region> <region region-id="1276" left="198" top="5150.25" width="42.75" height="17.25" align-x="216.75" align-y="5160" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define warning="WarnRedefinedUDScalar" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>0.8</ml:real> </ml:define> </math> <rendering item-idref="137"/> </region> <region region-id="1327" left="36" top="5180.25" width="72" height="12" align-x="53.25" align-y="5190" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="false"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Žádaná poloha</p> </text> </region> <region region-id="1328" left="30" top="5207.25" width="204" height="67.5" align-x="51" align-y="5244" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">TD</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="4" cols="4"> <ml:real>-0.98999249660044542</ml:real> <ml:real>0.14112000805986721</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0.14112000805986721</ml:real> <ml:real>0.98999249660044542</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.04854649416886482</ml:real> <ml:real>0.80116679780424771</ml:real> <ml:real>1.154</ml:real> <ml:real>1</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="138"/> </region> <region region-id="1277" left="6" top="5306.25" width="412.5" height="24" align-x="6" align-y="5316" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Program v Mathcadu definuje funkci inverze(ε), kde ε je požadovaná přesnost výpočtu - zde součet kroků</p> </text> </region> <region region-id="1259" left="66" top="5342.25" width="255" height="757.5" align-x="122.25" align-y="5352" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:function> <ml:id xml:space="preserve">inverze</ml:id> <ml:boundVars> <ml:id xml:space="preserve">ε</ml:id> </ml:boundVars> </ml:function> <ml:program> <ml:localDefine> <ml:id xml:space="preserve">ds</ml:id> <ml:real>100</ml:real> </ml:localDefine> <ml:while> <ml:apply> <ml:greaterThan/> <ml:id xml:space="preserve">ds</ml:id> <ml:id xml:space="preserve">ε</ml:id> </ml:apply> <ml:program> <ml:localDefine> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.554</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve" subscript="01">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:apply> <ml:neg/> <ml:apply> <ml:id xml:space="preserve">sin</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> </ml:apply> <ml:apply> <ml:id xml:space="preserve">cos</ml:id> <ml:id xml:space="preserve" subscript="1">s</ml:id> </ml:apply> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> </ml:matrix> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve" subscript="12">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>-1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0.065</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve" subscript="23">A</ml:id> <ml:matrix rows="4" cols="4"> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>1</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:real>0</ml:real> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:real>1</ml:real> </ml:matrix> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve">TV</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve" subscript="1">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="r">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve" subscript="2">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve" subscript="3">U</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:apply> <ml:mult/> <ml:id xml:space="preserve" subscript="b0">A</ml:id> <ml:id xml:space="preserve" subscript="01">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="12">A</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="t">D</ml:id> </ml:apply> <ml:id xml:space="preserve" subscript="23">A</ml:id> </ml:apply> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve">C</ml:id> <ml:matrix rows="3" cols="3"> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="1">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="1">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="1">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="2">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="2">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="2">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="3">U</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="3">U</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve" subscript="3">U</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:matrix> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve">B</ml:id> <ml:matrix rows="3" cols="1"> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> <ml:apply> <ml:minus/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TD</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">TV</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>4</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:matrix> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve">D</ml:id> <ml:apply> <ml:mult/> <ml:apply> <ml:pow/> <ml:id xml:space="preserve">C</ml:id> <ml:real>-1</ml:real> </ml:apply> <ml:id xml:space="preserve">B</ml:id> </ml:apply> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve" subscript="3">s</ml:id> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve">ds</ml:id> <ml:apply> <ml:plus/> <ml:apply> <ml:plus/> <ml:apply> <ml:absval/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>1</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:apply> <ml:apply> <ml:absval/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>2</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:apply> <ml:apply> <ml:absval/> <ml:apply> <ml:indexer/> <ml:id xml:space="preserve">D</ml:id> <ml:sequence> <ml:real>3</ml:real> <ml:real>1</ml:real> </ml:sequence> </ml:apply> </ml:apply> </ml:apply> </ml:localDefine> </ml:program> </ml:while> <ml:matrix rows="3" cols="1"> <ml:id xml:space="preserve" subscript="1">s</ml:id> <ml:id xml:space="preserve" subscript="2">s</ml:id> <ml:id xml:space="preserve" subscript="3">s</ml:id> </ml:matrix> </ml:program> </ml:define> </math> <rendering item-idref="139"/> </region> <region region-id="1331" left="480" top="5420.25" width="213" height="12" align-x="495" align-y="5430" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <text use-page-width="false" push-down="false" lock-width="true"> <p style="Normal" margin-left="inherit" margin-right="inherit" text-indent="inherit" text-align="inherit" list-style-type="inherit" tabs="inherit">Použití definované funkce pro vlastní výpočet</p> </text> </region> <region region-id="1329" left="474" top="5456.25" width="121.5" height="49.5" align-x="551.25" align-y="5484" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:apply> <ml:id xml:space="preserve">inverze</ml:id> <ml:real>0.001</ml:real> </ml:apply> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="3" cols="1"> <ml:real>3.0000000182555189</ml:real> <ml:real>0.59999999999999987</ml:real> <ml:real>0.79999999265949862</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="140"/> </region> <region region-id="1332" left="480" top="5618.25" width="114" height="139.5" align-x="493.5" align-y="5628" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:define xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">a</ml:id> <ml:program> <ml:localDefine> <ml:id xml:space="preserve">b</ml:id> <ml:real>2</ml:real> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve">c</ml:id> <ml:real>12</ml:real> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve">i</ml:id> <ml:real>0</ml:real> </ml:localDefine> <ml:while> <ml:apply> <ml:greaterThan/> <ml:id xml:space="preserve">c</ml:id> <ml:real>3</ml:real> </ml:apply> <ml:program> <ml:localDefine> <ml:id xml:space="preserve">c</ml:id> <ml:apply> <ml:minus/> <ml:id xml:space="preserve">c</ml:id> <ml:id xml:space="preserve">b</ml:id> </ml:apply> </ml:localDefine> <ml:localDefine> <ml:id xml:space="preserve">i</ml:id> <ml:apply> <ml:plus/> <ml:id xml:space="preserve">i</ml:id> <ml:real>1</ml:real> </ml:apply> </ml:localDefine> </ml:program> </ml:while> <ml:matrix rows="2" cols="1"> <ml:id xml:space="preserve">c</ml:id> <ml:id xml:space="preserve">i</ml:id> </ml:matrix> </ml:program> </ml:define> </math> <rendering item-idref="141"/> </region> <region region-id="1333" left="486" top="5783.25" width="48" height="31.5" align-x="498.75" align-y="5802" show-border="false" show-highlight="false" is-protected="true" z-order="0" background-color="inherit" tag=""> <math optimize="false" disable-calc="false"> <ml:eval placeholderMultiplicationStyle="default" xmlns:ml="http://schemas.mathsoft.com/math30"> <ml:id xml:space="preserve">a</ml:id> <result xmlns="http://schemas.mathsoft.com/math30"> <ml:matrix rows="2" cols="1"> <ml:real>2</ml:real> <ml:real>5</ml:real> </ml:matrix> </result> </ml:eval> </math> <rendering item-idref="142"/> </region> </regions> <binaryContent> <item item-id="1">iVBORw0KGgoAAAANSUhEUgAAAd0AAAIYCAIAAACnkqGjAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAHOhSURBVHhe7b0HkNRW3+Z7HN733f32 +/bubn11625t1e7e3brh271bzjkbYxsw4JxweJPTi/3a2BgwOQ055zjAMAPMwDDkHAwmgwkO RJtsgjPGOTD3OTrdGrWkVktqqVtqPVWnqKZHrZYenfPTv5/zP3+Jle99wkYFqAAVoALRUUCs eO8TNipABagAFYiOAuQyb0tUgApQgWgpIFbs+YSNClABKkAFoqMAuHySjQpQASpABaKjALnM 2xIVoAJUIFoKkMvRuh7RuWPzSKgAFSiWAuQyuUwFqAAViJYC5HK0rkex7s/8XipABaKjgFi+ 5yQbFaACVIAKREcBcpm3JSpABahAtBQQy3efZKMCVIAKUIHoKEAu87ZEBagAFYiWAuRy8a9H /ZZWejszt+VprZ2qbWF8X70+PPO+j6qaHaxsur+iqf7X6NzkeSRUgAoEogC5XBwuK6qCwlb4 +ntn69i71AcD6RbcCRWgAkVUAFw+wVYwBfwx1+unVg2+XQM0rywVoAKxVEAs232CLWwFvII1 2O3DPjvunwpQgWAVIJfDvS0FS1jfewu203BvVIAKhKqAWLbrBFtICvjGaEgfDOk0uVsqQAWC VYBcDuu2FBJb89xtsL2He6MCVCAMBcjlULicJz1D/XgY3Yj7pAJUIEAFyOXguRwqVfPfeYC9 h7uiAlQgDAXI5cRxGWQPoydxn1SACgSlgFi66wRbsArkH9LqexADntZbgLsN9ny5NypABYJV gFwO/rYUIEBD2lWwfYh7owJUIFgFyOXEcXlp/1uD7UPcGxWgAsEqAC4fZwtWgf4vXBZSnBvI bjUu86JTASoQXQXE0p3H2YJVAFwe8rfLA2Fo4DvZMLKR5DIvOhWgAhFWgFwO/rakuDzqtasC p2qeO9w+rjG5zHsSFYi+AuRyiFye9OY1eZI0qI9/OPXe3ZPuIZejPyB5hFQACoglO4+zBauA Hi+DyxUdr5vV9Yag8OpjP4eqmqGIvonLwZ4v90YFqECwCpDLwd+WrFyu7XnTgrJblvS/1QdY fX/k6Kz78HwTcjnYAcO9UYECKEAuF5TLKwbdtmboHeuH3+mbts4fxNOnPpnT4uTsFsdrmpPL BRg//AoqEIYC5HJxuLxxVKMtY+6C4btzwt1wfn1j+kxdS9nUUwFr5VMByeUwxgn3SQUKqQC5 HAkuv19+74dTm+yraHJgelM4Dx/PaHZk5n0IeI9XNz9R0xzxL2gL5oK84C8oLJsiMrnMCRIq UHIKiCXvHmcLVgEHf1n3MUzxcqG5zItOBahAhBUgl4O/LZHLwd7nuDcqkDQFxOJ3j7EFq0D0 uazOV0w+ZNuCVYN7owJUwKsC5HLwtyVwebC23k/PX9bz5CLiY2QjsvV9r/2J21MBKpC/AuQy uWwfNZPR+Y8u7oEK+FOAXCaX3XJZJ7W/rsZPUQEq4FIBcplc9sxlYyjtsp9xMypABdwrQC6T y3lxmYx2P9i4JRVwqYBYvOMYW7AKBDLvh9IW4a0rcT/v52PLYMXk3qhAAhUQi3YcYwtWgYRz WaE8WEm5NyqQKAXI5eBvS+QyuZwoiPBkA1eAXCaXA/OXjaZH4D2VO6QCyVGAXA6Ny6/mta4k vv6ypHO7yuQMIZ4pFQhcAXD5KFuwCqR8jMRyues8jcvsV1SACvhUgFz2KZwDd5LL5W7zhGrk Mm9LVCAPBcSi7UfZglUgoVzWoay4zH5FBaiADwVA8+1HxcLtR9mCVSDiXMazUXxkJTt9xEjk dLwcrKTcGxVIlALkcvC3pQC5fCyE55UEyWUrkcllBjpUIG8FyOXguQzwyTqfQcz7hcFlEUi8 nI3I5HLeYzJRgSFP1lYBcjl4LgN8keWyDJb735qvj+EMZc1f5nijAlTAtwLkcghcVnXxX70y n7r4Kn858HhZjGyUF5d1Ir9enkq9sGU0ucyomQrkoQC5HAqXhQ2Xb17S/1b3zysJg8tiXGP/ XDbyF1Aml/MYdb7DKH4wIQqQy2FxWZjj5SJzWUy6xyeXrUQmlwllKhCmAmLBtqNswSogXrgM 8TK4LN68RnS8blbXG7Tn+xWTy2LqvT65bITym9NlmKw3B5e5XWWwknJvVKB0FNieG7nkcm6N vHYIE5dF1xtEkbgsZt4nqpqJiqYZXB7gbt5Px27fVaL3Mukmk8sMYqhAXgoccQkTcBmbsgWp gC2XRdnNcsJt0G1rht6xfvidG0c12jLmru3jGu+ccPfuSfe8X37vh1Ob7KtocmB600NVzT6e 0SxPf1nUNBez7vPJZWMg3G+N8MnlICVlF6UCiVKAXA4eH85cFkPvEMPvFKMaiaC5LGpbitoW Yk4LMbuFTy6biNx/jSCXGbVQgYIrQC4Xk8tyIm7C3dL5Lb9XTG0ivMTLoq5lQ5vbUqDlyWUd ymUrZIwMIpPLBR+QiYoKebLZFCCXo8VlMb2pdIRnNJMWBIyI6uYy8kX8iygYsTDIqxCMFiCX dSKjRGfPxSIrlyu9zPsFLyyHMRVIiALkcvD4cO9jWOPlQnPZaFx0rBbkMgNkKhABBcT8bUfY glUgNlzWofzKONG2QgTK5WAl5d6oQKIUEPO3HmELVoGocxnPedKJ/ERn8dxgYeby8iz+sgcf I1hJuTcqkCgFyOXgb0tR57KCcv+1clqPXGZcQgWipwC5nEgu911NLicq/uLJxksBcjlILjfU zzSsw1br/fR1Jcb85eLM+/VZKfxxuR19jCB7S7xIwaMtpALkcjAjzVzRuAS5PB9Vld3nyRWy E/O7qECJKQAuH2bLR4GsNebTdYuiFS/3WiJ8xsteucx+RQWSoAACu+BPU8zbepjNtwI5Hvyh 1ZOLEJcx3VcoLvuWlB+kAnFRAEQO6VDJZZ/Kun0UU0S4rCfGkcuhjaWQhih3m0AFxLwth9m8 KuAWysgUVq2I836mKskF4zL7FRWgAn4VIJf93JY8c1kH9KDbCpePYVu3nlz2O1S83ry5PRXw rQC5XFgu64DW6nwGnyeX80nV5DK5TAUirwC57IvLD7QRT3XzHzXrdNZfpOt8eq5blBPE9DEi Pwh9R1X8YKkqQC7nweXnBonWY4Kks5XX2d7xiuPCz/uRhlSACvhVQNRtOczmVQGh4mXFZf05 pO6pms+WvomsPlgoH8OrpNyeClABXQFy2c9tyZ7LxmdF50PewGNkI8rJZQYiVCDyCpDL4XA5 cEbnGSYX3Mdg7EMFqIBvBUTd5sNsXhXIHS8buZyn0REUkQvsY7BfUYG4KvCx5GlRDx5c/pjN qwI+uewpiMaTT3svEz0WNtSwDwTQBfMx2K+oABXwqwC57Oe2FACXUZutY418nh7I22up6KMe QY2yyOop1Kvlf8llv93a642W21OBSClALpPLLp8j5a2eXKR6OQ+GCsRLAXKZXCaX/fSBeI1z Hm28FBBzN3/M5lUB+hgya9vB725X6VVSbk8FqICuALns57ZELpPLhAgVCE8BcplcDsXHCK/L cs9UoOQVEHM3fczmVYFSiZfXiic6i+fC4TL7FRWgAn4VIJf93JbI5Vw+RpXXWx23pwJUQFeA XCaXw4iXyWU//YpgogJKAXLZz/hhvMx4mQShAuEpIGo3fcTmVQFyOSeXvUrK7akAFdAVIJf9 3JbIZXKZEKEC4SlALpPLofjL4XVZ7pkKlLwC5DK5TC776QMljwaeYBEVELUbP2LzqgB9jNw+ BvsVFaACfhUgl/3clshlctnrvZzbUwH3CpDL5HI4PobfSMF93+WWVKBUFRBzNn7E5lUBxss5 42WvknJ7KkAFdAXIZT+3JXKZXCZEqEB4CpDL5HIoPkZ4XZZ7pgIlrwC5nEAu41mCeJDgWtnC qidXVfIjhydIBcJTAFw+xOZVgZj7GIXhMvsVFQhTgQ1h7rzYVBRzcHpsHhUgl3P7yx4lZSek AlRAV4Bc9nNbIpfJZUKECoSngJi94RCbVwXI5Zxc9iopt6cCVEBXgFz2c1sil8llQoQKhKcA ueyXy626iecGidajJaF8tHaVomON6DpP9Fgoei0VfTAXt0r0Q5rEGtnwAv/tvUz+tdu8IFuv Jdp3hZ6PEV6X5Z6pQMkrQC6Ty6HkL5f8yOEJUoHwFCCXyWX3XK7K+GXgEMi3qwqvy3LPVKDk FSCXyWVy2U8fKHk0FP8E30nudRGzcfJsHhWQ835J9Je9xMseJWUnpAJUQFdA1LxziM2rAuRy znwMr5JyeypABXQFwOWDbF4VIJddcJn9igpQAZ8KkMt+hCOXyWWv93JuTwXcK0Auk8uhzPu5 74LckgpQAZMCReDy7C/qjW368V9jd1VKIl7GAhavdT49zPvF7prygKlAdBQoNJdNUDb+d9bZ C1M+/jE60jgcCblMHyMWHZUHGVMFRM36g4VpDkS2/qnq1G9jdp8tzIH5+BZyOTeXC9WvfFw+ fiQqCiDpgP3ETgFRvf5g2M0TkU0b13xRP/34L2Efodf9k8s5uexVUm5PBaiArkC4XM6HyNbP wuiYfPC7KFy8kLm8tiB1i8L1l6NwmXgMVCCmCoTI5WChbNpb1Se/jnr3VLFEJ5cZLxer7/F7 k6BAKFwOlchmo+Pz+opjhTY6yGVyOQl04DkWS4GAuVxIIlu/a+aZ3ybu+6YAUpLL5HIBuhm/ IrEKgMsHgmrzv6uf+0397C8z0pOLRerKk78GdV7W/ZDLLrgcWL8K7zpyz1QgmgoExuV539bP /75+wQ+y4cW87+prv44EoKs/uzDtKIyOIDFBLpPLwfYo7o0KGBUQs9YdCKRVfyoj5dpz9XXn JZRTjP5evsA7c76KBKNnnP5t/Idf5X++5HJOLucvMvdABRKrQDBcnvDh1+WHvpt25MfKk7/M PFNf87kEMTwNGUR/1xBER8voOPGr76tOLpPLvjsPP0gFcioQDJcHrN07dNPhkTs+GfveZxP3 fzPlo+8rjv1U9clvsxBEfyENDRlEm4yObyNjdHx6YdqRX3IqZdyAXCaXPXUYbkwFPCkQDJc7 z1mH1mPh1j4r9gxcf2DYlmOjdp4e/8GXkw9+O/XwD9NP/Dzj9IXqz6TRMTfiRsep38a+93lO BcllcjlnJ+EGVMC3AkFyWdEZrcvcd3ot3tFv9QeDN3w0YtuJMbs/nbBXMzqOwuj4ddZZR6Pj XCScaIT5KHSXTdbguFwneiwUvZaKPitE31VymV9/bRkeXuC/vZfJvzo83tTHn3ot0b4r/UVP dBbPhVDns32V7x7JD1IBKhAKl3VA40W3+ZvKlu0asHbf0E1HNKPj80n7z0/5GEbHzzNOxcPo kIXuPvohHB+DXA5m2pkjmQqUkgKhc9nIaBgdfVe+N2j9QRgdo3eeMRgdv8w0Gh3fNmR0IJ1D ZnR8Uz8nGmnRMM1H7zrLeDmHj8F4OaA0p1JiDc/FvQJi5roD+TcjfN287lq3odcSGB0fDtn4 8Yjtyug4pxkdP1XFweggl3NyOf9OxT1QgcQqIGa+fSD/5obF2bbpPn9z2fJdA97eP3TzkZHv nhr3vjI6fph+XBodMi1az+jQ06LV0hVkdBQpLbpEuLyllQjNX86/U3EPVCCxChSfy0Ze91y0 TRod7xwavvXY6F1nsAZEZnQgLfoE0qJlRgfcDGR0pNKiteWFRTE6wuTy2gLN+wHKXrnc3vVz pNpXJXZEJebE9yfmTAOIXL1qBS5D33xbPvGy7Wc1o+Pd/muU0XFy7J7PJu47V460aBgdnzRk dMB3tln/HXJGh8TZA21Eq27iuUGi9Wj5i95Ha1cpOtaIrtZ5v/C5rIjsj8vqU+p8HbJBJJfz 7VTcAxVIrAIR5bIR1t0XwOjYPXDd/mGbj6Lm8rj3v5h04PxUF0ZHGOu/UziLKZeNRM6Hy+qz 5DLvPVQgHAViwOWGtOja9dLoWPX+YGl0HEdexAQYHQ3rvy/UmIyOdBGlQNZ/N8SYMY2XrVD2 4WMYd0IuhzMmExsk8sR1BeLE5Yy06Hkbey+F0bF3CNZ/p4wOff13yujArGAg678ziKzAFMd4 mVwmRqlATBQQM97en38L3F/2tMPuC7b0WQGjA+u/j2L9N4yOyQe09d/I6EBadH6F7mygXEpc xrm4X+9nJPu0Js4+Rv6dinugAolVoBS4bFz/3XPx9n4wOjZ8NHzb8TG7z6bWf7ssdPdFxhJw eyKXWLyso7ZthehYLbrOEz0Xi7Ll2qJwrAhfI//Fa1OsDSiTy0EENInlDk/cWQExY+3+/Jun 8LYwG3ebt6n3sp2GQnefey10J3reJIbfmWomMJWMj2Frbji8qYjshstB9Kv8eyb3QAXiqEDJ ctm0/huF7gbZFLrLXP+dWdE/g8smQCeQy0Yik8u861CBMBVIBJf9Fbqz57ICdCS57BwXONky zlGzlcjkcphjMo7xHY85WAWSxWWbQndvZy10Ry7boJw+BolMBcJXILlcti90h/Xf6UJ35LJT iJ1z3i/8vhtshMK9aQrsow5RUEBUrd2XfyvMVF4BvkUVuuuvFbqLHZedr6N/HyPn3KB1gUn7 qvw7FfdABRKrALmcesaKFfqihyEfQ5/3i7C/XDQu6+DWAU0uBxHuJJZKPHFymVw2lDHKGRq7 3oBDiwpQAd8KiKo1+/JvBXAYCv8VsYuXO3cuQzNdTf3NEH2MXLDOv4NxD1QgUQqQyyUUL6/Z Z+Ly+Oev0t8pIpf1r07U0OLJUgHfCpDLpcZlI5qjxmXjvcF3l+UHqUDJK0AulxSX0V9NXNZ7 cBTi5WzHUPLDjCdIBTwpICrX7Mu/2Zq/A9buQyu8LxzUN8bOX1bXURnK6jXiZf3iRpnL+rHl 3xW5BypQAgqEzmVF5zgyOqZcVmhW/8aOy8abRwmMLp4CFfCnQCG4LLa2EhufEOseFysejhGg RY8bG+rJxSF/We8BKmSOO5cZRPsb0vxUCSgQLpfF7mfELq3tfFrseFpse0oOtg1PiLWPiaUP RdzliDuX4+hj2BR6nnh3CQwzngIV8KSAqFy9N/9ma+lKKKPteTb1QjEagH73abH9KRlEb3pS rH9crHpEzLs/KFM4wP3Ej8uGSymtjNV7pY+RfjMW/nLDQeoFksDlILpocneyJoABnlz1itT3 wuQyEKyCZQXo3QC0HaNVEJ02OgIEa567ii+XFZRjzGVAuc1V4uUrxAuXCXK5SGggi4uoQJhc BnARF8O+QIDswGgZRD8jt9nxlNjWSmx+UrzzhFjzqFj8YJ5gzfPjpc3lYvY55+ehKCt/0O2i 982i8/XkchGvFL+6WAqI6av35t/sfQyEwHAqMAhhWYDRwC7gKxltDKLdGR11LfOErI+Px47L 6jqqGT/1Gj6GfnEz5jC3tNI3MG5j2xOwgakZN9P/ZP2s8VPo3w1HYstlZVyY5lfx34l3598/ k7YHo9pJO/fSON8wubz2UfH2Y9JBxkTfxidlIIwBiYjYTRCtm9H6bCEoj70tf9gHYf19JHZc tj6gGmRseDMTeW64nI25OsrVBtZ7gLolmDbT/2v/FFcrkdU7k+4pjZHGs6AC7hUIk8tLHwJG xcpHxOpHZQIG8uTe0RiNIBqMVkF0NkbL2cK0GZ3N6FgUrtGRcC4bweoQR2fraqYw3Li3DC5P a1J58tes+YjkchA/Z93jgFtGRIEwuVzXUsy/Xyx6QCx5UCx7CMnLMvUCxrEKomEiIwRWQXSe RsfKR/xFxM6fEt1jlr8cbLycJ5dN/duGy9OazP6i3thqPrtQcfQXM6MZLxPNyVMgTC5XNROz 7hOzm4valsiEEwseEIseRNpyZhCdNjpUEJ2P0YFIPFCjI8lczgll3anIaU9bDRPpI1ugbGL0 zNO/Tdj7NX2MiIRvPIwCKyCmr9qbf7Of95twtyi/R0xtIqY3FTOaiermYk4LMVdj9MIHkG6R YrQKooMyOhB6y4yOx6V5svCBfOLoEueydt1T/LX0gWzvm7qKcWbPuRdJfKe/xYTgnP+tPPFr /l2Ue6ACMVIgTC4PuV2MuFOMbiTGNcasuphyrwyUKpuKmfeJGo3RDUbHQ7mNDulEaxkdSLlz n9GB+UZ4Jr6MDnLZZT9umB7Mco83UT4niLNtUP3phWlHf3F5VNyMCsRXAVGxam/+zT5ehj+L FNR+t4pBt4mhd4iRjcSYu8T4u8VkBNH3ioqmwmp06EF0w2xhoEYHovJlD7kMokuby+qiK2Ja O0C299WW6O7uP2LdlW8uGz844/Rv497/Iv+uG9892F6F+J4Oj9yoALj8Yf7NnstYsvXmNeKt 60SXG+SzpfvcIvrfKgbfLk3DUY3E2MZCGh1aEG0yOjBbqIwO02yhyugwpUV7yujQ138ro2O+ 0/rvUueyvO5paJr7gB4Cu+8btruyfTMQLht3Mv3Er+6Ps1S2xK0xgJHLnURTgTC5jEW0aH+7 XPz9SvH61aLdtaLT9aLbjaLXTaLvLWLgbWLIHZrRcZc0OibdI42OChgdzVJGR61udDwolsDo eNic0SHTog0ZHVmNjizrvxWjs6//TjKXHZCdrR9bEZwN+oFzWd/hrE8vTD38UzRHGo+KCrhX IHwuKzqr1vpy8eqVou3VosO1comt0egYljY6EEQrowNBdMroSM8WIqMjp9HhnBZtrNGhanek 1n8bCt0tSRkdCeeyjmbN6MgIzdQ7xvfdQxkfDI/LGUbHqd/G7P7U/UjgllQgOgqEyGW9HH4D l3VAv3iZeOUKWZtGGR1d00bHgEyjA7OFyujAbOGM+xoyOpTRYU2LtjU6MFuYqtGRLjrqstBd kfKXFeNE31Wi9zLRY6E1K9n9O3I/3ealWuaCOtUFjQkV2bwL6zZ69zX+ydinbXerc7wwXM4w Oo7/Ep0hxyOhAjkVKASXnQBtNDra60bHzSmjA7OFyugYbzA6VBCNjA5ldKi06JTRgbWFj4iM 9d9ZjA43he6KxGXRf63ot1pHm3sKe1pXkrNnhLdB4bncYHScvVB+6PvwTo17pgKBKCAqVn6Y f3N4vp/xOVLG1zZBtDQ6rhCvXSXaXiONji7Xy5XQZTfL2UJUF1NGx9i75GyhNDr02UIsXbFL izZmdLhf/200OorKZT1eNsaeXhmdLV6WoWsQ193fTuZ8mbHMr1iYrvrk11E7T/s7BX6KCoSq QNG4bHyglA2jXzIYHR2NRgdmC9MZHSotWjc6TGnRWY0ObbbQTaG7aHDZyGKvjLblsnxz+J16 r5pWcEAv+KF+/vf1876rn3suEoCu+by+4tgvoQ4z7pwKeFJAYFjm33zEy7YP+rMPolVGxxtX C2V0qNlCldGhjA6ZFm0xOuT6bxgdtuu/3RW6ix6XbRntEESbuJxyrjWjOf+L7nsPdecllIFm AFoxGu/M+SoSjJ555rdJ+8/7PjV+kAoEokC0uGzkuz2j8QwLZXSotOgeN6WMDqRFw+iQadFW o6N5LqMjS6G7aHNZx7FDEK1z2UhkU2Eg527kVOktW2VOvI+Ux5rmfVe9P/idQ8O3Hh+968z4 D7+afPC7aUd+rDzxy8wzF2o+q4ebgXh53rf187+rX6AxGoDG67nf1M+OhtGBQneBjDHuhAp4 VSC6XM7B6JcuT2V0tLtGKKMDadFYujIgbXTo67+zGR3pQnc/r370hxUPn0MGnqnQXUy47GB0 ZEweZsFoeFxWV7Br3cbeS9/tv2bvkI2HR2w/OXbPZxP3nZvy0fcVR3+CwzvrbD1shNqv6uu+ 0RhtCKIRU9d+HYkgulordOd1aHF7KuBbgXhwWWd0VqMDadHK6DCmRSujY6TJ6EilRddvbbVv WpP6TU/Wb3ii/p3H69c9/uvaR39a9cj3yx/+Ajke6x6Le/6yOaOjSFw23l+7L9jSZ/nugesO DNt8dNS7p7GQetKBb6ce/mH68Z+xrrr6U0lhsDjD6EAQHSmjA4XuPvza93jjB6mAGwXA5Q/y b7795YHr9pct3919/maXNStyBNFIi1ZGh77+O4vRUb/j6fodT9Vvf6p+21MAdP2WVvWbn6zf qDF6/eMX1j32y5pHf1z5yLdLH/oU1e+sRHugjWjVTTw3SLQeLV4v99PaVYqONaJrncxQ7rVU 9FkhEzD6rZZJclqeXJ75y0YoZxgdlnPJ3kucOkYOf0PzMRyuaZfad3ou3t4PRseGj4Zvg9Fx FrArP6QZHSdhdNRLo+Mr6WmkjI60Ex0to+MEjI4Ahg93QgVMChSZy5MPnBv/wZej3j2FH7n9 13zYa8m7Xes2BMNoGB36+m8YHd00owOzhQNuq9/1TP3Op2V7V2tgtAL0tlYpRiOI3oggWjL6 t7WP/bz6ERgdXyNLWodahLmcspK15STWfIwGXju4w6mJwRC5bLzE3eZt6r10Z/+1e4duOjxy xydj34PR8Y00Oo7B6Pht1qf1NXoQbTI6vo2M0YFCd0dgdJDRVCAYBcS0FR/k33zHy9Wf/Tbj 1M8Vx76f8tH5ifu/Hvve5yO2nRj0zqG+K9/rsWhbMIDW13/D6Ohwbf3uZ1INdJaANjHaEkQb jY41KaNDRJLLRiIr09lhvZ9zEC0TNhw7Rp7xcrYr22Phlj4r9kijY8tRJBfjnj25wei4UP2Z nBKsPRdpo2PGKVnozv2YmhrEAHT/ddwyFgoIdIv8mz8uyyTWb+VvVTm982X9rLO/VJ78cdqR 78oPfTNh71f4bYvBOeDt/WXLdnULyOio3/1sA5dNgDYx2t7oeEIZHRHkcgaC02uvHbhsBKst o517RUhc1jtSl7nv9ILRsfoDGB24VY/ZfRaPL5FGx1EYHanZwqxGRzTSouGVo9Bd/oOLe0ig AkXjsj7Do6bgMfmO2R4kTmFqvubz32ae/nn6iR+mHv52kmZ0jJRGx8f9VsPo2NF1rmejQ80W akR+tn6P1mwBjQ1UEJ3L6CgUl5e7qY9hDZONKXTZ6mNkA6vO6OJy2Wx0LNuJhPehm45oRsfn k/Z/M+VjGB0/IziF0dEwWxhVowOF7qZ8/GMC+cJT9qdAEbhss+5W+3GK2Dm1EuxbmTWFdxAQ VX/6a9Wpn1JGx76vkWU1HEbH+oN9Vu7psXCrJ6PDEinrgLYLonVG2xkdEeGyA5Fz+hg5E5ON QXTnzmV6U/0s7Hg5u9GxFZceHWDYlmOjd56RRsdBLaMDadGnU0YH7u7GjA6ZFq0yOqKRFl0l C92d9Tdc+amEKFBQLruphJD6cYq1Blho8J3R6LigGx2TD34z4UMYHWeGbj6CMKps2U7MHTkz uiEQRiysOxgNLxwZ3RBEa2Y0SoMWyF/OGi/nJHL+XDYOAGsQXSwu61cZP5vw4wlGB35IaUbH p2mj46eqmBgdmM+cfvyXhICGp+lJgcJx2Q2UTduoVFZbo2MGjI7jP0z5WBod4z74Aj9vh2z4 CKMUpiSsSROjZdKFSsBA8KtDVr0wM9qV0VFcLttaybarsV36y7aQNXYjFSwb3yk6lzPSoudv xiTEgLf34T4Ny2ucNDrOS6MDadGnMtOiI2t0nL2A9ZCehi43LmEFQuQyIKuKYPggsukj+ppd e6Pjk58qjn5fjoyOfV+P2fMpFv4OWn8A0/o9FmxRo1emKmMeT2XFZWO0lyC6WFx2GSbn4y/r wDVx2TQGIsVlI6ORxoNknkHvHBy+9Vh6/fe3U9Prv5HRYb/+G0bHN5ExOlDo7t1TJQwdnlpO BULksnG05I9mfQ8mo6NOz+j44sLMMzKjY+qR75TRgUQrBFAyKxm5ychQRlOA9sxobZ4wNVso zeiicNl9mBwsl02RcnH9ZfczCkiERzo8kuKl0bH9JG7YWP9dnrn+G33Jdv13pArd5RzD3KD0 FBBTln+Qf+tYs9b9gAmQ0bZGBwYbMjp0o0Ou5UPDoj40uXgkk9G+gujwubxGrvcrc5WP4b6e XM65PuMGqlcoB8PaQyIbL9v2w+4LNmNZ6cC39+M+jVBUW/8No0Nb/20yOiJc6G4islCCGK3c SfQVAJffz7/9ud/4l0ZUvjZxbrvKZUUBtL3R8bXM6JAVMNCwzBrNxOiGINqb0ZEMLr+fhrJN D4kXlxvSomvX94TR0VDoDuu/HQvdRXP998lf8x+z3EOUFQiGyzjDxzv2R3um54jnBk1uPXrm 6+UL3pq5qjiM1n6cyuqRP9RfQEEiLKfGYhCsq0azB7QLoyNztjAJXDbmxhlfq94cUy4bO2TW Qndy/XdsCt1NO/pLlPnCY/OnQGBcVl+v6Iz2ROeBf+wz5oWh0/4+bnbbaYs7zX67KIy+8PZj KEJ0Yd3jF9YD0I9LQCtGOwTRLoyOJHDZuT+VAJfNhe5WaIXusP7bXOjugix0F/3136d/Q5Fr fxTgp6KmQMBcNp6ezuinug/9S/8J0uiYVNe+ankhAf3rmkd/W/PohbWPSUBLRktAu2J09tlC UYj85Sj4y04GV4lx2WB0ZBS6k+u/TYXuPo9HobuogYbH40mBELlsy+hneo18blD5y2NmvT5l wVuzVofKaBSB+3HFIz+tfOSXVY/8uloBOs3odBDtw+gQO55ivFyqXLYWuhtgLHSHmTdDobvo r/+u1grdeSICN46CAgXisn6qehD9ZJdBf+oz9sVh0/4+fs6bFUvcGx3u0znOL30IBZS/W/Yw St3/uOJhAPrnVUZG60H0Y26D6K2txLanZAt9vR/jZZl4Hp2GRf+y0N16Q6G71PpvVPS3X/+N h2NFqqI/Mk9QWiQK0OEx5FRAlC9/v1jNYHQM+8uAiX8bWdVGGh0r3I9GZ0Z/tfABFE3GA6K+ WaIA/RAA/YOR0asf9Wp0iC2tBOicAC479Irc+Xa56uK7v8RR21IrdCfXf6cL3enrv2NV6O74 r8Ua9fxeNwqI8mXvF73pgMaLZ3uPen4wjI7qN6Yu7Fidl9GBR418Nv9+PBTqy4UPfLXoAQ3Q D543MhpGx0oPRofY+ITY9KSY1iQJXM4N31zPXY0aUgM/nm7zN8n137EudHdWFrorOgF4ACYF IsFl4zE1GB1dB/+p77gXh1W8OmHOm9OXuh9UKog+ObvFJ3NanK5teWZuy7N1LT+bd//naUan g+gHpdGxTBodmUG0bkabjQ7xDp6c/QS5nBvZpRsvOxa6ey93obtvZUlbVfIlVeguQuu/f0PR cyIyCgpEjsu2jH66x/C/wugYNaPN5HkdZqx0w+gjM+87Ouu+4zXNT8xufnJOi1O1LU7PbXmm ruWndfcrRn+54AHd6MgIoi1Gx4V0Rod8GCuCZcbLuZ5BJZLH5YZCd3L9N4wOtf5bFbo7p1X0 j0+hu89lobso4CmxxxBpLutXpSEtutOAZ3uPfn7IlFfG1rwxdVHH6jXZGH1getNDlU0/qmp2 eOZ9R2bdd6y6ORitgmgwWgXRLo2On7WMDrH6UbHmUXI5d7AMaieYy+ZCd8sNhe7eTxW6y7n+ G7XI5UN8tF9+xW2ztEJ3ieVjsU48Hly2DaJbdR3y537jXho+/dUJtdb13x9MuffDqU32TWuy v6Lpwcqmh6qafTxDMhpBNBh9Is1oq9FhmC1MGR3fa0aHWPGwWPkIueyey2Lzk9L2wc1s8YNu fuKU9Dba+u+SKHRXLFQl6nvB5ffi2/Q4+umeI/46cFLrUVj/Pb/DTGl07Jxw965J9+yZfM/7 5feC0XunNdlX0QRBNBiNIBqMNhodKohOGR3abOHnCxqMjm8Wy9lCsfQhseyhgnN5kUNZopx/ yqf+siv+ZjM0tHhZ7HxarsHZ/pTMYMF8KZ6LiBvb3JYlzd/cuX1Y/20sdDfWS6E7PMSnuOGz +vaaz+srjsHoiDE6In7wYvKy90qgZaz/Lhv9wtCpm8fctXXsXdvHNX53wt07J969e9I975Xf 874MoiWjEURrRkeznEaHmi0UCx8Qix5MQbmg/nKcuYyCqKrtekYyesfTMvUbiYYbnhBvPyaW P5xwQOP0uy/Yki50h/XfqUJ3U2NX6G7fuRJgSKROoUS4bNRUMXrd8DvfGXHnhlGNNo1utGXM XdvGNt4+XjJ618S7EUS/pwXROY2OU+mMDlHXUsy7n1x2G0SreFlBec+zYjeaDuhnZBCNNZMI oqXR8bg0OhY+kHBGd7EtdIfZQlT0P/nLzDP1NaaK/lEtdBcpusX3YMTkpe+VZFsx6LZVg29f M/SOt4fdsR6MHtlo46hGm0fLIHrbuMY7xjdGEJ3b6KhOZXSI2S1EbQty2RuXESPv1IJlPXCW jM4Moi1GR8IBjdPvNm9j76Wo6L93yKbDI7efxLOGJ+7T138bCt2dl0+/VCl3qef4fBeV2cLq zy6g0F1JgqUwJ1WyXF7Y55bF/W5d2v/W5QNvWzno9tVDbl8LRg+/cz2C6JGNNoHRWY2OJhlG hzZbKGbdJ6qbk8veuLytlTSXYV8AvmA0AN3AaEMQnc3oWEajQxodffRCdztPo6L/5APa879R 0R/rv+NS6A6PLS/R+C+k8ypZLs/ufmNtz5vqet88v+zmhX01Rg/QGD1YY/SwO5TRgSB60+i7 pNGhBdH2Rsf0pqKyqahqRi5747JaHrnlSWlZwFnOxmhbo0PNFiqjAxmKCxJvdMy1FLrb+7VM i9aNDudCd8XOt1MThpUnfg0JZCW225Ll8vSO11V1vn5m1xuqu904p8eNc3vdNK/3zQv63LKo 7y1L+t+6bMBtGUbHCKvRkZotlBkdcEvR1IqSQq8ryWveLyNhI+dikAA3UP4yjGPM7yENA9ly YDQgq6qLSEA/lQqiTUaH7kTrQbRudGAP6x5HtiKNjm7zNvVetjP+he5+rpy/ckzF7BJDaiCn U7JcntD2msntrpnS/tppb103vdP1MzpfP6vrDTUqiO6lBdF2RgeC6JTRoc0WbsVsoZbRISbe TS67DZbT60pkZiHyvpEbh4B37WNytSQYjWQMBNGK0S6NDmWAmDI6sMOlD5HRqtAdHgA/bMsx PGh4PByDVKG7X2ZGuNAdiorMWvK2sU2tXRoI0UpjJ2LS0vdKtY169cqxba4a/8bVE98Eo6+d 2uHaio7XVXa6fmYXBNE3eDI6xJi7yGXPXJ7bUsy/X6YYLnlQpn5jYQ6WTaogGpEvDIqU0aEF 0TA6EESnzGgNxLoZbTY6LGnR2O28+xPO6BgVujMR2fTfGYvWTK5ZWKpQcnlepczlQS9dPqT1 5cNfuWLk368c/dpVY1+/esIbV09685ry9tdORRCdNjpqpNFxk7PRIUbcSS575jIceUyZwtBA KgsSDRfcL3PAsUJnGRZPPiIZvTZtdCCIzmZ05JwtVEYHom8aHemK1XaF7vD87+8rjsnnf8/C bOEXMnOjzprREfL6b2ci63/tPmCEai4pVnqblTKX+79wmWoDX7xs8N8uH9r6CjAaQfSYNleN e/3qiQajA0H0jC5ORocYdDu57JnL8H8m3yOmNhGYOJ3RTOa0IN0QQTQywbFUZ/GDNkYHgmjd 6HCeLZROtF1aNLwRmCTYCaC/hOu/18HokOu/1x8ctvXY6J1ndKOj8kSm0RFyoTurcWHLaJ3I iefykj2TSrfpaG5g9EuXDfnb5cNevmLE368chSA6bXSU60YHZgul0XHjbMwW9tRmC8tuFn1v IZc9c3nw7fIjoxqJcY2lQV+uzZ0iswVBNJIO52iM9mp0IDqWWXce06IRm9dx/be50N1EFLr7 SCt0l37+9xztWfIyLVp7nHyqGOl39XPzWP/tg8ggUorLpYsmZ+qKEoYyTs3KZf2dAS9eZjI6 EERPaJsyOuRsoWZ0qNlC0eMmctkzl7vdKHprt7SBt4mhd0gvCDb9+MZi0j0yv6WiiUw9RBCd Mjq0IFoZHQ2zhUajwzRbmM7oyGl06Ou/pdHB9d+ygkf3+ZvLZKG7/UM3H9HWf38+6QCMDi0t +tRvMi1aNzrS1aIVo+tgdHzloUaHG+PCFCNL+0LDsf6itBlle3YlzmWcM0rKOdA5w+hAEP3K lWajo4PM6BCdrieXPXP5tatE22tEh+tElxtEjxsFfnb0v1U6QsPuECMbibF3CZPRUW0wOjBb aGN0aLOFLo2ObOu/ldGhCt0tSrzRodZ/y0J3h4ZvPT5615nxH34lMzqQFg2j44x8dOGcL2W8 nAqiDRX95zpW9HdDZGxjhTLeebVDVx/x8vIt75cMwUufy85RsxXZKohWRoecLdSMDsmXdtcy f9ktmlX+8guXyfbS5eKVK0Sbq0S7a0TH60TXG0TPm0SfW8SA28QQzegYbWd04OMwOjBbmM3o sKZFq4wOf0bHykcSns6B00ehO239t6ror9Z/w+j4vsLW6DCt/zYYHT6MC1s6u4mXew4epRqg rFppoFlMXLInIS1n1GzaQBkdarZQvHKlePVKctktl2El61xWdFbtb5dLGXGfa3+t/AkCgwhG R79bU0bHSJPRoa2xlLOFKqMjbXSY0qLV0hUfadEsdJf9ieOpQnfr9g/bbCl0dzqL0aE9/9tN mJyNwtb3s6FJx7GRyDqaSwBoCeKy8Wp5ZTQyOsRLl5HLnrisR6ANXNYBDT1fvkIoowM2kTQ6 bkoZHZgthNGB2UIboyM9W4iMDpPRAVNCLl0Jwugwrv9moTtpdGzvu+r9wSmj4+yED7/KWP9t NDrWbpu3dmvdmi21KzdWL11nZbR7IqstTYQ14tiWyCWD5oRyWb/e7gEtgBKuw3a5VluLl22d ARtGS6PjSvH61Smjo9sNotdNcrZQGR2YLdSNDrUaXmV0GI2ORVi6oj21wLh0xdP6b4dCdxtT Ff1pdGiF7nb2X6sVutthLnRXs2zdnBUb567aBC6DzrKt2VK3esvs5e8oQHuFsuKyicUm10IH sfVFrKNmMXHxHjalgDOjJVB0ND/QRrTqJp4bJFqPFq+X+2ntKkXHGtG1TvRYKHotFX1WiL6r RL/Vov9a2fqtkf8tWy56xLM+RnYuOwXRULi1wejobDA6BmkZHZgtVBkdMi0aGR1Go8MxLTpA owNR+TKu/17XQxa62zNwHdZ/H8X673EffFE+e1FF3bKqhatmLVkLFteu3DR39Wagef7abT6I bItjvNlv1CQHFhv/1LlzGZoJbrZvRhCA5LLNbSkboCWaWbfITcjsgsvG8NPJ6HgzbXRgtrDs FpnRoadFj20sMzrK75EXRS1dMaVFq4yOrOu/Ayl0x/XfWqG7kRMHj582onzm2MraibPmT5mz ZPr8FVhRDTdj9ooNLrkM7GJLWyIPnTi924DhzzzfulGT5uOq5rpBM2hry+UIUth6SORyjp8L Jkan0Mx42ZnOGpe7zt3g47e/vdHxd2V0aLOFSItWRgfSolNGx11y6YqeFl2Zuf4bGR0N678N NTpUEM1Cd9ln/9xfvjadenTo2b9r/2Flw8YOGD0ZGB01tXp81VxUulBQRpKGM52tOC4bNm7A mPI2nXre2+JBZM4Z2/gZdTnRrLhsRDMed2kltUtM129pZWouP+hvM3LZg42jGI2EaEEuu+Dy iG0nsPwXubFYCux+hLsyOtpeLTpcK0xGh0qLhtGRSou+VwbRqYwOPG7Gk9GRvVq0af03C91p WDdCs22X3h17D+oxcGTfERMGjZ2ioOzAZRORh06sxGf/+OLfERqbcGz874SZ85zRrIBo4rIP SlqJXABGiwmLd7N5VYBczpGYocXL0458N/ngNxP2foXVCki3GvD2vrJlu1BSJxhGw+tXadHK 6GhIi840Oozrv61GRwCF7hwfi5WYQne2AH3trW7tuvd14LKRyAPHTnmjS+9mDzzqwGLjnwBl GCYOaFaDWoXM6jXiZU8j3Q2RTdt42r/DxuSyn9sSueyGy1iwW/P5bzNP/zz9+A9TD3876cA5 FM0ZueMTLFvot/qDXot3oDSlV0bbuBwqLVoZHSotWhodmeu/R1vWf2cUukuv/1aF7lYHV+hO Pf87AYXuHGBqa18oIsPuwL9/ad3GOTTWd26ziqR6QTY069RTXMa/nrjsA8oBMppcJpfvdJuV 7GbGT22jxctYZYDFu6iDU3uuHgVxqj/9teqTnyqOfV/+0fmJ+77GcjIs/IXRgWn9QI2OdFq0 MjrU+m8sXXFY/13gQndItV5cauu/PXF50Lipb3br0+KRJ2BuuImOdRyD4137DTv+2Tkji2Fh 26LZyGUVNbvkcv5E1vcAz9NfBE0uk8thcRksRgmFeVplMtQnQ8kb/Bdlf2d/cWHW2V8qT/6Y Mjo+/Ar1J1FAB6MUj0fCQ5K8BtHY3m620GB0ZKz/vjW1/tuh0J3D+u9sFf39rf8ulUJ37rmM LZXdrFq2D+osRqYHJhJfe6v73ffdrxiH4PrYpxloRoqeFc0mLrvxMQIkMnYFKOfB5UW7J7B5 VIA+Rm4fY3Zz9ahN1VQVdkTQYDRIjdcohQNww+iYoRkdUz7+dtL+c3jeM4yOwRs+6rfqA2Rf dakN1OjQ13+7LHRnWv/tttCd9+d/w+jAavLlMX50YVBcNobGMECeff5lUNgKKLx55OzXRhZP mb3YhGbjp6SVsUjzl7OM9DCInOKyR7aoIxSEsg8FyGWvXNYBrRcnU3UjU0bH1waj4+j35Yek 0TFm96cwOrByoc+K3SjXEEwQDTNaX/+dKnSXXv+tjA779d8sdCeTLhxaPlzWWdx76NiBY8pf 79Sz6f0PK1faYWwCzYfPfJWB5jlLjP/VP6ug7MDlAKGsWGxsPvBCLvv8rUAu++ayMYhWRocq wS6NDgTRaaNj5plfKk/8OFXL6EDlSawoG7rpCFYAo+AZyp4Fw2hroTukRXsqdCfXf1seXZjI Qnf+uJye/avsMWjkn156Fag1TRI6Q+2uJs0/Ov2lkcV4eKv+X2cuYzNsYCSyP4CG9CnGy37Q TC4HwmV7owNBtNHo+Oy3GaeMRsfnKEGJGjqopIPCwZ1r13tldNaMDr3QnTEtWlX0dyp0l06L xtKVoJ7/HcNCd165DCIjtblt197NH37cYb1JTurd1bTFoVMZaJ42d5lCs/psKk/OEi+rbXQu 5/yiwDcY7+hvCPyZzasCwXO5rOTqY2T6y0YEO7/OanR8WT9Ly+iYphkdSIses/vssC3HBq7b X7YcRsdmr4C2ny10X+gO67/1Rxfq679Nhe7U87/1Qnfq+d+oyu/86MJsFf0jXOjOE5f/+vLr 1tDYls5uBmbjpi0OfPKFMWpGmQ781+azz1+l3jRurNCc2hgbpLfJ+tVqG2MzIlR/38pVhz9Z NiaX/dyWMrjcJoi6ReSyYZKwYbZQe9xchtFxLpXRkTI6Dn83GWnRH36JhyGhyBlquvdaAqMj uPXfOQrdaeu/sXQl8YXu3HPZZa0MtZkbLmObxs1a7j/5uZG20+ctt2ZoAKbWN/EtbrmcDaw6 yo1YN/HddpvsMTG5TC6Hkyc3W9b5dB8m59jyy4aMjtRsYTqjo1ozOpAWPQVp0fu/HvsejI4T eCqSXP8No8N78Qd7o0MvdGdd/91Q6E49/zuJhe6Ky2Wg+e5m9+878ZkRu5XzV5gobOKyfodw xeWcoXTODRSF3W0GLu9i86oA42U3/rKRiYEB+guZuaEeN6dndKRmC2F0nP21CmnRR78rP6TW f8PowPpvGB278KTRYBitGx3GQneYLTQVutPXf2crdGeqFm2bFr0dT8ayy7qzNTqwMYwO+CR4 BOLqR/H8LR/n6/sjoXHZA52Q4Pzh8Uw0L1hpRLORy8awXeOy9kUpaNp9qcOfcnwWODbsMOd+ tI3F+IW72LwqQC575XJIjLZNi8abqfXfJwzrv2F0bPxYMzp2+Ch0l2P9t02hO+3531j/HW6h u2eFrKOUpUZHAdd/h8Vlj3S6p/kDHxz71Mhi1IPW/6u4bDVSJJfVFyloWr802/vGLXWXw/mY bfdv+Qi57Oe2RC7nw2Wd0QEG0bNhdGQG0ci6S63//uzXGafk+m9pdKj13zEtdOc8W2gtdIcl iHgQrazR8aSsaIrpxyVhVfSPCJeB1HuaP/je0bNGNM9YtFr9F8y1dbeD4bKO9XzgngY0uUwu h+Uvt5+xwv3v4gAZbVr/DccjbXRkrv82FboLav23m0J3arYQVUTUY7HiX+guOlwGmlGvec+R FJpVugUOT84ihsblce4DZzeh98JdAntk86oA42U38fKzvUc9P2TKK2Or35i6qGP1mqIw2t7o MBa6w/pvvdDdhgQWunsMz3Nxf2mybRkSl70OTD0f+d4WDxnXjDhwWW2mvkj5GNYvzfa+w+E5 fMTN3shlP7elALj8Zubz/QqQJ9dtnkBzXxMuny0RCc5u/njH/qq16jr4z33HvTh8+qsTattN X+qeAgEG0TA6TLOFxSx01yVd6A6zhQ6F7qpzrv9+TM7ywaNwkxZtMjp2PiNSRkcrmVL9zhMy 1dpvobsocNl5ObU1XjZu74bLtsjOhmZy2Q9Yvd6HTdvHmMs9l8hnvMoHvK4JkdEal2Xp4XTT Gf10j+F/HTip9agZbSbP7zBzZVEY7VDoTqZF2xS6w/pvFLoLav13tkJ32mOxcDu0LXRnfP73 Qrv13zKjQ3ssFhgN2ZUZDX+5IIXuistlNwUujFy2bu/MZYdQmlwuAn+ziV4iXMaDt5/oJP46 SLwyNmBGW7hsBfQTnQb8sWz080OmvjK2pu20RR1r1haF0V4K3Z3UCt29rxW6C279Nyr664Xu ut8oemdW9FfP/9YfXZh6LFZzUdtC1N0vFqQr+i9/WKxERX+sLXxUlqZLPbpQW1sIRm9rJbKl 3BmDaOv6b9eF7orFZTdEVtsoLmfbPieXdTRbo2b1jvF9U7Ds8KeshMkzckzmx1NcBtFajxb+ 1vsVy8cwxstGLredJt6qFl3rggF0di6nAK09VrzB6Og25M/9xr80YvprE+e2q1xWFEA7FLpT 678rMgrdYf13aIXu8FisLjeIHulCd3j+d9ZCd83F7BZirlajA0G0ev53A6MfEyot2qXRkW39 N7AujY7HpdGx6AHbqxMel/UVzybUuCeyVy6bllmbvte8CNvgRxv/5PApN8wU4xbsYvOqQClz uediUbZc9F0l+uVhdDhwWSOyVXCd0c/0HPHcoMmtR898vRxGx6riMNq6/ttU6A7rvxsK3R1O WqE760UJi8sGOhmp5xXKqSIYdvGyqsnplQBhb08u+7ktJYXLCKhBZzAapPY0DWjL5SxEVl18 bHoE6oB+ovPAP5aNeWHo1L+Pm9122uJOs4ttdGQWulPrvw0V/RNU6K4oXFb9RCeswrQnQJu2 16skS58hYuGpwHhg86pAErncfYHoMFO8Xu4K0FYuT2viVWRsrzP6qW5D/9J/wksjKl+bWNe+ anlxgmhLRodKi4YBItd/pwrdyfXfGYXuwlv/nc3o8F3oDstP3BW6KxiXjX3GFsGegmidy8a6 9XgT//XROUP9CLi8k82rAonmMtCsmkPWneIyAmTMRGlhsleFrds3GB29RsLoeHnMrNenLHhr VnGMDjzq27bQXc0XF5DRMR0V/Q9/KwvdfRBaoTv1/G+s/8ajC7vdIFDRv+8tYoCW0aGv/24o dNdMqOd/z8FsYUuUzoBNjLV/wlSjw1rRX84WahkdO9GeEbtSC75D4vKyLe+Z1uOpbuAyKNYZ nW17xWVjmKygrFr+XTTAPZDLfm5L5HKKyyon2poZrXM5hO6uA/rJLoP+1GfsC8Om/X38nDcr lnSa/XYR4uh0obsF36cfi5VR6C69/lsVusP676gUumshatMV/W1mC9MZHSot2pLRETiXQWS9 GdHsHspGFmcLonUKqw2sz3zKSWfbjxjfDArN5DK5rOXJ6fkYxnk/o7+s+xjGeNnIZSOgNS4H 1Ucd9tNgdHQf9pcBE/42suq1STA6irr+277QXSot2lrorluwRkebq0T4he4C5LKRyCY0uwyT nTezpk9kI7KbqNmZywF2eHKZXA6aywB0h5kB9lE3u9IBjRfP9hr1/ODyl8dUvzFl4VvVq4sQ RGd5/jfcj2yF7vqtjnahu4y06CeC4rItlPFmIERWOzFZyQ6Rcj5cdtNFPW1DLpPLpcBlY6c3 GB2D/9R37IvDKl6dMOfN4q3/Nhe6w2zhufTzv+0K3fVBRf+FW93fTvQts1T0v0Lg0YVtrxZ6 Rf+ym0U/w/pvLF2ZkK7or6pFzzKs/8bSFYvRkT+XC0Bkq5Vs8jFyMjoMg8IlncXY+TvZvCpA f9nGXzZ6GoiX7frVmIJ3toz13wMm/k2u/57XIeKF7j5ERf8zQzcfGbB2X9myXd2KWOgOs4X6 owsxW5he/50Pl7cfOlUAKNtO7tk6GEajw8Gm8IqIPLcXGCpsXhUgl3Ny2aukYW/fYHR0GhDx QnczTqfTog+cG/fBFyN3fDIE679Xf9AL67/nvuM1js5R0b/9taLT9aLbjaJX5vpvVPS3rv9G Rodc/90yHy5jBcqBM+dNaA7DuLCGw87OMqCsM9oK6LD7p2n/5LKf2xK5HDsuG/u9odAd1n+P e6mohe7s13/rRoda/61V9B+z59PhW48PWo/133t6LNjiFdDYPqvR8dpVou01ogPWf7sqdJcn l/E7YNH6HQrNYRBZEdbK1pxcNkXZRrKTy35AWWjVHmgjWnWTFX/iXh/j8XTdogDzMbR5vwJf Ed9fZyl0N7ONXP8d0UJ3U4/I9d8TYHTsPK0ZHYUtdDe6kXr+d/5cBponzpofBpQdXGP3XLad LcTHfXczrx9kvOznNlA68XLiuawPmIb1352w/nv0Cyh0Ny6She6w/ls3OvafG/f+FyO3h1Po DrOFWQrdBcJloHnd8Dv15pvR2daJ5BMvmz6rOknnzmW60YHXqnkFrsvtyWVyOZR8DJf9L5qb WQrdYf13dAvdTVOF7vZ+PWY3jI5CFLoLhMswMYxc9gFo90RWW/qLl227KHYVHpTxjeDyu2xe FWC87M5fLoWuZVfobsFbcSl0twZGx7td64Kq6H+5eAXrv6/Kk8tY0afMZVsuuwmirQUucq7E 88HlbFhIR8ohdm9y2Y+45LILLvsR1usNspDbZxS664NCd9PShe6Ksf7bsHRlvl2hu4pjP0zB owv3fz0O679hdGD9Nyr6L9rWOYiK/vlwGVAeMKbcJZdtGe01TDZu7wbf2Ma5X2mRcrjdW4ye 9y6bVwVKi8sDA16Hrc37eZU0XtubCt39DYXu5PrvpBS6y5PLQHPrth3Xv/dxznjZuoFLsNpu 5sbHyNkPAeWc2+S/Abns57ZELueMl/PvmnHZQ2ahO6z/VoXuirT+O1uhu89VobsfMgrdbTzc fw3Wf8Po2OAj6874ER918e9u1jJqXM7Z5ZSDkXOz/Dcgl8llxst++oB17JkK3b3ovdBdsM// xmrvuvP1OQrd7Qug0B0A7YPLiJqjw2U3JC0YlHEw5LKfMVlq8fLLgdaTS4CPkXMYZxa6m4hC d22KXujuu/oFP6SKkaqK/rO/vDDrbJZCd1j/PX+T+yA6vlzG7SHn1cQGemKc6YWbz/rYhlwm lwcKcjm0WZaMQne904Xupi7sGM1Cd8el0TFJq+gv139v/Fiu/16yI+f675xcnrXkbVPN+6LH y+p4fECzAB8hl8llctlPH/AxOBuMjq4odDdOK3RXW8RCd3PP1c8zVIvGE1iyF7rD+u+DfVbu yVbo7vFn//rHF1958bX2VkCDfYBy1LgcWSKrfkUu+xmT9DE47+eDy8aPxKPQ3RcNRkdq/bdW 6M7W32jUpHnT+x958IlnWv35hb+0btP6jY6K0bZcxmI/03o/l15z/vkYESdyisuj5r3L5lUB cjknl71KmtjtDeu/Uehu9PNDprwytuaNqYs6Vq9xb+8GOGEI3xmzhciJhhk97zv5GmH1HK2i v77+2/bAwFmgWbXGTVs2f+jxR57609PPtZYJy2v3GU0MBeWicDku3UyMqnuXzasC5HJuLrNf eVcgS6G7ZUUBtH2hOzz/+6v6bFzWgWtktC2RC8xlDHAcBvKXvY70Ym0PLu9g86oAueyCy+xX eSnQYHT0HPHXgZNaj5r5emQK3bnhspHRKmS2NpfehXEzHz4G4nc1wDUu53VRCvZxctnPdSKX yeWCDdGM9d8odDdUFbpb3KlmbVHiaBgdXrlsC+UC+Bima0Qu+4FdwTp6/l9ELpPL+fciH3sw FLob+ud+41/C+u9iFLqLPpdttSWXyeVySS6H9mal6FgjutaJHgtFr6WibIXou0r0Wy36r5Wt 3xr537LlosciYXxuXv6vey4RfVZoX7RGfpGsvxxKnpwP6PAjnhQoYqG7KHPZQUNymVwml0u8 D3hiaKgbN6RFdx74R73QXcXiTrPDKnQXWS476xwnLo+s28HmVYHY+xh9Q4+XvUrK7QNRwLD+ e+hf+k/A+u8wCt1FkMtu1AOX3WwWhW1EFA4idsdALuf0l2N3TUvvgDMK3Q2Whe7eCKjQXVBc xtSfkt19YoY1H8P9hYsVl+fuGMnmUQFyOTeXPUrKThieApZCdxV/Hz/nzYolnV0bHaZ1K0Fy 2dJPnBlt5LJXxSSXY9ItRVwONFLHSS6Ty5HqkO4PpiEtuvuwvwxQhe7mtZ+xwlPKXVBcdj5s W0DrXHZ/yvqW5HKJx+DkMrnsgwuR+oil0N2Ul8dWvyEL3XlY/20EdLYkZdv3vUqhMxpc9vpZ crnEcaxf4CC4PL2YeXIFmPeLyQ9G34O8lD5oWP+tFbob7rnQHQDtnsulJF1I50Ifw8+9hFxm vBzSgCz6bjMK3cn13zPaTJ7XYcbKnEaHGy4X/ezicgBixNztbF4VIJdzctmrpNw+agrYFrpr i0J3NfZGhzOXo3Z2ET8ectnPbYlcJpcjPrCDPbzMQnfjXxo+/dWJte0qMwrdZeNysEeSkL2R y+RyKOuwEzJ+EniaxvXfstDd6FShO1suJ1CfQE5ZjKjdzuZVAcbLueNl9qtSV8BU6M7EZa9j itsbFSCX/dyWyGVymRwxKgBG61ymMvkrQC6Ty+H4GKUeLeY/9rgHKpBNAXKZXCaX/fQBMoUK hKeAGF67nc2rAvQxcvoYXiXl9lSACugKkMt+bktx5vJiWRc//PV+HGNUgAr4VoBcJpdD8TF8 90h+kApQAXKZXCaX/fQBsoMKhKeAGD5nG5tXBehj5PaX2a+oABXwqwC57Oe2RC6Ty17v5dye CrhXgFwml8PxMfxGCu77LrekAqWqgBg2ZxubVwXS8fJA0Xq0aJPr0dev223wZrHqLxcoH8Or pNyeClABXQFy2c9tKUFc7r9G9F0lypaL7gtEh5nSvtBbt3kiW+swk2OMClAB3wqQy+Syo49B LvMHJRUouALkMrlMLvvpA75DIX6QCuRUgFz2MybpY+TMx8jZ87gBFaAC2RQQw2ZvY/OqALmc m8vsV1SACvhVgFz2c1sil8llr/dybk8F3Csghs7exuZVAXI5J5e9SsrtqQAV0BUAl7eyeVWA XHbBZfYrKkAFfCpALvsRjlwml73ey7k9FXCvALlMLoeSJ+e+C3JLKkAFTAqQy+QyueynDxAl VCA8BchlP2OSPgZ9jPDGJPdMBcTQmq1sXhUgl3Nzmf2KClABvwqQy35uS+Qyuez1Xs7tqYB7 BcSQmq1sXhUgl3Ny2auk3J4KUAFdAXLZz20p3lwu8/I8bL/15DjGqAAV8K0AuUwuh5KP4btH 8oNUgAqQy+QyueynD5AdVCA8BcDlLWxeFaCP4cJfZr+iAlTApwLksh/hyGVy2eu9nNtTAfcK iCHVW9i8KkAu5+Yy+xUVoAJ+FRCDq7eweVWAXM7JZa+ScnsqQAV0BchlP7elwLjcpU70WCh6 LRUyd22V6Lda9F8rW7/0U6h7LMr6zGmHx1E7/KnnYu27VsuvwBc93kn8NZR5P44xKkAFfCtA LpPL5LKfPuB7yPGDVCCnAuSynzHJeJk+Rs6hxQ2ogG8FyGVymfGynz7ge8jxg1QgpwLksp8x WYLx8hvTxFvVomudgAHde7lmdmsGtN912Dl7HjegAlQgmwJi8KwtbF4ViDeXJx8SetPn/QLn MvsVFaACfhUQg2ZtYfOqQFy5bCSyeh0al71Kyu2pABXQFQCXN7N5VSCWXLZC2QeX1U5eL885 7+dVUm5PBaiArgC57Oe2lHQuKzo7ZEl3mMkxRgWogG8FyGXPXBbDtpDLObksJh0QI3b47pf8 IBVIsgLkslsui7LlYtTO1IzZA21Eq25ypVzr0aKN9qPea3tzuuhYIwq53i9AH8NFvNwwtTh6 V5IHGM+dCvhQgFzOzWWZKzbugwbQgErkci4fI0MubDz2PTF8m48Oyo9QgQQqQC47cVkM3ijG vW9GDLnsKV42xum4vY18N4HDjKdMBTwpIAbO3MxmVUB0XyhGbJcmqe3Pf8bLXuNlXcaJ+8WY 3aL3MvY6KkAFsilALtvcluQ6t1G77Ims+FIyXMa5qHpybtaVmG5RjvkYTuphPwich23hsKQC VMBWAXI5g8sST0M2ZQ2TdTCVEpf1k8q2Dtv2F4NDvJxte9P7E/aJ0bs5LKkAFbD5vU5RdAVE t/kNGRfOcClJLrvkqb6ZbbzsbScHpX3fZyU7IRWgAkYFGC+n4mUxcJ0YsyfHr+/Sjpe9IdWy rsTrx1PbHxQT9iJVg8OSClCBhhiRWsgE5MEbPEC5xPxlnzw1cNn3HoxoHvseuyIVoAJKAcTL m5LcRNtpYsDbbu0LxstGBMPHyJfI6cp2kw6K8R+KUe9qnkaiOyRPnwpAATFg5qbENvGX/vLZ esO3CSRveUIM/WVPcrnZGCmJQPPQzYntjTxxKqArIAbM2JTYJjrXyuwL01o+NxApNpcdLlnW ckJuzqu42yBDA9di0PrEdkieOBVQCiSXy+LNCulgjHbMU87GqaJy2bnvxpjLCJkn7pOe0lvV HJ9UIMkKJJTL4pF2otcSuaIPyQA+gkRy2Ydobj4i0bwfzlKSxyTPnQoklctwMIZulguCMePk hhembchlH6K5+shBeUVgNA9Jrr1GKlGBJHJZtKsUZSvEsK2yyJkrWBgeiKe2J5f96Zb7UxqX ETWP2c3BSQUSq0AiudyxWj7vGWkYPmb8yOXcbLXcxjx9RP6COSjTyYdtSeyw5IknXAHRf8am RDXx/FDRabbot0aay/i97AkZ0chfxvXq3LnM2tR1jPG8ny5veapeM1bGJ6pz8mSpQGoUJ00I 8eJwmR6HinEjdvic9Cu2j2G6ZAD0+Oev0t+MPZfLPxJoqJuBG2f3BUnrnzxfKiCjq/5Vm5LT xMPtxN9Gia51MkNu5LtivK9kjKJz2XDJVNQsuZx+M/ZcnvKxQMNPGVygnouS0zl5plSgYRT3 r9qYnCa5/PIYWTduwDqZJyt9jPjlYxivF6CM/2pcTl3HeHMZDsaUw2LqYSGrgO7CaszkdE6e KRVoGMWJ0kI8/KZ4ZZx8FsnA9bIaA34sZ3siibPvXNR8DP2SKSiXFpc/0rh8REvJ2COfdfvn /onqojxZKgAF4GMkKV5+qK14dYLosUj6y8jHwMhHXOZj6i+Dy5M9PwwbD8/O43nY6pIpB6PU uAwHY9pRiWZwGVmMfVZiPiBRXZQnSwUSyeXXJokudaLPCjFko7QykCrnI2QuNpeNUC6deBnT fYiUwWW8UD5Gv9V4xhUHKhVImgKiX9XGhDR5F3qkvfSXO8wUPRfLqT+EzAjKUJPBa8hcVC5b M+TgL+NNdR2z+stI2fZ6moXcHs4yoDz9hDSXYfrD+sfVQTrjy2MT0j95mlRAVyBBXJbMeuwt 8fwQ8foUmZIBTqGYHJ6vCgR4DZmLymVr9wWXG65otsehFhKyPr4LOJ5+XEw7JpMxsLRk9G75 sAJUYf3bKA5XKpA0BRLGZZQr+mOZeGWseGuWHPOY/ZMh8/vyV7MnNBeMyz0XWeNfP1z2AcpC fgSGcsVxGSxLE+Nj9WQpOQfQeQ785aSNSZ4vFRD9Kjcmp8m6Fk92FS8MFW9MFV3nSfsSITN8 TITMEs2uc+aKy2XLJZPxcvpNE8eLeHHd2iYSysdE1SeaiXFEmssIluH+o+Bf2wrJ5SR1UZ4s FYACyePyo+3FH/vIbDmEzL3TITMSM1JoPuCKJrHgshbwql4OcBvZbdv11TbGZtxMf99h2Ji+ wpWSKlKuOiUqP5EvwGUEy1jpB/e/0xzx9/HkMjmVQAWSx2UZMncRLwyTT/aDFYuQGT6mypkD mlH8103UXFQuW50NADHjTYMF4YbL2Zirc9aIdSvfs6E8N5dBYeB4xmn5rzQxjkkTAzOxKMGK iVmkEuL2yXiZPxeSp0DpcXmDw91V+hhoWF3yp74yFnurWvRYKPpa0JxzEWCUuZzpC+fkcs5Q 2nGDDfpfrZs5cRn8xSwfiKxDGcGyTI/bK5dfw1nuMle0mUwuJzBU5ClLH6Nv5YbktBSXlcv8 4jCZmAE0Y/kfcjNk1LxdVspPpWc4es3R5LLdTJ26uAqathfa4U85P2vcoXU/WbmMyT0YFzPP SijDVpbBsgZl+UjsXWLoFukso0Y2Ms21eDk5/ZNnSgWUAknl8oOvi6d7ipdGyKV6MJq7L0ih Gc4mJp1yojmCXM6SPuHM1pxQ1pmeDev6QHLFZbjJlSfFjDMalM9oXD4lbWUc/PgPJJQxDYsl Px1r5C2TXE5SzEQiGxVIMJexJvvZ3rLsJ34vKzRj1S+iZjOaswTOrbqJvw4UrUfLjwPuuZpz t5PPT0HMDrMbP+HRsJ4C/0V1CLs8OauVLP3l0LhsRLMDnXNwGVnJCIpB4VmfilmfyX9VvIxM DLWKBGsvB2+UUEYVVjwSl1wmlBOsQJK5/IZ8+uqzZXIOEKEZFgGizhy4MOidFJqxRBvTgOCd qgiMZmJf0bmcPp5sXNYxmi0udhMvmyJi935ISi7oBuMCZgVYXP251jQuA8pyok/ZFzul7LgP YYk8HAxyOcFIYuCs+RjTNySnNfjL8DEeekNOAD7aQUbNyGh+dWIKzQhdB2nrTQAL5AYoTwP4 UHWBMWFlorPLeNlRZ8/xcuYxOHFZ+94Ufy3HkO19hy7hfldSLngU4C9YXKM1vECwnIqU4SnD vkCd5R1ygQ9yFhEp4+5o5XKSumhyBiPP1EEBcrmDeLyjeKaXXJ+NUnPtZ0iXAIEb8mfhdUpP Y5csByrLzh2UdMZyYTQJaMtT7BytDOde6IHLdn6FLZfVm+p7nWEqQ2DX7PPAZfC35gutpWNk aV+ckbGzjJQ1TxlzrZAaE31Y2gc3iVx2fSHcXzJuGTsFyGWNy090ltOAzw2WyXPtq+SvaeTP wm4euE7m0iJzS89uBhYBZSTeomEWy2puKG5aGB0Ml7OYyFYu6+84c9kB2dkO2AOXU0ROexfA tCKyrIBxQN7thm+VZjqkxhISzPXZcnlLq9gNKh4wFchTAdFn+obkNHsfQ3EZ83hP9RB/HYQC ZnLJCfLnEDijhgbm4mB9Dtui2RoInPembY3D0jZFk4BG+Gxxn3WGaoxWReBMUutv5o6XHatV OHBZfaOCabYLrf5q3UC9Y3zfYT/WPzUEyzqRoRIsexj3EBP5cJjeRJIi7AtHLienf/JMqYBS IGFc3tIqhWajv2zkMgwNLDlB/txrE1Ol65Gn0XuZDOvUskBpa6j5wLStATTDRUVDJJg9iIbW Vi7ryHPisov6QSYuG/9r5LLO32wUzraB8X1nuBv/KrksiXzSECMrIm+W3gVURVU/rB9x5nLv mzlWqUDSFEgYl9V6PzQHLiNDAwU04GmoHDhMQyGawyNOkKqhm85y+cne1KJtOSWoxc5I+cJi 4ukn5b8S09pzN9JxtOKyCc3qkal6y8iTc4FjfQbSCGITo4vYoeWaEWgiHz6CTDiNyLDscYcD kXG3Q/YLuZykX6tF7Iqx++qEcfmFy9xy+c/9xF8GyDwNLDlrUy7aVcmwDk4o0oqV6TxiR3pK UDkbad8ZJFIlKxEnysVsJxWjVc8wctn4WhG2AdBeoKw+aMtovFnEHqlVuNcm92DQg8i4q+He hjuchLI7LuP3DeNlsjt5CoDL7ySnCXBZWRk542XFZWQoI3CGrQE6wyZGtgZ+dyN5AKYz6Ixa lMO2arOCuzVzQ8vZULOCJjpXnVIip0Pm1GtdeVPuXUYQ7YLROpdNgNZ8kvT1rSj0hU7FyLDm kQaH+xnuaoAyCpK45/KA2zQuF/rI+Y1UoLgKiD4YrolpkssqZPbE5eeHyrUnis4o3NxhlvwB LhM2Vshf5ZgVRDCo8p2NaRuIFuE4p2NnXWQZJldIQBtlT1UfBs2VQ22YSHTDaIVjI53110W8 uHJmD0RGWgumT3Ez883lxPTPIl4sfnWkFEgkl1+8zJHLvaW/bIyXFZexYvulkXiskcylA50R OyPlFiYpiAP0qIlBkEilPBsXpGjhs5HLqajZgBvThJv6b6rcGtYuyybr+zQYHXKm8ZjkvmxH 5cbq34rj8l/loiApDR+UNdtQj+KMc7e7ZN63l87/7ncLvnfe7F8v/P4P887/fu5Xv5v9+aWz zlxc9clFykHGDwVkquCscXPCLQorqiEI0sBhJWPBiD8uD71DqHiZXKYCCVNAlFW8k5yWipfz 5DLmA5FLJ33nyTJnA1m3sJ7x2xz0AaDhooJKyt9ACSSVWjdxvy6ygrJJ89/Vfol26RzZLpnz 5e/mfvmv5n9lC2vrmxfXZmz5h4Vf/+vF5/7N0nP/uPybf7vym3+3+vx/WHv+n98+73yV/58P f/mXfb/+j/2/OW92ac1nl8w8fXHlyYvkrCbSkPdLswI2Dtbswa/AnQmnLyt7rEhD2S+XR9wp 0lxOTv/kmVIBpUBSuQw06+uwTXlyWJbtHC/rXEbgjCWCyKhDkR2kbSDlGe6zAjTYNEAzoBE8 SkDvMnY4Gy5Xn0UE+vvaL/9Q9/Uf6s79w4Jz/7Tkm3+//Pw/rz7/f6z79j9t/Pa/bPnuv+34 /v/e/f2/fPDD/9r/4//c+6MDtf/XgR8v++inKw//dPXRn6898fP1n/x845lfnHv8Tad+uvbY D1cc+s55M+05T4ekk45VIfhZgB8H+Img4xi3JdkAZXI5QeEOYRq4Agnm8kuXp+pj5M/l1ybL nA3QGf4GMjewdE0CemEqgtY8aGO8bL2KF089fHHF0UsqT1w649TvZp35fc2nv5/92R/mfPGH 2i//ccFX/37puf999Tf/af35/7rlu/9r5/f/4/0fLjvw09WHf77h5C86ne85X58zvnboPf99 61f/+Z0v/+Oaz3NwWXcqYKnDWMep4akCuAnJpqAcBJdHNRKMl5P0QzZwrsV9h8nmcuvLZd2i YLn8xjT5tFD4G29WyhlC6UHPQx6CM5dl+KklRF80+dDFUz6+ZNqRSyqOXjr92KWVJ35XdfJ3 Mz75/czTv5915g81Z/+h9rP/beHn/7zsi/+4RtoX/33rOYXj//XBt//f+9/+zz3f/svu8//v rvNGRv+3Ld/8n5u/+a+bzv2Xjef+84avHfD9u+nHbG0W/U3JYjgVWKeHjBTVAufymLsEuUwo J1uBxHP5lStC5DJiZ1TbwAxhh5mKy7bUk3YSwk9Y0rAFZFIHXOn3QOqLxn940YS9F0/af/Hk g5eUH7pkyseXTj18acUR0FOx9fcz5EzgP809jX//w8Kz/37B2X83/8y/rTvzT3PP/GPtmX8z 5/Q/1Jz+V9Xyr6r9YcYnWjv5hyq0E7+vPPZ77G3qx78rP/i7SfsvnfChLbLVYadsL0lk1ULg 8oS7xbjGglxONpLiHuoGcvwR4PK0wjlxDfN+8JfhYyBeBpdfvVImNav6GFiH7cNfNvoYxnjZ wmXbayYTyJC3AAdA1cVHZrTMvdsohgLWWySvUd9n+PaLRu64aNROhc5Lxr1/yfgPLp24F69/ N/mA/Lf8kMQr2uQDWtt/KVA7aZ9sE/fKlondS8buuWTM7ktG77x45I6Lh2+7eNiWi4Zsumiw /c2jEFyeeLcgl0lkKpCa9wMWE9Oycvn1q0Tbq0PlskzbwMQgrOeOs0Wn2dLfQBYHbGg0ZEN3 nac9hWS+bJg5xPoLpN8B1kg1A6/lo0zWpJLnYCNgRnHg+osGy4pCFw/dDKTKF8O3ZrRhW/D+ xcM2XzQUbZNsQzbKNvidi1BdeuA6Y2icekiK9qgU1RkkiNO9wvg6HSwHHS9Pvkc4cDkx/TM5 I5Fn6qyA6D3tneS0HFxud40MnMOJl71xGXOGPRbiuugXDxg1Xkj8SeYpg9rIfOizQr5Wc26Y fEvNwmEiLm01SM9B9x/WiP6qaQ+s0prOaLxWnUH5LfprvYcEz+Up94rye4Ujl5PTP3mmVEAp AC6vT07LzeX214q3rvOcJ+fCx/DFZXlpFDSt1yhALlsBja/TuJz6V//2ILmMW+DUJsIVlxPU RZMzGHmmDgqQy5q/LH2MawTiZcXlTteLztc31Mcwrfez5i+Hw+VsRFaw1oLlYOJlY+ys9xUV Mis6B8xlELmiqZjWhFwmm6iArQLkcnYud71BdL9R1i0qOJcdiKygjH8Lw2VTp8k3XgaRK5uK 6U3JZfKICjBeTkV8jj6GJV5WXO5xo+h5U0Z9jJDjZRkLp/xl+9/vheGy1cSQNwPfeXIg8oxm oqoZuUweUYGcCjBezhUvKy73ulmU3Sz63CLrFgXJZS0lw5qPkeay1UkAlJW3UIB42dp7/HB5 5n0CDVAml5M0l5MTPdyg2PHy1KjM2/iPl3Uu971F9L9Vpm2gbpFeH8O/v5yDyypoNZq8+uuo c7m6uai+T8zSoEwuk8hUwIsCotfU9clpgXEZ9ScH3iYG3SYBjbpF4XBZvy4Kzfiv+le1kLis dq5/o6lv5I6XIUhNc9mC43Jy+ifPlAqkRneihAiey4NvF0NulxUph92RqluUZb1fljw5p3jZ eGmsoAyVy7a9QmY9Z/OX57QQs1XToEwuJyncSRRDCnOyjJc9+svKx9DjZSOXh98pq6CNbCSD aFW3yLAOOy5cNubMZb7WVqMYuVzbQqCByKqRy2QxFQhIgURyGY+SMtXHsM1fNuZjmPxlZy6j HNroRrL+DtrYxqpuUT5c1k2MAvgYTlzG/WZuy1SrbSmhTC4HNA4LE4XxW+KiALkcQrxs4jJq pI1vLIvyoAQE0IbWUB8jt49hZLHRzQjJx8jgshHEOpHVC/dcVlN/eeRjxGUs8TipQFAKgMvr Am2YNQp2h0HuLeUvFzheNnIZaJ50jywHgYa6EFiFjDb1XglrY90iLU8OSqZB3CCC/k7AXMYB 1LU0NxOLjf8tKJeD7ANR7p88NiqgFAicy5EeQtHlMipFYF1yBZq2HA6tsqlzH/XAZRWkg6QO nMWfyOUIhxQEVqIUEL2mrAugoUMHsp+QdxIzLjuqoSWipZIf5BJBJEKomTd9Ig4vlAUsm+Y8 OHDZCmW8E5F4OeReEYuuy4NMlAKi55R1yWmeudwtvQ47n3k/Nz6GXbzsfF2Sw+Xk9E+eKRVQ CpDLjvN+5HK2kLmA/jLHKhVImgLkcnS5LCqbOXRHxstJG6s83+QokGQuX9bwfL9s+ctFjZfB ZVmADU0lmalCE0g7Q0PpicT4y8kZjTxTKkAfg1w2zOxFeN6PY5UKJE0BxsvKx7ja5nklWO/H eJn+cpImxpOGv8ieL7kcDS4jedmSv0wfQ9Yh6X1zZAcPD4wKhKSA6DFlXe5W7mIbN/sp9jaZ eXJGH6PY8TK5jJWQWKqOnEIUFcFCdlSAQpU+jcu5+2ex+xWPkAoEq4DoAebmaG/n2iDnHqKy QXBcvjVVf9m2npxDfYxs67Dz47Ksq1m660pKpvvxRKiASwXAZWA3KY1czrqEz3bez2HJXwHz l5PTP3mmVEApQC7785eTES+Ty4kJWQjESClALpPLWrYc42UimApERgFymVwml5Pi40UqJOTB OCiQweXukbldhHTN6C/TXw6pa3G3VCBABQRYnJxGLseRy8npnzxTKqAUIJfpY3j3MVQ1Z5fP 98v7OVIcq1QgaQqI7pPfTk7LiJfx6NXWl4tXyOXIczlJXTQ5g5Fn6qBAUriceuApnuynGqBM LhtrX3jKxyhwvEwuU4GEKZAILqegjGfckcvZ6hCRywkb+QxXo6xA6XO5Aco5uHy1aHeNaH+t eOs60el60fl64VRPLtnrShgvE+JUIEwFwOW1JdwyoBxdLmvF5PKoJxdWfYxs6/0KzeVS7qIl PPp4ar4VEN0mry3VZoYyuez1edhF5/JAWU+uVPsnz4sKZFOAXNbzMYroYzBevkfY1vkkl0s3 bCKUHRQoWS7bBMuMlxkvE3NUIA4KiG6T1pZes4dyVi5fpT1HKsHxcrZkjIj4GKXYRUtv0PGM AlSAXIaPQS57rCdXsHk/5WOQy1QgYQqUIJezBsuMl70mLzNeThgOeAuMiAKlxmUnKJPLceRy GePlEnQaI4K/yB6G6DppbSk1clnMadHQVGkh2bRKQ/Hkcin1T54LFXCjQElxOQeUGS+Ty6UV hbgZ4dwmjgqUDpdzQ5lcJpfJZSoQBwVE14lrS6OFy+XeN4uym0WfW0TfW0T/W8WAYOtjFHtd SVh5cs0Fii/nU38Z+RiQHTfU7K00ei/PggoYFQCX15RAcwXlfOJlctkYa7vNkysElx2RXQp9 uwSGJ0/BqwKlwGW3UCaXC+1jFJnLuQJtUpsKRFSBpHJZlcZPPa/ExbqSQOLlCXfLKhCT7hGT tVZ+r5iitan0MbLXx8jlY3i4Kzv6Iab9eA1wuD0VCFAB0WXimlg3b8NSr4tv5PJr5HJI6/0i HS976zlppsd6sPDg46JAvLnseWiRy7ZWRpzn/Tz3AS9Rs8PO4zLCeZxxVIBcvkIwXiaXfcE6 jgOexxwLBWLMZT+BEuNlxsu+EJyts8VikPMgY6eA6DJhTRybHygb8zHoL7t5GHa+dYti4i/P 1tapz7xPYGK2502eulYcxw6POfoKkMvx8zGce1WU6mPEgctIj/HN5aF3RH+E8wjjqEAsuewp orF/Hnac42Vy2X8HcDAxEC97tTjI5Xj+2o4+qUXnCWvi1TwPHuNgKwl/2fl6MV7Oq4e4R/PQ O8TQO+I1dni0cVEAXF4dr5bXqCsRLjtdMnI5rx7ikssalDUux2z48IBjoUDMuJzvkEsyl308 dDUh834uWWzcjFzmDSlMBeLE5XyhXCr5GPKG37nMpmkdJWu8TC774K/tR9JQZrwci9gzjgdJ LscvH8PczxSj03dvcjmA+7cDwQ1QJpfjiLxYHLPoPH51LFowg600fAzjJdOgPP75q/SLSC4H 01WyodnE5ZgMn1iMcR5kwyiOhRaBjbSS5PL41bm47PhwP/gbXIft0uLIhLKMl8llKhCCAqLT +NXRbwXi8pvXiPbXireuE52uF52vF11vEN1uFD1ulGvAolTnU79eiJTVa3BZf9MuXvb70FXO +9nN9alMDNWiP3Z4hHFUIAZcDgzKOef9YsVlNe9HLgfZPZyjZkuwHMcBz2OOhQLksmHeLz5c NkI5a7xci7IPqjFednpCoCuyE8px+GEdC+a6Ocioc9nVmHFpDpZKvGzNkJP+cjp2bvAxyGX3 HcNjpEwHww1cuI1vBSLN5YChXCpctl5se3+ZXA6Ny77HGz9IBdwoAC6vimxLOpermgnVZmgN hXXQZt1nvV4al1PXkfFywN3GxsGI7pCJ7FjmgXlSQHQatyqaLeDRpUIn5zy5qPnL2bhsuWSS y+k3rVwu2PWVBTNnNxc1WqvW2ix5I5G3E3VrwRlVNhXTm4qKpmJaE/nAWTx2Fs+fxVNo8URa lD8e11iMuUuMaiRG3CkTHgbeJor03NVU97NAWToYUR0yPLCSUUB0HLcqgi0UKJcKl63XC1zW 3zTlyRXm4mI84IuSwOXC6MlvSbgC5HKE8zGMJobBx0AEauq17rmMLU0t2wBw3lL/q/HjoXA5 KI/Yx34swXLCYcHTL5gCUeRyWMFyPvFyr5vlD+o+t4i+t4j+t4oBt8qf2INuE4NvF0Nul7+4 h90hht8pf32PbCR/ho9uJH+Po41tLH+bj28sf6Sj4dc6HpCBn+1o+P2OX/Fo+DmPH/VoFWja z3w0/N7PzmVRfV/KKNBMA1BSGgjSRmiRLV62JSn6mXrf2OEctlSbGT+ScUsIw8fwwdNAPmLn YBRsWPKLEq5A5LgcIpQTzGUrfE0g1v/rvKUtxxsslJLmcsJJwdMvpALksjsfI+bxck7akssZ AQEdjEhOOxWSjMX9rmhxOdxgOVu8/OpV4vWrRdurhUM+Rpy5HCCU9XjZZH2oTlwi/jIdDEK5 2ApEiMuhQ5lcztXbXBLcOCVYgvN+DJZz9ZPixpJJ+HbRceyqiDRyOfB5PxnVjk1P02W50CkW a381vn4rV8domB5MbxlKvFzg/GUrlHPpEJHhw8MoJQUEhl8UWiGgnLx4GejExVUAzXaVjX91 3tJ2D8aPxJ7Ldg5GFEYHjyFpCoDLK4veCgTlhHFZJs/VtsDF1QNb2wudBqvsBs5b5vx46XG5 6EODB5BMBcjlK0QpzvtJKM+RRT5VtzbC19TRTX9y2LLEuWwJlpNJBJ51FBQoPpcLFyxnjZev LL18DBOXHWJhK4izRc2aGSIRr3dc02djHC/bOxjF/ykZBUbwGAqvQJG5XFAoJ4bLKSgb4mUT SY0JFUbOGvufaRsrjq1AD4XLgSzey7kTBssR8DMLj7/IfmPCuGxE84uXidaXi1fgY5RUvNwA ZTsuh9oR48plQplQjpgCxeRyoYNlU6lP31zuF+n6GA5c7hBy54sll+lghNwrQg0FSnXnosOY lUVpxYFyIPFyhLmcAWUtXi7kxQ2eyzn9h/w3sHC5kIrxu6iArQLJ47KOZud4ucv1ousNotuN oseNoudNwrgOOw8uW01b9U4g9eTkfiz15AqJ5vhxmVAuUlhGHDsrUBwuFy1Y1sMrPLikGFzO VuczG69T1M58jpR8Aohdnc9sXE49DxtPxZ5r1+paCkPL0V3UHtQDttXzAxGVq6aqjAb4vJL8 Y2HvT1MlL6hAFBQoApeLD2UVMkeJy87xcg5qa/WXU1C2i5eduJwJZQA6KlwOG8rYP4NlBstR VSCpXMawjA+XTc9dNcXLDtROhbSp8DZ3sBwVLhPKUeVFFGLJJBwDuLyikC0SwbI+7B3y5MLx lwv8vJIcgTYcCZt42ak/pJyQUH2MYkAZsXMhRwG/iwo4K1BQLkcLymr8Z8tfjg+X0yaG/XOk tJA57Qhn+ssO1DZ1ms6dy9DwZuhcLgCU7R2MgkYnpBIVyMHl9mNWFKxFkcsKBNa6+DHhsrSV HZ/v58BlCVlLvIzOAAQbka3eUZ0kXC4XCcoIlgs2BPhFVMCNAqL96BWFadGFssKB6XklieXy aElhCWJDx9D/GyKXiwjlQg2Bwgw0fksJKFAgLkcdygoKLp8jlUf+crD+sgqWA46XNUgZuWx8 HQqXC0Nk9S2WHIwSGMM8hdJTgFzWhquxvXWd6HS96BzKuhJPXHbubRLK1RLKIXFZx3G4XC4q lKWDwWCZCkRPgUJwOR7BsgkQCeGyxWLWOaVwbDI0goyXC0lkBsvRQw/viA4KhM7lWEJZDeMQ 1mEHFS+nguX842VHLluN5mC4XHgi08Egl2OlALls8TGs1AiuPkZWLk9tIpf8VaA1FdO1Vtk0 2+0UUMafpIkRPpdNx5Avl4tCZDso08FguBplBUS70SvCazEOlq0EwYOZ+9wi+t4iwpj3s+Ny tusCLuNPIXHZ+KWIl03H4J/LxSJyFgcjvD7PPVOB/BUIkcslBWUdK4XlsnISjJcZUFbvhM1l K5Tll3qtW1RcHBPKYUZd+dOHe8imgGg3akVIrTS5rINm4G1i0G1i8O1iyO0y+2rYHWL4nWLE nWJkIzGqkRjdSIy5S7axjcW4xmJ8YzHhbtkm3i0m3SMma638XjFFawiWbeNl7dKk0Jy+TBKX 2uuwuGz5ImP38MDlKBA5i4MRUofnbqlAUAqAy8vDaCUOZSN0QuRy6tKk0bxcg3LqzdC4LPev f6Opb+TgckRYbDwMS8JyGL2d+6QCwSoQCpe9QVnW820hKpvJMDOCA9vTIQUcLzfcMq2gDJXL tp2soXyzqW6RJ4kKuTGhHE7UFSyDuDerAsXmMhIPjFzGmo5CjttQvysAH6MIXLZWzLCppg8u hypdIDu3e3AfEUAFYqFA8Fz2PGJLKV7OBhSf/nKDj2H1FkKKl7NyORBWFnInDJYZLMdWAfHm qOXBNs9cLuRYjc53uZj3U9cFDoZ+gZSbof4bOpejo5WPI7FAOdhOzr1RgVAVIJddrCvxwQV/ H8lcV6KgbOSy8Z0guezvaCP7KTsHI9RRxJ1TgWAVCIHLeAhI+2sZNeevgPOVzsHlyEKzAAfG YDnoH8HBQod7y6mAeHPk8mCbUFzG2mVk+BZgEJbuVzhfF6O2slxG6erg7dSsUA66hwc7Xrg3 KmBVIGQuI28Mqyrgpapf6GjEh2sFyGXPvcXWwSCXqUDcFCg4lxWdbZtrYHkervHcM7ns+UIz WI4bgBgs2yoQJS47IJuBtuOthT6G7bNIOOapQEwVEG1HLgu2ZfjLVh/DGb6+/xrPiNhzPJjl NMll6wOi8E6wHZt7owIFU6BUuJxse4RctnK5YEOIX0QFAlcgAVxOgD2SdC5bbOXAxwl3SAUK qYBoO2JZsK04PoZvA6QkqJ1oLtvlYATbpbk3KlBgBYLnMk6gIX+5YP5ySFyOiT1CLht9jAIP IX4dFQhcgVC4LNGs1pWUMJdLItAOauKxaPuxOhhB//4LfMhxh1QgpwJhcVn/YvO6ksIHtlH7 xmSnjgRJcDoYvAmVqALijRHLitWyLjCJGkkLeTyktnsFLFwuVk/m91KBYBUoJpedz4TUtlHA PbNiseXs5rLo/qz75DMPy27xFkoTysWLqIJlEPdmVSC6XHa4WkR2KSAbT6E1crmPFy7bORgc 3lSgZBSIJZcZaHu+M8UifHZ/kAyWGSyXtALijeFLk9M846yQznIRv8s9EKOwpRXKSerDyRmt ST7TZHHZ+UqT2jGwR2wdDHKZCpSWAuSy258LpHYkqM1gubQAlOSg2OHcxevDl7LlqQCRXQhk T7lXjG5kqk+U54Xjx6lANBUgl0O/LZHa+VK7prmY0UyQywyhEqMAuRw6l51vyKR2SoHpTcXM +wQQPKeFqG0p85pVw3+zcDmakQ6PigrkrwC5XGQuO1zCZCHbI5fz7/rcAxWIrALkcnS5nKxA m1xOzI/0yNIwOgcmXh+2lK3EFIhloO2FyyV2vXg6VMCkALmcuNtSRKntmsscw1Sg5BUQbYYt ZaMCugJFo7ZrLvNiUYGSVwBcXsJGBdwoEC6y3XHZzXFyGyoQdwXIZd6WglEgX2q74HLcBxuP nwq4VIBcDoZKLuVO7Ga5qe3I5cTqxhNPpgLkMrlcZAUc1pUkc0zyrKkAuVxkKrELUgEqQAVM Cog2Q5ewUQEqQAWoQHQUEK8NXcJGBagAFaAC0VGAXOZtiQpQASoQLQXI5Whdj+jcsXkkVIAK FEsBcplcpgJUgApESwFyOVrXo1j3Z34vFaAC0VEAXF7MRgWoABWgAtFRgFzmbYkKUAEqEC0F xGtDFrNRASpABahAdBQQrw5ZzEYFqAAVoALRUYBc5m2JClABKhAtBf5/jFNG35gVTvkAAAAA SUVORK5CYII=</item> <item item-id="2">iVBORw0KGgoAAAANSUhEUgAAAd8AAAIaCAYAAABhzUfCAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAIdoSURBVHhe7b0H0BzHsedZJGV235rb 3di4uIuN2N3bjdu73b0X8t4/SpRIiqSkJ72VHp+8RCOIIgmCDgQBwnvvvTffB3ywBAiAIEBP 0HvvPei9EV1eZs/UTE1Pm+qe7p7qnj8jit+Hb3p6eqqy8leZlZWpCP+hB9AD6AH0AHoAPVBo Dyj5tEvveBoNfQAZgAxABiADkIECZEC468F3L38YGvoAMgAZgAxABiAD+csA4ItFBxZdkAHI AGQAMlCwDDThezuTHg19ABmADEAGIAOQgdxlwIDvU/xhaOgDyABkADIAGYAM5C0DgC8WHFh0 QQYgA5AByEDBMgD4Ftzhea+mcH+s2CEDkAHIgPsyAPgCvljxQgYgA5AByEDBMgD4FtzhWJG6 vyLFGGGMIAOQgbxloAHfPQwhNPQBZAAyABmADEAG8pcBwBeLDiy6IAOQAcgAZKBgGWjC9zYm PRr6ADIAGYAMQAYgA7nLAOALIctdyLCow8IWMgAZgAy0ygDgC/g24EsHTySzHdp8Aj1bb88M HN/ymnndI+t/SA+tPZYeWHMM3bfqmJbrMOGgdCEDkAHIQLsMAL49DF8NUIGsH7xZ//v6+d9t fAYmIpQxZAAy0OsyYMD3SbaA0KreB1lDNe399k39tgfjqvc3vh90CmQAMhAkAw347mbwolWz D9ICsuj3Qf6qKX8YV4wrZKBdBgDfCi86ioZnFp+HSQpFDRmADPSCDDTheysPOFpl+iALEHbz HpBFzEfIAGSgyjIA+FZwwdFNaGb52VWeePhuAAtkoLdlAPCtGHyzhJ8L94KC6m0FhfHH+FdV BgDfCsHXBVhm/QxVnXj4XoAKZKC3ZQDwBXxzP+PbKZChpHpbSWH8Mf5VlIEGfC9hCKGVuw86 hZzN+9WkX5LZbN7T6TWQy3LLJcYP4wcZaJcBwLdCi45OIefq+zFxobwhA5CBqskA4Av4Ou12 vmTiN+GRqZCMVk2B4vtgUZBWBgz4PsFKDq3MfTDx5E85DdI0lnUNvpBL9AFkADJQLRlowvcW /mJope4Dge+0P326MgC+evaR5MEXcok+gAxABiomA4BvhQZUw3fOGZ8rPYBvXPA9AnyxIMbC CzJQVRkAfCsK3yVnf6GUAL57xQ/otiXfJ8AXSreqShffC7ItMtCA7y7+B1q5+8C0fAW+q4Z+ iTYM/0opIPzg2mPpvlXHUBB8IZfllkuMH8YPMtAuA4BvhRYdYfAdGPU12j72G7SL90/TBD3l +Z7HNvyQHln/QwJ8oaChoCEDvSQDgG+PwXfvlG/R/unfoStn/l1XQPzMwPH09Kbj6amNx9MT /ccR4AuF20sKF98V8q5lAPDtYfheM+dIOjjvu97+6i2LjvL2WrO0cg9tOYG8tvkEelbawAkE +EL5AECQAcgA9nwrtc9t43Y2Ld8g+N657Ae873o03bvqaLp/9TGeO/jhdcfSo+waFiv1ib7j 6Em2WMVyFQtWYCpQFbgKZL2moQv4Vkq+oDABTchAdjLQtHxv5puilboPKgtfyGWp5RJ6BboV MtAuA4BvhRQ74AslByUHGYAMlEMGGvDdefPjhFbuPqgqfLVcqqUPUlSD/JZbfjF+GL9ekgHA t0KLDoHvVE4vKRmuzHO+5lGjMu75xkE37PVemsj4rgAXZKBcMgD4Ar4t0c4uBlylha//fVBO 5VJOGC+MV5VlAPAFfHsGviaMqzyp8d0ALciA+zIA+AK+PQlfWMXuKycABGNUZRkAfAFfwDcg kKvKkx7fDVCDDHRfBprwvYkfBq3UfZBnwJXkX+5Wko2s9nzT3AdzAnoBMgAZyEMGGvC9mMGL Vu4+AHyjjyKlga9+D+ZGuecGxg/j55oMAL4VWnQAvoCvawoGzwPoQQaCZQDwBXyt9nx71e0M yxfwADwgA3nIAOBbRfienn2SjZ6G7zlrsCVToXmShyLFPQHopDJgwPcxVjBoZe6DhtsZ8I1M Q5lo73f4VlIefDE30AeQAchAdjIA+FZIqQK+Ge75jmDo6gb4YvFRIT0BgGYH0E76sgnfG/mB 0ErdB4BvRvA1wSu/C3wxN9AHkAHIQBYyIAs5vk8Dvjv4H2jl7oMqwpcOnpidCzmmKlLD0g2A L+ZGuecGxg/j55oMAL4VWnQUAd/H+46jJ/uPo6c2Hk9Pbzqenhk4np4dOIGe3XwCHdJtC/9u Nv67vC7XyfXyPnn/E3wfSdwhwVwPrj2W7lt1DN294gd025LvexHYV88+kgqBrx+2gC8W4hXS C65BB89TWwgBvhWaZAIqr6RgjgFXRcNX5Wn5xkHX2POFwoDlBBmADGQpA4BvheAroKoSfD2r d+I383E724K3vueb5aTDvaDEIQOQAcC3SvA9+VN1+H6Wlpz9BVo19Eu0YfhXaGDU12j72G/Q LgbZ3infov3Tv0NXzvw7umbOkXRw3ncTJdko0vJV7HbOHL4mdAcva0Y0R8GYA66gLKEsIQOQ gSxlAPCtGHyV53YOgu/XSwVfxXu+mcLXD1cBL+CLRUWF5n+WYMC98l9oAL4VmnyKLV+Bryo5 fBUHXGUG3zDoAr4Ab4XmPmCZPyyz7uMGfLff8BihlbsPTPgqdjurFrdzOSxfxdHOmcHXD96z V9esXbPZ7P2y2xlzo9xzA+OH8ctdBngxl+QzAN8KLTqC4Kt4z1d5e77uwlfxUSPFR40UHzVq g++kFAFXJlDH7yM1ZndtbxfwTaQckigSXJtM8aK/qtRfj6aaVwZ85QZoZe6DKPgqhq8XvORQ wJXic76Kz/lmBl+/FTthP6nM4Iu5Uea5gWeH/LomA4BvhRYctvBVHO2sONpZcbSzKjDaWXGS DcVJNhQn2VCcZCMz+AZBdyKDF/DFgrpC89s1eOB5OlvQAL4Vmpxp4esFNy06qrbXuoz3XFcc zS7go+n+1cd4maceXnesl4VKslHZHDVSnN2qpXF2KyUtD/ia4B27t2bpCnQBX4C3QnMboOsM dC72H+BboQmaNXwVw9fbi2X4eq5hcRFzeknPYhXLVSxYsWQFqhqw8rMI+JrQlbJ/o3aSioXv mg4Crqo3+V1USHgmyFmvyADgC/jWjvUEWL5OwtfvYh7aRwrwhZVboXncK/Dp9e/ZgO82Fl60 cvdB5S1fE7ynLSA1ZBUfpyoGvpgb5Z4bGD+Mn2sy0ITv9Tw4aKXug0rCV8oAmtD9xTBSf5xK KhC+e2L2fNO7nTE3oB8gA5CBLGUA8K3QgqOS8NXgnXigFkQF+JZ6gZil8sK9AMMyywDgC/i6 vecr8B1/GYMX8C2zosGzA5SQgVYZAHwrAF8lrlnd6rmddXpJneHKTLLhP+frdMDVuEuzgy+n iUybXhKKA/CADEAGspQBwLfE8G2BLuDLR42i9ny3kQJ84bIu8XzPUvHjXt1fSBjwfYQnJloZ +iAQuqb1y1WNKmH5jt5FKjPLt1P4Ym6UYW7gGSGn6WRAYFxs3zXgu5U/GM39PogFr4ZwvapR ad3OstfrEHwxN9yfGxgjjFEaGRDopnlfp+8BfLvU8UkHzhq6pgXMJQVLB1/zWBHg2xWlkFQ2 cX13lDf6vdz93oTvQf4iaE72QSrwmhDmkoLOB1wF1dV1Cb6YG07ODegs6O2yygDgWwKl2jF8 TRBzSUGnop2jitkDvgBeCeZnWZU/nru7CxfAtwSTO1P4miCulxQs9KhRFGz9rwG+gG8J5icg 1l2IlbX/Ad8STG714zNJ/dOI5lleE6BZ/26UFOy4sEIS0MLtDNCWYC6WVdHjud1bIAC+JZjw Dfj+cQqpQfOKgXBaqHcKXFcDrkogJ1Cw7ilYjAnGJEwGGvDdwsoFzc0+aIPv4GXNTE1pIZn1 +7KErr6XQ25nzA035wbGBeNSVhkAfEuw6IiErwli+T1rqMbdLw/oAr5YCJdgXpZV6eO53Viw AL4lmOSJ4FskjPMEr2NJNqCw3FBYGAeMQ1VkoAnf63hQ0Zzsg47gm4eLOm/oumj5Ym44OTeg s6C3mzLwcM1jVJK5asCXH/w6NBf7IDP4dmIVj99HasxuUiN3tBa3zxPELu35Ym5AP0AGIAMZ ygDgm2Fn5gXu3OArVX6G9nMKSs6jLFAdfQkXMtjLJfwYtBOkhi4Xr5cmvwO+UDwlmCt5zUHc F4ZZ1jIA+JZAoQC+shA4UFsI/GIYqT9OJXXaAlJDVvHioa+2eBi1M9eSgllPPNwPyhwy0Nsy APgCvrB841zn7CGAouxtRYnxx/hnLQMN+G5mCKG52QewfLtv+WJuuDk3MC4Yl7LKAOBbgkUH 4Av4llXB4LkBR8hAsAwAvoAv3M4WbmcoEEAEMgAZyFIGmvC9ljsWzck+gOWrLV8OuupSwBXm BvQDZAAykKUMAL4lWHAAvt2G71onF2VZKgLcC2CBDBQrA4Av4Fsit3O3LF/AF4q5WMWM/q5+ fwO+gC/gG7vnC/gCBtWHAca42DFuwHfg2ocIzc0+gNu5+25nzA035wbGBeNSVhkAfEuw6AB8 Ad+yKhg8N+AIGQiWAcAX8IXb2cLtDAUCiEAGIANZygDgC/gCvoAvtpxKoAeyVPy4V/cXEk34 XsMPg+ZkH8Dt7IDbGXPDybkBnQW9XVYZAHxLoFQBX8C3rAoGzw04QgaCZQDwBXzhdrZxO5dA TqDkADrIQHlkoAHfTaxc0NzsA1i+3bd8MTfcnBsYF4xLWWUA8C3BogPwBXzLqmDw3IAjZCBY BgBfwBduZwu3MxQIIAIZgAxkKQOAL+DrOHz3khoPyzfLSY97ASKQge7LgAHfB3nPF83FPuht t7Mr8MXccHFu4JkclMurHXwmB9nWhK90GJqTfQD4OmD5Ym44OTegs6C3yyoDgG8JlCrgC/iW VcHguQFHyECwDDTgu5EhhOZmHwC+3Ycv5oabcwPjgnEpqwwAviVYdAC+gG9ZFQyeG3CEDATL AOBbFvieOILUH6eQGjSX1OBl2bRz1pAa2o9oZ4ujRlAggAhkADKQpQwAvoAv4Av4YsupBHog S8WPe3V/IQH4lmDSeW5nWL6kJh4g9Yth7AGYSuq0BaSGrGLLva+2eBi1k9TYPXwmeB+pCfv5 Wm7yU/49ZjepEdtInbO23WMQB155nd8HZdV9ZYUxwBhUSQYAX8C3hyxfwLdKygvfpWAYX1Xw 55VAN3cig034SseiOdkHsHyzCrjqAL6YG07ODegs6O2yykADvv2sXNDc7APAt/vwxdxwc25g XDAuZZUBA74PMHzRXOwDwNcF+GJuuDg38EyQy7LKAOBbggUH4Av4llXB4LkBR8hAsAwAvoAv Aq7iIp452hkKBBCBDEAGspQB5+G78SUif1v9xAc9pQxh+YrlK8eHunfUKMtJh3tBiUMGIANO wzcIvP6/bXjuI1r+8LuVhjHgC/hCWUNZQwaqJQNN+F7JX8yRZgPdsGvWPvMhzbvtOWe+SxZ9 Cvg6AF9H5kYW8oR7uKPrnBgL2XqDfBfeBw349nHnd7t1At2g9/azy3r1E+93/Xt12q+Ab/fh 2+kY4v3d1y8YA4yBSzLgBHyzhm7Y/cRFvfSBt0oH4+7Cl/dZJzD8dJrGkTs4VSOnXCyijd5F atxe/mzA1yWlgWcBxCADnctA1+FbFHiDPmft0x/QnJufcR7GgC/gC2XXubJDH6IPXZKBrsG3 m9ANdFG/SLTqcTdd1IAv4OuS0sCzAGKQgc5loHD4ugbdsOdZf+hDWnzv605YxYAv4Atl17my Qx+iD12SAQO+9zNo8m3b3iLa/Dqf2325/eyu61Be89QHufdPWP8Dvi7AN9+5kffcw/0xfpAB t2SgMPhufZNo29tE29+pNfl9K8N44NXygbjvhY9o5WPioi5mMAFfwLcoWcPnFDOn0c/o5wZ8 N1xxP+XZ+p6vWbwDrxFteaMG3gaMGcTyu/x90yvlg/G6Zz+khXe/klv/Ab7dh2+ecwP3zlf3 oH/Rvy7KQCHwXXT3q7Tswbdo5aPv0pqn3qf1h4j6OcBJQCtuaM8qZhibVnGpXdRPfpApiAFf wNdF5YFnAtQgA+lloBD4TjpwD02/9hGafdPTNP+OF2jxfa/T8ofe5ujiv9Lapz+kDWIVc0IM cUF7VnGQi5r/VkoX9fPson70/Y5gDPgCvlBy6ZUc+g5956IMFALfYZuuIGkjd1xP4/beTpN5 r3TGwcdpzi3P0sK7XubEF2/SikfeodVPvkfrnv2I+l6ouag3V9FFzekv59/xYiIYA76Ar4vK A88EqEEG0stAofDVEJafF26+ikbvvIkmXHYXTb36IZp1w5Ock/l5WnRP3UX9mLio2X37nKWL mkHtesR0WIWmOAHOH75bSEnmqtGX1DNK7atltdKVhHo9w9W5axMtluLGE6+nV1joO/RdVWSg a/A1QSy/j9h2LY3dfStNOnAvu6gfrbuoX6Ql973BVYvERc1WMVuNVXZRexWaHnqnTdEDvl22 fAFfLD5yDkitClDwPewXR87A1w9jcVGPv/QOmsIFH8RFPfeWQz4XNQdu+V3UvC9sRlFLBLUX Rc1BXZtKeLZY9sPn3vocAb6AL5SavVJDX6GvyiADDfiu55VdXs0P1qT/Hr7lahq9S1zUd9O0 ax6mWTdqF/VrtSjqxzhwq8IuasC3+/DNa27gvvnpHfQt+tZlGWjC93IeqJxaUtjGXX/Rtuto 7B52UV9+H02/jl3UXBxhwZ3aRc2BW0/UXNTe2WIzito8W6wTfUgUteNniwHfOnwPnkjqF8NI /XEqqdMWkBqyitTQPlLDucrSqJ2kxu6pVV+asL+2Xy0/dTWmEdtInbOW1OBlrc2mOhO7nfOa G7hvfnoHfYu+dVkGSglfP5xHXXxDzUV91YM083p2Ud/KLmpOeuFFUcvZ4iflbHEtilrczxJF 3ThbXM+65bKLunvw5XKCEx0pKSjg7RS+DFHAFwrZZYUc/mz3YQGYk3HYLXkw4CuDm0+Ls2Sz fL3mor6ZJu7XLuqnaP7tfLb4XnZRy9licVFzKUEzilr2hEPTX3Y5itoDzo/PJHXiCLb4ppAa NLcdIH5rzvbf56xhy7GfLcewaGcH4KuhmxV89X10H1lbvvnMjbzmHO6L8YIMuC0DlYOvH+QX bRcX9W00+Yr7aMZ1j3n1exfc+RItuf8NWvFwMhd10ekvPfD2Knz90M0avvp+gG9ui24of7eV P8anu+NTefi2nC0euJI8F/W+O2mq56J+wosmXiQu6pb0lx9Rf5CL2igKkWf6ywZ0exW+YeDN wu3svzfgC/jm5PED3LoLN9f7v6fg23a2eOs1NOYScVHfQ9Mk/eWN2kVtpr9suqglMCvP9Jdt 0AV8a5a/2ToJuJI9X8AXsAVsIQMOyEADvuv4YfJqWe7p5nmvi7Yf5PSX4qKW9Jfsoub0l+Ki Xnp/Pf2lRFHL2eIcKjSFgrcX3c5Rlq+8ljba2X/flUeTsrR885obuG9+egd9i751WQYA33re aT/UJf3lqJ030gRxUXP6y5k3PMHpL9lFrdNfpqnQxMee/CkmI6ELy7fdUjUBanvUKAjmAl7A N7cFt8tKD88GKLsgA034HuAByanlaa0Wde8RW6+lMbtv4fSXZoWmFzuu0KRGfY3UzL9rtiBQ 9Fq0c5zl28nrGrpJ4ZvT3MhrzuG++ekz9C36NgsZAHxDLN84qOsKTVNCKzQFpL+Ucolmog8+ Y9wG3yAQA77RFrANjP3QBXxzW2xnoZhwDwCu6jIA+KaEb1YVmiLhq0FcEfjaTiYrV7wNcOWa MOgCvoAvvBmQgS7KAOCbAXxDKzRdHl+hCfBtX+FnCt+gICsTyLYBV12cpLaLFlwHaxEyUB4Z AHxzgG9khSZJf2lUaAJ8C4avCeMkAVeAL6ykTGTgXvRjJv1YHsiGLYga8F3LdXTzanH7p730 uq7QNLFeoamX4GsrX7lavlHu6jArmM8H2z47rstPj6Bv0bdVkgHAtwDLN2pxoUb6op3NgKuK 7fnaTpyuwdcEswliwBeLjxyNE9t5geuqtfgAfAHfwgor2CoPJ+Drs5Btnx3XVUtBYjwxnnnJ QBO++7mTc2q95FZO+l17yfIdNmwsSQuSM/M1F+Hrf6a85grum58eQt+ib12SAcAXlm9xli8v 7oLgu/Ckz7X8vQzwNZ/RpQmNZwFgIAPlkAHAF/AtHL5+AJcdvrCKy6HsACWMk0syAPgCvoXC V4Q/CL7mpCib5Rv3vC5NeDwLAAQZcEMGGvBdw0oxrxa1DzqJowilJd0rrcr1vbTnq+VL7+/q f4vla8peHMzK/Hpecwz3zU9/oW/Rt3nIgDPw1RDuNRj3InxFkAXA+mcvwde/cMhjUuOegAVk wH0ZcAq+6nrOxXvNL0hd8XNSe3/qWcRVt4rVyK+2VjWq8DlfUyFo61d+9jJ8TRhDYbqvMDFG GKOsZMAJ+KrbfkXq1nq75ZekbuJ2wz/VKtlczTA+8L9IXfL3lQRxr8NXBLnn4StpLhcfldu2 T1bKAvcBeCAD2clAE76X3UNrcmqRGZ4EvNJu/3Xtp24CYwHxzdxuZBCLVXztP5K6kq3ifT8j tfVHldgn7in4+uTLcz3z3zz4Gq+VeU830bObBR4EvjnNP9w3Y922P+P7Ydx7Uva7D18BrLZ6 G/AVEEfAWFvFhou6rAFYvQpfDd6eha+A98zPkfrzZ0id/Kma5QsljD6ADPSMDHQfvgJSsWzF 1SxWrg2MPauYm1x/E7/3BraKr2Or+Cp2Ue//B1I7f1IaqxjwtbN8ywAmK6tXoKv39ad8m9SY r5Ma9mXAF9DpGeiUYS4X8YwN+K5m4c+rRbqdxXoVd7Ls74prWWAsQBWwejCu7wWbLumkLuot JzgL416Cr5YvHWyl/y1uZ1P2GnDSkGLZMK/1Xx8lt3JtUPO/x7wm7H7++8gEbXnuqIpJ2sUc FFAnf2PLN6/5h/t2ptv844z+7Kw/0X+1/us+fA+wpXo5B1TJXq4EV13DIBYrVhSZWLRJrWId vOUP3BLIy+fs+alTIO4l+KqQkn0CtZbXAgCVFL5xMDUBrq8NWwzI34Ou8f8t0PKNg67+rku+ D/jmaABA4QOYrslA9+HLUcwCRHUpB1FdxiCWyGY5anRVHcZiFQuMtVUcB2PPKjb2i+Nc1Bd3 10UN+G71wJYlfP1QtLGM4yZmkLUdC18G75qnPog/SiYABnyx+MDio6dkoPvwZZew2vYjUhf/ mNSun5DazTDmM75eRLPs32qrWPZzxXrVVnEeLmpeABQduKUu6p1zvkVZvnnANwjOofBl6G58 idpa/wsf0arH3g+GMeDbU4o3brGH16tvqXcfvmuPJbXhh6Q2HkdqgEHMR4jUdgYxW6Rytrfd KjZc1NoqztpFLe7vglzUgG+2lm8S8Jru5CT7yGEucFV3MQeBN+hv65/9kBbd82oNxoAv4AvL t6dkoAnffbzSyKlFBlwtOorUsu+TWsFRoKuPIbWOYdzHIN50PKnNdRjvYBhzBHMDxtoqzttF Lda1F0XNLnBxifNzZG0ZA76W8K3LZgOuIbIa93qQjPsDqWzngQds4zlsoRt23ZonP8htDtp+ J1yXnx5E36JvTRnoPnyn8XGLWbzyn3skqQXf86I+1fIfkGdFrGEYr2eruL8O4xYXNVvFSVzU 3l5xPYpagrHSRlFLQJgEh2XkogZ8uw9fPSFagrRiFqJBkO8Uvub7+57/iFayixoKGwobMlBN GWjAdxUrm7xapOUre55y1nHCN0lN+Rap6d8hNZtBPO+7pBYyiJeKVcwwXsUgDnNRm1ZxS+BW QS5qscB5IZDGKgZ87eCrZVNDL0xW417X7xOFlvYeYZ+RJXz991rHLuoFd76U2xzNa+67ft8o OXD92fF8+TGriL414Hs3T+x8WiR8JcvP2V8gdf6XSF34FVKjvkZq3DdITWQYT2WrWPbD5jCM 57NV7Lmo61ZxkItaAre0izrIKtZR1EFnizuJojbTX2oXNT+LDYwBX1v41mSzCb5gWTWt17Ty HPUZUa/lCV//vVezizrt98P7tOyI8s5H5+G+6Nc4Geg+fCW1nrQ/fZrUXz5LavDnSZ3zRVIX cNafEWwVj2YYj2cYT2areBpbxZ6Lmq1icVFzkIrnol4lLmreK9Yu6gHeL264qHmveJe4qDmC OiiK2jtb7IuijnVRx6S/1DC2SH8J+GYLXxtAx02KMMDGgb9I+JqftYFd1Cse+StAApBCBkok A+7AV0NY/xzEMD6dYTyEYXwew1hS8Pld1DMMF7VYxdpFLVZxw0VtBG5JFHUSF7Xt2WLvXLHv bLGcL26kv/RVaOLFgLaKAd/s4WsCWIAZBFv9d//racErn9Et+La5qJ/5kObd9jwUcYkUcdyC EK9Xz5LuOnx1zV756VnAQe0U/vtpnIDedFEPN1zUkwJc1BK4pV3UEri1jgO3zChq7aIOO1sc 5aKWwK1GLmqjHGKaCk2On/PVMFLj9/He/G5SI3e0JsQIyVoVdqY36O82STa08vFHJse5mcOu N5WZ/xq/oov6TBPersC3zUX9xPsAMUAMGXBMBpyCrxWI/S7qc00XNQduaRe1BG5pF/VCn4ta W8USRa1d1PpsccNFLRm3uLWlv4xxUSet0OQ4fNXEAxwMd1lLfuQkYLW5Ngl8XbYAXIVvi4v6 uY9o2YNvQxE7pohdlms8Wz5WdxO+l/IH5NSiAo9M4Eb9HmoVC4wHsVV8BgduDeHALXFRX8gu 6pG8XzyWYSyBW1I9Rruo5/N+ccNFbZ4tlkQfEWeL/VHUadNf+l3UJYGvafn6LUEbwEZdEwdf z7rMSTazvO+ml9uzWrkO5LVPf0Bzbnm2FP2b5VjhXvnpe/StXd+WBr4azI290jAX9ak+F/VQ jqJucVFL4JYRRa3PFpsu6qCzxRJFHemirgduJa3QVEL4+kHaKYyj4Ou9xhHv5oRe6SiIt79D tO1toq1vEW1+rXwg7n+RaNXj7KJ2tH/xXHZKHf1Ujn5qwFcUWl4tC8vXD1/znpFWsY6iPosD t7SLWgdu+V3U3tniEBe1l/5Soqij0l+mqNBUAfhGwdjGKg6Cb2OvuV71Jy/ZzPK+W96ogVcA LCDWMJa/b3qlfDBef+hDWnLfG7nphSz7HvfKT3+jb/Pp20rA1w/3SBj/2XBR67PFI/k4k3ZR y9licVF7Z4vDXNQMYmsXdUyFpgrC1wSujVVswtcP3bbavgxjW2UQ9N5Uf5PjbBwfMH7fnTT1 qgdp5vVP0NxbD9HCu1+hpQ+8RSsffZfWPPk+rT/0EfW/wKBl97NYvlvfZBAzjLfXYSxQln9v fp1BXEIXtVRosu17XJePwka/VqdfKwlfaxifyseZdBT1ObxfrF3UcrZYEn1MMlzUZvrLOBe1 UaHpPc4J/Q6fL35NjjgFVWiqOHxtXNQmoL3rwwrOJ7SC4+5j/Xodvlquhm+5hsZccjNN3H8P TbvmEZp141M0//YXaPG9r9HyhziY6bG/kuylbniOSFy5A2z1bmHgejD2WcViKQ+8Wj6ruK9e oQkwqA4MMJbFjmVPwDeRi1rOFmsXtf9ssST68NJfcqKPNhd182wx8fngezk3NfH+L3ESD+Lg LOKjSx9w5PRfuSjE21y/+CWJrr6C01L2GHytXNSOw9e/uLto+0Eat+c2mnzF/TTjusdozs3P eqkgl9z/Jie/eIdWP/EeSXrIvudrkBXYtrmoxSrmVloXtVRouvtVWMY5bt8BjsXCMe/+NuB7 F0+cfFqWe76Tr7iPxrKiu2jbdVbpG+NSPEaeLdYuajP9ZYyLmvj8L/E5YOIsV3QDNwYxcclD 4upIxEUZPBhzYYaPGLzvc73idzmK+k0unfi8lFIMg86PzyR14ghSf5zCkd1zOQvYsmzaOWvY 2u/ngLQttfO7oy9hi38vH9fiM718vMg7ZlQ/apTHOV+/xdvmog7pj/hJYSfHaS3fKJm6cOAq GrXzRpogLuqrH6KZN4iL+jkPTMserLuonxIXNVvF4qJmq1jc0A0XtbFXXGoXNae/zEuf4L52 8o1+crufSgffpfe/Rgvvepmti2c8l9/E/XfT6F030/AtV+cLY3FRm+kvxUU9ghN96PSX7KIm PuNLXDHJa5zdymsCYw3iGxjCGsZiFXP6SbqqBuMPuTjDe3yuWFzUr0otYxM8FYNvY1+3nqAj LNq5Bc4x1rDZX7ZKJw/4+sE8Yuu17KK+hSYeuIemX/sIzb7paZp/h7ioX6+5qB8XF/WHtIGt 4n7TKg5yUfPfSumilgpNj74PGOdk3NjKO65zC8ZN+O7lB8upZWn59r3wIa175j1WWm+z8nqD Ft/3KiuzF2nWDU/SFA6GGX/pHTTy4hvyBbF3trie/lJc1Hy2mDi7VaMJhD0QB8E4xCr2u6jZ KtYualUR+Pqhq13Qced8BZK2VrFcayvHRcDXL/sjd7CLeu/tNRf1QXZR8xlbWUwubXFRf0R9 bBVLUNYAB25VzUW9jtNfilvedpz8163ISU+lfR68Lz92VLlvG/AVgc6rZQVf7wwlr/7FTedZ AKycNjz3Pq156l1eWb/Fbr3XadE9r3huPlFsky5nF/XuW2lEzi5q4sQZLfANAnEQjCNd1GwR 113UVYBvG2CNtJQ28PWDMgrGtnLcDfiac+HCzVfRaHFRX3aX56KWBeS829hFfU/dRf0YR1Fz hLEO3Ip1UZfwbLHsgUuFJtsxw3X56Wn0bbF9Wxr4moEqOmJUIkXFKpBjHRJR2v/ih7T+2fd4 Mr/DgS5vcsBLzUU923NRP8xKTlzUN9HwzZ27qPVecQ26DN/b6y0KxHKttooTuKjdge+exLmd w6xd/3GklkCsBC5mDVATxrZKpNvwDXRR776F5Ez79GsfrbuoX+Sztuyiflhc1By4xVajuKhb Arcq5KKWCk3LH34XMM7RGLKdH7guXxg7D9/Q9Hx1l5xYwo3MQvy7HOkQV51YCX3Pf0Brn+FS a9pFfS+7qPlIyExxUV/5AI279HYaueP6jlzUwRavCeIIq9iEcYSLuozwtYFuErezNSgDXNTD ho0ls2mlYn1P31GjuCC+rF4X2RQZFVmdcfBxmnsLny0WF/UD9ShqOVv8bNNFLYtQv4vaO1us o6hLeLZ4rVeh6TnAGDCunAw4C9+kOXEbLjlJaiBp/vhnq4v6oxYX9dIH2EXNSRIkWcL06x71 rI2xbHVIgIyt8myxYsWSNd3NLb9bwrjFKq7vF0tZQmf2fOMt3yTQzQu+/hV7mFXsOnxNORRv jXhtxEUtXpyai/p5w0XNgVsVd1FLQNpqrtAEiyxfiwz9W0z/OgnfpOANul6fpYxyUa8TF/UT 77Cbq+aiXnDXS56rbxrvv4mSk/042ZcLgrEXyawjm8VqNcGpfw+EcXIXdVngG7Wv20lhBWtI 1t3VfuWhrV7/363v2yXLN2oRKEftJJ5h0uXsoubFo2ytLODAQ0kH6bmo5WwxW41tZ4ur5KLm Ck2SYQywKAYW6Ods+7nr8BVw6rzNWUA36B5mur9IF/XT7KJ+7G1aJlHU7KKed/vzXirBKVfe 70WojuRkClohemd5JWBKHymKg3EHVrHr8E1j7Wa952uCNAi+QYqjzPBti6LmCH+J9J9y1QMs s+yibqS/ZBe1kf5Soqgj01+Ki5q3bkpboYkXIYBEtpBAf+bTn12Hr1+J5AVg875BLuotZhT1 Sx9xEoRaFPUKjqLWLmo5FiJWBsl5XUmgIed3pWkQdwxj2R9ud1G7DN+01m5R8BWrN0x5VAm+ LS5qPvMuZ9/lDLznoub0l7KQlPSXywLSX8p8iEp/WeYKTQBHPuBAv3berw34Lt9zF+XVhvYf sN5H7QaMo1zUopgkitp0UXsZq6RJwgxpAuIgGGdkFXcfvvtrWa/Gxu/52lQxCkox2Wm0swlS Lcfa3Rwm11WFb3v6S3ZRS/pLPnoni0dJUFNLfyku6nr6yyAXdcUqNC2WqPEc9RzunR9Dqti3 BnzvZMHMp/1uwkI6ddYaOmPxZjpnzW6nQRzpouazxQJjL2ezNEkZKS0Ixi1WcWcuasCXc2kn OH4kctwEb7hMW9/TwT1f26BA/3UXDlxJo8RF3VKhSdJfWlZoqkr6Sw5Oy0vf4b75cKRq/VoI fKXTfj50otd+NWoW/XHKUho0dz0NXradzl+/z20Y111yXmk4VjwfSZEESQkpCTAkPaS0SBAn dFEHBG4Bvsng6z9a5P+3nsS9CF8/jGMrNHnpL6tfoWnlY+8DxjkZX1WDZlbfpzD46gfWEJaf vxg2mX4zbh6dPH0l/WXBRhqyciddsPFyp2H8EZcFlKIIH3GVoo84J7NXsUhArGFsYxUndFED vsngazs5AN8r2uaaV6Fpb71Ck6S/DKzQxGeLJdFHVdNfcoUmqdVsK0e4DpZuGhkoHL7+hzRh /E8XTaffT1xUc1Ev2ULnrt3jHIg/4JzLH3L7iAsheCD2YFwDcWIYWwRuKSfO+ZZtz9dOGQC+ 7fBtSX8ZUKHJS38ZVKGJ6xbHpr/kKGoBdhFBlVl+xhpOf5lGueI9dvOwV/up6/CNgvGvRs9m F/Uy+vO8DTR4ObuoN1zWVRhLxaF39/6M/splAN/nurwfXKZBbMDYsIqzcFErjqSG5QvLN+0e b5bv0xWaJvkrNEkgk69CU1XTX/bVKzT1KjDwvbNbUDgHX3NwTav4Hy+cQr8dN59OmcEu6oWb 6OxVu1K7qNOuit/gurtSe/et3T+lt/cIiH/qgfg9BnErjE2rmH9PYxVzFLVi97TXup7hCpav 6j8u9cIvSwC6dC8v/aVUaOJz8C0VmhrpLznRR0z6y+1m+kuOr0g7N7v1PklkIlXVAKXsoNQr fdmA7zLebHe9tbqoZ9DvJy2mP81eS2d6Luq9qZWj7cR9ZcePvVq7r+38Cb2+S4P47z0Qv+OH MVvFnbqoFUdRK4Ew4Jso2tlGjq1dzhJlXaFo57zgXavQVEt/2azQZKa/7JEKTU984LwetZkf uCZ/Hjbhu5s/rETNBLH8/usxc+ikqeKi7qOzVuygoX3Zu6if3/ojemHbj+il7T+mlxnEr1z8 4zqIf0Jv+GEsLmq2itO6qBVHUSsO3lIrjwZ8ExwzSgRV2/sCvokXtiO2XVtLf9nLFZo4/aVU aCqTXsWzFsfB0sLXLyQtLurhU+m34xewi3oVnb6IXdSrL0msPLSFoK3ipzYeT09vOp6eHTiB Dm0+gZ7bcgK9wDB+0YBx0ypmGIuLenfNRd1uFZv7xcEuasVR1IqPNAG+yfZ7Ad/oIKq8LN+4 +9YqNHH6yyQVmjjrnJQN1fnZGxWaSpv+8kOv1jgAVxzgXO7rysA3Csa/HDmT/iAu6jnr6Myl W+m8dZcmhvGj639Ij234IT3Be39PbjyOnmIQPzPAMGYQH2IQP7+FreI6jF9my9h0UbdZxSEu 6o+MKGrFgVseeGH5JnI5A75uwrc9/aW4qHX6S12hidNfPvgWrXysByo0cXS4VGhyGQ54tnwX CZWFryk4LWeLL5jELuq5dNK05XTa/H52UV/MLur9sTC+f/Ux9OCaY+ihtcfSIwziRxnEj/cd 58FYW8UCY20Vp3FRv1ePola8X6wYxICvA1Yv9nxj50ac1Rv3ulehaY+vQtOdzQpNq8MqNAWk v5QyopIu1jaOw5XrNtQrNAF4+QLPpf7tCfhGWcUnDp9Gv5uwgE6duZpd1AOh6S/v4n2/u1cc TfeyJXrfqmPoAQbxgwzih9fVYCxWscD4SQPGYS7q1sCtpov67bqLWvF+sWIQA75uwVdxKlFv K0AWRhx0FwcVvJ7GCq+nv0SFJi8Ht0uwwLNkuzAw4HsHD3RvNtMy/iWnv/zD5CU0aI6kv9xG 562vuahvWXQU3brk+3T70u/Tnct+QALjexjE9646msQqFhiLVSww9ruoZa+4xUVdD9x6cfuP yHRRv84KXVzUiveLFe8XuwnfiylN8YQi6/lm7nquB1wprt/sJT3hvN1eFLoExPExMm+hxNsP gG0a2Ea/R9Jf+is0ze+gQtPAa+WzivvZRb3qcXFR96Z+rur3bsB3KQ8s2h2NHNSN9Jdj53L6 yxV03bzv0vXzv0s3Lvge3cwgvmXxUXQbw/iOZQxjzyquwVis4pqL+thELmoduKU4ilrxcaYG eJ3b8+1h+HJNZqUb5+D2YMxlJL2z2HIsjFOMKs54pnhPHyDOHsTSp5L+slmhSdJfNis0reil Ck1cHhL6utzMAnxjFh3aKr6C9/6umvV3dPWcI+nauUfSQYbxDfO/RzcurMH4VoaxWMV31K3i JC7qZ4woasXBW4otY8DXEZezsefbAO/tv2YIS6vD2AMxN7GKJSOZWMWei5qtYnFR84IKMM4e xpEVmiRw61E5W/w+1+bmsqAvcPpLTm0ptYllX1gXSpFiKV4UNe8fby5r+kuu0AQQlw/ETfhe wg+PFtoHe6d8i/ZN/Tbtn/4dunzGd+hKgfHsI+kahvF1c2tW8Q1sFd/EMBarOJGLuq8ZRa34 SJPiwC3A10H4iqUrkBXYmlawB+MAqzjERQ0QZw9i6dMRW6+hMZfcTBP330PTrn2EZt/4FM2/ /QVafK+Z/tJXoemNOowZwAJiDWM54lTGwK2+Fz7iaPH3octLwDLA13KQdoz7Bu2c8E26ZOI3 ac/kb9GlU75Nl037Nh0QGDOIrxSrmGF8rcA41kV9dLuLuh64pThwS3HgFuDrIHy5EIa33yuu ZgGrwFhA3AJjn1UsUI5yUXOQHWCcD4zbKjTd8iwtuPMlWnr/m7TikXf4qE89/WXVKzTd9TJg bKnnizRAAV/LQdl40VdpYNTXaMuYr9O2sV+nHePrMJ5UhzFbxR6M2SrWLmqxiq9lq9hzUdet 4kgXNe8VKw7cUhy4Bfg6CF+ddewgu5R17u04GEe5qHXglnZRyxEzPiMOGGcPY0l/OWrnjTRh 351e+suZNzxBXoWme16tnS02XdS2FZpeKl/wllRoKhIw+KxwjzLgawnf1UO/RGuHfZnWD/8K 9Y34Km0a+VXaPPprtJVhvJ2t4osZxrvYKt496VvU5qJmqzjYRd0M3PKiqCWqVppOruFkko3s A67aIqFt0z4WdZ2Odpb9WwmokghnOXIkMBZw6hzcHoi5aas4yEVt7hWbVrHpopb7cplKOXIG EGcP4pqL+loas/sWTn95D00XF/VNT3OBBHZR91yFpvdozbZLad6qjYCyJQuyWlAAvpYdvmjI F2jpOV+g5ed+kVae/yVafcGXaR3DeAPDuF9bxaPrVnGEi1qs4oaLuh64db0EbtWjqBXvFwO+ Dlm9ZsCVHAHjSGbvaJFYqVzT2ctEJjCWSGc5eqRhnMZFrV3YQVHU8ln8+YBxPjDWFZqmeBWa Hqc57KJeKO7aRoUmDtyqWIUmybu9YdflbW3FwCUAsSUXOgFxA75L+MPQovtgzumfpflnfo4W nvV5Wny2wPiLtOK8L9IqtorXMIzXXyhW8VeoExe1Yhc14OsofPksr+Jc3t5xsF18HEzOYktC FC4p6UU1i1UsFqtEOTdc1PXKVHIcSazixn5xfS/Y3C8OdFGHnC2Wz+SoeMA4exj3QoWmIOgG /W3dxftpaf8OsCEHPgK+CTp1yqmfpmmDPk0zT/sMzf7LZ2nuGZ+j+YM/T4sYxksYxsvYKl4h VrHhou73XNRfs3ZRK3ZRA76Owlf24jmbmdT29SLS5VgYJ0rxzmVLchQOnlJ7GYoCxgOGi1qs 4jgXdZLALe2iFnc3XNS5L0DCKzS9wVWL3uYEGBy4xXV9N0jgFu8DS5T0lrAo6i6nv7SFrnnd RZNmkW4w0LIzUgHfBPCdePKnSLfJp3yKpv7p0zR90Gc8GItVPI+t4gUM48U+F7VYxesutHNR K46iBnwdhS+f51a8N684zaiS4DiOUPei0+V4mFjFcj6bA6Yk9aSXpSzIRS1Wsemitg3c8vaK I84Wi5tbXN5ybwE/W+awirO3iqVPxUU9Xldouv5xmnvLoRYX9ZonA1zUXa7QFOZijoKxCV3A Nzvo6gVME767bqclaLF9YAK4BcanfoqmMYxn/PkzNIut4jliFRsu6mWmi1oCtzwX9VdpowRu cRS1F7jFUdSKA7cAX0fhyxHtXupKjmJXvEfv7c9zUhVvvCRKXaxiOSbGSVM8GHfqohYL1wve 6vBssVjibKUDxtnDePiWqzn9ZXuFpsX3cIWmh+oVmp5uni3e9ApbxZzMIzTRR8bpL7OArnCh AV8wIpYRthwFfBMKUxh8zb9PYqs4yEUtVvGiIU0XtRe4VXdR68AtxS5qwNdR+PJiSfEiyVsg 8VlvxWe8vW0C2afn5CqK04160eqc79s7LiZWccNFXbeKtYu6xSr2u6iDAreMKOokLmoz/aXn okb6yzwXIc0KTffR9Oserae/5ApN94uLun62mF3UfX4XdUCFpi3iomZYp628lNTFHGTpyt80 TMzfbQGD68KNWsA3IXxFmKSykQ2E21zUYhWfxlZxkIuaA7cExopd1ICvo/Blb4biLQV1Ho8T ey4Uey2UeCv4iJm3XcBnvBUnWlGc7UwFuag5k1mLi1oCt0Jd1PXArTQu6rj0l9pFrSs08YIg TyD17L0HzApND9LM65+gubeyi/ruV2pR1HK2WFzUhz6ivqD0l/WsW176S26S/lJSZMbBOCl0 5fow8MrfTz9veCaW756Dd2ZmNVYB6oBvCvjKwCeBr/9abRVrF7UXuFV3UXvKnV3UvZRkozTn fHnPX0njwDvF+/yKx0zx8TPF3gvFR84Ubx8oPmam+Ky34oQrnouaj5OFuqjFKhYXtQRuxbmo w84W6yjqrFzUfIyqZ2HJ+7l5fnep0FRLf3k3TbvmYZrVSH8pLmoO3Hrsr7Q2zEUdlP7S56LO wsUcBeGklu+oqXNINwGvblUAZxbfoQHfxQwUtOR90AmE5b3aRa0DtxRbxootY8DXIetX9nUF lBq+/p+81++NGUe9K45497wXfPbbc1FzStKGi3p2kIu6ntHMC9zSUdSGizoocEsn+sjibHFc +ktUaMoNyI0KTVfcRzOuC6nQ9GyMi7puFSe1duMgG/Z6HCNM4MrvJnTN3+Pu0wuvA74ZLzo6 hbFEUSsO3gJ83YOvaRWFgljGj7cXlHZRy1aC56Jmq1i7qCVwS1zUErgV6qI2ArckijrIRS1n i71EHzm6qM0KTZJYBBWacoFxrULTjTRe0l9epV3UnP6SXdRt6S/9LuoDN9DWA9fTlv0HaeDS a6jvkisCk2fEuZdtgBwERT9wo6ALADcNPMA3Y/iawpkWxEoUuJli8sdnkjpxBKk/TiE1aC6p wcuyaeesYZdpP7tMtzAcdpAafQm7TfdyQNE+ttgu473MA7U2YX/tb2P38HU9mF6ybvlGuSRD Yey5qNkq5mC7houaE7EoTk3qBW5pF7UEbpkuap1mVEdR+13UF0uiDzlbHJDoo5P0lzYVmq7h gDD5DLiocwFxs0LTLTSR0196FZpuCq7Q1L/7Ctq09xravO9aD74CYa/x71suO0gb91zVALEN XOOuEf0WBNsg93KY1QsA1wDchO9O/gNarn1gC2NPkZsABnxr+6fdahbwtbKKZVw5SUuLi5qP nbW4qLl0pRdFLYFbOoraO1ssUdR+F7Xl2eKs0l9GuajFAueFQJ57pr1875HbD9K4vbfT5Csk /SW7qKVC010v0bKNF9OqLbtp7Y59DNkDHmwHLr2WNl92nQfgbWwVxwHV5vUo4MprE+YsCXUx R0F42LCxJC2IPVGvVYFVgG+XFhxxIPYAjMIK3QOuCfqE8PVDwspFzRnSlHZRS+DWWLaKJYra PFvMOcC9KOplDGORDZ3oI+hssY6ijk1/mWeFJqS/zGPB0KjQNHsxTV24kmYtW0/z1wzQ4g3b aPmmXbR6216StJDift649+pU8BWgCpSjoDt98WoaMWkm/eqkQXTk0cfRgrWbEwNYIBoF3ypA Nuw7AL5dgq9/QIJg3AAwLN/uQrgO3+Gbr87Esot0UXOClpqLuh64JWeLtYtazhZLFLXnoubj TJLowzxbvCYg/aVEUbekv/TlotZWcVz6S1RoymTss4TxmReMpPNGTaThE2fQ2BnzadLcpSRA nLOijxYyCCUns7ZqJRLaxsKNAu7YGQto0rxldOYFo+gHx//EO4LkbwvXbUkEYA1fP4AXnvS5 UCinATJxKtagluZeWb0H8HUEvmEwljPFCvB1Ar6zbniSplz5gJdaUFIMZqFIQ0Fsuqg5MYvi c+AqyEWtzxaLi7pxtphd1GIV60Qfkv5yoBMXNSf4iKtbHJT+UpKBoEJTJnISJGt+8A25cAwN HTOFRk6eTeNnLaIp85d7wBXw2sA3yMqdvniNd7/fnPIXz7oNAq7/b4vWb7UGsNZ7QfDNAnJh 0HUBxg34Ltp5G6G52QeAbxf3e8X9XLd8Vz76FidHeJ0LsL/iJUuQ4yGTLr+Xxu6+lST5fq4w lhgAfbZYu6hbzhYHuKj96S8lF3WW6S9jKzQxfGWfOKxusZRgFMsbFZpSyU4UCM84fwSdc9F4 K/j6oTuZoX0Wg/zYH/+DFWz9zyF7vOICtwm40szR+7v632L5dsKjpNANur6Tz7d5L+BbgkUH 4OsGfCXVX/+LH3Jd1/do9RPv0IpH3uS0ga95SfWlGLskTphw2V00eudNJPtyncI40iqWs8Xa Ra3PFnsu6oD0l+KiDkp/2VahiSOo/RWaLiugQpMkCkGFpsTyYmOFRrmaNXTFVS2//37QmdbW rfnZock0+rbHAtiElABY/i0/O4FvFuAtAsaAL+CLo0ZxUdR1y1dS/ElCfEmMP8DZhSRJft/z H3BWor9yWbm3OUvRG7T43ldp/u0veKkExUUtEarFuKiNs8XaRa3TX0qiD5v0ly5WaJKzzBw8 1ulCporv7wS+UxasoLNHjKPjf/YLzyVtc68w4Aq8h0+YQU+88FobbGXfOcoC9sNXW8Bp4JsX dM37yjagjVVrcw3gC/gCvpbwFdhKft2tnAR/+zucb5d/SvJ7+ZvUcN340ke04bn3ac1T71LD Rc1JEqTknCTZFyU3ZvctNGJrzi5qSdJiuqjb0l8yjHX6S5sKTTbpL3WiDwncEneyWLK6XOJN 9aIQqNCU6SLCBphBlq+8T+8D659x9zKt2wkcZS3BXWecfxEd9cMfNWAke8KPP98OYDkOFQbg IPjK35LAtwjoymcIePOB78W834nmZB/A7eyA25lTP/oT2uui6WIRC4wFylJEfXPdKhYX9bq6 i3r5w+yivu81WnDnS56LeurVD9GEfXfRqJ030oUDBbmozfSXaSo0BaW/lEQfiSs06VKJ/LOT Ck2SZrOH01/GAdMsiGBC2Ba+JnDFupV7/PqkP3uu6TBWyGuPPvdqG2yXb9wZCGD/fTzXM3PI g28Mj4qGbgO+GXGyaflmdMO4DsPryRc5gK+b8DVhLNVmBLrilvasYtNFzVZxi4v6MXZRP1hz Uc+77XnPRS3JE8btvY0k328WLtLI/WIz/WWjQpOR/lK7qCPTX6JCUxbj1Mk9soavCdsx0+fT ZD5WNJiPFR3zo582jinZ6G8B8COHXmkHMJ9B9lvA5v00eG3gWwR4NWz9P236wOYawLcEiw7A 1334+q1i7aIW13TDRS1WseGiXn+IXdRPvsul5WpR1FJqTjIXTb/2US+toFTAkUo4nSho/d7o 9JcBFZrkbHEnFZq89Jc/SZb+EhWaEo11VvBtBl7xsaIps+m3p57uWbdBLmsbqMg13+X3P/Ts y22wXTFwScvfbOEr0JZr/dC1fR4XrwN8AV/s+drs+Qa4nePqqpqvt7ioxSr2u6hfYBf1M7Uo 6qaL+kWv7Jwk2peE+6MuvoGGcQL+TmEcG0VtVmjyny2WRB9e+kubCk3G2WKJog6q0HQFu46L SH9ZQRd1p/AV6MpZ4CHDx9BxP/25VRKOJBD77jHH04PPtAN45ebdDQDr+zWOGtX1sd/trC1m E75JnqXIaxdaMqUBX3kDmpt9UKjlOxaFFdpySEu0c4fwTeSiZhf2hnoU9cq6i1rOFs+77TnO 6/s4u6jvo7F7xEV9XccgFpBbpb+UOtO2FZok/eWKkPSXQRWa5Jyvv0KTDty6LqP0lxL0VbEK TZ3A9w9/Hhxq3UYdT0rKiO8xgO9/+qU2C1jyUQtQQ+/He776Nb+rWgO48V651rg+9hn19f6f fgaar4fx0eaakPcCviVYdLTB98wcqxoBvu3ZtDKGb1vgFkdRy/GlNhc17yHrKOqGi/oRdlHL 2eK7X6Y5Nz/jVbyR4uyjd4mLuoD0l9YVmurpLyXRByo0ZbJI8ns80sLXNs1k0HWxYAvQp987 9gS676kX2wC8euue0ChogWlYhLQ8lwA4MXzjQGkC3A/0ILhHXW/BFcDXopPSCFyW7wF83djz FeWXxNWc6lq2ek0XdSNwy4ii7qu7qOVs8XI5W3wfny2+Q1zUnP5SXNSS/lJc1Py8nTar9JcS RR2W/rKlQhODGBWaOh4TPaZlga/owqOO/RHd++QLbUBdw0UggiAbBF9zMZAYvkms4yTXan6k eI8B31t5JYHmYh8Avu7A14RZKri+JOeB7ZsXuBUQRd0I3BIX9XOc6EPOFj/2FkdR6/SX4qKW 9Jfior6VLtpWoIvaX6FJAreCKjSZ6S/jKjQF1S2OOlscl4vaq1sszUx/yb/LWWR5r7io5bzy VZz+8jJO9MEFKjpdyGT9/u7ANz0j5Ezw3U8EAHj7pW0A9sPXb4XX4Ft/lgb4Ip7N5hrr+8n2 pO+zkty//t4mfHfwzdCc7APA1034+pVpEqimvTbqbLG81kh/+aQv/aW4qDn9Zc1FfRNlUaEp NnArtkITB245UaHJB+KwXNSyDy3A5zKNWYM0zf26At8OGfH9435Mdz3+fBtspR6xaQFr+Ia5 yD346mfR4At7trjX/e8z3dO231feY3tt/TrAN2GHJe3gLK4HfMsB36Kt4o3iog46W8wu6kb6 yxc+4CjqWvpLz0Wt01/2YoUmnXErzioOq9AkVrEEbnm5qNkqvpphfICjtTnRSBp4dvqeMsJX 9OH3j/sJ3fHYc20AXnfxZY2/CXyj9qZzha8wwR+MlRXYjfsAvoBv61EjBFyFBlydu25vaiWb 1tJN8r6g9JeS9KPpog5IfxlUoSnv9JdJKzRJ3WJUaGqTvbLCVwAs9YBvf7QJYB3BrLNydQu+ C9JawUmta/6cBnzlQ9Hc7ANYvm5Yvr8eM4dOmracTpvfR2etuJiG9u13GsaRLmp/hSZJf2lW aLoaFZq8WsRJ0l+KZdxSoYmt4hxd1N2Ab6eMMM/p/uD4v29LmmEDX30P/SzaSg17trjXbb6T zT1srjE/C/AtwaIjN/ievYbU0H73LN8RW0lJi0t+UdTr9aNGPx86kXQ7cfhU+t34BXTKzNV0 +qIBOmf1JU6DWFzUoekvXa/QdOGXSekKTRK4ZVOhqS9J+kuGpARWiRtZgqySnC0OclHfUg/c 8lzUHLgl97uK751xhaaywdc2JaS4m4MsX//7k8JX7mkD2qBrbMBqcw3gWwLgmoPUs/AdtYtT HHLSjwmXcbTs/u7BuA5fr1KP0UwY/3LkTPrD5CU0aM46OnPpNjpv/aVOw9imQpN3tji0QpOk v5QKTXmnv4yr0MQZt2wqNPUfR2rT8aSsKzQxLB2v0FQW+NpCV1/nh2/Y+23h67mS625hwLdk 8Es7YFm9D/Ctw3fiAVK/uIDUH6Zwybz5xcE4BL5hIP7FBZPoN2Pnsot6Bbuo+2nISnZR9x9w GsbpKzRx+kuvQhOnv/QqNBWQ/lKiqM0KTRd9ldSYr5Maz0eadPpLiaKex4k+FvJ+8RLOuCWJ PlZx1q21x5Ly6hYzjAcExj8itZ3zUEv6y5JVaHIdvkmh64dv3PuTwNcEcJgFrP/ufz0I3DbX xOl/uJ1LsBBowFegM2guqawyXLnudvZbvn74DlnJKQ/7am7zPF3QFvBtgJhrfipuLS7qEdPo dxMW0qmzVtMZizfTOWt2Ow1imwpNOv3lqrYKTZL+sksVmmzTX3qJPnzpLzcyiDfXc1HvYBjv DMtFze7ptC7qqLPFLS5q/gxxUXNxiqiI6G7B14wEDgJMHDTjXteWb9x1fvi2RSiHuJmDrguD aZTF7L9PHGz9rzfhu52DjdCc7APAN8TyNeE7aiepsXvY+tnHbuqMXdQ28K1DN2wOmTD+1ahZ 9McpS2nQ3PU0eJm4qPe5DeOw9JdBFZok/WVLhSZOf4kKTaRkH1iCt3RSD/npwdj4m7wuQV6+ RB9hAO4KfH2M8AMoDpi2r8t9w67VJf7KzivAtwQLDsA3BXzFShYIC4wFyp1YxlHwjYGuVhDz DTkzQfyLYZPZRT2PTp6+gv6yYCO7qHfSBRtL5KIOqNCk01+iQhMHWkmMgARdJT1bbCT6cBm+ Wr4bxQ6M87G2oA26Lgi+Zl1dz1Itge6OesYGfEU5oLnZB4BvBvC9aDvnH15PajAXpUgK4jD4 MnizmDMmjP9pxHT6/cRF7KJewy7qLXTu2j1uW8UhUdT6bLG4sL30l0//ldNfvt1If9lWoalb 6S9Hct3isbxfrNNfzuCsW3OOJDWf94sXcS7qLCs0SWIO20QfhovaJfj65T0KsJ1YxSZ8/cXs 5TX5WxZzr5v3MOB7C38ZNBf7APDNGL4CYN1sjjRp+IqVK3l+69ZuXrLS4qIePdtzUf953gYa vHw7nb/BbRf1QEyFpv6XPiKJol795Lu04pE3axWa7upShSYz/eXQL/Hxtq+QGs0wlsCtSfUo ajP9ZUuFJg7cWs+BW/4oat6n9QK3gnJRS91iOXIkUdRy/EisYoGxZxVzE3ezuJ19LupuwHf3 wTsCM0xpmU9j1Zowjnu/hq/f2tXg1X/Paw4WcV/AtwQLDsA3Z/jqc8Vh54tN+Hor7uIWqSaI //HCKfTbcfPp5Bkr6S8LN9HZq3axi/pydy1jo0LTdnZPh1doMtJf6gpNkv6ylBWaOHBroB64 JVHUoYFbfLZYYGyeLQ5xURcJX4Gu2fwpHkX248Bp83qcVWxCVl/rt4DNf9vOyah7+F+zvWfa 6wDfAhVp2kECfAuGrwljcVHX4Zt2/LJ8X4uL+qIZ9PtJi+hPs9fSGUvERV2S9Jec8nL7O00Y t1Zoap4tDqvQNKIoF/WZnyPlQIWmIuDrh24QgG2gmvaasAhkv6UbBk/bOWYLX9v7dXId4Av4 upvhKslRI3+0sz/gytzz9bud/Zav/9+8V9zJJMvrvSaI5fdfj+b0l1OXsYua018u30Hn913m rlXMZRWt01+GVGiacFkFKzQd4G2Nyw2rmF3UecM3CrzyWlqgJnlf0L6ujcWb1P0cB9+85mrQ fQFfwBfwLSl8/RO61UU9lX47fj6dMmMVp79kF3UJ0l8GVmiS40xm+suICk3jLr2DRu64PvWC w4RcZLnEQZ8hdTon+hjyeQ7i+yKpYZz+UhJ9SODWBF/6S0n0IYFb3tliTvSh6xZ7iT6Ms8UR Luq84OsCdAXQQfu6QW7nJDAu2oWcBtpN+G7jfSw0J/sAbucuup0FzGL5RsyNeY7Om7b0l5MW 05+89Jdb6bwqVmi6+xWae+shmn7dozTpwL00dvetnP7y2nxhnEWFJgnc6qunv5REH9s465Yk +tjFiT44cCtr+N744DMt+7pBEE5itaa9NiqYKsrd7HdRx1mzXmS0g3O0AV9RIGhu9gHg2334 ln1utLioOf1lFSs0rXv2PWqcLeYo6gV3vUSzb3qapkn6y8vuotGS/nLzVR3DONIq/tOnSeko 6nPZKr6AreIRbBWPDkh/OTci/aVEUXvpL0/IHL6SnOP+Q28EAjgtSJO8Ly6CWV633evV18ZZ xS7OX8C3BIsOwBfwzVp5tFZokvSXC+jUklRoikx/6a/QJGeLH3qDFt/7Ks27/Xmaef0TNOVK SX95O43cfrBjEItVGuuiPoMDt4Z8gT0ofJwpRYWmrC1fga94Bi6+8qYGgJPAM+21Yed1gyzX JPANc1ub98h6/mRxP8AX8C3Xnu/PjcIKUeklMw64ymKyuXyP4ApN6+lML/1ldSo0rXi0lv5y kbiob3m27qJ2sELTXE70sYCLQvDZ4rzgKwBevGFb4QFVcVZqUss3yu3sd1G7NAcBX8AX8LUI uHJp0ub9LC3pLy+Q9Jdz6WSp0LSgIhWaXviQWlzU97GL+k52Ud/YhQpNErgVU6EpT/gKgK/g 43RmS2vZBr3PxsWcpeUbdC89X4YNG9soLShQln/rlvecCro/4Av4Ar6Ab2S8R3CFJkl/Wa0K TbX0l+yivodd1LeJi9qNCk15wleCrfzwzQLEaaGr35fW7eyHbxRUNYC7AV75TAO+N/MERHOx D7Dna+z5dtXtjPkh8yO8QhOnv6x6hab94qK+mYZvuSbf/eJTOXDrNLaKB7OFxvvKQS1tVSN5 n2Su0lHOUfBNahUn2deNcxfbRDGHXROnx5sWb/fmNOBbggUH4OsCfLs3SeMUSTdfb6vQNE4q NHH6y0aFJofTX/oSfXjpL98i2vIG0WYduCUu6mfeo1WPv0PLH36TlnD6ywV3vEizxEUt6S/3 3UmjLr6Bhg1c2TGMwwK3soavgHfSvGWp4BsF406tXf/708DXdi4IfG2vzeu6Bnznbr2Z0Nzs A8DXD9/JbBXM5wjSlaTO76u5zXPOcIW5YTc3gio0/UkqNHnpL1GhKQykQX/XMM4DvgLgQUOG 0pV3PBzpdra1itOAMkvLN8n8FPAmuT6vawHfEiw6AF/ANy8FkPd92ys0SfpLXaHJ8fSXcRWa XtQVmt5pr9B0zSM0cb+kvxQX9dUdW8VZup3NYglHHXtC6eGbRIa1uznJe/K6FvAFfEsYcAXL Ny+FkOd9gyo0nZJBhaaN7D7OvUmFJnZFi0vaukITny2eLy7qHCo0CYzT7vn6KxXZWrdR13XD 8k0qqy6BV54d8AV8ywnfP8PtnFT5uHZ9e4UmTn/JFZrOLFOFJt4jDq7Q9BFteC6mQpOkv9yW Pv1lr8JXFg9JZdk8VhT0e9L7ZXE94Av4Ar4WR42ymGy4R/i+cVuFpjFGhaYVO2hoVSo0PVFz US/h9JcL73q5lv7ymodr6S933ZQo/WUS+G7YdbkX4RzUymL56mevyjwCfAFfwBfwTWxJ5K0A W1zUw6VC04J6haaBUlRokmjprb66xVusKjRJ+ssHaNylnP4ypkLTz3/9B/rNKafRKWecG+qC FmAJeMsO3zTWbt4y2un9AV/AF/AFfJ2Dr1+xVbpC00utLupG+st6haaoCOkjjz6OjvnRz+gn v/gVnfi7k+n3g86kQWcNbcA4Cr6S3Soow1UaSzivPd8qQlfLdgO+cxhCaG72AaKdA6KdC97z xdxwZ260pr+UCk1z6aRpy+m0+f101oqL2UW9P3V0ce6BW76zxbJf7D9b3P9ia/rLKPgKPAXA un3vmBPouL//Of3sn35Lv/zjIM/NLNf43c0avC7Dt+pzrgnfLTy50JzsA8DXAfhibjg5N0Rn RVdo2u00iCMrNL1KtImPO8XB1wSpH8ZR0HXR8pXxlGeW1I9V55EB35v4y6K52AeArwvwxdxw cW4EPVOLi3rULPrD5CU0aM56GlzSCk1J4euHsbZ+/X93Db5ivevxrMG32nMO8C3BAAO+gG/V FVFe368t/aVUaJquKzTtpAv6DzhtGQ+w9dspfMOg6wp8g8Ye8C0BmPKatC7dF/AFfF2SxzI/ S2uFpun0uwkL6VRJf+lwhaaqwjdKjgBfwNcJ1wfgC/iWGXguP3sZKjRVDb428gD4Ar6A78QD pCbsJzV+H6mxe0iNvJhU3NGcrF4ftYvUuL38+YCvjcLCNZ3tEbacLR42mX5jVmhaxS7qjd2p 0FQl+NrKaE/BdzaDFs3NPuh5y3d89+GLueHm3MhzXFrTX06n309c5KW/LLpCUxXgm3ScBL5J 31O26xsBV2V78F56XsAX8O0leXf1u7ZVaJpaq9B01vLtdP6G/Co05Q1fCbzSfZ4mwYa8JyzJ Rtqx7C34buaVLZqTfQD4OgBfzA0n50a3dFZwhaZV9JeFm+jsVbtoWEoXdVCSj0LgGyLftjD2 w7fTcfHgW/E517R8K/5FyzyQgC/gW2b57YVnbzlbfNEM+v0kXaFpK527bm9Hx5nyhq/t+NiW FLS9X9R1gC+A7MTqC/AFfLNQaLhHMd694ApNy+nP8/s4/aVUaEqf/tIP4rgzvFGvdyoPJozF 8u30fub7AV/AN1OBSiuc+cF3Namh/e4XVnAh4ApzwYm5kHYOdfN9rekv6xWaZq6i0xd1VqFJ QJwWvt3sD3x2bREIt3MJlCrgC8sXCqsYq7WIfm6r0OSlv1xHZy7dSuetuzSRizopfIv4fvgM O1ltwHfW5hsJzc0+AHy7D1/MDTfnRtnHJapC0xCp0NQf7aK2hW/Z+6mKzw/4lmDRAfgCvlVU PvhO7Qua9gpNnP5y5mo6ffEAnbOmvUJTHHzRx+4uGgFfwBd7vnEZuc5bD69QCeZJFUHjT3/p VWia26zQFAXfKvZHlb5TE74DvEJAc7IPYPk6YPlibjg5N3pJZwVVaAqCby/1SZm/K+BbAqUK +AK+ZVYyePZ8DBuBsQlf9HM+/ZxXvwK+gC/czjZu5xLISV5KAvctl1LHeJVjvADfEihVWL6w fKFQy6FQMU4YJ1sZaMB3JkMIzc0+AHy7D1/MDTfnBsYF41JWGQB8S7Do6F347qzV83Ugw1VZ JzieG3CCDLgpA4Av4Ovwni/gC8XppuLEuGBcOpUBwBfwBXwtAq46nWh4P5Q1ZAAyYMpAE76b bqCZaE72AdzODuz5Ym44OTegs6C3yyoDgG8JlCrgC/iWVcHguQFHyECwDAC+gC/czjZu5xLI CZQcQAcZKI8MNOA7g5ULmpt90LR8J5MaNJfUmctIDc6gne16PV93Aq4wN9ycGxgXjEtZZQDw LcGiA/BN6XaeuJ+PKe0jNXYPqYu2k+ICCW2LljirV17n95V1guO5ASfIgJsyAPgCvtV1OwO+ WDSUYH4Djm7CMe9xAXxLMDlh+cLyzVsR4P69CQCMe/fGHfAFfGH5xrme4XaGBV0CPQGQdg+k afq+Cd+N/OBoTvYBLF8HLF/MDSfnBnQW9HZZZQDwLYFSBXwB37IqGDw34AgZCJaBBnynM4TQ 3OwDwLf78MXccHNuYFwwLmWVAQO+1zN80VzsA8DXBfhibrg4N/BMkMuyygDgW4IFB+AL+JZV weC5AUfIQLAMAL6AL6KdLaKdoUAAEcgAZCBLGQB8AV/AF/DFllMJ9ECWih/36v5CAvAtwaSD 2xluZyjL7itLjAHGIEsZaMK3nzsWzck+AHwdgC/mhpNzAzoLerusMgD4lkCpAr6Ab1kVDJ4b cIQMBMtAA77TGEJobvYB4Nt9+GJuuDk3MC4Yl7LKAOBbgkVHT8N37F4uCwj4llXB4LkBR8hA sAwAvoCv29HOgC88UiWYowAMFhlJZQDwLcHEhuULyzfpxMb1gAFkwG0ZMOB7kFfYaC72AeDr AnwxN1ycG3gmyGVZZQDwLcGCA/AFfMuqYPDcgCNkIFgGmvDt4wvQnOwDwNcB+GJuODk3oLOg t8sqAw34TmXlguZmHwC+3Ycv5oabcwPjgnEpqwwAviVYdOQO3wu3kBq5g9ToS0h50cX7SE0Q 4B2otQn7a38bu4evu5hUXC7krF4ftbP+PPws8gzyLD+/gNQfJpP683xSQ1aSOr+vFq3tXcvP 5z17/dqJxnNftJ3UeetJDV7W2myeld9X1gmO5wacIANuygDgC/iSAnyjFxSALxYfJdATgKyb kA0bF8C3BJMKli8sXyjWcilWjBfGK04GAF/AF5ZvnOsZli8s3xLoiThlj9fdWhAAviWYVLB8 Qyzfs3x7vmOw5wsF65aCxXhgPOLdzhu4k9Cc7IOehu/SB0mZzQy4KhK+mBtOzg3oLOjtsspA w/KdwsoFzc0+6En4+qGr/90l+GJuuDk3MC4Yl7LKgAHf6xi+aC72Qc/BNwy88vdO4avvrY8c xe33yuu85+uiXOCZoK8gA+WVAcC3BAsOwNdwPWcFXw1hwBcLixLoAEC2vJANGzvA1/GJp2Yc JMC3+/BVS+4nNesmgMrx+QJIVQ9SVR1TwNdBZeJlappzSzPQ6MdnkjpxRC2z06C5pM70ZWny Z22y/ffZq0kN7XfvqFERbueElm9L0NfcWwFhB+dNVZU0vlc1FxSAr0NKREk6xAV3tUb3CiQA 32afdMnt3AJfDe75d5CaeQNA7NAcAqiqCaoqjivg64DiUFOvYeje2Q5dreQBXzfhq8dHFkyz bwaEHZhLVVTS+E7VXFA04Dt5/XWEVmwfqIu4mMGsG8nbT4xytQK+bsNXxm7xfaTm3UZqzG7M I+gSyABkIFYGAN8uCYlXoWfOrdHQheUb3D+6qlHSJBtBCxzLaOfIxZF5X7GCOUgOC9liF7Lo b/R32WQA8C0YvkqAMe3aeGvXVOiwfMMXKWZJwaD0klEeBXktDr5x7w96fdG9pObeBgAXPLfK pnzxvL29YAB8C1QQasS21ihmW8UO+Np5CGz707wuCr5p7td4zwO1ffxxlwLCBc4xAK23gVam 8Qd8C1IMavIVvCd4ezqIAL7p+s0GnkHwtXmf1TUM4EX3eBHRZVIKeFYADDKQvwwAvjnD1zuT O/Xq9ODFUaP8wOt3O1sB1VfoIfY9dQDzsSQotPwVGvoYfVwWGTDgey0rB7Qs+0AN4f3dSZen czVjzzdf6JpJNmIBmhS4vuuXMIAX3s1ycHPdDY15luU8w70gT2WUgQZ8JzF40bLrA/X7iaRG X+K5HL1jKJ0oeLidO+u/Tvo+q/fKcTIB8PTrMM+gayADkAFhLyn536R1DB60zPpADRuoRTUH ZaxKqtBLBF8bGcolwjhpn3bjeomCFnmYcmVmcmbT37gGug0y4J4MAL45LDjU2atq7mbOAdyR xVuyc762E7xn4SvW72IGsOTt5iNStv2F69xTnBgTjEmnMgD4Zgxf9bNz2N28q5a5SiJds7Cw SmL52gpjz8JXZMEDMG9D8HaEbX/hOih6yED1ZADwzRq+4m7mfT0v1aAE2gC+bZDpafguZZnQ AVi8LQGlij6ADPSmDAC+GcJXnbOG1Ni9nF7welJS8SYL8JboqJGtEgF8BcBsAfMCzbbPcF1v KmiMe3XHHfDNEr5D+0iN31eLcM4i0Ap7vtktYLJaCGVxH88jwk2SrnAeaCjY6ipYjC3GNkwG GvCdyBBCS98H6qTppC7YSGoC1+SV/V45VpKFoi6R5SvyM2zY2NCm5au3Ld/6GeBl/LNeD1jS jmLupZ976Dv0XRllAPDNaNGhTplJ3vEiqVY066bsgq1KBl//JBAYLzzpcy1w6Xn4LnuIlDTJ /SwLtYu2A74ZzcMyKmE8c28uHprwXcsdgJaqD9RPOcL5T3NIDd9SO2LEhdXVwowincsEX5/8 aCvYg6/xWs/Dd/nDpKSJd0RkZdTFqeQO8xU6CzJQXhkw4HsNKwC0NH3gwffP87g8HVctmsQF FOQcp+d27q1oZ3/fCXzlbzX4NmWrp+Er7ublj5Bawc0rPchnwTkTWhq5w3ugryAD5ZUBwDeD BYf66dmkTlvA7sMdpCZfWcvhKy5FiWjNYt+3JOd8TUWgwQv4+vI8i7vZg++j9YhnDroau4fU 7yYCwBnMRcCovDDqtbEDfDOY8Orvh5A6fRGpkRfX9nwl2lkiWcWyyQW+S0kN5mpJnbazV5Ma 2k/qQnaXj+SFg+SilqNSErE94bLad5EmQWTyN4GEfMeQGrh68mh3s/43LF8DwOJuXvlYDcCy OJOgK675KzEDvaZ88H0Byl6WAcA3K/iesaQGsXEMr2nX1FzPctwoC+u3zfJ1F75+8MLyNcAr Vq9YvAJf+V27nWWh8+f5gG8Gc7GXlTm+e7kWMw34TmDBR0veByLw6mfn1vZ8z1vPwTM7a0FX Yv2KVSO5fDu1fksC37BjRmL5ymtavmL3fMXK7rTPXHu/7PUKeFc/WdvvlXgAiQsQORHPAsMX 8y/5/EOfoc/KKgOAbwaLDvW/zid10jR2Ay+vRTwLPKSi0RwOphEF26n1WxL4hk0Cga/5Wix8 XQNnFs8jwF39BFu9j9cinSXRxlxOQTr16pq7n6Ply6pE8NwAIGQguQwAvlnAV4op/GYsB13N 52o1G2rKVAKvPOuXA6/EvdgJgF2CLx+LCYNnJvDNAnSu3UP2d1cxeMXq9VzODF8puiHyIXvq wzZ5e75QYMkVGPoMfVZWGWjCdw0PIlqqPlACx38cTupkznJ11gq2frfWApbE+pWjJGL9egBO efSoLPANkR/P8jVeC4J3GWQvlSvcAy9bu2ufrruc2fUs+71i9UpsgFTAGsIlKAW+mH/oA8hA z8gA4JuBsHvw/Qfe9/3NuNqRI7F+xxjWr0Q+NwCc4vhRleFbt1I1eATUflhHQUlf7//pf4/5 ug3kgp4hMXy1xbv2GVJrGL5i/cq+r1i9ktlKYgMuYKv3LwsB3wzmoc244hoYWa7IAOCbwaT3 4OtZvxey9TuDLZmVNdesWL+yp6ePHgmApZZrUgu4JPANc0cLyNpe87mGk8I3DqYmPP1AD4N7 HMATwVcgK8Bd92ztp+dyZgtYXM4SiCdlJyU4T457yYINlm/PWDyuKH88R3cXIoBvJHyvtlII DfhKso3fjq9ZMudzhSM5Ozs+BMBJsl9VDb4Be7JJ4JvEOra79mrP2tZQDnuPFXwFrhJYJdA1 wStWr3e8iK1eSSkpe70XbiZ1Jh8bA3yt5hlg0V1YoP+z7f8GfMevuZrQ0vVBA7567/cUtn4l 8lkALFmvJPrZs4DZ1cg1XJsR0JZ7wFWBb0QglJY9Db4oWbS5Jsn9/J8Vdv9Y+EowlbiY1z9X A6/s83pWbx284vmQCPjpB2t7vVL/Wc6H1+GL+Zdu/qHf0G9llAHAN4NFRwt8fzKY1C9HkTp1 Vi0Dlez/ctWaBoBlr0+CbRpHkCwAXAX4xkQg28IyCXjlnqYr2XaCJoav7O2ueYqBe6gOXv7p wZdBLBavfPeFnHBFwCtBeJKIRTKLyQIN8MWiPwMdZCvbuM6dhQrgm4Hgt8FX0k3+eoy3j+e5 FTWAJY2gWMCBAI6B8IkjSP1hMqlBc2v3TJha0nbSxaaXjDhqFLav6+35dgm+fgDLs8T1hTV8 5byuWLUC2Q3Pc3uh9lNbvhLlrJNpSMazqRzdLOCV0pNnc4Qz4Bs7FnFjhdfdgQnGItlYAL65 wPcsznrFZ39/zWd/JQBLrBvJfiVVj0T5TrmqCWBJQSlBWAInXedVfgbBqkzwNZ4/Dr4mEOMs 27jXbdzVcQCOha+Mj7iYxaUssO17sd7q8BWr1wuu4us8VzODV8ZccmNLClJxNwO+AG8GugfA SwY8l/qrCd/V/CXQUvVBu+XL8JXgq384r2YBy/nf0xc3ASzFC6bUk3CIYpboV+2G9qre1Ou9 SvBOEITTWL6WY9ux5RvwvFbwrT9fA3whzxv3uo0Mx90j7HVvXMSNLHAV4PbXm/wuVm/D4pU9 XnE1S73em2oJV+TomVi8sggLg6/lGNl8R1wDfQYZcFsGAN8MFF4kfH8+lNSvRtfST0rlo3PX 1Y7diBUk5zxlD9BzQ/N+oJQh9CohsQvaS8Jfr/sqSl+UeRCILd3PthMxNXwj3MpR8NWv6eez BaNnvaYcO9vP8N/fg2v/S/Um1m7d0vVczbzPK5awZ/HW93glwE7GWIKrJIuVbD8AvqnHLe14 431uQ6hXxwfwTanATYGJhe8vhtWCsP44tXYM6dy1NfejnPOUfeDJV9TOfcoRFJ2QQ7uiBbxy ZlSaBPaEuaQ1/EJgbCvgqeAbs58bBl/z77bwlevi4Bn3XePeH2r5euDVLuY6fAXIGrpezmZO oiKLqJnX144TyRhLIg0JsIqC78ETAaUM5mLc2ON1gNgVGWjAdxwLPlq6PrCCrwRM/dNIDpqa 4lWw8RJxyFEksYIlF7Qk5JB9wRl8DMVzRYsVzGdCRZnrAuyyzyjNA7FYwyF7wyYM6zDWFYeC xth8LRF8LXMo28BXP5cGX5wsmlHMQdfK6/J3/TPJ/cOeocXqNaEr4yCLJdm/l7GTo0RSqUiO mYmr2RK+cd8Zr6ebn+g39JuLMgD4ZrDoUGy1NAAsR43+3tjzFbezWL4avuKClkQcchTpDN4H 1gXt5TjSmN01a0lnxfJc0Togy3BFC4Bl71GauDktrGIRPoFsFKjkNSv4WkJXu8mD4Ov/mx+O JlyjgBx0XRhwk4Ld31cefD3o8rGiRnUisXQ1dNl7IW5mGUepbiVJNGzhO+brWPxmMBddVLJ4 JsA/SAYA3wwmfCLLV+ArUdCSB1rc0ProkAThiIU0kqsGSUS0uR/sJeZgK1inpjQtYTnOIqkL VzMQ5KcHZIazz0Wt4RsEYPmbH2KeJS4LAWlixSUErnm9H7RBMC6DgvKSZkh/S99KilDv7C5b urJvL/0k0JVFlES1A75YTGSgW8owL/CM6RYXgG8GE0Sd/Klklq+G7+8mkPr9pFo0tGQ5OpOT cpzD+8FiLcleoWTG0vvBszhqthGUpd3RHNij94QFCrpsnVhmXnYl/lmHsZ4gfvj6/21aqxrI nYBX3lsZ+EoAnE6YIfvzAl1ZJMliSRZNHnhTwFc8J7B8AesMdBFAmA6E3eg3A75XsfCjpekD D77a9WzjdvbDV87vihUsrmiBsOzTSlS0uC0lUlasUIGwlKCbwYE8XmAWW8OeS7oeHR0FYU4C ob9Xc3+3NtY1+DbHPQi0bVZxQivYhG8QiGtuYkP2Vrkphw1LV/bl5fiQLI5kkSTglTzeaeE7 6Vt1+Lr5vdPMCbwHYwkZiJaBJnxF4aGl6gMPvtr67QS+J7EFLEk5NISlNvB5fDxFXJheZDRb WOLelMAssbqkWpK4Pf0R0mKhyZ6kYQmbY+sBl8da/zRfa9SdFUta7yX7gruSwlgD1w9h899l kD0vkEqgKxHqEiQnC6Ms4Yv5l2r+lUF28Izgi18GAN8MFF4DvqcwhK3gy4k3ZM9Xu5215avh K2kpT51N6k9zakeTBMJiCctZUdlPFKUvANDBWQIFfVbYn7BDAMog9cO3YQH7vn9YAJMHSl2p R9Ipeq1WOMB8Ty0QjMEt8PfaYzW3s/7Jr3v/lv1pcYvLMR25l3dvyY18yFoBH7H1TfrYtrfo 49vftn7PP9/xNn1y6xv0ic2v0Mc3vkgf23CIDufvcZjey5Uz1hJlLv0oCxtZ4EhaSOlrOZst +7qSMCMr+E7/Druu65ZvBrIIJQ8lDxkohww04DuWJz5auj7IFb4SkCVHk7w9Yc7pLNHRcl5U 9oXFzSkQEBDL3qNAQrulpXiDPq7EgVrm2GrwBo33xwdeJmkf21RrR3D7+OaX6Z9te6UtKCsK 1Pq1wwfa3/fJHa/SP9/5Gv2LS16jf7nndfrXl75O/+ayN+jfHXiD/v3lb1jL4f9z9/v03+/9 gP7HfR9av+dj/S/QEeufpcMZ/Id5gWlyNpePCUnwlLjyJSOVuJUl4lz6VFzLkpGsAd4M4Tvr 7/hYUhO+mH/p5h/6Df1WRhkAfDNYdLTAV6zfuKNGknLS1vI14StWsGTJkiNKkpRfIqTlrLDs DWsQCywm1feHxWqT/WEO1PILpwA4EL59z3kW4ScYwJ/c8iq31+hvtr9G/2rX6/Rv9zAcGZL/ xxVv0n+45k36Twffov9y09v03257m/77Xe/Q3973Lv3Pe961gvTf3v8ufeqhv9JnH/krff6x 9+iLT75HX376PfrqofetQfq1Z/5KX3z8HfrMg29Zv8dzpUsGKtkrl2QYEsQmXgPxHpjAlQWN 1wS8gG8ZlRueGVB2WQYA3zzge+qnm7mdg875ZgHfM9gKluhogbC4pSVKWrIoeSDm4B9tEdf3 iP2Wb5hQHs77xYeveoyOWPMkfWzdM/Rxdst+ov95+sTGF+iTm16iTzKU/+X2V+jfstX6v1/2 Ov2HK9+g/8wQ/r9veZv+x53v0KfuZ5g+8h595an3WyD8/TfICsraYraZNP/1+lfoP171Mv2f +1+0h6/pTpZ9c9k/lz4az0FtsnDxmgZvjvCdcyRDH5avzTjjGkC0ijIA+OYF30EMYCmsUBR8 z+KMWUO4TJ24pc9mi1gCtbw9Ys6gxdG4tvD1rMH6meLDOKr5cHbLHrHyUTqCgfyx1Y/TxxjK H1/7FH183dP0CXbffoLh/Mn+5+hvBl6g/23Hi/Tvd7/EMKy5mv/r9a81gPu3d71J/9+db9L/ vP1N+u+3vUH/761vtMH4vxx8nf6v616n/3zta/SfrnmN/uPVr1oB++P8XFGudPM1D7biTpaz yxJFrluR8J33Xd5PBnyrqFDxnbBQsJUBwDdP+J72me7BVyxhySEtgVqczF8LRBSk5Bovilr2 jcUV60VSy94xBx8xlA/jKj2HcTDS4bxHejgHJh3B7tsjGM4fY2v5Y6seJYGgtlw/wXCW3//V 5me9n/9ux3P0b7c/R/9m2yH611sO8d8P0b8cOET/YtOz9Df9z9I/66tdp9sn+f219hR9kmH/ ybVP0ifWPE6fkM9Z8TB9fNkD9HF+jo8tujsS0PKdTBd7Dbq6FQzfRUdxP36P+xTwtVVQuA4w q6oMlBO+K90SyLY9X3E7i+Ur8D39s7UzwGZ6yTzczn7LNwS+UYLsHZuRaF7Z69QZruR8sXe0 iYO5pguYeW9U4CyFA7hqz2EcoHQYQ1pD8wiG9BEcvPSxxfd4f/v40vtrPxnUHjCl8d9qjeEp AF1yb63xe7wWANQj5t9OR/BC4Ii5t9Dh/JmH83724fwsh/Fi4bCpNXkIW1g4Ad/FDF7A13p7 oKoKF9/LLd3dzfFowleAhpaqD2LhO5iP1gz5fK2wgpdeMoOAK/+ebwx8vQhpCc6SfeGhGzmV JTdxS0vUtOwTS5PzxMPZTS2uajnSJE0CuSSJhBxvEjBL1K/AWfZG2YJsZMESV64EevE52MM4 cEn+fjhXahJAer8zrNsavyavHz7jOjqMrz2M4e41Br3XGKqHSd1jXgC0nS3WqS/rP7XseqA1 5Nj/765Yvku/zwFeFvDF/Es1/6C3oLvLKAMN+I7hiY+Wrg+s4XvOF2pWcNngKwFcnMFJ5MMU cgGiX+jlGu8cr0BaooQ5Wtj7t44elmCmRmCTBDcZrl9v/9V0C/PvE3Wr55muw7blbDH/Tcuu tn7Nf5tyXSh8l/+AI6u5WcIX8y/d/EO/od/KKAMGfK9kBYaWpg8SwffcL7IF+qXOjxoVafk2 4FuTDw2+sL4qAr6Nog8MXhPE8kwCYPOn+ZyFwFcWWCuO5jPESeGL+Zdm/uE9kJsyygDgm8GC ww6+bPWK5avhe8GX2eXLTQorRGW4Cjvn2wX4xkFXg7lm9eZr+Zrwld/NyaetXw3hwuAr0F11 DGfzYvACvljMZ6BbyggVPLPdYgjwzWCCdATf4V/hfdWv1gorBKWXdAC+NtDV4JWfrsA3SAnk YvkKdNcwdFdzA3wB3Qx0CgBmB7Ay9xPgm8FEyQS+IxnAo75WK6xg5nbuMnw9F7LP7RzlbnYB vmEuZ+/ZsjxqJNBddyznpuYG+AK6GeiSMsMEz55swQD4ZjBhMoXv6K+z5cht3DdqhRUKgW89 4jks2tmAbzOgqVXQBNLazeuC5RumCDKB7/ofcgEIbgJewBfQzUCHAFzJwFWF/nILvivKOQC5 wXc8A3jiN2sR0lJYwcztnOmerz18tVXp3081/11J+PYdR6qPgbuhDl7AF9AFdCEDHchAA76j GXxo6fogd/hKybnJ3KZwExBLYYUuwNeUD20By9/kd/O1bsBXf775XEHynMjylb7uZ+hKKwC+ mH/p5h/6Df1WRhkAfDNYdBQK36nf5mxT3KQU3QxuurBCR0k27Cxfv4CHga6b8I2ahN6Z4bg9 303Hk9qoWx28gC8W5hnoiTICAs+c38IG8M1gUnUVvjO5Mo5Ux5nNifrFUtOFFXzpJaMzXJUf vv6jR+3/rifr8MN3gEErTaCrG+AL2GagFwCu/MBVhb4FfDOYZA34nsy1fKWerz+3s5deMuSc rz5qpKOdzYArvedrup39lq8JX6mUM5ebJO6XNp+T+NcLK2QNX+1qDrJ+u2H5WsFXFiebT2i2 Af4d8AVoM9ABVYABvkOxiwXAN4OJ5zR8pYrOQm6S1F/yCwuApLXkdk5m+fr3eP0AdgK+ftCa 0NW/p4WvDrrKONoZyq9Y5Yf+Rn93UwYM+F7BK+Aimgx4EZ9T3GeUCr4C4CWc6F/yDUuT3MOS BlHaCm4CLX9hhfpRIxm3Jmhb+9f8e2HwlWfdwtZrUAuCrf9vzsG3OJmt2hzE94HslE0GugDf 6glJpeAraRElPeIqafWsTZK5iZNI2Ap3avhqq1ygaANPuQbwtR4X2/HDddXTURhT98a0Cd/l /HB5NbF087q3A/ftGfha9nXtWE4zUtjLkrWR/60DmczgJvld77t6P2Uf1hK+YeCVv9vA2zXL 17J/qzyX8N2qrSsxvs3xbcB3FE98tHR90DF8R3BqybwCrvx7vnFu5wjL11Y+AN90hRVs+xfX pZun6Df0m0syAPhmsOgAfFsnNeAL+Lqk5PAsgK6LMgD4Ar6tAVcRlq9ac6yVdwTwBXxdVHZ4 JkDYJRkAfHOBL5/1HfRpzsf8GVKnf5azUMWc8y2J21ng61XwkaaP2egiA3L8RprkP8aeb6p6 vi4pBjwLQAUZyFcGAF/AN5HlC/gaxRUyPucLZZevskP/on9dkgHAtxD4fj46wxUsXyPiuXej nV1SDHgWgAoykK8MAL6Ab6vlK2d8Q875wu1ct3pzynAFZZevskP/on9dkoEGfEcyhBK1ZQmv T3r/El3fHu3s3/MtkeUL+MZXNcoJvonmX4nmB74XdCVkoF0GmvAVmFq3yxNcm+S+5bw2f/h+ s1nPN2lhhaTnfHOAr1cPF0k2avm1ZTyk6IUUwZBqVFIaUgpnjPk65pS1/imnnrDXr/h+vdBX BnwFqGhp+gDwNdyxAdHOXYGvTZYrxzJcpZE9vAc6CzJQThkAfDNYcAC+gK/kvlaSA1vyYYv3 QM5LS7EKKVwhBSwks1is5VtOJQLlj3GDDCSXAcAX8M094AqWL+AL5ZxcOaPPqt1ngC/gC/hK QQez2IMuACH71LJfLc1LHJJvtDOUbbWVLcYX42vKQCh8L8oASr0ibHA7w+0MtzMUa6/oO3zP bGS9AV+BLVq6PgB8Ad8s4Iv5l27+od/Qb2WUAcA3g0UH4FtC+Oq6wbqWsANu5zIqEDwzwAcZ SCcDTfgu5RugpeqDNvieknWSDZzzVZs57aS/yXGiqBb0Hv03F+GL+Zdq/kFvQXeXUQYA3w4U njp4InntZIatbgJewLcWoKSDlbqRZCPunC/gC9B1MPfLqOzxzG4tUgDflBOwAV7Al5SUFYwo KejkUSPAF/BNOfcBMbcgVtbxAHxTTMAW8FrDl/M7n/MFUud+kdT5XyJ1wZdJDeM2/CukYqsa we0MtzMUXlmVLJ4bshskAwZ8D/BKGC2uD9rAWyn41isaZVzVCJavXZKNONnD69BPkIHqyEAD viMYvGjRfRAIXsAXbue1x1JHR40m1worYP5BB0EGekcGAN8Eiw7AlyEjoJG2rt5kvxd7voBv gnkEwPQOYDDW4WMN+FoqjVDwwvIFfGH5wmq31COAERYeWgaa8F3CnYIW2AeR4I2F7+dIDeZg qyFlCLgq0Z5v3BnfMh010m5nzD/oIMhAz8gA4Gsh7IAvl8mTknlrHHI7A749o6RgFMAwqqIM AL4x8I0FLyzf7ridAV/A12LhXEWlje9UjcUI4Bsxga3AC/gCvlns+Y7laGfABH0AGegZGWjA dzgPOlprHwC+7GpeXW9wO+dXz1f2fBm+mH/QQZCB3pEBwDdk0WENXli+sHwzsnyheHtH8WKs MdaAbwB8E4EX8AV8AV9Y7fAcQgYSykATvot5JYLm9UFX4cuZjsQFqcZ9g9R4bhM5r/OkonI7 46iRkrq+G3UzKjNJlSZpuoCEJBbRiUYygq+t3GGeQldBBsovAwZ89zN40GwVoH1Vo4TnfAFf UlJxKKoWr7zWlWhnN+BrI6OYy9BlkAG3ZQDwNRYcNkoteWEFwDeXwgqAb3IPja4/bfyEgnZb QWN8qjs+gG/W8D35U6RO4Tbo06RO+wyp0x2C76KjSC3mtoSr7Cytt2U/ILW83lbA7VwGt3Pq RWIAfG3vBQhUFwIY2+6MbQO+FzKEernZKqFYy9cP3zMAX1i+MSUF60eNOpLBDsCaxef2su7A d+9tdqQdf8CXFx0dKx8BrtlMyxfwJcC3+vA151BaZYT3AWK9JAOAL+ALt/MARzdLlLNujkc7 d7xYLMBK7iUliu+KRUMaGeh5+GaiyGD5No/g9PERHH0sp984qrORf9dQM0Envwv8Go0jmRHt 3Lk3pgDAxs2dNAoJ7wHIekUGmvBdxIPeYy1OeVi/DvgCvpJ+U1JxruK2kgPXJHhNAtkkoE2C 2yTQTQLeFnyP1LzvkppzJKlZf0dq+ndIubLnK4sjWfjIGWZ51lFf62gR0Gv6BN+39xjSyZgD vllYCICvB19bQWxx8cLydQO+EgGfJXx5UWErD7gO0OpFGehZ+FpbtTZwBnwB3ypYvlrWxfK1 kfuoawBfLD56zJOadAHRgO8w7qheaR0rFr/SAXw9+NrKDyxfR93OnQJXv19c6dxs5QHX9Y7u xVg3x9qA72U8WXqjAb75JNmwlR/At8LwrYO3Bt/e0Cf4nhjnNDLQc/DNHLz+qkY9nGTDVgBj 4RuX1xm5nTt3C2dl5frvA/hi0YFFl5UM9BR8cwEv4NsoKejBd9jY8FaflIBvRS1fA7ywfGEN 2i7Ge/U6wDcLCwB7vvU93wCFo2FsrIYB3wrC1wdewBfw7VWo2n7vJnwXsrBUuOVm9cLybVq+ fvmpg3fhSZ9rkS3At0fgW2F9UmVdie9WDAt7Ar65ghfwjYYvK2B7+Fpmt8Ker1t7vgFWr2f5 Ar7oA8hAqAw04HsBd1JVmzPwPfsLpM79Iqnzv0Tqgi+TGsZt+FdIjfgqqZHcJKPQmK+TGstt 3DdIjec28ZukJnGTLEhTuE39Nqlp3EThzeA2k7MkSaak2ZwxSbImzeUmGZSkzedsSpJRaSE3 yViUc0lBU35k71f/W+BrvhZu+VrC16aWr1wTFbglmZy8Vk9tidzO6YAeAl6Rz6rqE3yv6rKi yLGtPHxzB28Sy7dH4KuDrgDfkqWXTBP/EALfIpUYPgswLKMMAL5pFE7aJBs9AF8/eGVSRFq+ eRVVgOWbzpJNMh8AXlj3FfaY5g30SsO3EKsXlm9zzzfkmJG352u4oVvczoCvG7mdk0BXroW7 GeAFeDuSgcrCtzDwAr4N+IatFGH5lqSqURIAw+rtSPHmbVXh/u674g347mNhqk4DfHMIuFp7 LCnd1vHv0iQJvzTO7RwmPzX4NmULlm/JjxqFgrc6+qNKuhDfxU25bMJ3AT9gRVqh4O0lyzcO viHy48HXeC0Mvi7Jn1deb+NxpPrrrY9/SuNFhtdkwaEXINIvVapqFFOtKMzl7NL44Vmqo8+r OpYN+A5l5ViFVjh4Ad+G5RsmPwJf87Wgo0auyJ5MdHkWwJf3dYMgHGL1ujJ+eI5q6PFeGEfA N8k+V9i1tuklyx7t7Hc5+9zOYhEGTZq08JX3BbW4iWn7PvM6/z0Lh28Wcpj3PQDeShgocfMH rxezgKkUfLti9WZt+Y52OMmGBXxVH7tjtYu27rIVyHkuXM+Vy81MaCG/c8SzOeGjoCjX6df9 SsLmffo9/nu0LRCKdjvnDc5O7x8R3QxlXYyyRj9Xq58rA9+ugRfwbbidvb3QDuEbBtYg0AYB 20ZB2XwGLF+f2xlWL6zeimxN2uiIIq4BfDu1CADfrsA3zOq1mTSAb8h+bthcAHgBXoA3cxmo BHy7avXGwfd0drkO/jypIdxs9nx72O1sA8WwPWW/2zgKwnHu6a4EXGWxCMzjHnA3Z650bRaI uKZaLuag8Sw9fLsOXsA3M8u3KPia+8Zhnwm3c906htUL+MLqzUUGmvCdzyuNEjbAt8CqRjkF XHlWK8teA4Qxcui/zv/v8xPIcYsVbLyvcPhKJas8LNdO7hkG3gT9W0adgmcuJwvKNm4N+IrC KltzRllFHTWC29mDalS0s7wusqdBGCeH/uts3xd1X/89eh6+Ee7muPHB6+XTpRiz4sfMgO+l rADL05wBL9zOHbmdPTDzUSORPdMKjZLFJihr8mr7viT3BHy5VnQAgMukI/Cs5dHnvThWgG8n bjn9Xli+zbSLCY4aeeCtn/PVk88P1qBJGXSNzfsAX8so5xCrtxcVJL4zAJ6XDJQSvk5ZvbGW 72cR7Rzidg6Cr40lGwbaOAu45t6uWcrmhAq6X89avpHuZijivBQx7tt7slU6+DoHXsA3ldu5 AV6f5RsERROqNhZu0PVhwA27X+HwzcIDk8U9YPWWavsN0C4vtAHfLBSWH8CnfIrUoE+TOu0z pE6H5esPuGoBbwR8u6lYehK+AC/AW6K4n27qhyw+u1TwddLqDdr3zRK+E75JahK3yd8iNYXb 1G+TmsZNFOUMbjPLd9TIBr7ndVkJ9Bx84W4GeLs857IAWpnu0YDvefMuJZeb0+DN0/KtGHzb wFu3fF2TvULhm5X3pZP7hMDXtXHB87itpzE+9uMD+HaisPzv1VHPtpbvhV8mNfwrpEZ8ldRI bqO+RsqfXjJj+Ibth+q/q5VHk9dWSTuG1Op6k2LxHSbZqLmfg6sayXEjlyZuT8EX4HVK9lya B3gWe5gm7atSwNd5q9eEsADYYfiqxUeRWvJ9UkvrbdkPSC2vtxVHB9bPDQK2klq+AfV8o6oa xcFXDZzAZ37rbTP/DGtb+DVfsxX8xj0bn1UradhS5lCXPpQyiPWyiI0yiVK5Sdp6broPZFEi ixNZqMiCRRYv3Jdev0r/Sl9Lvy/ituB7pOZ9l9ScI0nN4i2DLBd/ae4V4W627VNcl5+CRt9W t2+dh2/XlVNShVZy+NpavnEWdMOSZng1fo+o5+sB0Aa+AeAVENsqKafgm1S28rgeVq+17NjK GK6rLjCzHFvANw+FVmLL1xa+tpavDaRr4O0x+OYhd0nvCfACvI7H+mQJO9fuZcB3LwuiW610 Vq+p/GyOGnVhzzfO7Zw1fMVt6z9q1OLi5YArG0B79xA3dKjlaye7Tli+SSGZx/WR7ma7vnRN X+B5MG5lkgFn4Vtq8GplGXfOtwfg23Q58/5ph25nG0gHTb5hw8aSNHmt6/DNA6Rp7hlq9UKB l0mB41nLK68N+J7LismlVgn4aqU4+POkhnA7+wukzv0iqfO/ROoCjnSuOHw9a9XC8s3C7Syy K4D1A1r/Xct2V+GbBpJ5vCfC6nVJB+BZ3NLJGI9sx6MJ37l8Y0dapcCrlSfg27HlG+V2FtnV Fq5fjuXv+m9dg28eEE1zzyjwOjL/XdFDeA53mFDFsXAOvpUEr1aSfst3WPHnfIva89VWb2GW bx0cJmg1kM2JWzh80wAyz/eEwLeKyg3fCfB0WQYA3zwVXdi9tdu5ZPC1FWQPvH3NM7JxAVeZ uJ0N+JoA9sO4UPh2Q7aiPhNWrzPePdu5hOuqu4BwCr6VtnqDlCLg26jna33UKCTi2VRSGrh+ 8Mo1hcDXNejq54HVC/hia8EZGXAGvj0HXq0QC04v2Ynb2WYV3rB687J8LeEbtv+bK3xdha48 F8DrjNK1mUe4proWrx5bwNclhVlAbudY+EpaxJDcznEKQcDrWZcCXgfgG/S8ucDXJRkKeha4 mwFeWLzOyUADvufw4HSr9azVG6a0x36d1LhvkBrPLePCCp3AN04+BL5yTTfg6382sXyDnjdT +LoO3Rh3c9x44vXu6UT0ffX7vuvwBXjZJRimxB2Er3bn+pWDgFcDr9vwDQOvtzDQxRrSFlYo C3AB3q4ZEwBn9cGZxRg34TuHO6wLDfCNgK+p6Cd/i9QUblO/TWoaN3ElzuA2kyvjSHWc2Vwl RyrlzOUmVXOkzecKOlJFZyE3qagjLaaqkVeNJ8TtrOWjAWBDXjzg1f/dFfiGPItfplPDt2zQ jdjnFdnpxlzHZ3ZHx6Lf3ex3A757eEIW2wBeS/D6FX/X4NuUjyaA99QsXkN2ugPf2rOZzxUk z9bwLSNs/c8cstdb9DzH5xWrV9Hf5ejvrsG3I/CK61Cq4KzhOqpi7VVBUXbyHQqzfFuFOgx0 3YRvlOJpqQ8c5HbuZAxcey/AW7gxAeiVA3qujFP54CsFy/3wlaQVrim/bj5Pbm5nd+EbVu2o Bbh6v9eTH27dHKM8PzsiutkVxYPnAKh6XQa6At+OlR4s32TgyGzPt9XtHObm7YblGwvfPGHn 2r1h9cLqLXgLsddBmub7N+B7Ng9WUa1j+Lqm7Mr6PEu/T2rZD0gtrzcJtooIuNLyIe5mU1a0 +1n/revwLet4ZPHcIeAtam7jc4rTo+jrcvc14JuFwqviPVYxiFexi1/c/NLWHOMB1w9aE8ga yoXAt4p93ul3inA3Q1GXW1Fj/Ko3ft2B76BP1+radqps8P5C+9BWAVjDF+OX7fjB6i3Me2c7 F3Bd9aCZ1Zg24TubO6mgpjR8JZ2inF+FEi5FH9jKh388vXzPGON8+yAMvAXNaVvZwHXF6Vn0 tdt97QZ85aiMJIOQPUjt7hSXJxS2U31gO5kB35Tnt9PKe5S7GfAtzKiwnR+4zm0oFjU+bsNX ABzX0iosvC8x2G2FEvB1A76244XrAAPIQPEyUH74xsFZvw7YJoZtVp4HuJ1zhDHczbBs4d0o pQw04Dtk9m4qqrXt+Ya5nW3BmuV1gHTmkAZ8c4JvhLu5qLmMzylOb6Kvq9XXgG8acAPQiQAN +BYLXyjpailpjGc1xxPwTQNf2/cA0h6kAd8c4Bti9UJRV1NRY1yrN65N+M7iL1dQc9rtbAvW LK+rOKQB34zhG+VuLmgOF6Ur8DnF6WX0dbF93RX4yiB7STb0OV+X9nyzhGqW9yoxoAHfYuAL 5Vms8kR/o787kYGuwdcDMOAbf5QqKcBLDOmsoqsrfZ8wdzMs3sI8d50oXLwXwNYy0FX4moIY mGQjKXhwvR3MAehEAWPOwBzuZgAWi6zKyEADvmfxoLreYhNuAL528LXtJ0DaLUiHwNf1eYvn c1+3YoyKH6NSwddWQABpi8xgtgC2uQ6Qbof0xuNISd3pDT8ktYTTpo79RmcgB3idNw5s9ROu Kx50LvZ5JeFr09EANACdmzt50VGk/PAd1wF8I9zNNrKOa6DsIQPuyUDPwtdWGAFpQDo3SNt6 DGD1wuotwbagrU7FdbWFQBO+My+hs9BS9QEAXTCge6niVRh4MVdTzVXoOOh5V2QA8C1QiQHS BUPa1rJ09bood3OBcuuKssJzAJxVkgHA10ElBkgD0p6rG1YvrFsH9VOVANjN79KA72AeZLTy 9AEAXWFAL/8BqblHBsIXc7Q8cxRjhbGKkgHAt+KLDkC6RJDu5+NJ644lBfjCEKi4XsLC5JJm wBU6o7dXaYB0zpBezfdfz2d+BbCbjic1wGeA5RywbvK3GPhijvb2HMX4V2v8YflihWltZQDQ HQC6Q/hC8VZL8WI8MZ6AL+BrDV9bhQFIB0Aa8M1czmzlEdcBdC7KQBO+M3iA0NAHBclAzwG6 A/hiXkI3QQaqJwOAb0GwweRJN3kqA+mU8IXcpJMb9Bv6zXUZaMD3TIYQGvqgrDLgPKRTwres 44Hnhi6BDETLgAHfXQxfNPRBdWWgq4BOAV/IYnVlEWOLsQV8seDAossnA7lAOiF8oZyhnCED 1ZYBwBfwBXxTykAiSFvCFwq32goX44vx1TIA+KZUvJhEmEQ2MtAAdAR8be6DayBvkIFqyQDg C/jC8oUMQAYgA5CBgmWgCd/pvKpAQx9ABiADkAHIAGQgdxlowPcM7mw09AFkADIAGYAMQAby lwHAF4sOLLogA5AByABkoGAZAHwL7nCsKPNfUaKP0ceQAciA6zIA+AK+WPFCBiADkAHIQMEy APgW3OGur8bwfLAYIAOQAchA/jJgwHcnr3zQ0AeQAcgAZAAyABnIWwYAXyw4sOiCDEAGIAOQ gYJloAnfabzSQUMfQAYgA5AByABkIHcZaMD3dO5sNPQBZAAyABmADEAG8pcBwBeLDiy6IAOQ AcgAZKBgGWjAV37Bf+gB9AB6AD2AHkAPFNMD/z9IOOyNKV5/8wAAAABJRU5ErkJggg==</item> <item item-id="3" content-encoding="gzip">H4sIAAAAAAAA/+xdB2AURReevX6XXElCghQlNAWkJJRQBDahBBBCCU06CSSABBJIqCqCgBQL RRAQkBZ6C0UEFAmiSDcgggVEBLEAgggoRfjf29m929tre9z9XgiZ8LH7ZvfN7My8ee/N7Oxc MCGEAbQHGLhzFfwf1LhNWkqT9D4tslIGES6YAFq7mCCAvm96n8SUfgPSB6u4uLoA3aA+bZJf TOmTRW9L5BJVwP+azP4ZjdJH0uhWmB5EJFpvTABkwH2RcOwMydVV2GgMLyvoMZgolNwjh1oz j8vKGjogeVhWCsPdUQ9gJuKgqlfGjlbXs7+ukVzXSq7rJNf1kusGyfUgyfVgyXWj5LpJcj2i OMM1S2VCW4f/H2Lzvgz5ccmm4ueIJDQkSnL/gZ5oRHEKKzcEC6Wxne4/ePBAiE4HPCgMj0z4 F4Bt+CRADdACsM11hPZfPaE9MxiljNB+YKLNT0IBIYAwQBFAOKAoShvgCRQvQDFACUBJwFOE 9r7agFKA0oCyAJTVcoDygKcBFQDPACoCngVUIlRyqwCqAqIA1QDRgBqA6oCagFqAGEK1Rh1A b0L7bn3Ac4AGnFwTwgLiALGARoAmgMaApoB4QDNAC0BzwPOE6paWhGqUnoBegDaAtoB2hKok 1HcdAB0BnQCdAS8AugC6AroBugN68P0lFY5J/HkyHPsA+gJSAP0AqBT7AwYAXgQMBKQBBvM8 9/m2GwL0UEAmABXfMMBwwAgAqsZRgNGAlwAvA14BjAG8ChjLPXs6/GVBuzSFtLMgLeSQHyJA agRZwrbq/cmDMTebHA0Z/7mOxDArW4vvvbb7lwUN4vYySqx7Xks/DzU3APJN4VrP+2AiDINP jPljusqjVK3n0svYnCR2XmJ/zFc4ivkZaMk0rtYfLhiIghH3J7l8Raz5N4b6H0Qy4DmSuZb2 LoRC/lhi7Lty88cKGMCfoxwp+KOKTwf7P+oB1AHY/1EPiHWAidhkMIRQPRAmiovgz1EHYP9H PSDoANQzqAew/0cSqgPKiHgFHfCMKK4Sfy7WAdj/owjVAdj/UQ+IdYDAi7oAdcBzoriG/Hks oXoAdQD2f9QDYh2A/R/1wPMiXtQBKNRtRHGJ/Lnc/t9TxIs6QOj/Qlwqf+6s/6NeQB2AdjYD IPR/gVfc/4W40fy5s/7PUDNuF/Ca+LkEvYTPhbpJ/FwMpKw08P1P0vdQDhKSsvp3GJWRElmz alRk0yHDkrLAv+IkyXqlaTxnVYSLVZu0T+hQk9you3mI+KGwc9Pk79UWRQv9XkXLwtFCgQ5C RE0gVinwGkiysgNXXOoyoqQrGIY/YxTYefCsKlOMj4tWCFeDFAJHsIIoFjMo7U9rzCDRtM+F cvYwF87XA3oD23qG9hm8K9haVrQZmIoe01PgWRHFduY01zPuKgx8753OPRU8qKXDgEEpmZGt U0ZEJqYPShpMNky6MiKv39URN3SG1tgvsdRVGNpLq2M35eogedRlhqbdm2nJp734vvO0Fbz+ awtSlAJWJIr7kx+egKS81X/YXj/xjfQ8l3M6yHIKHLNArlI4W+ZF/gzWAuosufmjtOn486bQ g4aBtGPO6dCzIqF3U2q4LKsQ+RDltwBu8ec2+xcjh9UhoP3DFkW9jFLgrf1zlK07OkMXm2zR 8ds1BxkbOSpXgf0I5fuiVb47dvyOqJGF9mES1nnA4Li0tEZJmQP6NE7vm9I2qV9KJglRS+U6 RNl+1KDk9DS41Dh92NABKUPxIglRJXSIbDoya2gS9DBd6VLNzE3McW1vWMzNesW1vV7qKTgP N8eRG01vlL8xrVEvOLOYG8PheqnIXpEQVRpoiDQ3v1H0xjSIDoc7e3H/LNeCGSgHo4DuDH9Y h0o6VjXg4HL8SCDBZAVxBOhBro5t/RlbmuH8QsL3LwtnMQn5GKv/D0i3TPtRmTi2HXFPl9pD S6YyWKd4FM6Fvkvrl+F6hbMQtu9S9+wF7JGSq86f1eawUM4eYEDNfInbtGqKrif5VaHi4G2J 8ekV5K8936GcxCRwOd6OaUZUf4QW4Ja0ybwz+yeV9Rpu9Ol/Zv9ctII7+3dFlv377/3fIsS/ /i/qcuybcvPHcarg/wbC/uEY2Z/2DwUVJUpu/jjmFuzfw/g/uR78n7Fe+j/XvfZ/HugMY+X5 P908+D9OfasEz/ZvVMG2f6P8Z/8Yfeo9X+yf+yDYv4cNBd7+OW1JWwiE/4tzfY7+b213LC4D +r9C3mhFH4X5H5zf9Kf9w/kYnIeRmz/Oqwr2z5n/05y0CZWb/3/m/7gIBWH8f9xr+1dXb5j+ 6I7/cZ7Yn/6PhdA5SLn5o6YJ5Pgf30046r86clgdAuo/tLw4n4p+re/j/6f1hqc8+z+jC7b/ M9p//k8dfeqIQv8nf7WkLTgf/8sPj779++/9H3wf60//B9PCMbXc/PE9cCDH//j+2Z/2T3jf Ljd/fJfty/jf3/7Pjw7+D3dw4/+M0Ruec+3/RHnh/zim/ZTeEFE4/y3SmpOjfLJ/LfSpaf9/ ++dN/xOHAm//nLakLQTC/0W5cfR/68ptMrsgHv/jGoNHYfzflvjX/uH6ClxXITd/XLPkbvw/ klF5lBvB7/nP/B8X/AVh/H/Sa/uXoTdU9Y/9C4T/gwrbn/6PsLZQbv64fi+Q4//exJn+i/aq 3oVggY6J8orrpnAtle/j/wF6g6Vw/O8//6eRPnWbL/6P+/UDgv/jjf90QdmbMZBPzQryGPg/ TlvSFgry+D+/vv/H9YT+9H8iCX2nLTd/LG0gx/+4htKf9k9YPy83f0w/P73/v+W1/zNYb+gp z//x/v3/IL3hWOH7f//Zv6H61MjC+e/81ZK2EAj/Fz/9cOb/RsttNFGwiMb/+M3AozD+R73h T/uH30vgO325+eP3Mo/D+/8J/6fxf28P9i/SS/u322v795HeEOfa/kXn8/E/fovmT/8H19Pg N0Jy859EAjv+n0yc67/qcpglAfUfSiN+X4TfRrnVf4aODvpvHOA1wHjABMBEwOvE9u3QFDif CnhDFPc2fz4djjMAMwHvAGYBZgPeBcwBzAXMA7wn4l0I5+8DFonilvLn2XBcDlgBWAlYBVgN WANYC1gHWA/YIOLdBOebAVtEcdv48+1w3AHYCfgI8DFgF+ATwG6+jvYAPhXxfg7n+wBfiOIO 8ueH4XgEcBTwJSAPAK4iOQ74CnAC8DXgpIj3WzhH3+J7UdwP/PmPcDwH+AlwHnAB8DPgIuAX wK+A3wC/i3ivwPkfgKuiuOv8+Q043iRUtv4G/AO4DbgDuAu4B/gX7xXxOuqW7XpD6cL5H7HX FO2T/7tTn1qq0P/NXy1pCwV5/mdlPp3/eZP41//F74Lxe2C5+b9FAjv/M4341/8R9kSQm/98 4tv8z1gP/m+sl/7vWa/937l6w1B5/q/38z8L9AZt4fyP/+zfZ/rUmEL7l79a0hYCMf5ZQJyP f2rIbjVbEM//IL/T8Q8/7nE2/gmE/VtM/Gv/cNyI+17IzX8JcT//E5u13SyNcxUeff8n8Pbv gNf2b7ndGsVHbf5nGfGv/4P7vuDuCXLz30gCO/+TQ5zrv5pymCUB9R/Om+OaZlxB563+c5St FXpDhcL1r/7zf+brU5cW+j/5qyVtoSCP//Pr9x9biX/9H/xyDvf3kpv/BySw4/8PiX/tn7DH odz895L89f3Hd177PwtMhg6u/Z/qPn3/MdlkOFo4/y3WmtV9sn9vmFLN+d3+RX1aYO2f05a0 hUD4v58R5/5vLdmtZgvi8T9+V/cojP/3E//aP9zPMo7I1/8HyOOx/uNRGf877v/AHdzNf5sM P7i2f+72K8sP4/9DxL/+Tyyhe7jKzf8UCez4/xviXP89zA6QqP9wP4s2hO5d6/v4f4PJMLDQ /xFbzRo++T8NTanjC/2f/NWStlA4/v/v/Z/TxL/+TxNC9+uWm/8ZEtjx/1niX/uHSh73Kpeb /yWSv8b/jvtfcwc3/s8MkyHHP/6PY9oNTYaGhfPf/rN/b5pSbxXav/zVkrYQCP/3MnHu/z7M DpDi8T/ua/MojP+vEf/aP/x9CpRcufn/SR6P8f+jsv+D4/7H3MGNjVpocrf/Qw0v1r8Fwv/5 i/jX/0E7hL/JIjd/vCmQ439sJGf672F2gET9h79R05HQfV18H/+vNBm6F65/9J//M8uUuib/ +T+XGGLCR8WCoZpTMrZvQjT8uQ5bneGqBGuCQJURI8AEMAMsgBBAqIg3HM4jAEVFccX585Jw fBLwFKAUAL+TKw0oAygLKAcoD3haxFsRzisBnhXFVeXPo+AYDagOqIG6HlALEAOoDagDqAuo J+JtAOcNASwgVhTfmD9vCsd4QDNAc0ALwPOAloBWgARAa0AbEW8inLcHoHXpKIp/gT/vCsdu gO6AHoCegF4AtBNJgGRAH0BfEW8/OO8PGAB4kY9PE11PF50PhfNMQBZgGGA4YASD+zhBPwWM BrwEeBnwCmAM4FXAWOYx8H+d9mQbvzP/xzO/bX3ko7//1X/v/6oY//q/bQndU0pu/momsPM/ Wsa//k8iob89KTf/MCZ/zf9c8Nr/XWQyRP6/1n8sMxXu/2k/a+Db+o81ptRsX/wf9/ye979y X1MF3v45bUkbfyDGP0UY5+Ofh9kBVDz/g7+5+SjM/zzhZ/uHvzeKvzMqN/9ijPv5n/5qlez8 8/P8j7z9zwK//9Udr+3fYpNhsTz7lx/nf0r42f/B39nF39iVm/8zTGDnfyo41X/VH3b/T+63 i/E3gfG3hd3pv6gOnWXM/0wyGRoUzv/4z/95zZR6KP/N/wihwPs/TlvSFpzZP2+CbPtXK3Dr H9dZ7V8nrrivclcDN/6v7Gf/B39XHfd0lpt/lQCP/6tB/n/40f7h78n3JvLL/5zM8b+nVa8J Xq96fWD1ej5ivpTt9Xz4+b4RuYDI3AMjcKcLz1+9Pid71O88bVdWbwhYvVf58t0QWb1fUVeq Gey5tR5NXWlR/coZoMSUvsTMcJpziJxvIGnwYAMJ6onSnN2jIfhiKNmxZ98IuTawdVzrFs6v +Mf+Nf8U99r651f62rsI2UHyfg19LNo0EP5vfYbOAWMQ+7/RD9F+4vF/H+Lc/xX8Xmf+byDs X5yf7V8yoXtay82/kf3436dQkP2ng7L8J7n203HWPMHrWXOx/fzJL/YzEP5PEz/7P33hmErk y3/bAI//27nQfw+7/2cSHNHIYp/2Vv85XzVU6D/529a6WkNCQ+D9p0+ZRqHwAESXs82s6y1/ /5/H2X9yXE3rfQi0/QyE/9PJz/5PfzgOJPL1f+cAj/+7+Nn+Ya2lES9+/0Rk/x5f/+l3P88/ VC+0nz7N1dprW6mudTUHT0Pg7efDhkDbz0D4v6ki/7c96Q/5pECOdR/y/Zf39gfXivd4ip63 hSdI4DRwOjyDN5qXBrQ/+HtOQ4l8/TsQyt6EP48DzS/YvhTSh/ttFG9CkYco/yBe4jHkhz7t Sxianp4FQkhMBGUpi4zirHkrkN9kaJMkwAD4fzCnPdHmNYF27sPdmc5Z/EAH0B8J2OvRcmgA qMHwOVHvo9pHfYfempHQMqKltgBCCMoe6AVCfalwQMRD5N/k5vS0dgT9CBx94q+o45v0ntw1 fJbpl9pEdE2fz444VWHdh3nLWIHuc7V3jZNBK1jK94QdHz5/5ZmTGpYov5Gt02HLzSQ2hxXo rad6lSyqXcvzFXPgW/D95NkhZTeyz497smpp/Vp244mNveo22cxWj1oW27D2ep6vuANfWuze 7P3Al7o8onYnzVq2xOAqH79ZajN74e0Dn70dtornK+HAd3/UC4e3lNzMnrjf/Uxw+Cq2SvV3 /i723ib2+uR9pXLrrub5SnrkO91deflmz03snrwfhrw2UsjvSQe+HEl5Gmsyfug+bhO7/5fS hzobhPI95ZHv63o/W+I3bGLD31rfr3O9dTxfKY/tsOv8jrXHt2xgw78+2ryKdiPPF+mRb35s x2N93t0o4SvtwLfxVLsxJ2evZnWD7/dc89km9mS94y89aVnFfnWgQbna8LyUr4xHvjvLPv7x 6oBV7KgF46/HxAt8ZR34Xs4d9e+Y6tlshUq9aw7qv4UV6IN7Th9+d10Oz1fOI9+lwc2mf7Es mx0dW+T8knWbeb7yDnw7B3/Qp3J0Nru0Qp2uMZD+BENC7VdarWY/rVe20fKUDTzf0w58l/Uv dRgWlc3Oevejr+evz2E3SMpL+Z7x+JzG0HUvxuxZJnnOCg58Lcss63wofjW7dc22rmX7bWC1 v/7zbptDK9klL9e5Oveg8JwVPfKtmvnEhjlxq9jjNSMXnnxjI9uA+5WSSnZ8IZNzmwj6io4D 8O/w+xXHDVgylp1+ICJe0WAmS+zCNSv9Y1pmn9GfDmXnjTv4z9/FRkjuswVpegKfcL1adJNJ d7f8xXLjCvJMW2k+0vydPx/c34me0ZI+K6OkN7pt/XDrv2vZK+bhdQbefs9lSaf/0/rw6Ogs dq6HkkrTE/iE61s6Lbx5PuE6q5FZUufPZysplYXKRCoLVxYOv/BP51nsOTJ9+1/7V7I1dr1R u3fyu+ze4U8Pj81ewctCFRk1NOevuweW/jSHNd3T7Tb12upRFhZ7qCFpelJZqMXLglZmDTl/ PmkNVXWoofTnzqzfP+59tsPAFwa+YdjGzvghbnLtRQvZFeOCi+e2/oDvZdU88iXMHflVl76L JHxRDnwtO5RcUKdhDpsb9VnkoM2L2S5nX9w7W7OR3blvRa9WFZfwfNEe+frGJB+sqdzITm4R t35P/GKer7oDX/2MG6s6p0xg5/8yff7O6KlsdyjMnKcnsS+ri46cuHYaz1fDI9+TCbcmhWyf wk5rcXzCgefe4vlquqyXGjFnOg77Lpv9NPJodOd/l1tpylfLI1+lEslTJk6bw1pWLNrbPkmo lxgHPmn60zf8vbf4hGz2buuuPx0YnM1LeG3iWcKPv7NsZI/EWezp3nVaJCcu9CjhnnSAND2p hFflJRxLIUfCnT+fVMLr2JUUfc+jg9afmJG2lG1wptGulDIr2MbxQYm5Z5ayg4e22fpmynK+ Zus61KxUdwwLPZRyrfUc9kZVU7kxKSt5vnoO+f16t+6Jhfql7LrZ9a+/eGc5K9BTSdO+B+vn sGMIfuX/nANfZ2aU8e+iF9lk7fV967QhsVKJGDpwYXblzLHW+jmcfTtzbMJZli94fYcCSEVj Qmey66VJ2WyVw7tndWgnFLyBA59U9Oqd79eq/LW57OQqe0bv272U52vokW++/vzIn+q8x751 /+orp8oKfKwDn1SVCPS+P80z9u5czItwLPEswkFzGrV9/el5bLVp/bZNaLLaZ4MtTc+Vwaav IT2LsPPnk4pwnEMNtTl6ttsHr7zP9pp/ZOmRjxezecVbTGnebQK75tLu7kXaT+VrtpHLmv2M r8mFvz29/RaIoEBTvsZ2fM6GTCubfrC0xMHFVpryNXHIL4PPL/Gj/Sur3F7NzuSNyd+/RKnn jFvFt2RTGS15r1+PgZWurmCLFmlu/rL3Up8dEml6rhwSA23JPE8t6fz5pK5XvIySns1cfCdx /DI29J1/5zYevMVlSSfzT+zJsZCmN1lS0j18ScOIPJl1/nzSkjaXUdIZ5bY11CxYws7rV+P1 KmsXuyxp1Lk5d0a1H+KxTaXpCXzC9Rc6YrjJFiHy2tT580l7ZwviSepb866QIPWU73kHvtED Px/bdEU2W+Ln5P4zdTCwOdp0zJuRy9hNC85dX/u9MDHR0iPf57WjzvccvYy9Hzdo2lrrhEYr Bz5PzjDlS/DIJzWEVAJay5CA/be/ymhbdDXb5MfbPSt/tMlnJ1qanisnOpTIk3XnzyeVgDYO NWRUJx6OGf8+26bryZ5rTmWzI4+UKT+71Sz2WEbZY0MOCq5CWwc+qYmXtizla0ek+lmqjwVa mNKiLZIoo0UWmHcOrdhtEbtj2pmkI41dW0zL2pFl/9qf7rFFpOkJfML1VupPtt+J+5sNktki zp9Pqn3ayyjpttvt41Y3m86yry5tOrj6Ko/ax1NJpelJtU8vXvsEyyyp8+eTyl4HInUbf0n8 uMSaiyvYWd263vim7ia2VWhK1WWXc9iWQd0Gzi8tTKt1dOCT3vfSwUVd9C/msANmf7a+dbww jdfJI1+lm+bWP1fNYeucOf3AMnEdL3udZbRI49ubK/9dcS279Eq7Dyve3eiztyZNz5U2CJfZ Is6fTyp7wqdb7ko6MPwVdc/+G9iP54zVqFvm+Dy0kqbnamgVIrOkzp9PWtIuMkra93zC6Qag Oc8duD33+2rrfS6pND1XJbXILKnz55P2sm7E1aBOGMSNSkiL6zh3CbujyvXy9xlhMrm7R77O a7T9Lo5eauWjNdtDRs1O7PxnztL7S9kvLi998WKdNT7XrDQ9VzUbQeR5T86fTypDvWSU9Pf2 z1dul7qMTVxneTroyZUuS1pHpqaWpldHoqk78praSOTJkPPnk5Y0SUZJL58OMW9ouYlN2mFm Sz273GePWJqeK4/YLLOkzp9P2luSiVTqpVMupNU7W7c0WMYqYn5ZveFXYeahD5H6NVJ/SKDX jdp0J37yZr639JVRs7sbV287pPJKtk3xWU3f3LrW594iTc9VbzHJrFnnzyet2RSHGvpl94R3 jQ0Ws9tO7eg9dvdGtti117rWiVjGNv34s0RjpvCyKNVlzQoeo0DvmtlLN/FbYSagnwPfz+0q /7Gp2BL23z1pjTdN38RKX1JSvv4OfIOrq5Z3ey2bbfjAMje9KvB90j7mVsYKsKmNbq1cJDzn AAe+4pW+D7n01FK28e61ZYfshPu2VVo20ZjNNt9xZtzqZwW+F13Wy3tVp3+Xu2UDK9CNy17I SR8h8A104NsVtu9S9+wF7IbST8QuObGeFegjJVedP6uVWurCkA+Dbf15JrdqItPLFSgRRMGk wxHXCspdfzKYocM5DHQ9Ridu9WMmvwbJm3XwuP5xNJ+33PwzGLqmAgNd/9OHpJFhXNnxOaK8 y59kwHE4kV/+IZD/t3px/pmQRhI8RQoZBMcMr/K3ff/kquXcrf+vJvoCCJfN6XJ2mL3Z/xXX j+CqimGcBDiu5rnGMrgCCP0gQdDEi50yuUxxOQddgJvKNUAKCAFWRntuYRjyBxPxUrFM6/Il FQnmH1zIWkE+IYTjEWIi4Cyc28qDIRH8sSh/ZBQNuKNCgYtyGaLkjyoFTVONa+LhqOGWojJE q2jNHXX8fXr+aODvD+LvD+bvNype4Y4m/rqZv27hr4fy8WF8fBEu/nVupCosqaV3MlzZdFyd 9LEu14smfEFw9ZCtgqJxHZbA29WaDm5ZgPWltrXPOLjyGmA8YAJgIuB1wCTAZMAUAK6bfAPw JuAtwNuAaQxdMTsDMBPwDmAWYDbgXcAcwFyG7lH4HhznAxYAFgLeBywCLAYsASwFLGNs+xmu YOi366sAqwFrAGsB6/gVvhsAGwE5gE2AzYAtgK2ADwDbAB8CtgN2AHYCPgJ8DNgF+ASwG5AL 2MPgtw+EYK/4DPA5YB/gC8B+wAGGrmM+BDjMP+NR0bPef/BoB14iNKIuS2O0DjE6hxi9Q4zB ISbIISbYIcboEGNyiDE7xFgcYkIcYkIdYsIcYoo4xIQ7xIiX1g3nNiNtRuwD9jBp5eKSCnzF 2YrvKFjL7cGPwi7ah/P7+J6J/2E3TePOI8m5ciX3Gr5dH0s8BP6+XJn3WdObcqbYd+kz6+W2 uDqxzdAfsiT5XGM5yRAFy9ABYdrDL+/ueuKbGQcWbtv99XCVcVDlazbHWxL2gP6NZRFYsrKk pJqWz35fKcqHE7R4kqesqjqm1ASpuVd4TZnlTJ4ySqXmXszhtVK6akDh67ZByhuqGqqbqmBu EJSnjFEfUzbRB3OOO1CQCl4ryt85WDleHcytWDIwzRRLGLRHuKrngaaXcon2CRVdwXJPUc3w jvI3A13lsUW50kCfpRqX5krDFY6KwrJpK8OztIRnwXUWudoQoKoAhasg4pllzALmBKPmfBik Mpm7QOEKgqmKNcrSyr4q+rK5tDpGPVbdUa3mViVEqksAVRsobIpyynaaj5QGLX1N/KfiBVVz 5RTIoQFPPaXMAQpfBH6knqvqqWmnpq8TtygjNceUr2rU3GuWPKCucBROZV9SttUMVGGaON2r UwRrZin2aeiUwreqL9Qp6rEa2hbVVVi7WGdt+dqtpN4LT4YT91MUtaCu/wKqFVeiVeojCqQS OOpb9e8chS9r9qu28Xz4CuYH1Ws8VYsvwzEllrYmnwMtO67uC1Z30hnVH+jV3Bo6pFI153Vq biVesHqetoOmE1C4bs2imadN1JzXqrnVb9fVSG0BCtckKjUneT5caVhcs5SncH3dNVUnPc2h HM1BX5GjcA3rAe0ezUFtJNyJK1P3az/VlNG3hjSLc5RKY9F/CvWJ/s5hnVpj1rcBCteGbuSo UkDhis9cXSMt5cN1nCd1Jp4qBdQ67R4tzSGS5qe9yFE4uJqlHKadrVTpgrkhmlm1TmtR1QcK B3qTVOE6lbonUP05eWmjW6ieCxQOOuNVezQHtAeASuH4rmr3qeoBhUP9Q+ormmTNCi2dUlmu e14drVdp6HTkGV1LbZZeraPTsPO05XXRurM6+jKqqeaM7rRmjp6+hv1RtU0/Xp1hoCsvuis/ UH2jmgItVtlOCuraSQGuJZmv6qLezt2ZzFGj1XkchS88U1WVVNdVF1R0Wn6HWqcdoVsINYGT 7TV1SCVCneGIvihHlQEKJ8YPau5rk7TbdVS1vqYaox4PPVDNTTumqnK1lOrOXcvVLuIonCLc rXpb00ndTIvfGhFnLpOjbyXyk8TB85p11J/vzcOwg0UP4aUiG5qdG+1q3ds1dhyndXqKrrXj j2iGm3COcRL42Gmi0VkjTqv0FvEIg3NGnFaI08eN4cQ2TcIsFE5q29yErMyUfs+Au40f2aiJ gv8DH4zTuB9AFYvjnuXitHZxVbg4nV1cbS5ObxcXy8UZ7OKacnFBdnGJXFywXVx7Ls5oF9eL izPZxfXl4sx2cUlcnMUurgsXF2IX9wIXF2oX15qLC7OLi+fiitjFNefiwu3iOnNxEXZxPbi4 ZnxMMy4ujfu/K7QB/vUm+PvS4is98asM+KNXKnFfZzCcaGN7RJGR/DePtj9vQgT//ckwIn/8 O4+h3wRiEOdf/eHy9/r7o2zR+N/2zUhjuzkAuaE4lB+/GhpB5Jd/OeT/pd34337+IQtkLlnm V7mRfP2P9CL/Iwx9XgxUGtAxxZ5IKS2hfZBSOkJ7H6X0hPY7ShkIlWhKhREqy5QqQmgPoFQo oX2TUkGE9kpKBRMq75QKJ7Q3USqE0P5GKQuhvYBSEYT2Y0oZCe2tlDIT2p8pZeIoZwH1F0pD sNOrngPOfyBvV6JB5zbSdsVIonLXv7MtOC9k83wdiSlzyvqd9/FDxX83/HQ0ZPZBiG9eVxF5 Ib13eZIXsuQc0Eu+VFgVdr3inWs0OBqyswPEM+//Ulpyn9LFfWUk9xEX95WV3CeYu+lnZyhb 9Tga8lFVvG/X6nKS+8SDRQy59BBf3lW+kvtym4V0HGjKCxnbFtPfckK4vrjkotUnqnwZsnkI xL/WSTF2y/AFXcofD1l7Dej6bypd3WdZm8P0SsgLGb8D6KJqa75LJpnLZ8fnhWRPxXwu1F+S 0avE1Iy8kFnFkP4k0VW9LJV5X/yTr77Vf8uxkI8bAf3OOZf1jNJO2xRrrjX35RnO81Hzy03z iORG6/JObgpIdKfC7Z1K0Z1Kt3eqRHeq3N6pFt2ptt4fB/e2Jy2sd2lEd9k7H1gT2kjxtJY4 oHegE12lcvYkl8Mw7ou9Qfy3qaP52dJIksHF4hzyFaAS4DkiYaSSCn8DuDswoO7Ru3wmvGpw eRX1XZDkiRGo+Wy2IxP8twHgi1O7UZUb04nblLFLlSsXDDe+2Ln9Lc21GDuv8FmCs9kKO15p R1JyO9i4D211UXZsKwzx5YcpXnT5SkZ4lkqcJ2ovO5KvoseiR2tL/BpbmRspiqWIkYz0oR5t EUbXz4Jjf/rFZhpYI3RJxRLHSBxy2+SO5/2qHecoapHzjL2s2k+DQZsxwThWUCsZNRBKJaPC j1sVDFXQ9qW4xtIajGep3/+blWYYBbAoFVqnbSY8ly6Wj4i1l4ofJUchCPfjkeHmNAR+RsFP 3Sn4YvD5jB3L32E9cZZ+HpvKhZNsDS58Zb1Oy3WAv37RStP7zrPCeEf6vJJPfCXljGcV9uJt fd79hH4fKjtg49nExxaiOEFCtWPLQ2s9o8pR/AzCg8nNl6avs0tfvL2mkgcZS+Purf7zeEJy lOz0S5CDxF6BCcH25PccfjsxadR9B2cQ4zgFZtckYoETGtHVUSrD3mxaTHkn76fq0V7lGpzc 70w90roOsuMNsp7Z6loourd17XXok5aZhRlaCP0KmrGZClevFnEyiWGslsT1CATTZGj7utwm ITMrKVlFHv5DeuH9YwpYr0Hci7csb8cfXo+/vhSNv/yw/5DX+ecxtkn/QOz/kwHo+zA/duoi eJu/ODA+7j+Febra/2dSSUJeL0VIGT+WtTD4N4wDvAYYD5gAmEjw9TO0HWAyYApgKuANQt95 FoaCF+T0X7p/14wSqPFe5a5Kd+g6UXR6OKb0lGhnL3SD7iisKVt3zkL3656CxhHrnlcYW0L1 ddEZ3PtXgZd7YTtWuEvBxZdXKsgxTR9AR4tA52k6WC6Q2Ajb9Y6W7y30OqZTiy8VTUdpTeey eoppm3aKycb3h/GY5iWVjZ5iOqZpbBHff1ld34jpPMPQ2qNlNis6/PbuAyxFqOpE0Y3M9PCe jOddzv4fv6h22mFvM849kL3/mEqy71iy8WF+Uc152mp+ty1pHiONBfoXRcS/wzU+2cVuZvJ+ USQWIv4yGnq5ajtav7Se7SWUSqIzye16OeyqWHJHyZRcf/8WkuNvYXsrXa4l19NvIXlKW2Ot Wclv4RRsyR3lX8lNNhq6utcMGq8kt96D6Dv5Qece91FyNVLJNflP52qtNWufx2hTgZbc0f6V 3DJGw5vuNYPWreRKvZdpmoaMmA7T2ugzlq4WpSXcIqYZyzwrfZE0jVjHfBUuplsxI8Od9ZBK VwbdzQ895Ecfd1zVSqQ3yo89RGdtQYlXUrB7iN2vg0b53EOKmgzvutdAOtk95BPDH8YL+tVG Mf2TvorJmYSPv7Hndn6Q8JM+SrhOKuF+9Lv11haQ2ICC7b2M9q+EbzUaSrvXIHrZEn5IdcM8 Qz3eLKaj1RXMziR819XZ1/ODf37LRwnXu5FwX/1zg7UFHlv/3A8S/ofR8JZ7DWLwwsu5bpim ORIkpsO0R4KcSfi4G0v+Fkt4RZkS3tuDhEd6KeG7fZRwg/R36fyow4OsLfD46vBonyU8x2RY 6F6DBHk1Av38r1P3xJLbRKbkOv6iYqjXv6goltyzPkpukFRyTf7TzcHWmpXo5oLtX4/yr+R+ qzWsc68Zgr2SXNVfmptiyW0cIMk94KPkBksll/hP5xqtNSsZGZICLbkj/Su5epPhDfeawejB q7C9scG3Ndu09A2Mvbfxh/GWfnWwjb5mPKWsY6W/h/NM1Xk7ertqqJVG3jD9Xju6mb6+UZw+ +uhiGkelAr1FP0y5Rb9cI9Cb9dmaU8G91DZ6hWZdcE+dQK8O7qELCd6sFdOHg8paryPvjaBR ajFdIfi6WpzfEH1blZi+KaLDLeW14ZYOBoEOs7Q31A0z6QW6iKWjwRRmtJY3KCw4eGhoUpCY rhJ63Eojb8fQCnoxPTV0iV6c31fmB1ox3dnyQCttv3jNZl28JsV6X19tlK6v9ry13l7RzdYs 1Ne3Xj+nN2kUQVut13/Wzlfjs9v4Z2mN+l81zjRcjVsDrueHmYHvfNRwRumvDflRw5msPVDi VRZsDWfnVVb3WcMpjIZN7i2IySvbvO7PMb/nB9vs+F7DO8k1SaSqxir/Sa7ZWrMSyV31+Eiu q1+WlC+5EUbDc+41g9m7N3J///xbftC5jqsgvJNcs1Ry/fi+wWKt2cf3fYPvkjvHaGjpXjNY vJLcWbdTruQHyXVcBeGd5FqkkuvHWdYQa80+vrOsvkvuq2ZDDfeaIcQryZ15N/zP/CC5F3yU 3BCpn+vH2dNQa80+tivP/ODnqkyG4e41Q6hXknvp30s3BMndAJI7MkBvtu74KLmhbiTXV50b Zq3Zx1fn+i65YSbD1+41Q5hLyRWvRratWQ7j9hwqr4wma3TVjLm6+savdM8bf9Z1Md7S9Teq 9COMIfpJxpL6Ocby+pXGKvrtxur6A8Za+u+MtfW/G2P0d4019cGmavonTRX1VU2R+oamCH0b k0Hfy3RPN9h0WfeK6Xvdm6b9uvdMW3SrTAt1H5gm6vaY0nRHTO1035hidD+Ziukum+5qb5hO a++ZdmmV5gVavfklrcncRRtmrq2NMIdrnzBf1xQ35wHWA6ZqnjD310SY4zWh5nIak1mp0ZvP q5Xmvep7Jul8mqv5MqHsQjyW/bJuoVFMl9O3dbpCetofjW/5Z1Sb4PWo9oHo15+/9LG3F5HO OJv99+vP4bw0SvMYYi6ov/5s/zuxXN8fImf+mcju+58FGw65akla2+Ee5p9t8h4fxGhWheRY 5z3x3BKitqMPWYbrncl/xdsrrvrHT/Pt189/8lH+w92MMHyV/whri0jk3/i4yr+r8YZ8+Veb DCXca5sI2fKfoYs3ZugqaG10BW1VnVInprcA7Uz+n73Z5mZ+kP/ffZT/CDfz8b7Kf1Fri0jk nxRU+Zf7S+EPL/8zjYaL7rVNUY+jFnqfgr9fyR9dfwTfOq51CxeX8k34HwAAAP//AwC1pdbD sBsBAA==</item> <item item-id="4">iVBORw0KGgoAAAANSUhEUgAAAecAAAIZCAYAAACcffegAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAD9kSURBVHhe7Z2Nlao8EEC3LguyjleC 1diMxfgIgiIGSEJ+ZibXc/Z879sNZHJn3LsJAf+evCAAAQhAAAIQEEXgT1Q0BAMBCEAAAhCA wBM5UwQQgAAEIAABYQSQs7CEEA4EIAABCEAAOVMDEIAABCAAAWEEkLOwhBAOBCAAAQhAADlT AxCAAAQgAAFhBJCzsIQQDgQgAAEIQAA5UwMQgAAEIAABYQSQs7CEWAzn79/f033xggAEIACB MAL8xgzjRKsTBGY5I+gTEDkUAhDoigBy7irdbQaLnNtwp1cIQEAvAeSsN3dqIkfOalJFoBCA gBACyFlIIqyGsRQz156tZplxQQACuQkg59xEOd8XAeRMQUAAAhCIJ4Cc45lxRAQB5BwBi6YQ gAAEJgLImVIoRmAtZtcRS9vFcHNiCEDAEAHkbCiZ0oaCnKVlhHggAAEtBJCzlkwpjBM5K0wa IUMAAiIIIGcRabAXxHL5er2UzdK2vXwzIghAIC8B5JyXJ2ebCCBnSgECEIBAOgHknM6OI3cI IGfKAwIQgEA6AeSczo4jNwiELGOztE35QAACENgmgJypjuwEkHN2pJwQAhDojABy7izhNYaL nGtQpg8IQMAyAeRsObsNxuZbrt5awmZpu0GC6BICEFBBADmrSJOeIJGznlwRKQQgIJcAcpab G5WRIWeVaSNoCEBAGAHkLCwhmsOJXb5mWVtztokdAhAoSQA5l6Rb9dz35/Xv7/m3+XV93qvG 8+kMCTcCT7cQgIBaAshZbepWgd+vIsXsokTOVoqMcUAAArUIIOdapAv3c79enrfHbyeP263Z jHmOBjkXTj6nhwAEzBFAziZS+ng+vGK+PC8+Y1ceM3KuDJzuIAAB9QSQs/oU+gfwuPnE/Hje LvN16XrXoJGz0SJjWBCAQDECyLkY2nYn9ov5E4/7+d+13vYw5NyuFugZAhDQSQA568zbZtRH Yn4OV6Ddru6ay93I2ViRMRwIQKA4AeRcHHG9Dvxivj9vy+vOj9vz8uffPFYqUuRciiznhQAE rBJAzkYye7/6Z8PrXdzjkvbl9vTsHytGAjkXQ8uJIQABowSQs4HEOjFvPnxkJeKx7XC9eZT0 9MCS0kvcyNlAkTEECECgKgHkXBV3/s52xezk+7Xxa7refPns5H5JuuwyN3LOn3fOCAEI2CaA nG3n93t00/Xm632xqD1+7+9ZcvM2cu6pyBgrBCCQgwByzkFRyTm815srbBBDzkoKhDAhAAEx BJCzmFSUD8S3aazGBjHkXD639AABCNgigJxt5XNnNK/rzV/L1xWWtF1AyLmbImOgEIBAJgLI ORNI8acZRbx4ZOck5tI7tZGz+MogQAhAQCAB5CwwKaVCWt4+VXqH9nIMzJxLZZTzQgACVgkg Z6uZFTQu5CwoGYQCAQioIICcVaRJd5DIWXf+iB4CEKhPADnXZ95dj8i5u5QzYAhA4CQB5HwS IIcfE0DOx4xoAQEIQGBJADlTD8UJIOfiiOkAAhAwRgA5G0uoxOEgZ4lZISYIQEAyAeQsOTtG YkPORhLJMCAAgWoEkHM11P12hJwfz9vl9bGePx8wMj0M5vvTw/qtFUYOAQi8CCBnKqE4gZ7l /P3gl/VHeA7o79fpc7UXT28rnhE6gAAEpBNAztIzZCC+nuX8Tt8s4cvtufjAzunHw3PPvd83 kHyGAAEIJBFAzknYOCiGAHIeaM3L18vnm88Qh59db7/KjmFMWwhAwBYB5GwrnyJHg5xdWl6f Cvb3I2d3PZolbZGFS1AQaEgAOTeE30vXyNllet4UdnkuJ8numvT3JrHP5jG3gexX5r1UDeOE QN8EkHPf+a8yeuS8IWe31P39AdvDLHop763ZdpW00QkEINCQAHJuCL+XrpHzK9P36/J2Ks9y 9v32NaseD6r4udu91CPjhIAGAshZQ5aUx4icf+X8uF1/RezN82v2fGHDmPJ3AeFDII4Aco7j ResEAsj5BW2+5/kyLF2Hy9bJ+fs6dUIKOAQCEFBGADkrS5jGcJHzlLX5Xuefx4TtZNUdE9Ne Y4EQMwQg8EMAOVMUxQkg54Wco0TLbVbFi5MOICCUAHIWmhhLYSFnl81heTpKzG4DGcvZlt4H jAUCMQSQcwwt2iYRQM7xM+Df+5+T0HMQBCCglAByVpo4TWH3J+fpQSLj87LjN3Q5Ma83jIXv 7tZUGcQKAQhsEUDO1EZxAv3JeX54SPwTvn4+xWp8StjwxQdjFK9TOoCAJALIWVI2jMbSn5zT Ejk/pOT12M7vr/Bbr9L65igIQEAWAeQsKx8mo0HOJtPKoCAAgYIEkHNBuJz6RQA5UwkQgAAE 4ggg5zhetE4ggJwToHEIBCDQNQHk3HX66wweOdfhTC8QgIAdAsjZTi7FjgQ5i00NgUEAAkIJ IGehibEUFnK2lE3GAgEI1CCAnGtQ7rwP5Nx5ATB8CEAgmgByjkbGAbEEkHMsMdpDAAK9E0DO vVdAhfEjZ24nq1BmdAEBUwSQs6l0yhwMcv7I2bHgBQEIQOCIAL8pjgjx89MEkDNyPl1EnAAC nRFAzp0lvMVwkTNyblF39AkBzQSQs+bsKYm9dznP41/+V0nqCBMCEGhEADk3At9Tt8h5+ISp 4Vozcu6p6hkrBM4RQM7n+HF0AAHkjJwDyoQmEIDAggByphyKE+hZzr4Zc888ihcbHUDACAHk bCSRkofRs4yQs+TKJDYIyCWAnOXmxkxkyPmzrO2S2jMPM0XNQCBQmAByLgyY0/cro6WE10JG 0LwzIACBPQLImfooTqBXESHn4qVFBxAwSwA5m02tnIEh59/Vg16ZyKlKIoGAbALIWXZ+TETX o4hClrF75GKioBkEBCoQQM4VIPfeRY8SQs69Vz3jh8A5Asj5HD+ODiCAnP2b4nrkElAuNIEA BAYCyJkyKE6gNwn5xrvFoDc2xYuNDiBghAByNpJIycPoTUDIWXI1EhsEdBBAzjrypDpK5Lx9 r3dPbB63y/Pvb3ggy/X+Vc/36/A9z/dVFz3BQ+AkAeR8EiCHHxPoSUCxy9d9sLk/r06+76/L 8/Z41c1bzO5nl9tz+vZxUdECAsYJIGfjCZYwvD4EtE8aBo7P43m7vCR9GezsZtLuv7wgAIFf AsiZqihO4DNj6rfckPNUZvfrZwa9Wt4uXoh0AAFFBPr9bakoSZpDXYp5/rfm8aTGjpxncvMS 9/X5feU5lSzHQcAmAeRsM69iRoWcX6lAzp+SnDeGMXEW8zYlEIEEkLPApFgKCTkj5+96/mwO 277e/Lk2/aofZtmWficwljACyDmME60SCSBn5LwsncftNixnT4L27s52Yv7s5h72c087vRF0 4luQw5QSQM5KE6clbOSMnN+1+rg9r+Pu7HlmPAt3+P/rdBvV/fa+zWp53GXa4a2l7okTAmcJ IOezBDl+lwBy7lvO433M4wx5mAEvZsrL687363Km7Cun1+yZ2674ZdMTAeTcU7YbjBU5I2fv deNhFu1mw+5nxxvDnJyPBN6guOkSAgUJIOeCcDn1sEv568lQr1/GPb7YrX0i6+7e6GODn+iA QyEgj0Cfvynl5cFsRMi575nz+cJ216fZDHaeI2fQRgA5a8uYsniRM3I+U7LH16PPnJ1jISCX AHKWmxsTkSFn5JxayG7TGKvZqfQ4TjsB5Kw9g8LjR87IOaVEfR+K8bhdf2+zSjk5x0BAAQHk rCBJmkNEzsg5tn7fn/u83kzIR0rGoqS9YgLIWXHyNISOnJFzTJ1+fb7zSs7c5xxDkrbaCSBn 7RkUHj9yRs7CS5TwICCSAHIWmRY7QSFn5GynmhkJBOoRQM71WHfZE3JGzl0WPoOGwEkCyPkk QA7fJ4CckTPvEQhAIJ4Aco5nxhERBJAzco4oF5pCAAITAeRMKRQlgJyRc9EC4+QQMEoAORtN rJRhIWfkLKUWiQMCmgggZ03ZUhgrcu5bzvOncYX8V2F5EzIEihFAzsXQcmJHADnblHOIbGPb 8I6BAAQ+BJAz1VCUAHJGznOB7cm6aBFycggoJICcFSZNU8g15LzsQyqbWUxS4ysVV8jsuVTf nBcCmgkgZ83ZUxB7aTn7zu++J+3Vm5xDpOza8IIABPwEeHdQGUUJtJKzNEH3IOctIfuWtYsW HSeHgAECyNlAEiUPoaWc574l8LEs5yMpO/7LNhLyQQwQkE4AOUvPkPL4Sst5/MW//tzfjf9v idKanEOEzIy5ZcXRt3YCyFl7BoXHX0PObwkIlrQVOcdImRmz8Dcn4YkmgJxFp0d/cDXlLHkW rV3OPinvVee6vf5KZgQQqEsAOdfl3V1vteUsdRatUc6xs2TfMjY7srt7yzPgTASQcyaQnMZP oJWcpUlak5xTpcwyNr8FIJCPAHLOx5IzeQi0lrMUSUuX8xkh+2bMvBlCCDyet8vfuKHxel+1 f9yeF7eH4ucHIeeljQUCyNlCFgWPQYqcx1ldww1jazlLeapZDimv5Sy4HMWE9rhdvutxLeH7 dfr59bn2tphBEEhRAsi5KF5OLknOLWfRSzm3fqrZOxb3JLXpi2vDjd6rs4Qvt+fjJ4T78+r9 fqNY6bYqAeRcFXd/nUmUcwtJh8i59FPNfnZQL+Q8SppXfQLz8vWfZ4Y8/Ox6+1V2/SDpsQUB 3pEtqHfUp2Q5x0j6bMpC5Zz7qWZBy9ZI+mx6Txw/zI7Hyy1rObvr0SxpnwCr/lDkrD6Fsgeg Qc6OYOnr0XvXnPf6Ts1ukJSXJ18Lmpl0KvrI4+ZNYZfncpLsrkmzFywSpbHmyNlYQqUNR4uc Y2bRKcvPW7u1c/5REC1kX7Eg6cpvIY+c3VK3x8zfm8iYVVdOVPXukHN15H11qE3OpSS9dyvV WUFnkfK6LFnqrvZGvV+Xt1NtLGcPG8cu76n1tBTO1Lpajlp0hJxbUO+oT61yzr3UHXKfc6yk Yx+pmVR2miU9CG3ejT7cMPwa/iDC59/l6dkanYQnx0FLOT9u16/l7df5B2Hfvm+oes2imT3n 4C/1HMhZamaMxKVZzjln0SFyju1vKeei5aJuqXsQ2Rzz22nDP66TrIfbkyS95uXqy+WymB3v R+iE/plJSxoNseQigJxzkeQ8XgIW5BwrTR+IGDnn6K9IOaqQ9Cxmz+x4mG2O0pZ2e9J8r3Pg MvU40w5sW6QOOGkVAsi5CuZ+O7Ek5zPSTJLzv9e1yJCvqhUmdql7uCd4eBzmKGDfY7UELmmP eXNyDpHt+6lhria+d3dXzT+dVSGAnKtg7rcTi3J22QwR5nJXd4ycvRu8kPTxm2ieGXtFN82o hS1pu78iriFiXo7+/eASBH1cFHpbIGe9uVMRuWQ553i+daikj+QcuuM6tL9qxSFmqXtnOdvB ELmkfeJBI9MsOtbr1eqCjk4TQM6nEXKCPQJS5Zz7+dap0gyV8ppxan/FqrW1pOed2b6Z8TDT fG0Q27kOPf582tFdDNJ0T/P4vGx3O9SZme/rdirkXCxZzU+MnJunwHYA2uSc8oCRZQaDpOmu JXu+YishqK/aT/pqdT16c0l7cR16LW4n9MW9w6PAi9puflSn73Gdsdk/K/fY/mhfmwByrk28 s/40yvns861DpXm01B1aKqH9hZ4vS7vakp5nzuud2G4T2G2aOX/9bJD26t7h19J36dlzAt3p GvPy1ilupUrgqOwQ5KwsYdrClSpnx7G01EqfP2Wpu2r91Fzqfi9dL+TqxOx2bc+z6qMPRh5F LvFToJYz7uXTxKpmk84qE0DOlYH31p1kOc+5CJHombyFnP/scnro0vqZcSQfW2sW/fVEsPl2 qnlZ+2BG7MRcdEk7mR4HdkoAOXea+FrD1iDnnmbRtfLu7aeWpJedzzPqLfF+CV3WYz2b5orO mxNAzs1TYDuAVDnnuM0phWzpWW7p8+8tdafwyH5MzaVuF3zokvbeju7sEDghBI4JIOdjRrQ4 QSBFzinHnAhxY5J3/GSuM33WlvSZWIscW0XSgUva8wDnWfTRtekiQDgpBL4JIGcqoiiBFNGm HFNiEDUEWqOPEmyynbPkUvfuE8N8I5geZIKcs6WXE6UTQM7p7DgygECKaFOOCQglqkmoNHMs v4f2FTUAbY2zSXpxX/PXOUNukXJy5rqzttKxGi9ytppZIeNKEW3KMTmGGyrJvXZn4gjt/0wf oo+tstQ9EZivMS9vnRJ7K5XorBFcIQLIuRBYTvsikCLalGPO8A6VYky7GvGc6UP0sVUkvfjM 55/PfhZNh+A6IYCcO0l0q2GmiDblmNjxxYjWt3QdenxsXMv2Nfo4E1/xY7MtdRePlA4gkJ0A cs6OlBMeCeaIUEk5hwov9FpyyPmOxrv385DzuzamX0jadHoZnJ+A8Xc1aW9NIEW0KcfECu71 KUX7t0uFsqsh0Bp9hI63SbsqS91NRhbUaa7nsAd1RiMRBJCziDTYDSJFtCnH+Ajubtxa/LIP nSUfZSlEoEfnOPp5SB+mZ9KdSnr5KWZHNcLPbRBAzjbyKHYUKaJNOeZoKX19znnmPM+ecwIs tZs7eow5ByXtXJ0tdSNnaQVYPh7kXJ5x1z2kiDbXMaEz5xIJ2uo7Z1/dz6IdzE4kjZxzvnN0 nAs568iTqChjloFziXYLQKigvmKuuDQawyo1yaEMUs8v/riK+WzBYilmrj23yECbPpFzG+5q e42VbWz712Tod6NW7JLuzzL29wlMzriQ9GuT39eX2nfaJ3DkbCCJCUNAzgnQej7kSJxrNrHt 9+QcKp/D2arhmVYoI9M1bEzQyNl0tW4ODjn3mffkUcfKNrb9lpxDpTO32654z8xq/mWeTEXe gaG85EWeMSIDkl6LeXx//BtWloYvXrYJkGHb+c0+uljZxrY/I+egwfp+YRuU88yie0krXyVB zkHvapONkLPJtJYbVKxsY9unyDlqtJ3JGUlPBJTOopFz1LvbVGPkbCqd5QcTK9vY9qFyThrp coa89e+kE+s4qPtZ9Ku41GwYWy5fr5eyWdrW8Z47EyVyPkOvw2NjZRvb/kjOp5DvCdnw0vaa WfeSVrLUjZxPvdvVH4yc1aew7gBiZRvbfkvOWUaJnL8w5pK02lmccEkj5yzverUnQc5qU9cm 8FjZxrZHzvXzGiLpvajUP71K4FJ3yDK22j+K6pe4yh6Rs8q0tQs6Vrax7YvJeb1s7VvG7mhp O/dStwlRCJI0cm73O05Kz8hZSiaUxBEr29j2yLltIYTMol0b38ukoDfGWjpLyLk0YfnnR87y cyQqwljZxrZHzjLSnSJp9cvbS/QNr0f7/sjZ+sNH+x9Ej9vl9bje6/2r8O/X6RG+q+/LeHfU iQI51+FsppdY2ca2LyLnmCXsjpe2cyx1mxL0qxir33rVh5zvz6uT8vvr8rw9XhX4FrP72eX2 nL5t5ndo6ECQcygp2o0EYmUb2z6lj8PUIOdDRHsNYmfR5gRdWdJ9yHmuuMfzdnlJ+jLY2c2k 3X95Db9rgQCBGAKxso1tj5xjslG3bYyktS+3eslWWOqOXb42wfl+/fzR3/Ey9s/KVd23N71p JxAr29j22eW8tUwd+33ticsYf6ikTYjDx62CpH9+Uf+z/GEX8xL39fl95Tlj0So8FTNnhUlr GXKsbGPbZ5fzFiyuLZ8qo+4FLWCp+1QChR08bwzbmji/N46N16j7kDhyFlak0sOJlW1se+Qs swJ8H8CwlSuvuIeZn9lXhU1jZlchxqL4bA7zXm8elr0/35/adrD8bfgdY/ZXQdOBxco2tj1y bprezc7Xcv75/6+dt8tduN//ljm6DFEVXuq2LOfH7TboeZLuz+7sYcPY7Xux+zWLtj97Rs4Z 3pc9nSJWtrHtkbP8atoVdYCk5Y/wRISFZtFm5fy4Pa/j7ux51/Ys3eH/r/7bqNytVj3s6EbO J96HPR4aK9vY9shZX1Uxi/bkLLOkLcl5vI95nCEPs+XFTHl53fl+/dz3vKQ7HtvBkvb4e1Df rwIibkkgVrax7eexLY8rMl42hJXBOu0qHmUSMIt2bcy+Mi51m5Ozb2PXMIu+TDXz49/l7VZ/ fnFbqyPD7wxrqZIxnljZxravNkrkXBz1e0aNpE8/acySnE8V3lvg9gWNnE9VSn8Hx8o2tn01 osi5GuqtSxVia6MUmRNL3ch5kZRpFm19dRs5l3ojGj1v7C/U2PbVsCHnaqiXHXW/1P36SyX6 ed3I+evK8/hcbuTc5C1Mp1IJxMo2tn21cSPnaqh9HXUv6cjr0ch5LWeWtZu+gelcHoFY2ca2 rzZi5FwN9V5HSHo1i97YINetnKdrzMtbp7iVSsRblyCkEYiVbWz7auNFztVQH3XUvaADlrq7 lfPi6WFznVhfzp7fL1xzPvrNwc+/CMTKNrZ9NdzIuRrq0I6Q9Pb16H7lHFo99tohZ3s5LTqi WNnGti8a/PLkyLka6tiOupe053o0co6tIv3tkbP+HFYdQaxsY9tXGwxyXqD+fPCAX4xtnmMc Iulq9dKio8hNYy1CpM9yBJBzObYmzxwr29j21aAh5w/qr6cvrZ/s1UbM7+tuvT/AxIFIuPWq 2vuIjooRQM7F0No98VK4R6NEzkeE2v986znGr08LkvEKmUW7NlZfblkbSVvNrn9cdqu5rzyK HS1yFpuaKbDH8+E+FGj1ch9CIPGTf3qV9PuaM0vd0t9Q2eJDztlQciIfAeSsry6kirnnpe6f DWFIWt8bKzJi5BwJjOZxBJBzHK/WrY/FPH/u7nxtut016Z5m0Zu7tbke3fotU6x/5FwMLSd2 BJCznjoIE/PysYnzLu92gt6qMbF1l1gOh7dSIelEsnIPQ85yc2MiMrG/JNmt/VVffjHfn7fb 4oL0/fZc/u94As/jFVsVruWZ9KGcX3+lpG0a473QqmR3+0XOItNiJyjkLD+XW88q3trF/T2i 1+xZyuYxq4IOkvOcmNhZ9LK9sHJ9fyb4sFv96N/CQj8dDnI+jZAT7BFAzrLrw4l5U2iX29Oz kXs1ICdneZ8QZE3SUXJOkXRlQR+JNuXnst9p8dEh53hmHBFBADlHwKrcdFfM7uEfIZ8w4B5g EtKu8tg+ftr542PxgJNG4QV3myTn2KXuioKOke87lzuz52CQihoiZ0XJ0hgqctaYtdCY3c7t tpvBQiPVPpNOlvPWLHrrgS0VBR2SuxCJh5xHYxvkrDFrimJGzoqSFRlq2DXpyJMWbK5Z0Kfl HLPULUDQIVIen5pm+GV7dIYTp2VoyFlLpuLidLu7Ba9m7w5Go6SzyTlU0g0EvSVk37J2XLXq bI2cdeZNTdTIWU2qggP13Xb1uF1/b7MKPmObhpoknV3ODvnRrVeVbrE6kvIY6uJ6c5tqqd8r cq7PvKsekbOtdDsxe6UWtLNbJosQSbeOvIict2bRy+vRhQQdIuReZ8zvcbcuOvq3TQA528nv 3u5uKfc5p9IOEXTLT70qKue9pe7My9sxUu51xoycU9/FHBdFADlH4aJxYwJSJZ1FzkfL2Hsz 6ZMzaJ+U91K9bt+4LJp0z7J2E+z9dIqc+8m1pZFKk3QxOW89Tcwn8khBx86SfcvY1ndk7/6B YukNxVjkETAt5+EBHJ9NNcO/3Wt44tZzeGJWwKO15CWLiL4ISBJ0Fjmv87sn4KOf7dRKqpR7 X8b+SQ/vRwiUJGBTzvePlId/vl7DP66TrIfNUbzsEJAg6SJyPivrxfFnhOybMdupnvSRsKyd zo4jAwjYk/MsZs/seNjJPM6kfz66KQAUTcQTaCnpKnJOkHUOKa/lLL4QKgWInCuB7rUbW3Ie PgbiMn0s33vGvMgsS9pdlHkLSTeRc4Cse7z/uFaRI+dapDvtx5Sc55mx99FY04yaJe0uKr22 oCXIOecsuYsiOTlI5HwSIIfvE7Aj553lbIfAu6S9mGmPG2ymTWMUjRkCtSTdSs4IuV2pIud2 7Lvo2Yyc553ZvpnxY9gANsp3eR3aiXn5/7PcEbTFwi8t6dpyRsrtqxQ5t8+B6QjMyHlzSXsx O16K+z4Ie/jR12uWOBvGzNZ8iKRTBl9Dzgg5JTPljkHO5dhy5oGAGTnPM+e1WN0msNs0cz6U 7jR7PmxH6WgmECLo2EeBlpQzUpZZbchZZl7MRGVGzu+l68WytBOz27U9z6p9O7i/MunkzANK zBT3wUBySrqEnGMfqdlL3qSMEzlLyYTROMzI2eXn64lgk5jd2vV4e1XAtWR3vNYPQTZanzWG lUPSueTMLLlGxvP0gZzzcOQsGwRMydk3xnlGfShdJ/EAgVNJJgmcFfRZOSNlfWWFnPXlLDHi +/DY5z//Z/GO37+OK7S5X2lyrhBr5EP8N7mELmlfWc7OXVsaz5cq6RQ5I2SNFfKJGTnrzl94 9MOS6vYvhjJidsElyblGrFnkHLik7QRe4i+f8OzTUhiBWEnHyBkpC0t2YjjIORGctsPuw8zN t0n4Mew0LumNFDlXiTWHnHefGDZViGuzBn8blrfXt1lpKyjizUIgVNJHckbIWdIh6iTIWVQ6 SgXzeD48MngM4rgUvq0nXs6VYk2W8/qpX9Oztn0bwmZ5rz9+j0d8lip0leeNEfR6gEhZZcqD gkbOQZjsNaoh5uRl7RXuIrEmyzmwFsYPwdj4KvwHUWCENBNGIEbS3AYlLHkFwkHOBaBKP+Wx 7JYbss5dj46fOX/TO441kXZpOSeGxWEQCJL0v2ET5/QFMZsEkLPNvG6O6lh2LzG/7wwaN2el C/qMnA9jnTaOHd7F5KOBnDurfH3D3ZO0vtEQcSwB5BxLTHF7v+zuw9MnPxekXZu/4Zro8hL1 fVii/UsyYOJu7YHxfqyP4aFcn9vCkkJDzooruZ/QNwU9zJp52SZAhm3n9z06J1jf5q/vndGv WfO63SjsxNlzysw5LNbR4MPDuRaz/JhcIucYWrRtTODrfbRY0nZL27xsEiCzNvP6Napx5rv1 AJLlLHlLduPysf9WrCN8sXIOjtV1jJyP8PNzowTYEGY0sYthIWfjOd6VnRP2ck24sZyjYkXO xiuX4YUQQNIhlHS2Qc4681Ym6sZyjh4UM+doZBxgk8Ba0jZH2deokHNf+d4fLXKmGiCgmgCS Vp2+r+CRs51cZhiJjA1hwQNh5hyMiob9EGCp20aukfNXHj+36PzcnjOJIPWWIi3lMl73FXAr VRAv5ByEiUZ9EmAWrTvvyHnK3+t2ocWu5rWd35+UlP5ADh2lIuchJIe8kPMhIhpAAEnrrAHk vM7bLOHV7PHVbBCX9/s6k78Z9bxKkOFznmNvpYoiiZyjcNG4XwIsdevLPXJe5+wtJs8MefjZ lQ8tiKryUnL+ue0q9o8mHkISlUca2yCApPXkETn/5Gr+0Ie1nN31aOtL2vkLt5ScT0eKnE8j 5AR6CbDULT93yPknR/OmsO8nYrlr0l+Xoc986IL8usgWIXLOhpITQSA7ASSdHWm2EyLnEDm7 pe63mTN86EK29Mk/0Sjn+VnA04Y7EVEzcxaRBoJoT4Cl7vY58EWAnD1U5uuZLx9vLGef2Ywk sxaKRPUlZydpJ0UJL+QsIQvEIIgAs2hByRhCEfKbUhaUpZwft+vTuwcMOQclDTkHYaIRBMQQ QNIyUoGcPXmY73m+XC7ej1kcD0HOQRWMnIMw0QgCogiw1N0+HcjZl4P5Xuefx4QtGiPnoOr9 ut48XXsOOrB0I5a1SxPm/AYIIOl2SUTOW3LeEzMz5+CKRc7BqGgIAbEEWOqunxrk/MN8uM/5 SMzIObhSkXMwKhpCQDwBJF0vRcj5i3XEg0ZY1j6s0vUtVMvrz4cHl27AsnZpwpzfKAGWuusk tnM5T/csj49+dE8G+37wyG4KkPNhhfYo5/cHqKxWX96PGw1ZlTkkSwMItCeApMvmoHM5z4/q dPffRj6aEzkfVmZfcl7Wkqunzx96X88Bj30G+CFlGkCgLYGzS93z8W1HIa/3zuWclpDTH7qQ 1q2qo7xinj+SU8Ku7WLL2p8nyF2GG+TdTNr9lxcErBNIlfTyOOuMYsaHnGNo0TaYQL9yHhC9 P/t7mEGzjB1cMzTUTyB1qZvZ82/ukbP+94PIEXQt53H/QsKlEpGZJCgIxBNImUUj6G/OyDm+ 7jjigMDyTbb1qVTN34jFlrVfcOaNYbsTZz7ZjPeScQIxkmZ5Gzkbfzu0Hx5y/mwO819v5pPN 2lcpEdQiELPUjaA/WWHmXKtCO+qndzk/brdhYXsS9N7ubHb8d/SuYKihkkbQr1pBzrxnshJY L1dvLWuPxddy13apZe1BuNdxd/Y8O55v0Rv+/+rup1+8kHPW2uNkOgiELHU3/d0gBCNyFpII K2H0KOfx1rr5QTaLmfLyuvP96nnADXK2UvaMI4HAkaR7FzRyTigqDtkm0K2cfbuzJ/m61QPv xjDkzFupcwJ7S929L28j587fHDmH7/tLt7tl7RigyDmGFm2VE9ibKW/9rGdBI2flBS89/D05 N4291DXnmEEh5xhatFVOwDdL/llpm/ahfG0qXXxPOYKo8JFzFC4axxJAzjvEkHNsOdHeCIE9 UR/9zAiCw2Eg50NENDhDADkj5zP1w7H2CRzJ+GjjmFVCyNlqZoWMCzkjZyGlSBgKCISKWsFQ ToeInE8j5AR7BJCznw6fbMb7BgLHBEKuUx+fRWcL5Kwzb2qiRs5qUkWgEBBNoLflbeQsuhz1 B4ec9eeQEUAAAvUJIOf6zLvqETl3lW4GCwEIZCKAnDOB9J2mt2UYL4PxyVnfXwWRh59awn3O 4dHSEgIQ6IwAci6Y8KOdhwW7FnNqZs5iUkEgEICAIgLIuXCyjgRt/eHuyLlwgXF6CEDAJAHk XCGtoYK2KGrkXKHA6AICEDBHADlXSmmsoK088B05VyowuoEABEwRQM4V0xlyQ/2RxCuGm6Ur 5JwFIyeBgFIC9+fVsyn083vh+rwrHVnpsJFzacKr869nxEc7uo9+Xjn86O6QczQyDoCAHQL3 68/dGog5LL3IOYxT1lZHH5Pmfm7lhZytZJJxQCCewP16ed4ev8c9bjdmzAc47Vggvm6aHuHb /KV9luwDipyblhmdQ6Ahgcfz4RXz5XnxGbthpBK7Rs6NsrK34cuSpJFzowKjWwgIJPC4IebQ tCDnUFIF2sUIWutSN3J+FY61jX4F3g6c0jiBIzG7n3M9+lMEyLnxG+LolinfL/XGIUd135uc jyS89fMoqDSGgDICR2J+DhvHPkvd0w7va9/7uJGzgCI/ErRv5iUg7KAQLMo5VcCIOahkaGSM gF/M9+ftfd35Mfz7W8SvWXTft1khZyFvhBBBa5R0j3KeSypE4kLKjzAgUITA/frn3fy1tYt7 DmLruCJBCj0pchaUmFRBS74ebVHORyUTImXJOTsaHz+HQAgBJ1jf+3/83uX29GzkHk87Htf5 kvY4EQuBTJt6BGKer61hV3cvcj5asg79w6tepdETBMoR2BWzk7NPvl8PLPHfH10uYnlnRs7y chIdkWRJW5fzkZTXlyKik8sBEOiNwOP2vIyP/Oxb0MjZSOFL3dVtUc4hQp7LihmzkTcYw6hL YJpF97y6jZzrllzx3qRJ2pKcY6TMjLl4qdOBaQKv26mQs+kk9zk4KUvdFuQc+wePFPZ9Vj6j tkHAyZllbRu5ZBReAq1FoVXOsbNk3zI2O7J5U0IggMB0jXn5vG1upWK3dkDl6G8SPfNbfP7q 2dGXkPPynMnxDWMcdpz8HJ4qZZaxkzPBgd0T+P3M556Xs99/6HdfFx0BCJF0bpmKPd9Czl+b tubvb8h7q1zY+NXRG4mhQqACATaEVYAsrYu9pW6xMp0gZotvku8Pi7WcA2Udc3+6tHogHghA QB4B5CwvJ9Ui8kk6m/xyyzTT+d4SXcn5C/qRoCNn1dUSSkcQgIAZAsjZTCrTBuK9xrq45uxk feYlRfZR15J9cnYQAmfRZ3hxLAQgAIHx1w0YIDAWwr/hiTzLr0ybwlrKOUrI6zLYEjTlAgEI QKACAeRcAbKmLnySPhN/CzmfkvI82L2l7TNAOBYCEIBAAAHkHACppyajTNez6OH/U1+15JxF yFuz53FpYbr16uQyfypHjoMABPoikP5bty9O3Yz2S6YZJF1czp4Ysz78Y735i81g3bwXGCgE WhJAzi3pC+zb+/mrKwHGhF1Mzhn+cAgax5acmUEH4aMRBCCQRgA5p3Eze9SeTFMeBZpTzkWW rkMyyew5hBJtIACBjASQc0aYFk51JNPY69FH5wthtiXl+dwh5zjVxreUzfL2KaQcDAEI7BNA zlTIF4FQmYbOokPPt07DkZCzPF/7TO4zyDmU4ZkwORYCENBJADnrzFuxqGNleiSYs+dbPxYz 9nwFQXk/OCOmv80/QKbr6THnoi0EIGCLAHK2lc/To0mR395Sd8j5Yq4lh5zvNITQE2SYPc9d IepQ6LSDQB8EkHMfeQ4e5Rn5hTwKdPk40BgpvyW2erTo2ceLBoPxNcwo5+Bl/RP3nJ8aKwdD AAJVCSDnqrjld3ZGzpuzwKVQT96XnCO+bFkoKOdljMyqs2WME0FADQHkrCZVdQLNKb8jqWj/ +fzUMEnjqFMl9AIBCJQmgJxLE1Z2/pxydkOXJK7csSBnZcVNuBBQRAA5K0pWjVCLynla3j4z jtzxnYnl/bztUyeJO/joD4y4s221fjxvl+EZ60O+rvdVm8fteXF5/PlBnp45CwQg8CKAnKmE LwI55ef7CMqzuHPGdzaWWnKuI+QXjcftMkr5/bWW8P06/ez6XHv7NE9OAAEIvAkgZ4qhiJxj nyQWmoZe5Lwn5FBWp9rNEr7cno+fE92fV+/3T/XIwRCAwIIAcqYcsst5KZZxeSbjQzXEyDnz R0jWnB0Hlfy8fP3nmSEPP7vefpUddF4aQQACQQSQcxCmfhqdld9azOblfKI0xAn5ayzD7Hhc 3l7L2V2PZkn7RNo5FAJBBJBzEKZ+Gp2Rs0/MyHm7do4efdq26uZNYZfncpLsrkmzF6xtZui9 DwLIuY88B48yVc5bYjYp58xL2sHJqdrQI2e31O018zzL9s20qwZNZxAwQwA5m0llnoGkyHlP zObk3IWYX7V0vy5vp9pazn6J+e3scSMZy9553o2cpWcCyLnn7HvGHivnIzGblXMHdbOU8+N2 /Vrenoc/3nq12rk9HsfadwcVwhBLEkDOJekqPHeMnEPEbErOlZ6lLaVs5nueL5fL8+Ldnf2a Na9/9jqO2bOUPBKHTgLIWWfeikUdKudQMZuRc0fL2e/imu913poFT7db/fx4PO57I1mxguXE EDBKADkbTWzqsHxy/vne8pOlPB/hGHSOjMeljjXquM5mzSMbJ9m95WnkHFVCNIZADAHkHEOr g7aHYhUm5uKf59zjjPll5uf16Loxcu7gNwJDbEUAObciL7TfXTkLFHMxOS+l3N2sOfBBI8hZ 6LuYsCwQQM4WsphxDJtyFirmInJeizkjX5mnmu5pHnddu01eodeL2RAmM59EZYEAcraQxcxj kH6NeRlf1qF3J+WZXvpDRMbbpriVKmsZcjIIOALImTrYJRCzK9t3otDd303T0PUS9lnyPITk LEGOh4D3dydYILBF4KyYx7/+PLuyRRHvdracMQvvT7Di8Z0ZqXKqzgkwc+68AEqKWbSckTKV DwEICCaAnAUnp1VoOWbMc+wiZs6+Zetub5FqVVX0CwEIxBBAzjG0OmibU8zNZ85IuYOKZYgQ sEkAOdvMa9Kocou5iZy3hJxEhIMgAAEItCGAnNtwl9droWuwRZe1j2bG7ud7r+HxlMOOtelr +Ld7DbcGDfcGPYcbfnlBAAIQaEYAOTdDL6djN2P+SOrg35FhZ5FziISjriHfP+Md/vl6Df+4 TrIe7tvlBQEIQKAlAeTckr6Avr1L2bEybNk+muEsZs/sePiow/GPFO/HI0Z3xAEQgAAEkgkg 52R0+g+MvsasSsK+/Axr1ZdpZeA9Y160Y0lbf1EzAggYIYCcjSQydhjRYo7tYGqfZVk7se+f w+aZsffTlqYZNUvauWhzHghA4AQB5HwCnsRDZ+nuxVZLzC4GOXLeWc52gbKkLbGciQkC3RJA zsZSfyTnmmIWJed5Z7ZvZjw8fvK1Ic5zHXo+zrcMbqx2GA4EICCHAHKWk4vTkUgTsyg5by5p L65Df4l78X0nbuR8uj45AQQgEE4AOYezEt9yT861Z8wzLDHL2vMMeL0T220Cu00zZ98u7XlW jZzF1z8BQsASAeRsJJsSxSxq5vxeup4eNuKCc2J20p1n1T4BI2cj7xCGAQFdBJCzrnxtRrsl 51YzZnEzZxfQ1xPB5qXqefl6Ie0lZeRs5B3CMCCgiwBy1pUvb7RSxSxq5ryV51m+3turhoOQ s4F3CEOAgD4CyFlfzn4i9sm59YxZ5MzZl+u9JW3XHjkbeIcwBAjoI4Cc9eXsK+JYMdeWtpgN Yd48HyxpI2fl7w7Ch4BeAshZb+7GyNdy3pLv8vtHt1zlRCJazrtPDJsoMHPOWQ6cCwIQCCSA nANBSWyWKuaaY5En59X9y+uPjFzDQc41y4W+IACBiQByVlwKSzn7Zszr2XKLocqTcyQF5BwJ jOYQgEAOAsg5B8UG59gTc6slbB8G1XIeP6Vq8cWHYjSodLqEQJ8EkLPSvPsELEnKM1bVclZa G4QNAQjoJ4CcFeYwRMxShoWcpWSCOCAAAU0EkLOmbM0bBf79vXdpS7iuvIcQOSssMEKGAASa E0DOzVMQF8DWrDnuLPVaI+d6rOkJAhCwQwA5K8ulxOvKzJyVFRHhQgAC4gkgZ/Ep+gQofQnb h5KZs6ICI1QIQEAMAeQsJhU2A0HONvPKqCAAgbIEkHNZvt2fHTl3XwIAyEBA46pZhmF3fQrk XDn9j+F5zqOwVh9ReB8eeOH7fuXwsneHnLMj5YQdEtC2EbTDFGUfMnLOjnTrhPfn1Un5/XV5 3obHPLvXW8zuZ8NTqKZvV4usZEfIuSRdzt0jAUTdR9aRc/U8P563y0vSl8HObibt/mv1hZyt ZpZxtSaw9zCi1rHR/3kCyPk8w/gz3K+fGfRqeTv+ZLKPQM6y80N0Ngggaht5XI4COTfJ6bzE fX3em/Rfr1OfnEMeP0qb7afAwQY2Z2ug3m8AekolgJxTyZ08bt4Ytj9xXl6n1ily5IxIzoqE 4/PX0MlfXxxegQByrgD5t4uPdLevN7/avOU9LoXrE/T4i3WxEa4JbjqFQMcEtD1VsONUfQ0d OTeohMftNixnT4Le2J09zqxXPxt3dSu6Rr38pdAAM11CoEsCISsNXYJRNmjkXDthj9vzOu7O nndtz7Ph4f+v821UL3GvZ9WvpXAds2fEXLuw6K9XAsjYZuaRc4W8jjPecRY8SHcxG15ed75f P/c9D/dXPS/LJe05xnFpe9GuQuwpXSDmFGocA4EwAsg4jJP2Vsi5QgY/DxlZzXonCbtrsl+r 1YrljJgrFBRddEUAGXeV7vdgkbPEvCuVM2KWWEzEpJ0AG7q0ZzAtfuScxq3sUQrljJjLlgRn hwAE+iKAnEXmW9eGMMQssogICgIQUEwAOQtN3mcT2SdAibdSIWahBURYEICAagLIWWz65D+E BDGLLR4Cy0Lg8yE1P48XmDdzKnruQBYknKQaAeRcDXVCR4vd3NLub0bMCfnkEDUE3p+7Pj/d bi3h94fX6HjugBrwBPomgJwphmgCiDkaGQdoJTBL2Pskv+/nFmgdInHLJICcZeZFbFSIWWxq CKwEgffqlWeG/H7aX4mOOWfvBJBz7xUQMX7EHAGLpkYIbH28q7sevRT25/q0tEtQRhLR3TCQ c3cpTxswYk7jxlHaCczS/X5srrsm7dsLNl6rZpOY9qSLiB85i0iD7CAQs+z8EF1JAh45u6Vu r4D9zycoGR3ntksAOdvNbZaRIeYsGDmJYgLzs/FfPl4vZy8GNl6flv/BNIpT0VXoyLmrdMcN FjHH8aK1TQJLOT9u1+f4ia+el+8z2G0SYVQ1CCDnGpQV9oGYFSaNkIsQmO95vlwuP5+xvuxw foLf8h7p9WeyFwmQk5okgJxNpvXcoBDzOX4cbYzAfK/z7kav6XrzQuAvSbPMbawaqg0HOVdD raMjxKwjT0RZkYCT89EO7Ol68/W+WPPe+nS5iqHTlV4CyFlv7rJHjpizI+WE6gkMM+IjMQ9j 9F5vZoOY+uy3HABybklfUN+IWVAyCEUIgZ2d2asI3fXm9fVlNogJSaPSMJCz0sTlDBsx56TJ ufQSmO5pHp+j7a4hh14vXn2CnAPAkrbeMhASOXIWkohWYSDmVuTpVx6B+VGdf8NGrohPmxpF vGg/iZmd2vIyrCki5KwpW5ljRcyZgXK6bgl8f8Rk6Iy7W1wMPIAAcg6AZLEJYraYVcYEAQhY IYCcrWQyYhyIOQIWTSEAAQg0IICcG0Bv2SVibkmfviEAAQiEEUDOYZxMtELMJtLIICAAgQ4I IOcOkuyGiJg7STTDhAAETBBAzibSuD8IxNxBkhkiBCBgigByNpXO38EgZuMJZngQgIBJAsjZ ZFpfg0LMhpPL0CAAAdMEkLPR9CJmo4llWBCAQBcEkLPBNCNmg0llSBCAQFcEkLOxdCNmYwll OBCAQJcEkLOhtCNmQ8lkKBCAQNcEkLOR9CNmI4lkGBCAAAQGAsjZQBkgZgNJZAgQgAAEFgSQ s/JyQMzKE0j4EIAABDwEkLPiskDMipNH6BCAAAR2CCBnpeWBmJUmjrAhAAEIBBBAzgGQpDVB zNIyQjwQgAAE8hJAznl5Fj8bYi6OmA4gAAEINCeAnJunIDwAxBzOipYQgAAENBNAzkqyh5iV JIowIQABCGQggJwzQCx9CsRcmjDnhwAEICCLAHKWlY+faBCz8AQRHgQgAIECBJBzAai5TomY c5HkPBCAAAR0EUDOQvOFmIUmhrAgAAEIVCCAnCtAju0CMccSoz0EIAABWwSQs7B8ImZhCSEc CEAAAg0IIOcG0Le6RMyCkkEoEIAABBoSQM4N4S+7RsxCEkEYEIAABAQQQM4SkvDv7znLWUA4 hAABCEAAAo0JIOfWCUDMjTNA9xCAAATkEUDODXPCUnZD+HQNAQhAQDAB5NwoOYi5EXi6hQAE IKCAAHJukCTE3AA6XUIAAhBQRAA5V04WYq4MnO4gAAEIKCSAnCsmDTFXhE1XEIAABBQTQM6V koeYK4GmGwhAAAIGCCDnCklEzBUg0wUEIAABQwSQc+FkIubCgDk9BCAAAYMETsn5cbs8//6G p1td719o7tfhe57vG+S3OaSllN2/eUEAAhCAAARCCSRa4/68Ovm+vy7P2+PV5VvM7meX23P6 dmg8JtohZhNpZBAQgAAEmhFIlPMc7+N5u7wkfRns7GbS7r89v1jG7jn7jB0CEIBAHgIn5TxO lT8z6NXydp4Q9ZwFMevJFZFCAAIQkEzgvJyf8xL3dfjX1uszw/7722snGdV+bIhZb+6IHAIQ gIA0Ahnk/ByXs93S9tHEeWx31EgaoYB4EHMAJJpAAAIQgEAwgQxy/mwO27/e/Gpn7Zo0Yg6u NRpCAAIQgEAggdNyftxuw3L2JOi93dmP2/Py99nVHRif6GaIWXR6CA4CEICAWgLn5DwI9zru zp6vKc/Xk4f/v37fRjUuaRu6tQoxq615AocABCAgnkC0nMf7mEfJDrPlhWyX153v198Z8njc cL35/eASxUvciFl8XRMgBCAAAdUE0uQ8Pnxktet6XLZ+3fP8u+drut58+dwH/ZK0vmVuxKy6 3gkeAhCAgAoC0XJOGtV0vfl6XzygZJK5ps3biDkp+xwEAQhAAAKRBKrI2Xu9WdkGMcQcWVk0 hwAEIACBZAJV5OyuN69vodK0QQwxJ9cXB0IAAhCAQAKBCnJ+XW/+Wr5WtKSNmBOqikMgAAEI QOAUgfJyHkW82Dw2iVnDw0gQ86na4mAIQAACEEgkUF7OQ2DL26e07NBGzIkVxWEQgAAEIHCa QBU5n46y8gkQc2XgdAcBCEAAAl8EkPOqIBAz7xAIQAACEGhNADkvMoCYW5cj/UMAAhCAgCOA nKc6QMy8ISAAAQhAQAoB5Oz+Qvk3PHZ0+pKSGOKAAAQgAIF+CXQvZ8Tcb/EzcghAAAJSCXQt Z8QstSyJCwIQgEDfBLqVM2Luu/AZPQQgAAHJBLqUM2KWXJLEBgEIQAAC3ckZMVP0EIAABCAg nUBXckbM0suR+CAAAQhAwBHoRs6ImYKHAAQgAAEtBLqQM2LWUo7ECQEIQAACXcycETOFDgEI QAAC2giYnjkjZm3lSLwQgAAEIGB65oyYKXAIQAACENBKwOTMGTFrLUfihgAEIAABkzNnxExh QwACEICAdgKmZs6IWXs5Ej8EIAABCJiaOSNmChoCEIAABKwQMDFzRsxWypFxQAACEICAiZkz YqaQIQABCEDAGgHVM2fEbK0cGQ8EIAABCKieOSNmChgCEIAABKwSUDlzRsxWy5FxQQACEICA ypkzYqZwIQABCEDAOgFVM2fEbL0cGR8EIAABCKiaOSNmChYCEIAABHohoGLmjJh7KUfGCQEI QAACKmbOiJlChQAEIACB3giInjkj5t7KkfFCAAIQgIDomTNipkAhAAEIQKBXAiJnzoi513Jk 3BCAAAQg0GTmPIt3Cz9ipjAhAAEIQKB3AtVnzntyRsy9lyPjhwAEIACB6jNnxEzRQQACEIAA BI4JVJ05b8mZGfNxomgBAQhAAAL9EKgmZ8TcT1ExUghAAAIQOEegqZyZMZ9LHkdDAAIQgIBN AlXk7Js1I2abBcWoIAABCEDgPIEmckbM5xPHGSAAAQhAwC6B4nJez5qPxHz0c7upYGQQgAAE IACBF4Gqct4T7/JnRw8qIXkQgAAEIAABywSKynkp2RgxWwbO2CAAAQhAAAJHBKrIeUvM69ny UbD8HAIQgAAEINADgWJy3lumZgm7h9JijBCAAAQgkEqgmpzHC9z//n6+UgPnOAhAAAIQgIBV AkXk7JMwS9hWS4hxQQACEIBAbgLV5Zx7AJwPAhCAAAQgYI1AdjlvzZqtgWM8EIAABCAAgVIE qsi5VPCcFwIQgAAEIGCRQFY5c13ZYokwJghAAAIQqE0gq5xrB09/EIAABCAAAYsEkLPFrDIm CEAAAhBQTQA5q04fwUMAAhCAgEUCyNliVhkTBCAAAQioJoCcVaeP4CEAAQhAwCIB5Gwxq4wJ AhCAAARUE0DOqtNH8BCAAAQgYJEAcraYVcYEAQhAAAKqCSBn1ekjeAhAAAIQsEgAOVvMKmOC AAQgAAHVBJCz6vQRPAQgAAEIWCSAnC1mlTFBAAIQgIBqAshZdfoIHgIQgAAELBJAzhazypgg AAEIQEA1AeSsOn0EDwEIQAACFgkgZ4tZZUwQgAAEIKCaAHJWnT6ChwAEIAABiwSQs8WsMiYI QAACEFBNADmrTh/BQwACEICARQLI2WJWGRMEIAABCKgmgJxVp4/gIQABCEDAIgHkbDGrjAkC EIAABFQTQM6q00fwEIAABCBgkQBytphVxgQBCEAAAqoJIGfV6SN4CEAAAhCwSAA5W8wqY4IA BCAAAdUEkLPq9BE8BCAAAQhYJICcLWaVMUEAAhCAgGoCyFl1+ggeAhCAAAQsEkDOFrPKmCAA AQhAQDUB5Kw6fQQPAQhAAAIWCSBni1llTBCAAAQgoJoAcladPoKHAAQgAAGLBJCzxawyJghA AAIQUE3gPyqmy+/dkAXkAAAAAElFTkSuQmCC</item> <item item-id="5">iVBORw0KGgoAAAANSUhEUgAAAE0AAAASCAYAAAAe0VOSAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHFSURBVFhH7VeLrcMgDGQuBmKOjsA0 WSbDuMEGYgymkE+lVnlS9dQEn+3j/KmB52+aATNt8RjAQ9oBETykXUPaCt4aMIZ9rIe1AG+c Sef52dWDNQ4WEdjiBL6x4LmDwm4Bt2Hb4sAGqGAf4GDAhPJ1MRGhNArQpLcRjpLkiZUgu1d6 nhOsEmvjw+LwkrLbBmml/2+StgukQZpIWPC/egsmq0gjbTMKBKRzgjQkX1xIclPgV6RtF+Y3 XG77BaVhTEFE1oFrKg2DEGXCiSveHyEtqKyDX/lKZZ3sgk9m3yVNKemBQizD8LG1aOWJJVL3 nx2EAqHL1kgTwfLEZpTRUlroeeF5UtsM3iRZ9fELSSuGRRoEWgm1ksRnfChEJWmkYfXHixsk rR46zJ/SKsZJO1meFJxQaif5KjDuv2cX3oWeOUjaaZEhQGd6DjdqpTwr4iYGAa0Qn5UWUkC1 +fY6I0m6V2no7ezKIey1lUPufblMx0jLcXZ78DUaI5TunkZHqttRlttmS4g7F64HSgnlUc76 WYE1UNaEoQ2ua6bnTvsAaVfe0T9i5V8E5lX+OPj173deFjIVCOIk/fr3OwlDvhJp//T/btLe v3PeMLMxPCwAAAAASUVORK5CYII=</item> <item item-id="6">iVBORw0KGgoAAAANSUhEUgAAAC8AAAAXCAYAAACbDhZsAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAEjSURBVFhH7ZXBEYQgDEWpix5sgyos grMN2AEtePXqUIE3O8gKGkEXdwPqus7AjKNoEn6eH2Xw4MEerB2y+LveXib/F+S15MAYmw8O Ut8li7aus40So2gBCvO2c1q9OUqBGCHwA90PwwBFUXgwEap3XjQdEhvVGSm4rmuoqsrGGjfg WF27Shokd12J5RVs15ri9p+v45UIEENrfihSlmVYsN9ICINbcOt71yBVPAlzIKjrOnvX2IdA PkwYfbtsZi5A/IA8qmma5k183/eTnXY9ryVw5shrKefNHGebVPKYZ+zjkzdztNTqJ7X1Z9ga FPHHvzb+BjX0cbRta5uxdoonQxEfXzUlI4tPoXZGTiZ/BsWUGgnkU5a5JieLv4br96qPJv8C Y9XzctMf2ZAAAAAASUVORK5CYII=</item> <item item-id="7">iVBORw0KGgoAAAANSUhEUgAAADkAAAAXCAYAAACxvufDAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFqSURBVFhH7ZaBDcQgCEWZy4Gcx2lc xmG4qlRPRcVe2jTXNrlcmiLy+IACPuCBBzDiC/kvKt9cSYdGAQLEnzJukneLmmzDGm2D/Y0h CZACRYwAfdDaPr8XkM6olDUAhdPEnVnPzqCqY7AaQRlk9fTfQG+p+HrIR4asjbhFYqhZ1gWO OKAQdAVCroJATQKofNN2P0EJgl40YYPm1N39dpXcejPvXTZ5aoWchbKpOxmtWazOg2MfIOm/ 3SQtX4aknt2HjXeU9uYSnAPb+7Itv9i/fOksisabL5ZrdFJOV21JuH5A0SBMM7aUvcP5cDqq JHL9Nxo8HAj56A+eUf17h7PvP8u5eIQ08WSRiiOkznq/ZeoAmk6cnGnSDIwvAz7e4twMFdde Hg5cBmaAUoDr7NYgQ0lIrlfXAUh2kkOGUpgPGsmmV9vIIE8fMudiiyDLO215uA/O83MjX/Au glzwd0vTF/KWshwI6hFKfgDZGQtc3Ze4VQAAAABJRU5ErkJggg==</item> <item item-id="8">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFtSURBVFhH7ZaBDYQgDEU7FwMxD9O4 DMP0FJQKtlAiZzThksvFE2r7+vsRcH4QJgOcEDYRTCV8B4JHZwDt0hreuA4gfo3zwoY83geU QIXVIezr0qIFLQviGi+D4J1JFAEMiiBbDRl0P+VjLNqWErxDU+a8WATj8NCDFI8gbBvAYlJc ed1VmNSFriDondvzUYxDUXB4UgBDNUnxZAh9+f55dRtC6PKp6wSBU7ToCbmpXOcvvw9tlwp5 LJaM6jCs9KuMsba0aYyDIFAzKXGiGP5LScekZPcdLYw2hJW2oITTiKe01KfDqVDGdFjyTO1P KaGc/12GVzBxTjJlyZ7AuW1B8lVK2AsjtdbMuaKEsmtVXyhNKFPBmNOBQvLjsOWbN+Lpl6Vb R+hoz7gX78Ybo8Ks7uX22G4dBLbrUfLqU+6xkvofpIPAndPckdT//FfsUEKgYyW96FSN8RW1 qZPogKCO+bmFE8LasglhQoiT+wPAH+kUJa7LQwAAAABJRU5ErkJggg==</item> <item item-id="9">iVBORw0KGgoAAAANSUhEUgAAAKAAAABaCAYAAAA/xl1SAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAb1SURBVHhe7Z3r0aM6DIZp4OsjNdBF mqCP7SDV5Fc6STFebDAYMEi2JezY2pkzO2dxhHj1IF/wpVPyRxTIqECX8d78t34PqusG9ea/ k9zBq8BXvfpO9a/vqT6VAjg9eDcIeiW8Gd9Xf5oIKgRQw9eri5euhJg06MNbDZ7aqDoA30On 4MQ3ZUi43BUnc5btxkw7/ndVzcC0UdqC7+YvcYMP35fq+5dyK+S6ANRtPpCqVWiw6Gks91W8 frtjIaS0lQjfIkjK81z7oKtj92WtCEAdyOsOx9QWGTPWWG5IyYD6Te521byGf/d2o3CgtIW6 oafQrT5sq+J6ANQiAint+3rNPeLEKtgHmwliRI+b0lYsgDf7oBOBDVU1ALoPBcchDUCTSffZ zpdFYEcUpS3E7fyDJYTPg/LBSRaVAAhXv1thBEBXj/tfgjVelQA4tiuC2l9pACrKKovSFir9 eApl8OE9TG3oOgBEtP8oM+BYbx7be0mdkF3bMdZWLICUz4P0wTaZBECkYD6A1yGflGGLtoZh rI7VATgEffpIrIKNipQDt5S2ot4o4ueBfWgcQFggKcGrgADIq69YBxQQAAWRrArUBeDnqR7P T1ZB5eZhCnyef+rxr6JhmLBOSJhYUppegboy4DiOJQDSQ8JpUQDkVFdsgwoIgKBEUoBTAQGQ U12xDSogAIISSQFOBQRATnXFNqiAAAhKJAU4FRAAOdUV26ACAiAokRTgVKBRADmmPZU2tSsW Gw5tzn1pEECOiZ+lrTFOhO+GdcHWw/YAJF77WuQa42j+CNc5I31oD0DihTdFrjFGBv9QjFgb jBvNAci39DCtDcjnFwaDqUwOHwTASfnjFhv4uM0lBcBgyWbodZOzmlVx4HQstmomDUDSNcYx JOjfsGkjveBVAba1r4kAsvkVQGMGH5qrgpdllORDDYkA2uWd5H4FAJjBhwYBNI2+aetekk0l lxGtwja7DAHPLcuhjVTBsdGQ3zEr0GgGZFZVzKMVuATQjvLHb2GL9oOmoCxKotHxRisXAM4b 7Yw7zUdtOXvjQyy3EgBzqJ50z3MA7eEuJIO0ST7ifywA4rUqpOQpgPqYg2kX86lXlHb8AOZp U7Y2m+0LgBihiyrjB3CX9aa2YMTG23c/qgB4t+LJ9/MCePwoPWWntTOy/3+fH/HjSTr72jG6 w99XPSIBMBmIuw14AJzg8gKw7L8MAcgx6RMhjQCIEKmsIkcAz06WNP9uD2WZARzP2+gXWJ0q OnHSp2TAsiDh9OYAoAm+t5pzOyM2S67QbdqJGWZVGJEkA3KywmJ7CyAw5LJC5quC13+Lm9go vWCWCBduNPJTnIZlfxTqmiHjACRQSjIggYj3mmABMMfERqmC7wWH6m4JAO7P2XWq5QwTG8MA jB8iOgpPactaT51baBrEYVPOTMx2ox/uqVPQdVeYgK9nSQC6g9Om87I4XPIwDKVvlLa28Olh sPhJIBF+QWcsQ9cXAC34uNPqEwAcb/B23prDGW2BbyBFTse0AROHiDZuUtoynfh85xhDJ8xD 15fXRx9EPQzoRV6RAFLQwmADAyDlEBGlLQNgrnOMdbIYwXFmiW9nQEHX51jqF1InIv4qmAEe CpMIACl76JS2to+f1gYM98szBGZhMo5B122bc652BcBzmsODc4+tvAD6nhH63Lq9rnVdZkwJ gBfplLLapLS1bVymLXAi8QvKws71TbY0bQlpA54iSDlERGmLEsBQv7zf/52PDcD1pfPkmcQC 9eTb64SQrn2NGO5AtXWh7AMZCfXLc79NFoWu7/yRDIgMEMm6YI7hplQAbafgfO3zOuPdarWb hncYVoOuO5oLgBCAcr0UBRqsgkuRXvwweXrsPbe1O5bEvSgFBMCiwtGeMwJgezEv6okFwKLC 0Z4zAmB7MS/qiQXAosLRnjMCYHsxL+qJBcCiwtGeM3UB+Hmqx/PTXhR/+Ik/zz/1+NfSMQ0/ HKwaXa8rAyJmRNcYxF9+JgHwl6NXge+NAkg5hapUW6l0UkwJg32oDsAemoJb7ITU0EmkcHDj S6wvFShn/E3ML9sDkHItb6m2EqAgW5uM9KEuAPXywcNM3p0SJAt2Zpul2kIG31eMbG0y0of3 MC3lrOO0TFO9Xu9lXeqyTEq/kLEHit3RBlzjVQmAa5viTF3KQJdq62cA1E2YuZFZDYBmTepV y7nUapPSLxIC+TOgbf9pd+sBEKqGQ9fMXgWzVFs/AeC2uVQRgKP6l1uJUQ53lGqLgkDeDLjZ yqOuDDiJf72dWKmDx5R+pULICOB+K48aAZx2CMVtkpgaKvl9iAJ6gftxpKKuKnjRQyAMQYO/ rB++yjohexlttfYDZ93xE5DpDnAMKs2AmfSW2wYr8B9ymF/bUhU1LgAAAABJRU5ErkJg gg==</item> <item item-id="10">iVBORw0KGgoAAAANSUhEUgAAANgAAABkCAYAAADkKP7jAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAnrSURBVHhe7V3ZseQqDHUCk8fE4Cxu Es5jMugEXhr9dTPpYPy8tLttdiQBBs5UTc1yQUgHHRaB0TDjFxAAAskQGJJJvoPg5zQPwzQ/ M+ryfDzmF6u91/x45NSYpeylcn+2L301DvP4sPd4owTbDR+mzI66EFqkSSk5ctzxS5LSWUqO X2OxEq/HaB3IGyTYSq5xdgwqYsBeBT3nSYRdu1T+bJDITKPYnm0/AFkwMKyWmiPYcxpkZpFY /5QeeaXlBduzOkrkACWtK1veewUzLKuY5bdrCeeHJULW6zGP43WL0BbB1j2X4CziB/9b4jlJ 7/VkZ4UYW2LL3st2dXuwDhhUksXLWpeLZ0I3RLAVDI+TryPMe1QblJFmXkIT277N8vN9nX38 XB3hl07U5C0SnXV8bhxgj0+E4+d23c4z2PvvzxNu2ux2M9u3Plb6Zx14Df3jhY8k67pUbIdg KxjO2WsfyfYiavRHD4qsS81Pp6jRSPXfhqXB7Kvj7910e0mnbirB1kHlO3BdcNmg1JdFRW03 kWkjCmGFQZS1Dl6HKzZDsLNR5n24I2Rv7IATIX3hftPS1FfHS7Al0JFqP+nUTSfYZdwykVMd 2Aravs3M6mxlmokC8CfLOg32jRDMv5wygvUJAJmWEOdZ7rp81CZK497PU+fTwXs50+S7Eoy3 Qbd5kUs3AYIpy237wkLedjIpDFDRZX39sRGCmfcBZ8x4BDsHM/R92CbbsTzdllXb/k3du30d 3VRd3TAHDLp7iP/T3mlPeewflYZ03eIIdjfbt+WpcQbLt0Tc+2Dv6zYI5t1/bRbbb3X4loia Z1/3cGFE0OtspFsCM5NlBguTG0o7V7mzbvEE88+yGW039SUryKEQM1DWsWXph2DLhalvkOMd 4fuM5pFBDmVNbxzFTYGQ0wz2Wq5U7fdM7MukZARz6hZPMG32Lmp7fGjdPvTQZTVHsCnk6sY5 TK9FldxhenXZpW38DWs8Z52iezB9GflVP45g28rgdrZHHA57FwA0WX0SzAsmsQDrgNu90S90 bh4ORM+2O1ACwcJdyF/SdBbkr/UuYSNYqTuVwYrvBXu2HQSLdBZycX8U07fO12cq/9EDWV3R ij3b7ujV92FzG0GO35/578+vqNvECjvCsrH17EGOmu4iRl4O9u4/67Hd1t+/P3/mv/8aCtMH BTnivT+8BvkGuGWJSJYXrrJYSbKuDdhuARF7MDHvOgQtziL4JbL8DXVxg08Ce7bdjCsIlsLf llvnIacF3qaXwIEgV73NiRTo2XYDgCCYiFepQpaRfBJ4k4MtI4lxHqE9265DA4KV8EG02Q0C IFg3XQ1DSyAAgpVAHW12gwAI1k1Xw9ASCIBgJVBHm90gAIJ109UwtAQCIFgJ1NFmNwiAYN10 NQwtgQAIJow6/6lr2etGwuY5xfVsuw0YEEzSA8mXXRUlpORI2uaTJaWzlByfvpl+DoKJAS37 aQV/NhAzLEBQz7a74QHBjPi0kPgggBdSRaRnHTF5tHc0zLDQZIFgQk4m/1mJ7KwgZKZ5OJoI bw26d3MCKaDoL0HpqtFldU2w7Zk1YyKHyhMfmJy3t4QXpIQNFtYzZPVLsJYTH2h+0mHCi5u8 7AuCefdg14dKt+I3T3yg84vxmrEvgcNNE14Yn0jPnfxh6Yh+CeZMTCDx6OZ9kj4Yne1gofEJ 6PMT1x47bprwAgRLseteRijKozfNJT5QsOUR7CvMlLzC+Fz4qf3cCS8+TWOJmIBhRILtmjSU +ECFtseEF0j+UJhgTSc+0BjWYcILemgdYXobNyNnMHtSBok9mCuxwtkA95v0/pRAgQNVlwkv aIfDZkRpsjoOcgQ6ZkixnhMf9Gx7gG+AYAEgeYv0nPigZ9u9juEJ0x83HW6fOucwNHKJGIBP YJGeEx/0bLvfPRwz2H7AOo6GbO1+uWVKFCPYNxdvvOG2PVhNdxGR9MEeFhi3xPZ6dpUjykY8 /Y53NIEaBQm23u6gzfQNJD7o2XaP21pnsDXCtkewzudDAiSwinjPmJxH3UsSbMVJ8CF5+dv5 KfuuZ9vduJoJZkrureUyTtlhRNlFCbbo3HPig55td7irkWD61RrDhVflLp/9vMZ+zmPTSz2f +n5SMhgTbX/klCbYigk7YYOEDOIAxaomobeEDJYR4pUNBNvJdHHq49/jkTEk9JT8ezhH259E 2lucYJH6onjzCOgEs91b2/7/HS0K+ADt8zHjuGz+xyEqAFDvDNa8v8DASAQ0gm3ObZxuTsGO gJvKr8djXqKTnyAJZrDInkHxJhC4EswTkt9npWn+b/3zs1x842CtG7oHqz2K2IQ/wAhhBEhX peI+ZgslmIBl2IMJgAgRkgiQCLZ9Mm+cwUyvC4Fgkh0GWXUhQCNY1MdsIFhdLgFtJRGgEew4 A/tELlz7JxBMssMgqy4EiAT7RgeP8zLJg2YyhNiDkaFDxTQIMAiWRiGWVBCMBR8qyyMAgslj ColA4IMACCbiDLT3GkSaLiakJpsl4gA0e0EwtoOG3stkN3QjATXZLHEflm4vCMZ124B7mdwm ble/Eps592EvmDPsBcG43ht16M5t7Cb1K7FZ7D4sw14QjOmzcdfGmI3dpHp9NvP2YBx7QTCm 03LAZzZdrHp9NoNgMs5S4hyMsXyQMbqAlOps5hEs7u7ttT8wg3H9M+peJrexm9SvzmYmwRj2 gmBsn6WHcNlNFxNQm81MgkXdvcUMlsAtaYeQCRTJKLImm7kEW2Gl2YsZLKNLoqn+EADB+utz WJwRARAsI9hoqj8EQLD++hwWZ0QABMsINprqDwEQrL8+h8UZEQDBMoKNpvpDAATrr89hcUYE QLCMYKOp/hAAwfrrc1icEYG2CPb7M//9+c0IH5oCAm4Efn/+zH//mXI014hcic9VasQJOmdD oK0ZDATL5jhoKAwBECwMJ5QCAiQEQDASbGol2qcMIk0XE1KDzSl0jPv0pTmCjVlSaZ69uraP DyUYWYPNKXSMf2MRBOP6G+PNPG7TxerXYLOwjtQ3Ftsi2JIVelITA6b2wuoegBEApAabhXWk vrH4nMb58WolTL991m3KsingVBYR9T1hxseiBpvT6RizB/v648CH/R4Sjik5lzbpOjKXBfHt 1GBzOh0jCLYuU98xgWYINp+MincdQg3hpQhBg/xVarA5mY7hBDsP9u0QLPcykfFmXn5mCLVY g83JdAwl2HW70hDBFidaR69s4foU4WAhIiQTU4PNqXQMI9g6e53TKrdFsI1jw5yNY8Q385L5 fxbBKQ5xpRVPoWMAwdbZU4lmN0ew/aHIPUSKX0AgHwLLUdGgR7IbJNgKKUiWz7HQ0rJuMpJr RaZRgh0kG+bBMKrAJYCADALHUtR+BtswwWQghBQgwEHgf3nxcLW2n/N4AAAAAElFTkSuQmCC</item> <item item-id="11">iVBORw0KGgoAAAANSUhEUgAAAKgAAABfCAYAAAB83IwVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAeNSURBVHhe7Z3btawgDIZtYPcxNdjF NGEfpwOrmafpZIrhiI6jIpCAIXLJWWu/nMEQ/nyGi4Kdkn+iQMYKdBn7dt2116C6blCv65bE QhIFPmrsO9WPH6f1SgFdGt4NgmYSroiNfsbemUgqBFTD2SvPTUksr5ijUeClBktvVx2gr6FT cOJcMixczif9N0t3U6ae/nzdVHgAc7IN+6I11xosf0Zy+Iyq//32LdOPytqp67LGb3UBqsec IHWb4GBRJ1nmEELf/VSQ5mQb9kXDebg5zXE/Kiab0Lq739urCFAtpn9CtIx1prt4KjdcyaBz VjAyhQ6EKzOEpNCcbEO+2H432orr0fYXHbv6egDVYgEp8TOO3xn9xS7eBuMcLIIVg5xsQ76A N+UyH+j1hHXt5hE3sU4kayirAXTfKDhhXQN0zsSm0IhsAvulVE62IV/W319rzzRDuL9JLUMf yzjzpMsu2VQCKNy9H0UQQH96eG4sFKDm2Btce16g9Xd2WzwrAXRqNKLr2A3Fr83ioa4Pkypd ZXKyDfhiBXian/tXSKDfF2FewzLGrwNQxPiTMoNO/fB5vAmOx5DU5mQb8sXa5h2A1myqMyi8 Tr0O2QRQJDc2wLclrVaXmSzZ8ACl43dEb1cdoEPQoyNcN+NnF17AjmJ/vug+26d1TdCXo6/n dx+WmzdkFj8r8J3JV5NBwwCNR0eu5FFAAOXRWWqJVEAAjRROLuNRoC5A30/1eL55lJNaWBR4 P//U419Fy0wyBmXhhq2SujLotF4ngLKxw1KRAMois1QSq4AAGqucXMeigADKIrNUEquAABqr nFzHooAAyiKzVBKrgAAaq5xcx6KAAMois1QSq4AAGqucXMeiQKOAUr7GRmkLG3OK1wSxdZnl eNvbIKDwHm986ChtYWul2M+PrcsB528jEeUL2naf2gMU2uMdEjtKW4h6yfbzI+qyFmFur/ah PUApN6NR2kJAQ7afH1GXtQhze5sEFNpCGxI7Slsh9a5bQeKP7AmrbS19R3uby6CUIlPaCkPm nknSHe1tDtBpo7XjNJCI42oIbR1PhtufEmc73/QeQEm1Q96R7QEK7fFGCjcXo7QVUi94KEKQ MXzhG9rbHqDr9lmSpZI7lpnmO+PaiSh4JI2S/O1tENAtwOse7WuHzvIuXC/E3AUotXbwndIo oLAwUiIPBQTQPOIgXjgUEEAFjawVEECzDo845wV0ffbL/cQiOiyy7Thaulwv9AD6fVNlOluc 5KMAHAoIoBwqs9bhBnQ935HozHWWVgmgLDJzVuIEdDsfcllzu7ZWiGkSwbuFAihG6KLK2AE1 suYyFo14Vs0thQDKrXjy+qyAnt9a8X2RwfVUwzhRNwDwsBcndhoJoMmB4a7AAqgJlu/YZtf2 g3N3zZKFBVBufpLXdwbU9X2b+f+3rzJ4tx9c+KqDbrFk0ORxL6aCE6AzHNaFz+NkKXj7Acdq gGTQYsDDOnoEFIDI3k1j3qwxX9OyuSezeGzQWipH8KgTAhQDJ5Hk6Aya4hU5SIeYNqbwM8aP +65JC+ickTnWUL8CogBN8dJtir3qKfy8D7TYmtMBakyqYh0Mug4DKPHebu9kMch5ozCxn7Gu /No3f4QL/nRhbD2u69IAyjEhsrUIAyjhRjftQvBkERtBYj+x1R7Kmasx4BeMo2rxXpQE0ONd d9yhmPTNKASg54cQM2XTUORqdqAdg6bzMwCiG4A0vSMANKDBqYsKoMQKHydp5+QS/7QQ62hz gKbb202bQdP5iUXjWG57eLL2NDxPC9sDNNnebmJAk/kZB+hy1e5hzcWnhVgv2gOUdF/8XmZi QJP5iUVjKmdCCI3Vod8Dql6LNgjolglo9sX/pExwmML9C/XmexHuSW6aBzKNAhpxK8slHgXS wLks4/VK3xRdFfojZvFVtDOnRiR+WiiA5hTs0nxheFoogJYGRS7+JpgQ2ZomgOYS8ML84Hpa KIAWBkZr7gqgrUW8sPYKoIUFrDV3BdDWIl5YewXQwgLWmrsCaGsRL6y9AmhhAWvNXQG0tYgX 1l4BtLCAteauANpaxAtrb12Avp/q8XwXFgJx16fA+/mnHv/kdTuhJFMF6sqg8j5oppjFuyWA xmsnVzIo0CiglHt9KG2ZEU9p+ypd1JsE7f5UB2gPHl1CeSgXpS0HnCRfZb4Ko/vGAeW+WHV7 gFIeykVp68SA5Tge23lNFwEIvfz3onI/qGH6+osAGqTgdNpFP047yj3/KA/lorRlupzSdpCm x8LJDktz+PQalpNM6tjVOR924P9cDuWhXJS2zgnU8oU/pn1AOH45xqBbPCsBdNtH7RKZEipK WwKoJWL6hvyOIaoBdD5K0Tcwouw6KW0V0sVvbqbPoOsESddZD6BQN095KBelLeskyRiuZDBJ 4gP0OFyrCNBJQh1IZxalXBqitFXSMpP2NW0G1dlz/33YugCdGfUtgVAugFPacq836oPO0n/Q Fzc9WkolBFT3TMZqTHWALgJePdY7JGBSlkYBfTDueSWmQkDXu1wgpQGHw4odzsomSa5usoDP iXMwkGUd6zDJHaNKM2iW0RCnIhT4D7hbYL5FQkCDAAAAAElFTkSuQmCC</item> <item item-id="12">iVBORw0KGgoAAAANSUhEUgAAAIsAAABfCAYAAADYtjTGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZtSURBVHhe7Z3RkeMgDIbdwPaxNaSL NOE+roNUk6d0kmI4Y+wYsDFY/GRBaGdu5mbXVoT0IQnF4EHJj1gg0QJD4nVtXvYc1TCM6tmm 9l/W+q0et0HdHu/g5zKFxQx8GAWTq8S9H7fgBGMIiwblpk4myFX7dXj9U40HEZkdLM9xUPGA YiJP/LozTpboNUwRbPp3Fr7jtCFl2Z+WIff9ULfbQ9lJiRcsukaJErAZMHpp0Mt+mtMzkQoM UtYBKJ9BXtdRpyR7EjCCRRv9vJg1+XiKBNN1Y05k0bNu8FKdBtWbifGIMl2BlOWwgtDRTUd8 YNFGj4SK9+OxrIwy09ARGLPTCSsvpCwbFpBcPcFWs7KBxR5UfEbnwTJHKD+KHEWIuCJTYMHJ cgMLSK41CZnAEk9Brt8ElgSOl0s22zKBZcqtl+qFPFgUKMTP3kDKKpCGjIqmPuMBS0K9gows pij16pOsAhcka1fgYuSuKV5gSY/H1pXI5S5SFnbpvEpjB8t4qWWbmYZmK2Y0vHaAImWBmnL2 1FhWRGwiyzVYSOGk25s6jyzd+p00cIGFZLY+b+IFy+uufu+vPj35hVG/7j/q9x+jpbPULOWo 4RVZpr6HwCKwpFlAYEmzE/EqiSxEw/V4m8DSo9eJYxZYiIbr8TaBpUevE8cssBAN1+NtAkuP XieOWWAhGq7H2zqFpcSjALU97iCPKJxP6KSmXImHjGrbg3QASsa+oVVaf5EFvD+nyj1IDiuI fUNGYH+wgB+MrnIPkg0LcLzdwVJqf876eCV1K2wpvZByBRYTX/fbUC8vd/IKXKRT3SwE2mQm aWgxK3XLqQNUHiwt7BvqLrJA9/ogYUHuQdoVuLJvaJ8o/mzpPOeyzLNeSizpN722I0iuH7nR 79LZLALN8WGQA3g+psyEpZReOLn9paHLhavc0HlkEQAoFpDIQrFap/cILJ06njLsU1jW7z2o XUmKQln3JK2Gsj6h65tPYFmWWNNZsqQD9f7CrAJLUauHYVmPMIe0wouOYRMusBQ1dBAWfeiw Ofs0fpY7RkN6s+jz+QILxhUBKceweNHE1C6E4zqLqn4gXGApavFDWPbfgJpZ7xa65ndrF3QP k9sljZ94vY1TR7VNrvf/s2pbYPk2LD4ElrM+J0HuU4YffWaHfxz7pVQmsHwZltC7eebfL0eP H16jAVr+flAUHz6vERiaRJaiPicL36UhNyLYciPR4XTVJJGF7KGKbnRhiSyTw4Wu//X6OkKr bokeZiyroYq4OFQF0O4PgeJ93jdePZdcsyAfUUDKcidZbZ3zPFjmSJT6fp3ch4MS5l0SLMiH jJCy9tGYDyx2wev7MVgA5741LAJMCizIfUNIWbr9iXoPki1rbm9gXv9HiyzRrwAOogj1TPuE gHKpgwvcR4N+yBq6B8luooJKABIsnxngNOVMP2YLnV5TLlrgXqEi2I+OHkCI3HKBlOWOKDNl g+DwrUyCBeDWMiIS0hDSwUhZUFi8Z4z3tQ+tu94dLNDUgUxpDi2ZkcWStTU4t7qF2l3vDxbk /hykrEKwGLFWUzSju94fLGuIBhxB8dlSApG175aTl85+zQLqrncIyzbTMPuG6mzK+d+vndYt iYuPTmEpU183KzVx9SSwNOthpOJpBbXAgrR5C7IyuusCSwsOhupI764LLFBHtCKM1l0XWFrx bwV6CiwVOKEVFQSWVjxVgZ4CSwVOaEUFgaUVT1Wgp8BSgRNaUUFgacVTFegpsFTghFZUEFha 8VQFegosFTihFRV4wfK6q9/7qxXbN6fn6/6jfv8pNTSn+ZHCCQ9ssxjnHw2CV2QRWIpiJLAU NS8v4Z3CgnxutlZZh3k66/0C7GC5RR+JR25mr1VWGBR31+i1yNcfLMjN7LXK8hj4bDe+jWqc 3oYSnU8BhnjBoqYDgWLbGpC7CGuVtYPlMVlG/6Q9mB2KN8/R7GrksXSejXF+BCtyf3KtssLJ JQeWzbZMYNnePRwyWK0ORupVBBadcpf8xQaW+R2IZ0m51tSB1CtICz2yrPWKFs0HllgqQm5m r1UWHBY3vTOCZbKUnqXB6FLrchepVzAJk/osOqqY9ziYH16wzLycLRFrbaQh9QI15XT09FaY 7GAxy0TMwXvXWlecrtZnE+9XlwxhWfsKAgwN32NQWKahzUBraG/gFTg0r4LvituLaWQB21HE zRb4D5XmZknB+MFdAAAAAElFTkSuQmCC</item> <item item-id="13">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAXCAYAAACBHjSnAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAL3SURBVGhD7VqLbYUwDGQuBmIeFuga LMMwKS8BkhAnPueZgio/qVJFw9m5XPx7HZx9jIEXMjC80CdzyRhwJkwTwSsZMGG+8ljMqVOY 6zy6YRiqP9PyfrKOPTzhq9nW1QcdMdfZjcPo5lXX2L1oi5u2izWO2wUbZ/e3rpttbc7/jzCX aYv2k1ueuFRmWz2QPSzMPdIohOZl2qKlx1ndPB6/3xujD3Szrc/5w8JUEs4lSoZ6b4ueSvBN GLPt6dHmXCjMEOHazUW4PWcjBXYin6hTbb4YDE9KVlde/ZT7HaIv/+Ft+2PLOKljh3UgZUEM zX2n/tewAzeRe+xCY7Y57LpW1IXpBXYyqx/iS6lcN5+QfB4aJ8ydoNPvSonho2MqHMQ2iJ2I lxRml+2DrSiAHLvcJxn5umzz2C2t9AlzDgcUbllyw4jGo7xZdBTqjphH43GF9c+PycIuTIHf 7vM+190jtqlm7IJ9jurGyU1oxERsnyl2OycKm8T4cMVMZBDbHDajlS5hpmJs1xb3R8z81pWp K6TNI7LFS5T5TYnQE9dOa5BtAHvdLkyoh/FUDtn2whRiA1MN1HYRgprYuVa6hEmlg/xZUjs0 o86XXTlDYhQflcrjMzKqcwcE2v4p6kCvlsp4BRQmaDtv/hDsa9lBZLcu20mdXdQptFaEX0lS YZ6JirWwz/cViivafncJE/ROho2IBzRchiumsQJE2Wv6qJ+5ri7Ryv3CFKSn7n2zLzIXCki3 rInaAhH2Q8Lcmxt0EiHiQoQd998hzOs4I0mT1YIXH4GINg0vbqfykFov9STS/CD2RdgPCDNr EpENCda0sBmtdAkzbX58IXzWkQSxWgcs4KM+Uorio/yOY64va9/MAXRcJGt+5HQQZ8PV0XIj 8Q0Wu62VDmFuo4QlGRcVzc1laMqNXL7ZPPzunsoFfuumtXsG7PD2/cJSCK3/KOPKQc42hl3X ilCYnDv2d2NAhwETpg6PhqLMgAlTmVCD02HAhKnDo6EoM/ALcT70JtuR0xgAAAAASUVORK5C YII=</item> <item item-id="14">iVBORw0KGgoAAAANSUhEUgAAALYAAABaCAYAAAAVdqz9AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfgSURBVHhe7V3bteMqDE0Dp4/UkC7S hPuYDlJNvtJJivEYEzt+gPVAxBjvu9b5uBMQ0ta2EBiLS4v/gECFCFyqs+nZtJdL0z6rM+ws Br3bx+3S3h7vJIMrIrYH5NKA0kmMKKTz+3FLClCVENuR+tYmPuSFuBRqfBF4to1y9q2C2M/m 0qYHah/x0+R8Zo1LN3N0f2nTqaUs6mGRjkW3dz5xGPi/RdB5P9rb+Nunze3RBpMP1zb224ZZ xye2y6nT2NjB83WUXtQyFXLRRktuS1lMUo+GU3rTujlSzx7q5bpH6DOXlkiDxMGJ7UBOWyj6 XK6LGp2cJiVi91FoEZmcAxXRprWURfJaqDelW+j3hQ7yGVaekhyb2A5EfYjt4X4/Hp8dlMRU JETi3smKB89SFkVs6VhUe/Jh9uuhm1voD+kI4+F3AUji6kMTW2rsto/TiN1H/qWDGNErpJOl LIrX0rGo9sPvz2Em7Mk7fbgDqQ4njxYGsQMTOz0NmTsdxB7x2HggWcReri3Idwue7NsRWebv AxO7A4OYwuYr8+kqPbTfnUbslpqiqdA5/d1QFomBdCyifZD4n8V5nLg87J8Nf0v3uMQWTk00 r3jgRuWE8mky34xIs5RFGS4di2oftHmCbTB6u4hNk1aSeoLY3/k3cR+b3gajOPb93VIWNap0 LKp9IEDMyBz53XgBeWhiN6avGhMjtt9j8a/1K3tBs9qXJu2c47A+u+NzasmuiN/B4u+MgNhU QMPvxSAAYhfjCihiiQCIbYkmZBWDwDmI/bq31/urGNChSH4EXve/9vqPNw5ybB5OaFUAAueI 2N1+qu2uSAGegwqbCIDYIEiVCIDYVboVRoHY4ECVCIDYVboVRoHY4ECVCIDYVboVRoHY4ECV CIDYVboVRoHY29v8hkdLlwNZHlsdZFscp+U+FNyxuHZy5fH0A7GjOFGH5HkAh1vlkG1R74Rr E3csrp1ceVz9cB47jhRVE4OP8bqlsWyzeicMm0RjMewUyWPoN85d+NAggpb0w1UB6KYf83bj mtU7YdggGouBoUgeQz8QmwCJKh0gwHjVNJ9s2zx120Z6LJmdtDwJ5sixI2jJnCKB3Od/VgVz 5iPbkgPElvn19601x1YZ06jakGyyyyK2LOWy1R0RO8ZOqiaGmtV9Uryu06etKzLTw5YcqRFb Zqet7iB21HvcrSoNw3PJtiVHMrGH0gusssO2uoPYm97jvlxIILdJXZFxLyCxkI/EjjAR5XVF 8ugOYkt8ibaHQQDEPoyroKgEARWxx7dFy7tBPv8vKbotUVbdVrMroh4MHUtAQEXs+UI8cH1D CZZNdQCxS/NIdn1A7OwQY4A9EACx90AdY2ZHAMTODjEG2AOBjMTm3hUyqX1MrDrJqyRiCCLH 3oNbu465K7F7oo5k9hv+0ssnWeiB2CyYamqUn9jd3YjfK4MnV50FDqEHT71N0EbErol6eW3J Tuzp1Qt+/zt2SScidl5Xn0t6dmLP0+ZQ3j05j8G4NEflHqQiKtiO3Cmd2FHrQ9eWEVGZvLxS CTWIrQTuuN3KIjZ5eaUSaBBbCdxxu2Um9vJq4EkqEr2ckrpOWAG2mtg5j60OdlicQy5Uz9BX 6v2/LW4+jqWgyvvlHbLZiT1dLPa7GqMRAYeafEUSIL6K2Lk+BpjqZ1FPo1Q9B9sWt+g6H7NO yUX6M+NaZmJ3Rj0nT+jqyZxHmtUHrkwjyGYaYjNqYpDjbjQwq6dRqJ7OvlvTdNF5TmwX3Di8 jvXnYp6R2FwVftBOQ+xsH9x6e83qaZSop3vYXBBbPXQukHWEn9xIHAxm0f58roDYEazylUhY DpiWY5enpydvf8P3ith+jTV7uzyQeIRlqz+IPUdAEbHLI0zYqaXp2acQw731rMXf/N2GvH8c F07K43qf657HzFP81x1pEVtWu4Mf8dYtGXouoy+L2BO5qv4gtsyr2Wp/2KYistodMggW0x75 BfzWJ4N99Ixu8frUhewvUB85dhSsX2yj9ctIkjDb/ixYz+DicbErsrXFy4r4iNiC531oWuiL j5Ul++m5riMyUS5ITJ9TX4a/rfNBIDbBWcXiUfEUoEtBCCAVKcgZUMUOARDbDktIKggBELsg Z0AVOwRAbDssIakgBEDsgpwBVewQALHtsISkghAAsQtyBlSxQwDEtsMSkgpCAMQuyBlQxQ6B cxD7dW+v95cdapBUPAKv+197/cdT81zHVnmYoFWhCJwjYuOsSKH0y6cWiJ0PW0jeEQEQexP8 nMdBLWVbyrJmY+p5c50+pyH2jfsB3IhjzgP8lrItZelIFO9lUTdFpxOIHcMtZ70OS9mWsnQc CvYyq5ui1OkcxG67rzaklVxzfsxrKdtSlpJEoW5mdVOUOj2bRQWqDTnH3e7rvyuM1eUOW5yz rIGlbEtZSg4R3fbIsWX+PjCxZUUKnadyEsZStqWsaojt0jPBmurQxO7LFAiMzVqvwzJ9sJSV hdm/j9iS/NqZfGxiS9ORnHVFLGVbyqqC2LI0pAJidyawS9j2yUhf7+Nb8jZQd05NBEvZlrLU Bm10/G3EnpVIY5pz8IjtreSWsfWtc774sJRtKYvJBnazHxJ7VeCSp2QVxPZk5W8F8aBBq/0R cDOqbOdr0LkSYg+RGOTen4xWGuhJXUeOPcNxmL51T7mVSyAnBQEbH1YUsVPARN/aEPgP8qkZ vaaklYYAAAAASUVORK5CYII=</item> <item item-id="15">iVBORw0KGgoAAAANSUhEUgAAAKgAAABaCAYAAAAsER2mAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAeESURBVHhe7Z3b1aMwDITTwN9HaqCL NEEf20GqyVM6STEshpBwMUiyx8GG2XP2YRcjy+MP+RJkLg3/UIGMFbhk7Jvs2qNuLpe6ecgl WSJLBV7Nvbo01f216l2hgPYNu9REM0vujE697tVqoCkQUAdn1Ww8dEZ5WDwPBR5N7RkNiwP0 UV+a+MDZR+A4O+8ofmkjeft3a5iSAUDakmqz1iWXd33iNOj/zoLH695Un2vvMtW98Q7qruzs WlmAujlnHFVt730FDzc1n2K4pz8UUqQtJZyfhkt+y745OCcP53xdYOwzN9yP7RUEqBMrbkHU z3Xap7i1U8dE0C4qzCKF64i1yLDFDdKWyKfRb8k33/WZD/YRbzrUlwOoEyM85HWyve7394o/ coj3wdh1VsADhLQlAWqtSyovPpT9eqFyC9phmFc8xC6QDF1dDKBjp6V+kK/HAdpF4rnQimji 8wtpS2q3tS6p/HD9MYxMHYTjh9QzhfDMMxd+j4JRIYDGD+9TEQjoR4+NB0sF6HzuLe5N99Bu D4bf/i4E0LZRwtAwXUmOV5W+/dI4QBtp6JNC2fg60JaogbUuobwX4PcidB1AnfaPup/jlwEo YP6JjKDtZHY53xTnYyvUIm1JD4a1Lqm8t80jAL3R1EVQeR97mNIRUKlTvdfl7Re9WaQtqVZr XVJ5TzScQLly3bBQKgbQGvrTkW6Y2e5ueQNbwuV7HWlLqnW7rsW+5mjf2P+DxNTe8t2Ifs5p WcX3Oy79Sv6kgEqdyOt7K0BA9+4B1r+pAAElIFkrUBagz1tzvT2zFpTOYRV43v6a6z/OQbGq 0hpMgbIiaLsfh13Fw3SkoUQKENBEwtIsRgECitGRVhIpQEATCUuzGAUIKEZHWkmkAAFNJCzN YhQgoBgdaSWRAgQ0kbA0i1GAgGJ0pJVECpwE0JSvsaWwjXgNUEuMti5tO7X2dP6dAFDpZVud UP5SKWx/QYhMXlU0TFuXtp1aewrX3kWOD6iU063XalkSbBuWr69ok6kuRTtN9hT+DUWOD6g1 QcwgHjRprq0Xlq+vaIOpLoWGJnsK/04DqJQya9BqUTSdbew8bruNcl22dsr2LJofPoLaxLVI 1+fLoA5umNaM7WQCauvX8NIhr9sphqdgh5LZzgtQ21QG6/vhIyg0d31OspQvHkw+tpNjI6hN Q6zvxwd0SJdVHzVooUq7/WKx6cpiOzkaUJOGWN9PAOi3w4ec7LhDZhdhtD+GHHKA7WftCjhY V/tQ+IGy58Wn8f0kgGo7i+VyU4CA5tYj9GeiwALQzy8C8/PE3/+uH/N512yDxLf1ghI9ZBWP qpt2dlFgO4KunRm5evaj5szHiHYS0Ajxyrw1DND2AG3v4aPioaWRIhHQSAHLuz0Q0Kbdu10e COv7v68k0pckFOIRUIVIxyoSDOhy81Z3IGmUfAQ0Sr4Sbw4HdL6ZbDhZWDyiek1JAloiY1E+ RwD6flni/QvNcmM3yi//zQQ0gah5m4wC9DPMGz+9wgiaNxQ5eRcHaNuS7gtiNeLThApZGEEV Ih2rSDSg3atY4vdunGhcxR8Lnd+0hj91/kZn1hKoAAENFI63/UaBkwCqzemOER3xHmSmfvoW wd3/zb7kt/X9d8VHu3zqnwDQVC8Vj+VE5IPn6ufQNs9nx1WJ+yv3K2PB8QFV5HQrtfIWg+WD Z+qna1/V7tJUswio/f772v1azY8PaLLEtl5iWD54jn4On8xePDwuKiq+/756vxbPE3xpLl1q 8FzkuDlofn72EHZfnlwAqvn++9b9BPSjQH4d7++c3Pzshubhu6iqXwqnr2Da71/X5djf6kw8 dH5ljYugttxzfQRallT4OQzNw80qQEd2g+4/K6DJctexQ7wt9zwtoFtpP93CXfj+u3i/wf3j L5JMOd0G5RZFFZFp0/wvtpm6ZZ09pdm7SGrfwXCwDn+2XrdUReCzRtB+rZ0gdx0cQXf2c/N1 SS9ghu+/E9CYyMd7c1bgBEN8zvLTN0kBAiopxOu7KkBAd5WflUsKEFBJIV7fVQECuqv8rFxS gIBKCvH6rgoQ0F3lZ+WSAgRUUojXd1WAgO4qPyuXFCgL0Oetud6eUpt4/UAKPG9/zfVf01yK aBMPbiiim5BOlhVBCSiy74uwRUCL6KbzOnkSQFO+boe0jbSFhjrgPVKAC8UBWqlyscfKpHwR GGkbaQtAxsQEIu8/zKfjA5oy3xxpG2krjAXvXbC8/0CfygLUnZC3drzKmgApk+aQtpG2AmHw 3QbL+w/06VH3qc9lbDN1qRt1i6n+T8p0XqRtpC29OpaSe8xBv/1dCKDfkya00qbseKRtpC2t NrZyOwDqpj3vNUcxgHbpuZaFUsqhE2kbactGnrL07wEd5p/OwXIAtQ7zKfPikbaRtpTI2Yr9 GtDpdK4gQFtZXbRRR9GU2zdI20hbNvR0pX8L6OTonLIiaC+n9vi/vnTKDXCkbaQtHXb6Uj8E dH50TomA9tDNDlXVq82S2SrgDoRY7tSUNcR/xCWk2XIW5JgfzsIWSfOWD8OibX80SD/elEgB uQ8LjaCJ9KLZ7BT4D0ECxe3kPDRqAAAAAElFTkSuQmCC</item> <item item-id="16">iVBORw0KGgoAAAANSUhEUgAAAC4AAAAXCAYAAAB0zH1SAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAEbSURBVFhH7ZYBDsMgCEU5lwfiPJzG y3gYpqK2WrOJM+2a1WTJslD4PD90wDc9cFPd/Ag/++ZuQNwxGWCA9EEbGf28cItecBLLLE0Y cq1wy5g7A8NkiQ0gS48XHBfqex1uq+3IMBjaC9+6kbDcxKxweT7QWXd6xC16H9UiY3dXEi8d 73zuaQcUxeP5Cio+8ap6xCVRsd4HpNGnxYLN99EkuUYCPCF8615bc41lUv2SrGMVbn4T63hi BhnPIN7TlGdvN6+yLwvG43A6orRhdFaZJ92pE5qpt0pIXy97xOPAiogR4au2SvMCaoezS6V7 VaPC5zmPPPn+zfkIH2Goi5n8rzLicZ0QbfS/CdfyWR8/SXy9EG3GR7iW2LfxL8LKgk3lMX3V AAAAAElFTkSuQmCC</item> <item item-id="17">iVBORw0KGgoAAAANSUhEUgAAADoAAAAXCAYAAABaiVzAAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFsSURBVFhH7ZaBEYMgDEWZi4GYh2lY xmFSIKAQI0GvWK32zrv2Ggnv/ySg4CEf9RBOeEH/zekbODqB1QqUwkfbSfTAmSVeKQ3hlYuD JkjjEpwDI8AGyEoMZ7xA/qnlwYVQPa+Es6B9UE4jSvntgCnkR0fmT9i4tsD6ysWnFwtQVG9R I0MfBZXVF3XhoCLMxp4aIiygyeLSvcnqaPuvHI35qXsN13K8i/vOlYn7n0G3Fy1By9IOC/WJ UA+HclD473P/rf09BEp7mPaoDLouxeGO7yxdlsF3c5zaVZNTh8pyZkobfFEYOiyYxjvqKHD9 2BpG7H8UNJOTUd4sz0a/iIOmK2Dv8YLxVTfwx0t9OBuDZxA/jOgm6M6/MHXjku0Lw+rcJPF5 /+0LA1uuRfLGIOky7MSg/aCxXPuuYidyiKn2gUaHyU1FTHGNgP677vDBM1aQblA8M8lhn37f oVW7QcfqPX71F3S8xudmeIyjHxDYVWCM/GC4AAAAAElFTkSuQmCC</item> <item item-id="18">iVBORw0KGgoAAAANSUhEUgAAADoAAAAXCAYAAABaiVzAAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFxSURBVFhH7ZaLDcMgDESZi4GYh2lY JsO4hK/jGAyplJK2kaqqhYCf72xQ8COP+hFO+IN+m9IPUHQDqxUoFT/aboIGDkyaG94xLsxf HDRBpmABIkQbls6Pv/f5BBRnQ4N1FrQyfvkPPdu+v48Di+gMKG2B1zXGX/Liw96sDqoi0Eof sTL0VVAp+wPJ46ACfCumEUX3RckCIRsfVDTsT9XjVCY5c6bWdFa3KNpeFGfv2BhyoUva4I1z Uynf2GdkoXnQs4vC3ti6I6D5pRgPtbqEe2F81rrN+d4ZZXvGuoD/YyzDJofhuaqo7yTneuw1 oyHQpFC1o9SMblC0EVP7eGlY19c5OV6ONWjMuUFly4Yaa7b52rXlA16ydP/CsLvluAe5MKQY +xcGzs44LmlcYrhx/D3QZK1O47wRpb/VOCir3vkmsgwZCWTirhtr5aBe9zq2FvIEaD07y2Hf bUaPBl0r+JloJhWdWXqtuX/QtfR4P5oXh8JUVxc7jbMAAAAASUVORK5CYII=</item> <item item-id="19">iVBORw0KGgoAAAANSUhEUgAAAKAAAABaCAYAAAA/xl1SAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAb1SURBVHhe7Z3r0aM6DIZp4OsjNdBF mqCP7SDV5Fc6STFebDAYMEi2JezY2pkzO2dxhHj1IF/wpVPyRxTIqECX8d78t34PqusG9ea/ k9zBq8BXvfpO9a/vqT6VAjg9eDcIeiW8Gd9Xf5oIKgRQw9eri5euhJg06MNbDZ7aqDoA30On 4MQ3ZUi43BUnc5btxkw7/ndVzcC0UdqC7+YvcYMP35fq+5dyK+S6ANRtPpCqVWiw6Gks91W8 frtjIaS0lQjfIkjK81z7oKtj92WtCEAdyOsOx9QWGTPWWG5IyYD6Te521byGf/d2o3CgtIW6 oafQrT5sq+J6ANQiAint+3rNPeLEKtgHmwliRI+b0lYsgDf7oBOBDVU1ALoPBcchDUCTSffZ zpdFYEcUpS3E7fyDJYTPg/LBSRaVAAhXv1thBEBXj/tfgjVelQA4tiuC2l9pACrKKovSFir9 eApl8OE9TG3oOgBEtP8oM+BYbx7be0mdkF3bMdZWLICUz4P0wTaZBECkYD6A1yGflGGLtoZh rI7VATgEffpIrIKNipQDt5S2ot4o4ueBfWgcQFggKcGrgADIq69YBxQQAAWRrArUBeDnqR7P T1ZB5eZhCnyef+rxr6JhmLBOSJhYUppegboy4DiOJQDSQ8JpUQDkVFdsgwoIgKBEUoBTAQGQ U12xDSogAIISSQFOBQRATnXFNqiAAAhKJAU4FRAAOdUV26ACAiAokRTgVKBRADmmPZU2tSsW Gw5tzn1pEECOiZ+lrTFOhO+GdcHWw/YAJF77WuQa42j+CNc5I31oD0DihTdFrjFGBv9QjFgb jBvNAci39DCtDcjnFwaDqUwOHwTASfnjFhv4uM0lBcBgyWbodZOzmlVx4HQstmomDUDSNcYx JOjfsGkjveBVAba1r4kAsvkVQGMGH5qrgpdllORDDYkA2uWd5H4FAJjBhwYBNI2+aetekk0l lxGtwja7DAHPLcuhjVTBsdGQ3zEr0GgGZFZVzKMVuATQjvLHb2GL9oOmoCxKotHxRisXAM4b 7Yw7zUdtOXvjQyy3EgBzqJ50z3MA7eEuJIO0ST7ifywA4rUqpOQpgPqYg2kX86lXlHb8AOZp U7Y2m+0LgBihiyrjB3CX9aa2YMTG23c/qgB4t+LJ9/MCePwoPWWntTOy/3+fH/HjSTr72jG6 w99XPSIBMBmIuw14AJzg8gKw7L8MAcgx6RMhjQCIEKmsIkcAz06WNP9uD2WZARzP2+gXWJ0q OnHSp2TAsiDh9OYAoAm+t5pzOyM2S67QbdqJGWZVGJEkA3KywmJ7CyAw5LJC5quC13+Lm9go vWCWCBduNPJTnIZlfxTqmiHjACRQSjIggYj3mmABMMfERqmC7wWH6m4JAO7P2XWq5QwTG8MA jB8iOgpPactaT51baBrEYVPOTMx2ox/uqVPQdVeYgK9nSQC6g9Om87I4XPIwDKVvlLa28Olh sPhJIBF+QWcsQ9cXAC34uNPqEwAcb/B23prDGW2BbyBFTse0AROHiDZuUtoynfh85xhDJ8xD 15fXRx9EPQzoRV6RAFLQwmADAyDlEBGlLQNgrnOMdbIYwXFmiW9nQEHX51jqF1InIv4qmAEe CpMIACl76JS2to+f1gYM98szBGZhMo5B122bc652BcBzmsODc4+tvAD6nhH63Lq9rnVdZkwJ gBfplLLapLS1bVymLXAi8QvKws71TbY0bQlpA54iSDlERGmLEsBQv7zf/52PDcD1pfPkmcQC 9eTb64SQrn2NGO5AtXWh7AMZCfXLc79NFoWu7/yRDIgMEMm6YI7hplQAbafgfO3zOuPdarWb hncYVoOuO5oLgBCAcr0UBRqsgkuRXvwweXrsPbe1O5bEvSgFBMCiwtGeMwJgezEv6okFwKLC 0Z4zAmB7MS/qiQXAosLRnjMCYHsxL+qJBcCiwtGeM3UB+Hmqx/PTXhR/+Ik/zz/1+NfSMQ0/ HKwaXa8rAyJmRNcYxF9+JgHwl6NXge+NAkg5hapUW6l0UkwJg32oDsAemoJb7ITU0EmkcHDj S6wvFShn/E3ML9sDkHItb6m2EqAgW5uM9KEuAPXywcNM3p0SJAt2Zpul2kIG31eMbG0y0of3 MC3lrOO0TFO9Xu9lXeqyTEq/kLEHit3RBlzjVQmAa5viTF3KQJdq62cA1E2YuZFZDYBmTepV y7nUapPSLxIC+TOgbf9pd+sBEKqGQ9fMXgWzVFs/AeC2uVQRgKP6l1uJUQ53lGqLgkDeDLjZ yqOuDDiJf72dWKmDx5R+pULICOB+K48aAZx2CMVtkpgaKvl9iAJ6gftxpKKuKnjRQyAMQYO/ rB++yjohexlttfYDZ93xE5DpDnAMKs2AmfSW2wYr8B9ymF/bUhU1LgAAAABJRU5ErkJg gg==</item> <item item-id="20">iVBORw0KGgoAAAANSUhEUgAAANoAAABkCAYAAADg3S7eAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAoKSURBVHhe7V3rldwsDHUD6WNrcBfb xPSRDqaBtDG/ppMpxgG/xgZhHhJgkPacnO9L1hbciy4PgdEwyY8wIAxkZ2DIXkLNAl6PaRge 06tgHV7P5/RBl/eZns+StUZXeDfAE79qr3GYxqe75TsV2gJ8eBR2ViVssiIpbdHp6NoSZZ0p bRXC/3mOzo69Q6FpkY3TReeSifbX9CBT2VJFmtEhE1zLLHf8GyGKB2AW1Z3QXo+BblSJ8dEc PXAOm0GYtLNEdlY56oq2uc5sBjW7UX+upnZ+WiJsfZ7TOJ6XEH0JTa/JiEcVfwOso88jx1qQ fpQIxRP73Ot2+M3lg+48UsUWb0tPI4/C7khomgyPs+ueZu3dBqPHmVQIY17XOX6/zL+335u9 vWpEy948+Zsbd3lPvfPS5ccIMgBTrCIOz7sxHUe09f/nujeEf25ro510Rwy2k4fEJFvnKWQ/ QtNkXI5mi9Mvj5hRIjt4oqege6OY0Uvz78BUwS5jE12s0CKncKHCu8RkCk0L7FvvEzcznfZU qTp+SFSzYGL4X8lMtKU7ss0luxHaERToa1ehfrABDsL0bRNAU1bgnauolEsf2dacl5hsoZ36 MEikZidXGf/MtTl6QSNTQMeUbOvQ+XciNP8UCyRrDxRBU4rjqHeeVloDJyA0d+NAPepiHxqQ tdBwi3iXJ11hwgutNv5kcQB0pdv6+mUnQnOtkb6s4YT2tTNPm7Y117o/Ods2VBLuaF+Hh4Rm LqoDOuD5kW89D+vObY1lFGRjihPaHfErAhwjWrmp49IOy9S/D6F512czYvcpEd/U0fLu8xoP FANUnvFvezBCBXEejhEtVWihgjx0RYfTDfFCs0bd2vihNkUFQwyBBtraljR8hLZGALfO/NwL RwZDjLk+1KPvUcx99LCDIR91XGs5u+KeOmYTGhTQ2aN08UKzt1XgkPgxqJIXf3xI3t05pdvq TmiPkKMgx/C+FX26Du+bUzErOABGPI11kNprgs9e1lij2dPLL4Q4oc2zhVvij9hk9k4B0mzx FJqXzMQHQjfKndPXa6FV2oMPJ4M7/gumRGjhbuR/EtxHAl6LFlqtc5t+yKcnuOMXoUU6TPLj /qjnGgqMnDr6ty2Sq0z6Inf8F6u7ddO6j2DI+3f6+X2Tuk6ssS2MG/ve8rxr6tjSWUfMCZb2 8bva/f37Z/r521F4PygYkqaCsLdQJ80djoayGVZtsqdQde0Av4NIWaORedhmSDkL8VfReU7E kwNfDXLHD/MqQsvhb+qEe8guQ1DRKsBArNugYlEPcccPkCdCQ3mU62XVqz+I7gwhsZMF5IVR 7vhtakRopX1QymPJgAiNZbML6NIMiNBKMy7lsWRAhMay2QV0aQZEaKUZl/JYMiBCY9nsAro0 AyK00oxLeSwZEKGxbHYBXZoBERox4zTXd9MfYyKG6TTHHb/zCENXp/fVcaWqh4pRB2qNJqK0 VUxlzJN7XJ2VEaFReSH9pyw0owMVPp8d7viv+ZGpI8hPL8kdfOIg/H2OEZjMZto9HzA7abZE aES+ludTFvpRggiuZea++NNvrrK5SrfFWmj7fYrGRahLUortS+FGkztAiuKY3CMpMYWjO0LY 4iu03pM72GMOz+QeN7mpWITmXaMds8+sDzeQ3AGY26Xf0Nxwcg/3lezxd5tgbPEVmpEH7Xxn Iv7iUHej1EluAdZnUyN4rfXxuvOrRBjKyI2Te2DEYXZWGFuMhfalscvkDoaX4IR2xZVOi3a/ 5B57jWXqmCH+hdqwPvbgcSMaeC9+7eQOJr1ck3tIkovKQus+uYOltEMwxByFek7ukR6Sl/C+ S6ORI5o7YUXciHbf5A7W/PGQf9pcK/ac3CNtk1k2rImERjamck/uwB1/gCNJMCSAJO8j3JM7 cMfvdZBlqq4j2+Dd+9vJidunC9qARk4dA/gJfIR7cgfu+P1uciG0ZaN2HIGs9n67dZ6oJrRv juI04O0nd+Ce3MPX7m6hbVE56HyXz2qt31cUmg6IpI/8HSR34I7f4/NOoemI3JL4+7i/lFNB 6wiKubS+ptA0T8SX5Oc5EZ+rDbnjv+YVFhqUBN3K9ZyrwRB2qwpN1Zt7cgfu+C9cFxSafVwH OFhrnBVcRj/ox52X2VUvc39rmD9jWf9czc9qC01zQpKUgsoOotNKepWq3lR2kkBkeQkQ2iKq k3Nvfx+3DCmhu+3fjcL09UsE7upCi6irPMqKAVtorjNx87+vnxYEfAC3f1Q5qiDBOEQFCtod 0Vj5joCNYMAS2uzk4PBzCIoEnIj+PJ/qO2X9Ez91jKj/+VEZ0ZKpkxfzMnAWmieUv4xSj+mf /u8+jVwr6Hw3VGitRx3zNpRYb5uBpCNYcR/AhQqNgEgZ0QhIFBM5GEgS2nxaHRzR4r4eJgck QiOnVAzSMJAmtKiP6WREo2kqsdIyA2lC2/bQ9qDJ1fpKhNayg0jdaRhIFNo3mrjtt1FuWCdD k6ljMnXyYl4GEELLW7Ek6yK0JNrkpfwMiNDycywlCAPXH342x0+1EY3yToqWWG8NN0W8IA2z jGhovw4994ku6GYGWsNNce42HbMIDeu+Aec+sUXc8v2GcGPO3Z64R2AWoWG9OGrzHlvYjd5v CDfZuVsEZhEa0nfjjqMhC7vR623ixq3RMJhFaEjnxZCPLLrq623iFqHROE2NqCNiOkEDupKV JnHjhBZ3xvfcLjKiYf006twntrAbvd8kbqTQEJhFaGjfTQ/5oouuaqBF3EihRZ3xlREtg3um bWJmqEhhk63hxgpN05uGWUa0wq4pxfFkQITGs90FdWEGRGiFCZfieDIgQuPZ7oK6MAMitMKE S3E8GRCh8Wx3QV2YARFaYcKlOJ4MiNB4trugLsyACK0w4VIcTwZEaDzbXVAXZqAvob1/p5/f d2EKpThhwM/A+/fP9PN3mgb/ow08UeMzmQZokSrWZ6CvEU2EVt+jpAYgAyI0cQxhoAADIjQS ktM+nSApuqqRVnDnqGfcJzfdCW0skiz76N0tfgBJoc5WcOeoZ/wdkSI0rM8h7vrDFl31/VZw E9cz9Y7IvoSmsmY/zASJub2xyUtqCEhpBTdxPVPviHw9xun56SW8P39mDmUdJXAsh4k2r13D 89EK7nz1jFmjff2yj3005T/bEI13pTAL+RoyrPxaT7WCO189I4Smp69r7KAboSml7aCKOCHx 1KRInSkKaQV3tnqGC+3Y+fcjtNLTR8RdfxT+Xs1GK7iz1TNUaOflTEdCU66ne7FiYf4c4eNq 8okouBXcueoZJjQ9mh3TTvcltFlrw1RMa4l3/UV49U0fzbERnANqjnoGCE2PpkYUvDuhLRdd LiFV+REGyjOgtpoGOwLeodA0tSK28g4mJar5FCgyzUynQtvENkwD0LuISwgDtAxsU1T3Xm7H QqOlUqwJAxgG/gMkMTDuIAi4BAAAAABJRU5ErkJggg==</item> <item item-id="21">iVBORw0KGgoAAAANSUhEUgAAAKgAAABfCAYAAAB83IwVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAeZSURBVHhe7Z3tsaQsEIUngc3jxjBZ 3CTM481goplfk8kNxld0HBVRGjzdOnC2aqu2drBpDg/Nh4C3ln+owIUVuF3Yt+OuPZv2dmva 53FLtKCiwF/7uN/a++Nv03qhgA4FvzVEU4UrsNG/x30zkBQIqIPz3u40SrC8NIdR4Nk2gd6u OECfza2NB84hwsbT7Un/jtK3LlJ3f/e6qfQKvJLtuC9Oc6fB8NcLDn+P9v757Z3m/miDnbpL 6/1WFqBuzBmlbhI8mnSTLH8I4Vo/CtIr2Y774uBcNE5/3C+qk0lo193P7RUEqBNzf0I0jHW6 Vtyla45E0D4qeJHCVcRWZEgJoVeyHfMl9LtXVlmPNn9o2dWXA6gTKxIS/x6P94z+YBcfgrGv LMCKwZVsx3yJNsphPnB3E9axmxc0YhdIxqosBtB5oeIB6xigfST2hRZEk7hfbXsl2zFfxt+f Y8/UQzhvpIGhT2CcudJlFmwKATTevS9FIKAfPXYalghQf+wdXXseoN3v7Kb6LATQrtCCrmM2 FD82i491fZJQuZXmSrYjvgQB7ubn+ysksd8HYZ7NMMYvA1DB+BMZQbt+eD3ejI7HhNReyXbM l2CZZwAGo6mLoPF16nHIRkCF3IQAn5a0al1mCkTDBZQbvwt6u+IAbZJeHcm6mX124wvYWez3 D51ne7WuGfVl6et678PQeFNm8b0C75l8MRE0DdB8dPikjQIE1EZn5pKpAAHNFI6P2ShQFqCv 3/bn92WjHHMxUeD1+6/9+a+gZSaOQU24McukrAjardcRUDN2TDIioCYyM5NcBQhornJ8zkQB AmoiMzPJVYCA5irH50wUIKAmMjOTXAUIaK5yfM5EAQJqIjMzyVWAgOYqx+dMFKgUUOQ2NqQt aZ0jtglK8/LT2Za3QkDjZ7zlVYe0Jc0VcZ5fmtcGnJ+DRMgN2mGf6gM0dsY7pe6QtgT5ws7z C/IKJjEur/OhPkCRh9GQtgTQwM7zC/IKJjEub5WAxo7QptQd0lZKvuNRkPwre9JyG1OfUd7q IihSZKStNGTOmSSdUd7qAO0OWm/cBpJxXQ3Q1vJmuPktcaH7Tc8BFKqdsEXWB2jsjLdQuD4Z 0lZKvtFLEZKMyROfUN76AB2Pz0KWSs5YZupbxrEbUeRIeinty1shoFMFj2e0j106a7twPRBz FqBo7eItpVJA48IwxTUUIKDXqAd6saEAASUal1aAgF66eujcLqDju1/rNxbZ1cJjx9nSXfXB HUDfO1W6u8UhHwWwUICAWqhsmsc2oOP9jqA7101KRUBNZLbMZBPQ6X7IYc3t2FqhpEiAvYUE VCL0V6UJA+pFzWEsmvGu2loKAmqtuHp+QUDXu1b2vsiw9VbDu1E3AfC0jRMzjQioOjDWGQQA 9cHau7Z56/jBurs2icIE1Jof9fzWgG5936b//+mrDLvHDw581cGVmBFUvd6/JoMVoD0cwYXP 5WQp+fiBxWoAI+jXgCd1dAloBKJwNy3ZWeNv0wq5x1m8tNJqSgd41RkDVAInSHJxBNXYIhfT IaeMGn7m+HHeM7qA9hHZYg31LaAIUI1Ntxpn1TX8PA+03Jz1APUmVbkOJj0nARR8tnt3spjk vJcY7Ge+K/NVnW6S/AR9blzokA6gFhOiUAElgAIPujkXkieLwoo544Da2jX/LeIIq91LGxVA P1Fl/um7979Vd0YJANU7Oosdg+r5KW0h/Xrf6g2iyXr2zEUAoAkF1k5KQKEKbzeSeQTNf2Mo cbY6QPW6TmwE1fNTgsWQJg6o/hvD+gBVO9sNBlTNTzmgoS5+8X8H3xhKPKkPUOi5+LnEYEDV /JRgMaYJL3Xt7mwDT5ArBLTvvPo9rphz8cvKxE4CNfxMAXStVdOsJ06TRfxLmUoBTa0kpv8o sLWZaBXxMZoRUIyO9VgJAar4xpCA1oMWpqQ+oMpvDAkoptrqtAKeEIVEJKB1ogUptcUbQwIK qSoa0VKAgGopS7sQBQgoREYa0VKAgGopS7sQBQgoREYa0VKAgGopS7sQBQgoREYa0VKAgGop S7sQBQgoREYa0VKAgGopS7sQBcoC9PXb/vy+IMLQyDUUeP3+a3/+a9vbNdw56IXg0NzBHPi4 sQJlRVACaoyPfnYEVF9j5nBAgUoBRZ71Qdrya1LT9gFq+kfRhwTD/hQH6D16ag15KRfS1gac kK8yH4Vxu+FE5T6YdX2AIi/lQtpaMeAu6ZputO5/Dt0rdRCA1Mc/m5TvTdt0J2MJaJKC3U0X 90fX+ez8QV4ehrTlu6xpO0nTZWK1y9I2fHo2QyMtY5mpHxft37yGvJQLaWsdQANf+DM4AyRn 12IMOtVnIYAO9wntdTtIqJC2CGigabgG+a7MYgDtCP0UKhgNkF0n0taXdPGTm/oRdB5sygE0 1s0jL+VC2gpOkrzhygUmSXaALodrBQH6nu1u9vPIpSGkrW9aZtJfB3XRc/592LIA7RndWwJB LoAjbW2vN7qLzvQ/6CufIqku1LueyVuNKQ7QQUBvHTFFf6Y9SQF3Ke56JaZAQMduiJCeRFpG tmE4naFCAZ3GSl/xOfGMKi3jkXGYtL2GXTCgZVRh7aX4H129SYlXqlkNAAAAAElFTkSuQmCC</item> <item item-id="22">iVBORw0KGgoAAAANSUhEUgAAAIwAAABfCAYAAAA6ai+/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAaGSURBVHhe7Z3tkaMwDIZpYPvYGtJF mqCP6yDV5Fc6STEctkMAg79fZRVZO3MzN7sgZOmxLBvLDJP+qAUKLDAUXPt9l97HaRjG6f59 mv+Rxs/pdhmmy+0ZfL5QYFzDh1FRqSHvebsEO5pAYAwslynSSWps2OE992k8ic7igLmPw5QO LC4Cpa+LcfKKYsMcyeZ/sTCepg0py39ag+znbbpcbtN2gJIFjMlZkhSsBkxeGvS0P+SZ3lgL DVJWAJZ3Q8v1NMPTtjMIAsYYPp7gurF5jgjzdWNLhDE9b/CGPQOr1xvTkWW+AinrwAtCz/3Q JAcYY/hEyHjebq8ZU+OQdAaHdXzFjAwpywcGJNt0tMW0YoDZNirds9uAsZHKjyZnkSKtyBxg cLKOAQYke9MZhQCTHo72xlRgymaRq32FADOPs0X5QxswEyjUW4iRsoiGJKemy9lkAJORvyAj jEtUvXylKekFyTpNejGylyFfgcnIM46XIKfCSFn4afUiURwwY9Gg3DgkWSs2LIgdCETKAi7c bUR1DkxVWOn6JgWma/eXN16BKbdZ13fIAuZxnX6vj64dSt34x/Vn+v0naFpdlvRSm1eefFkR Zl4XUWBoIVVgaO0rTroCI86ltA1SYGjtK066AiPOpbQNUmBo7StOugIjzqW0DVJgaO0rTroC I86ltA3qFBiKbQTctkro9oZ018la6aXYqMStxikAS0Nd0iKxvwgDrv9hWeN04AVRl+SE9gcM eLM1yxonHxhgm7sDhq7+py2HodPLRQVk/ZQZ2cRsAk+9rUYab9+RFZh0ksntipykFxiekcB8 S11Sd0MStJZoR0xbhKHTy2aqsPqp/oBZykIAU0xohCHTy85tvJO4yo/76Hda7SaHzoCQQ4De pmR2OJEu3KUzppwcJi1Fr4hYoMMhSXlosYAC02K9Du9VYDp0ekuTo8As70nqDw1sUa3iXs1h KoxWdksEmNfUaz7rtuqQvzI9MFcrMBg7ViW9y3HrlWe2kWt+9gAFhtzswQhjDkZ257Kmz53H aFm/mPR+vgKDcUVxhPGiistlKo4SJVffe4ACQ27x0whzfKPrev8++XW/W1ZLj0DtV1PTJ3Ov bTXRbZXr/T+WgSswfwGMD8LGYe8TKo/Dhx+FrNPfzv3QsKbA/AEwoW8L2d+/jkk/vcZA9Pr7 SaJ8ug8l0DyNMOR+r37AYUjaR4at3ESUiM6mNMJUe4jZjXtgElPocPLrvz5fWrnJY5IHLuss iRkbp+oAXg2EYPGe94nP6GXnMMjtDUhZ+47GcYW9DRgbkXK/D9S4Iy2n+2UBg9tMhNyYtDYP UeOUY6y6a+qB2SbB/rODSXHr188SjcwBBlmXhJRllkhR33GyZtrOdufJyL3yszyHpS73CZyy qoHk64KTaFJ7Bn9JR8gBBrkJHCnLAgP6jtNhdX6Bp33xtSrCvHvCbuHOrdes4663cJdMekvI CFybAQyyzAQpa9+ixuH7JMKjVuurgAG4lkaEAmPtGgZ5G2HqVuK7AwZa/wMekvzEt3aWlANM 7Up8f8AAa3SQ9T7UQ5LtKMsL5IaV+P6AAdbo0Eyr7aDSWLJyvnQQ3nGQvxLfITCrQzB1SVwX 7vZ6jeMmwrzDWclKvLupU2Bocm7WUlMr7am/vxqnwLD2MlC5JBB5w6ACA/QJa1FbYBpW4hUY 1l6mUq5+JV6BofIJe7l1K/EKDHvH8lJQgeHlD/baKDDsXcRLQQWGlz/Ya6PAsHcRLwUVGF7+ YK+NAsPeRbwUVGB4+YO9NgoMexfxUlCB4eUP9trIAuZxnX6vD/ZG/2YFH9ef6fdfaZkJ1xZn bALnqvq36CUrwigw5NwpMOQmlvWAToFB7sPlKisEat7OuuDdczlveaks105jyieSxTxci/GR esVh2VeoljlTXIRJAoMsoOcq64SBd3nzZZzG+UsuyX4V4EgWMObEglQNN7JakausU2Awhf73 0R1LV3Z6Q1kU++DVJqzHTyhAFtBzlRU3eEsOs9pXCDBroVUsaUN+YZWjLDJgNjmiGGBsvXNs gOY6jCD1ihJTH2GW/MWIlwOMrUuODEtci/GRepEAs7erIGBma5neGowyyOkrV1kxYuoijIku 7tsT7kcWMJaZ2NSR62IbUi/gwp2Jft7sUxww7siM18nkH5ynyXuUOR/vOMQLBMa4TqFpA/gc FpFD0mqoJcy3nyDZZvxvujttM6ER5puc9F26/gcF3MmniqlRdgAAAABJRU5ErkJggg==</item> <item item-id="23">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAXCAYAAACBHjSnAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAM9SURBVGhD7VqLcewgDHRdLsh1vBLc QNpwMy6GmP8fLRxne16UmYyTM6yEWBZJySL4iyPwwggsL/SJXeIICCYmk+CVEWBivnJb2ClH zHNfxbIs1e/teH+w7Bqe8JVtz+VHWTHPXazLKvZzrrHvoh1iuw7Wul4HbN3Fva6z7dkx/3+I eWyX2m/ieOJQse3pQvYwMY3STJDmY7vUUuGcYl/tz9/VaIvOtufH/GFiTiJOopI637vUcxJ8 E4Ztq/DMjnknMbXCtYsLfXpcIQVWIlJ1qsUXgaGCEuWVqZ/9fmv1pb9o22rbopjUsfU4MGSa DM11h/7XsHVsfOyxA43ZprDrXJlOTEUwF9n5Ep9TJV18EGS3aRQxTYCc35UUQ6ljSBzENogd kLdIzCHbNlqeADF2vs6i8g3ZprFbXBkj5q43SJ+y4IQVCo/8ZJVVaFgxbeGRwqrPbWfBELPD byHnU9U9YrtUjCXYrlW3bmJDFROx7a7Ya59K2EUMGSuiI4PYprAJrgwRMyRjO7f4vmLGpy6/ uvS1aZXNH6LI7xIJVeDa1xpkG8A+rwOj82H8KodsK2J2YgNdDdR2JkFN7JgrQ8QsXQfxZ0Hu 0FSdD6tyIoiefKWr3H9WVHVqg0DbP1keqNhSaa+AxARtx8Ufgp2mHYXbbch2kGdneUqZK51/ kizJPKGKNdmn64qJI9p+DxET9K4PGyEPaDiXK6KwAkg5atrmz1RVF3DFEXP5F3O0/LvfYP/e LKg6v/x+eI1DE4kDBVy3Q2blpC7sh4hpihu0E9EViy5sv37FRkmykIj1302uFo0//HzD+Hh+ 8N6sKCV910KHBrevcn21JvkkUvwgvnRhP0DMqEhEFtQxpoVdLY5018MR0xKUeqqe10VMmb+o p2wPXU9ZYsin6mEa9VRP6UDwPsTvWOKHQ/PiR/nt8l+0pTPiRg/2zcSk8uiR5do5JHZhrYEY LJhSamtWCffDtIuMctpWtHtvG+yV95+sd2yuucqt3/JwZUUZ2gQf8QDFvpeYrf8oo9JBKgoY dtJgD/YkImZJzbDc07vZO55aIL//mxHorMr/ZpB41fdHgIl5f8zZIhABJiYQJB5yfwR+AYfR fqe255aWAAAAAElFTkSuQmCC</item> <item item-id="24">iVBORw0KGgoAAAANSUhEUgAAAEIAAAAXCAYAAAC/F5msAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFASURBVFhH7ZjREYQgDERTFwVRD9XQ DMVwBFARgjqYQ2Vgxh9PMTw2m3Bg5/AEYHIIBCaIqIQJIgdhlLAAUL2kxjeMVYJ6Rlhl/ptk 1+Jrj4FWhFFWALW4ACJASYaWHmBxvz2u4zer8bV/kAcEagUVJZTTTIfxZhCOREVFCEZb6RQj uPLn1SDiYrukxwggtKwbMlylWAURlHc8TWb48WE2jzhODWbfuAHCb8RKKkDBlGUDcdUsuyhC oV8typMuaeMgAC5x84B4TfkMqQGwLT70HwmMnThvKqJsvM4aql5Vg/II6l7iE7HkD9Zi46Lz Tdl2nXQqr2Z3MdvYw9M1gFiODQ9Hzvz5k9SIu78/IURfYY7k4elKs/RVam39ibMSwnG/j5ka Oimfxfkna6jGNMt2QQ6miAminUD+D9XtmT4+wQ+bnw2ZupDcfgAAAABJRU5ErkJggg==</item> <item item-id="25">iVBORw0KGgoAAAANSUhEUgAAARAAAABaCAYAAABwvgmrAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAsgSURBVHhe7V3bkeM4DHQCm8fE4Cwm CeVxGTia+ZpMJhidSUmW+ATAh0VYfVVbdbskIbABtkBQJm4z/gMCQAAIFCJwKxx3/rCfab7d pvnnfE2gARBQiMDf/Ljf5vvjr0p3hQSyTPw2gTqqLI/BQOCJwN/jXvUiVkYghjzucyVpwnGA ABBwEPiZp8JoXhWB/Ey3uTzwWCOX2zN6ef6hQzcD6tLX/gkefHa7ZA1I556TXSprGZe1399j vt9SLwhqfKrds1PhQlkQkc5d0D86d8LH7JiDj5r/vz+eWq7/Ue1HM5u+x7FM99JDICbnUcwe /rZnMUyaRPz+vL/v8nj99/lI+zOte3T6F3bU3BnkIZa1L6S0Cbc+MQKhxqfaw7mWh+y1PpTD PTb3uE84PkutCardM7XBhn6xuoOUEIgBsyJhGmN3A26KcWMJWkfG4gzHxWAdc/sHanxtu4g/ Im/13Nyz/CGXtSxY82ac5ikTgVjnnaYgAqHGZ9ujiXZju4JtsNSHBP3jcyd87GknKiKn2kNT y7cyOgjEGKM4+rBIh2RhDRwnJeuUAbkcDZp/O1Dja9sl/CGde1a2EEcb9D8e60lZZguyhc+R RUeNp9qD+WS3SZnZS+fO7Z+cOxWBLPnAuzlQ2LYxjs9S7fG5Gt+ULDUVBCKdlA9NdMHmHCkZ IbhRh2H4zXgO6NT42nYBg4jnnpFdJytFIIfEeJcciLPRLz7Bk86d15+ee9LHnrQcbMOdPAbV njC08GWtgEAqty/2LRiJKLLOuiavDqywGXL5p9A4tt3LDRxzNrHx5e18BpHPPS27TlacQJx9 d1cC8d/ofAyXSErmQ5z++blTPhbTP9z2uL2odjtTUbpAAYE8J01kh48s/Qrnjqcn3HDSQdvN gE8/hwWQlHfcW2fG2+fUtjMXQNHcE7KrZEUIxM/89yKQ9TRCmiB03UG2DSa3jtTcWT4WxNrE SRd1krXI+5n4OaLxCUQYUkVdP5bvkCYSjzJKjJvJuVida9tTfNJi7pvsKlmh874SoP5RpJeg Xh5POX+i3W4X+QsiScvSuRP9yblTPkYliKn2zPtHkjK4BoFs5/fc48fgTbg45/4GS4SXW6RE ja9tZwYfx4Xnb6/K3sbSo8yjohQBbCTa8DuQ0oRp/C3k5U+o43AhVoGuhI/FCNUhnQjezJfm xxHI1OTT0/1bgdiHZGYbFJyxH96M4YLzPvLxt1n2DbAnWYPxte0lJML+iC4nXIjjS9T7CYR8 y4sw3KOgza6+TQMfknx4FiU7wse8bXDq5DB+SpOePAhE7BgYAASAwL5T5R/lqtjCtIlA4CBA AAhwEEAEwkEJfYAAEIhnewQfk40fgfx+z1/fvzA1EAACb0Lg9/vf/PUf72HjE8gzuYQtDM+Y 6AUEWiCALUwLFCEDCFwUARDIRQ2PaQOBFgiAQFqgCBlA4KIIgEAuanhMGwi0QAAE0gJFyAAC F0UABHJRw2PaQKAFAiCQFihCBhC4KAIgkIsaHtMGAi0QAIG0QBEygMBFEQCBWMPnf3ae9o33 /+x80aVl/RJ/dqVYxFCSyjq7fg71fAlLtJ47Vx7lk4m7PyIXNZmf9lOXJoNApBcIvXxoN6je +iUJ8uBeppRdT8JLcgI7+OPjf/+M+jrSuaUuKKJ8kmrfDWqv/mQUjwKBxC5nIW5jel0+o71+ ScAf8louSQ6R4krVv1mjrs+sr0PUdWFgSfkk1e7YMXrFYdzSIJCCy39Z9UWSNTzo+ics+Ud7 trqOrwCLJIEIZUVvJndII/+WpsbXtks2L+QlyYEwIgJhYEn5DNW+q+RfyZmf+eUJhHOlvjwH Yoyw3tfZ6/ZwfytFbVYZK6AOC/cBYllU/ZtV/CfX10nNTYZlQQ7kaDpB9GGzhx91H0jBz/ll xonnDPy1a2S+9uZdCcR/czFYItOlDotKAtkSw5esr5Ov6yKzSw2ByKIPEIg90BDW8HDWScRY VA0Pajy3vUX9Ep9MqrDwhBXJumh9HU5ZBj+hmSztUUEgBVvhy0cg0RorzCvtY/VHXskqDfVL oklUrwYwGwtPmLQ2Siwyukp9HYpARFhWEEiBrUEgxce4NoAjqnvZTWJQRd5PWFHHwE57wVuC v7GRHr3mJAtlUfVvUiVCP6K+Dq+uC69eD+WT6Xa35CrPa0AgFqf8RzphDY8NXMpY7QlEFuHw nMDLXixFkc6oC0PVv6Fqm1Dja9tFcEp9iqrr0vFDsnVeaT9PTxwEInIKdAYCQOCIAAgE/gAE gEAxAkUEkguj9+/n3ZBrL93YoHhxaroFx7jFyGEgEAACDb4DSSb1EvmBdR/a4Lun0HwgELg0 EHgrAkURiKOhlEBsXvHO+qGOGAkQiBgyDAACNQicQiD5o82K6YBAKsDDUCAgR+AcAon8slKu emQECKQJjBACBLgIDEkgxx8V7cnX9duEXPIEBMK1O/oBgSYInEMgvb6mBIE0cQoIAQJcBE4h ECqJigiEaz70AwLnIvB+AsEx7rkWx9OBQEMEuhNIkMO44UOyhvaDKCBwKgL1BHKq+t7DkQMZ yRrQ5QIIgEAuYGRMEQj0QgAE0gtZK5f7E+yuShQKZ1xVUCi5fphmXP3ZS3FO9F9vqHNSBqmy DA1PQUEg9d6ckCC8UKebHiWC+fVDSqTXjdGMa5w8OAWclpEZu5jDCdYPzDYZbXKRIJA6b06P ZtTy6PXoGrmvX1oTNW9qnlE1VimuAXWY34OZS5uYOFN2MZ8+cPjDXvg9TZlb8mTWAYHI8OL3 LrpUmC++V09+/ZBeGhByleIaEsjj+YOOPaqgFn/eLksZkfvhJrloVblMraJSa4JASpEjxsmu 4u+kRJVY6d686mHswfpxjW9jKALZR8XsEil16VcHsNsfTq0itikW+rt6XRgZXPze+h0dBMK3 dk1PKc7c/m65TLt1efwtiiKJmjDYSN+BqA+1uY5as3gKxqrHtUcEEsPxYD9RrSKZTRCByPDi 9xbV8uCLfV/PQQlEPa4dCCRajtJEIMuWpedN/iCQbitS+3HjoARSVcenm7ErBEtxjvWP/Fuu SBS2MAq2MMtms2GNlQofLRoqdeyihxQO0owrLwKR1yKi6socngsC0UIghesDw4CAEgSwhVFi KKgJBEZEAAQyolWgExBQggAIRImhoCYQGBEBEMiIVoFOQEAJAiAQJYaCmkBgRARAICNaBToB ASUIgECUGApqAoEREQCBjGgV6AQElCAAAlFiKKgJBEZE4LMI5Pd7/vr+HRFn6AQEPhKB3+9/ 89d/vKndeN1O7DXSz/lPhAGPBgLvQuCzIhAQyLv8Bs8BAhYBEAgcAQgAgWIEQCDF0HEGavzZ uQadNejI8Y+aPmNct/BxBHLn305bYz3GWI0XCmnQWYOODPeo6jJO3R4QSJUhM4M11i/RoLMG HXv51JpzkNST6ajKB+ZAnpU2plQ5v95I+vI1Xv6rQWcNOnb0tdHq9vxM/Ap34x/j2isEp7Vg T0crMkRrLOugQWcNOjLco0GXEXIgsvWmgEBkx0oNrJgUodHRNeisQceefrXLHoBAzHZSkHNU QSC2aI5gUt2MrTHU1qCzBh27OdVR8PkEIkmgGs11EMgo2xiN9Us06KxBx0sQiGz7oohAnqqa t9TpUYjG40YNOmvQ8R0Mcm4E4pTKZE5XSQSyzMbU1TidQ1TWhdHwkZYGHZmrqrjbiQQSFO7m TUIVgSxFnfhHTDwI0AsIXB0BU8Cq7KRTGYEYQ4NEru7umH9LBMrJQ1cOxMFsC3fLWLMl/JAF BHQi0GYNKYxAdJoLWgOBT0Tgf1yDZMnWsyp5AAAAAElFTkSuQmCC</item> <item item-id="26">iVBORw0KGgoAAAANSUhEUgAAACYAAAASCAYAAAA31qwVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAEgSURBVEhL7ZWBCcQgDEWdy4Gcx2lc psPkalL1J1pRuINytHBwSE1e/k9SRw993EO56AXbdWaoWAqOnMOfp3hg6ETB2bPd1PP3DVhO eAKFpG+lwKD2+LsoOpoCY6Vush/Rk/ORRLim2OiOPjsoelC/xoA4KZKvDokTALZjD7zLaoYT tTyiutQnUB76oC8wQ7f7XNQJ38COTI0JZkZhEQiSxQTQDrrBCri5y0dyfw7GsKMh0Oqidfif 1VH3WyxRcQUM+maoFUOWSTS2V2V0Im3bKOoSWFbxvvlpBlYqj6YdhlbatWOmvbOyTps0n1pb 1dIbxXKbF9vUVF8TifE4McZZApNqRr2ht8hggi/4ftuYdaEW86KVv1yYu7Hfj/jfKPYBF5do RhHg5HQAAAAASUVORK5CYII=</item> <item item-id="27">iVBORw0KGgoAAAANSUhEUgAAAMQAAAAXCAYAAABUDODqAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQvSURBVHhe7VsJkqwgDPVcHsjzeBov 04fxi2whhAQkv5Uep2pqlsYQXvKy0T3t79eLwItAQGAaDYttXfdPl9KffV23LgnvwzICo9pp LEJsy75o+LKWHNkv/uYKLXy15DRYYSBCbPuiwgaLTn8Ea0D5Ty0d2043EeIAbZr3taX20Y4W 2vKC0x8l2Tzt02S/Z/GQ8vptifImjNtn3We3l99zmnvLyg4Ga+OqLU842k2EaAd8W5Zdo1qK O+tGMivXOXfIZIb4HCnk9YYMCakOB5kmgIX5WzFztlsmfWIMO5VPmRDis84hsmWR6AJSZXkw Q7jfNxjpcPY41hBRr09f44zKJDujNdLdOGwpYkvrqdeRHQxhmvkAs0qmW5qxsO485oPYyWF4 niWc35074EtFHhiJWgnBysOEMCVBdM6zRICGMgbEhuvW1wBQWbbVpm3K+U/nKxBPWs+RKWSk +cAGlFRiuWSzliWRdYKYgXDGOnotaAsJ87vt1OqjR80RsHC6xwyBD9ssPAtdaWpPXs4JkUS5 mrJAQd/q6FpJiDTihDCUZw0yQuXrvbwtydyQXERJRjklxJ7DjSQvcBoJc6p8k56p8DPJTqF3 wr2U+5vdwuns9wAlU5oq8zSMUqmYpzl5CoTw9bo7dFkdqwf1elafl5C7kxC4BxEdDGaA/EAk af0yMiPBLCL4CNnPSH7lN79upy5CoL6PbKrjVCOWFOf/glfhVGuyr+0BSo5nlfby2ghxGpEh IKVv0uQW9DJyS1OgdLIDpzwQByIr4pKlo2SinbfsOPDM0VSpXfoIEc9LYX6HnSoSjLDEBhBf sjNTJuD0RHPHAkuqAEnUToja8aVfF5q/o3FeChmCI0Ra4VVeCFLOLzbVqL+A65mIfTo8mS2E kXZPyZTZNQ2MdXjmz5zBssNOPRnC6+x/lnsIdsJBZAgMFgY+kddOiCxDsPJNwlrdmLYcUesM aB1PrBBDkwszSO/YldA9OXfhdbaxTkuqNKo3NtXIR8gM8QU7XSZEEsCsTyYZApcJbB8hTjPc hAI0OlFeGyHOSEh4pKxvnKR8o4fAZRp1MZf3LdLFHOrdsomVT/murKuwiy9vrSPhCRg/dmUx v9tOjfVT2gY4f22UAYtIZop0WSr9YAHoul34Zq0u8tft9OdX/YCdOm6qpeZO0T2kUSK7VUnP hnsIxaP8tKgfsFMdIYrN24Vb0kseQd+A1oniCKF8U12n0A+vGt9OdYRws9rs8qymXlUy/7ZU 3ioXJiF5afQ/3sukdNiBxYxup0pCxOb0tndUVk96sDcVMsRleQN76zdUv4zrM+zUQIhvoMnt cQCm+Ek3/Xdl3o3PU/Yf204DEcLcB6xtn6Eo+cjR/Cly6yme+Bw9BrbTWIQwvczS++EXDRnP 8b1naqKBsYaMdnQGI0T7Ad8nXgRaEPgHGdrmN9C+kxMAAAAASUVORK5CYII=</item> <item item-id="28">iVBORw0KGgoAAAANSUhEUgAAAMUAAAAXCAYAAAC7zovUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQqSURBVHhe7VsLkqwgDPRcHsjzeBov M4dh+WoSAuG3M8Poq9qqtyXE0KSTDriLev49CDwIIASWBw+ljn1Xry4gXmrfjy4LvzZ5Zkwf Uhyb2kbE8yg7v8COUViMslOJ6c1JcahtCCMc6v3ZsXL3vnL4/JgSUmgZsC5qWdzPukuiQh5/ bJe9ZVkVMvna1erfFd65rK1SRm8GtS8FzehMNNqe5P83Ph+NwWh7BZgBUvgAPzOnCbIcMeTx hhCIWHqBy7KpU62Y3wdm6oL1oiHHBnypncyOH5slh7j0ZiO/gOlFCpu1SSY3QZvK3NJ47jnZ IEOaWk689vWsZLjywErh/3/ASkTWpqm5MWtL2y+JLpMoRhNNqT6fGL9hhY4wwNWf7n/el3kw tXLXqBgSgHZ9J2QcASx4iU2WxucIZV9qwF/VCuSaKJ24SnP6R0lhZNvluwUABoBZGw2IrP1S UlDylczLjOn2idp2CsDFgiPAVc1p9feBE3CSfJkF0wAJXY/H4ySFZQgNkky2l8aH5wfK7JBg jDzjQIV7Gi0CPQQ9Bdx4P6ZEumXtlwV3S/XLWh7gE9GMWMLCh2wSBFhKvnByWJpTAKuE6dmP 0v7U/55+BYkTv/7/JQXtSUSAmGBGK8KlHVe+uFKg5yWkCJnCg5mWds4P7nnURxVsen5Ibs1X tj8DQ9CjbDKDmTMhp1w1EXxhe0TJ//DydkzbSYEllMVG4/dv8okHP71wBw157rVvKvgcGEGu 1JEiAJAKyOvUjMqha5M5v4zd1KkdPomDp3KxtuX84nzCupjKIQOp66uCr32kuLzifPkEpv05 J7QIV+yRRpv0D2KjnRnPzgVBz1aN2mNVGAT1pCg9cg7jziZTN9NbolLkSNG9gSBxWJ8YeZsN ejM/V60l+RQtAJOwbO3xHJvcOjDtqRRnItZfNYT++R+PZJmqgDYk8Tx3T0E3FAVFPSmi4+Cs fRODuz9OTle8ssCooIfgE7bEVIroVVii4uxe2WgTUrKV4g2Y9pECnO75clp1eRfrZenyjhzv RSdZboNqLu6oBLkkTB0pbMZk9E/aPupI39hTeN0LcIrdBjiXXH6iS1N6upg/ks3iMxGmuFXF EvO+n3l0XRzmm8Lau5eKuiEPFQ8zZBPNI2bFlMjG+5JCOv7NRkaKFO7uRfw6pjnqSiZKhxkl NhrHTIoplbz3JUXiRrssHHKkGH+jnfQpeVhR/6VA2bqlUfyNtjTLPf8ApkFGEsl5Y1IYrd6a 1VMb+O5vnxoOK8oitHnU/JgqcE/RDMPEE3WmbdP/CVI02+vBMN8Y91humtuMwfdgeutKYUv2 wL+YG/+FaFNYfnjS/JjenBQ6fvSXtEMaY61PB/Lrw4Hd+frJMX1IYarF1vqHTSF4RtjoDMSv mj4CjxE22kB5SNGG2zPrhxH4A9lJPWwPVHosAAAAAElFTkSuQmCC</item> <item item-id="29">iVBORw0KGgoAAAANSUhEUgAAAF8AAAAXCAYAAABtR5P0AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIGSURBVGhD7ZfbjcQgDEWpi4KoJ9Wk mRTjDc9gYrBBmclK45X2Y2Sex9fXxID+vUbAvLazbgwK/0URKHyFnwkcsFkDxsR/ux1jNMcG No3Nc4zdoMzi4vXqYawFbssnc/WPlJ/Auz3dbwfHJWB3YMp4AgsXL1Ny0l+Ef2y2qM58WQVA Kc/Dq5Xc8N2dgTH7cbzU23lv69zHlI+5pso+D34p31/UOMi6g/b3ar2d64wAlWUp0CEh1ZnQ GbxaT2iVTeFEcfG0mN/DJ/hbtlPt04e/CrudJ4Qf1NGqfAiEsKUMMpyBi/sxMUHB5wXwS19p +0z6zSOL9pZ7WeX5uNnd1Rovcx2gp8ibN4iUPw+fumo8Y7/ScNzvWZr6F+C3dyQbrvfSCDk3 oLuKoo/RCbjm18m6vI5UyLTtUKtEAfXhV3FUJTLl88oejEgvr/psg9dOVSKk//uECF4HQtuJ Zd8kc9RwuTMxcbIJpsruJW/ddtqXXExS3/O5MuTiWQRS+MF/z+oQPzUJlaNkcfFGpYL7rMLv uQRSfmsXXPkO39jT8HMD7H9k+fPhD6+mD92epVy8SoAA/prt4F6KEji/IF1C8+vojLkv3NQ0 2M9+5SoiIIcfGpigwYq21UG44Y54fMwPfzsJIuWvPMt+G6vs9iL4sqV01CwBhT9L7MHxCv9B mLNLKfxZYg+O/wPqd6D6Ghcu0wAAAABJRU5ErkJggg==</item> <item item-id="30">iVBORw0KGgoAAAANSUhEUgAAALYAAAAXCAYAAACmsLVPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAQFSURBVHhe7VuLkesgDHRdLsj1uBo3 k2L8+BpJCJCB5yMON5O53MSR0WpZffAt5/yZCLwQgeWFPv2sS8e+n5+f9P5z7vuBPJ/EfgsR ju3ccGzf4pnMD+L/JLYMtsGvOs7tp1ltwwMzFkNsJevrci4LeBVAO7ZlYLVQQV/Wc38kRzPY ARwtjI3rUcq0LJuyAn5+Xa09FAAHTOzPfq4qECthgSZuBKYz9tnXcxldLbRf6xP1pyU2xa+r 3DPEPjZC9K43/CZjIXMBYueDYsgdEVirDwbVEP0ikVMwAfE5+9JNY66DGUa/J/fU9v8r4Uz8 JcSGiu3eH1ZQrA80u+hrwGc7VWz1ObNpMSZ9M9a4tjX+lo+B2EatMzuf+Zwnng2E4dUdpYyU yJJEsCewpJh1MoHU9rOqbdfdRv4aYuNsaDY4EYawJk9yECcOY4olV77UCvHQtjX+NvaB2KLA Q8JkgqhtKUbeq73BhjDiV9hobGByxGqsbUVESNfYmJweR+KzKcGBIifqaVQWOqzR8noSmfo9 uG3PuQZiM0G5QJCXILgHCiWEtAyB38dlEI2IPAPYniLxyqaQOsVGJgFxWH/ohueI7Uoi70N6 yXJMApp488a2YemU7s14nSjZJsLBOOZLzoZSJKeATMqUKN4VtArAXeNbCmJbqVFy4nlilwQg bFJangWS3C73HAyx7bics/X4/eaWWzfuw3is9f10jPPNI1CDuLlLK7Y37n+X6EDVYFMnaNl6 PzIoyRDyzTKKYqOyBIy0IFFkGGMSXM2farS2mj4G4Q9ss2VKSwkIbDO9E5fRGGL7uhY3UKUd HykgSpX3nbpAvyEjMlW4vxb5hvRX9lVsP2UJE544E7KKTQlGSPFRwmHn4PLNfmFRsB1rTqKZ 58C9ZVus2Dg4fI2J0xkHKlX2lNInJxTZksIFFk03JA2ba8oGnYqkamwbEeifwp+O+9gaW/eg uEfgdSJHbA5ruyKZbbB2dkwMpz+B5WXbAA8mnnGNLZEnNW/FZzf1KhhUg9xYMA1JfjfjwzNz bAmIna9JEFt2l7Ji12CNNmQm89bbdt6xh1V2RNz8rEipeYkBzqfrfM0oSfVMSO/M02WMGOeq Jt9yxK7E2gg1f4IdQGuwjZCn69d/0zl2dajKu15k2oGRP0QRWSIX1WeVmrs9/x3+5FG2jk6x gzczKtr3pNPVP8x0hQ4wtD/05FGGxLxqQASOrZZInYmdOvXtghmz1uhQkX1WpMvdp5G/QKD6 6b6+xGaf2XEHXTeGXBkEyaCANo/Jp/v+Iijznh0QUAEn/0HSwejXmYBPOTY3j1/n/VsXHE2s 3upowi9VBsG9PYn9mvgr1d6eeOZ8RMBi3yexR4zTXFMzAv8AuNKlE5rFBk0AAAAASUVORK5C YII=</item> <item item-id="31">iVBORw0KGgoAAAANSUhEUgAAAPgAAABCCAYAAAB6gBsYAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAd4SURBVHhe7V3tlaM6DKWB7WNrSBfT BH1sB6kmv6aTFMNiA8EfsiXZkMyg+87ZH+/YEdKVriWbQR4m/AcEgMBlERguaxkMAwJnI/AY p2EYp8cpz3lO99sw3e7PLukgeBd8+LFNBBbyDeM51A4xfd5vXYsICG4zQmF1MwKO3LepM7Eq n/6YxsZKAQRXQo3pthF4jMOkT9xrxh/mrO/+6QVM0/M+3W73SVuwg+C24xXWaxBwe+4GcrpF Yf9d+97alevaPTkIrnEw5hpGwBGz4UDNZd4hLun9vrohG0/zcZ62VAfBDYcsTFcg4IjakL3z J7RncCfLLQ4aNUBwhY8x1S4CWmKViO334E3Ze5WoXGhAcLsxC8vFCDSW5yX5Xe/PdbqA4GIn Y6JdBOa9b0/WzYBbynRNqR2KeIzy13QguN2oheVSBJRlcSSWzNbusKyd4JrtAggudTLm2UWg h+Dzm+ssWzvSd1QEILjdUITlZyAwE3zs+tO15A9dOsitPUlHBj8jICDzWgh0E/xYOJDBj8UT 0qwjAIJbjwDYf2kEQPBLuxfGWUfg+2v6+/X9Y1D4/voz/f0nUwd7cBlOmGUZAWRwy96H7ZdH AAS/vIthoGUEQHDL3oftl0cABL+8i2GgZQRAcMveh+2XRwAEv7yLYaBlBEBwy96H7ZdHAAS/ vIthoGUEQHDL3oftl0fgWgRPPm0T9HHOe0XHMvhWr4r5RJfKpdvk2nOa0tf/JhhP+2Jx42wE K/T3shh912+Iff+u+V8ZP64zSOFb5BSL9f/1HUa456fAFeZr8M/877CUdzhhXUlNEBNcGwdz JLiWyi9/yOxo/5psBToNqEUJumWsbwEbRUZ6rcsSzFyQ7jJq8zcAQyDS5xFdK7l+1tx4NSp6 7U31lcrbg4kmJje+G+X9q/5GWS5/eVJlvhh/yv9OdNulAGKyiwgu9VuMe8QLYa+2RoLX27nG zds3JYk+zVSGrXWwUMz3jd/HMekznbe/SRcd7jYKbrzO77zv9bwsVwjD6CvAY7mvypFynHuF 5a1/uPHIHmFQhb9Ryff8q+srxZ/2/6KZk8FXimJKxxMlBBf4LRJKVqIy/doI7h9YaexOjOfZ 2yOdB3dNtnT+tkpnwHAZ3I3PC4O7LG4rhaJsxY0zoEv1f4lh9BXIe97v642WdMnLje8W1Rf1 kuVy+WvuruorxL/o/1XLzjZI3CLOdnQR+C1bWNVV04anvDf6/jUZC1C616GDg7y1obJayeYv QeC75hRkhXuZuGQlSv6opOPG6wSX6Z/LKOmrk8ftgZnxhuydpDZld1BKHwn+vP+Xcw3ZHlaW J4NZggyu89ta1cwEf2zVjU8+sptT2jK4muB0Z8hWQ6NL1RISR3cykYcscXlGbydCt3JdLbnx IAdS19BUy688oEN9dfj1ELwtex9PcIpuMf51/2+/57BID7SSQ9faCeNZBE/PpoQLbhvB1SV6 YcU8olQJdUkPUFLyFJ9XW825YODGg6A8zN5VX5U8Ts/KeMceMC3x5afvnL4EWTn/J1ufU/bh AoJrt6b0/WQyfNoIvp5yZqd6q/fyrFjIctRCwR6yJaVJMP91QEO82vGqcQQv9qUOCJWVRopy T2svp69KHhcQlXG2YpMUstzzUxnEfMY/rP8TgtcWm/iV1LEZfNk6luM4Q5PEX4ZnI8G3/S1R 7npypRmxVOJpXxco50tL9NcBRiGoxONcoCv1X9+Bhwtp/JpKI48LiPI4v43h7Hbj3PMFBNf2 DS9WHopFWWJaOEeSwbfXgK8VRvZ6OFqQTi3Rk5Vwf/lefhFPnqJ7OWuQFv5QI3+lUZ8f+YN0 cPKHI9npZO+402CVQZ58au3l9JHiwRGsTvB6OVuzt77vLb+yKunD4REfeKXX8frRQyqSAvNF BO+P+3MP2SSr2uO+nGS//jtx1ZTo84E5+yuiDzz8A4/8LfZ+/D34G33TXqI3KFnO4g3CfvRP jjh1/tEGJsr9InvTg7ijYRZn8KMfTMt7K8H1+7D3gICnWEHgDVWkbYJbCSTYaRYBENys62G4 BQRAcAteho1mEQDBzboehltAAAS34GXYaBYBENys62G4BQRAcAteho1mEQDBzboehltAANcH W/AybDSLADK4WdfDcAsIgOAWvAwbzSIAgpt1PQy3gICY4NLPfDfQuP74NLhv/tjEgodho2kE 3NdqbF8qTaMOh2Y6X/71HghuOhph/OEISAhONSLp6Y9fMQIEP9zDEGgbgbmU5nqYq5pl9mXw xyhvD733RbftQVgPBGo5c+7/Xu9Zrmt3vT+q3M+/pI4r5WX9050EEByBDQQECHBlsZ7g9f74 RZUk24XgxyC4wLmYAgR8W+R6T+aDruyql9/cQpN6CgRH7AIBEQJMaXxEX3T2MgpdeY4SXeRY TAICKwLVa461r8kKJXrlMC+6wknoFGRwIVCYBgQcAvWrjo/ujx9g3tg5FgRH3AIBFQKOxPLX VCrRxcku28tPzkMxIPgxHoAUUwi8k+Tt5MYe3FRQwthjEdjK8bbMyutyjHxkcB5pzAACvxaB /y2GA55IJnPJAAAAAElFTkSuQmCC</item> <item item-id="32">iVBORw0KGgoAAAANSUhEUgAAAIIAAABaCAYAAAB0bo6/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAVXSURBVHhe7Z3blesgDEXdwPQxNbiL acJ93A5cTb7SSYrhArZjxy9hSSSInFkrX4NPZGlbAgykcfiDB7wHGpNeuHWuaTp3M2n8J4x+ uL5tXNs/Dr/cGAjDDTUdEODg9OjbwwfIEAgBgtadQM3xzRdec3PdTjY1A8Kta9xxIhgzReOz hf+cpUC9yA/fKUtOmnZf0Hr0rm17tywUNkAIfYJDj6/LRSA+Nwyz0/kgaNp9XSuUieUDYwCE cJMnHcNAd7MqGQGcFfFamWCosz7zeJs6SUbQtJul9Voiygch3OTZY7cX9OiYPKOKR9+PoxVh adC0m6kVoJ5cWzwIS2P3nur4hK6f/r0nRCslPHVkIGjazdZaPGSFg0CUBR8UthPEYFQAgu8u TmW3cBB8HaNqPTMt7nEQRiax/u99NuVJBoJTtFuideuG/lXZIFD9gxDNvf5Axs7iDJAQBE27 BVpT6bUPQkxvy9nGdwwfI4HCeQRNu/laZkDokqYSL0ymiPsGk4AUhBmmqRTJJsJ4PqgMBLXo fp0QQPi6kO/fMEAACNEDNkC4/7nfvztCltED978f9/vPwPAxrbOY0VOVS9vICH58DBDykggQ 8vrXjDpAMBOqvIYChLz+NaMOEMyEKq+hACGvf82oAwQzocprKEDI618z6gDBTKjyGlopCBqv hteO573eTQufpjZPq0IQNPYaHEDwXKamueiFv5hkCxlfqyoQ1PYabDjIuGeCtRfhIM8ItCoD QWmvwdrPmgtMc2oL7KwKhNnHun2EnEvlNbUlWgAhoTcncTAlr6kt0QIIVKTC/wUpl5TX1BZo AQQyUr6BYL8AKa+pLdACCGSkQgP+sIyW19TmawEEOlJjC95ETZq8pjZPq1IQ0tyPVotx1rg1 vvgtb1izmBfbnYzwmlrmHcEfPMAKi1fzUhD7w8NhGYuMcDAZE880lB4axbwfgMB0XPpl6SCM 1OQ6k+jUZICQHlFmy0sgDOPpqyVC4U0dQGCGN/2yayD446PCkXX8o+TSDXtpCRCYjku/7K0g XDuSZnETACE9osyW10BglQamZcvLAIKCE88lLoHw+nYrjC58f6EfRhNNQt8BGSF7PNlfkA7C Zvg4zjdQp52xTUNp0HBdqoZgQmkAgT7vB6OG1GB8sp3gXYPuKiDMI3wSA9GJKQDhs6HT/fbK MgLvFWyaS61o8+ysCAT+ogwaBCvafDvrAUGwpp8EwYq2wE4BCKT79BqkTCgJFm6ShlrRFthZ DQiSpdwUCFa0JXYCBIoC/3+Jgyl5TW2JVjUgmNl7sCZDkM43kAm06gFBsKafemqxr4H00Jsa pHQWzew9WPuMP+Tbep+vVU9GiF7hTaak4WxFm2dnZSCkhRStdnIJ9jUAi5hLAQJAAAhg4OkB ZATAMHSzURpAAkAAAygNYODVAygNIAJ9BDAwe8BGRsDP/WVnFj/3l93FNr7ARkZIevtow+Gl WgkQSo3Mm+2qDATeK9g0n1vR5tlpBoSWPJ2DvyiDBsGKNt/OekAQrOknQbCiLbDTBgjhyB5q +71g4SYJghVtgZ23bjgbq+wDN+MStM7jcPwnWcpNgWBFm2/n7N/CQZhfkx4Fje8ECoMv2NcQ SsrYBysehLik/KzDKEiLJApWtJl2Tv2D4IfyQaDKA/Y1MH9X4rXsGgDB4xqIP8wK/KETmRHM 7Jm47oOQDZbHH9kAIbJwduAnbzKFBiGu4YlnRk2HlNNnR6WpDq00tS9ohSy6Go2ZAWFw2tVj gK8E5VvahkPOtiMxQyBMTxBg4CO7D4GRzuL6tqcUeD6/wHdWjVfSPjOWEWoMUhn39B9nXkpk YLqE7gAAAABJRU5ErkJggg==</item> <item item-id="33">iVBORw0KGgoAAAANSUhEUgAAAHgAAABaCAYAAABzAJLvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAASiSURBVHhe7Z3rkeMwCIDdwPWxNbiL bcJ9XAeuxr/SSYrRGT8ufuhliGxAZGZn9keMEZ9AWMKkcfZRbYFG1OiGzjVN5wZRSpdU9u36 tnFt/w7eRAjgeSBNZ2h9JN99G5z4AgAD3NZFJmlJFxEke3CdJ7qxBzx0jQs77uLZzejd418s VKVJKZD17l3b9m4bsHkDhjU3SPcYtmEGYyHrkQXhejvRGQMGo0cSKpitzSF0w4Q4zOC0547f UCVrH6r5Agajx5IqH8wJFCLLViYLvHg1HVvAWyWDmePRW32emOHCUxaqSdbGOZgCToTnKaoq g+KZiPgxfuzHFPC4jqTWUmVh1RtoCGMcujk/4Qk4tf6CNXzrLSnJOqzdwmWtS5xcwOPT3n53 yx6TtlGAPeAua+tKweZEMgnEjVEJ4KR1qv2CAVaO3gAb4Act8Pp1P7+vBxWQf+vX7x/385fx Y1JekiUfRKkRWIguZVkmcg0wExCl1DDApSzLRK4BZgKilBoGuJRlmcg1wExAlFLDAJeyLBO5 BpgJiFJqGOBSlmUiVwlg3FGan4EuWQoA24F/LFjIB6yqljmAijBG+YAJBWkncyqUJR4wvqT0 7C0aZRngDWcDfHfqP649yfNghWH1m0uHeA+2uui418kHbHXRUcIKAMP4dG1OfHMDRgngu5MD OfczwHJYoTT1AN6HO+h5Mf890AAlJ4tGDbuei4KATy/VT72pYo1QChjNAJONmg8YUhnfy9Zk FSICDDDZupcAe5uUBFWgvMa5CDXANwMemwdCi6Jt+H6/w+3zvqBdeieLfBPdAq558A5wuj/i ajpoYvZJ1g7/xzromAeTZ981wLtzyXzAaC0NMNp064WXAH+SrMOjVKI5qHkwmRNaQD7g02OS eTDa6jdeSNjoSAG2LPpGjsFbEbYqU4C/MDxbg8lGNMBkE/IWoARwDceF//PiqS9YbtN7BYBr qIvew71yJkAAvOxNw0lT7nS6Gs1y1mBCzfBJHa6y1nMAsPXYO7u7x4Ov0kJ8PwdwDUV3E+B+ +ZWZOWLl+hTJgxHIrl2SAVhjqWvcSAbY35o/Y2pxnSx71SsD7CoJ0R/ItQGuoV/0zoVrA1xF XfSWcHWAYfC20RFKMcRn0Rm5U9VfMcDK8RtgA/ygBTI2Oh7UTsStzYNFYMIraYDxthNxpQEW gQmvpAHG207ElQZYBCa8kgYYbzsRV/IGbD+rQ55E9rM6ZBPyFsDbg22jgzx7DDDZhLwFKAFc w3EhbozsAbfJ8sEa6qLxY5QPmGstMxO9eAOGjgJtP9ZrRD41FN0Rxjh0c/urhmeqAKGpWwq+ /RpyLXXlodfHfkwBz6/HxNt4tOPrHAcv94XHjBnMA8pZUbReYIfFeGwBT62bYoQJ4etkSmWy ts7BF/BUMRkJ0zXURaPGuLcbY8Cjn4FnBb0Y/wjhCYbTi12fe1HaUDyrF3hvC9nV8uENeGIc e6MOtwkQSNtmyEsT1q2RMpbxw1ce0gs8/pCXsAc8F7c/0PH2OtWHr4Coc17SBAAGuxnk+Ozx w4VrhABeIUMIjT8fP+xGN99+XQrCNhEE+GbbKbndP32bL3X6cJqhAAAAAElFTkSuQmCC</item> <item item-id="34">iVBORw0KGgoAAAANSUhEUgAAAC8AAAAXCAYAAACbDhZsAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFfSURBVFhH7ZXLEYMgEIapix5sgyo8 pATONmAHtuDVq0MF3uxgE9DlFYwLTF4zMpMhJLvw7c+/yuCPB/tjdrjgv3V7l/I/obySHBhj +4eDVN/Cop3rbDOIB7SAAfPiNW2/PWoA8RCBV1S/ris0TeOJiaJ6s2Wqgs2qjBTc9z10XWdi tRtwBN/dTgokd1UJewXxWVvc8f9h/CASiqE1X2zStm0a2C8kJYM7MPa9K5AKT5I5ETTPs/lV 24egfFph9K1tZi5AfEB5pBnH8Ql+WZbNToeeVxI4c8orKfdmzrNNqfKYp+3jK6/XaKngJRX7 M20NCnz908ZvUK0+jmmaTDHGTvnKUODzdy3JsPDsFtZxvN6b9iS+BCY3xxBrUB/29VqdxudC lMZbeCzifN7gdT9gwfFcCpObx+iKuxvCl1TqhnIBauIDeF912+3kXqjBKMsteNqUHfSOrAv+ HapS9rwDAZ+WOOrNNfkAAAAASUVORK5CYII=</item> <item item-id="35">iVBORw0KGgoAAAANSUhEUgAAADkAAAAXCAYAAACxvufDAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGLSURBVFhH7VYBjsQgCORdPsh33BN8 jZ/pY7hVEati0W7ONLfbpDFNEWYYQAE/4IEP4Ihfkv9F5YcreaAzgADpNe5Q8u7Rkm3cY320 fzBJIkhAEROBMdHWvnxXJA9nOGsABtXE/WU9Hw5Ni8FbBONQ1DP8A/tKxekhH4VkayRtmial ZX3CkUQogm6IkKsoUJcAKl8O9xapCdCLJiJoSd3sd6jkqzdL7LrJuRVKFuqmHmS05eJtGRx5 gPDaB+HtyySpZ/OwCY44tpTgAiz3ZV9+qX/l0lkUTTZfLNfkpJ6u1pNwY0DJIE4zsZSDQ304 3VUSpf67GjwSEfIxHjxX9R8cav/flnPxCOnwFJGqI6TN+rhlWgBdJypn2mwGri8DAW91bsaK 6y8PNy4DGsFZAvvsmCT81HzF71gSKXua/T4KeqTILAA+gx5951uQZq+H3WvBJDPZ0RquWDkR 2rqXgh4NZhTkOy0pzs0tVIAecr9FRfKsYoai9V77fz8FPeKN6ao7fZrFl+TTFLmL5xdsG7Om WVYQowAAAABJRU5ErkJggg==</item> <item item-id="36">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGcSURBVFhH7VeLDYQgDO1cDMQcNwLT uAzD9ASkfKSCAbkz4ZILUaG8vr4+EXD9EBYHuEgwIlhKeA8JGpUAlFuted08APcXSjML0ngv UEJI7JqEYx5N2lAWiTjHS0jQShCLAAJZImsFGfSc8AiJsqYErVDkmDeJIBR6PXDxAglmAUgk xeXXtxLjqnArCGqlDjwN7ZAlbHeyxIScuHg8CffwPjy7ToKtclT1QEJJ0awnpKZy7r/0OdRd yuLYZDAqb1g0NsbYS1o1xkEkhGIG4IFFe49AO1C8+44WRp2EnW1GCVGLE6zmt0OUaMF0iswX cp+lhLz/DxmeiXF9kiiL94SS22ZM/pUSjsSCWq/M+UIJedUufSE3oUQFY94OIWS5HQzetBCz D0tdr9DRntEXj9oBPunhseU6Psrm8/tgzV1tMzcJxElw1/4g5Z+bY6lpmXz+3BT6dyMSPBnc aD9MDrXY0bTDPpojaXK/H9P0CNCiAIdKU8XtYWc3xpJipmcwYMOEhFgFPnaLNwzA8dMQL/iU fp6fRYLxtOd5/v8dvstLkf94orjhAAAAAElFTkSuQmCC</item> <item item-id="37">iVBORw0KGgoAAAANSUhEUgAAAKAAAABaCAYAAAA/xl1SAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAb1SURBVHhe7Z3r0aM6DIZp4OsjNdBF mqCP7SDV5Fc6STFebDAYMEi2JezY2pkzO2dxhHj1IF/wpVPyRxTIqECX8d78t34PqusG9ea/ k9zBq8BXvfpO9a/vqT6VAjg9eDcIeiW8Gd9Xf5oIKgRQw9eri5euhJg06MNbDZ7aqDoA30On 4MQ3ZUi43BUnc5btxkw7/ndVzcC0UdqC7+YvcYMP35fq+5dyK+S6ANRtPpCqVWiw6Gks91W8 frtjIaS0lQjfIkjK81z7oKtj92WtCEAdyOsOx9QWGTPWWG5IyYD6Te521byGf/d2o3CgtIW6 oafQrT5sq+J6ANQiAint+3rNPeLEKtgHmwliRI+b0lYsgDf7oBOBDVU1ALoPBcchDUCTSffZ zpdFYEcUpS3E7fyDJYTPg/LBSRaVAAhXv1thBEBXj/tfgjVelQA4tiuC2l9pACrKKovSFir9 eApl8OE9TG3oOgBEtP8oM+BYbx7be0mdkF3bMdZWLICUz4P0wTaZBECkYD6A1yGflGGLtoZh rI7VATgEffpIrIKNipQDt5S2ot4o4ueBfWgcQFggKcGrgADIq69YBxQQAAWRrArUBeDnqR7P T1ZB5eZhCnyef+rxr6JhmLBOSJhYUppegboy4DiOJQDSQ8JpUQDkVFdsgwoIgKBEUoBTAQGQ U12xDSogAIISSQFOBQRATnXFNqiAAAhKJAU4FRAAOdUV26ACAiAokRTgVKBRADmmPZU2tSsW Gw5tzn1pEECOiZ+lrTFOhO+GdcHWw/YAJF77WuQa42j+CNc5I31oD0DihTdFrjFGBv9QjFgb jBvNAci39DCtDcjnFwaDqUwOHwTASfnjFhv4uM0lBcBgyWbodZOzmlVx4HQstmomDUDSNcYx JOjfsGkjveBVAba1r4kAsvkVQGMGH5qrgpdllORDDYkA2uWd5H4FAJjBhwYBNI2+aetekk0l lxGtwja7DAHPLcuhjVTBsdGQ3zEr0GgGZFZVzKMVuATQjvLHb2GL9oOmoCxKotHxRisXAM4b 7Yw7zUdtOXvjQyy3EgBzqJ50z3MA7eEuJIO0ST7ifywA4rUqpOQpgPqYg2kX86lXlHb8AOZp U7Y2m+0LgBihiyrjB3CX9aa2YMTG23c/qgB4t+LJ9/MCePwoPWWntTOy/3+fH/HjSTr72jG6 w99XPSIBMBmIuw14AJzg8gKw7L8MAcgx6RMhjQCIEKmsIkcAz06WNP9uD2WZARzP2+gXWJ0q OnHSp2TAsiDh9OYAoAm+t5pzOyM2S67QbdqJGWZVGJEkA3KywmJ7CyAw5LJC5quC13+Lm9go vWCWCBduNPJTnIZlfxTqmiHjACRQSjIggYj3mmABMMfERqmC7wWH6m4JAO7P2XWq5QwTG8MA jB8iOgpPactaT51baBrEYVPOTMx2ox/uqVPQdVeYgK9nSQC6g9Om87I4XPIwDKVvlLa28Olh sPhJIBF+QWcsQ9cXAC34uNPqEwAcb/B23prDGW2BbyBFTse0AROHiDZuUtoynfh85xhDJ8xD 15fXRx9EPQzoRV6RAFLQwmADAyDlEBGlLQNgrnOMdbIYwXFmiW9nQEHX51jqF1InIv4qmAEe CpMIACl76JS2to+f1gYM98szBGZhMo5B122bc652BcBzmsODc4+tvAD6nhH63Lq9rnVdZkwJ gBfplLLapLS1bVymLXAi8QvKws71TbY0bQlpA54iSDlERGmLEsBQv7zf/52PDcD1pfPkmcQC 9eTb64SQrn2NGO5AtXWh7AMZCfXLc79NFoWu7/yRDIgMEMm6YI7hplQAbafgfO3zOuPdarWb hncYVoOuO5oLgBCAcr0UBRqsgkuRXvwweXrsPbe1O5bEvSgFBMCiwtGeMwJgezEv6okFwKLC 0Z4zAmB7MS/qiQXAosLRnjMCYHsxL+qJBcCiwtGeM3UB+Hmqx/PTXhR/+Ik/zz/1+NfSMQ0/ HKwaXa8rAyJmRNcYxF9+JgHwl6NXge+NAkg5hapUW6l0UkwJg32oDsAemoJb7ITU0EmkcHDj S6wvFShn/E3ML9sDkHItb6m2EqAgW5uM9KEuAPXywcNM3p0SJAt2Zpul2kIG31eMbG0y0of3 MC3lrOO0TFO9Xu9lXeqyTEq/kLEHit3RBlzjVQmAa5viTF3KQJdq62cA1E2YuZFZDYBmTepV y7nUapPSLxIC+TOgbf9pd+sBEKqGQ9fMXgWzVFs/AeC2uVQRgKP6l1uJUQ53lGqLgkDeDLjZ yqOuDDiJf72dWKmDx5R+pULICOB+K48aAZx2CMVtkpgaKvl9iAJ6gftxpKKuKnjRQyAMQYO/ rB++yjohexlttfYDZ93xE5DpDnAMKs2AmfSW2wYr8B9ymF/bUhU1LgAAAABJRU5ErkJg gg==</item> <item item-id="38">iVBORw0KGgoAAAANSUhEUgAAANgAAABkCAYAAADkKP7jAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAnrSURBVHhe7V3ZseQqDHUCk8fE4Cxu Es5jMugEXhr9dTPpYPy8tLttdiQBBs5UTc1yQUgHHRaB0TDjFxAAAskQGJJJvoPg5zQPwzQ/ M+ryfDzmF6u91/x45NSYpeylcn+2L301DvP4sPd4owTbDR+mzI66EFqkSSk5ctzxS5LSWUqO X2OxEq/HaB3IGyTYSq5xdgwqYsBeBT3nSYRdu1T+bJDITKPYnm0/AFkwMKyWmiPYcxpkZpFY /5QeeaXlBduzOkrkACWtK1veewUzLKuY5bdrCeeHJULW6zGP43WL0BbB1j2X4CziB/9b4jlJ 7/VkZ4UYW2LL3st2dXuwDhhUksXLWpeLZ0I3RLAVDI+TryPMe1QblJFmXkIT277N8vN9nX38 XB3hl07U5C0SnXV8bhxgj0+E4+d23c4z2PvvzxNu2ux2M9u3Plb6Zx14Df3jhY8k67pUbIdg KxjO2WsfyfYiavRHD4qsS81Pp6jRSPXfhqXB7Kvj7910e0mnbirB1kHlO3BdcNmg1JdFRW03 kWkjCmGFQZS1Dl6HKzZDsLNR5n24I2Rv7IATIX3hftPS1FfHS7Al0JFqP+nUTSfYZdwykVMd 2Aravs3M6mxlmokC8CfLOg32jRDMv5wygvUJAJmWEOdZ7rp81CZK497PU+fTwXs50+S7Eoy3 Qbd5kUs3AYIpy237wkLedjIpDFDRZX39sRGCmfcBZ8x4BDsHM/R92CbbsTzdllXb/k3du30d 3VRd3TAHDLp7iP/T3mlPeewflYZ03eIIdjfbt+WpcQbLt0Tc+2Dv6zYI5t1/bRbbb3X4loia Z1/3cGFE0OtspFsCM5NlBguTG0o7V7mzbvEE88+yGW039SUryKEQM1DWsWXph2DLhalvkOMd 4fuM5pFBDmVNbxzFTYGQ0wz2Wq5U7fdM7MukZARz6hZPMG32Lmp7fGjdPvTQZTVHsCnk6sY5 TK9FldxhenXZpW38DWs8Z52iezB9GflVP45g28rgdrZHHA57FwA0WX0SzAsmsQDrgNu90S90 bh4ORM+2O1ACwcJdyF/SdBbkr/UuYSNYqTuVwYrvBXu2HQSLdBZycX8U07fO12cq/9EDWV3R ij3b7ujV92FzG0GO35/578+vqNvECjvCsrH17EGOmu4iRl4O9u4/67Hd1t+/P3/mv/8aCtMH BTnivT+8BvkGuGWJSJYXrrJYSbKuDdhuARF7MDHvOgQtziL4JbL8DXVxg08Ce7bdjCsIlsLf llvnIacF3qaXwIEgV73NiRTo2XYDgCCYiFepQpaRfBJ4k4MtI4lxHqE9265DA4KV8EG02Q0C IFg3XQ1DSyAAgpVAHW12gwAI1k1Xw9ASCIBgJVBHm90gAIJ109UwtAQCIFgJ1NFmNwiAYN10 NQwtgQAIJow6/6lr2etGwuY5xfVsuw0YEEzSA8mXXRUlpORI2uaTJaWzlByfvpl+DoKJAS37 aQV/NhAzLEBQz7a74QHBjPi0kPgggBdSRaRnHTF5tHc0zLDQZIFgQk4m/1mJ7KwgZKZ5OJoI bw26d3MCKaDoL0HpqtFldU2w7Zk1YyKHyhMfmJy3t4QXpIQNFtYzZPVLsJYTH2h+0mHCi5u8 7AuCefdg14dKt+I3T3yg84vxmrEvgcNNE14Yn0jPnfxh6Yh+CeZMTCDx6OZ9kj4Yne1gofEJ 6PMT1x47bprwAgRLseteRijKozfNJT5QsOUR7CvMlLzC+Fz4qf3cCS8+TWOJmIBhRILtmjSU +ECFtseEF0j+UJhgTSc+0BjWYcILemgdYXobNyNnMHtSBok9mCuxwtkA95v0/pRAgQNVlwkv aIfDZkRpsjoOcgQ6ZkixnhMf9Gx7gG+AYAEgeYv0nPigZ9u9juEJ0x83HW6fOucwNHKJGIBP YJGeEx/0bLvfPRwz2H7AOo6GbO1+uWVKFCPYNxdvvOG2PVhNdxGR9MEeFhi3xPZ6dpUjykY8 /Y53NIEaBQm23u6gzfQNJD7o2XaP21pnsDXCtkewzudDAiSwinjPmJxH3UsSbMVJ8CF5+dv5 KfuuZ9vduJoJZkrureUyTtlhRNlFCbbo3HPig55td7irkWD61RrDhVflLp/9vMZ+zmPTSz2f +n5SMhgTbX/klCbYigk7YYOEDOIAxaomobeEDJYR4pUNBNvJdHHq49/jkTEk9JT8ezhH259E 2lucYJH6onjzCOgEs91b2/7/HS0K+ADt8zHjuGz+xyEqAFDvDNa8v8DASAQ0gm3ObZxuTsGO gJvKr8djXqKTnyAJZrDInkHxJhC4EswTkt9npWn+b/3zs1x842CtG7oHqz2K2IQ/wAhhBEhX peI+ZgslmIBl2IMJgAgRkgiQCLZ9Mm+cwUyvC4Fgkh0GWXUhQCNY1MdsIFhdLgFtJRGgEew4 A/tELlz7JxBMssMgqy4EiAT7RgeP8zLJg2YyhNiDkaFDxTQIMAiWRiGWVBCMBR8qyyMAgslj ColA4IMACCbiDLT3GkSaLiakJpsl4gA0e0EwtoOG3stkN3QjATXZLHEflm4vCMZ124B7mdwm ble/Eps592EvmDPsBcG43ht16M5t7Cb1K7FZ7D4sw14QjOmzcdfGmI3dpHp9NvP2YBx7QTCm 03LAZzZdrHp9NoNgMs5S4hyMsXyQMbqAlOps5hEs7u7ttT8wg3H9M+peJrexm9SvzmYmwRj2 gmBsn6WHcNlNFxNQm81MgkXdvcUMlsAtaYeQCRTJKLImm7kEW2Gl2YsZLKNLoqn+EADB+utz WJwRARAsI9hoqj8EQLD++hwWZ0QABMsINprqDwEQrL8+h8UZEQDBMoKNpvpDAATrr89hcUYE QLCMYKOp/hAAwfrrc1icEYG2CPb7M//9+c0IH5oCAm4Efn/+zH//mXI014hcic9VasQJOmdD oK0ZDATL5jhoKAwBECwMJ5QCAiQEQDASbGol2qcMIk0XE1KDzSl0jPv0pTmCjVlSaZ69uraP DyUYWYPNKXSMf2MRBOP6G+PNPG7TxerXYLOwjtQ3Ftsi2JIVelITA6b2wuoegBEApAabhXWk vrH4nMb58WolTL991m3KsingVBYR9T1hxseiBpvT6RizB/v648CH/R4Sjik5lzbpOjKXBfHt 1GBzOh0jCLYuU98xgWYINp+MincdQg3hpQhBg/xVarA5mY7hBDsP9u0QLPcykfFmXn5mCLVY g83JdAwl2HW70hDBFidaR69s4foU4WAhIiQTU4PNqXQMI9g6e53TKrdFsI1jw5yNY8Q385L5 fxbBKQ5xpRVPoWMAwdbZU4lmN0ew/aHIPUSKX0AgHwLLUdGgR7IbJNgKKUiWz7HQ0rJuMpJr RaZRgh0kG+bBMKrAJYCADALHUtR+BtswwWQghBQgwEHgf3nxcLW2n/N4AAAAAElFTkSuQmCC</item> <item item-id="39">iVBORw0KGgoAAAANSUhEUgAAAKgAAABfCAYAAAB83IwVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAeNSURBVHhe7Z3btawgDIZtYPcxNdjF NGEfpwOrmafpZIrhiI6jIpCAIXLJWWu/nMEQ/nyGi4Kdkn+iQMYKdBn7dt2116C6blCv65bE QhIFPmrsO9WPH6f1SgFdGt4NgmYSroiNfsbemUgqBFTD2SvPTUksr5ijUeClBktvVx2gr6FT cOJcMixczif9N0t3U6ae/nzdVHgAc7IN+6I11xosf0Zy+Iyq//32LdOPytqp67LGb3UBqsec IHWb4GBRJ1nmEELf/VSQ5mQb9kXDebg5zXE/Kiab0Lq739urCFAtpn9CtIx1prt4KjdcyaBz VjAyhQ6EKzOEpNCcbEO+2H432orr0fYXHbv6egDVYgEp8TOO3xn9xS7eBuMcLIIVg5xsQ76A N+UyH+j1hHXt5hE3sU4kayirAXTfKDhhXQN0zsSm0IhsAvulVE62IV/W319rzzRDuL9JLUMf yzjzpMsu2VQCKNy9H0UQQH96eG4sFKDm2Btce16g9Xd2WzwrAXRqNKLr2A3Fr83ioa4Pkypd ZXKyDfhiBXian/tXSKDfF2FewzLGrwNQxPiTMoNO/fB5vAmOx5DU5mQb8sXa5h2A1myqMyi8 Tr0O2QRQJDc2wLclrVaXmSzZ8ACl43dEb1cdoEPQoyNcN+NnF17AjmJ/vug+26d1TdCXo6/n dx+WmzdkFj8r8J3JV5NBwwCNR0eu5FFAAOXRWWqJVEAAjRROLuNRoC5A30/1eL55lJNaWBR4 P//U419Fy0wyBmXhhq2SujLotF4ngLKxw1KRAMois1QSq4AAGqucXMeigADKIrNUEquAABqr nFzHooAAyiKzVBKrgAAaq5xcx6KAAMois1QSq4AAGqucXMeiQKOAUr7GRmkLG3OK1wSxdZnl eNvbIKDwHm986ChtYWul2M+PrcsB528jEeUL2naf2gMU2uMdEjtKW4h6yfbzI+qyFmFur/ah PUApN6NR2kJAQ7afH1GXtQhze5sEFNpCGxI7Slsh9a5bQeKP7AmrbS19R3uby6CUIlPaCkPm nknSHe1tDtBpo7XjNJCI42oIbR1PhtufEmc73/QeQEm1Q96R7QEK7fFGCjcXo7QVUi94KEKQ MXzhG9rbHqDr9lmSpZI7lpnmO+PaiSh4JI2S/O1tENAtwOse7WuHzvIuXC/E3AUotXbwndIo oLAwUiIPBQTQPOIgXjgUEEAFjawVEECzDo845wV0ffbL/cQiOiyy7Thaulwv9AD6fVNlOluc 5KMAHAoIoBwqs9bhBnQ935HozHWWVgmgLDJzVuIEdDsfcllzu7ZWiGkSwbuFAihG6KLK2AE1 suYyFo14Vs0thQDKrXjy+qyAnt9a8X2RwfVUwzhRNwDwsBcndhoJoMmB4a7AAqgJlu/YZtf2 g3N3zZKFBVBufpLXdwbU9X2b+f+3rzJ4tx9c+KqDbrFk0ORxL6aCE6AzHNaFz+NkKXj7Acdq gGTQYsDDOnoEFIDI3k1j3qwxX9OyuSezeGzQWipH8KgTAhQDJ5Hk6Aya4hU5SIeYNqbwM8aP +65JC+ickTnWUL8CogBN8dJtir3qKfy8D7TYmtMBakyqYh0Mug4DKPHebu9kMch5ozCxn7Gu /No3f4QL/nRhbD2u69IAyjEhsrUIAyjhRjftQvBkERtBYj+x1R7Kmasx4BeMo2rxXpQE0ONd d9yhmPTNKASg54cQM2XTUORqdqAdg6bzMwCiG4A0vSMANKDBqYsKoMQKHydp5+QS/7QQ62hz gKbb202bQdP5iUXjWG57eLL2NDxPC9sDNNnebmJAk/kZB+hy1e5hzcWnhVgv2gOUdF/8XmZi QJP5iUVjKmdCCI3Vod8Dql6LNgjolglo9sX/pExwmML9C/XmexHuSW6aBzKNAhpxK8slHgXS wLks4/VK3xRdFfojZvFVtDOnRiR+WiiA5hTs0nxheFoogJYGRS7+JpgQ2ZomgOYS8ML84Hpa KIAWBkZr7gqgrUW8sPYKoIUFrDV3BdDWIl5YewXQwgLWmrsCaGsRL6y9AmhhAWvNXQG0tYgX 1l4BtLCAteauANpaxAtrb12Avp/q8XwXFgJx16fA+/mnHv/kdTuhJFMF6sqg8j5oppjFuyWA xmsnVzIo0CiglHt9KG2ZEU9p+ypd1JsE7f5UB2gPHl1CeSgXpS0HnCRfZb4Ko/vGAeW+WHV7 gFIeykVp68SA5Tge23lNFwEIvfz3onI/qGH6+osAGqTgdNpFP047yj3/KA/lorRlupzSdpCm x8LJDktz+PQalpNM6tjVOR924P9cDuWhXJS2zgnU8oU/pn1AOH45xqBbPCsBdNtH7RKZEipK WwKoJWL6hvyOIaoBdD5K0Tcwouw6KW0V0sVvbqbPoOsESddZD6BQN095KBelLeskyRiuZDBJ 4gP0OFyrCNBJQh1IZxalXBqitFXSMpP2NW0G1dlz/33YugCdGfUtgVAugFPacq836oPO0n/Q Fzc9WkolBFT3TMZqTHWALgJePdY7JGBSlkYBfTDueSWmQkDXu1wgpQGHw4odzsomSa5usoDP iXMwkGUd6zDJHaNKM2iW0RCnIhT4D7hbYL5FQkCDAAAAAElFTkSuQmCC</item> <item item-id="40">iVBORw0KGgoAAAANSUhEUgAAAIsAAABfCAYAAADYtjTGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZtSURBVHhe7Z3RkeMgDIbdwPaxNaSL NOE+roNUk6d0kmI4Y+wYsDFY/GRBaGdu5mbXVoT0IQnF4EHJj1gg0QJD4nVtXvYc1TCM6tmm 9l/W+q0et0HdHu/g5zKFxQx8GAWTq8S9H7fgBGMIiwblpk4myFX7dXj9U40HEZkdLM9xUPGA YiJP/LozTpboNUwRbPp3Fr7jtCFl2Z+WIff9ULfbQ9lJiRcsukaJErAZMHpp0Mt+mtMzkQoM UtYBKJ9BXtdRpyR7EjCCRRv9vJg1+XiKBNN1Y05k0bNu8FKdBtWbifGIMl2BlOWwgtDRTUd8 YNFGj4SK9+OxrIwy09ARGLPTCSsvpCwbFpBcPcFWs7KBxR5UfEbnwTJHKD+KHEWIuCJTYMHJ cgMLSK41CZnAEk9Brt8ElgSOl0s22zKBZcqtl+qFPFgUKMTP3kDKKpCGjIqmPuMBS0K9gows pij16pOsAhcka1fgYuSuKV5gSY/H1pXI5S5SFnbpvEpjB8t4qWWbmYZmK2Y0vHaAImWBmnL2 1FhWRGwiyzVYSOGk25s6jyzd+p00cIGFZLY+b+IFy+uufu+vPj35hVG/7j/q9x+jpbPULOWo 4RVZpr6HwCKwpFlAYEmzE/EqiSxEw/V4m8DSo9eJYxZYiIbr8TaBpUevE8cssBAN1+NtAkuP XieOWWAhGq7H2zqFpcSjALU97iCPKJxP6KSmXImHjGrbg3QASsa+oVVaf5EFvD+nyj1IDiuI fUNGYH+wgB+MrnIPkg0LcLzdwVJqf876eCV1K2wpvZByBRYTX/fbUC8vd/IKXKRT3SwE2mQm aWgxK3XLqQNUHiwt7BvqLrJA9/ogYUHuQdoVuLJvaJ8o/mzpPOeyzLNeSizpN722I0iuH7nR 79LZLALN8WGQA3g+psyEpZReOLn9paHLhavc0HlkEQAoFpDIQrFap/cILJ06njLsU1jW7z2o XUmKQln3JK2Gsj6h65tPYFmWWNNZsqQD9f7CrAJLUauHYVmPMIe0wouOYRMusBQ1dBAWfeiw Ofs0fpY7RkN6s+jz+QILxhUBKceweNHE1C6E4zqLqn4gXGApavFDWPbfgJpZ7xa65ndrF3QP k9sljZ94vY1TR7VNrvf/s2pbYPk2LD4ElrM+J0HuU4YffWaHfxz7pVQmsHwZltC7eebfL0eP H16jAVr+flAUHz6vERiaRJaiPicL36UhNyLYciPR4XTVJJGF7KGKbnRhiSyTw4Wu//X6OkKr bokeZiyroYq4OFQF0O4PgeJ93jdePZdcsyAfUUDKcidZbZ3zPFjmSJT6fp3ch4MS5l0SLMiH jJCy9tGYDyx2wev7MVgA5741LAJMCizIfUNIWbr9iXoPki1rbm9gXv9HiyzRrwAOogj1TPuE gHKpgwvcR4N+yBq6B8luooJKABIsnxngNOVMP2YLnV5TLlrgXqEi2I+OHkCI3HKBlOWOKDNl g+DwrUyCBeDWMiIS0hDSwUhZUFi8Z4z3tQ+tu94dLNDUgUxpDi2ZkcWStTU4t7qF2l3vDxbk /hykrEKwGLFWUzSju94fLGuIBhxB8dlSApG175aTl85+zQLqrncIyzbTMPuG6mzK+d+vndYt iYuPTmEpU183KzVx9SSwNOthpOJpBbXAgrR5C7IyuusCSwsOhupI764LLFBHtCKM1l0XWFrx bwV6CiwVOKEVFQSWVjxVgZ4CSwVOaEUFgaUVT1Wgp8BSgRNaUUFgacVTFegpsFTghFZUEFha 8VQFegosFTihFRV4wfK6q9/7qxXbN6fn6/6jfv8pNTSn+ZHCCQ9ssxjnHw2CV2QRWIpiJLAU NS8v4Z3CgnxutlZZh3k66/0C7GC5RR+JR25mr1VWGBR31+i1yNcfLMjN7LXK8hj4bDe+jWqc 3oYSnU8BhnjBoqYDgWLbGpC7CGuVtYPlMVlG/6Q9mB2KN8/R7GrksXSejXF+BCtyf3KtssLJ JQeWzbZMYNnePRwyWK0ORupVBBadcpf8xQaW+R2IZ0m51tSB1CtICz2yrPWKFs0HllgqQm5m r1UWHBY3vTOCZbKUnqXB6FLrchepVzAJk/osOqqY9ziYH16wzLycLRFrbaQh9QI15XT09FaY 7GAxy0TMwXvXWlecrtZnE+9XlwxhWfsKAgwN32NQWKahzUBraG/gFTg0r4LvituLaWQB21HE zRb4D5XmZknB+MFdAAAAAElFTkSuQmCC</item> <item item-id="41">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAXCAYAAACBHjSnAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAM9SURBVGhD7VqLcewgDHRdLsh1vBLc QNpwMy6GmP8fLRxne16UmYyTM6yEWBZJySL4iyPwwggsL/SJXeIICCYmk+CVEWBivnJb2ClH zHNfxbIs1e/teH+w7Bqe8JVtz+VHWTHPXazLKvZzrrHvoh1iuw7Wul4HbN3Fva6z7dkx/3+I eWyX2m/ieOJQse3pQvYwMY3STJDmY7vUUuGcYl/tz9/VaIvOtufH/GFiTiJOopI637vUcxJ8 E4Ztq/DMjnknMbXCtYsLfXpcIQVWIlJ1qsUXgaGCEuWVqZ/9fmv1pb9o22rbopjUsfU4MGSa DM11h/7XsHVsfOyxA43ZprDrXJlOTEUwF9n5Ep9TJV18EGS3aRQxTYCc35UUQ6ljSBzENogd kLdIzCHbNlqeADF2vs6i8g3ZprFbXBkj5q43SJ+y4IQVCo/8ZJVVaFgxbeGRwqrPbWfBELPD byHnU9U9YrtUjCXYrlW3bmJDFROx7a7Ya59K2EUMGSuiI4PYprAJrgwRMyRjO7f4vmLGpy6/ uvS1aZXNH6LI7xIJVeDa1xpkG8A+rwOj82H8KodsK2J2YgNdDdR2JkFN7JgrQ8QsXQfxZ0Hu 0FSdD6tyIoiefKWr3H9WVHVqg0DbP1keqNhSaa+AxARtx8Ufgp2mHYXbbch2kGdneUqZK51/ kizJPKGKNdmn64qJI9p+DxET9K4PGyEPaDiXK6KwAkg5atrmz1RVF3DFEXP5F3O0/LvfYP/e LKg6v/x+eI1DE4kDBVy3Q2blpC7sh4hpihu0E9EViy5sv37FRkmykIj1302uFo0//HzD+Hh+ 8N6sKCV910KHBrevcn21JvkkUvwgvnRhP0DMqEhEFtQxpoVdLY5018MR0xKUeqqe10VMmb+o p2wPXU9ZYsin6mEa9VRP6UDwPsTvWOKHQ/PiR/nt8l+0pTPiRg/2zcSk8uiR5do5JHZhrYEY LJhSamtWCffDtIuMctpWtHtvG+yV95+sd2yuucqt3/JwZUUZ2gQf8QDFvpeYrf8oo9JBKgoY dtJgD/YkImZJzbDc07vZO55aIL//mxHorMr/ZpB41fdHgIl5f8zZIhABJiYQJB5yfwR+AYfR fqe255aWAAAAAElFTkSuQmCC</item> <item item-id="42">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFoSURBVFhH7ZbhEcMgCIWdy4Gcx2lc JsNQUJNQxdNom+asveufGCN8Ph4oWD9QiwEsCCSCpQQOYbMalFLFv3EbWI3rxokV5PdrC9sX 6qse29ihshI2C1ppsGlGziAkAzkGBwYBFviMRZjuLsU2cMo1CJi+mGwRzkBkpa2/hwDgTF4S 0rMzhwBOZ7LqBPQECOCD4CVBSQql05ljddsjIKD1kUEe9U+l0GiIXjEl8201lCKEFl+K5r7H EM+86Anhnrxbxw9QYh+TelUG/nDZtEt+xb75XrYBCMXeBeEoiYvSvEUJliDtimNlK8S6t/U+ CEiXEjIGS6FVxi233PJORQm8hYf5QmrpXs+DSqBv+LbYMhvc1R0kT5CeMV+IXjbR2Cx1qfO2 RZHF+ea/IcSSmAxCWp6sHMSpNqxPB4Eboe9GxwyTzDe7r+H6ZBBwcnWsRWZDXDIszWeMLf1V fmciJSwI/QRw51ICQngBCD7Ls/77lSsAAAAASUVORK5CYII=</item> <item item-id="43">iVBORw0KGgoAAAANSUhEUgAAAK8AAABaCAYAAADOzQbfAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfISURBVHhe7Z3dtaM6DIXTwPRxaqCL NEEft4NUk6d0kmK4GAIJYNCPZZBhz1rzMIMty9sfwnaMuDX4AwUKVeBWpN/Purnd6uZZpPNw umnezaO6NdXjnSRGYfD2nb7VwDZp1J1Ufj+qpCBUELwB3KpJvFmdDBvc+CrwbGrlU7QYeJ/1 rUkPuH3kTrPzif639gnQ/k179Fnaom4IaVt0+TAmQYP+7yywvB9NNV77lKke7YQh8ieUXbu2 0a0y4A1z3DTiWgm+g6E3NZ+2hKihBdjSFhPcseOU37RvAdzJjTtfhwjHLEwhpIGgAHiDkGmL s35u1d79rZ06JfJ20WQWYcIgKaJGY2mLZFfoN+Vb7PrMB/mTUj598A9vEEofKjtJ34/HZ2ci cdoQA7UbSMXNZWmLglfaFlWevGH79UkVFtfD1IFxg4cgIxlq9/BKO7Q9jmnwdhF8PgiMKBSf 5tnZotiV+k2VH64/hydaB+jvDRyZlnDmtcJA5Rze9CnDdGAB76jHxk3Hgnc+1yf33nugtyOr bLydw9t2mHjcTFe8v6vf2H5wGrwN9TilQuDvdUNbpAbStojyUbg/C+J1OHnaP2v+dqhveIWP EZodnoCrdmLzW3L+t2LN0hbVcWlbVPlon3+0jUbhEHlpMCXTRMBLDfzkOr2FxDdnaYtqVdoW VT4SBCbArlw3XrS5h7c2/UktMfL2exf9T9Qn+5FisW9L9nOqw/KsST/Hlew29DtD/B2Hi8FL RShcP1oBwHv0CKB9tQKAVy0dKh6twHngfd2bv/vraD3R/o4KvO7/mr//eA1izsvTCaV2UuA8 kbfdb7TdbdhpBNCMWgHAq5YOFY9WAPAePQJoX60A4FVLh4pHKwB4jx4BtK9WAPCqpUPFoxUA vEePANpXKwB41dKh4tEKAN6jRwDtqxUAvORxPrW2bUXLI5GDHxZHNbl94rbF7SfXHs+/i8NL HaTmiRgvlcO2RT4Jbp+4bXH7ybXH9e/q53mpnAN8HZcljW2b5ZNg9EnUFqOfInsM/8Zn0KUP o0tfNhQIa/oCZpiAWOWTYPRB1BZDQ5E9hn+AtwMiXz6EfLZt543brNBtyfpJ2xOwe+3XgGTC S2TNeWPYAgB4ZeOap7TmSCTjkad2NpttX/DKpke2vl97t4HKOaAmt5uTLPOSafM2TPywBSA1 8sr6aev7teEd9mHZ6TwlNHO3kCQ2Q1lbAJLhFWlo6/vF4f3CYJNbYY4Cd/NeArAtABp45Xkb xv0Bg4TdX48Br4QblHWlAOB1NRxwRqKACt7xF5P5dwQ+/66f8/ne1KV45kCJ25Gymt2GxCZR /VgFVPBOF7+RNPChwGoOVk7uVYUogFchWtlV8sHbJsePJggmEwsrBQW8SuHKrZYR3hB8l0mb Y/9nIh/gNZGxJCNZ4V1uYPOSBqsEBLwq2UqulBfe+YY64xcmMu38mtqAt2QOVb5nhvdzQOXz C9Zyc1vlc7wS4DUUswxT2eEdpw7Mzzgh8pYBjgcv88Pb7Zq1nyWqLT6ruiEZIq8Hnnb1YRd4 +z1f6rtaif0GvIkCllc9HV4vfQa8XkZiNz8A725SoyFrBQBvltwK82GyOMaY43ilgZ+xhXj3 f7MvjK59V425kI+Bf3F4cx0Y/5XaIl+BVz+Hvs2+VhnWOKxPsq/UZ4boa8PLyDnA1DFazCxf gVM/Q/+qdhepmn1qtdtdetLKrdWna/Ylrg1vtpckB3Ef7fGkTua0Nwg8+hluqDAVWNxYoa8t 1D9f/rzFpgyr9bnoXhzenK++T4cgDV5/fvaAdl/LXcDbnyasfj+lO4A6irJVH/CyFPAHRdxt b352j/sBTtaCa3o8Vl5/XRfO9CTUPt932DI/jr+Sp0VeWW4E1n27Uojh5zyKsuD9sauqD3iX CmTLrWCwBTXZsMiVA0Lu59YrYF0UjL5s8D0KS9YX3HvXXrCJcg4IVF0UZUS0TfN7bJUpF5bR Bdtst2HrKCwrciPybj4q8+RtGJpMhfcL1hF+bh5ljcLXz3EHX6O7DaM0K+9AMmLFxSMvQyEU casA4HU7NHCMUgDwUgrhulsFAK/boYFjlAKAl1II190qAHjdDg0coxQAvJRCuO5WAcDrdmjg GKUA4KUUwnW3CgBet0MDxygFzgPv69783V9Uf3H9RAq87v+av/94HTrfkUhev1HKqQLnibzI 2+AUsXxuAd582sJyZgUAb9a8DZa5FixtWVNlceRT7tOp4K24LzSNOuU85G1p29KWHJLtGhZ5 KXQ+XRvenPkQLG1b2tJxEq1llpdC6dN54A0fcFlLKbQmTs4XMC1tW9pSghKr9n4Y5aVQ+vSs Z5l6Nuz43irr5q71J8kHT42cr5Rb2ra0xVNGWuqIOa9svJ3DK8ugEoYnJxSWti1tSbHklT8A 3jCVEqxx3MPbZW8RdChrPgTLR72lLR6NwlL7wyuZ74bO+IdXOnXImbfB0ralLSGWvOJ7wyub MhQCb+smO71mN3HoEuB903FG8mzxRi9SytK2pS11hzYq7gvvJF0UszsFRN6+J9wUm33pnJv/ lrYtbTFHnF1sR3gXSft4ThYDbw8kfxuF132UOl6B8GSU7SgNPhcE7xBRAfDxwFl5oAe3nDnv RKvhUau7W61kh50UBWzGsLDImyIY6p5Ngf8BrfGdG0ja5EUAAAAASUVORK5CYII=</item> <item item-id="44">iVBORw0KGgoAAAANSUhEUgAAARAAAABaCAYAAABwvgmrAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAsgSURBVHhe7V3bkeM4DHQCm8fE4Cwm CeVxGTia+ZpMJhidSUmW+ATAh0VYfVVbdbskIbABtkBQJm4z/gMCQAAIFCJwKxx3/rCfab7d pvnnfE2gARBQiMDf/Ljf5vvjr0p3hQSyTPw2gTqqLI/BQOCJwN/jXvUiVkYghjzucyVpwnGA ABBwEPiZp8JoXhWB/Ey3uTzwWCOX2zN6ef6hQzcD6tLX/gkefHa7ZA1I556TXSprGZe1399j vt9SLwhqfKrds1PhQlkQkc5d0D86d8LH7JiDj5r/vz+eWq7/Ue1HM5u+x7FM99JDICbnUcwe /rZnMUyaRPz+vL/v8nj99/lI+zOte3T6F3bU3BnkIZa1L6S0Cbc+MQKhxqfaw7mWh+y1PpTD PTb3uE84PkutCardM7XBhn6xuoOUEIgBsyJhGmN3A26KcWMJWkfG4gzHxWAdc/sHanxtu4g/ Im/13Nyz/CGXtSxY82ac5ikTgVjnnaYgAqHGZ9ujiXZju4JtsNSHBP3jcyd87GknKiKn2kNT y7cyOgjEGKM4+rBIh2RhDRwnJeuUAbkcDZp/O1Dja9sl/CGde1a2EEcb9D8e60lZZguyhc+R RUeNp9qD+WS3SZnZS+fO7Z+cOxWBLPnAuzlQ2LYxjs9S7fG5Gt+ULDUVBCKdlA9NdMHmHCkZ IbhRh2H4zXgO6NT42nYBg4jnnpFdJytFIIfEeJcciLPRLz7Bk86d15+ee9LHnrQcbMOdPAbV njC08GWtgEAqty/2LRiJKLLOuiavDqywGXL5p9A4tt3LDRxzNrHx5e18BpHPPS27TlacQJx9 d1cC8d/ofAyXSErmQ5z++blTPhbTP9z2uL2odjtTUbpAAYE8J01kh48s/Qrnjqcn3HDSQdvN gE8/hwWQlHfcW2fG2+fUtjMXQNHcE7KrZEUIxM/89yKQ9TRCmiB03UG2DSa3jtTcWT4WxNrE SRd1krXI+5n4OaLxCUQYUkVdP5bvkCYSjzJKjJvJuVida9tTfNJi7pvsKlmh874SoP5RpJeg Xh5POX+i3W4X+QsiScvSuRP9yblTPkYliKn2zPtHkjK4BoFs5/fc48fgTbg45/4GS4SXW6RE ja9tZwYfx4Xnb6/K3sbSo8yjohQBbCTa8DuQ0oRp/C3k5U+o43AhVoGuhI/FCNUhnQjezJfm xxHI1OTT0/1bgdiHZGYbFJyxH96M4YLzPvLxt1n2DbAnWYPxte0lJML+iC4nXIjjS9T7CYR8 y4sw3KOgza6+TQMfknx4FiU7wse8bXDq5DB+SpOePAhE7BgYAASAwL5T5R/lqtjCtIlA4CBA AAhwEEAEwkEJfYAAEIhnewQfk40fgfx+z1/fvzA1EAACb0Lg9/vf/PUf72HjE8gzuYQtDM+Y 6AUEWiCALUwLFCEDCFwUARDIRQ2PaQOBFgiAQFqgCBlA4KIIgEAuanhMGwi0QAAE0gJFyAAC F0UABHJRw2PaQKAFAiCQFihCBhC4KAIgkIsaHtMGAi0QAIG0QBEygMBFEQCBWMPnf3ae9o33 /+x80aVl/RJ/dqVYxFCSyjq7fg71fAlLtJ47Vx7lk4m7PyIXNZmf9lOXJoNApBcIvXxoN6je +iUJ8uBeppRdT8JLcgI7+OPjf/+M+jrSuaUuKKJ8kmrfDWqv/mQUjwKBxC5nIW5jel0+o71+ ScAf8louSQ6R4krVv1mjrs+sr0PUdWFgSfkk1e7YMXrFYdzSIJCCy39Z9UWSNTzo+ics+Ud7 trqOrwCLJIEIZUVvJndII/+WpsbXtks2L+QlyYEwIgJhYEn5DNW+q+RfyZmf+eUJhHOlvjwH Yoyw3tfZ6/ZwfytFbVYZK6AOC/cBYllU/ZtV/CfX10nNTYZlQQ7kaDpB9GGzhx91H0jBz/ll xonnDPy1a2S+9uZdCcR/czFYItOlDotKAtkSw5esr5Ov6yKzSw2ByKIPEIg90BDW8HDWScRY VA0Pajy3vUX9Ep9MqrDwhBXJumh9HU5ZBj+hmSztUUEgBVvhy0cg0RorzCvtY/VHXskqDfVL oklUrwYwGwtPmLQ2Siwyukp9HYpARFhWEEiBrUEgxce4NoAjqnvZTWJQRd5PWFHHwE57wVuC v7GRHr3mJAtlUfVvUiVCP6K+Dq+uC69eD+WT6Xa35CrPa0AgFqf8RzphDY8NXMpY7QlEFuHw nMDLXixFkc6oC0PVv6Fqm1Dja9tFcEp9iqrr0vFDsnVeaT9PTxwEInIKdAYCQOCIAAgE/gAE gEAxAkUEkguj9+/n3ZBrL93YoHhxaroFx7jFyGEgEAACDb4DSSb1EvmBdR/a4Lun0HwgELg0 EHgrAkURiKOhlEBsXvHO+qGOGAkQiBgyDAACNQicQiD5o82K6YBAKsDDUCAgR+AcAon8slKu emQECKQJjBACBLgIDEkgxx8V7cnX9duEXPIEBMK1O/oBgSYInEMgvb6mBIE0cQoIAQJcBE4h ECqJigiEaz70AwLnIvB+AsEx7rkWx9OBQEMEuhNIkMO44UOyhvaDKCBwKgL1BHKq+t7DkQMZ yRrQ5QIIgEAuYGRMEQj0QgAE0gtZK5f7E+yuShQKZ1xVUCi5fphmXP3ZS3FO9F9vqHNSBqmy DA1PQUEg9d6ckCC8UKebHiWC+fVDSqTXjdGMa5w8OAWclpEZu5jDCdYPzDYZbXKRIJA6b06P ZtTy6PXoGrmvX1oTNW9qnlE1VimuAXWY34OZS5uYOFN2MZ8+cPjDXvg9TZlb8mTWAYHI8OL3 LrpUmC++V09+/ZBeGhByleIaEsjj+YOOPaqgFn/eLksZkfvhJrloVblMraJSa4JASpEjxsmu 4u+kRJVY6d686mHswfpxjW9jKALZR8XsEil16VcHsNsfTq0itikW+rt6XRgZXPze+h0dBMK3 dk1PKc7c/m65TLt1efwtiiKJmjDYSN+BqA+1uY5as3gKxqrHtUcEEsPxYD9RrSKZTRCByPDi 9xbV8uCLfV/PQQlEPa4dCCRajtJEIMuWpedN/iCQbitS+3HjoARSVcenm7ErBEtxjvWP/Fuu SBS2MAq2MMtms2GNlQofLRoqdeyihxQO0owrLwKR1yKi6socngsC0UIghesDw4CAEgSwhVFi KKgJBEZEAAQyolWgExBQggAIRImhoCYQGBEBEMiIVoFOQEAJAiAQJYaCmkBgRARAICNaBToB ASUIgECUGApqAoEREQCBjGgV6AQElCAAAlFiKKgJBEZE4LMI5Pd7/vr+HRFn6AQEPhKB3+9/ 89d/vKndeN1O7DXSz/lPhAGPBgLvQuCzIhAQyLv8Bs8BAhYBEAgcAQgAgWIEQCDF0HEGavzZ uQadNejI8Y+aPmNct/BxBHLn305bYz3GWI0XCmnQWYOODPeo6jJO3R4QSJUhM4M11i/RoLMG HXv51JpzkNST6ajKB+ZAnpU2plQ5v95I+vI1Xv6rQWcNOnb0tdHq9vxM/Ap34x/j2isEp7Vg T0crMkRrLOugQWcNOjLco0GXEXIgsvWmgEBkx0oNrJgUodHRNeisQceefrXLHoBAzHZSkHNU QSC2aI5gUt2MrTHU1qCzBh27OdVR8PkEIkmgGs11EMgo2xiN9Us06KxBx0sQiGz7oohAnqqa t9TpUYjG40YNOmvQ8R0Mcm4E4pTKZE5XSQSyzMbU1TidQ1TWhdHwkZYGHZmrqrjbiQQSFO7m TUIVgSxFnfhHTDwI0AsIXB0BU8Cq7KRTGYEYQ4NEru7umH9LBMrJQ1cOxMFsC3fLWLMl/JAF BHQi0GYNKYxAdJoLWgOBT0Tgf1yDZMnWsyp5AAAAAElFTkSuQmCC</item> <item item-id="45">iVBORw0KGgoAAAANSUhEUgAAALsAAAAXCAYAAABTTj7/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAOKSURBVHhe7ZqNkbQgDIapy4Ksxwa+ Nmxmi+FDEPlJkBcE3XO5mZu52VPy9xCSsEKOn+GBH/GA+BE7h5nDA3LAPiD4GQ8M2H8m1MNQ D/ZVzmKSyydyymeRk5jl+gd89VkmKYSQ823KfuQyCS0z/GX8WOG/++1xSr5R9otg3zarkNOk gJ8WGe/ZCtaAVwzsZHOtc4NN94Q91uR3yn4P7BowdQLpk6hNZs3TnoBdvagz45VN94g9u8Uv lf0w7HsGIbVTHrP4iXVWWV2vYwA0f/f+ScOuaL+06Z6xx/jrrbIfhr0RjBFYpt68o884gV11 OVtZVdU/PGaPPpKCTXqfL/vLroA9asqS0TwDgUK+ZRPa6O2fZYihJUMMGgJeaBd2MvSBPW/P 5j9U37I4YLJt/FJrG3+7eGKJB5OdWzvNZzHsGsoDvlTJ4ARWZbaihB8b7zn5qJlzsO/6Hsom yiud9fxs3aCMIWsi9oD6ehuCjUOV7BB0Ov2ivmNPhyrZ+bXP+PRgP5ksWGiYOjTejXZkJaZZ ztykIgFydWa3zRQt4lVmsY3qDvtiYDUZx8s2XH29rZttMNEGdXtO6bKYKY3Ti3EGYg+gb1Uc ENm2+d7s4GLMrpEYa/vmI7Jza2f4DC6V6A7MNXv0/x8FlBlzlx2fRcncezjcyf4qvm42WzrA A1s5sKH7BXT0uGfi7OYxzaE7ORP2APrWxAGSrWEvjDHQrKOyCSena4d8khvUOMPytatXFyUD iMB+cRqTcaIDmitj3GfsmBAIUFw3uxo1Hn3mksYeQtCef9xYM/kuEgfaHMZQ8Y0qsnZccjFp DbSb3hWm1ub5vP51gdTxc1Nmx04E7hh1ANbDjklvfcqV6YsAidpBtgB/qXY8BoBeK9r2I7mm 0OPzOuxJqHs6udRD57Cr2oHW51AZg+rR2BdF+jaWHZica9A73XfszW3pxKwM9mSDwM2TezoZ hcw+d17GmNlyNB6DGlRUj8a+KNK3sWwEds1Jp1vss7UzfJbBzmXxJBQ9nYxCFsLuT2B0b3L0 G+gor1Sufb61L0r0bS2bNs1BJQH1OpV+zK7N2OrxWQi7m7IczdilBrXS6OLX9jJm9UaPRG+v qdm+UNb06wY9gEP17SE7vYmPkSf5JmjlbbIXa2zt0C/++LgC9mLSxgvDA1/hgQH7V4RhKHGH Bwbsd3h5yPgKDwzYvyIMQ4k7PPAfMhcMP/t64aEAAAAASUVORK5CYII=</item> <item item-id="46">iVBORw0KGgoAAAANSUhEUgAAAL4AAABaCAYAAAAGoewJAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAefSURBVHhe7V3RdeowDGWB7tEZ2IIl 2ONtwDR8sUmHyYsTKEmwoyvbKsi+PadfyLJ0dSMrTqwcBv4RgQ4RODTn8/U8HA7n4dqcY3Ro RuBnuBwPw/HyUwRIQ8SfATmcSfkiRjgZ/HM5FiW4RogfSH8cCpOAk5DTzCcC1+Gcubo3Qfzr +TDgif6+MhzG1WH8L10y1zS01J0i/Dwn7n/NCwedG8UF1bfw4ecyHI+XsQDS/fknfqjp4ahv y6GQMWqR31L3PunDBQxDoOPHjvSTzPtzo7ig+l5NCmWPNoE5J34AS3EjG7LDYVMShQsnI2O8 wG+pO0K/ucYdV63R//MfZ3zV3AAuKn3RS1Ff8vgmfgBVk+piJJ8Co7h4UjnQUneU+Jf7zlVG eVCY9X8uirkBXFT6EraHi0dDBdfE1zo7ZZZtdo9lpAxiWOreN+fvif+0R55bh4usL4mFMgk6 Jr6yzAk7wCR+xiW9N0Qmqg5zWV/aGh0fHBN/rOu0tTmw7GYzo6LusEs11e+x/5f1vIQsr95W n1uFS5kv1zO+pe2X+MqlbQpxrJ6venO7uVeopXv3aiwjS/aFPgMqb6WqMAf07e0zKer8voh/ D9Rz+9P7diZIvjJ2i1uadbYzy33R3PO5Jv4561Et+jAlhy2WulP2lGXJHC+lm9tQLq331VFc ynwh8cuiydFOESDxnQaOZpchQOKX4cfRThHog/i30/B9ujkNEc22QOB2+hq+/2GaO7y5xYCh lD8E+sj44/5w3q6Ov4DSYgwBEh/DiVKNIUDiNxZQuoMhQOJjOFGqMQRI/MYCSncwBEh8DCdK NYYAid9YQOkOhgCJj+FEqcYQIPEbCyjdwRAg8TGcNlJlr8TOytDXb3MMtNQt2aOdW5Zfn/Ta nJyaDq9sTqABp+1IfCmOL7/n93R5qkL7x6iNe15Qvyc+ah6gkezR+iXLv7yvv+13quqVtIhA LyewaryyUN7T5Q480D9Goljyd0vdklHauSV5oKuFrjMeiS+FMPp7jZ4uk2LVoWqlqZa6JVO0 c0vy4jnksGKMndFCA+BHuQOUOVOhyYwvRTP2e1mNr2ujobPPUrdkiXZuSf7x+/XRCW4i9/KQ fqSMA/tjkvhSNOO5X+4YsKNXCniWSb9VlF0jLMkurV+S/KO0XJ3JFb9pMF8MUqc0Ev8ezeo9 YvZYIi3xEsPepFvESOuXIB+9MMQ2JdhqTOJnkQwDd/8G1Kivjqo3TZbz6UHauSX5aI2/wD6a /UPGl5tFkfhZsS8kfpM9e6Zbxs2XZqStVEk+gvOK7InfgRtcEv8txF+QpJmPTjyA3H8gpe+j s9b3+s2y+eLirk50E4ZHD7Ou74YHMeM3HFy6tnc7gvfIX3RZSNxA1PpwQu2I8bB5bUTd68vM +CS++8h37gCJ3zkBenWfxO818p37TeJ3ToBe3Tcm/mYPNvkCBfZASHxknooib2575ffOw3PD XZ2JqL9kn8n9+nHdGgc7hLiS+CT+BoHMjJ/I0Mt3KyKHCLYvHWkPdjDjk7+1EMgk/v1zmKt3 o1MZff0oe5nxqx3skNBgxpcQ6u73bOIHpLYZ+LWMCVKLOj/58hBW42dHh8TPhq7VgUXEV4OS PERA4qux5IAiBP6W+MlDBCR+URQ5WI2AHfGThwRix8I+lfhyzxc14r8DvOrO93g90tJ/2UY7 4seye/LU/CcSXzokIYOblvCqu8Tn5VhL/zEbDYm/ubENhwU83dxKPV8wfONSXnWX+Lzifeh+ tjkeKLYSqTX5rMeY+HWNzdaWs6ujPTitMc6rbo2Pe7KW/oM2kvgJoKTWFyC+UTGvukt8Xif8 97VAedhB4pP4tfgM67G88FEjSPwUUpbLsVfdKKskOUv/pbnvv5P4KaCkni8gwIlaZ7y5a7Cv DoqJJbagDSR+EijLLTevukFWiWKW/ouTTwIk/i5Olg9ZvOrGiCVLWfoPzM5uyTJIlGgPAWb8 9mJKjwAESHwAJIq0hwCJ315M6RGAAIkPgESR9hAg8duLKT0CECDxAZAo0h4CJH57MaVHAAIk PgASRdpDgMRvL6b0CECgD+LfTsP36QbAQZFeELidvobvf5i3iw9DYAM+RirnBNbHGE9DLBDo I+OT+Bbcca2TxHcdPhqfiwCJv4uc5auzXnXnUm07ztJ/2cZuiH9M9uZPgWR5WMKrbplQmISl /6AFvbyPrya+1943lnZjnJKlPsDGPjL+MH6lEfjM+ypilgeiveqWKY1JWPqPWTB2+t40tNoZ 53c7c2pnuDncLQBk2QLDq26QU6KYpf/i5JOAjg+Oia87XDxBM9aALy0PY0s0hvRKyqvuDFej Qyz9h2wMcVTc87km/shklbPjWpggvm7liAbCq26IVYCQpf/A9Jr6PqjzTXzl8jZdKB5731ja DZAKEnmrjboypwHijy6ETAMvcZZbbl51Q7QGhCz9358+ZPv4J6vS45xn/Nmx8N0umPvL73eN bc61gAkhmD5/egjt013pBngNibzhAVZYabS7e/5LnUc0AuD4VhYUQwo5QGDc0t6WrqDVTWT8 2VeSH4x5I2L5pG+jxl+F8bHUVtilaYQe7blRJ8YNZfz2QkyP7BD4D/3OqOsvT0VsAAAAAElF TkSuQmCC</item> <item item-id="47">iVBORw0KGgoAAAANSUhEUgAAALkAAAAXCAYAAABXu+7CAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAANySURBVHhe7ZqNcYYgDIaZy4GcxwW6 hss4DFVQ+UkwLyhyn0fvetdrPxOSPAlJrNL9q3vg4x5QH7evm9c9oDvkHYLPe6BD/vkQdwM9 yGc9qkFPS+SUZdKDGvX8A75apkErpfTY4LDv6170NChjb/jNxDAjdu/b4Q5XS/eHIN+SVOlh WEEfJh3nakacCz7aQreFnCT0PN5I9BZ2HO6up/s7kJvgrjeOuXnuVbNsypvoTkC+Ht5UxJJE b2LH7u2KuhtDvmcv6ZGyMdPzuFZxI8cG3/78zlcb3WnIV8qLEr2NHTZGNXU3hvwhCKOg2t7u pTmime4LyNcJamvd/FZmWYSkb2aHuXqCpHw6fgWQRwMPbQqNg90whMG2ZTIdovbfCZMkvZ7j INOg0/QK7UJvAln3pgmVfQVufGIUcuxmw+w4zpDSbf2cG3tMtyQ7zWU25AbGE7rYgbT9eDor KZyx8Z6Tz75Ugnx30GlXoo0yFcevkIhuULaXCGxOE91ou8JAXmRHCDjdYoGxL9Ity77i0oP8 Ylo/YGF6vSALj+EhIDGxmoxoLa7krE7T5K0V5RhAd8gnC6mtNN4Nw/Ww2/PS8IboBmQfqzM1 jHrkNiZsV4cMntKtGw19sZ7Ah/tAu/mOO2dp7BEfSrIFLoOXQbTqSled9Hfabz3UhZ9iwgz2 pftnOyquAzuwlQMaeD8A6QZkL2vy2dX+A+0KWSHKMYLsMKHMPCcwAKO6CTeXskObyRvPuKLy valXIS6rXXxVk1Jhd9ulmxDBiQ5krl1xv2NXblKAQN1/3Dov+Ww+5PLLIAFy0I7w/RpyTin2 cgFMt7op2TyX91/rp66bo8ds8fqRpD3XMrngF0EOXkl5shF4QMXnx+RKnitRvnEAwPOV7k+A sj0u70POXbH7cFFcoYsdkHrwGnLTv8c3EtCuQMfMkv0ByGvGPku282Ue5MkBwNs4RMMKBEL1 D123K3ZPG606kcETOXeW7B+HvGbsr2QLXOZBzlVtHwapj0WgqPIZOnia2eOs3uiar+RwObJ/ GPKasRdlM37zuMyE3G0AzoHHu+bPVRj5z7g2/xnokNzbldlbIZKBOVy3PdtqobJrQO6t/h6b j+g5a8Yekx2tS734FkBeUs36M90D7TzQIW/n+675JQ90yF9ydFfTzgMd8na+75pf8sA/Hhks NqgiBTMAAAAASUVORK5CYII=</item> <item item-id="48">iVBORw0KGgoAAAANSUhEUgAAAIoAAABaCAYAAABnuc5LAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAUYSURBVHhe7Z3/saQgDMdt4Pp4NdjF NmEf14HV+Nd2ssVwgu6uP0BCMtyT5Hszb+ZmFtEkH0JAEzqHf9AAQQMdoU1bTabBdd3gprae uuLTvtzYd64fX6J7KAJlUUg3AJEYEa+xFw0gJaB4SHonHDSiEdfGxZMbmN5WBSjT0Lm0I1k9 TTd7m/lP5oIV9PUaXd+PrnQiah8UH5MkKTlOR35EcWHR05efhkoHTOOgeONdBK5+9HSHKcmD xRhRTlVf5VNQ26B4410FrzEogsEZqyJlfXmvUhL3Nw1KTtgQ6R+9R8wzECJRdX3lBtlBJw2D kpl2ZkHVGTcCNF/GvP62t2sYlHmezcUayqaLqOMTyDgN9C2FdkGhuM5YPCIKZg+xTeN95aZu HR6FAsq8W7DfrcXyeGt8M6AMpK1YBZtk2WCbJyNAySoWDbwGAAo4IGkAoJDUhEY2QHk+3M/j CWsLNPB8/HE/f2kdNL08pgWzNEVYbGXDo8zLY4AiwxugyPRn5mqAYsbUMkEBikx/Zq4GKGZM LRMUoMj0Z+ZqgGLG1DJBAYpMf2auBihmTC0TFKDs9Md7BR83ga6+AMrHyvhw6crnAJS3dlTl 4iRMLpARoLx1Kvjw+GQWhX0BlNXK/FSG8+jV2BdAASjnVNrIzAVQMPWQ0mYByi6Y1ZWLc3IM gtwlgILlMamsBUDBhhtpyxagkNSERgAFDJA0wATF5+VGstu5hWdIjypohI+rBcpbLgUoYhXa 6ACg2LCzWEqAIlahjQ4Aig07i6WsDMr+451zjdelWI0v/rv8XVdg9MWEv20P/78qW4hg9t6g BMN+DHgsyH+uaBTeunLKdebUAFByGsr+zvQoi9FPg3j7HUbkI5nd6/foyRaJZfcqBjxK1p7V GjBBWctt7kZ/7giP3O9hsU565V2sDXiUYpUdL2CD4js6jvB4zfRNnHJZwrPi0SgA5XdBKb57 8iClipAs24ooe1FsrP0FIo9Sfu9IbBOmG+4pFsQnAChERaWb1QMlGaxuguDQhl4RmS0tGRRd uTjX+kosSBIX1QNlLfC7WxllVkVsEHIXkkCxkNfzVtR3QFBPzagISggOlmrQ7w21TTC77JnE N9CoD5/j4/M7BRRBzsvpOe7aVwjXVr3PZxcNsS2O/+9RyGas35ACisJcnJhiX+O4nsp6m6mn vv3JdyCAojEXp5EYhWzG+g0BSkTH8ChnpRBAmXcPEyeAKToqbqcZgMIDRZDzEg9mb5gjBFAy sxfFo5g4r2erJ3gUnkcJV2HDLTXkKu+j1I9TSXcgeRRST2YbARSzpi8THKCU6ctsa4Bi1vRl ggOUMn2ZbQ1QzJq+THCAUqYvs60BilnTlwkOUMr0ZbY1QDFr+jLBbYCC42zLqIi0xnG2YhXa 6MCGR8G7HjHNAEWsQhsdAJSdnS18ZsCT0QwofTYHxEJeD19GgPL2KHfNxbnJc9kAZc5kGS4r Kcy0WPi4WiDjNNBTf7t2wzbvcq+/preQ18OXMa+/LRsNg5IvqMtX4nn4qOvLT3/ZGO+rh6ZB CdWcroQVuOUTKsr6KolPvC7aBiV8YX8x/VjI62HJWDbtKABlDViTXoW/dIxMPksVh8+9zhUw 6fHe7z6X9ybxkmtpCRr3KItgvu5cegbibUbFVaagL++BcqvFiPAqQFmSvOhLPfrI19bSe0FG 3nX7McrWkIDlGms+JDpilOh7Hd6o0eY/Fnne06VMJ0qmHp0mvpNU/wDkcSeIa3cspgAAAABJ RU5ErkJggg==</item> <item item-id="49">iVBORw0KGgoAAAANSUhEUgAAALkAAAAXCAYAAABXu+7CAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAN3SURBVHhe7ZqLsawgDIapy4KsxwZu GzZjMVwFHzwC+QOyu0fZmTNzZtUk/HyEBFfp/ukKPFwB9fDx9eF1BXSHvEPweAU65I+f4j5A B/JZj2rQ0xKIskx6UKOe/4BWyzRopZQevxDsu3wvehqU0dr/I/gRcNNKwwdBvi1SpYdhBX2Y dLhWBVoX3Po23xbyKJnMY0WSaafhcyA3Aq87jtl56jKKmPLX+U5AvgpnsnFJkmmo4Zch31dv VCOJMdPzuGZxY8dOgP3/M5/3+U5DvlJelGRaavhlyG+CMBDW1nYf6iNe6TsD+dq9bWWjW8os C5NwGmtYAHnQdESFGXedBntbyXEjs3/HdJLxFhkKHQsfR+HHje4EvO/NE2o7Bw8RcVQa5MaZ sm2fubRHkgMKObarYhpycaa5E0NuYDyhiwfBXb8pdztmwsE7E3bWhhzku0DnuBJllMk4bpZC fIO2nYVAruki34dMFwC+7Xic5C4Y+UbLFQLyonHwcea4cyDPdMwHLES95a1C7nqG8OJMfjQs oW3z/dGA7pBPFlKbtZyMRdWR2/NcA4X4BmwfR2dqGPVInVpQuiG+j0ZwGy9lm7SROEr2YkAa T3BHR8bBxclw570Milcxt93UXq/P6/4Kdu25sR0Z9wLbGysFNPB+APIN2F7WxWeP9vFyBfJt IBfahhpH9AiR40ObA4OrMkjNH8FJNk7fb/TGM8yodG3qrFIy23HXj6ArT1eYCblApsqV6zvy 2IubbND3P+pILfksCDno238nhtgOS6tUEgqy9Lk7hke3DORF43B6nFw/6HBZ/1o/td2cHO/n 1/VJu8ICtQVfE1AEORiNzDYCIug4uo2zjQIu8c9ncok1ey8Yp8NlPeTsFsuJKx+m/Ik85Oue GdffQLkCxSGy3VIrrlls8W7hZsj3phU7+brGK4M82QDsJw7cdYiKFjflyxX7AiM4OkMaTyRU ke0vQO416MiAJPfcCHkuToY7GeRU1vZgICbpLlgk2kb3xo2n6T3Oui3cAit7Bc+/xPaHIef6 jirNr9ICy7wZZ2ycee6EkDs10dFsRI1n0JRwx3DVQiIG9nJldo4QmbirJ4YCfdcsbfuzkJ9H l9GvCe/7Jefpo+KnoVicae4KIEeg6vd0BX5HgQ7578xFj6SRAh3yRsJ2s7+jQIf8d+aiR9JI gf9A8DBDQRU97QAAAABJRU5ErkJggg==</item> <item item-id="50">iVBORw0KGgoAAAANSUhEUgAAAIoAAABaCAYAAABnuc5LAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAUhSURBVHhe7Z3RlaMwDEVpYPuYGuhi mqCP7YBq8jWdpBgvhpDBIJCQcBbLL+fkCzCWdC3LBokm4AcNCDTQCM4p65RHF5qmC4+yep2x t8/Qt01o+6fpHo5AmRTSdECEIuLZt6YB5ASUCEkbjIPGNOLKuPgROqW3dQHKo2vCviN5eZpm 8DbD3+aCHbT17EPb9uHsRFQ+KDEm2aVkPR3FEaWFxU9bcRo6O2AKByUa7yBwjaOnWU1JESzF iAqu2jo/BZUNSjTeUfBKQTEaXLEqctZW9Cpn4v6iQeGEHSP9tfegPIMgEnXXFjfIVjopGBRm 2hkEdWdcAmi9jLz+lrcrGJRhnuViDWfTBen4DDI+OvmWQrmgSFwnFY+YgtlVbFN4W9zU7cOj SEAZdgvS3Vosj5fGrwaUTrQV62CTjA22dTICFFaxOCFqAKCAA5EGAIpITTipDlB+vsPX9w+s bdDAz/ef8PVX1kDRy2NZMCtTRI1n1eFRhuUxQLHhDVBs+qvmaoBSjaltggIUm/6quRqgVGNq m6AAxaa/aq4GKNWY2iYoQLHpr5qrAUo1prYJClAS/ekewdMmuGtbc2+n/klfmgYobyvX8OJS CklMcgMoy2Eu2cJ3lYuzP81MecVDJuSQ49TBo6wUJQHF8OLxxix3bWvo6LPvX9UbMPVsh5MA FH0qA3W7e+YIpT0FKABFtMABKCpQwl2niyv7RazwEMyqgllfuTjHjgUeRedRqsjrSUYP9lE2 pAiC2emau26SXdkvbLgdbR7gVUhRgHu8/yKNZ/BytVHZJV+u3MKPeblEdru28ExuDYqnntwd Kbd9gFKu7T7ac4DyUXWXezOAUq7tPtpzgPJRdZd7s8ygpOv/bY1X7niq2FhMeHxETv2P1m4I Zs2EZgVlNOzbgNuC/Nxxs3TvvSWklFp1qQRl5znB8gEW8SJQ8iifO05IBo9iNbf+eiUor3Kb SbFe7hMe1uN6IWMlaSSpG/QXH26cKEq82Zldj3C6ZvoiDiFLeHLHbQJOj3AAilWLJlBO35z7 kBJ3/PQNXxcAFK3m3td9FpTX01nuMyjSh09i6QGKWFV7J+YDhfQOU+3WEQTuuFm0RQNiUK58 nO+rrXygUN4jea2PWDlpqztzUIlAqSGvRy9jRlDGKHKqBj1vkG2CWe44R4DwuASUGvJ6DDJm BkVoyNynSUC58iVmh20BlPfC6J65OHfJNwIoAGX7iTzCwwOUWSkOp4uNvQ0yApRZm/hez2Gk CFB+9x7xvZ4DVABKohxfm2S03XUyApTcS3Mn7QMUJ4bMLQZAya1hJ+0DFCeGzC0GQMmtYSft AxQnhswtBkDJrWEn7QMUJ4bMLQZAya1hJ+0DFCeGzC1GHaDgc7ZmjvA5W7MK62igDo8ieRWy DnurpQQoatXVdSFAwWsGIuKrAaVl0w/1OS9bTftrC6DMVjbkvGxAcdhWHaAMX6jpyEoKCxMb XjzegOKwrUdHlIvdmbTKLUg8ZiyuPoiwEvIu+TNr3d+jX7z+lv0uGBS+EMw9DEJEO/HTbmtv SE1tgpBULWO8Hxvj/XagaFBiMZ1DYR1OF1dNiWfik3jPskHhph/k9ez4pHPTjgNQBhGi19h1 of6WtFcs26M3oUuu7c91hXuUSbBYd46r+DSX6TiroFR1uvwZWv3/qa3oZbnVItFhF6BMNVvk Sz1BjOj0lFgd63iluCe4E1CieIDlmG49JD5ilEQ7szvXjRqfbuQanTjyKD7NfBep/gFC8SuV HCdmVQAAAABJRU5ErkJggg==</item> <item item-id="51">iVBORw0KGgoAAAANSUhEUgAAAUkAAABwCAIAAAAc6hUuAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAGDUSURBVHhe7b1nWFXJti58f5zn2efc vU/37mAnc86iYhbEiJgVA4qKigoYUUFEEAQEBATJOeecc84555xzDgrmvt87V+l0NXGR3LYf 80f3YlqzqsaoGnlUjf/z/6aeKQxMYeBbxMD/+RaBmoJpCgNTGPh/U7Q9tQmmMPBtYmCKtr/N dZ2CagoDU7Q9tQemMPARA39+er4NjIyCtgH4mzdvGhoa6urqent78SdBAX68f/+us7Pz9evX 3wZSCBQfPnwAUDU1NW3t7e/evSfwfvjwvrurq7q6urW19e3btzQSvg3AAQ6g7u7uBtQA8N27 d2S342VPT09tbW1zczN5+W3AS0MBiF69elVdVZWdk/P69ZtvAzpWaRvAv379KjDAV0RE+Nz5 c4YmZtgBhLB7X76IDA+VkZXJLyz+NpBCCLu6skJBXu7s2bO3Re/m5Oa/f/8ehF1UmP9EQY6P j09E5HpoeATY2be00QFgdXWllqb6+fPnb966nZCU8haU/OFDfV2tvq7OxYsXrly9GhufCPL+ Zhb6o3z68KG1uVlPR0vo+o3unhffBnSjoO3c7EwnJ6ekpEQFeVm2NWuTUtIJDdTX1znZ2yxf sTwmIfnbQAqg6OnudnN1jYiM8vJ05969S0xCqrfvVVtrs4mRoYmpmbOz04ljR7j37c/Kzv2W aPtFT09QYEBQcHBoSMixwwevCF1ram5+++ZNaEiQr59/VGTE6VPH+fjP1Tc2fzMLTeuePd1d so8eikk8fPv2G+Fco6BtbPe+vlfg4gW52YcOHIxNSCJyG091VTnbqhXfEm2/fvWqu6cHnAta yVNFBbH7D1+87G1qbMjPz3/1+jVkeFxMJCfnNg8vX7T5ZjY6rAxADbH87u1bB1srgQuX6hua iG2Cd/gR6Otx6ChvbV3DtwEy2b2Auq+vr6K8VOD8OQ9v/y/ArBlm7HsofUAp9fvdu8lQAFml bZq9vXn9OjwkWFlFtbHpM/Ouralas5rtW6LtTyb3e4Cm+lQ5PCIKi4GHNkGzM9P5+fnDI2Ow ON/GRmc2Pjs72o0N9O0dXcDImCRbt7GhnqWNPf3ybw04Iarq6qqkpKS42FhDPV3e4ydy8wq/ AFCg5MKCfGMjo/LKakwjLzfL2tr21UTb+aOjbcwJ6tmpE8cvXb5KpkUQAQJYOxraJu4ZIgq+ ACrHPERVZbmCnMzu3XucXN3fvHlL9wO55u/nLSf/pKaunhU2T/g0HlYaj3m2E/IhZtjYUK+r /Xz7ju1mltY9L14Q4QadxdTYYOvWrcamFrBIWeRnBOoJmdiEd4Ltl5meZmhoGBUTm52VKXQZ m1qkqbl1wgca2OGbN68L8nN5uHeZWdvDTZuSFH+G/2xH9wTb+aOjbWgv+Xk5Sgryy5YuUdXQ xrTGTNvwuIJfwvv6NW/3lpZm2NsH9+/j4NpRW1dPS7C21hZdHa3wyGgWncbAW25ubklJyVfO y4iRBaEdHhrCd/L4Vk6uxJQ0htr4Z1dnZ1x09OUL59eu2xARHcfKqqENTJicnBxWGn8BimIe AlNqqKt9cF8cugmCPmBn14SvPHuu9bK37wvMBKODvMXv3LwvKQ0/TnVVhb6B0dtP1DRRExgd bZNRYYLKy0idOXeBRsRo5TZ4ube3Nzc3d2Ji4le+3TG9tJQEtlWrktOzyNbvffnSzdU5NDyS xMBG3LhogOgRPM9KSkrgZRO1cpPaD+acm5N17MhhO0cXuMrpsRob6g7u59Y3MmV+OehMKET1 9l6+fPnmzZsvX74cEUuTCg7dOaaBVWOEPD6YGOoKiVyvg0Ph/fuQoIDdu3eFRkRP6m4kJE2G wH+N9LQELl6urqn19/MrKa2YcAywSttEiybTgkZqbKgrJSv/+pOaWlNduYZtVXQ85V1j5enq 6hIUFPz+++/V1dXhxmDlk1G1IUtIfBWj+pCWzPiQqNB4aqrKeXmPF5aU4nd3d1dwYEBAYPCL Fy/RP7SPEXVOdBUQEDBt2rRt27aVlZVN6i6HHoE47ZiHwIdk3+MH7BFxsXtBoeHvGHo1eQmR Lnb3tquHF14Mj1i0T0hImDNnzvr169PT08e2EGNYu+E/6ehoT0xIaGpugfNfUOCsgpIq5BOE 9p3bNw4ePlpSVjFm1I04VfT84kV3cHBw94uXhLZdHGyP8Z5AACIpOeX1m4kPqo+CthPj4z29 vJqamstKS9RUVRDnJG4kTLqspHD50iWhETHYACMCiQapqakcHBw//PDDzp07m5qaWPlkVG2w F5OTk93c3EgQfrQPIGpqqMfnCHG1tbX6eHto6ejCgdzZ2WFuanLh4kUtLW1jY2M1VVVbO0dm O3zQgUBst2/fnjdv3r///W9XV9dJ3eXQgQ0MDMacRNTR3ubj7Z2cktLW1hYeFqKlrVNbW/+q t9fL0yMuPgEvU5ISlZSVK6o+u1qGwi1Y9pMnT1asWPHjjz/q6OhMBgcf5bJSGVb21laP5eRb 2tpB22f5jotcvxUdE+Pu5nZDROicwMXikrIROfUoB/3YHDsKGHC0s5aQlO579YpQTZCfN9f2 Hd6+AV1d3ZPBUz7TNpF11VWVBQWFr1599I4iEa25uamn5wV2pIery5nTpyWlpMwtLOISEnuJ ZfLnn81NjU4OdnynTpmYWjQ2tQw/S4Za8kZZWRkK6p49e/71r3+FhoYOst3//PPlixe5uTm5 uXlw52DP1dfXs54ygZaOjo4PHjxoaWkZajFIaAfWYHNLK60mwaqEKEaEk5Ja9+4KXr6sqaXp 4eEFYxtyPDcn+/atG0hcOXfuHHTsc+cFAoPDRqTVrKwsKCnY6NBTzpw5A0114JSwpWqqq9LS 0+rqG1719UKHBysZwzYKCws7fvz4oEPQvcGkys3Lq62tg0Amm6ynpxss+83bt3CYyclKg3mp qj1zc/eoqKyCS+Xlix45GenzAheUlJ86ODqVlVeMqJADJ4BaTExMQ0Pju+++w5SQydd/YzDc 1JCZYPRV1dXY+gyoJ9ifRKDGQC1NTTaW5qtWrHwoI9feQYX03J0dTp48qayilpOTa6Crqais Qu+EMWB+mE+AjYb6OmND/VWrVsgrqXR0dhK0Z6Ql6xkYtbS2jbiFxjafT7TNoCVXZ8ddO7hm zpmXlZtP1IbYqPBtnJw+gSHE4QlzEeo0iw6kQScEkNLS0iDHkLiqpaUFUQY6efHi84pC93/1 qi8hLlbygcQzDQ0Lc3NjY6N9PHsVnz7r+8RxRgQVM3RwcLh///5QtA1YCvJy74remjN71gNp 2ZcMu6CjvfWe6K1LV0U6OrswT8jbjo4OhPRZVEYGzorYnHJycnAuZGZmQlX56aefUlJSmHc5 dP+6uhojA/379x9YWlpq6+jKSD88dORodl7BiGAObADaPnbs2FC0DajLSoqfyD+eO3eO8LVb rW3tFGF3dyvKPz5x6nR9QyP+RPYhWF6/nGIEPvESZjMru5DBLHqwuM7OzhUVFeDgf/zxh4uL C7NIRD+gaisLMwkJCSsrKyMjQwlx8W3bdxQUlY0INWOSr7GySH8e6sHaMffT3NhoZKC7eNH8 ab/8KiR8DRFNaFuYDyCCpCHyhvwYcfQxNEBWjIqyItzPP/08TVjkenBYBKFtJBHQ3ugxdDvi Jx9pG8Z0ZnqqjY3tNaErv/8xE7RNbe6+PlXlJ9NnzCwprxqxI1YakFV5/vy5ra0tUZthjM2e PRucm6CVMWhvoL8PLy8vYi1QH7q7OqQeiP/y66+unj6s60sj0nZXR7uLs5OxkcGCeXPEHzzq 7evD0FnpqevZ10jJKkxURjF2MCj57t27yM2GdfDw4cN//vOf0tLS9M5DA2S2Sty/d/6iYEVV DQCMCg9ZvmzpidNnW9sp7j7aZxjaBoBdnR0+3l7OTo6LFy64fPUaRdsfPiCLFsGYqyI3u8Zk vwycIYCCafDo0SMqz+fVKyK6obnQHBwzga4n9/iRwMVLaekZWKzkxPjNG9Zt5drZ3tk1Isj4 vLy8XFVV9d4QD/QFRCWY+wFia6srt23ddODwsaraui98EACjFxXk8+zZdejo8fKKKow+IowT 0uAjbVNqQ0NDWWnpiaOHd+/dX1NbBwxCL0VmJcf2Pa9eT8xsMEpBQYGkpGRRURH6h1SEAMfC KyoqEhMRWMjKSN23d89d8QfQVfCmp6vz1nWhJctWlJRVDs9WyTkW6HV4Kisr9fT0hIWFoRmS N1ATsLfoHqCk4KW1henMGTOdXDwwLhyYFiZGf/z+R3AYnKUTwL+JiaWrqwtpTLSe8PBw+JY2 b94MJJDF6+rqeKqksGPnrpCwSDgvgJ+osKBZM2eoPdcdUe8lPYAw4LAgMOKBJbJ3714E22io oWcRYYv5vHz5oqWlNTjAd/asWepasIFfQVn1cndZsXy5kanFiI4DFjcc6Bm5yQAc7AxDx8fH s7GxzZo1q7CwkOAftq6Jod6mzZvcPX2QBgOwE+Ki2Vez3RWXZMVTgE4gtOGUgvNi0AeOElhw zLOFchQTETp39mxFFfU3404pxQSwl7CjaLT3+9HY2MhMwLDmYqPDFy1YAN3zy8TYCOyf5DZj Y6WlJC5aMF9aVoEysN+/9/X2WDB/3kNZhYnSVbDqFhYW8EIRpRHbHSsEB/KuXbuwHfEGxCAt Kb6WfV1kdCzxxFZVlO3fu/v4Kf6eHsq7OMwDXg51dBPj2bBhw4IFC3777Td2dnbyZseOHe7u 7rTFDog6OzpuCF9et3FLdk4e/qytqRY4e3rh4mUNjc0TopqhT+xmWVlZEuClxGZX1+HDh6GW AwPECZ8UH7tq5XKpR/KdXZR1Df6ir/P8t99+T0hJZxHn2MSw/AmMeJYsWQIzZ926deRPeObN zMzofUbpge/eyDy8v3jp8qi4BKw4eNy1q4Kr1rBHx8azom+zQt4gPLBvkDSBEf4LERGR//7v /9bW1iYzKS0q3LSe/Yrw9dbWNjQAf3Fxslu0aKGtgwsrOipBJpUYO/TTD5bXr/q01FV//fW3 +CQqXM8KFMO0QefYS1xcXDTa+/2ARwbUTvfw9u0bXS31BQsX+fgHTRSSWQHhsy8NK6GqJL9o 8dKgkDD8hq4odPni7DnzgsMjGZugJyU50dHZdahO0aatpdna2rq4mKLSgQ8aIAKEvY6ICK2B g0/v378f2x3pQVipyvKSubNnXrspCk8m2iCp28rC9I8/fjc0tXz/4T0Cy5mZGfYO9oOyXsht 8EvsdTzw3EBuX7t2DXRF3kCkM8ttdF5SVLhi6WLRe/fhWenr63W0t1k4f95l4ZuQZpRPsbrK 092tcAhY8DkWLCYq0t3Dc6ijBeBTYGSmpqa07QoMeHp6wn0ICq+qqgKSb98QWr6SLSIqluzX 0uKCQ/v2btjM2d5BGfx9vS/j42KVlJXU1J7FxifAcBiIVSANxENgxAOBycPDAzzTb4jwJB+i z+rKss0b1/Hxn+/qfoFYZlhI4MIF85GqUN/YhK4giTw9PPLyqENvgy4iXM3p6anu7h5wSQy1 yv7+/lhlooFjRIzu4+MDhQUMF+vy9s3rp0/kZsycFRgSTrJiGuvrzp0+uX7T1py8AjRubW2B 4QBXq7mlZQMjm73fQPgE9jx0n4whHrg24B1g+urPupqq00jF2bazk+GRxlbB+sIog4Y8KBSk TVR4qLev/0AFCv8K6GgMD/wBTYpZboOnHz28b9+hIyVl5aTn0tJiHDeqrR88LR9tYA4jfSgw OHQ85uFn2obFv2/PzoNHjiHCAUp2dXE6evjgjl3cZZSF8KaosOCK4MUde/YNhQtsRJwGg8gN Dg0ftA22DnY2Atrt7e10A6wcCADbHUcpgaNgf68ffvzx2XNt5Nbin0qLC0+dODrt199SM7Ox q0qLixCH3MLB2ftqBBthRHsbnTs72MyeM8fG3gm4zs7KeCQtCdXUxMwKq9LR1mZtab5+3Tq/ wJAhtvh7TIaf74TApStDpQFjH8OLhhgvM2mBDqFKzJ07F6gAQ9nEvnoX977CohIsJxRmJHXO mP779dv3KE/Pu3fxsdEPH0qKiYsdPnRw5649EdEUCxieYQ/vS8NMvD1c58+bq29k9u7tu5Li Qm2t51BwlFTUkarQ2/vS2dEOIsjOwXlQ2qaEcGMDtgH/uQvVtXWDzgREBRdmXFwcM03iNDhU qp9//hkOztbmpjOnTixeuqK8ipJsGMjN2XHu7FkXLgsh3xOaXXBQADwy0tJSmzdvVFHTgLtr IG1DywP7uDrEIyQkBPKmvwJ7gX7EvoZNXPIREMtQJZpsrCxWrVoVHh03BId6n5uVefjgvnsS D8dDXaRzRIjhxrv/8BE4C9CCZEcdLQ32deuS0zKG2l04rQDqk3go8/LlIFGV4fcA/a+fabsg N2v+3Lmy8kqI7wcG+FtZWPBw775x+w7iJSCVFy96lBQeD0XbWCGcAIWDd/VadmbaxvvS0lJY v+gBi4SgFGxO5n0DREOXXrNmzaJFi4KCguytzf7940/a+oYI5be1tiJssHHDOs7tu3EuBTYC FEjEKjZv2Tp+2n7z+tW1q5c2bubIzs0vLSmys7d7LCvNvm69j58/FgD6QkpSwo7tXIPSNuaM UJmDnd1+nr3wgTHTNiLAkCdEVMI3/vTpU/gUmFcCsIPgwcvu3LkDf9LCOTN5DhwuLafwkxAX A7L55ZdfHV09IM8QqQoPD8vNywcLSEtO3Ll9m9TjJyPqk8PTNnR+KQmxJUuXZWTlVZaXwXet 81x92fKVdo5O7R0d+NecrIz9+/dZ2zkOStsQJs6O9vz8Z86cE6BpG9gAvPBdgarxGxOA67uf ox7cE2YIHCsXLlzAEAf37V2+YnVtfSP4FzK6EWuENa6hpQuNCZgvKiqEV6+vt/extMRZgUut bX9BINEFILfhqBtKbuM9s9wGXFbmJnPnzfP09S8qKETSEVSqgrzsFSuWD0rb6B+xQHMzU+z/ u/fhAhhXVgl6c3OymzVrtq29U2FREagA/Cs0yH8rB0dSKnVKeuCDiK++rjb0L2SkTgxtB/t5 QTeWlXtiZWnp5OIaEhywds1q0bt3ff0DsFPx6Gtp7OY5MHAqROYY4NiQne1ubm6atvEemiem eOnSJRAwWCkOTkEhh0BjfoqLi8F///GPf8CBHBrk9/133508zQ+9ThtRFC2trZs33hF/8IKR tIjHwdZy60TI7c6Otl3bObl27IbfRVdPLyU19ea1K1u3bdfVM4APDwOVFBXw7N0zKG0DFdFR 4bZ29uJ3RS8I/kVuq6mpbdmyBbEfLOGNGzdsbGyAgX7wQm2eOXPm2rVr01JT9+7imrdgkZGp mZuLs6qq2u2bN1ayrc2C/Q8n2du32MEk3Nj7sufKpQsPZeTHSdsve7pO8h5ZvoLN29fP2MQ4 KSVVUvzO6jVrjU3NYH1QhlhVxYnjvANpm6Fav09JjNfXN9TV1jx34RJN26BbGGIbN26E9QFG JiUlhR8DoY6Njf3999+XLVvm7e0pJHjh119/19U39HB3RXrM40dSy1es8g8OJfb5x/++e2eg raGjb9QvmkVom5WH3qhQSOHEWcm2Bph38/CENwufN9TXrFm9eiBt459gnAcF+Ds5O9+6JjR+ 2obh8/D+3cVLllrZ2AYGBZGzN2DWO3buHEjbBPwAX28LC8t7d0QfSE2Q3M7OSFu/np2bZ7+N nSNoKSkxbh8P9yNZucZm6iwnRjXQfr6b5+BABQmCxd3VOSA4NDcncy8PTz/ahp8Mzh44xs3N zaGYQffGn8wP4tvIbYB3Fz7zyvLy+3dFV65ccfgoL8x+b0/XZUuXOrm40zaPk53VVs5trMht KAgmJiZ/tbs+zx1SUezOTRDYnXv3S0rLu7o6sfwHDx2JiIohIgvmAILqA2kbhF1VWaapqYW8 RYXH0hf/StsQ1LAq4awGPQNYZKr0AxZ/4uWBAwcOHTrk5+cXGujHxcmxfsOGxwqKBfl5J44d hqRqavnLUSSMWF9bDU4RGhE1ojIG1gm9YCA9kA8RX1R4LIM9feOWKDyIVBLRk8d79uz19Q8i yipyh0+ePI4N0E+3AmGXlRYZGRtXVdeYmxhCW2GmbawsDA14TKCzYBEHhRqrDKgPHjzo5OiY FB+zZ+d2dvZ1UtKyZeXl/CeP8ew/WPXpRB2mgSsifL09T53iy8jKGf9NCVhrPW1NDk7Op2rq IC2CiqaGWva1awbQNsOjnJwIpgwLUeKe6Php+/27t/razzdu2qSpo4eLLohVlZ6SBLoYQNtU 5lxGWoqxiWlDQ72U5P0HUrITI7chImAXNTY1IT8JM8D+AHjkfoKhaBvNYJ0iz8TA0AhYy85M 28PN7RcQRLujsUXAwuEzRDOIMlDaMA9UO3yIVAro8Ai99va+UJR/tHHzlvTMbIIRPCzSNtpj 40L1GsotifcI9mIgaGgMpeR9e3sbcYGQsQalbfwTFGkDfT2IVqidstKS5y9c6nnx+SAEoIMN AkcL+hkeWPwrpgdHBpAM/OB3Rmoy+5rVahqazGESSoy8fhXg521oZAKcjEjbGBejDwU1di4u e2NATbVB5wgWwM9IO36Gou32tlZ7e9uo6Fik0xsb6PKfv1BWXklGwX+xsqBqaBnU1Q7d3cMD DkgZcbtGKDQve1/W1VSwrVxx774k/KNkjWF8IalZU+PZ5k0b4PMrqxgh9jkiTjBDTBt7+yXT JX+D0ja0E1yto6erm5mVg+0hJnrz9j1xxg4Zu2ud0mpfvAAVYHR6XQalbYwO/BsZGhUUFre2 NEmI3xN/INXJSKMaEcZBG4win3yg3MaocHLCXrp2/QbSSO+K3l6wcKHglavRcfFjmw3zV60t zbxHDp2/INjQ2DRa2h7/6IPSNvQrDzdnyBMFBQUlRcXdO7avYV+nb2A4/kxJrDrY1rLlyxEm YZaZeF9SXAR3I/xtQ/muxw8s3cOgtI1xI0KDoXBJPpR+8kSB9+iR1WvYlZRVECof59AgY+RU w9Vi5+RKLzF+UCy+p9vdxQm5AFCdJuP2i0FpG/Y/jD7e4yfl5bHC8pxbN2/dxmXv4NjR0TlO SPt9PihtIx3T2sIMub1ycvLwFHJt40SiHvK4h9LCRpzSeGm7pbkJXgdgAg9yreF0vSgoGBkT O+LAwzfAAqcmJS5dslhJ5Rlz7IdFuT3O0YeS27CBEfdCKjySw+Xl5eHfYlvDrqOnN7bcb+ZJ wsa7cvHctu27cJ8k8y6HwLS0sMgvLIJqSmkXk3zPwVC0nZGaoqSkqKDwBAr/0cOH2FavUXii BKtkPHgmli0M/lWUi4HKce73wPi/IHDeLzD4S9J2SJD/Yzk5rC+oi2Pzpi0cXNa29oiSjgfS gd8OStvARkhQoCLGfvLkkbTUNs6tHNu4DI1NJ5e2iYmvpaG6fRc3TpBjk+HAtp2dXVFxKXGz kW2Xn5u1l2cv7OQxaxFEx4NSl5qSfOfWjVVsq2XlFKpqaol/BYPYWppu3LSlq+fzDcoTi3T0 Rvw0hXk5u3ft9PAJYGjFr4H0wKBg4tIj8ILO5XGsQvAKnLvjgRf9lJeXOdjZrF/Hfujw0bDw KJwTIrILYTbZR9LOru7IycU9Fp6eHpN6KwgGrawoO3rkkLmlNbRrGOfxsTGe3j7QSuhVBirM jA1gicDwHkrzZ2VFAF1VVaWzgz2QvH3HTjhrCG7hu4EDHJntMHky0lPl5OUqq2tY6XBUbTBQ bVXFqpUrg8IiCYvx8/UJj4iEcUtDiojg/bu34ccd5/r2mxjZXYjJIa0INw5iOJzQCAjwCwkN A07o0bs62x8+uC8hJYMssjHvLpbkNkgLx2hUlRWPn+QDPePkQJC/z+bNm6Rk5Hv7Pt+nVVFW ApdPQtK4bjsFeBBWqakpMYwH6U1IGKVoG1kNLS1wihw9xpudg0TlyboLHajEuuJW5lOnTphb 2lDWY3vbRYFz3Ht50jKz6aUCM0PiJFgPfYh9VNuLbgy/QFFhIdzIBN6srGxYpJgDFQjR0YT/ CcEFPKdOnRK7L4k7OsY2CitfIRU0IT4W9wFq6eg14khUS/NDCTEkLKQwLqUgD2jey91V5rEc 8215rHTerw2sm7KyEoTBCdQZmZnQfQA17kK5e0dUTl4BEUQnJ8eU1HTWD/+xPg0YwLjKct++ fbh0BYkluEUHoWzek3x5+UV0J3BzaGs8U9fUGef6DqRtODtwapj3OC+OwYNvlpcWn+M/vXM3 d33TZz3oRU+3no6mtp7BeM7GskTboLeO9va83Fy4YWtqKMcYXErenm7KlML8cbdRTLe3FwGt cR45IIxt0AfHp/Pz8hhRtJrJOMtOlgFDw/KprCjHQAWFhd3dPdj0KcnJT5UUU9Iz6aVCM9za XVHx0aXE+sYalJEPhBf8pbCwABKbfnDicswsnJXpgd4qKysQHM7Ly4MWChGNW8RkHj1Kz/58 7gI7ATQPqMGSWOlzqDZDLTEwn5aSjEyHxKSkhsZG4vAbz0CDfouNCl0J5xGLiotBaZBVYSHB 6hrP8ws+0zZDOcVGqx2PejJwdIbk6C0tLcHuKioqhqaAbMv4uBjJB5J1TDdDw/Kvra0hUm3M 4LNE2wO3Y3tbm6ene0Z2DhT0MY/9d/kQanNGWqqnl3fXmM5U/13AZJ4ntiCoNycnCwHhjq6x 3G8xNqgJzROSngyqHnRWkFXI7YXNNX6f6GihpiRiX19CfJy3j99XcV8akA8xjssiJpaljRYv X6w91LOm5s/hsS827n9wIOw5yG0cTSXG/39wJl9gaGp9mcKfX2BEZu0Pcru1rW0yDn6ORW5/ SeCnxprCwBQGxoaBKdoeG96mvprCwNeOgSna/tpXaGp+UxgYGwamaHtseJv6agoDXzsGpmj7 a1+hqflNYWBsGJii7bHhbeqrKQx87RiYou2vfYWm5jeFgbFhYIq2x4a3qa+mMPC1Y2CKtr/2 FZqa3xQGxoaBKdoeG96mvvr/FwYmKbN9UpE4OtpmXHhaiCJdVHV1plREnL7EQW7cUDGpc/2P dA4wATWqMmRmZXV2fby4l5Fu/bq8vDQjI729vf9lff+ReU7SoIyzDS9x1WFhYREqwJFFZxyn eYVLoHDbMfNlJpM0h/9gt9SpxPa26MhINzf3L1k2YEJAZpW2sZw4AKSjrXny5An2tWuPHj9V WU3dQYvcclwKaWyoh+o/MQnjOt05IfBMbCeAGmctqdqdAgIb1q/bf/BwZnYutd6trWpPlffx 8ODOLXb29T7+geO8DXNipz1RvQH8hvraxzLSx44dxWlnqoQYdVHkh/q6GjXVp6dOnly9evXF y0KMs9zfZs45Ofd2T/SG4FWRyTt6OFHr1a+fUdB2SVFRckoq7nb2cHXGrcORMdTdzlhpXJEV HRm2dMmSb5C2qYN+NUlJyahqEB4ajPLrZla2IOOczHQ7e3tcSZuVmcF3/CjvydM1dX8pUjNJ q/WFu8XVfDlZmdk5uQAftfK2bt2KC1JwFLSwIB9aTFNjo4OtNe4YCI9EbeZv9jggKkAKXb1s bGb5t4NxFLQNNYxcqZuXk4mLprOYyqnVVFWsXrXyG6TtjxUeqQsSUWjl9q2bAcHU/RhQVXDC mTqN+P69i7011849xaUjF6D8wpQ5/uGwm8l9knhwZZqwiAgKEuI3joiRnZCanHj9+jWiy4x/ uK+qB0CE229xbyTqEOLmVlSb/2LTA2JxbBsiE1U6cIYav/GDuSoOizNhlbZJdxgV9z862tsZ GZsy38GAe7bWrGb79mibhhp8DbfqqqlrtLZ3MJ8uBnW7O9tfuiLS0jryJaQsLsnX1ozopSij a+/oRNeFp7Z+Z4edjbWpuQW5MuVrm/aY50N5E/r6cJ8UrigP9Pe/LnL1nMDFybjaaagZ4vw6 COqpsqKEpBQqYeAufRUlRQcn19GeAx0dbaMwkKW5yaaNG9Zv3BQdm0CvKK5PWzsm2kYPuAEX 99qMeSW+wIdYaW9Pd06Ores3bvT09qVNa0y+s6NdRloS1XxInXrWHwL134IkcMWVupoK1pd7 34HsPOrSQorFd3UYGejh0uU93Dxxicmjuh4En0MojUEQsY7eMbfE3HA7up2NlZqaOu6NgoJ2 SeAcbo//kn5iIreDAvxwzynK1+JaGFtrlANxG+1dN6Ojbco//Pp1QmwMigkLXxeld/mYaRvs H5WxUMV2Mq7FGvMC9/uQ0r0/fMjKTOc7yYvaAA1NH4sx4GoeP18va1s7clUji8ORlQsMDMRl /X8LVZbcDRLk57tp43oFZTVC2yRSEB4atGsHl+Sjx4PWIRwKIZA/VlZWXl5eX+GiA66wkCBY H7gbD/w6LzuT99gxN69R1H5ncRsM3wzTKMzP2cvNHRmbiAJVKHeLEpqj3S2jo22yqrgX8vkz FZS5oy9LGxttk02D+htHjx7F1fATgpTJ6wSRMDtrC35GKSzMHJeoJcbHubi6EcObPKyMjma4 z+TmzZuoxUFqaLHy1X+2DSaJ60FQiQUF6+iZ4CVqQj6RlxUVu49bSlmcIb5CrQWUTEZFPpiR XwP4hNtSF6e9fQvrFtebPnwk++JlL3iQlroaz74DcCh8gXkSwUmKYQCZtTWVx48edvP0TUtL iY2NpwOQLOIZzUZJ24yO3719Y6CrpaWHqrofFVHMg7K340cXAwNCUdkHZaJQH8vDw2OS0AdC IvVix/lgtt5eHriXG+VpseqpyUkeHl5Q26hLYFuaGVdEvmNlCKxcVFTUypUr/+u//gs6y6i0 WVb6Z6Y9aHEoPwhnwfhxi233RE7GztGFuX/cc6yrrWVsZsF6CBDwon7Y//7v/7KxseF219HK olFhgMXGQE5FRZmVpRWqNX14+2bPTi5tfSMscVZ62ulTJy8LidR+qmfEYodja4bFCg70xxXg qN+EHlqaGy+cO/NESRVVxFD8YAwr+Jm2ieShLqZ+9ZrGOC2R8MbRzkZMTDwsIiI8LBTFNAAw BQOjSnZKUvzaNWvcvf1Y30boGUXY7927d/Hixf/7f/8vuDiIsB8AZHTsBlwNSQpW4fdoiQEV M11dhywbToaAcoiZ004yGmoI5+BAP3Hx+76+/jEx0aZmpjm5+VDVcAPuoQP79+3fDw8qwrz8 Z89FxbBamx5mto6ODipjff/999BZgIShoIZSA5qhoR7t6qI9atmidmpKSspQJEQgxa6C65v0 T8OOHxDLCH09fiwfExvn5+djZm6Bm70gwG0sLaRlZCIiI4ODglCVrqaOUmRY2dBoBs+zqKgo yqGBvB8/fgzDe1DwsSJYdNSBI6szGSyA3vAV5eXXhK/KKypTZX3evbsscI7v9FnA5ejkfPf2 zdt3xeBIm4z6BwRjZBpIEPLz8Tp56mR4ZDQBFq4csTu3FZ+qdXX3sILbgW0+0zZ6rCgrMzM1 wWWujYyrkjEkfAmuLi6MIo8f0lKS1NXUjIxNwsLC6+rr8YZMDTWl4uPiwPYio6JZZDBkv0ZG Rj569AjXUy9cuJBw8X4l5qgSZdXVgQEB7h4eYeHhKakpLi7OxSWjizaBd9ja2g6FHUDdUF9n Y2OlqaWFq9epugqokNzc5Ovrk5GZDU6Xn5erpampp6cfFBRcWVVNbkpHIURzMzMUrCQPrkBl pVgXmQMuCUbNChT6Q8XP2bNnw5Tqx62oKTXUBwcHIRfKz98/JyfXzdU1JzdvtEwNSEaZLmFh YdzxPgRtUGSTm5OFCmfGJmakegZjG5SivCk2NEg+JjpSReWphaVlZHR0S2sr/hWMAMbIs2eq pqbmEZFRVPlklgNgGA58FtVOUad12rRp27dvxwyZaRu/gfPSkmIfHx9PD0/sqOTkRKQS4Lr0 se3vYb7CWKiOhhL2586c/u233x9KyxaXlEIVxZ22KCCLi0fByIIDA8Ijokl0YJIeYK+utsbK 0hxRZJS4trC2JemP8ODGxcWieAuLfHNI2sb3dTXVBnp6Rw4d/OGnaWmZOSBabCYPF8d5c+eE RFDJCYQgSWBznHCiB5ia2traWGkUdr1+/Tq4OIpgMtdtphInsjMlJR88VXkWFxfv7uYqcI5/ LTt7asbnAgCsTGMY2qaoqK7Wwd5e4OzpGbNmOzi7QlDgCQn037hhg6mFNVZ6AqEmlGOEaJKh IeQVSsNAYUEleuZio2hQU1Up+UBC/okSdnZoSLDgxQvr1m/w9Q9knYRogTA8baPDwoI8bS3N HVycS5evLCgqxYcAX1dLffXqNYkpVHVoIjb7OQvJy9HuBHyFHBhFRcXQ0NCGhoYjR4788MMP qE7D7FED44iLiRIXE9PR009MTLS1sTp29PBWzh3VtSOnBqF/GCBgZKgBPugDA5C5HDra47pe Hy/3VSuWLV220tLatqComF5xsuEZrH68u334XYoBUL5WU0Ptu+/+99Rpfhc3D9RCJ5gnc2Bl kw/a5qPcRi9JCUBLwu0bIvMXLUUBKnSK4gYPJcRnz53f2EKVpB7zGAM/RG/IRUbBbdTuxdJC SsDqRtVSeFnofYnERlTzuCpyvay8glGQKHv3jm1cO/c2tYyuDNUwtA0RkZGelpWd81j6wfyF i5CXAmUEZWs0nqmsWcOOxLvRktPwKCKbD4wsKysLPSNJ+5///CcHBwf+JOhl7La2myJCp86c hQzBZFBfdvvWTRzbdmTn5o92CUaU28BqRFhoUmLC6RPHNm7hRGodPkHU+uzpk5zbd7YMKGo/ zg1ADRcRoaSkhFWGBaSnp/fdd9+hdi8dAcXocA4fPrhfWkYO8grt42Oj2FYu4xe4xEoICihF OQFkVXEP8aCQSE5ODg0F4dpZ6SlsK5dfunq9r+8VtLbRInmcOKG5p52V2e9/TEfl81cMK2z8 3aKHv9jbJcWFWzduuHBZCPXlgan01OQtm9bzCwhOOOvC0kKVRX1sYubV1dWdPn36X//6F7ws +JNiKy+6796+vn7DZlRgJgwsPjZ63do1j58oD68goSWMTDALl08PkiLhlKb/hA4MAmNe4I62 lm2cmw8ePlbfSOk/1ZXlO7dt5eMXqKtvnCgsk+HAxczMzKCtEO0af8Jch+jW1NQkforurk55 WamFixdnMSgZT2tz09JF82/dEYMDj5X1Rs/JyckEWGdn5+fPn4NjogwjfpOX4N/MtePgFo6J DF+9YoW0rDzOQkArCwvyX7p4oZyi6mhNgBGnB/UExV5RDIhgFToFdPJ///vfsMUIsEjSOHZ4 /6EjvKVlFWiAyfh4ui1YuMDC2n7CJ0OviImh7vQZM7z8gkacP+sNsLLQEegt1+8HNie4OXMi Sk9X53n+U6grWFxKAT5Rz1/sbT9vjzmzZ+sboXTga7hMdLQ0pk+foW9sTnOX5qam4pLitrb2 YSK6WCSYCtC+hgq1owHKEd+9exerSwQjWurr60ND4+XlJUmOsZHhy5YuQW1xkqAPw89IX2fZ suUooQS1GQ1QwxXPQLmKN/BCw0V369OzePHiPXv20H+qqKjAnUOjD+3josPnzZsjp/gUPQMu exuL3377DfVDXzH4DtYJdchKiotRkhb/PBS14z2CZJBIQ3mM0aC5uRnWL6CmdRMnJ6effvoJ jiVMCWSWnBC3acO6KyI3Cf/CZEICfKDRGJlZUuWpGSFlDIES31Thh8Gmgh0D5wIBFhwNhXWX L19+4sQJ/CYvwVKBNxp8zFlXS2Pp0uUeXr7w87e1tkpJiE2fPjMoLILQG2qq1DFGRCHoYVRE tMSKAMChQtZogA0Nxx6WnowOcQ1vC2wxvAS7gQnm6+mKiIm+kRnBIVb48SPJ5SvZEpJS8Dmw AW9rSUkxzOBBBSyZMEOLHvJhxhk15+7O68JXlixbUVlTRzY5voSiDnhRFx3bcvjlxiaH+20g KUJigavSW67fD+x8xPZpDoshigry1q5ZJXLzNilsQu2lN2/gc4GUghNkeLQjyaK2DqWFBsn5 /UzbOANw7/b1NWvXxSemoClSNfhPn1q6bEVCUipjjSkHPTbMiRPHhYRFYmLjEQwclMFgdQP9 fKSkH310pA9oRNGPvb2qqipQQO9yaFMotgyiQvkr9CD/6OGs2bMDQ8IJqHB38XDv3MrJlZGd i/2dnJwk9VASlsnAOaAxjHY4n7HPyMPHxwfGQf+JmCozy8RYSvIyixYvCWMceKgoLxW+Irho 8VJvP6qCJzH/xO7dPXnixIWLl4JCQinP7WBggzLhPL91W3So5EQM6u7uDsHFLDbLysp2794N 6qUWu68PkUX8dvXwIVsKLr1LAvyLlixLSknHG6QVONrbCAoKHj129OZt0ZKyioGsDc1AugRY 1MpAMT0BAQH47fCbvARFMctAFJ0/eezQHp79BUUlABYVDvft3QMBUlZOsT9YBKg3Lnz1Knju nXtiWdlD+vNeveq1NDdVf67Z3jG4fgE8q6urg+/QyMc0YBXDjbpu3TrwO1SuvCF8ZeGSZVm5 lHcNT35uzvq1qw8dPY5CrvgcGxKVkS9eELgqLJKakTVQkuMTsEgwLww06KOhoUEbfWRfwQTY vo3jFL8A4SbAJ2qnYrn5TvPxnT4NC3yodEOMnpmeKi4uhg05cDugZxj29Jbr9wObE0FZeu2Q MO7iYAuvqo2DC+GMqHPi6+0lLCzEy3tMSOQafLpDTQMt3ZwdHkhJD8piPtN2a3PjxvVrUMse pk5rS5OhgT7cGEd4T9Y1UCXXykqK9PR13d09nBwdeLh3n+Q7W9/YNChU1VXlZ04d5+bZX1pW Tjcgq0UQClARBYG7mGaKFAft6RETEyNxka6OdhyuWrBwcX5RKYOtvLU0M57204+Xrgi3tnUg XBMbHbVv725lNQ1Wjt0NY2+j8862Fp49O3fzHEDPzU0Njo6O5/j5dnPzkDrYkNhwNSGvGDVc UerxwKEjBcUlA3k549hj9TWhyxs2bQaR9IOawA4eLyUl1c9ljcxTUDuCYZcvX4bMRNbEjNlz klMpSgYLcHN2XDh/3oHDvIi74k1Rfu6TJ4r+/gHwqbKvYRN/ID18/Sp8MrwvjeqzIHfBvHn3 JaVfvOyrrqpUV1fj4tx64/bdji5I6fdZGWnwGPv6+ZuZmHBu3XJT9B7SmwdZ9A8fMtNSduzg unRFqKnlL/YOgR0PzK5Lly5BaDMvOgjg5MmT0NfAfKsqy/fu3rGFYztKiKIN2MpTRYVffp4m JSOHIBC8AL6+3pFRkWGhIVzbtko8fNTV3T9nAV+h1OSzZ88eDvEA/xUVn5VeCDMvd5dFCxcY mloSPRQyUF9X287B0dfP9+rliytWrMwtLB6UgaL0p5ys9Co2tsjY+EElHIsvGYO+FBO9uWDR 4pLyKjKNyvIylacq3t4+zk6OHBybcbyUpEIyP2iGiWVnpB8/eoh7/8GewTI4PtN2Ylz0H7// rqquCWFibmaKZBKwNGSrR0bHgJ2Ul5fXkHyst29dHOw2bd6ax1T0kBa/MJkMDfXVVJQhCmja xlf4HKYmvEf4HPSDEu1gXZDb9IOtDC4OlQxcPD0t9fRJ3lmz5yJo3NjY4O/r/UhKcuasWboG xiTMCNYjfOWiqobmOGmbMuNjIhYvWigt96SqsgLRvrj4OHa2FYJXhZNT02DiYglz8/IJxqMj Qrm4tiG3oN9i409UPrS2slR/praNaztN23hfXV0NPzD8vYAatSnl5eUZSvvnBwYIQoA4MPvH H3+g3JyEmOhvv//hFxAM9hcaGiIn+2jWzD+eqmvhc0wA0TgSCsJ8dJ6r7dqzlxyhH+oZkbYx Q1srs9lz5lra2BcV5GPRXVycli1dqq2rl5aeATFeWlKCYproB7oSCtbu2r13oC6GTpB1jTjZ HdFbEDI0beM9HFfIJoZ+C4B1dXURIAAvYwYfGhY0OLA2lCJOjI/dt2fnavb1OXn5dXW1rs5O d0VvzZ07380T+Z4fgAGSfw7YlRUeP5ACbY8x6kujC65ieRmp1WvXofZ1SEhIb+8rhJSzs3OI DowC7BvXs9s7e/RbboINZDGhwimqzY+ftkuLC3fv2nHkOB8YcUZGJlTR8rIyHIkn1Otkb7WV cxs8qf1WGf9UV1ttaWEueuvGgSO8I9B2aKAfQo7nzl949kw9KTk1MixkNdvK6zdvxSYk0kYM Qa6ft+fZs+f7KZ8UB6LOVHggMBjg69mPtuEURefgp+DfsP0gorHq/R6ICOzyefPmmZub62g+ mzVz1uEjxyCpLCytoTazrV4bEU2dGMcDkrsmfEVNQ4sV2r527RrM2kEJALAEB/ouWrTw5Gl+ LW3tiKjokqL8eXNm49xPXHwiiqoTu43x7Z/Iz4HDD9pgv8UGV4Iq6+7h5e/rxbV9J03b2I4O Dg6zZs2CVgxDEQ4tzATuQ2aoLSwssOnh7YPseq6h7mhnvXDBPKg8CI+ZmZurKD2ZPmN6XFIa EX1U7J3B2vB/a3NjwSvCbe2dw9M2whBQkcBcBgof0o+BzvMZM2cIX7uho6OblZPj7GCzaNEi KRkZBEoI7AwxC6fDW3MTQ5HrN+Fq6Sc9UDjZwd42NCISwQVm2gZrwHL/8ssv8BRCWqKEOGKc /VYc4EPMzpkzZ9WqVc7OjvKy0jBJzgtcUHgC55/L7etCWzm35+QXEiMIM8E0EAqWkpSMiRsc IhalJWmGkIToDZH1GzZpamknJlHpPfRyM4Rn6X4e7vjktH6ow57JyUo3NTPHEbHDhw6On7bT U5O2bN548sw5xINBU4SkyaD4HejryXeGH1ZJP9DgDvP28vQPCNTTeQ6zZQTaBht4LCvzXFMr PTMTzLWstOSZmhoIlfkzDIZcJTNcs6Jv1C8sAa9mRlqKnb0DLLtgf+9+tJ2UlAR6ho8aEgl+ QhhFWNd+D0jagPHASoQU1dHWkpKW9vbxbWpsOn3i6P6DR6oYDo/R0jZYcmFh4aCrTpjfM9wh oqKKaycQBYHeoaig4OLm1vHXTG+0dHa0lZVT6HeZFLUJKspNTUwrq2qiI0KYaZuKr2RlwV0E PQVWLpIxQNhDQY1MNSSroKC3uakxfEtu7h4o0Xz31o3lq1Z3dP1FQGHEV729khJi7p4+dM7v oNChJSICcNjCLTQUbeflZElLSxkYGhcWF0McZWWmwUaIiIyGM5XuE/10drarqarYOjgxewoZ StwbJLfYOzojJIsILTNtQ9eDqoLoPcwQMHTIZyhug4IPvm9sbAwbraykWEnxiZycfEhYWGVF 2W5Kyf/Mv7DB8vNzHz6Q2LBxM1yq4LyjouSBjeHggEoI4QF4/yIkGAIMJ0Yg2JBVzuBuHx/8 hhNET0+3pLQ8OTFhQmgb6WH6IFAtHdRX7+dEePvmtYbqU6T0Mi8HYcoZqclW1jbQ4+DnH5m2 8QGMXirtjsGtsTYvX7zs5yrE+6KCAg0NdcDGHBjD+8aGeih1ySlpOM3r4+68Yzc3lCviAyCa PEIg6A2dkwzHYR40RjMobHALoXF9TeXKZUsfSD+mo1+jktvobagICuGRUPZw1AGKHxYRL4AE OgGTLCmaNdXXy8vJkbA/8y7pe/lCX1cnLiEJp9lDAn05OLchaEeSOggOQdUkm3VEqAlysOHw CX6XFBXApyBwWahftiNkF6JWGpraI56aJtARZPabNg0XMAMkk9gEWSYgAw5z5vbwYCMAiSxj eFiYeQTawPOESGZefgGsElVlRcErV8F/Cbbxr4ACi07wP/yKk8seyFoA//CwpKckLFqwQNfA hHaXokNMNT0t5diRg9z79iP5d5y0jQ4xLkRXvyQcarkb6nV1dGLiE/vhrfdFj72NTVBwKGYS ExWxfx9PYGg4ZjgoelmZHlkjmCovGUyEuR+8z83OePJECQTcj780NzdqqKvn5hciXKKnrbHv 4BEEcQZuclbPijDG/dBYX2dpYZFXWEyCEPQDvwv00gP7eA4dOoxDXdAxpk375cgx3rKKjwEP VuDs14Z0jhm7OdnPnDkrICSc3lhtLS1wXLGok49haGY+DdDgcbYwN8vLKyQEwPwUwdG6fTtS rAA1x9YtP/70M99pfujz44nHEqh9vT1WrVphbm1Hryt+YBfm5WTb2Ng2MMis324YD6RDSX74 /5EBamVljXzbfrBDkHq6uRDw8axYvnz2nDlXhK/BRB/zTMgQ4F9az54ieJGSkd2PteFf01OS cPgxODRizKMM9SGhNOjqXp5UuitJ5md+YBsLXhSAdwDLDefLr7/+sn3HTvhHxrPcAydDbYB3 78A3oebAydVv1+FPfx/P3Xv2YA5Hjx5hY1v162+/X7t5C0l1/bpimbapm8Oq3dxc0zKysMPA XbG9QOHIyG1ubgGjhUMFgWWkE0IHVlFSWLNug72D4/CO3OHXhugR2MqXLpz9ffoMyEY6ZoZr QESuXobbj/XjR2PbB9jZcObBsMGVaZBCgBrA4gcME0SV8APZJsi1IlA/V1dduWq1nYPTqFKs B3I08PDiosJ7ojdnzJjp5OpBq4vYQHjv6uaGlDUIQwTzcDPhoMr22IAd+BV2GHLLnRwdyYg4 OADHAaaBoWF4YxsgTxkeUIAfEBCA4xb7Dxz0DwweNB7D4pTQOQz49LRkHu5dSINFoITEzAi/ I2yuvLT4mggVBmOxT9abof+XL18E+PuFhoVDnmO/wZoA/qHXIEkWm+1Fd3dKcjJZbn0d7c2b Nmpo6VTX1k7sKgDSqooKRExzcvKIwgu0QwWGQkfR2rt3CAmTXQcj967ozU1bOMIjIulLeGl4 WaJtTB3ZWpIS4mfOnoNHBCbZAwmJkLAoIMLK3PTa9RsFhZ95BhAU8ld7m3XkMrcEhCXFRY72 9mJid4VFrsHyb2PcFozJ4MaZ8/ynqehI1+Te5tPc2KDwWJaf/yyMQACOMx4eXt4wFpztbYWE r8HjSC8qoI6JDGW2t8cGNSRHZQU89s5IKRcSEraytm3v7CRQF+bnXrl86dLlK0pKWAFlTCmR aQJjG26Yr4D/3OzM69eEL18RYqy5EmJIyWnpuIZFQ01VXEKyvuGzfAYZaP3V3h7bfMAus7Mz LS3Nb968gWSB8MioHkY6R31tDfxwOMaM0IObi7O5hdWg0bixDUp/Bc+5mYkhlDDpR4+w3Ijm GJqYgshxDabg5ctBTJojljs1KXH89vagEwY/vSt6+7yAAFyqwDuiwjgchl2no/X8zl0xnJWi VTmskamR3sj29jB4gcskPi4akfpr16/Dy43nnrh4cWn5yxcvTAz1uLl3u3p4059jYDgSn6nj MFn/oNyoUI9+wC8RAoVDCA9MC+SNoAcsf0Jc7GNZWRXVZ3l5BROrDvWbITY3Mhng3yZQSz6U SkhOBSu1sTSDUmRpg0yMj2e2MVtkFz1VUWHe8aOClzRGP7DPaajxg+QzQIRCS8dMkI5OJqP8 VJXcEjGGUVj55NWrvkB/X1HR2zdu3CAjysrJIw8Xzg4lBfnde/Ymp2bQ/VBBvkB/SyvrcYam iPHJ0AuoB4obWd/qqgoJcTEwOzgdQ8PDW9om+IADAaSqokxBQQ6XrhB48UDzhzkdGOB7nPeY lKw883KXl5VqaWniiCQryBxVm4iwECSJ0bvusZwCTigic0lV+cnRY7we3n60RAFyIsPDtLR1 B03EZkluDzozYpwg09DD3Q1us1HN/m/dmNLcXvTghFZCYhKskr81LGOYPOwUxIHt7WwRgx3D 52P7hLHZ3r97T/nbJo+dDbXPoZXgbIWHl8/E6t6jQgWgxq2I/n4+GdnUCQtWvh0XbUOEFhdT l5bjwhdWBvs22gCzSE1NTEqGhcMilr8NwAkUuIojF4dvs7JZSS74BgAHPSO1OzomBtkE/8Hl JtfCp6SmQkSzOI1x0TZUApJexuJg38BKE7UZ2grrKP42oKahgI0AVXk8gZ+/F0KIg20M15VN LJhgMV3d1GVerNPa2Gl7Yqc+1dsUBqYwMLEYmKLticXnVG9TGPhaMDBF21/LSkzNYwoDE4uB KdqeWHxO9TaFga8FA1O0/bWsxNQ8pjAwsRiYou2JxedUb1MY+FowMEXbX8tKTM1jCgMTi4Ep 2p5YfE71NoWBrwUDU7T9tazE1DymMDCxGBgFbVM5ve/fIyepu7uHOT+GHHDFCYeh7q+d2Bl/ yd5IGjPuryH3JZCUIJJIT16yXv/sS057QsYCmCTvEPcQkLpcBHa8xBkh6uVocqQmZEpfshOA ia2OO0lxlfWXHHcCx2KVtrGoOA2GWy9QzOmxnJyfXyCp78Og6r683BwLC/PyyuoJnNnX0BW2 L+7xwZWv0lLSTs6uuKMbswK152RnaT7XwH1ghkbGE16i4GsAHMuKvPHUlGRNzecyMjIBQSG4 mobsgcyMNG0trUePZFAFDeUKvobZTsYccN4zNDgQ50yLRll/bjImM7Y+R0HbJSVF5C47EeGr KN6TnUOd/YIEw+0Ftlbma9eujU1MGdskvtqvWltbUAbQ0spSRlpq46ZNHl5+mGp3V7vcYxkV VVXUKtuwfp3kI9k3b1iqzvvVgjlwYoxj5OW4Y8fKyvLmdZFde7ipKzGp28IaTUyMsQdwq+lW Dk7cOvQ3AmpUU8Xt/56ujrv37gfvHtWHX0/jUdA2bthuaGjEyZDkxHhOTo7wqFhC23iDYl0r VyyLSRhd/e2vBwtDzQRX8+NKbSjeuOLkAA+32nMdaCoFednRcQm4rgyHjNWUFXAJbiULlei+ fmCZZwjaBnQ1jMJduLltO9c2ZzcP0DZO0+NoJ9TUyvISvLR1HLL48d8L3oGzff26TxEVMGTk +91D+DeCi1XaJiBhdXHWDLSNsiHVTPeq1tZUrlnN9u3RNgEZ/At1uURv3UxJy8QLRoGbj9f9 RQT7b+HkqG+c+AqyX8keggGC+gT3xO7hKg5mk7u0uAD6agmj/Mg38wBA1MEuKy1FIcrYmGjc YRwaGftlzmxTRtDr16gEHhsbh0uUMCgKZqdnZDDXwBktnkdH2xgJ1Ynv3L718JEs87UqtTVV a8dE24Dhy+ButHih2wNkYPmJnOzlqyKoQUefsCNsztzY4OGjx+8Gq8Y01IhfP8j0zHEhbUF+ 7u2b1x9Ky9TVNxDY4VMsKMgTv3fnrvgD1Jxh/cgh4ZJf7XJjYig0hbI5KHseFRV5X+zO2nXr Wzu+0BF9cpI0wNd72zau8KiY9+/eujo7iFy/hYL2Y966o6NtLHZcTPQNEWGUUzGzsqUrjI2N tgEPrs7G/fhf7XqTrYzCVE8UHq9YsfyRrDy5sJpsU9yqo6Agn19QzNItGJ+WCBcGkfoqY16z L/bhq77e1OREVK5AbQBD448l+KC2pKWmPLgvvmL5CnVNbRQhZHE+wBgpVEjfasjih1+gGRa0 q6vDUF9XSUUVV25Aej+UEBO4dHXCK9gOBQvZVG0tTaeOHzUwtQSusrPSLSytBi0qwCJCRkfb GB7kXV1RLnTl4vlLl3v7qHKTeMZG2yAb3EePG/aYy9+xOO8v1oySz4y7JpXkZXn27S8pqyTL AFPc0cE+LCJytJE/XJGJwo640491iffFgO03EGYIxzgqIohcFbx8VRhlydCA8fItqpeJ3bl5 6MgxSDYWp4flhhMO9VVwEdrXBjtoKTY64tx5gdT0TPwuKy3iO3VSz8iMRdAmqtnrvj6Upn74 CBW1eiLCw1EZfvjyEsOPyyptfxJW1P9xGb25icEdMQnUASe94+LRNWyrouOTWAcSGERlNlTP RQXD9HSquh3r37LYkqE2Uzdssdh+YDMinwnsMZFhly5eqqym7ovu6Gj39vaMiokFV8KWJXf3 jzgKOkFLFB6aPn06ygkNVcN4xH5YaTBO2GndhFCynbXFg4dS5FIhGiGo6Cxw8VLngJp7g04P H9bU1OAy82XLlkVHR7OCLlbAHE8bIqjy8/JxFTT0YRXlJ6hz3tbejnuptZ8/28rBkZSaPp7+ WfiWQiaERE5uLjYG2kOKqCk/uSJyPTEpKSY2Dm688dAF67T9AZdjp6am4XKZ1uZmjWdqvoFB 1AoxdgEuiISfPCImnuyJEaFioPUN9jeUPRSXx32xk7HRQdi4xnmogkEjThINUM8lITERdyej 3Ie9rbWeviHYGTI3oLw9kpH18vbGHdEe7u4oNkDfgDlMt0AXShED5H/9618iIiK4dJoVXLEy z4FtQJC+vr7MJWlH1Q/U5orystS0NFwhDN+4nq62q7sn+kStz6RkXBTXDcFiYqSPIoEsChbA jlpRCxYsAOy4mpe+an5Us5rYxnCX4IZD1AwqKSsHgclISaLGI2qkBAcFwm96/CQfruKf2BH7 9YbVh9Xj7uKkpauHujT4V9xma6SvffDwUVSDBpLHuT0+0zZDIL9HIg4iH7Q1CBGNDCRS9cbN xfHyZUEURkPpPF//AFTMouaKYlEdHbjs9uDBA7YOzjD9WZkQ2mDbYY2RF/Hzzz/v2rULZcQH Qo5BkQSHSnGocwDlsKurk7lw8Yh4BxS4hhaVNIenN9R/rayqQjEw0oxKxuqBWU2JYlRdunjh 4hNFJZSz8vT0qq1tAL9AxUm+kydP8fGh+u+FCxdQjTwlLYOVC0+xoXHXNEAGeaPkPQplDcQV td6v+nBFeW1tHdAOPoJrjMcg5SAHjh8/jmoQQ8JO/P9Y7praj4yVUc6CLDfADPD1uiR46Zm6 hpOTc0BgYEtrGz6IigjFvdmqqs8cHBy9fbxb29pZXG4sHO5ClpSURGW/LVu2DMp00BW13OXl jY2krgM2fPdkWLwAHPjB7b8nTxy7efsu6hxhabw8XE+dOiX/RCk8PNLEyED07j3mW/dH3Gyj bYA54KZmOxurXbt2aunqI6SKHhCVwDSeaWiiBhAriB1+0M+0DTJOSogTOH9u774DpaVUmWL0 XpCfc01EODgsEjse1TzS0sDK06qqq5GU9nFsBu9BUVW4xLBLgDJW5oTeoJjhKn94Vjg4OFC9 ERTYbweDreblZisrKz5TV0ctSBR2pKoFhkawbt+CtoWEhKytrYdAAaWxFxfmi90V3buXJzA4 nDRDesb9e3etbe17+14jOSkjPT0lJbWktBRFw4hG2tLSDGChDpCnrKycFd2JQmZBgbCwML4F x4G2gmvl++EKaKmrqdF4pqqs/FRP3wCFHcXv3bWxdWRFKegHIxbi4MGDUFuGWn7kZqD4zqUL 50+cOJWcRt00jsmgvMGtmzcCQ8KAGdxDnpYKRS0NEX5y8SOers7OVKAjNRVFl1E/hJW1ZmzZ D2Bkd+/eRdVe1LlBlXVUgO43MYxYWlIk91gWZWR19fRRy+XmjRt+QSGTcf880qZtrS03b9zw z3/+k5Nru7GZFSmVk5ubU1BY+KrvFapElVdUTGrVmqaGOtRgRtnWH374kffEqYhP2SJIl+pX Z3K0XINu/5G2gX3cs6+hrnFZ8MIPP/2cnpmNZcPy62pp/Pbb79kDSm2PeTzyIfgxhLafnx/I D+U7gWLUcEVZFrJX8F/wUX8fL+xOR2d3SFQUSdm5jYN93Ya4hGTWhdjwtM1wmRQj9eq+2N3f fvvN1IJiAXgZFuQ/b958cyubCZQYlETq6UE9WhcXF8zK399/7ty5ixcvhkymQUbRxuioiBO8 xzR19bGrUHrt5jXh7//9A0KsLFg5/RdkGNrGiJQ6mpZiaWklKHBu3oKFKCqO7yEqoRAuX7Ey NCxyAmFHz3CeiYuLkzrkhoaGP/300+HDhyHJyaQxH9SX9/Jw27ePBxfro01pUcGxI4cWLFyc lpnLCvtAV6iRih016KOiohIbG8ssErDKyKgVEhRgX7cRO4rOlh/nrh7V55hDU2P9+rWrTvOf R9Uh1iUW66N8pm0UUi8pKT5/5hSKHldUUl7chvpaAf7T6zZueflJX2W932FaoueUlBRwceIv LSsrY2NjQ9lnOJBJdAT/jYkK38bJ8URZtZehCLS1NG9Zv/b4qTM1tR/pf9D+GQrtK3QLUxYP mAVqX6MELPkTD+JPTObGezSAg+f+vdtLli6PT0LCLKWUSorfWbdhU1xiMiu7ikWEUKwzNxf5 59BT8BuS8OTJk//4xz88PT3pNBiUy+U9evj6zduNzc0Yur21WfDCufkLl7S0UZWSRnzwCSpy 0JACLm5ubvRPv4Grn2wgtIQPqaa6GgHIk8cOcX6qGQ6ZfJbvBM+Bw7A/Jwp2oulERkYCdkwA f0J0b926debMmbAXCJsGo4kMD9m9a5fcE2WiINRUle/czrVrz76elyypgaBtSAiqkNJgD1hq P9rGoCjGvGbVirPnL9U3NE0UsFBmaWwP/IGTRf34S3x0+MwZM56qqeOm94maA/M+YbK3P1C1 flatWCYqJtHRCTvnfURoMIrj3ror3q+W4oj7bPgGkA+qqqpwpJGlhYRBlWa4WFCqGrsTQCIJ 7OL5s2AxZWAxjL2Yn5M5f948GbkncGUNgwX8U0xMzO3bty8zHtjDYBmcnJzkTzzQ6qFM0uIC 0qmhrmYHF8eBQ8faGVkKzQ11a9lWnuA7W1ffNE4wmT8HjIBXX18f0ptoJbq6uj/88MPZs2ch uhky87Ws1IN1GzaGhlNBNbRBBaK9u3ce5zvLiiWPHsAjoOhC5yeQgqnNmDFj3759NOwIPqH4 OQ07NUR+zpLFC2/dEe9+8RJozkxPmT9v7r37kh2MIzET8mAU7GltbW1nZ2dybgxLDKv7u+++ Q+yTiG5Uibx6+eIe7n1ZOXnYEngSYqPZVq2UklVgccdTcvg1JPGQT78qvBg0NTHu119/VdPQ nsCUUjgvaWwP/AEWg6xtGquYkrqK4qJFSwKCQieWvughPtM2EGRtbjxn7lxHF3cYeCjp9lBC fPr0GSglSZg90slR/z00NAwelCFn8+efsFtgXME6HUq0IqEPbhUaTmxKFGGfN2/ehg0bINYQ BvDz9ly0cKGiijqRaZiYlobK3HkLXNy9iFRHre/SsvI3b/qnf+BfIRLRG7CMB3sdsuvOnTvk TzxwaxNaIg9cDPAYzZs797m2AfGvWJgaTps2TUlVgzARuHMQZvQLCKitG7w8PcEM9ihMUJS2 HGovwnUELxqUUlpKQ3ytW7du/vz5RHwhPXv50sUocEu5rCif1ls3J4cF8+drauuTIfr6XqYk J3p6eeXmFSCde+BA6ATGP7R9Aimc0uzs7EpKSjTs4Hqgq897C9aQsf70P/7w8qPiHfAsPJaW /OOPGdZ2TtBR8QYkB49xcHAIwgRDwYX3qGiLUMJQByHRICMjA0XzEO8krBxvIEVhBEF6Q5fB n+EhgYsWLlBQVCEeDRDpczWVmbNm+QeHEZ5VVVnh4+sTF48c/heDzgQvCVMY5mH+EHvsmcqT 2XPnRcUm4BP8E7hCVmamj7d3JqN8+lB8Df9UmJ+HqqaD2iyAkcb2wB8JCQm0GYL+gfAjB3j2 8BysqKqBAMM0EHuLjY3Gh1U1tUPRF5lqcnISinKPyHw/03ZfXy/v4QO7uHlwqA2iFa7vo4cO bubgRJ0xyHCYpk+fKgkLXd28adOlK8JV1bUDsczYgr162ppbODjLKgcpFkVElrq6uq2tLW02 U9KyuVlQUBDuJQMDA8AsKy05Y+Zs4J1B2O/LSgrZVi4jqiMmFhcTdYBnr9Qj2RErOQ5vbzNI t1PqgfjiJcuycwuwpZIS4m9eF54zd15sAqWQd7S3aj5XhzduOxf0Qx7YKYNiE25tZwe7rVu3 JKYMHqUHpPAsyMvLw8tA94AVgiD9n//5Hxii8P+7OdqgdreBiTnSvBikXsp34tjc+YsSklIx E9Tf0tXWghd3966d69av19U3Qin24Zd2RF8ajL3z/Kc2bOZoamnp63sRGhJ06vix9Rs3o7g6 xSIrKxTk5RAW2bRpI//5i62MCqr9HjTr6e5C+c6NWzhbWgffapgG0pNMTU1J/JY82OJwr/z4 449aWlrIAJN9eH/e/IXefoFIcwQlw8O3jWPLqrXr6xqaQIQIUz2SlhIQOL9+/XpZecVB/UzQ 9qGR8Q7xYCy4OZiDrPV1NQf3cR84cqyllWLH2Cc+3h63bt5EQb+ly5Z7+QYOJG8iVHKyMg4d 2KeqoTVOfwTF8lISoSU9fvK0j8GpsQf0dbVR3w9LvH3n7py8gkERDvJBWsHGjRujYuNHQdtl JUWLFy4QfyDV3tGZnJRoZGh4cP8+QaFrJaVliD8V5OcXF5dgVVydHDg5t+FwXz/axp/ACMp9 ily9At2Spm3CaWDaMeIZH+ArhukFXzHzzPChlZXVL7/8gmBYTXXVretCs+fOJxlCtbU1hvo6 v/36i9C1W6gRicVGiFX4iqDY/Qfjp22AfJCH+/gpfkhLHEFHLjE/34ntu7jLyiswZ9SOTE3L QNJfTGT4ypXLQyJiBkU3wv63rl9nW72ambYxc4AM8x4/oIdLSEhAPjO7fPEeohtq+ebNm9PT 0rTVn0775VdbRxfsbygL5qZGq1Yu33fwKLK40TI/L8fD07Oqpgalp29dF+HauWcoRkPPcHja xqKkJMWtW7v63gNpTA/LjTjFnt07zl+8jCNAVMY4lKuCAvyTl7sztnvuYM5UrEUiAivn+NnY NzDTNj5H2Wqy3HCmQPfOzs6mWTkR3QgBQC2HzxwRr6uXzi9ZuiIsMgb4QQ6cmorS3DmzBIVv IJMCoiIzI6O6pgaYRFLH4SO8zCn9zIwS6PUZ4oEuA4lKIx+jx0VHLFo4X0lVHecasb4vX/ZA lYB6gtHPnDouKvaATrikh8BXiBMZ6OmsY1+r/ExjnLQNbmKkpz1j5syAkHAINtgFzc3IpEjC rSfZ6ak4OGxj7zxwswEEVK1+JPVgyZKlkTGjoe2I4IBfpk17qvosKDDA1s4OFcYxhvj9B0HB oVgYkuCFB3wUeReFxaX9aBv/hDMVcGlYmptu2rKVpm28B+Jg+sLaBMGgAQwPZFwyOxsQVEcb 7HLwcj8/30cPJX795Vc9A+OMjHRLSwvVp4rTp/9hZmlLuCkuPJGSvH//wcPx03ZCXMzyJYvu STyMjoq0sbVDqfId2ziwv8MjIrDSBGSAWVFWfIafP6/gc41xgndK8nd3mpmZGBgYgisx0zYs jnPnqFrlAA3K8NWrV2Es9POvwJO3Y8eO77//3sjI0M7S5PvvvxN/8DAjM9Pa0vKZmuo69jVS MvLYeZgDvIO4FgJzgavPw815x649xaVl45Hb0IZcnexnTP9D28AEBUkRXwwODFi2ZJGYxMP4 +ETsdhhlDNg/ZGemnuI7Xdc4iPehrqba1NREVeXp1m07aNoGTpBlCFEJWQ3yRl6AtLQ0SL0f 7FDU16xZg9hngL+/9AOx33+fjtR0hBuNjQxlZR4tWbLYxNya4J/8F8Tg7ur88KEUdNFBFcYR FXL6KxhipoZ6MLadXNwDAwOROgGaIQY5dDdpSXFTK5Re7m/uoUFocJCRsdFpvhMqGprjpO2u jvab164uX7k6JDQ0IjIK2RTonziSO1qbgD147weuL7QkezsbU1NjuJBGR9sxEaHff/e/a9au U32mXlNbFx4atHjRgouXhVBhmOCFKLFQDu0cnPqQDcc0OGOXd7s4OUbHxMJ82rz1L7SNCDOM WPiNIMrg7OHi4jpx4gQcxcwPgiJLliwBxpHagejX6lUr/5g+/TT/ucCgYKUnj+cvWJidm0+m AS1O+qHEfUmWaFtUVBROrEHJAL3hsOrqVcsRBJKUlikqKcnOzFi/lm3/oSNISCIhZYba2W1h ZmJiZgEp0q8fLEaAj6eru1d8bAw39x5m2obpC7l06NAh6CmACPrkQJDxBkksCAiB8nEkY9MG 9mm/TNuzZ6+Dk4uDrfXKVSvtnV1JeObTQ7mUXZ0db9wSbWpuGZG2kdwKtjJoMypHws1lzswZ bGvYn2vrQFbHRYXPmjnjstC1ohLqLAeBHZJKXU3F3ctnYIAdexEh4rDwKDcXJ87tu5hpG855 wA71EklH58+fh13db63x55EjR7Dc2BVwQ4QGBaxYthSm/pGjvEHBIWpPFdnXb4hmWMI0D8VF EWAioeFRmMlA2h5RO/2rkvhWT/v5tJ9/viN+Pz0ziy5aCIhSkxLExSUamqg4Rb8+K8pLtLR1 sJqXL54fP20jd0D4yqXZc+ZqaGpXVlUTEYKnr7cXS6+powdq7zcBmCtQN5B2kZaSCJEwOtqm 7g/KzS0vryAXgyHDFpoMokbET4s3mJCZiRH7mtVbObmiYuKYbRLsuZDgIGdXN6jNEaFBm7Zs Kf50pgIfwlMKVxOYNz6BaTRMnAD/BB6BZjU11WDtaIww7+kTvEd4T9JF20Hbj6QkJFigbaAM RsRQB1EwMUCKw7qFhcXk2jMYM0hJgWSgcM1ALXQERztr7j275s9f4BMQRJ97Q2Ow+qT4OBNT C2RlIlNtz57dcYkptOJHbZTUVLgGgVVANDzIJDoFQgLIDY2NmJWY6I1t23fS7IwsM2YFI/m5 xrPgsAjQ/PAbGo3JHW9D8TVk0RYU5JeXVxKRhT/z8nIZ2sHH5Ua0wkBPe/OmDWvZ1yelZnxW qhl4Q7l5R2fXvld9Hq5OHFw7G5s+RpLQFUJBycnJcB+yvtx1tbWZmZnI5QYSzvDx8vGfq6mt pyVKXW2NjLTk8mVLjx0/BUnDrN6Piqo/a1tdXRiOHJMmL7FMyYkJQlcuz5o5U1pGnlklRJvm pgZtLe2S0grkIAteOA+d/O07SsaOYXR6KaHZUWnkTAV3kYPo5eEOQ3jBgkXW9k40fWEgyoLL ytDU0kGub252BmgbJsyIeGA9n5y6CBGkEh4avHvnDkSemd05OJt26eIFLR1d2FEKj2UXLl5s amFVP5rDvUNtwfSUxHVr2ZRUNGhQWaftMaOe/hDoA3mj2vSxQwcELl152fsxLxXobmyog/ao /FQVfhoVZaVVbKuUVdTKK6vGPyjMP44tGy4KCrV3/iWjGHGykKBAB0cnxKjGs7FYmSG1n6jc 2+7E+DjOLZtkFZQ/x4r+/LO0uBBH2fQNDF1dXSTu31uybAWMOIg7Vnoepg0GLS7IW7N6lbzi U5LXQIQKOCYugbG3sdq8ZZMd5ZKg1IqJfQijR0KH2tMn6zdsSs3Ipvt/8/q1pZmJmPh9LDQy nXbt4DoncCk+MYk+KDVRM8Fmg4OhpKjw7OlTx07wtXd99Lxibh1trUhiU1RSBn1paWosX77i ieLTgsK/OK0GToNV2mbieZ3yj2UeKyhBXtHdIUp8WVAQCjAyUk4c50WE46bo3dz8gvFsQQa6 X1uZm8yaNRv3N9FdfUnaJgBiM5kb6UOY9HzSlDAZeJIVFeSxxRFjO3Oab9bMWXynzyQkp45z pbHAmalJc+bMRuj1L2rC+/cpSYmubm44aEmrcOMci5XPoZHJyzyEHf752sM//8zNypB8IIHl BuwHD+6H9XTn7l1EMVjpcJg2gMvJ3nrxkqXObp79ovpAeF1ttfDVK+bUrQETT9uftveH2qoy Lq7tUMHoeSKlGkYZ0oSxt0WEhaE+cHByWVjbDFSbxwk+TWLuTvZHjvE2t36MTQD2hrpaZSXF W7dvYw7ICkfmwmn+s8EhQyYUk65Yom0gHVorVFb8QDxG67mGo4sbXjQ1NcKwBIuFI73p0wND jn39+pT0rEHDsCzCD3g6OzuiIsOPHj7440/TvHz8aNUatA1fmvgDyRF9aSyONWgzirPgyiyG 9ID6jftVNLT0oLnhYEx2dg5SqWGnQZhQQDc2Bgb4cXFt8w8MIXe/ju3BQFCLcA+EiJDgtGm/ KD5Vw1kJhhXGuMcqKcHC3LKysgq50Mg5z8nNGw/fHH6GlIrOePADK6usKGfn4AIttKWpCRHp 12/e4p+Q9swAvcHKwnTjFg6kYY8n+5raV52dSIPdv3f33HnzLaxtoRUSiY0lIDZ2bXWVjKwM AjQj6qKjxT9caYj8w5kFZaWqvFjwylWcHsHqFxbkw0Sijkt1dZHdXZCfx3/6pLScAmJJEzgN Bp7fMk4KU3PwdHPCLSDQC3DYLjs7Cydm8K+IFJA5xEZFbN3KgeRc+PeHh5QV2qbCmPD+S0pJ I38gJDjQ3MISRilCIEoKsjDG3L18mX0tiXHRBw8drqypGy2KmdsD2tISKhMASgh0IXIOCQ0Y xk/Tvds3Re+Jw+FHS7bxjDXot6BnNxcHkWs3wsIjYqKjnmtpwX2FjW5jabZyxQoEoj+fbfwT GV2pfHyn0jKoJPwxzwTrCqJF4q2bGwWyr58/vCzY3NhbiE2cPHEcB1pwtIv32DGevTwwt8Y8 0IgfYkRdTXWx+xJxcfHBQQF6BkZIGnn39g1up1jFttrLN4ApnvQBeRDwhiBvZ8Ruh2kAgwsp zwEBAQAcKw4HKqLuxPBRkH+sqPQU4QMXFyc3d0+S3zKesQZ+i2wCwUsXLaxs4OHX0dZKTk2H 1oDrPXdwcZ6/KEhupCAPErrE7tzSNTQep5+83xxAzyEBflevCvkFBCYmxD/X1KysrsEqeHu4 wtuq+kwTrmv6k5KifHhh41m4U5gl2sahEdxKjVCNkZFxbHwCsYWwwBAmiF66unkgIZYeu6W5 KTIyilZfx7YMRF71e9AVNkFxURECmX7+/kVFJZN3MxHcF5VlpcaIyRgawnnbzvC7AGQEfrU1 nz9VVf+cFYfc77bWmNjY1raO8Wy7QUEmkjM/L9fLy8v90+MfENjZRR0JnKQHgGK59fX0cAAj Kibm83Inxqs+VUbIgPbkUapyXW10TMw4z2MPBTv8xlGREXq6ulbW1pmZWRhlPBgeCl0Qj86O DsgCdnRyLq+sJAIZ+XY4sS8ufh9pWvSHCJKlp6Uysrkmkr9QaKytMTE20jcw8PPzJ4mAIPiK 8lIdbU2lp6rgrfQcoERER8eMLi9tmI1CjcOIMeKhfcj4geNZvj4++QWFzCYQaTwZa4AZks7p Z5JGIajASGAlABlcnAyEwXFRgZ+vD1j759VlLMPk2cD9QCawTyrgDNCZlvsT7PASe3i45Rd+ zB5lXo5Jmg8RIVgCOtdgMtgZRiELzZx2Dp0cDA4pQ8w+Y3otJhxeeg4kyk1wi/Rt6E0xcfHM F2B8msPIzIUVuT04PrH8uEIAFznQxXQmA+9fVZ/AOyJ5CBOOx7b8qiBifTJQWioqypF0NPDc Beud/I1aIgm0qLgYkdcJtKtHBT6RnRXlFYiTjepDuvHYaXts4019NYWBKQx8GQxM0faXwfPU KFMY+NIYmKLtL43xqfGmMPBlMDBF218Gz1OjTGHgS2Pg/wM/ZdHdFt16LAAAAABJRU5ErkJg gg==</item> <item item-id="52">iVBORw0KGgoAAAANSUhEUgAAAUsAAAByCAYAAADatfNPAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAGrsSURBVHhe7X1nVFTZ0vb3413rvu8N c+/cuZPHMI4555xzzmnMOeesmDAnFETMGFGSYkKCiIiCIhgBUZFkzjlOuvU9z25OT5O7mwYZ p/davcTu06f3qV27doWnqv6fWIeVAlYKWClgpUCWFPh/WV5hvcBKASsFrBSwUkCswtLKBFYK WClgpYARFLAKSyOIZL3ESgErBawUsApLKw9YKWClgJUCRlDAKiyNIJL1EisF/kwU+O9//yva 68/03Fk9a7aEJQn6008/yd27d+X27dvy5s0bRWRt8O9ff/1Fnj17Ju/fv89qLn+6z3/77TdF m5s3b8rjJ0/kl19+1dPvt99+lRfPn8uNGzfk0aNH8vPPP6eg7Z+OWBk8MHmMdHzx4oWiI2n1 yy+/6Dc7P3v58qXcunVLHjx4oP/MSr+0FCAt3717JzeSkuRSZCT27E9WMhlQwGxhScK+f/9O fH0OybBhQ6VX716ybuNmxbQc/PzN61cSFBggs2bPkstXrlkJb0ABbuIbiQkyz3au9OzZU8aM HS+RUZdxuPyKzf+rXL1yWebPmyvdunUDfUdIQOAxdeAYHkZWgoqi1Y0biWK/aoX07t1bRo0e I6fCwuVnCkzQ+M7tW+LkuFr69esrgwYPlpOhp5XAtI50hCXo9QgHyprV9jJkxEh58fKVlUyW EpZRly6Im5ubhIWdxqafLeUqVJSw8HPq9hQGd+7cFrddO6RU6VJy4tQZK+ENKPASh8oeT085 FnRc9u/bK00bN5KJU2bIm7fv5PGjB7Jx/TrZuGmzuLu7SecO7aRpi5Zy8VKUVVim4qJX0Br9 fH3Ez99fAo4ckQ5tW8ugIcPlPjb9z7B6Ao74ySHvw3I86Jh079pJuvXoJXfuPbDyYjoU4EH8 8sVzmT1zOnhxOqwZ66FiSKZsaZbc8G+xuXmCx0RdkjatWsvJU2F6zZLEv5EUL+XKlrYKy1TM +R7mzgtsdB4q1MAXL5gnEydPl1ev38j9e3fl8uXL8g6aJDXNkBNBUqdOXfHaf0hdbx2/U4Du CdKR2uIv+Hv3zm3Sp29/uXP3vqIV3Rz8jH/7HvKSNu07yq3bd60kTKaA5pskHd++fSsJ8del D6xErwOH88TBrHPl/aqsKq6h+j/W80NYWWYLS43blN8SDxJ4xF8WLVkq9+6nPLVv3UySCuXL WYVlBtuTZiRptHTxIgk8dlwxBl+GfrdLF85Jjx49JDDohPxm4BO27vjfKUA+fPb0iWxY6yS7 XD3UQWPIozzYN6xbI1t37Erx2Z+ZhprguXEjCdZhmIScPCnr1jhKx06dJSr6Sp4gDYXilZjL smH9eolPvKGEZXTURdm+fSfWMXd9qtkWlnwYmjpdO3eS/gMH6x9IozQFQcVsCEvNga9pB3li BS04iaTEeJk3d5Y0btxE3Dz3ImD2c4q7//LLz3LY+4DMtZ0vN2/fMfm0105mCuCP1d/J57p3 9444OqyU+g3qy+at2+Xlq1f6IA819U0b1kqtWrVkw6Ytyhf3exjS+MXUDjLjv5G3r+SeunDu rKxbt06Onzgply5ekCED+8vAwcPgxniUJyb/00/vJeZylDRv2kg2b9+lgqDhYaHyY4+e8vRF 7vpUsy0sqb5fjo6UhfNspWSJ4rLUzkE9kCWFJaOYPPkY1fzYNvzDhw+Uz7J1yxZSu14DmIh3 UmhEjx89FEc43AODgs2K5HJ9oqKiJDY29qM14TWtMjDgiHTr0klq1aknp8PP4nl1EJjnMMVD goNlYN/eUrFyVTkWHGIyH/E+dI1EIkr8MfAgn+Eugl9TJ09SmjiRLDxwhg8dJMtX2svrN2/z hLDUIW7ey6Rxo2TyNBvl07+RlCBOa9cjiPe7nMmNyWZbWGqTpN/NdtYM+bFX3xSEzq5mydP8 wIED0rRpUzl9+vRHueHpizkbfgq+3bJy5txFvc/3zevXCAK5IxIepIcOmbJReS0hM4wSL1y4 UB02H/Pg80ZFXpQO7dqKCwQAI+KG497d2ziUmorT+k1pPsuMLgrZAWEycOBAGTVqlLzGupiy DnmF5pwzD08d4uI32bjOUYYAaXGb/l28d8TPBxZOIwk4FvxB95kmIDX/PP9dv8Ze+vQbKDdu 3oKl5S2x1xNynaxmC0vNPNYeiObiBhB/xmxbeW9gSt4ErKNCubISHKoL/Jg6ngNrOGDAAPnn P/8pK1asUE7o3Bwag2kOZkv8tkY7zTTm/28iENaxYye5EntdbcQXiEr6I8rr4+svr169Vg5t atj8jrGDa+Pj4yOff/651K1bV+Li4j7oJqfZRxyfJQWN5mbQnP90a0yaOEH8AgLll2T/r/YZ fZoTx48RT6/9oKPxgTJ+/9SpU1KwYEGpUqWKnDt37oMKE2PXP/V1T/H8p/Ec9x88VEiBAX16 yryFS5VyQ61y3JiR0rpte4mNS7DoGpkyX67nq1cvxB/ohhfgew7S32P3TunQsbNCNoSdCYeM yV1/JeeRLWF5OjRU9u3fL/cR1Im7HivLli5RODYtCMEHj4u9IqVgngccQ3ACZpGpIyIiQmrX ri2ffvqpNGzYEL9139RbZOt6CqczZ87Inj179BjSbN0QXyZd7oM5eU/CgR4/fiQHD3iJ/WpH Fdl99uypOG/aKH379RN7ewfZsGEDaLtUdrq4pvFpZjYXCqYxY8ZIoUKF5F//+pd4Aqr0IaPp NGPXrl1r0QSFp08eg3YH5Ex4OOj4WAKPHhF7h9XQqO/IO2iD+/d5SUjoKfVZOCBuCxctkoQk XaDA2MEDev78+VK6dGn597//LatXr871Q9vYuaZ/nS45ZNf2bTJnrq08fPxECcue3TrJsBGj JfjECdkLXhw5bIj06tNPrsXGmXQoZ29uv3+ba0Jau7pslykwud+Cfzn4vh/89vXqN5ADh3zk +fMXJq2fpeaXRlhqmtSNpESJibkCTeD3qCKzdR48uA9z7pXadF6eHvJj9+4ybcYMcd6yRUJO nYa5kqz54QEf3L8nbrtdpFvXrsAMbkGk/KHRD6lTxX+SRWBumpBNmjSRv//97xIQEJDxhsd3 XsOxHxUViVe0cvJzM925c8dsIDK1IVdXV5k6dao8fPgwS7prcBX6th48fKSfK9+n74zaIfFr SgOaMF4GwLRbZb9KvKDt0F9Jcygq8pKMGT1SAdJ79eqlzOhevfuIr/9Rk4TdxYsXlVbOjU7N /Mcff1TmZEaDB8NNREbPwul/+85deff2jTLjKcAtMY4ePSqdOnXKdA6Gv0PXTlR0NOZwW2mJ 2sZ5+fKFOqB/gknJ4M3c2TbqYFm6bLns2eslCYlJym/++tVLmTvLRnr36QshuVh2u7pJXHyC SSY41410nDhxotjZ2cknn3yinoGZVekK3GRoCzU1HvRJuI4CQEfH3A1IkF6E2TyEgrFjq7OU LV1Gps+aK0+e6uBUe913S5cuXYBiWQZfbJSsdVwlCxYtScG3llh3Y+5BOt8FLnvDOicpC6ih 7cIl8hT7RVvz82fPyBr4KR8+emzSHjDmt429JqWwTBY2nu6u0qhBPclXsJBcRFYJBx/m5PFA qVunjhz0PaKHuNAPRlNZg7oY+8NZXUdGPHv2rNKMmEppb2+vtCMKj1cQgobjv//9DUL9rZwK OSnTpk6R5WDqLc7O0MjWS4vmzWTB4uU4pcxLt+Rz7d69WyZPnpylsKSwiYmOkvFjR0vBAvll qs1seZ3sNnj65JFMwPv9EWl8+uy52mjU/J4+faqwquZo3RnRUPOxzZ07V/l7L1y4oLTzzz77 TMKhgaXe5IQv3b59U9YDdjN58lTZunWrOEDLnWUzXdq0ay+XomOyWi6jPqew7NChQ5bCknSM i70m823nyPffF5Shw0fLI2hDnDchQAvwfueu3YGlvKfeYyYZ8ZTppdsS1sbP6Gc0VatWvwf+ Ju+5u7tLQkKCOrS/+eYb8fDwSKN98f4Uktu2bJYpU6bItm3bZD2SC6ZMmiR1oRXFXI0zik7a Rbpne6/4jinFWb3IT6nHg3v3sK6OUqzoD/L5F1/KkKHDFUSNqAvSmXShUqIpJ9rfJk3UAhcT DL9k0QIVJP7sP5/LUPhS/Y8e0wtLYmgNA8cW+EmTb5FCWBJcfuFchOzYsVOGDxkkX3+TTwlL tbGx6Zcumi/ffpdPYuOTTP4hU76gMcnKlStl586dalFpCtNfVKBAAXViaxteN7c34nv4IHx+ HRU0hNrwi+dPZcbUSfLFl1+K576DZpsVpgjL5/AJeSDjZsP6tVK4UEGZNHUmondv1Vwvgq5V KlWAT3dejufcctNSKI4fP17lSjMFdfr06fK3v/1NbGxslJDWhpZ2OWXyBOndbwBM1JuKVscD j0ipkiWkc/ee8uiJ7oTP7jBGWJJWz+GGOHhgv7i7uUqxIoUBZRmuE5Z4LqaBEkYyeNgoeZ6c WpvdeWX0fdKGroOZM2fqkgRAN027pMZueGhz3rSk5s6ZiUBEf2jn55UCceZ0qNSoWllq1Wso T3BImjJ4z/j4eFkKF8yECRMyfVHzJeoh9eBa3kLcoG6t6tKqbQdJgpaeF+sMcJ5Xgads3qQR Egc6SXxCkppnXhophKVShXGCxV2/Lp3bt5XGzVrKTRCXi0azkWl3tes3ARg0Zx+C84iJiZFp 06bJ1atX1e9TA6OWSTNowYIFer8XiXzxfIS0aNZExk+CqQw1nePl82cyesQQKV6yNBzWiUab /1phEJpNfCUmJsqaNWtk6NChyhzT3qe2y81iqKXRBcDPt2/ZJPlwqLh5eCnBQ+jDlo3r5Zuv v8FpyUij8f4yU5lF8/s4OjoqDVHDBgYGBqoARY0aNRRttfEch8rihfOkQcNGcuRokPI3k/7H j/pJ/nzfybKVjiaZrdp9KSjoX9boxX/pzmjWrJmCMRnSkZaJpvVx/q9hfj+EC8MfdQcK5M8v K+zpI3ynTMr9ez2kdKlSsh6HYmpMqqm0yup6Ckem85KWPHA4x1D46cuVKyf5Ma8rV67o158+ wI0AvVevUV324nAmKJ7C/VRIsFQCznj8pGkm+2pJC2qVDHbQ35zZi/5vuptSD1oNJ44FyPdQ MhYsWQHXRc6kMOoCM6+UFWi45un9fQ/abmpBSPfTyeBAKVq4sLIE8wp0yZCeKTXL5I1yNvw0 Jv2D2EALUv5JPMghBCAK/1BIpuM9U5zjWTFkep+TSbfAB8rAhuZj46Yn0zCy26hRI7XhOOgP spk2SSpWqixBwSf1Uc6khDhp2ayxdOraA8+gi6oZM3iS01SsXr26elWtWlUKYwG/+uorqVSp kv79Bg0ayN69e1P4QkmXZxDqI4cOlMrVaqJyS7Si1a2bN6RPz+5SpFhJuYu8ZBNiC8ZMOcU1 /D1u4tmzZ+sxgUpbg0Bq27atMsVJVy0SHxZ6UsqWKSUzZtrKs+c63ySFu9PqlXjmr+UUcv3N WW9uXPpaNTry3+LFiytXSuXKlfXvM0q/efPmFJuHv/fLLz/JrOmTpViJUnI85JQSVDyMhg8e IGUrVJLgk6Emm9WmEpOCigc2BaRGL/qchw0bJv/7v/8rDg4O+nlfv3pFqlepJIOGjoA2/1jR jMLdw81FihYtIjt3e5hsRvIeOlogldOIV3puhvdwT9mvWCpffvmVhIbpsKc5Mfjb3A/16tVL seaG66/9TV88hajh+Pnnn8TRfoUULlJUDh72y/G1NYcGaQI8ZIqlC22laLES4nfkqGISVscZ MrCfFIAP0x+YPx3jvpTwM6fF1d0zy9/l9Y8Bvt6+fbtcu6YTchkNXkuICzc7IRqG5jb9Ny1b tlQbnlkHZKDE+Ficmvlk+KixKsqnTHgI223Q7r755mtZtwnaFU5XYhYvXDgvu3bvyvR0pWbJ k4+bnS868qlZDh8+XAkf7X1q4Kk1S/52LDZN6RLFZOyEycqR/hYuAlcUEymCg2bg0FFKQ+Kp yhSzfXv3yJUs6MF7kpFOHA+SvV77sixuwMODB82mTZtS+PBI13379qkgGYVmEspwcW3HjBwi pcqUk2PHTyra8XX9Woy0adFMqtaog2fQ+VffvnktofAJL1y0UJYhkHISEWa6GDIaXBsKFo1e /JdaWvPmzdX6Gr6vaW3avfh7NxLjpEa1yih80Rvm9ius9c9y9IivFMEhTizvnXv31frfxqbb 5+Ul0dG6ik2ZDUaEz8EdshdBIPqNs+LDw4cPKz7UzG3Oi3Q8ePCg0tJ5kJI/fsbhsnj+XPku X37xPRKoB8PfQ8CiV/cuUqV6LYmE35fffYQkA7oYGLR0huZ/NzmHPb258PfoM6UlcP78+Uxf 9EvTN5ty/FduI4OuO4H6dRviMNRFkcnj5D+6jGjuZja064+jetiBQ4cztDI0zdJwXTP6mxZH as2Sh3n7ti2kRZt2sATj9fO8fv2aKiZzCwHHrOZJVyETE3z9A3LE1ZVGWNLR2qJJQ2ndroOC WFAoenq44UFaS4NGTSVO+RJ+gu8oRgYN6CcNmrTI8iG40Vh9iNqfP/BvmQ1uAG5qYiqfoMaj 4SCzURBww7OsGRfD//B++RRwjuUrHVSuKK+5fu0K0i/by+c4TSMuXFKwievXriocWc3adeTN O+PdCKb4LPnb7rt34FApKDt2uSmmvHTxvMy0maZMx42btykmeQoYy3ZEJ6tAw/JGsCzzDf6r mnuPbp2lT/9BWebDcvMysENcoKGmoXxqEF7Ujr///ntFYwry6pXKS6OmLeTK1VjFoDSBmRr4 3bdfy4gxE3SBAKxJ6Mlg+D2nycRJE6Vtm9bSsFETZMLoBKyxwxifJe/FeR/w8pQfCn0PAPlm FMj4RWKxpg72K5WWvxDmJLG8b8BX7q4uSpNx2e2eqbBUz4/IOXm2B4TtDbiXMhsUPAzqhYSE pNFyWDeT1sd//vMfFfx7BITIj107QwsuLfFJOo2JgnsPAqXfI9DXd+AQlT5Ii8kfwG/64m1s ZsAlUk2WLLNTQZaMhCUtKArswSgvl9lryJAhKpBnOBj4pOVQqUI5mTRtplpLHR8gOr5tC6LO ZSUQ2UyZHxpAZyANsm3rFjIBlYhyqsYlIYYMQk2ePlMJdfIAs9tW29tJJeyTM2fPZ7lPWEOB cmrK9FmgacaoD2P5NfV1aYRlDJLUf8Bmmm27EH7CJ6hXeRha2hY41RvLyDHjFJSDAuQVhOjC eXOyFJZkGpZyY2S1fMVKaYQlP78OHyl9g7wvGYcwHfrYUmsKXGiayRUqVIBpU1T8/PyAHdss //r3Z+LgtE4BVR8joEH4QTU41evUb6wKe9CNQBOO0IgaNWvlmLD8CVHZ4YP7S7UateUSAmPX Y6+Kyy4XmQNoS6XKVeQgALVkBGq+4WGnpEH9epkKS2U+Y9PudnGRlojqMwCTungA8YPUPDTt jNHvxYsXKx9v6kF6UpDysBk3bpwKSBQpmE+at2or1+N19D8VckIJlC8QOXX19FI+TEJ4AgOP Yu0vKwF7FhZFw/p1Zcac+SaZdcYKS7oBZkyZKMVLlJTzF6NhPcSp6PPqlSukZKkyyM5xg8b7 VLkLInEYtUSq6HZgUDPTLKl1uLvuQkGSH6GZ9kkhLEln0o8BEgpJ/p9zZUQ7PagVD0G6Mug/ 79u3r5pDa2jipUqXhwZ0Tx0uzLkmNIy+TTt7R2VRcN2vwvJgYOotIFxzbKZIzz79EbxKu1Zc O02zZHApK82Sn6fWLEmfbc4b5XvgbPdBK7wKKCATHGh9xERfAm60VKbCkr9PaJbz5k1q/4+f TL+r5cHg/J09cFfkz19AdkLJuII4BeUAD5cAv8NSC0iOsAhd6ceMBiGCTo4OynJhWmSuCEt/ 7/3KzJ09d75sg5ng5uEpR/x9pGKF8jIW0dVDh32U1OfLCVK/cfNWGT6ApqmsZSUYl53SGCmL hpolP6c5yAfs37+/EoQ8HVlhhyY4taTUr2vXrqkT9i9/+YuK7Ab4ecs/wbRduvcQmk0OgHkQ 6lELp/Y4BHxeJaem8bd279wKwuecZvns6WNpVL+O1GvQWAHOHWG+hyNyP2r4IJhB9fH/tSoA pTPXY6Q5glKZaZakcTDgWjtddsmk8WOl74C0muWyZcukZs2aCtpCBhs5ciTQDDsUXdOjH03h fPnyScWKFeUs5tasUT0pVLgoAiabZY+HOyKvy2TMqJFSplxFuUifK1aXsA2agxo87M3rlzKo f19g9mxzRFi+fvlcunRsB+FTDqaft2zYuAF1UiNk2qRxUh41UzdgrnRfKBcR8oQ7d+qYobDU mc4ovoCotBMOVEeHVdILJdwMNUsKP7qIqlWrptwXPGhmADvMvzOi40lU6Pn666+lZMmSgGft kyED+sIv+LU44je89noqYPycmTPwDGXlMMxCzeep/xcCda2Dnax2Wp8CnZBSM/y9vYPmIsnq X8Pv00qkP79MuQrKBbIHbhwGTniPu3duohpY+QyFpc6d9Vb8oCy5gbdGDx+SY8KSLpbpk8dL seIlZBuQOL5QgrRCKDyYGyAZJSNhyXmSpj6HDsDq3CoTxo2VqTNySbO8dP4sIDqVpGnzlrID pzWFTdjpEOAVm8rM2XPlHkw57dRbiyovjZu3ztCEoBayF7nNPmCWqMgL0gxCMT1hyYANgwGM fDsDH0kTh2Y230v9Is6SoGBGVRkdT4SAnQxBUqZMaWmLWoX0sx7Y5wm8VgkI+r0pfCxuLttQ ZKGuyZoltdyNGzem4xNK+ejUwCYi4Z+CaBx8lrHX4xFYeaYYtjV8MceOn9BrP3QVEAOakbCk oEyC327VKnuVnjZvjo30S0dYUouk74yRZgpH0o7g8/Rox/f4WatWraRNmzbijRzbAF9vqVen tlTBPebMW4AKL9FAPbRVGs99RKRTD87rzq0bSigHAK9nyuABSM02PTyg4X0IBZs3Z5bazCNH j1WBMpWgMH8OcI7NcGD76U1KptN2gU+OvJqeJUJBGXf9qqyHJph046Y4b1ynNPTUwpJ8RxcF feHU1MlbmdGRfEg6tm7dWtxA+7DQE9KkYX3co7LMAL42DnzZo0sHad6ytSQZVItSvj0cPIcg YLt27QbNOTJLP7QpNDa8lvy4BodDbWCjFy9boQSQNu7fvSWVKlbIQFjqfLMUVDx46e6aMmFs jgnLXyEsnSBLqsGdsmr1GlW4WXPvnAsPUwHd9IWlLjPp/NlwHKib4P+9IzOmTYawBL45N8xw ag/0ydyDE5YZEpw0mZsE04rVZiUs+R365ggSX7tuvVqkSxfOShNolt4+fikiyGRwnt6MjvE7 1I5oThjzounE+RKoTDOeWLw3b14BtDwTpnBNOQd/paFPzRxhqTm4abpkBWrm58QIci40d3Qa +K/wvT5WMBpDfFtmwlL5lWAir3Vao7Q7moKz4ffsDY3oJe5r+EykE90YDELw/sbQTbuGz0T/ M9eW9Of/z0ecgY+rvCyzW5UGvqG0DbgafJB6tm79RkVvUwbnx3lmRUdCbth/SEdH3fX8bSIN 7sDRbxgcyEpYPkEq6a5dO+U4/KvMt98AgHaP3n0hzBL181ABS/AdhSQ1aFVQGDxlLC1JNx1U 6h54GX5++FJv30yQcjjAJ8B0JVxH8+zSJcTU4FV2y6VG9aoqgBWXYDy0zRR687n4zNzPr1P1 x8pMWNLXyWr9awCZugBhTp6eOHaUjJkwKZmvjfdTGzNfZYFinSkHOE9D/shMWHKeXP/1kDEx aFvz6OF9JABMAL55BtZOF5i05MhWbnhGmiUnyUggfTbD0cuDKYvjx44BLKCIDBg0WIJDQi35 DCnu9QhO4Y7t2kCwDABM5362hWVOTTQzYUmzxGuPu9I85s2bJwuBK22MOo0VoLU4rV2XY2lz ZFIeKCURjCJ8I7Wmxs9jEWxikI0BoayizzlFO8P7ZiYsOb9jAf7KSpk23QZpn/OkY/t2MOUr Iaq/RGE5c2JQIDKXmX51FzfPFDzIvaEOeKRs7kXglLhXWhe5XdQ5M2FJnytdVh07dRFb23ng QVupU6sGXEn1gCZxhZviWU6QLd17ZiYsmbW3HdlSTGedi5x3BsLq1a2jsqWYXp2VBWPqQ+SY sHyIiBsdw9zsfDHXmZHMfsh8CEKh0ZwYZMQIFEsoUbwYIqbL00BbzNEsc2KevGemwhKaDaFC iwAvYV63ra2tCqiUwyZfDT+opXK1Uz8bfVSD+vUCszVSDeYMT2b+TS1tKwTl5StXlelI4fmh BWZWwvJ8RDhgOgvAg/OVC6B92zZSrnwFmTd/oXJvWHpovj76V8sqv68uXTi9QX9r3z69ISz9 85ywPILAyhzQi/xHIVQbYPuatevJ9p27FCQut0ZmwpL8esTPVxZgjpznTCAM6tapJbUh1Ndt 2JQ3hKXmVLW3Wyr1ASdiEU5uHNaudEHk9uq16/ogkLahLiPK3gw+OvoULa0e8zdoMkWEn5Fx EMply5VHgGqeJKH2neZQpzm8c+sm+EVqyvOXKVv25tbC83c0B/0VFExu3KiheB300WFDgSHl wvv6oSRbclBKC6QxwGLLYhHwWTLH3dL04/3jEXHe7bIDcKZK0gZluo4GHldVXzRNiPCl2TNt xB3V3JluymLM+1DR50NW1ObcEpF80B6WhDOqo9N8pr8z9OQJ2XfgoNLANRryX9J4M2BRdGfQ f5mVO8BUvqDGmIQCNO7A8nJt6zdoqPz12nrSh8/INnPa6Vo5D8znXHT3TMRccnOQbrcgqMuW KSN+yNrSBLz3oYPIGw9S/j5DuhGiNRml7RgwzQn+S+/ZtX1C6BMTF9jbi3N6CfeMj4+3HAk4 qu+tpM31+bMnMn3qZJmCAA+TaSy9T8zSLCmAWMlkKRLfO3XppoQjCxb4IT+7Bk6gGYiSvnmb sgdKQlysCgqcCrN8l0cSi1pPBLSIEyg3xRezLlitRglLgoGRjUFnd/sOHREwYJ6veYU1ssvU XEAyH1sEdwU2z3nrDp1vDH7Nfn16SdNmzeUsfK2Gg2YdU+l4ABjWCs3uXLTvM3hyFVk/jPBq 9Lt48ZLyYXK+CpaxepUKaBCpwFdXVJKaCH8cK1d/qMEUw1PYTGywZY/AwD1oinTDTAfsiJje 8ORCytr8KEz3I1I9aw4Clal6RVniGeg+iQOfE5up0fE80B20BEhHViYfj2jtXJi2hHi5Ifc9 HJCY3G7NS/8gm+C1aNFCVUknIJwV+Yml7Ij9HH35agpy0E/tAB/rilWrc4T/MhKW9FezdGFH oB1Yg5SHXzxA6r16dJeGjZvKHVQxMxyv4NpYAz51AOokJ+remiUsKZyeAjAeDVwaI5w3ocGR ERmUOLBvD0o+0QT+fRORUYgrI+wnJ4ofaKdQZv+yRuRlYER1kKSbH6R4qKZZ0teSmBCv5hID IfXiBYIK2PjhKBayGCZj+LkLKZiAz8X+1wkIBFhaGzLUdjOiH4X7FSQhUKM0fLEUmqVPb1OE FoVTIrLLiDGMxtrSPKT2yF4ys1D84hxqhaY4dNSh+UDRkQeEpUdWfMh1Pwvrh/jg09DM7yJT TAteWXoumd2Pe5GWBKt6XcWepFCisnMUTQdX2K2UyzEphaXOagSMD/s8J/gvI2FJ7fs6gmHc J1evXlMaLzPxQoEFnjZ1mtxO1dKYvtZbt27qlSRL09QsYZnRwz0BQHof+smcvxSJFEPjK1Fb +qH+iPejKXz+bASKKR+Am8Ay9SP/iHTIzpwprCgEI9FagpjCp0gAyEtDE6aagPyQB01qulDZ YTor3UAfou6mMeuklC5YO6dCQ+TAQe8/bg8ehvGpbbKKcW6dPsYQ+I9yDU2d+wiK5cXyWX8U Gmq+X5al0/ytf5S5f+h5Kv5LBW/70HNK/fvKhQXN8hGUsg9Rvs1immVeI6x1PlYKWClgpYAl KWAVlpakpvVeVgpYKfDRUsAqLD/apbU+mJUCVgpYkgJWYWlJalrvZaWAlQIfLQWswvKjXVrr g1kpYKWAJSlgFZaWpKb1XlYKWCnw0VLAKiw/2qW1PpiVAlYKWJICVmFpSWpa72WlgJUCHy0F rMLyo11a64NZKWClgCUpYBWWlqSm9V5WCvxJKPAhcto/NGmzLSx1nR6vSCSKajCnNHW+K0uj sbYlK4dbR/oUIM1IxzhUPL9w8SKamv3eplWX7/wehQ+uo2DEOVRdT7+5lZW2KSmgVXdiE7Ir qL/5Jrn3DK/iZywMyxYabKGbuoq4lZbpU0BV90IFquCgIPSY2pumkv7HTjezhSUZjhVcVqPs WZcundHPo6K079QVtfl0rUCZK87OcBtQWqxKlSpy4pTlS7N9DIujlUBz3rQRhWD7SNUqlaVl 67ZyARVzFHMiz3nZ4kXo19Nc9UypVAldIg/75kiXvY+BnpowvHvnlsyZZYOeRO1V3cahw0ej ZzebxaGH0O2bsmzpYunapYuUR5+ffmhVq6tvadk2BB8LPbXnID9yz08YO1IGDB72wSp3fSi6 ZktYxqLB2Bl03WMfYi80JmOL2qATuj7EZEr2MQkOOorK5cWtwjKDFWatzVvokRKGOp/3ULIr EG0QGjduJJu37VQCMRK9kF127VLtQS9eOC/dOrVHzcHuchNNsKwjfQqwiVUkyrRdioxSNF2P vju1atVSVctZ1u1KzGWlwd/HZ7t3blfFZQODTlgLwBjBUE+fPJIhgwfKhs1b/3T0ypawpCmj tUeNRvdG9lC+CLPHcNxERebyZctYhWVGwjK5rNhPP+maw91AfcYxo0ehwrauEjS1c9Zp5Gcs Auyxa7vUa9hErl2PM4K1/5yXUAPSGszxb/bhGTpsmCQk6aqjs+alxrcR6GA4YsRwvSb/56RY 5k9NmrFLKRvInUFLYXa9PBl6Ok+RivuDhb6poD1B9TOWiOT/+TfrdVqiHJ7ZwlKjFCfB7m+u u1zQbnRTmuK+7JFSoXw5q7DMgrU0PxpbpC5bYSeP4JtMXfeQ2vpe913Sf9Aw9B83rbNinuLs XJqMZjauX78OFcHdVNk2zUxXAgB867Jju2xy3qKvZp5LU/tD/IziSdSPZJsO9g73PXxYRgwb LL369Mv1VhhZEYwWGmXNYnRvmDIN3R1RKvLZ08eyBMW0d6NpnCVKumVbWL5FFe2tzhulerWq UqVadQk+eSqFFGdfnooWEpZcPLYsZRn8j22QKQ+gcHKd2rVAx2roIXMohV+Sz/7s6ROZhZa4 x9DW9RecmtkZGh0tceJmZx45+V22GlmxbIniv6YtWsklBHM0Yfn8+VOY52tU298mTZtLyOkz 2Wq+RjpSq7GUFpOTdDHm3nwe9jd32bFNlqHnONtw0Mrpj9Yn7C+f1wK2mmbph/487O4YG4dq +LAgdm7fKm4eeyxSGT/bwlJFazGpUzh9mjdpJENHjE2xyS0pLKkN7Nu3T7Zu3ZrrfUuMYbDs XKPMbDzfRfgou3XpKD379Je7yX1iVIVolNj3PrQf3fVc9E3YzPk9jal8fX1l3bp1H7XfSaus 7ed9CId5FZm3aJleWGoog8AAP2nUoJ5MmzknTTdQU+hLzWXbtm2yf//+j4I3SZ+jR/yU+4I9 oXg4R1+6IB07dJA9+w9m62Axha6mXMs5X7kcKc2aNpWgk6dhOTwTf39/tLOJtQifZ1tYQo3U d4dbuXyJ9Ok/KEX/HUsJS43xO2Cx2rdvrxrHf4yDECKX7VukR68+cgMN1xSsCK0STqOUvofn Hr3/ku+boxUqFAMi7KNGjUJkvZJqlmbOff4otFcQIlgjE8eNksnTZ6aYtrJUXr2U+bazZezE yaoLozmD97l165Y0aNBAhgwZovxkfzSaaoeo6scDwU//ODs6Tp85G3R5o8xY+xXLpDk0dCI1 8sLzaYoatVytO8Otm4nSqX1b2bPvEHoMhaMJX2gK2Jg566t9J/vCMvlOv2CTr3W0F/s163Cy /m4icvLKZxmaPegQnbWBgYHy9ddfS758+cTLy+uDLBgFDRkqpwaf88B+L9XX+umz54pJI86E 4Xn3K1NIddYEfEPXJO4Xk6dBpjp+/LiUAZzmf/7nf5Sm/qF6f+u0u5/kMdoEMFiYUxuQls/8 ubPEBZ0MDYfOJ/dGHB3sEd3dYjYci/Tbvn27/OMf/5By5cqpLpl/tNYqpEUC2gpv27pN7j98 JL9hPzdpWE8cnNYrHrx47qx079pFBg4ZJreAxMiptTKFock7/r6HVXttBkg5Hj64J317/Sjz Fy5FPyE/eZocHDXlvhldm0ZYahqL6sGMdrGGi659ppmMrugzPXHiJDl67JgEHg0Qp7XrFCGT bR15jw0QHhYqFQEp2nvA2+wNwd97iFa2EyZMkH79+slf//pXdYJTcKW3aNo8ycTsEKdFmvn/ 7AqGcePGiaenZ5a01+bAqCsFgWGwxpCO1Br9fb1l0qTJcujQYbRQDZZNmzcB5A+YC+bLlqVt WrWUFi1bqigksYE9evaS4ydCzdqQ9PeuXr1aWrduLf/85z+BQ+ygaJsVHRldJpRJ00C0fuxZ EiKTC3iv2NhYmTp1qoSHh2f5PBrduEkY0dbmbEhPTVskXGjOHFs5cTJEvL0PymYEcdi7hVrm jq1bxGbWLDkGcLU/NtSWLVsBxdJp8aYOfodR4rFjx0qbNm2UwJwzZ47yX2ZGU/IFefNn/Mvr +P/cFrCGez0hPl6GDx0stgsWKZD+b5jPQPgnu3Xvqejj6uYu48eMkjHjJ6rgzm9m0MpU2qZ3 vTZndhz1PrhfukCABwYF62lHv/7EcWNkweJlCDZbtvFfGmHJBUuIi5PNAEmzLea95N68nCQd vJ4eHnIFPoBff/0NbT3D4EBfhij4Rjl6NFBu37mj3teE5bOnT9ExLkSdVkHHg82S8trmDAJj z0R7U/ZjLlKkiP4ETy38NMa7eeOG+Pr4yF5ooEehkYajp7iHh7tci80e5IbCeufOnVmuO+l4 985t2QEH+Sp7e9VbnXAGvs+MpkNoaH8eviAeSpejo8R+1SpZs8YJbVL9JTHphr7fedjpEHHe vFk2bdqkf7ED5KPH5kXD2TZ29uzZECDeUrNmTSlQoIDy66R3iKhnuHsHn/upjA1vREMjgV3c g8MiMio62wcP1yomJkaGDh2q+rxnLix0AiUKnRvXOq2RDRs3K5cEh45nr2OOe9RGZsbTieAg WbJksWyBfzsoOBjoAWhLuI6Cli6N5cuXgp7OEJjHlcZurqDinHh4LsM+OAz6fP7551K/fn31 XKmFJf/P9b4ee00OHjwo+9CBkvviDOBLxNI+gEaXm4PzeYHDMzDgiPT6sbt89dXXMt1mNvbI dWUdstuoPXiXnRR50Pj7+kjgsWA9qiA356r9FtfpNtrdbtvqrCCJ5StWki3bd+qz3hgoDUGX yvvoIW/O4ZfZM6UQlrz5bfQHXrtmjbRr01o+/exzOHcjiTBXG8PLw1UKfV9QjhzTAXg1QaZh 1nKCePwN+tUcHBwUUz6FAB4xYoQ6wRcvXqxOZ8OhAMlwRE+bNlUWo395SEio7N3jKX169ZCK 8NFFnL+UrWkaIyyVkEGf793YAH16dpfv8heQ3e6AL2BjkVZHYDpUq1pVNm3ZrpgyN+ioCZX1 69erwA41n/nz5ystffLkyYrGhoPPcDMpEf2Zp4gtXALc1AHoKz2gX1+pXKWqHEIWkbkCRvsd U4Qlf+tKTLQ42K+SBvXqSIlSZSTm6nV1K9LU0X4FsnEqyOnwc8lntU64pqcBawdqdvmW9yHo fcGCBRIQEICD5a60a9dOPv30U3FxcUkT6KGgDjlxXCZNnCircTCePn1aduIw7QAfW606DeCj Ni3RgL9PFwYPmqNHj2b6oguLe8dw8PvsyHpw/14pW7qklChZRrZC8MSgR7chX2p7nf9+6Cwn ziERWvAqu2XyySf/kK7de4jHHi8cnLpn4zNp883WRk/nyymEJX8k7FQoiH9KxowcJj8ULSGX kVfLCbx6+UKmT5kkBb7/Qe49ZNqY6SaLOZPn70RHR4uNjQ0arV9VDEgNgr7LRo0aKce64eZj Kls/mA+Dh42QuPgEtVkuR12Sxg3qAszdDP6Yh+ZMQ/8dY4QltYfz8PFcRP/0OTZT5YciRRXI nFr3W/jI7BAIq1Chksp2yq7AMfZhtI3Fg+Yislf4u8yb/tvf/ia1a9dW7xmatU+RAzxq2BDp +mNPpWlw7m9ev5L6tapL7boN5BLcBNnlAVOEJdfxGFw9YadPSffOHaRazToqi4n3IF6yZ/cu Uqd+Q3n4OPdy59Wc4IJauHCh4kO6W9ZA0fjkk0+kV69eKSBunCcjtW1bt4QLYK7SfPj90JPH pVyZktID6AdT4Thcw7Nnz6pkkKaIAGf2atGiBawCKD4GQzukL54LxxxKSf/BI8Cf75QFlN21 NZYvTb1OO+hctm2Wr7/5Vra7uMq7ZPeQqfcy9fp0fZax165ILeAm+yJn9iHyabko5yLOSM3q VbCoA3L1dCED0gTduHGj3k91G/6l7t27y9///nflWNf8GK9evYBfZYRUqVpDzl+M1J8yoSeD pTLyqufMX2S0CcFnpj+NgtkDrgftxdQ4RpIN36MZyxM+zan9+KHUrVNDWrftIHfu6cyCG4nx 0rBuLenWow/cFvdyjSl5yGyGOU8NXTO5+R79oNQuV8ENoAVZXiBbw3b2DClSrBgysnRCka9H cB+UKPqDjB43UQWfTB383TNnzuhp5w6g88qVK9WhN2/ePOH/NbpSW+J8Umi7+P6JoEApX7q0 2My2VYUcfsUzHPU7LCWKFZG5C5Zm2zVgyjNRG1+0aJEcOHBAv440v2mG/+tf/1KBHo12BEh3 aNtS2rTrKNfjEtTPcO4H9+2RwkUKw5Tclatz156TPLBxnaN8+913st/bz5THN/ta/iY1XcM9 lN7f3Hs8xFMDyl+CP3v36Co1a9dDJpuOlrkx0vVZeh/wkoLwZTmt36SCPHSKr7a3k2+//U6c NjireWkS/gEas1+DD+YxfGjGOP35PfoVaL7QLMls8NqkpCQZP3688gFpWhi/5+TkpMydjh07 6lPbTmIjlSxRXKbOmK1P8qf/ar3TailZspR4IqJMU5j3eQlNmaZoRpod32fUmEGl0aNH61/F IECaNGmS4r0lS5YoJ3+KjY3vhwQHSqFCBbGJF6vfJX127dgC39BXshAugnfJQQoyzyNovLHX riHY8kgFdrI62fk5YUbUaBh4yYqODx48UL5B0lEbvIebm5t89tlnKjjBZyBk5MypEKletbIM GjZKf7hw7kd8DiqNfj3ygn9CJJ7fJ305h+uomPQcWRN0/Gdkc5Dp6e/V6MlDp2fPnlKqVCnp 3LmzOoS0z3hAcn0MB5/XEXxYokQp8dp/SKEBHsMXOWPKRPBmPvE7ekwvnH7Bb91OntczCHZj TDM+D/mCtOKaZEVTbmQGp8ij2mAAjb51uon4GQU+XUOH9nkqFIfT+s369XqJ55szc5qUKlNO ToWF690xDFzGYk/RT5iZlqcJYp15nPUrNU+p533xTEYMHSTFS5aWxJu39Xub96OJznW9g1gE 95yxPMm9zSBRRoPBOR6Shvsqvb+574lbNTw0OYercMdUrFBWho0aoyqdafKIwVL62Knk0J9t 7JoTw3wLCpg+3pLBxNMISxYamADtrELFyhJ6OlzdgEDpHt27wqdRGosaoROUYFyG7Ucjj7lz 504yZOgwRB5DFUYrs0Em9EV0cobNzN8j5xl8QQkX+P2WLl2qtErDTU7zo0aNGkrwREREKOa2 nTld8kPI+x4J1BOQQZbmTRvCJ1RPzgMfxs19BlCcGdOnKV9HRvPlM9IfykgxN4/26tatmxLU hu8RV5f69ON8FtrOkqLFisvR5CINCSizNnTQALxXQg54+yQLG50fa+KE8dIFAqNvv/6AQgTo oqSZEJJCjZHy0WPGZpl6xrnt3btXaUGptbU4BPMaN26shKBiTBxkhIDx/55eB/UbhEGp/n16 SNHiJSUMfkHS5/27t0hz3SEDBgyQ9qjuMwpziYXWlNEBxO9QAGq0u4+DNgQBwD6otsSAE/+v fUahkzro9OLFc+nSoY00ad4SfrVYtYGDAgOkRbMmSsuIi9cdWHQXeO1xl6GDB6vDdNyEiXCJ ZB2QevfuDbLRNsmKlauw2TLXnLm+K1asUMLfcO05Z/oPGYSsXLmyOpyeP3siIyGQioB2F6N0 gR++LkdFSpWK5aVN+06SBCgY78m9Nn++rfTr20cGY09FnL+YocbJe/CA48HCuWT2srOzS+Gy 0gQMXQP169aWrrB0tEOX63f92lXFk926d8Oru/JlZpU1xme/cC4CyI6Jaq9lNDhv+k8N91B6 f3PvEaZnyE8s+eixe6cKTO7Y7aE/1N6/fyeHDuyHQjAEa95BhgwbrgKoWc2Z39vjvhsKlk2m Ap7PkkZYPgJOqVqVCtK77wDlV3n08L6sW+uknNDtOnaR23fvqcnHxV6VNU6O2IRe4ua6GwKp sXTp1hPm5v1MiXQjKV5+7NpJmoLhr8fFp7hWYyJtIUlAQjIYwTU81XQawEvAlibqoRrPARlg RZ7CRYrJZTj+dQL9Z9m6eYN8/tm/kU89FCf1U5VtdDL4ODZYY1m0zM7kMlPG+Cz5289ggjdv 0lAaN2+lfvfB/bvi6uoqvXp0k8ZIr7t85ZrOtAVDMGjB3FtvRMjbtm4hrdq0kxggDjI6yXVl xm7I8CEDpWr1GkpwGA6Njtq/POlnzJiRbsSZaY8UooQRDRw4UGlqBCN/V6CgnInQCUUK2D3u rlLkh0LSqm1HhcNTJ/zlKGzsBYgC+6joZKUK5WTSVBv9aZ/pqYkPeQ9jo+E6jSJKChcqJJOn 2QAo/VZuIAC1AkDpenVqycgx4+UpBCw308XzZ1UU95D3YdkM902dWjVl1NgJKl84ww0Mnr4A EHMDZPP0HzQEz5jWrWJIV7qC+vfvr7TK1LxJQdAFEC9aPjxYk+B6ada4AQR6fbmXHKWlQF+8 YJ588Z/PZQZ8mIS50Pd66NABBNOC5Cgi1PXgrpkCIP3zF+njevm712CNLF++XKZPn57pi+uf kJDSZKVitH+vhxSFG2Ddpq16y5CalpOjg7jsdgUND8nggf2kdOkyEgWezewgfPzoocydbSNl gTUNguJk6cHnZXr1xLGjpHDRYhIbn6Sfc2J8nCxZvAQukYPi7uYKP3wNVUZOy4JLPRfei89y CTViO7VvI01btpaXWeCn0wjL0yHB8g20iqUrVgm1Dmdg/ggA5+nDBPWg4BNKmscjInVTyzCB UPLY7SLVa9SS6Jir6dJICRD4bdatc5JlSxYp7cBQWPJz3pN+NQYeeFpTuMydO1edLtQsDV/c wDzBadrwBD8HmEN3pAnmL/C9wiDeA8zpMBhv5oxpki9/fnFcu0GPDeMBMHRQP1lqtypHhCUX IfTEMSlWtIjYzJ2PzZKgIFchgKxUKlcaizgUguis8vuRwaKQs6y5MIKPBUi9enXlsN+RdBmT 934C82z7tq2yYvkyqVsPMBUDYcnPbwA2xWgso62kox+whLa2tskme0o6Ej9JOBbL633zzTeA ep2UKRPHyldffyPePv7q9A/Axp07e6bkz/eNLF5hr+6pNCNAnjS4C+e/euUyadSkmb6maVab xRRhyefaCad+gYLfy9YduyA4Lyve9PBwg+ulhDg4rpGz584rbfM6zLC7OCB4f1oSDnbLpVHj ZhlaMrz3g/v3FNRo3NjRSisxFJb8nMERptnSLCUfOjo6CpEFPGxS8yYtElpEPIBatWoFqNJJ aYGDszxqkUZirW8DKeHp7ibj8VvfI2C6Zx/TB39TdNVyy0nPRfPmQOOhsLQsXlBbFwZtbWfN APymshwJOCpHjhyBNfVO1SC4hOCkZsZeiY6EAlVJdrl7pcuTGp2ZTDELLohmzZvlmLC8jnhK 40YNpF2nbuqgPX/+grIO4yGrWJNUE4Juu7bBmqyrApHpDT7b7Vs3ZOsWZxk7eqS0gi/ZZGEZ AIA0sWK9evfFibVCws5ESNDRI1K+XBkZMWq0nDx1WljhQ/ORcHJcWG9Uy+nZs3e6JqE6EVSh CC+F2fI5tC9dYclIIn+bpyRPbvqwqD2SSdN7UXvgJi8EbcPZ2VlWr1qODZ1f2rbroDSeLVu3 K1O4XPmKKD6hq7PJQQE1HGbRMjt7k4Xl8OHDlZ8vs0F6+PsekqIQll0AbbBHUOUYoDexVy9L oYIFVNWWEJS4epsM+v/9tP6vAvEzeEXzK71TnIcETc+98L8eRq54PUSADYUlN9zu3bslPw4I mrf0fzF4wnkzSJaajlu2bFEbn4ErakIr7VaIq8t2KVK4kNL+CS/aDNouWTgfQYBvJSTsrN6M VLhRrC0H57rdeYMMgAb/+MmzrOSk+lxpi0A40HqgYM8MGcDP1q5eKd/l+w6FfEcCWO+I+pSR 4r57B+hcFNrZLIXcMORL/IKqX+m8cZ0MGzFK+dXT0zCeQaPbvWunBBwLUkiF1MKSApg8+cUX X6hAGDW0Hj16KOhaenxJmlLbK1iwoJQtWxaBK1cEzGyUa6N3n77IzmIwy0PGjBiCDV1fIi9f 0btclEWEORNLOGPaNDkRkjldjCJ0BhcR8TAWqJcqVasDC+wgp+E3NfR9amuUCPdRy+ZNJfTM 2XTXiPweefEckimcVWWitoAd5pRmeS4iTGrWqCZdfuyloITE1WoCUuMf/t8XMqbbjz2UeyO9 wTjMgf375LCPr6wBX9EVYrKwpLSdM3uWrFxlL+cuXFCnZtz1WFkO0C0FXeobcmLMr928YR3M 8vXpwh8Y9TsPE8dl1274pR6I/+ED6QrLsLAwJRwZXaZGw2gY/TFkvvReFJBr165VL/q+qMGt RuraDMCMDhw8BBD9fcBM2qPyeDsQTee8zq6w5Ol7BW00MhvaqbV82VJgPZeqAsmEZFCzXgDB 5YHneppOTja/5+66U2bPnZduiw7SOjEhXjZt3ATg+k0JPgZTLZWwJOMy8MAgAzVz+v4IgKag zIqOzOwhAP0ONB/nTRtUgGIP3CzXsf7jcfqWKlsepm5aLUeZ6tCmpiHQshdakmG6a2Z04veI ImBklEGErIRlNADpNjYzZO26DUiMuKa0xosXzio3wjFkcTAYaTiUNQN/4bKlS2Tnbrc0gTB+ zqARAey7XN0VVo/4vdTCkpYUtXPiURml50FOzZFWUGY05eG/YcMG5UaKQ8Bm4YL5sJRs5Qgs okSkFjZWJn/Kw4V75TLcG9OBb61arYYKSvJQzYlB/zStLyoWpN/71AHXZEWIBTWoKDFHPLVr iP+nP3vNGkeJvR6PepenclRYMjHGac1qWWm/WhISdWZ46vEz+MIOlfCZwpqaJ7SD/TzQPdu2 71CWEdEAZglLMiz9gSrlKRlvRWZ5jWT19CJiOl9SjNhBIyGxUoNW+fk9RKhoMp0JP6vqBh7c 6y4NGjdVJonmgNUx7s8KHM3f4W9raW2pzZz0/s/v8js0gRhE4HfvIC+9TMkSMtVmTgrIUHY0 S/5OVimT2klHk4rFGWhiUQGjr5G0NUzV0xaa37kPgWELt4OGbU3NBG/h53JyXC0hp8JU3dAj 0F5rw9QgTEoDWOs0k1+UkNTSLE2ho0Z7biTeg/+PvRqjfLx9ACVLL82NmhAhPXarHEyqC6nR SVu71BsxteAj3bm2WmFfjWdIZ0bGU3+fUWjCxpiGS196amHM6xnI2ISDJPpyjHJvLEU9xAGD BqvDVVtnnZn5k+JNbf2N4UntGi2VkfPk+tOXfi78lBQtXBjuoY0pgoz8LT7jOSgXHdq1Rmm5 lir1NScGf4tzpAKUHkBf8ST2riMO0ROwhNJbnzdQlHbt2CF+/gFq3ieOH5OWLZqLb0Cgeq7M 1tTUZ9L4ha6P18mCO/X9ucZRl87jAFioBGF6wv0B4jJ2CIhFQaMngmONg520gEJFJEpme9vs QhqcBDf/PUSbt0Lzi4bzV4M56D7Tvehwp9nYCgRs06atqhhENfrzz7+Qdh06SlzC77ALU4mX 3vXa7/Kh97jtgk8zv/ggOm64UR4jqMLgiDlmuCXmmFoIkEaEYG1x3gwA/hX9IWVIR3UoMXIJ DB+zREjH2ghc/Puz/yBa2UOZ9VkJcVPnzt/kPQ8BSla2bGlx3u6SJpjBTRYdeQlpnTvhJ9QJ JG3epv6epa5XfId5M61w27btKn00NS3Vs2Hu+/Z46GlKupYGjKkAzOdBQ4crv6clhzYHHi72 yxcrpEQ4MsrSO4B47TmkE7PcmH/AMUtOI8t7aUKJZvp+FFph9pZWFyA1HelDHNCvj/LNkifp b//yyy+kfoOGyudtaZ7MaPLaevLwo7bPeIohL/4uj36Twwf3SWPA/zjf9u3bIXW6rHyJVM/h 0J6ZvZTRMF9YYlPcQmrkHqQSnoV/jZuGxUK5YSg0mXP6AJE/nqJ0nhOzyJQwmrFLFs6TCpWr yi5E2zScVJYraOQFmmbMDdy/b0/5GthQamKG0CM2XRqGPiIMYmWFUTTyZ82+jJuawSj6T9iH hxoM6Uja8W+6OAip4d8EizNjRKPjyhVLpQxMYxeYmNnJb87o0OEJfu3qFTSoGiXffZdP3Dy9 Uphq3Aj83BNuBWb5UOsijIqNwTIzqc0mlpFfpBBkrrgb3BDavFingP5bzplzpP+SPMv0XgYK SVMf1BJgMYmWrVrLYV//LKEkRk5Hfxl/m/7Rc2fPAD3SSKVsErmhQY+0w0nThuKvX5PhqCdJ /3VuDv7+a1gxPoe9JeBooNI8uX/ofqCpTs2eqZ3cO6+gTYYj0UDjSafVDlKjejWxg5l8AzjX 3OID0jYJvmRC5CIjo/VWKtec1iutJCWPsOaEE2r7iC6/8eDv6jVrI+89KEVn1dQ0N0tYqogr 4BDTkP74Iyrg0NFNv9HUKVPgjzmuCL0NeLXhI0ZKDDTO1JrUkXR8lpZiBhItFqeLK3xKEyeO R/HS4crX+ji5hSznzvLzvXt010E24IOzpKlg6nM8gKCcN2c2AgY9lT+LtGShCy8Uy6BLwR2B hyHQchhoM2Q8zvlEECLnqXyWpv5+xic1cnDBfJ4oPsL88CFDhsLHs1OeJOeQcy5X4FsbNLC/ 9B84CCl/ixQP8BlOp5qrpeZkzH24/lGoDTBi+FAZCAjQYnTGXLRooYJOnTmLVsKonm4HX/Kk KdPkDmBwhoMCwT4dn6Uxv2vMNTzwLmFuWwGzGjVqpMLIBqKQx8tkYPUdBHUYMGINRiIa9oD2 zlu2ZQp5MuZ3Tb2GUfLNCIq1a9debOD7Jk8SlbIOvnIKTjbVGwCYmV8qi408GRF2Osd8lpk9 Bw/H8WPHIIDWRwUlyYtzUP2JFYm4j1bbr5RxqJjEQjqG+538smn9GvN8lsYQlk7xUECMCD4d jlxjRq35mjBpEtKP4qENvYLTdA1yVRvDQX0gjbBk5Gz5ClY0emDMz5l0DQnBk49YNwYP+KJf giBvDjLsKcBj5kAgLVm6HGZvTK6ZCuk9CDc2wb+MVmt0nDZ9hpyCwKHGsWPrZmUybIWZa1i/ UpnlyGRYjOyh1JveJIJlcDHvT5+nIR35t5bZQu2N5jnnzXxzbe6LFi/VFy22xDxMvcc7AOV9 Dx9ChH2MjBw5Uj+v2RDiTC+lv3rhPFvQtBngW+dT3F7BrJBosRWme07AdXjAUFvXabY63qQP UzNVb6C53xTsKR5MDLYFIPD1ENfk9mGehODTvHlzVZV0bV35L90B9EP6+hySTgB+z0DKaWqe jIfQsgdumJXJcnMcA2KHCTKG+2gOAqWs9sXkiaWL5iNxoqN4oVSkodJB2gcFHgVixTHLVGiz NMvMiKD5O5g25rV3jwriWId5FFDmEMxwVvs5dTpMuTesI3sUoNuDOMJdLjsVLi8vDc3H/wsC U5q/LS/Nj3PhHKmBs1aEF9pL5JaZnR06cM4v4P44jMzB88CPmnv45IiwpPZ2DaYwITNvUOzA OsyjABeVKZKn4ct8Bp+LuYts3q9/nN9iQeoo+LMvXLxkMsb246SIaU9F4cj862AkMhBP+0fg Sa1XfDjSotnh09w554iwpGqrZd2YOzHTlvDjvJq0o4aenQX+OClj/lPRjUDT19KwFvNn9Mf6 phb8oRL0R9nbFPDPUVdAyzwzl+IWF5bmTsT6PSsFrBSwUiAvU8AqLPPy6ljnZqWAlQJ5hgJW YZlnlsI6ESsFrBTIyxSwCsu8vDrWuVkpYKVAnqGAVVjmmaWwTsRKASsF8jIFrMIyL6+OdW5W ClgpkGcoYBWWeWYprBOxUsBKgbxMAauwzMurY52blQJWCuQZCliFZZ5ZCutErBSwUiAvUyBb wlLlsiJbhxkRL9AnJDVCXqshx4IMWbUWzctEysm5afnALHOvFdvVMiO0PHvtM62vd07O549+ b63MGTPIWIxWdclk5WUM7TMWelGfWbg47R+ddhnNnxl53OPstsj2zX/WYbawJOOx+hArOi9D y4k5KOHk7e2ryiFpjMkKMNFo97kFTYHiE2/8WWmc6XNzw7KNADto2qAdp5u7J2oe6tqwsihw 5KWLsmqlneoBs279BlU554+SZpbbC66KPOBgjgg/g145K2UW+vL4oPEbq9Vr/HoBnR8d0Ltp 5sxZsg9l8F5baxdkuUws2Rbg76tKyl1FibM/68iWsIxFO1ytYdMwFE2tW6+hXIrUVRliPiaL 2u7c5iwVK1aUk+hBbh1pKfAIJcN27NiGsmBbZRb6y1SrXh3VXLzVhS+eP5G5c2ahlNxSmTZt qlStUlmmzZyNMnO6cnPWkZICrNzPHkWs3L8N9Bw1Yhi6TTbVNdmDIH2IdgIbN25QPMsujrVq 11HtEqwjcwr8jMI4+zxdpXGzluqw/rOObAlL9qO+iwKqLNl05nSo1KmDasPHT+qFJd+/HHVJ ypQuKSdOnfmz0jjT536BBH/2nqaJ/QRVnVuhi96ylavxHfTUjr4kwSGnVF8b9odZtmiealua eOuOlZbpUIDCknS6iQrdpCd7B9VHmwP3PV5KWD5FwziWZaMpmRgfqz7b6epppWUWFHj//q0s sJ0p02fZptsA7M9CQLOFpUYgMiFLIFFYzrCZKTdStZ68haZhFcqXswrLTDhK800+Qpe8sShg Gn72ghKW3PCGTbOO+R+WmjiQ7tx79GfhT7Ofky6MqzFRMmHiBFWQOrXf8vq1GGVWxsYnmv0b H+sXSas3b16jq+t1FMeOlpMnglUr3ICgk3mmfqVWVzMhPh6V5UNUMzlaswnoH34O3TS1Vh2W XKNsC0tO6vzZCBk3ZrRMh4mYuvr5rZtJUtFCwlLraWxJAuSFe5GGXOT5c2fLwMHD5HpcQjqN wdD/esNa0HgOeoqYXwT4Y6Wh4TqyRW4M/MBjRo2Q6TazYDre1dOTtVZjUGF+0oRxMn7SVLkN y8hcH7B2yP0RCuAay+d8lodoQ+3muhv9tfaid1aQTJ44TipWriKPnuadmqpaqTgftPKtW7ce LNoTaED3s3i670aP+NGwIp4Z+8hGX5dtYUnGDMHJM3LYUClduoxs3rZTtX7VhqWEJYnD3tJX r17NM6eb0VTO4kJu4MsIhM2fNwc0LCUzUa5f69GsbUiW65+HdgiXY65B5zR/sKVBVFRUjpy8 5s/Kst989/aNRJw5DS19JLpSlpV1GzbrG9NRWz8bES5TJ09CJ8fSsgLte39CG11zBgXLLZj8 16GB0QIwV+ia89s58R3O//nzp7LOyVEWot89C05Tw5yOfvB9+g9O0+Y6J+Zg7D01pM3jh/el a6f2snbTViUXLqFlzZat21SvIEuPbAtLTpoC8wYc60MG9ZPe/QfKm7fvLC4sKVDY1J6Np8jw H9NQrozknukLbWdLc/SKjo1L1LdvpV/TdfcuOXosKNsQLHbXHD16tGqI9Uff3BnxgBb5vnP7 Frp4DoC2PlTuoyc0h+6zn9GL55FMHDdK2rTroDQmcwZ5ksGiefPmqX46f3R6UticDD4mvXr3 kYhzF5Twibt+Vbp17SJr1m82h0Q5/p336Lc1fgwsiJlzUXD8pRxD36KLaB3xyy+/Wvy3zRaW mmT/7Tddf3A2tHfeuFbGTZwCB/pP+omyk2IF9OUNDg0ze/JctGvXrkkTNO4qUKCAnDt3LtcZ U+eb1fVGseTQNEeNnieCjkr/fv0l8Yau7/FT9Is5cGCfHD9xUh0S3KBsyGbqPHh/fq979+7y 7bffyu7du9W9PtTICXr+zpO63uUUii7bt8hUNIDTWiAY9pL2RsO1PqD1sxemayG8/82bN1XP 8ZIlS0pwcLDJa/KhaK/9rqboXEafLLYvZlfWJWjsNXrcRNDriWq97LByOVADtSUs4twHni4w 3WyxDcUhEpYReZmDSsYyzHnQsBFovxImJ+C/fPfufY7Ih2wISwgw9IyOiDir+uw8gp/Dbvky OeTrp2MaMBMXg53iGA0/diJUrymZQnXdgv6kNjdNqr/+9a+qNWdub3QKSvYavnLliinTz/La +4BXnTp9WrXqfQcG2LVzu6xxWqcOHIKnaRLNnDVb9h84oHoze6EvcgjgLoZd9bL8EVzANTl7 9qyi4d///ncZhs597Kn8obQhCrJDhw4pM9ZSg6ZwQnycROA52V6W0e81jg7iuXefEpw3khLR Upj9jF4oLWTjeid0zdxllhZCeu5Bv/TChQsrerL9qmFveks9U07eh4FZNh6bP38BLJl4JYhm zZgmA6CJR1+OEX8/XxVw7NSlm5zN5d7lqZ+bfEr3yl4PN7F3XIM2ES/UJewyut7JQVq3bY/W vAFqbXOKp9MIS52W+KtC6xOCYRhVovbIzAdqOIpZPFxl4MABssreQdzc3OTQYR95mtxXmsKS je3ZlrR161ayc7e7crqa+iC8nhuKzEiQ8X/+8x9p1KiRxMam32pT09ReYp4J6Ht99959BZ5/ jlOSWR2mamTaopEObAfq4uJiFP+qvh/oKJcIWNBbA7eE6k+EjUwwNK85D2bt17efzF+wUHah 1/m+ffvxvHeVFns69KR069JFunbrJv369ZO+ffuih/gwRMvPm9zpkRuZfZRJQwrMUqVKSWio 7gBLbyjmRFIBe4ffunVbrTmFN9vhmktDw9+hZtCpUycEEI5nTU9mioFWj8iTQFvoD0ryKuik 8SRp5nNov/Qf0B+tlu3Ak+7i4+srD6E1/RffP34sQPWVXooWyLt3u6Kf/AF59PiJWTxJXmKr 3WnTpknBggWlZs2amQp+0lPxJKK398CTfIYX8Aly7rTOcnOQlqQ/W8B26dxBRo0ZL0k3byth v9/LU7p27Sq28xdKYGAQDpS1Mnb8BIm5ci03p5jitzjfJ08eiwvwyI0aNYSwdFJwOg6iHjjn 5XarILNy9vBPIywpEMNOhUif3r2kWYtWcF4nqElxsWMuR8pwBHL8jwYpgfro4QNoKxFKY0mC D4zZO/rNl3wS3IbfiEEZMjkXyFRhyd+hiTMbfb7pSK8Nk+Drr79WQiu9TcvTMhrYzkWLFmDD rEAmxypxd/eQiRMnqr7H5qZdUlgOGTJEtm/fngXT6Mz1a1cuy8TxY6VZs+bi6x+o/w6B0ZPR J3z7zl3w7b6H4Hwh5+FWCEcnzFg836tXumwTFZUEfUk7arPaKw4agKlmhlq7mBgZOnSouh+F PjV0NqJPbz1I89swMe2WL8U1i6HprhVPT09EkMfLjp2uJmu16RGMvNC6dWulrWc1CIo+Fx4m /fv2ls6du8oZHBYaT15B1Hv0qJHie+Soojv7gp9FFz9ql8Svas3e+JzPcZBHhIfDGoqQeAit 14b8mtUkDD7n2vCgGT9+vERGRkr79u3lH//4h3h5eaV7F87rOhI45s6ZLcuXrxDHNU5yYP8+ GQVh640MIw0eZsIUsnUpm+Dt3L5ValSrKn/729+kTr36smHzNkW/VxBCUQg2xoDn3uGQf3D/ vsTjwHxv4FrL1o+b8eX7d2/L3NkzpUjhQvLpp/+WjuCBYwZ4biZ2UEkzVbaYOpUUwpJMEHXp gtjhVB44oK98+tl/5NyFSzr/DxjW0d5Ovvrqa7kUc9XU3zH7ep681Cq9vb2Vluvs7KwWuEeP HgDE/w4J4Rx5Mh4+uF9tQlf3vUqju3vntjSsW1sqVa4qIQDGm6sVGSssdU7xayqLZPLE8aDX V7Jpi07A8rOjfoelUKEfxHnbjlzRKJRGgw2wfPly8fDwUDQ8fPiwfP/991KsWDGlKWpMplvn 9xJ8/Jh07thBVuEE5ya5BxqOGj5U/vmvTxXWLgNl1KQ1NkZY6vyaMBWRUrsVEc4BfXpJocJF 5DAEDAe1M5pgpYDCCMABnlsaGoM5kyZNktNwn5Ce69atk88++0zatm2rrBdtKD8xosn7vfZI ixbNxeuAjoevAyzfoV0bKVykmJy9EGXyJudvbNy4Ue2LzF5LliwBBvFkGgWBfMi00CED+mBf VFP7wjCH3qSFzIWLOd/79+5IlYplpXuP3nIDlqa5Sk92pptGWF6HeRsbe016/9hVatWpLwnI 6eai371zS/r06C6Vq9WU1wZmZXZ+PKvv8nfDoQnwBNeijXHAI5YrV06KFi0qjOxqkA3+e+J4 oNQFaHv+oqXQ2nRa7GNoZzWrVJROXX+EW+F34ZrZb+tM0HfqN+nX44uCuQ9MuDVr1ujf4/uE 4qR0VfyqrqXzf/KEMVK8BMzdMKZ66kzGaZPGSeWq1SXk9BmTN0lW9Ervc3UAwiHO3HJq5vw/ Na4uMO//8pe/wOzflwL4Hh15UTq2bysjRo2Re/BDkxZPHj2QAX17yQ9FisvDx09Nngbv8Rr5 2Rot+S/p07RpU/X7hu8TXKxtBJ2/+r3chNVC2FiXDm2kTv2GEnNV54KhptizW2dp3qqt8rnl tGahafxBQUGKnpwr36N2WatWLcmXL59yK2gHMgV9UOARaQy30dz5i/Ra7s2keGlYvx5SMVvI y9emW1sUllQaaBlk9uIBmZ6wJO2ewZ9boWxp6dm7v9y5ez/HaUer03CdM/qbxWRSC0KlyQcH Sr7vvpPFy1aofu85vdbpMXlanyX8J5HAKpVFUGYsIttPn9Gn8qscC/CXMiVLyOjxk+Q3S6gW Rmw5ag5LkRfN4I7GgNRIJk+erJzqM2fOVJuQhGP2S7/ePZWAj6OAp3jC+5cjL8gPhQrJrLnz VdDEGCLzmhNoIj9mzBj4ZAeqF32GFNB16tTRv8f3ad7TpDPUJqjh3L19UxrUqy2t2nSQJ8lg 3gcwJyqWKyOdu/UEUPq+ERTI/iWkF+nn5OSkNExNA3d0dIRJ86n07NlTaZc6Te29zJ4xFcK8 mgTAX0Wm5fVXAeJu1rihdMK8fzUDDcCDjCYq3QAaPXnwfAfmb9GiRQp6EobzAELakJ5qDnAB FS9WBJHaSfICrgoePhfOhWNtv5cJk6eBT82D/5hCYWXKYzM7ODjAteOur1pEHqTv8pNPPlHQ Nk27fHD/ngwe2E+aNG0hFyOjFQ/zdepksJQrW0ZmzJ5nFD+mnqPSDGFF8UDP6qWtYep7RJwO kS+//FKW2TnkSgojg3na2mf2LwU806gNB59hxZIF2H/FURglINfkT2qapRGWXIjtzhukIMw0 V4+9yj/15PEjAFMnAXLynbh56vwyZBwWyvD390OU9qhylGcpRPEd+kTo76FvLrPB+zPVik50 Q+Jx4/n5+cGULSRVq1ZV2hLhA96A1xQtUkQWLFmh15T4LPZ2S+T7QoXFY+9+NWd+/97dO8iS iYdw+DndKfA6al/8HS4yX9zs1ITGjRunf4/vM0KtCRvtZvT7MtBQCDRc6bBWbRAKrS2b1snn n38uC5fa6QU3nfzEhnn7+Mit23eydBNwbtyM9Ls9NiI4weAYAzs0GQ1TJ6kNVa5cWX744Qe9 NsR86VIlismgocN1QRHSC9rRHrfdUhjXrXJw0q/927evJRzA733790tUdIzKt87oIOLz0+dK 81+jJyPJlSpVkoULF6agJw8pCp8Um4Xulw1O8u0338h+bx3agr7eOTbT5JtvvpPtLm7KjOT7 FFCM4vr7H1EIg6wOR37+FMEDIhKyKj/Ga88jlW4uKmwRyqYd4HyfGhxdLtQwqcnzvcAjvuDJ wjJvwRK9L/r9+3eyctkSyZc/vxz2P6oek+uSlJggBw8dBNKBtQBeZTpvTcPVhG9W/6amAffL 8iXzpcD3heT4yVPqOTRr6uKFC3IQyIsLF4lVzBqsz2uuXI6Wa7G0WjIOVJFe2tpn9u+pU6dS uDJIH651u1bNpUnz1pKQdFMpQpwzoU0ncfDwfkmIiWQlf7RnPHMmTB4k425NOSzTCMu3CM93 bNtKGjVtrsoxUbtjRLt9m9ZSA1Varl4jUX5VfrnFixfK0CGDpQYq5fQfNBRBnlsZLjInynuv cVglNXGfuMSbGc5T035WIECzc+fOFAKEn1HzGDBggApSrF27VhFzNjbOd/kKqMXnUHOMvSLl ypTUm258lpATx1GsopnMmDlbwQyMHcb6LDk/LuKMqZOkWPGScikqBlrAOwTNQlEFZygOoUKo gqMzwZ8+eYTyaytU4Kh+PZplzZXbI7PBCLX7bhdsyppyOjxzvCkZir5eW1tbFXU1HNRIqMX9 3//9n/K/ES2wx3WH/Bt+6rUbnVVWC7+fGH9duiFi+v0PReVUWISa9zNgPx0d7FXUtDGik5Wr VBFHp/UQcrryfMYMY3yW2n3or+rdo6tUrVEb4PKH4KNXEnDED5kbHaRKtRoSjUitOuAgcObZ zlUIjerVq0mP3v3kEQRmRoPfeQm4jL3dMqlWsw4OiMxz7jlnJkZs2rRJj/PT7s0DjH70f//7 32KPEnDMfJk9fbIU+qGIHEDpQma1USgyUFW3dk0pW7EKUi3vq4Oe8J2ZqDjVp09vqQJazrZd kGnAguY/LZqOHTtm+uJ86KdODbO7A6undYum0gqA/IePdGgA8vdB4E5HI/jXCf7qEiVLyf5D vhkKTE3xiLx4Xtq0aiFL7exzxGesDqjw08qCmDN/sbxNPpTJr06AhQ0fPlzxYP2GjSUSh3Zm a01tnNjaatWqQU6EGsOmKa5JIyzjELUrhtNw0tQZMB+fyZmw07IeDuzWLVvIgCHDEbGNU1Cc mMuXcbrGqlPAE5pHnTp1Vbmr9E5yvscTKDQkGBkVg5SZZygsNYlPv5QOSvGbit7SL8ToberB e23btk2++OILBSO6eSNJRo8YgpPyB33mwa1bN4FRXC1fffmFDBk+Grisl4oxibUbOmiATJw8 NceEJWnYGoUHOnXtoTQ01vRkrm0P+NfqN2oqcfEJyny6kZSAqO15lZp1IihQypQpJUeOnch0 wYltHT1ihJQrXz6NsCTdSEP6Ufk3ze4pU6YozTF1xJWfU7ukKV6jRg0EUVDnccVi+fyLL1GJ x0Ntbmq9zpvWS1nMq0Xr9irHmt+7HB0pXvA1JsHvGI9DczRKodVr2CRLQW/4YMYKS/JGeFiI VK5YXiZMtVHPRJ4kGqJJ4wbSu99AVbxF5XzDEokG3/Ca/Xvd1YaPyiQYSX44TeRHrx5SrlLV NMKS97x9+7aeJ+kvp5l96dKlNBYA50nEAE1xRscJERrcvzd81qXlaBDyliEomVG0bMlC+b5g fhkwdKTCJ1OBuABt9QZoyXUjwLptu45p6gOkPui4pgcPHsz0RU2eGp3h2nOeIcjSKVrkB1g4 K1TVMPLf69cvlXZMbZzz/LFrJ7jhpqbIxjOcA+9DNMzaNaulcqWKsmi5XY4ISwrx9WscoAjl E58jgUpRIhrkwQPik8NU0fFL5yJU+cIdu9wz3DukQey1qzITbqbixUtIEHDfpo40wvKYv498 AVNxMbBofr4+shNM6XPYW01mEgSMnz98BtgwWjYL/+bJSJDzFWid6QlLXsNCEXRKb3XeJNVr 1kohLPk5F4p+QfrWKEh4Lf0XTMtL7QwmBpTXc5PzJPf2PiQzp0+RL7HR16zdAFPpHKKnW2Tp 4gVwHXwjm7fu1J+QrDo+Y9pkmTwVDvoc0ixPhZyQUsWLyoQp0xFZDgLcxgXFU/2lAaLy3NyB gMuQKTUakmYJcdfkR2gC0cj9Tm8ojfXFM2g2G6FNr1OHRGrNku6KXr16KdA+aUSTdvDgwcql kJ5DnYGoBg0ayD//+U9Zv36duGzdiL8/wUE5Xc7DHNuOVL7ly5ZiM1SQGSjPxU3FtWLgiwWK aXYxaOW1x10aNGqC6j7GF4Y1VljSQvB02yXfYR0d1m6ERumvoGD+4M2SoPFE0DgUhzTdOnQZ 6UxK5AhfiAA+tbvcBqYxo3H75g1oiRtl6ZLFUqtugxTCkvRmphi1M2qSPMSJg7WxsVECND16 0kSvUKGCgrb5QFDZTJ2Iv79V+eeEh20AjWfPmonNWkw2Om/Xr7/GBxQMez3doSTMUGZiRi4E U8xwXmt4H7qINq1bo/yVbnCz+QKHSiwyhYnm36QlZDNtkmxCnYeMqvfw2gC44NZvWC/doQQs Ac4xJ9AIz2HFjBo+WEqVKS9H4PI6FnRc1U3g72vB3aeP7qt1YlQ/o0ELYpfLDqzlBhV3sIiw PAHg7j8/+YdUQN3EpcCE3QQgOTDAT4oVLSz9Bg6BQIzVE18zOWmSuex2Q7QPfqtUs9Vt8hfi 4eYqwUjZox+nBvw6hpql8pMCv0h/HgMO1I4YDKgH07Rz584qcpv6RZhG8eLF1aITaE3IUHk4 zb9BKl/3Hr3E189fFs6fIz8AanIp6rJ+zjSPbCBYJ08zXViOHTtWBUsyG3xelqsrX7aUgrlM Q9Wbq0AYXLpwHtCHctKyTTuVDaFl4OhMwReyBUJw4+YtKoqf3iBj+Bzch2yU/RJ68gT8p03S CEv6BanZtGnTRmnmpAvNuoxoyPcJUCfshUKVxSeqV60E7fJzpJY2k91uHrIbGUVlQNddqOCu wUu0DYipK2iPp7urjBw9Vu4/eGj0Ya2lXlKgZzYU6HiPhxTM952Uq1AJPuDVSpMMAfIhP94b CGvnKvxlhv5Yajwr4Bfcu/9ghphQbjZiDY8GHkdyhRtcNY3SCEtG6klPmnpMcOjdu7fySabH j3yvXbt2iifJx/QTB/j5SGkERelXbde+IxSNI7IMB3ilKlUlONlXqD07acrCxRTcAZgT+SMj YWk0kdO5kOu1xmGlfI7kjnGTJgMaeBEul5/1v0W6RISdgmtmity9r0NDpDcS4N+2x1qQzwb2 651jwpK42aGD+kuBgt+LHQ6dxKQbeh8r5/YWUXby6KrVa5QQTW+w9Q21aWKbz8Kkp4JgEWGp 2hzAQR0PU5FmCCfEnFGq849gJmjRUL7PB9m8cb1UqlAeUeh6yF8OSePj4OIcwQnk7rlHmcLH IHirI9vhmkGhCN6LUUYGLXhqc8HolzEGasBrKIz5nZvQFHi687vEBnbv3FHadeyiflcbFJYz Z0yRKSYKSxVUgGaVVREPPgvpxlqAV+BL0/rm0F9yFcKMGoPSfpInRE3X1WW7NG3SCMGWwnLQ xy9F1SblG8KzhYWGyMZNW1QaHzN7mjRpDPhReAoTSzE6aMigF9eRdDGWhhpkh4KGNLwLLZXP MXHsSKkLuI7hgaPRks9Bf+JKu+VIVDimhKmxg9/Veg5ldfgwDTQm5jJ4MlGv/fC96OioZA1X l6+vTEOgItbCbKtRvapUrFQFOc3nU5rMyevj63MIWFxPHPBvxcvTTWqjyv89ALA14cB/CXc5 g/RIBsnM5cnb+O4FaOnMtSZtf+zWUbrhML+JAs6Gv3UbbqNZ8LuXgnDt0KmrUkq0AJKxNDXm Op2C81zNSasBqX2PPHPm9CkUxBmIgyif2MCaSG196YJod9GawwEuuQSs/13AynorM/xnFK+w tIDn79FiUvngsDgN78+Msv1ee5WLsHDhorJ9l1sK+aNp4PSrrrJfDRTFK+DIzythSdeIqfTN Rm64rlkZBUggYEWNGzZQ+MbUTn6WUOrfr6/Yr3ZUPp15yGIoAjD0pi3bgO8yv5ZgVhvsHE6Q ytDkFi6xS0FAc4WlMYxozjVcMArMSCQDdGjTCqWwBiGz5PeqSlzwe4Ac0XxbtHipctgvWbRQ yqI4yaIly9DbKMmcnzXqO/Rj1a5ZVfoNGCJPACFLvREINTqCyPNuVzcF3bH0RjFqkgYXqc2h 0klf4EAJkTo1q8vseYtSQmNwzfVr8Pui8pIT3Bmenh4yZfIEKV6ytHI5UZvKicG5XQMEq0L5 smK7YLEeB6wJeWrGrPK+Cyl9NTBvF+U3tnzlnKz2DQ9IYqqXLZ4vVYAHjjh/KcVXfsKhvxVW 0ERopeRFJl80alBPevXpL6HwIRoW0ckJOhreU0OZxMKP37N7V+nQuZs8MXCtkeZPgeRh9s+C hYuU/LFfZYdU39JIL16MLCXTkmvMFpbapDVT3HbOLJkzb6HSfAwH8YYDEbmmCUtweedOHRXE YtTY8RKFZH1LbzCdZvdetjlvlPz5C6g2F4a/kdeEpUYrbgxnFHag1vHSwJzg3BnlXYBaltzg hC792L0bTv780q37j3LqTESO8CQZ8UJEGPKeCygsnmGNUqXtYr7hCLR4AgLE8mca/MTS62nu w9GisZ01Xfk0UzQlw9yjoGlMmzpF8STp2bp1S+W+GQf+1ADv5v5uRt8jfdx2bQdCogTaXCAR AP9PPUi727duyFAEQZ1VXdjcFZa/72nU6UyKgxusvrJeDAeLWdBlxJRZ7udhcJdRG64Ny3LL 9h0ZmsKWpqfh/Ui3vfBrt+vQUR48+h39wPfvIli1aOECVMUfo+bLNG7ie7v36Cn+R7JOtTX8 HbOEJRee5iVNS/5NKIk9OhC6euxRp/h9YN3oP6P/jZHz+zBvtBf9T5XgRws/dzFTbJ45xCVx nqF4xXFEltu3bQ0YzOey/6B3CtOZwpIBnklTp5kU4DFnPlme4qCfli9PU5uV0O3s1ygTmkVI LqEuH/OX6VOi1qFoCJPE18cbjFxXDvse0XfTtNT8SENaCyxGPGzIAPjfvpAFi5fBZNZplnyp NiLwa21x3iqJ0GyZa8xc8sioaIsffsY+F+elAbT5N/lu0YK58KUjxRPm4UPQjvjH98DW8jrm E5OexApv27IJ0KHaKh/a0jnQan/ALcSUzZbNGgPz+wOEyk5lgWmHDnlA81HeArJj1uxZClli qploLK3Su46BH+JbWQeSAbKk+GsyYBCCgyiwQW3yCtwgdM2oYjow47X9HAOMZY/uXcRm7jyF nsmNOevW9+fkUoW6+e7b46aKZlOzZUWpS+iKyspEvI4oA22+J5HKW6tWbZV6yq6fpgwzhKUO m0bIwDS0biWI9gjaZDpv2ar8cYRjLJw3W/mL9u4/lMbBfhrwodZt2koiFsHSg0S8jlRNglSp ctNM0KrO8Ld0/pb7MmHMKBk7YZIKXhlqTJaeT2b3o3Dc44ES+MNHIshwTE4EH5eVwOcxSMKN vmPrZpS2K60wjykKmeIZLwAq0a1bVwSKdHn7lhwMqFDwMZV0zx4dDQ95H1aOdWo63CxEP3Tp 3EkVCWHloI4dOkhz/E0/0IcanJfjqhWAhE2RkJBQANN9gIxYrwDev4CeLKpctlx5YAd9UkFp flM4Yvq2CfK39NAV0YgVHyQdkJbkSwYfiRfVXCzzbOfATFysEAgeCDbtQUk5raCKpeeT0f2I px3Qv59sQc0CogBWI2h7BjUsqQGz6WCDenWA5BigL6Ks3YcJKxPHjRbHdRtyJBqe3nwpHI9A YRg8eAiSOXwB/wqVlSiYk4hmdOSDA6hCxMDl0uWrVNDZcMRevawCnqFmdJs1S1iyqAb7LxNu sh69rE9CYGq52NxQ1DqIR/NEVz3mcRqOh3DAByH8b2hqWoohNM0nvX/5G6oaEHCbxKd5A9px FTnGOdHYyJjnYcmwRLSK2ADoBQsxMFL6JLnpEmlIzKADel8vBhYuRaYRhCMZ9ASgU4+Qp21p YZkZDTWN7TICK/uRubMXtTW112Ew7bPnvwfSjKGBJa+hkCdPOiF3n0UmjiPKnoIngVBYuniR QhwYBqKU6QtTLRjX50Q9yqzoyWju8aBjqLvpKNuACLmA6DTnYel1zYrW1MbcgQVmGqwrStvF JybqtURmOLHO6iT4KZl4YjgIMzqHymO6ZBXLHtwZzVnnrrgpG7F3nJCU4o3DXMvWoiBNgOBf jeSXhfDx87A0HNSKg4NPWCaDJyui8nNOlloaBQ1fhtFd/s1KP4cgkC7HXEnjd9G+m9vMYDhv zlF7fYh5aDSmwKQAJw15gmtz4YKzcK030t94uqdgQmUK6+avbURj1sxS12jrZ0jDvEBL5oqn 4clkrZv0YtTWC9V/LgOhYGgqGj7Ph+AFzRQnDxjibi21XsbeR+de0fFi6nxymuE8iJiIkDqA +6HoZzhfw/5Hyo2EpARaFidgYaRuL/H7fE0X7GZolpmTn4zIgrEsHKxBj4xdMOt1OgqoepKA UBG+ZWkf2p+RxoyQJwDDyASHjApL/BnpYuwzM7XwKqCDhODlhk/S2Hmld52mrCVg7xBqZMlh cWFpyclZ72WlgJUCVgrkFQpYhWVeWQnrPKwUsFIgT1PAKizz9PJYJ2elgJUCeYUCVmGZV1bC Og8rBawUyNMUsArLPL081slZKWClQF6hwP8H9hYFVwfIs7wAAAAASUVORK5CYII=</item> <item item-id="53">iVBORw0KGgoAAAANSUhEUgAAANYAAABjCAYAAADn5P7oAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAl4SURBVHhe7V3tteMoDE0D08erIV2k Cdex00Gqya/XSYrxGmwn/gJJWLKF5845e+bM2sjoSheBIOjW4g8QAALqCNzUJWoKfDXt7da0 L02ZkAUEdiPwbp/3W3t/vpOSnBKr7/itAaV2+wAEmCHwft6TA79DYgVS3dvMYGAGFAQDATkC r7bZmFW5I9arubXbgSoosEG497O9X2q6CD2rs2fwwfuznU4MfRErrKmS0z84XHUOlx3+r2XP MC2crrkcEStMAXOJimsZIu1z0LPOAWQ+JfRDrBBOs8kKOFydDpcaQq5nzxC1Rhd2Q6xpp7ZN cT1DQM+LrZknwcEJsahpYHBBLrGGVP2tS9eH/5JRsH/PX0ZfS88gZ8Ag/u1tP1BLT6695fk+ eYuvHzshVgfyIquyVopniJBV/JIptZH3NUatxMrr2ZNqupjO7bnIHUijhY49efbW6C9Pxqvp o7APYpHrq6BUIsKETOJIyph6n08vokNNSNs7WEe+LlHSuIxYCnpunlhJODLPXwzeUtCTYW+D jmdFjkuaiojVUWu1000dLVk/fz+fwxEpr1NBHT1X1t9wwqOdbvk9DXvOZVL+YK+xO2I1zKMW MfRP1g7b57Um8+7kFNMvseKKUk3Pb7T3eERMR0+Ove1JFZEeMoNuIhaXWGJ4kgd5fRNLW0+P pBLr2I84+UQM9bzoo/xG/w6xUmuz5P8fQNxzVGpPW74NF29uDBSxH/lT2N0QW34kbE9bTT1n shID5p6+Ctpek1jJRftWWj0XscZUdVmKup/elLVl+RtHz/gOdZi5cj05OERAj9PTF7F+H+3P 45flU/mXNsgyzRoyRrYxa3hvmrKRPH6vOzdmSaytaEtkR7cTB100q1lPCodhzRPW5Efp+fv4 0/78dZRu11tjLTYMhcmL9+vVn1IWhP+v0w4bhEVtpeNKWs/PlsJsg7hP+oz7dlfQs0csb++j 9fQVsTpH1COW1EET7xeQ43PCuaCtUq/lYgr6Cj3TMINYlAuKHW5yekTcluqM4XNxX6Fnzhog FuWrQoeb/UBT2JbqiulzYV+hJ7HK/2f2sUq9UuRwywOv301sf2cRF4BAzw0PKbcnIhZFOJHD 7XFWqiPGz6EnDbAAIxCLgjMJ5jCa5UKRwBBUN8yfQ8/+5zVK9gSxdnrsqzvMm75VbqdwR82h p8wYIJYMr8nbFztjmMQBepa4CIhVghraAAECARALLgIEDBAAsQxAhUggAGLBB4CAAQIglgGo EAkEQCz4ABAwQADEMgAVIoEAiAUfAAIGCIBYBqBCJBAAseADQMAAARDLAFSIBAIgFnwACBgg UCGxeJfoG2B1sEjoaXvDla05QSxbfHdIB7FArB3uM2vKuqUJDlezw61d5Zr2RMTSGhTU5VzT 4UAsdUdhCETEmoAEYtUcmTMRa31DzXapHAZhuK+oEotbOtPrL2S5xKL0RKlUrvtpvrdNrKE6 xfxeDcblKXt7pkgsXulMlErda7L97XkDCGVP6vn+fsokbBArUw2PVblC1gF58kKhtGb30c+9 5iiVusNgGk0V7BkDQb40rkZPJTLWxNroJE/gupA0r93kLVbE0ikhilKpYuuYNegHuWm5I6rU 6d7nZqp8BK+JdWYlPCaxQu91SmsGSV7XWL2N9PT86uqxqqOOnp5LpSoQawnStFYwdSGiWbUR lEptn3fiQkr7gVzvC5SfUs/1erIpSTgVfLdvy9spBRFLjksqMuVKau68e/2Um3CFpVKHRNU4 +BXdMe9Fz/mCPQ4kH30O1lOWvNjMFq5d/PSIxS6dmZoK9uvFj1EKkzb+S6VeRE/S3sfrmU23 z/etvKTbObFqZ6nUVVnVgnVYDaVSr6InVSr1BD0VN4iPywpyqEWVzvzK4JBmMeKRHainVOpc lTr17HXglsaNKaH5jMTAnhWeFSRRUH8hpoOTNYzXnwvvx2h/ytqjXH3ouY1diT1XxLr9d5tJ l/673Kxh0PFXg3i9x0JpWGcJUeiZsmuZPWfECiSaEkn6b8rlyOfOiNU723xHn9KhxhKi0DNt 1VJ7rogVPjGSS/o35XTkc0fEko/g37n7bN8uFDObZhhJEI59AXrm8FYolbonUi2ni8Wu4YVY xce6Fpp7X2NBT5mrCuz5iVjStZQamaaqOSFWah9OfNpfYAiZhXXehp5THBnbSQJ7Iiu400dR QnQngM6aa9kTxCo2LGf/q1i4o4bQs8QYIFYJamgDBAgEQCy4CBAwQADEMgAVIoEAiAUfAAIG CIBYBqBCJBAAseADQMAAARDLAFSIBAIgFnwACBggAGIZgAqRQADEgg8AAQMEQCwDUCESCIBY 8AEgYIBAhcTiXaJvgNXBIqHnRcv4HOxH4XOs32PB4Wp2uLVXXdOeiFgnjB+8T17T4UAsnvV1 30LEmuAJYtUcmRGxdIcGRWkgFoil5U6qEYsqITp22usvZLnEovREqVQt95TIuWzE4pXORKlU ibPYvMsbQCh7Us9t+p6W6otYv4/25/FLYKBQWjMmIMNlnN2dfyiVerTPLb6nYE+HpVJ/H3/a n7/dHZ0no9t/njUVRKnUeRWYqeWoEqI9xst6vWfbfn1pKKXH3uf2GvuKWExiBVh0SmtGNs8L lNljLvqCnp5fXVEqVWSCoperJZZYW5RKRalUsdOUN/h3iJWMTJk5/nDvurQwwsccgptTy024 bCkslRoHnLEkrKwAhDs9Z1AscDhYT3fEuhcVwV04F1k6c70umX12uQ4pLBTtvlTqVfSk7H2C ntckFlU6MzeybYaOREo4F2ZqKJW66n+leorsHVfoXUVHYXQW2tMXsYLCgsqJ+ekTt3QmnbyI WStRv+oslVqrnr0fcO09ZJWN7flqeuL6SLdHcJqOXk7+xClEWH/IRrfgoFWVSoWeWYeT2/Pr x06I1Y8mGsssVWqK1lhlpTVV+1sqDHpuIFdgzzBQDU7shlhxA9Mfs9hz8tLSmqVc0G3HX3tA zzTy0+Dgh1jepoMRP67DlZfW1CVIqTToOUeuxJ7z5YwjYgU/7vZWzoxayylRiKKixe5gnlP2 sQSkgp4CsEJ+JKy58zmAz3pskOyLWJFbt1PXWp9DujF5sQWmbmlNmYX13oaeI5YK9twYgN0R q0+fyrJxeu7Gl6RVWpP/xXPehJ4U7oGY6wHYIbGCIp7JRe9/Uaao4zn0pO20TarQzimxRnKl pmO0yngDCNghMG5Kp9ddjollBwskAwFrBP4H7yXZvRfbQwIAAAAASUVORK5CYII=</item> <item item-id="54">iVBORw0KGgoAAAANSUhEUgAAAK0AAABCCAYAAAAlvVYUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZmSURBVHhe7Z3btZw6DIZpIH2kBrrY TdDH6WCq4Wl3MsVwsMGAL1iSL8TIylp5SDCy/esbIQwWwyJ/RIGXKTC8bLz44c7TMgzTMuPP kJbVFfgun3FYxs83qyeG0G7CDJPgmkVGxZO/nzEroDCDVgE7Lpk/5IruEtOnAvMyJV4JWUE7 T8NSLsDuEXtYo/b6F76kKSdsbfVfbyDQcWx/W7ty81QYYfvG/OgItr6fZRw/a++0P3ygVTls MU+6KcYG3D24bvvcf9/1dwJRbKoG2MMgNNcYYFTd1p/LmirAAcHukwm0SqyCN10qAgxOmqF+ FHdRIXTTd7UBHUf0t+WBawRf5zmVjLSIvtFxMMkWPU3gAa0Sq1zoWZYQoNoh4R+GBsoDeotY aljQcUx/389nXwkpnB4Q5xoFONGW0ofiPhbQUicNRY4gZKEoYgzdRtI99wSO0/orCy2t77hy ybaIQYcBtIVTA3VbEoqcMWjXGKhvwi7hQt0Uqsv59l/x47T+GEKr82p8escA2hUI4h2oAeq4 03fv+pMuc/bqwDS7cEWOk/orCy0mNYGuTMdx0jxsq/OEX6p8P7TESwvKAaH8NXYjFjIayYF1 8+txUn+FoSX1DaiXYYuS4gm0QT8Ql2681MF5XAkdJy07FYaW1Df0kyfqdjHXHbRTlUdg8UVy lWJY64v6Zut8uOCtPULH0Qv8paH9hw8XBFooCsjxlhWQSNuyd2Rs4YSMsFbLIqetkx4IXU8q 0Fek/f1Z/v78Pqmv9FVBgd+fP8vf/3CGJdLidJJWlRXoK9Kuy0mSHlQm6gHz7UELLbTniCLQ 5qjXzLmNQWseX+KfLZOUFGhJcrXauBlozTug4zTdvtaXLaJAmy1hCwbagXaet60Ukh60wEXT Y2gG2kMlgbZpYFoYnEDbghdkDCQFKkJrv0RivY8a2y8hkZbkwB4bV4Q2UU6BNlG4fk7LhNbZ n4/a8w+I2xW0hH3/zTBZY8y0VyjTodVwuYUg/P1NZK27gTb9JWiypsVOqDFmen2GRGidt+2v ougXmPF7eIrpiTHU0jpt0r5/zCQrtik85tT6DGnQRnebVhQt13RL0GZs7MuVIfn8wmNOrc+Q Bu1bS2M2BC1tK3gyZkVPrDfmJ3LafwwtuK37zlUCbRbE74Y2mh58ly+1tF2WlISTG4K2aA0B ggRZTQunB+dYnoi0+27QYAW74KpCllTeyRwibfAdC2q9hLKywtYyahXEjT8C7TqEHU4b3AJL XrB06S1airRFawikS0I7s8aSlxrBU9Dq2VZ4uEBTkda6KWhPZ5lH3NTaq7TJl2r95ocLpTR4 0k5z0D45eT59pS15vXX+Au1bPWeNW6Bl4ca+JiHQ9uVvFrMVaFm4sa9JCLR9+ZvFbAVaFm7s axICbV/+ZjFbgZaFG/uahEDbl79ZzLYvaKXUJwtopdQnCzf2NYm+Iq08xmVBt0DLwo19TUKg TfI39fU8uL39YntkN3Nw14hTzSdQwQdtH60H7R3YsFlYl9B53UGb/wVy6ovQcPvwd8ZCNXqN k22oNZAHqP72frx9LLH0WgW+ZViXu9EItFg/mXbUvf9Qe8J2fOWsrX7vBdrA+dYGRIJ9jBSp tQo825AukcH0Ba3aaUH8oLOnHXVzH9Qeuy9MOVmNHYTQibRY+xhi1zaptQqydbwY6OuDzsTP rt/lU4MLfgQkaNu1OT6vUfSsLOmmBgrEPbre9nXJDy/jw9lHEms1y8tpIV3uR6T6xX/e4P2f ZNKRYlxilUYh91HFhtqby63/7dzTMTotMN/0BSPtOoNLXQqMfWjOsZuoVC0hXW7HpOZP6JQF tHoXcWTS4PZ06HLvqg20DzrvujvVpAWxnNpPGNdotBUHBO2nEat+/kcfSSaoOu6dUIMOD2hz UwTq3n+ofTDnPIE4bnwuXy03aYT+7QWr/Wy7pI/jXh6fCZwGKNMGpEvwl0BLDZQJJtDujiZc Ymz9qEs1UPuA82Nlp7z04Ob8A1SifXTYzIQ2oe6DlSYhx8kHWs2tW1sXqcIlytzVK/DWRY2D 9mjp1zdwHg4MkRsNzMOFm8h6f6NHmfuRp+SlBwgd7fu+ffWEOFRW0G6Xt0br6BIdw7+5Snfw KwZXPZhBa/IyAbdt6NOB5ZXT2tcdfZkbEn/JbTv8zaMzKVNahDUzZxhp3+xUGTtGgf8BqvCo ev7TL30AAAAASUVORK5CYII=</item> <item item-id="55">iVBORw0KGgoAAAANSUhEUgAAAJQAAABaCAYAAABe3n8QAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAb7SURBVHhe7Z3blaMwDEBpYPpIDXSR JuhjO0g1fKWTFOPFNiQ8/JCMbAujOWd/ZvySdC0LgbWdkh/RAKEGOsKxaIcaB9V1gxppR5XR Tmngo159p/rXxzsKQ6DsortBUDpl+4ydP6/eu9mZAaVh6lVgA2RUkwyN08CoBscJwgqoceiU yzHZHTF5Lc8/22f2bIc21wE0LmfYe5v+/WvSRKGfz0v1u/n4AKVjJsgxp4XoXJBYZR+GMLGY G9RCak+bxienN7bUHqO8nBridUzFBCgNAzAAxwKlfVfpnZuG0LaXV04PONUeYrZHHw+gtPIg 3smcbEgPFexDYflMY3jlVEqHBntv7vpdppUdhtUbdjEfC6DWC4oqIQWoKflQ4ziIyhJqEADK bqq1R9fyVYwVVw6BAVCI4y7VQ7UG1PwA8nXq+rgrGYwffdQ3ZGEA1LS7MMpI8VCh3X7Kjfg7 myPI92QKOd4jazZx4TyOniuUbMwk4mbYcbAesj5QmPgp0UO1FZTPdlyOvQqbxQXoEra0D1Qo bXCIRRB7+UxfyDQAUEzeboikW86sE9GXFVADJjUeOfKOx4wvWLWBeur7QnukAVMdEID2bQBA TY97kRxbORmvC1SKcXZ9lox0P+3u7dMScHATBE8JvZxAAZfia1ZaxnsDNY729QTCpf8MNz+V JvU9SQmi+6ewjLcG6muXBCi+rxoS+iJ4oGuasM4UGfkA9X6qx/NNp0DMSGhlr1Ic6L6YhRG2 Ra8zTcb38089/jFJG6CCckJdY4+8zdcQaENRLhwxFnKdqTLy8VCTwNcAanliOiYsIXlKBAK0 TVFApcsoQCUH5bvEIq356UdDAXV4HAY/yQpQQaDmnRpyPWcMRY+Nf0TvOmllFKAARh1fBb9+ BKwnRxMqGQWooHU8X3/msGi1MWllFKCqGbLNiQWoNu1aTSoBqprq25xYgGrTrtWkEqCqqb7N iQWoNu1aTSoBqprq25xYgGrTrtWkEqCqqb7NiQWoNu1aTSoBqprq25xYgGrTrtWkuhRQyw0O qQ/FrD7UCt9LAbXZdtir6NG7a9U2dXhin5zM6kMtQtwHqEnitq6ic6sPZZG6FVD+mlJMvZO1 kKdSH7/6UB6gfB+oZ7xuPSsOdUkBe+QZZqQ+VO6t4/BQbqWbO/yYcjvYlWNvvQhQ2n1t64lW rw/lPPIqnc0lgIIUnsBuhEj7u9WHQnko/+UPC+GpYlcFgGorKJ9JXm6zVNgsrr3kBcqV6zkF TGzn5wbKlTYwRvhd2Ey6qJn7GhUAlGB9qMIygj2UTSrGC4Imu3hioOL1oXZHuwEuLt9+X/Cu D1VeRjBQ2Z+QsEDFPF7s74cANuE6Eff6UBVkJAeqmIeKAYP+OzalcI36UFs15JcRDFT2gLa0 h9oBh5VPtzcxZe4YCr0x/B1KyIgIykOJzQpPedSKRpU1TKudRLhk9FA2BsYkp9NkvO6rF7RK 3R2gDxvr3qm1k4iWjB6mpIy3Bgq/a3+vb1xplaS0AxoPXIfSMt4XKEB+B2Q6zjFUBRlvC5Tv aXTrZWhrJ4EAJWxUQ8bbAoWxG1XtJMycpdtSyShABS2XkOwsTcLp+WhlFKBOG0QGWGtAgBIe SDUgQJGqUwYToIQBUg0IUKTqlMEEKGGAVAMCFKk6ZTABShgg1YAARapOGUyAEgZINSBAkapT BhOghAFSDVwKKPux2PE/Plx+Zz89mWsnHdrhr0iRahoxWFxOqQ8VVyf2kgK2toHUh4rbgKDF pTzURl4sUNp3aQ+Xs+AHgUEOQ3jlrFSDIiLjrYCS+lA5iN+OyQeo91M9nm+4xAkeKvvtZ/jq 4S1D34UfvmfXXqturPh+/qnHP6U6uISZWuaOocyysTdnM8mKGTZ40eAS9aEw0hK2LQEU1S0Q hNjJV/OXOSJrNnHhfLNCz5W1Qg5Abj5HXgGg2grKZ+vyrw8FwDBHk9xAudIG8+9sHisx9sh9 Lw/gVYP1oQrLyMpD9Zirt5GgPFofat/fW/c7vHtY14eqION1gSL3kglPSNzrQx10lF9GPkDp J7CKSUd8fHW9+lAlZBwHGzrUTxuYd3CYcjNELupbgxIXQ2njXKY+VDEZfzZkANSvxjURKrhh UDFUWu0k3IIytM4towZ3joNZAGVejWACc1Kdw+OLq9WH+qkpr4xL/KTn4wFUrWPvm0WHHHu+ /7qkU9X2AnhjQYFKkXEbsjABSr8dmco7l7DM3v1r75jyUJA7DwWGxdGwoIzfmHJeBh+gDFNl dvv2QzbXA8G160Np2xaR0bEZWQFlv7qEHD9nti+8L1XtJPiM5Vumy6g33XEzMgPK7C0GUNHW TiqPCWTGMzK6YWIUlO8VsHwfXiE/BbHFbdvE7cLQQ93WWk0I/h/YEdEKQDiNXAAAAABJRU5E rkJggg==</item> <item item-id="56">iVBORw0KGgoAAAANSUhEUgAAAHUAAABCCAYAAABpe5mpAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAUySURBVHhe7V3bleMgDHUD28fU4C6m CfexHbiafE0nKYY1YCeAwXqAR5DVnDNfvMS9kgD74kxG/z4Ogam7GT0WM02LeXRn2G8Y9DTr PJl5fVYN1hGpfkLT8n/SGbL4XOcqx+6EVEvobCodtMq7+2v8MAszY3VB6mOZDD5A94ietqje /vGpyrcrj1Mqj8c7ZZLnaubdFmuP+59X80qgUPmVN9m2YV9Iz5Mn1a6haEbTFG29GUPsm5j8 UOVy63Bv+zJrHmQ/VA4QZVMx3nF9Z8KkWpAImyLn9UmatqBdeLNfn2z0LGbJROpleWY8Vz8Y D8oyUDkcfPQ0LEuqBQ0dpdv0cwQ64MuO8VzXfSedT69QeQx6Gql+LzDbDV4u9W5J+LocptTW sI5EgUmUVKqxaZQ4SHLRm8WKu6a6QfzOPF0vN3c5pf9oHYTKcaS6ORJYFSSVmHp3jz2l2l8h NQAfPEd7IsscQOU5omlYCZK6TY66s2Ok3zdENZEanSKZu+ijD8iOfPQ+FvyRT45UYkp5p9pk /QQ2SlWkZqMyiLRi+U4AVI7MvtR1dSxSj7XtlduwR5r3ukg7p2aiKnKi2nI8q5T9hyipC+sR 0vXDB3uEyJ/roLSHfPhwWjK8Y+V3v5Y0qBxH7IeTigPh02opqZ/GKPGsOmD6/UDGEFMaI1J/ vs3X9w9iOlrFIvDz/cd8/cVhoZGKw0m81hiRup1TebtfcXxFDFBSRWC/d1Al9V58RXpXUkVg v3dQJfVefEV6V1JFYL93UCX1XnxFeldSRWC/d1Al9V58RXpnkpq8Inq9TiKo/SjTbfbwgaoD TueZzg/qL2l/ekELlQM64gKGVaSmNjrdK1V2giG3CalUHfD5pXp8xQHqLy3PqQuvdcKgjvg3 SHWyTKb8/5LbFqRSdcCQvATs7ywac06RKDHCwIjKETriEmbNI5WgTsTEqK/TgtQqIdpuagg0 2F99pMYAZRT/d0TqS5YRSDSosn8Usw1IrdMBO8+Kbtph+3MpdMcn5/BQeVlHXEauaaT6Nacs TwwncHKIqxAXJzWNOq+Ev9YVn9fkeI2EyjOkIZe3pqQewqnmKRhBKugwYLos5jJ3U+2UgaD+ iuWBJDTdVIJic0gQd6xW+KsXwUvyknL8WlEOAl9e+evfp+bu0UA6YBcZhcwD9VdLKqQjvli3 mkZqNiWhFk2gEiJS4WGgI0jSAzJq0t3sO6IL6fUVnVA5pBO+aU09b5TGfvgQ6oBf1xbTS8LR 3RfiwweyDjh5+IB8BsCMVDgumtZoEqlNLeq6MyW1a3p4ximpPNy6bqWkdk0PzzgllYdb162U 1K7p4RmnpPJw67qVkto1PTzjlFQebl23UlK7podn3Bik6lVGErt6lZEE1xiVx4hUffZL8iYl lQTXGJWVVBJP0Ku2tDOebpdkUqbyMKRSPqJYC0q+PfEl+9YJV7dba7+SikUQ1PkmHVXodrEm leqNQar9EhjyrX8tIMX2kNAMHBiv2wW7AiqM8cFJp7m9SSqDRBCWhBbjpvD9X+TA5Go0rOQ+ ubNNjJJSyDggGvBJDTpH6nYR5pSrEL+4Kkoq9YvTVGBA+Wp1+rUW4XS7VNvD+lTnlyVVOgVD Ot+UiQrdLp9UWuq14wiT6s4IhJ8w4UOTb0k90vB1u1zLbZRS7zLJk+p4pfzYEBcexKYncxXj /P1gnm6XZXX0Iwv4Hrog1a9L+G/E46c3ck3679Ecs+2E1GPDocR6YviE9rGmRsF0pDbZ86tc fLeZf0eRKgflp438DxWEclVjOqsZAAAAAElFTkSuQmCC</item> <item item-id="57">iVBORw0KGgoAAAANSUhEUgAAAEkAAAAaCAYAAAD7aXGFAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFpSURBVFhH7ZjtEYMgDIaZi4GYh2lY hmHSELRWCBgLej0b7/xjI4Enbz6sAb0OCZhDCzUAhSQQgUJSSEggerDGQRDAaJk8XEkBnDFg FBIf/+gtwjFgnVMltVIkhgAx/ajpJig0CkkhFQQieJuKMHO7Tu9SJd2upFakLHiqgHdca8ve 1GJHnYuUVPvNis3z1ceclCFVyg2OJN5T9BR8dJjSz7L5EecnIJVugkNQ1gsgURfFmQONrxNU DhCrGgrS1WrOweAFgv43FTSU9J41WhvNDobSgqJ9NYie3nlISUkJnAwSZiZLekqe4SKklrHv q7GttGpSDv5USJTDXItOz3p15UcglVvMnzZ4j6fbWAzp7W66RYizi2HVJFqZsihMAklauL9W EraEZuFmu96EwOyWGIV08wiwbwATRgARTx7SKo4q3eqactR1JnS390EuGCZPQKrPXg2TotX+ 0ujh/0zOialCEnBUSAJILy8FBjUba5npAAAAAElFTkSuQmCC</item> <item item-id="58">iVBORw0KGgoAAAANSUhEUgAAAHYAAABCCAYAAACCTCKqAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAUDSURBVHhe7Z3t0ZswDMdZoHs8M2SL Zwn26AZMk0/ZJMNQbMcBjF/+sk2QGvWud73GBlk/68VEKMOsf/5LDQwsV3Uf52EY5ztL4c4W 6jlPt2G+Tc+mGzED6xY1jN+JdEvyOd2aNjcjsAbqbW7cqE27nN/k+zxWei42YO/jMNcb6svS h8Xal7+4G3Pz0vdNfW4U7u7l/mbCxnOab0O4YYnzb9NMdcw8wJqYWk01dN9OaWW462aI3zr1 +fH6abfpr7EFS5nvfIi5fnk9e3/DAKxZfEOiFLMIs1Eyu9yBWCxtue8Ysdjs59HEzsA6hhEL ZBz3FkuYv6Kiu+TrwRow1da6LD0G0cJOb5bnNL0y7rirLX1+iMWxzWX+z2yuqCsOrgCMMZuE oqbLwVIFDpVqrSu0TkBRLydXGWN3+Wskk98kgkVZwJMA0QAuBtvohl/x5zqwcSi7mJgFC0J1 kZYUsi4Gu8SOQsZnsuU1+wz+bXxThSte7a02K7Y7anH3kSTNu2B/kxTY1PzMmes+4sfBa8ES 3Ut0zbF4WkiemsHaBCiu5HfitTsOuQ35jpGZ+bmzNCVsyQdrXdT2aRV63PHujXiOLcbMQmJE nb+5nCiwY5dHTfkHFMadx8+BdFcMWeT+2eDuuEOe/91g+T0MPEOiL7TYM9TI75oKlh+TLhLJ Afv4nX9+H10W/Q0Xefz+mX/+Yiu9PCvukzxhi5U+So7FLqm/gsW3m4LFdSVqpIIVhQsXVsHi uhI1UsGKwoULq2BxXYkaqWBF4cKFVbC4rkSNVLCicOHCVoLdf/W1Vi3g39rjIr5GsnlAQa1L DnRFqTIjK2md0AT2IKP9tr+lmDuzEhZg6V/U23Kdt6L6vGuD8O4LdrljtBIQkaQ0hgNYal1y ZPxp+gn01x2sK9w6wSVzANtUDGc0L9hil1JA+9pE91DCAGx9XfImzla8W1NyZrHP+1tsAWyx RDS1CtFgN4v60Pu8/cEKdsXFTdfsild33N2jnR1jS8lBUXmMLdblD8F7Prm65ORLVSeEqlPB 6nEnVO/xfR+4QL0msnY6xx5fpzghG/ayMoixThRqXXLwgIJ38tS2m6pmswFbJf3HJ1UmTx+X 077YpDVPuN4VLK4rUSMVrChcuLAKFteVqJEKVhQuXFgFi+tK1EgFKwoXLqyCxXUlaqSCFYUL F1YOWH2NEqe6jNTXKEnqkjNYjsXqI0XSrlKwJHXJGfyFYKl1wWi/4HS7oH1xQeqrzVK7IfON IV4oKApsU+dTa2zUumC0X3C6n/Ghb1S0qqLUD3kjO1gB+l1gqXXBQL9gWwqU6mcMWFh2/sbz m3GHfsaZyCAHrKl+bK0+6FGMFsDK9isGymCgfse+mSawUTxrOU0yia1aY5u5vi7YXy3XWvYY I/397t6qs78JkIqxlH7GWznxTuzXtgOyuQOtc3YItw1sqV9wAmzYzjZZV5zqYL7p8Y9aLLFT 7OVgbVaYKcgtlrbWumKoX3DaYve/qpGzzKAs1bvgtyFiWTHVAK4H2+qOqXXBRqFwv+AIsGiM xcG+E6tcP+NDzKF1FzfTGYB9Kbq6jJ543EFd3+YotRctATv64xJ9zrE2eya2/+UB1rJtqaTH 64JpFpO3xPIPKnUAG7pu8EEZG7DuQcOJxemgQngNo//ejpefEVj/JEbhOjj1UPnE2J2ZeLeK n9l4WVmrNH3Wz8xiW5Wi870G/gGpZL4aFwcnhwAAAABJRU5ErkJggg==</item> <item item-id="59">iVBORw0KGgoAAAANSUhEUgAAAFIAAAAaCAYAAAAkJwuaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHVSURBVGhD7ZjNGYMgDIaZix1cgykc grODcHMH707gzQ1SQVHAYNEG+4fP46EqIXn5kkAZlIuEACOxUoxAAUkkggLyDpBVVUFd10RT 3WGmB8kZMBbeHGSfd/6oIruuWx0ahiGvF2TWZ5BCBQaVMLHsnpPNC/EaqZU4jqNxIKbKXnJn 9fOv+vO4IyCngcZXLiGXMFFFajW2bWv8bprGwNqp0qyygHXxw9/Pow5lA2Kah7+Ug3GQE0ng LN9ioyBdBVpV6nrpXS+DO006YcAByGnJ9ULlSu8dSFeN1nOtTq1K/W67/MIed/AoOJyNEljD WJ4dkvggkBoYdtlOiL3bAg9TZ4OdSwm+Px+S2lp5tjaGwHBVul/NQdgatzYiLkBgnfQgUXMo 8tZmY9NXpzB2e6oMa2RQzHspl0Z0PrUTimHkkwvbH+O30zTPTO6MXfPYKm6/md3XK1srQ+Xg 6ZsKcm4GFF07fUM+z+ntPpJB+mNvOCKmgkyOgORDW3q4EKcViY39X5BKzZvzC6ndI2P/FuQq 6wsgsbEFZAFJUiovpfabFEkUcC4z36PIXASI7BaQuUEu+8Sjsy22ISdy6+fMqOmElvIf5g1d +1vZnjtIFJBE61xAEoF8AFhJfOWI/LM0AAAAAElFTkSuQmCC</item> <item item-id="60">iVBORw0KGgoAAAANSUhEUgAAAFIAAAAaCAYAAAAkJwuaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIQSURBVGhD7ZnNEYMgEIWtix5sgyos wrOFcLMH71bgzQ6IgCi/sujiZEacySERl8fH22WTNLxeKAQalCg1CK8gkUxQQb4Bsm1b3nUd 0lRvhJl5TxreNO6L8H4uO3/UkdM0HYKWZSmrAi26AkmZE5BRuRbvc7R5ebxGCieu6yoFxFw5 98TY/fK7nl53BOT2oNRKel7KmEFHCjeO4yh1D8MgYXmulLtM+bH57vv0ql3bcLrNQx7lYBzk RpKTptxmB0GaDtSuFPXSuh6DyyYNeOAC5LblYqNKpbcH0nSjVi7cKVwp7p2XXdh9gUr4WfgN 9yaQMBo6MPbPLkn8EUix8NClgYTunQvXqaMgmmmq6ikcJsB+gSF/ktrCebo2uirDrjRHqUVI eMG0F3BhNaqEI189bHT6ihQOvSxXurBSxTx1/54Fnacy2h+p5ywht2qnjKGy7Mhj7Ti/mfXr la6VrnPiYvZ6eqnWLwf5bKENuXPwSFPAsuXUpM8AB2S+aOgTEIjQWEjjBDirp7w6pPw5df9M KPUdiSTRDrOnz7PesIiyYA8LTe+ZMdXYh1IbXe6tdEFXAQp4+yAqDvKVgwXEKDnoUVtWGqT9 Hdw+rKDpkySAMEDpzD1kjIlLg0RYY/EQj5yo1X0eJFbp+TrI2Dcnu+zsfeJVLfo6yJy6wXrY b5j1P5so1bwmvYLMsefF2AoSCeQPcPJG4jpMHJ0AAAAASUVORK5CYII=</item> <item item-id="61">iVBORw0KGgoAAAANSUhEUgAAAFIAAAAaCAYAAAAkJwuaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIISURBVGhD7Vi7tYUgELQuerhtUIVF GFsImT2YW4GZHfBcEERYFBB4BnjODa7ymZ2dHVY73q4sDHRZVmmL8EZkJhE0ImsQ+fv9eN/3 mbaqsczCB9LxrrN/hA9L2f29ipznWQNa17UsimyrSyIpsxZkVMTi3M+2L/d7JChx2zYBwKfK ZSBG9stn/TluD5H7RIGVDLyUMFFFghqnaRK4x3EUZDmqFFmmXCff/v8ctS0bTvd9yKsa9BO5 M8lJVy7ZKJGmApUqwS8v12viopkOmHBD5J5ySFSp8naINNWokIM6QZXw7Lyuxu4CtIw/IgJG sQPjuHe7zoeIBMKwS52E2LMz8LN0xD0dtAzwXdkGCHJ3QPSwgak1SxuUp7zRho2r0hxlkIWA jjH7EoqM2T8kZfaYi/xU+UIJY7+LKm2PvM34PysSa3+OezKmxENIxCwPXE2kUpzbzLp+pbzS Vs6tTz62HvIweFf+gQ25nfSkg1PiVZ1LvVfEJLApRZYyB0gJV6XqnwmlriJTto+bc3eixq2U e3Ssfy6MycYeK+2s4FD1le3jkvALIjJ7ZBIQ7yREfUDuo0/mRRG8WqrtFFekiMAy/q+SKLDG eaROUB0ig/XwgYGNyLQkYD1wSsU0RR6f1fQHYOMrlk7N0Sfevds3IsOFzIawb5j1GvJw7B8Z Gdf3NiIzpa0RmYnIP4q1U3CO1xjAAAAAAElFTkSuQmCC</item> <item item-id="62">iVBORw0KGgoAAAANSUhEUgAAAGEAAAAXCAYAAAAbfSF/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHqSURBVGhD7VfBsYQgDKUue7ANq/Dw S/BsId7swbsVeLODrFGjyAIGjH8dB2acHdeAj/fyElSQxs8ZUD9HkABAEuEBSZBESCI8gIEA CHmeQ1mWATN4ockJPJ6g6zpQSs3XMAzMWbywgwh9lW0vUiqDquctclfUk/CgA8ZxnPlxuSEW 7y5CU0wvKKAhRs37IKYbKCaw2RUVRfFo4Kd1i22TvE2hC9q2nYPrura74QJetwg8fPdFXUoC D6wIEfTMJzdgfziMC3i1ctRDlS01Dy93tixx3Gxqin1NWnv79S5yDx4IFEF3AZGOrsA94LN9 xOO1NuadOLMv7C/iiiBhlat44hMBZrJtgxLJ9iwUr+d0tBBOdX1rOtlUU//FCeb2ZPCEOAEz nnqBicbuBj2Kj9fdE/oKMu2E1FfV2rTDylG0E8waK4UnoBxRycGyY7sObriA9+AE07b2ksMR QeB0NKknhyf8dESZ/tXH1p6p/0+9IRZvxMcaR4To/I+Y+DQ8Z1v4xruJoP6Oerjv1+Z8En8G Re75S0RAwnXS/ff9HOuLlyOYs9KLRMDtErH+30UE7BeuOA51cjEvEIHvgIV0vOhjzeYIOXK5 K71MBN0NRAG/V3BJS3EmAxGno0SiNANJBGlGI9ZLIkSQJj3lA9t9b82SYHPqAAAAAElFTkSu QmCC</item> <item item-id="63">iVBORw0KGgoAAAANSUhEUgAAAGEAAAAXCAYAAAAbfSF/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIbSURBVGhD7VjBsYQgDKUue7ANq/Dw S/BsId7swbsVeLMDvsGNgoIJgi6zgzPOrkOAl7y8BBUyX1+PgPg6ggxAZhISSIJMQiYhgQh4 QCjLUtZ17TGDZ5qVwIuTHIZBCiHUPU0TcxbPzCBhbIptIyEK2Yy8RZ6ySgkPKGCeZxUflxru 4t1J6Kplg0p2GNHjs1ekO1ktYIsQFqPi0cAv61abkzynQAV93yvjtm3tagjA6yaBh+85q6Ak uIB1gwQ981EN0B+MKwCvVo5G2RRrzYP7nC1rduO4oZpLn/U5h/+XKfkMHulJgq4CdBNUAXGA sf26j9famLsKg4V94Vxe1vqnla/nNLHELQzPPt+SEERtgmDbLkxG25gv3ovT0cqsqutWqQEx dPMOCYDpYBw8PkqAjMdecAy2XQ26FR+vuyeMjSyugkyNhyrjSDy1HzWuHTi4jRlLDpQd222o IQCvoYRj1rrBfuqf0yDC6WgJWjw8/qcjzPS9B7p7G/aGu3hvvKxRBIRKwHd+ango/Ge8Gwni z+TD+qwkv/YJyp6CEmVcwxNlvacXceBVkYeA6kF1PeNbNGX/tC9qfVWD6YPBK1g4m1zg3UhA Mly/0KSRKOqXgynIhtuEgzaJOJnAKzgK2L6JfBSzNSuLgiJCdy5lfqMxGyb35PMGTtyDwmuQ oKsAF6Bq/3H8Ted+Za8bp6NfcT0dPzIJCXCRSUiAhH8Vjh8LcvBrXAAAAABJRU5ErkJg gg==</item> <item item-id="64">iVBORw0KGgoAAAANSUhEUgAAAGEAAAAXCAYAAAAbfSF/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIhSURBVGhD7VfBsYUgDKQue7ANq/Dw S/BsId7swbsVeLODfIMvCDzUBHCeB5xxHDXAspsloKBcP2dA/RxBAQBFhBckQRGhiPACBgQQ 6rqGtm0FLXihxQk8nmCaJlBK6XtZFmYrXpgjwtxVZiClKuhmXidPRb0JDzpgXVfNz5kbYvEe IgzNNkADAzHqv4uYHqDZwFYpKmbFY4Hf+m3MJHmTQheM46iD+74PuyEB77kIPHzPRSUlwQWs CBHszCc3YH1wrgS81nI0Q1ftax7e39ni/lfMdBqao0/q2zwv+3gGDwhFsF1ApKMrcA7477ji 8QYL80HcURf0N0PaPmDSciPwUCqe+EQATXbookQK/ZPivdgdWUTPHVReodZFqOrgrnanEOBO MA8eiRMw46kW+GSH3WBH8fGe14QA8b71HnWCv8bmwiNYjmjJwWUndDtuSMDrOMHP2su6cOmC DLujTfF8eOS7I8r0rzr2qZn2d6oNsXjjD2sJuwFBOeCHvg3PHXILrxFB/bl6cN6xOJNb/Pg7 DPn/72swc9OWf3hxjwdezTwSaJN49k5nHPqPBzKctB8vxiNtEMz6fQl8pQg3eI0IJMbZU58h Pm7RT+x4e+LuyPkuJTQqPpD1iIexW4saLrnRNV7FccCOYTYZr4vSNuGQY5LxsjvwDo+vFYAm dI7XEcF2ATXl1AY2byUwyED87qgQmo2BIkI2KuM7KiLEc5et5T+O9SvEynZp6gAAAABJRU5E rkJggg==</item> <item item-id="65">iVBORw0KGgoAAAANSUhEUgAAAGAAAAAXCAYAAAD0v0pBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAH/SURBVGhD7VeLjcMgDGUuBmIepsky GcbXQAjY2OD01HIXuVJVRXGx/d7zBwf2WYqAW+rdnIMRsFgERoARwCGwQ/QOnDu/YZvAhO19 3In9BqGclX4D4BPJe9Ff9oNeb6HGiXwQOyGDP1kBW3iBdGWZk+5BLRmd4F/2GcxqT58B9ugb Euj/6TPx8zp7pocUv49AZcBxgAjIgRXleeiE9I1y3SN4h32nuKSEGHs4VFnsk0I5xZ8+uPfk zAsXHyDQCqCYsP5k4CoB9I83D/ocN5MKaMG+xHqQSEFvImwA5snNVVOUvsd4tiymBaHEZ9Xa oyQT8DlElSc3fX1QziyAXFVcXkmLESuAazUTAt4QbdOC8CCT+9xMBTnT1AfJUNIPVTpDuTaS be4RwPX3cwA3CZfYewxGud9X/xE/O4QreHQOVJJmg0gpc6XZIHFtC0pVIQ1zvAWFTfI3iGNY dZoZ0NlgRm8Not9UgDg0he0jJU76PSUlnXljqeDOzPXWr6EFN04ICnnJM6DbBLSDSOF1aCLs 2uIcmKyhM2V270etRCYAr856DFALon2bbzO6GaAPgbMkFzEC/hEnvhfIFzG8WuO5VK8O+DI1 u3NwuPQx6RB44yL2DQJ0wT/ByghYzKIRYAQsRmCxe6uA/0fA4ogf5v6NCngYAovTMQKMgMUI LHb/A2I0NxDuaQvSAAAAAElFTkSuQmCC</item> <item item-id="66">iVBORw0KGgoAAAANSUhEUgAAADUAAAAXCAYAAACrggdNAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAEYSURBVFhH7ZaLDcMgDEQ9FwN5Hk/D MgzjEkhIAKe4VPmKSJWiKq55dz43wC+84IVMPKCe4uqNnXJMBhhg/qBVa3pbKIseJoFEQENO BVZAWcZFGTBMltgAsl4jVc/2Q27q6/tvGBwZBkOswdpAlWosgBdAVdi9Tln085sDBHWucCpB bXKldGkqTU6J9oYxkJyKzVrZDblI41zct4pLtwTR9+a4A2pV79dztcP07QmdkJlTLClRfBfH 0StukPFIp0RXYsY1QlaLYl2j9aJwRPMm1KvW547w+xOoMlfFSs//8BDr5REPeTTU2iNlUgmU j58k6W44z4Dq83hA5bo92andCRhQ/eHorLztW3onTygbUP+od2btK536ADzEChGPfq9ZAAAA AElFTkSuQmCC</item> <item item-id="67">iVBORw0KGgoAAAANSUhEUgAAAEAAAAAXCAYAAAC74kmRAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFtSURBVFhH7ZcBroMgDIY5FwfiPJyG y3CYTkBRaoEWN3XRJS9ZMqD9v7Y/PAUP/6iH64cXwNsBtyTgwWoFSqU/bX03S2fW9UppYGyJ Z95wBGbxxs2iHZgOhCC+gOTMBM7AckKLXgHAW52pSyh2yyNZ4C1oXMEgSFsg+4BaL4i3AsDU BBQF8fpLKbFRZKWiLTj9aJsRuEowSjJ2Ia52o8rLeld0L6/9kQeUxpNHMCeYZnExpt6Mlaa0 3Td93x+eowwBwB4hKCZpgmvyi5vujSj5BZ80oxvTEuEIkMAmtwi3SINzTqdxC6RDoruSRAOU +nUz2gFAzXtrzsnfRgBgkT137f3OLjleKL0GCbGjI4CrVm8hnOSw2srG9kNod+/PLc/1p23Q gYfQr8V/G2b7PBmA2Pa8p+m5Msaj8QHEueK/scdTOncnD8DPDO9csVQ0FoDyf4TyUcO5a6+X Wc+ABeDOAo7m9gI4SvDf9z++Az5r5phcoLtd2QAAAABJRU5ErkJggg==</item> <item item-id="68">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAF5SURBVFhH7ZfZscMgDEWpi4Koh2po xsXosXjBWIgLNvPyQWYyk0XRcpAuiqL1ILUY0IIQmmB1wm9D2MhqRUqlp7Zbc3KdueyV0gT8 JPr80U7YARi3F+7INEAEADdQznh4hg4PEsECQgqW6HuSzpIGHTWPqcdgC3GLkwxFaUtsP3D2 HfEyCIn+RfMAgtHsiNk25QqOhVZykQC1o2XjwLTPZjXcUkAs2CTGLU9dOO3D3sV8j07GD+/s hHrg3Fk+LiGYHOguVLlo+dfnvD/ZDEEoNWNEE9oQnuI0rVM6x4HN3atHGG+B9Un/0gSOXP4Z SzaAqV9Fo51A3PxLc89+NwJhJ3e1KSCML1W5LhK9VyRT8Mg4pITuC4ox0l1bJgrrHmgoL0uP vaDIvaVXeRLyslSlORsAyOkjs34IcQSwNfajHKe76YMQOwPfyadn/1EA/L/DNBH8qJIXbmAI aScoFp79PXIXv8hx+k9hCNMz+ccAC4KHvyAsCGkG/wDiqdzLhdP8EAAAAABJRU5ErkJg gg==</item> <item item-id="69">iVBORw0KGgoAAAANSUhEUgAAAGAAAAAXCAYAAAD0v0pBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIvSURBVGhD7VeLjcMgDGWuDJR5Mk2W yTBcwtc/sKGtelKpdKp6YIzfs/2M8+vzVQTcV70v534R8OUkWAQsAiQELn9szjsX/7bjasN0 7mVf3p+/9zObnX5PZ4W1upA2YH98XbP3/tzrfZ3bfO/KMJh/WAEJjAJSDL5LAqEngLEdPtJG z6O/E3jFX1yv/mR7eJ/HH7pfSIrdF/47VYYIuI4NZJOdxbdW8XX4jWbQE1ABVPFGg5fAgD4E fwGH4i8mACyasJ7/Id13AJBKgOXiAwdPb5XADkFaMopm753/CEzcklgnAhVjroCR5BBAaRMw jeBrhiJg1iyTsr1ZATirS6t6NEKoNtjjWTXc+0/UPSzJEnECLQgLEc8OTagw8FiUoEBJIlht 5wng2R9PTQIKAsp3kyvgMYE9nGtQsE/GuW2/RQNKgRZFrzoAneZsGRFGc13MtqBuleApZj8j WU0CknCH9eZ9IjZyi9POr2h0piCQUapQcXhnK+COiPd7S5+17MnXhD7EiQUIr0KASBAkUMm8 tgZ0M6pV7uY872ycG0NxhYLjWRzymImqAYHeaEFkzGX2pqEBaQB9TEglCnTAOhZOcdJ/iLG5 O3SKzluBPNZ46yT6xmIjDzG2TuyN4BMRHkRq4LExePJPbX/hJWwXmp9CdDBYGwGaUA06XdtN UxCEScj2kaljId5EwFYBwVwTqoXyDAIDBMwcv2w0BBYBGkIfXl8EfBhg7fhFgIbQh9f/ALsn 7evjtLl+AAAAAElFTkSuQmCC</item> <item item-id="70">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAF4SURBVFhH7ZhbEsMgCEVdlwtyPa7G zWQxNGoeSMBA+vLDznQ6bU2A4+VK62A+wE0GMCFkEUwljA1hgegdOFefPi43nZsgbGvLNSGp O31QJWwAjkJqgTIIur6+vwdXOREImKaHmCJ4F0DPVA2/v3DJcdf4ePNTAOcj8HqoeePNX6JX qwFBoPR2IH+AwBVcwEi5fEoJOTAJUmj+QQklLt11Th1ETymcHmKwhLMd5MCYfmtWd+aDk9oN 7njtZGmHcPWMEltJ4mgHDYT2xjbzMbmFtR3E9cRXhCROT2DaAfBnjBxZcCjQUyUA1/89Y/wY hNV3y7lMjiXZE76oBCEX+cgT2kE8TVpJkCOy7fkQrmYJe4J5IFEGMbXCsbg/LGWVtVDIsGTI rT8scS2CK7r7/ln1P7/qPQibKpQm/PPitAH1ENhdv05q2sAjrTP8dqg92ux6d5Qdqcx+LgYI +UZkWDKYz8hIjBBGLuV5bhPC2H+qPN9Z65VTCSuxFwAy3RcP7r8vAAAAAElFTkSuQmCC</item> <item item-id="71">iVBORw0KGgoAAAANSUhEUgAAAKAAAABaCAYAAAA/xl1SAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAb1SURBVHhe7Z3r0aM6DIZp4OsjNdBF mqCP7SDV5Fc6STFebDAYMEi2JezY2pkzO2dxhHj1IF/wpVPyRxTIqECX8d78t34PqusG9ea/ k9zBq8BXvfpO9a/vqT6VAjg9eDcIeiW8Gd9Xf5oIKgRQw9eri5euhJg06MNbDZ7aqDoA30On 4MQ3ZUi43BUnc5btxkw7/ndVzcC0UdqC7+YvcYMP35fq+5dyK+S6ANRtPpCqVWiw6Gks91W8 frtjIaS0lQjfIkjK81z7oKtj92WtCEAdyOsOx9QWGTPWWG5IyYD6Te521byGf/d2o3CgtIW6 oafQrT5sq+J6ANQiAint+3rNPeLEKtgHmwliRI+b0lYsgDf7oBOBDVU1ALoPBcchDUCTSffZ zpdFYEcUpS3E7fyDJYTPg/LBSRaVAAhXv1thBEBXj/tfgjVelQA4tiuC2l9pACrKKovSFir9 eApl8OE9TG3oOgBEtP8oM+BYbx7be0mdkF3bMdZWLICUz4P0wTaZBECkYD6A1yGflGGLtoZh rI7VATgEffpIrIKNipQDt5S2ot4o4ueBfWgcQFggKcGrgADIq69YBxQQAAWRrArUBeDnqR7P T1ZB5eZhCnyef+rxr6JhmLBOSJhYUppegboy4DiOJQDSQ8JpUQDkVFdsgwoIgKBEUoBTAQGQ U12xDSogAIISSQFOBQRATnXFNqiAAAhKJAU4FRAAOdUV26ACAiAokRTgVKBRADmmPZU2tSsW Gw5tzn1pEECOiZ+lrTFOhO+GdcHWw/YAJF77WuQa42j+CNc5I31oD0DihTdFrjFGBv9QjFgb jBvNAci39DCtDcjnFwaDqUwOHwTASfnjFhv4uM0lBcBgyWbodZOzmlVx4HQstmomDUDSNcYx JOjfsGkjveBVAba1r4kAsvkVQGMGH5qrgpdllORDDYkA2uWd5H4FAJjBhwYBNI2+aetekk0l lxGtwja7DAHPLcuhjVTBsdGQ3zEr0GgGZFZVzKMVuATQjvLHb2GL9oOmoCxKotHxRisXAM4b 7Yw7zUdtOXvjQyy3EgBzqJ50z3MA7eEuJIO0ST7ifywA4rUqpOQpgPqYg2kX86lXlHb8AOZp U7Y2m+0LgBihiyrjB3CX9aa2YMTG23c/qgB4t+LJ9/MCePwoPWWntTOy/3+fH/HjSTr72jG6 w99XPSIBMBmIuw14AJzg8gKw7L8MAcgx6RMhjQCIEKmsIkcAz06WNP9uD2WZARzP2+gXWJ0q OnHSp2TAsiDh9OYAoAm+t5pzOyM2S67QbdqJGWZVGJEkA3KywmJ7CyAw5LJC5quC13+Lm9go vWCWCBduNPJTnIZlfxTqmiHjACRQSjIggYj3mmABMMfERqmC7wWH6m4JAO7P2XWq5QwTG8MA jB8iOgpPactaT51baBrEYVPOTMx2ox/uqVPQdVeYgK9nSQC6g9Om87I4XPIwDKVvlLa28Olh sPhJIBF+QWcsQ9cXAC34uNPqEwAcb/B23prDGW2BbyBFTse0AROHiDZuUtoynfh85xhDJ8xD 15fXRx9EPQzoRV6RAFLQwmADAyDlEBGlLQNgrnOMdbIYwXFmiW9nQEHX51jqF1InIv4qmAEe CpMIACl76JS2to+f1gYM98szBGZhMo5B122bc652BcBzmsODc4+tvAD6nhH63Lq9rnVdZkwJ gBfplLLapLS1bVymLXAi8QvKws71TbY0bQlpA54iSDlERGmLEsBQv7zf/52PDcD1pfPkmcQC 9eTb64SQrn2NGO5AtXWh7AMZCfXLc79NFoWu7/yRDIgMEMm6YI7hplQAbafgfO3zOuPdarWb hncYVoOuO5oLgBCAcr0UBRqsgkuRXvwweXrsPbe1O5bEvSgFBMCiwtGeMwJgezEv6okFwKLC 0Z4zAmB7MS/qiQXAosLRnjMCYHsxL+qJBcCiwtGeM3UB+Hmqx/PTXhR/+Ik/zz/1+NfSMQ0/ HKwaXa8rAyJmRNcYxF9+JgHwl6NXge+NAkg5hapUW6l0UkwJg32oDsAemoJb7ITU0EmkcHDj S6wvFShn/E3ML9sDkHItb6m2EqAgW5uM9KEuAPXywcNM3p0SJAt2Zpul2kIG31eMbG0y0of3 MC3lrOO0TFO9Xu9lXeqyTEq/kLEHit3RBlzjVQmAa5viTF3KQJdq62cA1E2YuZFZDYBmTepV y7nUapPSLxIC+TOgbf9pd+sBEKqGQ9fMXgWzVFs/AeC2uVQRgKP6l1uJUQ53lGqLgkDeDLjZ yqOuDDiJf72dWKmDx5R+pULICOB+K48aAZx2CMVtkpgaKvl9iAJ6gftxpKKuKnjRQyAMQYO/ rB++yjohexlttfYDZ93xE5DpDnAMKs2AmfSW2wYr8B9ymF/bUhU1LgAAAABJRU5ErkJg gg==</item> <item item-id="72">iVBORw0KGgoAAAANSUhEUgAAANgAAABkCAYAAADkKP7jAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAnrSURBVHhe7V3ZseQqDHUCk8fE4Cxu Es5jMugEXhr9dTPpYPy8tLttdiQBBs5UTc1yQUgHHRaB0TDjFxAAAskQGJJJvoPg5zQPwzQ/ M+ryfDzmF6u91/x45NSYpeylcn+2L301DvP4sPd4owTbDR+mzI66EFqkSSk5ctzxS5LSWUqO X2OxEq/HaB3IGyTYSq5xdgwqYsBeBT3nSYRdu1T+bJDITKPYnm0/AFkwMKyWmiPYcxpkZpFY /5QeeaXlBduzOkrkACWtK1veewUzLKuY5bdrCeeHJULW6zGP43WL0BbB1j2X4CziB/9b4jlJ 7/VkZ4UYW2LL3st2dXuwDhhUksXLWpeLZ0I3RLAVDI+TryPMe1QblJFmXkIT277N8vN9nX38 XB3hl07U5C0SnXV8bhxgj0+E4+d23c4z2PvvzxNu2ux2M9u3Plb6Zx14Df3jhY8k67pUbIdg KxjO2WsfyfYiavRHD4qsS81Pp6jRSPXfhqXB7Kvj7910e0mnbirB1kHlO3BdcNmg1JdFRW03 kWkjCmGFQZS1Dl6HKzZDsLNR5n24I2Rv7IATIX3hftPS1FfHS7Al0JFqP+nUTSfYZdwykVMd 2Aravs3M6mxlmokC8CfLOg32jRDMv5wygvUJAJmWEOdZ7rp81CZK497PU+fTwXs50+S7Eoy3 Qbd5kUs3AYIpy237wkLedjIpDFDRZX39sRGCmfcBZ8x4BDsHM/R92CbbsTzdllXb/k3du30d 3VRd3TAHDLp7iP/T3mlPeewflYZ03eIIdjfbt+WpcQbLt0Tc+2Dv6zYI5t1/bRbbb3X4loia Z1/3cGFE0OtspFsCM5NlBguTG0o7V7mzbvEE88+yGW039SUryKEQM1DWsWXph2DLhalvkOMd 4fuM5pFBDmVNbxzFTYGQ0wz2Wq5U7fdM7MukZARz6hZPMG32Lmp7fGjdPvTQZTVHsCnk6sY5 TK9FldxhenXZpW38DWs8Z52iezB9GflVP45g28rgdrZHHA57FwA0WX0SzAsmsQDrgNu90S90 bh4ORM+2O1ACwcJdyF/SdBbkr/UuYSNYqTuVwYrvBXu2HQSLdBZycX8U07fO12cq/9EDWV3R ij3b7ujV92FzG0GO35/578+vqNvECjvCsrH17EGOmu4iRl4O9u4/67Hd1t+/P3/mv/8aCtMH BTnivT+8BvkGuGWJSJYXrrJYSbKuDdhuARF7MDHvOgQtziL4JbL8DXVxg08Ce7bdjCsIlsLf llvnIacF3qaXwIEgV73NiRTo2XYDgCCYiFepQpaRfBJ4k4MtI4lxHqE9265DA4KV8EG02Q0C IFg3XQ1DSyAAgpVAHW12gwAI1k1Xw9ASCIBgJVBHm90gAIJ109UwtAQCIFgJ1NFmNwiAYN10 NQwtgQAIJow6/6lr2etGwuY5xfVsuw0YEEzSA8mXXRUlpORI2uaTJaWzlByfvpl+DoKJAS37 aQV/NhAzLEBQz7a74QHBjPi0kPgggBdSRaRnHTF5tHc0zLDQZIFgQk4m/1mJ7KwgZKZ5OJoI bw26d3MCKaDoL0HpqtFldU2w7Zk1YyKHyhMfmJy3t4QXpIQNFtYzZPVLsJYTH2h+0mHCi5u8 7AuCefdg14dKt+I3T3yg84vxmrEvgcNNE14Yn0jPnfxh6Yh+CeZMTCDx6OZ9kj4Yne1gofEJ 6PMT1x47bprwAgRLseteRijKozfNJT5QsOUR7CvMlLzC+Fz4qf3cCS8+TWOJmIBhRILtmjSU +ECFtseEF0j+UJhgTSc+0BjWYcILemgdYXobNyNnMHtSBok9mCuxwtkA95v0/pRAgQNVlwkv aIfDZkRpsjoOcgQ6ZkixnhMf9Gx7gG+AYAEgeYv0nPigZ9u9juEJ0x83HW6fOucwNHKJGIBP YJGeEx/0bLvfPRwz2H7AOo6GbO1+uWVKFCPYNxdvvOG2PVhNdxGR9MEeFhi3xPZ6dpUjykY8 /Y53NIEaBQm23u6gzfQNJD7o2XaP21pnsDXCtkewzudDAiSwinjPmJxH3UsSbMVJ8CF5+dv5 KfuuZ9vduJoJZkrureUyTtlhRNlFCbbo3HPig55td7irkWD61RrDhVflLp/9vMZ+zmPTSz2f +n5SMhgTbX/klCbYigk7YYOEDOIAxaomobeEDJYR4pUNBNvJdHHq49/jkTEk9JT8ezhH259E 2lucYJH6onjzCOgEs91b2/7/HS0K+ADt8zHjuGz+xyEqAFDvDNa8v8DASAQ0gm3ObZxuTsGO gJvKr8djXqKTnyAJZrDInkHxJhC4EswTkt9npWn+b/3zs1x842CtG7oHqz2K2IQ/wAhhBEhX peI+ZgslmIBl2IMJgAgRkgiQCLZ9Mm+cwUyvC4Fgkh0GWXUhQCNY1MdsIFhdLgFtJRGgEew4 A/tELlz7JxBMssMgqy4EiAT7RgeP8zLJg2YyhNiDkaFDxTQIMAiWRiGWVBCMBR8qyyMAgslj ColA4IMACCbiDLT3GkSaLiakJpsl4gA0e0EwtoOG3stkN3QjATXZLHEflm4vCMZ124B7mdwm ble/Eps592EvmDPsBcG43ht16M5t7Cb1K7FZ7D4sw14QjOmzcdfGmI3dpHp9NvP2YBx7QTCm 03LAZzZdrHp9NoNgMs5S4hyMsXyQMbqAlOps5hEs7u7ttT8wg3H9M+peJrexm9SvzmYmwRj2 gmBsn6WHcNlNFxNQm81MgkXdvcUMlsAtaYeQCRTJKLImm7kEW2Gl2YsZLKNLoqn+EADB+utz WJwRARAsI9hoqj8EQLD++hwWZ0QABMsINprqDwEQrL8+h8UZEQDBMoKNpvpDAATrr89hcUYE QLCMYKOp/hAAwfrrc1icEYG2CPb7M//9+c0IH5oCAm4Efn/+zH//mXI014hcic9VasQJOmdD oK0ZDATL5jhoKAwBECwMJ5QCAiQEQDASbGol2qcMIk0XE1KDzSl0jPv0pTmCjVlSaZ69uraP DyUYWYPNKXSMf2MRBOP6G+PNPG7TxerXYLOwjtQ3Ftsi2JIVelITA6b2wuoegBEApAabhXWk vrH4nMb58WolTL991m3KsingVBYR9T1hxseiBpvT6RizB/v648CH/R4Sjik5lzbpOjKXBfHt 1GBzOh0jCLYuU98xgWYINp+MincdQg3hpQhBg/xVarA5mY7hBDsP9u0QLPcykfFmXn5mCLVY g83JdAwl2HW70hDBFidaR69s4foU4WAhIiQTU4PNqXQMI9g6e53TKrdFsI1jw5yNY8Q385L5 fxbBKQ5xpRVPoWMAwdbZU4lmN0ew/aHIPUSKX0AgHwLLUdGgR7IbJNgKKUiWz7HQ0rJuMpJr RaZRgh0kG+bBMKrAJYCADALHUtR+BtswwWQghBQgwEHgf3nxcLW2n/N4AAAAAElFTkSuQmCC</item> <item item-id="73">iVBORw0KGgoAAAANSUhEUgAAAKgAAABfCAYAAAB83IwVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAeNSURBVHhe7Z3btawgDIZtYPcxNdjF NGEfpwOrmafpZIrhiI6jIpCAIXLJWWu/nMEQ/nyGi4Kdkn+iQMYKdBn7dt2116C6blCv65bE QhIFPmrsO9WPH6f1SgFdGt4NgmYSroiNfsbemUgqBFTD2SvPTUksr5ijUeClBktvVx2gr6FT cOJcMixczif9N0t3U6ae/nzdVHgAc7IN+6I11xosf0Zy+Iyq//32LdOPytqp67LGb3UBqsec IHWb4GBRJ1nmEELf/VSQ5mQb9kXDebg5zXE/Kiab0Lq739urCFAtpn9CtIx1prt4KjdcyaBz VjAyhQ6EKzOEpNCcbEO+2H432orr0fYXHbv6egDVYgEp8TOO3xn9xS7eBuMcLIIVg5xsQ76A N+UyH+j1hHXt5hE3sU4kayirAXTfKDhhXQN0zsSm0IhsAvulVE62IV/W319rzzRDuL9JLUMf yzjzpMsu2VQCKNy9H0UQQH96eG4sFKDm2Btce16g9Xd2WzwrAXRqNKLr2A3Fr83ioa4Pkypd ZXKyDfhiBXian/tXSKDfF2FewzLGrwNQxPiTMoNO/fB5vAmOx5DU5mQb8sXa5h2A1myqMyi8 Tr0O2QRQJDc2wLclrVaXmSzZ8ACl43dEb1cdoEPQoyNcN+NnF17AjmJ/vug+26d1TdCXo6/n dx+WmzdkFj8r8J3JV5NBwwCNR0eu5FFAAOXRWWqJVEAAjRROLuNRoC5A30/1eL55lJNaWBR4 P//U419Fy0wyBmXhhq2SujLotF4ngLKxw1KRAMois1QSq4AAGqucXMeigADKIrNUEquAABqr nFzHooAAyiKzVBKrgAAaq5xcx6KAAMois1QSq4AAGqucXMeiQKOAUr7GRmkLG3OK1wSxdZnl eNvbIKDwHm986ChtYWul2M+PrcsB528jEeUL2naf2gMU2uMdEjtKW4h6yfbzI+qyFmFur/ah PUApN6NR2kJAQ7afH1GXtQhze5sEFNpCGxI7Slsh9a5bQeKP7AmrbS19R3uby6CUIlPaCkPm nknSHe1tDtBpo7XjNJCI42oIbR1PhtufEmc73/QeQEm1Q96R7QEK7fFGCjcXo7QVUi94KEKQ MXzhG9rbHqDr9lmSpZI7lpnmO+PaiSh4JI2S/O1tENAtwOse7WuHzvIuXC/E3AUotXbwndIo oLAwUiIPBQTQPOIgXjgUEEAFjawVEECzDo845wV0ffbL/cQiOiyy7Thaulwv9AD6fVNlOluc 5KMAHAoIoBwqs9bhBnQ935HozHWWVgmgLDJzVuIEdDsfcllzu7ZWiGkSwbuFAihG6KLK2AE1 suYyFo14Vs0thQDKrXjy+qyAnt9a8X2RwfVUwzhRNwDwsBcndhoJoMmB4a7AAqgJlu/YZtf2 g3N3zZKFBVBufpLXdwbU9X2b+f+3rzJ4tx9c+KqDbrFk0ORxL6aCE6AzHNaFz+NkKXj7Acdq gGTQYsDDOnoEFIDI3k1j3qwxX9OyuSezeGzQWipH8KgTAhQDJ5Hk6Aya4hU5SIeYNqbwM8aP +65JC+ickTnWUL8CogBN8dJtir3qKfy8D7TYmtMBakyqYh0Mug4DKPHebu9kMch5ozCxn7Gu /No3f4QL/nRhbD2u69IAyjEhsrUIAyjhRjftQvBkERtBYj+x1R7Kmasx4BeMo2rxXpQE0ONd d9yhmPTNKASg54cQM2XTUORqdqAdg6bzMwCiG4A0vSMANKDBqYsKoMQKHydp5+QS/7QQ62hz gKbb202bQdP5iUXjWG57eLL2NDxPC9sDNNnebmJAk/kZB+hy1e5hzcWnhVgv2gOUdF/8XmZi QJP5iUVjKmdCCI3Vod8Dql6LNgjolglo9sX/pExwmML9C/XmexHuSW6aBzKNAhpxK8slHgXS wLks4/VK3xRdFfojZvFVtDOnRiR+WiiA5hTs0nxheFoogJYGRS7+JpgQ2ZomgOYS8ML84Hpa KIAWBkZr7gqgrUW8sPYKoIUFrDV3BdDWIl5YewXQwgLWmrsCaGsRL6y9AmhhAWvNXQG0tYgX 1l4BtLCAteauANpaxAtrb12Avp/q8XwXFgJx16fA+/mnHv/kdTuhJFMF6sqg8j5oppjFuyWA xmsnVzIo0CiglHt9KG2ZEU9p+ypd1JsE7f5UB2gPHl1CeSgXpS0HnCRfZb4Ko/vGAeW+WHV7 gFIeykVp68SA5Tge23lNFwEIvfz3onI/qGH6+osAGqTgdNpFP047yj3/KA/lorRlupzSdpCm x8LJDktz+PQalpNM6tjVOR924P9cDuWhXJS2zgnU8oU/pn1AOH45xqBbPCsBdNtH7RKZEipK WwKoJWL6hvyOIaoBdD5K0Tcwouw6KW0V0sVvbqbPoOsESddZD6BQN095KBelLeskyRiuZDBJ 4gP0OFyrCNBJQh1IZxalXBqitFXSMpP2NW0G1dlz/33YugCdGfUtgVAugFPacq836oPO0n/Q Fzc9WkolBFT3TMZqTHWALgJePdY7JGBSlkYBfTDueSWmQkDXu1wgpQGHw4odzsomSa5usoDP iXMwkGUd6zDJHaNKM2iW0RCnIhT4D7hbYL5FQkCDAAAAAElFTkSuQmCC</item> <item item-id="74">iVBORw0KGgoAAAANSUhEUgAAAIsAAABfCAYAAADYtjTGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZtSURBVHhe7Z3RkeMgDIbdwPaxNaSL NOE+roNUk6d0kmI4Y+wYsDFY/GRBaGdu5mbXVoT0IQnF4EHJj1gg0QJD4nVtXvYc1TCM6tmm 9l/W+q0et0HdHu/g5zKFxQx8GAWTq8S9H7fgBGMIiwblpk4myFX7dXj9U40HEZkdLM9xUPGA YiJP/LozTpboNUwRbPp3Fr7jtCFl2Z+WIff9ULfbQ9lJiRcsukaJErAZMHpp0Mt+mtMzkQoM UtYBKJ9BXtdRpyR7EjCCRRv9vJg1+XiKBNN1Y05k0bNu8FKdBtWbifGIMl2BlOWwgtDRTUd8 YNFGj4SK9+OxrIwy09ARGLPTCSsvpCwbFpBcPcFWs7KBxR5UfEbnwTJHKD+KHEWIuCJTYMHJ cgMLSK41CZnAEk9Brt8ElgSOl0s22zKBZcqtl+qFPFgUKMTP3kDKKpCGjIqmPuMBS0K9gows pij16pOsAhcka1fgYuSuKV5gSY/H1pXI5S5SFnbpvEpjB8t4qWWbmYZmK2Y0vHaAImWBmnL2 1FhWRGwiyzVYSOGk25s6jyzd+p00cIGFZLY+b+IFy+uufu+vPj35hVG/7j/q9x+jpbPULOWo 4RVZpr6HwCKwpFlAYEmzE/EqiSxEw/V4m8DSo9eJYxZYiIbr8TaBpUevE8cssBAN1+NtAkuP XieOWWAhGq7H2zqFpcSjALU97iCPKJxP6KSmXImHjGrbg3QASsa+oVVaf5EFvD+nyj1IDiuI fUNGYH+wgB+MrnIPkg0LcLzdwVJqf876eCV1K2wpvZByBRYTX/fbUC8vd/IKXKRT3SwE2mQm aWgxK3XLqQNUHiwt7BvqLrJA9/ogYUHuQdoVuLJvaJ8o/mzpPOeyzLNeSizpN722I0iuH7nR 79LZLALN8WGQA3g+psyEpZReOLn9paHLhavc0HlkEQAoFpDIQrFap/cILJ06njLsU1jW7z2o XUmKQln3JK2Gsj6h65tPYFmWWNNZsqQD9f7CrAJLUauHYVmPMIe0wouOYRMusBQ1dBAWfeiw Ofs0fpY7RkN6s+jz+QILxhUBKceweNHE1C6E4zqLqn4gXGApavFDWPbfgJpZ7xa65ndrF3QP k9sljZ94vY1TR7VNrvf/s2pbYPk2LD4ElrM+J0HuU4YffWaHfxz7pVQmsHwZltC7eebfL0eP H16jAVr+flAUHz6vERiaRJaiPicL36UhNyLYciPR4XTVJJGF7KGKbnRhiSyTw4Wu//X6OkKr bokeZiyroYq4OFQF0O4PgeJ93jdePZdcsyAfUUDKcidZbZ3zPFjmSJT6fp3ch4MS5l0SLMiH jJCy9tGYDyx2wev7MVgA5741LAJMCizIfUNIWbr9iXoPki1rbm9gXv9HiyzRrwAOogj1TPuE gHKpgwvcR4N+yBq6B8luooJKABIsnxngNOVMP2YLnV5TLlrgXqEi2I+OHkCI3HKBlOWOKDNl g+DwrUyCBeDWMiIS0hDSwUhZUFi8Z4z3tQ+tu94dLNDUgUxpDi2ZkcWStTU4t7qF2l3vDxbk /hykrEKwGLFWUzSju94fLGuIBhxB8dlSApG175aTl85+zQLqrncIyzbTMPuG6mzK+d+vndYt iYuPTmEpU183KzVx9SSwNOthpOJpBbXAgrR5C7IyuusCSwsOhupI764LLFBHtCKM1l0XWFrx bwV6CiwVOKEVFQSWVjxVgZ4CSwVOaEUFgaUVT1Wgp8BSgRNaUUFgacVTFegpsFTghFZUEFha 8VQFegosFTihFRV4wfK6q9/7qxXbN6fn6/6jfv8pNTSn+ZHCCQ9ssxjnHw2CV2QRWIpiJLAU NS8v4Z3CgnxutlZZh3k66/0C7GC5RR+JR25mr1VWGBR31+i1yNcfLMjN7LXK8hj4bDe+jWqc 3oYSnU8BhnjBoqYDgWLbGpC7CGuVtYPlMVlG/6Q9mB2KN8/R7GrksXSejXF+BCtyf3KtssLJ JQeWzbZMYNnePRwyWK0ORupVBBadcpf8xQaW+R2IZ0m51tSB1CtICz2yrPWKFs0HllgqQm5m r1UWHBY3vTOCZbKUnqXB6FLrchepVzAJk/osOqqY9ziYH16wzLycLRFrbaQh9QI15XT09FaY 7GAxy0TMwXvXWlecrtZnE+9XlwxhWfsKAgwN32NQWKahzUBraG/gFTg0r4LvituLaWQB21HE zRb4D5XmZknB+MFdAAAAAElFTkSuQmCC</item> <item item-id="75">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAXCAYAAACBHjSnAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAM9SURBVGhD7VqLcewgDHRdLsh1vBLc QNpwMy6GmP8fLRxne16UmYyTM6yEWBZJySL4iyPwwggsL/SJXeIICCYmk+CVEWBivnJb2ClH zHNfxbIs1e/teH+w7Bqe8JVtz+VHWTHPXazLKvZzrrHvoh1iuw7Wul4HbN3Fva6z7dkx/3+I eWyX2m/ieOJQse3pQvYwMY3STJDmY7vUUuGcYl/tz9/VaIvOtufH/GFiTiJOopI637vUcxJ8 E4Ztq/DMjnknMbXCtYsLfXpcIQVWIlJ1qsUXgaGCEuWVqZ/9fmv1pb9o22rbopjUsfU4MGSa DM11h/7XsHVsfOyxA43ZprDrXJlOTEUwF9n5Ep9TJV18EGS3aRQxTYCc35UUQ6ljSBzENogd kLdIzCHbNlqeADF2vs6i8g3ZprFbXBkj5q43SJ+y4IQVCo/8ZJVVaFgxbeGRwqrPbWfBELPD byHnU9U9YrtUjCXYrlW3bmJDFROx7a7Ya59K2EUMGSuiI4PYprAJrgwRMyRjO7f4vmLGpy6/ uvS1aZXNH6LI7xIJVeDa1xpkG8A+rwOj82H8KodsK2J2YgNdDdR2JkFN7JgrQ8QsXQfxZ0Hu 0FSdD6tyIoiefKWr3H9WVHVqg0DbP1keqNhSaa+AxARtx8Ufgp2mHYXbbch2kGdneUqZK51/ kizJPKGKNdmn64qJI9p+DxET9K4PGyEPaDiXK6KwAkg5atrmz1RVF3DFEXP5F3O0/LvfYP/e LKg6v/x+eI1DE4kDBVy3Q2blpC7sh4hpihu0E9EViy5sv37FRkmykIj1302uFo0//HzD+Hh+ 8N6sKCV910KHBrevcn21JvkkUvwgvnRhP0DMqEhEFtQxpoVdLY5018MR0xKUeqqe10VMmb+o p2wPXU9ZYsin6mEa9VRP6UDwPsTvWOKHQ/PiR/nt8l+0pTPiRg/2zcSk8uiR5do5JHZhrYEY LJhSamtWCffDtIuMctpWtHtvG+yV95+sd2yuucqt3/JwZUUZ2gQf8QDFvpeYrf8oo9JBKgoY dtJgD/YkImZJzbDc07vZO55aIL//mxHorMr/ZpB41fdHgIl5f8zZIhABJiYQJB5yfwR+AYfR fqe255aWAAAAAElFTkSuQmCC</item> <item item-id="76">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGVSURBVFhH7VaJDcMgDGQuBmKOjsA0 LJNhXMxXlxjhQJJWEZWqKg0O3OXubAXrA2pxAIsEFMFSAiVhsxqUUs2vcRtY7e8bxzoo1GsL 2wX+6p9tblNeCZsFrTTYGpEzniQDexocGE9gg5+5E9bVrbNN7HKMBA+fBdskZ+JkrdLfkwDg zN4S3H8fDJE4vZPVIEH/QAKEQ1BLIEjGOoMYu2V/QYKPPgzI4n+0gjAQg2Ja4SsNlCYJklxK 4Z7PkPY8mAnxPYW0Tg9AYKdJvSuDsDkf2q28Is/8tm0kBM8+REKxxEFp3qIEiyRlxRHbMmfN bX2MBM8uAjLGW0EqY8lblqzpKIG28DhfcC096HlSCfiM0BYls8Fd3YHLBO4/kgspyx40NnNd 6vO2WZGl+aaQoF7ffJx9LVH63JoBEpIlAnIETEGffT0HTlrdsQM71caaQkIm44pfKYy5dQkQ CcLQjcoMU803Odf8fXWlAmpLzYHsVSc7ONIid0NcNSzlYDzb+/cC7xEju/+g7iADzK1aJGBj GOfvOZVvpJNUQwfFBYwAAAAASUVORK5CYII=</item> <item item-id="77">iVBORw0KGgoAAAANSUhEUgAAAQ8AAABaCAYAAACmG9POAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAuPSURBVHhe7V3ZkSQpDC0Hxo+2obxo J9KP9aCtqa/2pI3JLfIGBJIgD5T1JmIjdoYEpCfxEEehR48/QAAIAIECBB4Fda6v8ur6x6Pr X9dLAgmAgEEE/vqf56N//vxVyW6MPEalHx1oo8rqqAwE3gj8/TyrJmFD5OGI49lXkiWcBggA AQ+BV98VRvFmyOPVPfrygGOKWB7vqOX9Hx+uOUDHb4f/oo65cr8/KlJy+iztP0JS5NrX+L9W 91zbpW2N9dL2S5UHOCSdXFi/3IHcPD1GvWIf4r6X6jaECP0z8pGNncLyYVm/9a/1/0kIXP3n z1tD3R8b5OHAKDZ8uNQZjZYmkPB77d/7fiCGRd54fenKvf69PRyuP42BtboLiGPRi8Nxbmsd RLQJU+Vx+3SYnap/JY4c7lLdHIazfqmomysf7TD4ZIYgHLb8pOr7hwHycOBUbI5SrO0GawpI ajN22wZXTvQ3OP3cHzeLcO2ruIOYsXK6Z7lD39Y42J3Tdn1HRB7ZcnJT3A26dRCp63PYp/TX +hD3vUC3hXrdoO66ZOQxDPpM+cQcgr0N/fKlffJwhiiOOgbKjYliMC5NSN5AX5xpnCmcGFx5 7H9B5MEMXn37mRGv1D3LSwVt/f38TCdi9LKCK4/kCQZlrv6lOBZgRS5N5uVEivS48gFA+cmK w0wz1JonD61CocORTpSbgZIz/7Rm58oXATZr3k2UM8vzmmflYW26ITJx+3wIotY902RdW6V7 HluBcidtRPsX4qjHitJtc0BA+itXPmGnudagnKgbJ4/KJYvj3e2SYY0FMxtQ00bWhoLnzc3x n7hyYgRuDDiH2uk9j4L2E4Ner3uaPeraqiWPHHGss6s/a16How4rWjdvDyKxFF58KDkZyqOO 0fK68dY4ebwdgNkF9k8tgh1m500lIeRMENOOdfcKnd/fKY/Lo/hnOW2gw+na9hODvkj3I9qq II9hYHAnZKn2tXbaSXcp7indwtOPkBy4ctEkSev66uTXIdomD2UYRcJB7W9oNw0zeyQjYW/2 UJKbYZtlT0SIzODi+k8FDHvo7jlisE8kxrGQPAYsJc7MtT8pcRaOEtwzui0bwcRx67LvJjmK FdtndSDNNsH9yWM+6pIeMUYhYBD6ceVTf14I7RmRWZ+z7fN7HRtXCG7kSo9XqT6448ecXNzg JspVJyOS+toQPrffwuHIYKXSbZ6cMiSaaM+/MiDzm1uRR7fLldLN5iURAtP3LjIXgoZZI3dh yO8vPhYOysOTH7Z9mSOs61jN5SaeBFIXpSIcl6b05MHNvr6UifZPxDHWPe1zOt3qyEN7dwPk oRlb+BYIAIGV5hXHtc0vW/aJPOAdQAAISBBA5CFBCd8AASAQIXAf8vj97r++f2FiIAAETkLg 9/tf//WfrDMsW2Q44Ssg8BEI3CfyeB9BYc/jI3wWSjaCAMijEUNADCBgDQGQhzWLQV4g0AgC II9GDAExgIA1BEAe1iwGeYFAIwiAPBoxBMQAAtYQAHlYsxjkBQKNIADyaMQQEAMIWEMA5GHN YpAXCDSCAMhDnWNjtpz+p+NjTWkODtmLV+VpJigPzD9HoPNZbVtc/hmuPHi6gHidt8n8N8FT ANvnG1YVON2ndAnL0w/51AvZh4sV74d8OHmUPlqzOqrd/CIhFZRikSEh6aNK0SNMoSzc3++V /8bPmyLTPf3OrT/ZOXLiEmrJXmQb3/yVvqB+v9+2UCwrSXdwh/wiEXfoc60kIxEtrlz+Ga48 8eivyfw3oa4FusemzefEWehFktdl0/hnk4f08VkPsJvkFwk9rACLJHko26Ifev7E/Dfx84cc NuSj3YFhRDlvRHld/IY/mjx0z97TYT4XAubDujAk3fbBvF+6ThfDi+HS8DE14OuwiJ0qek4R +W/4xOtUlMHklJntlszt45kmtY/m/n3aJ8Geh2xrr27AlG6YBmvQ5Kin2t8vvwgZ2oYvtSsc yaM95L/xE0GLcEw9upy3+fzGKb/n4SxE+yyX9yU34UgnrfvteSjD62B+Lczm7mzYQH6RhpYt oyhc3hSuPB0Zmsh/kyWYtO4y3fwJyxvw0rwuBIN89LLFy6EygyPOX1EYebSSXyQOPeKcvGIs okV2fVtc3pS75b/RYB3qLs7tE/us+nV2bJimlg5cjg1mT4JbX4rCV2aW8BIb1eQXoWfq9d6I BovKtrj8M1z5DfLfJPOmlOpOJmfnJrw5KpYkz/r0o9rB55V5WpZxwhmiluXPyC+SGPTTZSNt Hg9qWSfO28LlTeHKAzu2nP+GylmTzmPjVnTK3D8kcaT3PPw5jziyT2x6fPayJbUThH8HAkCA RQDkwUKED4AAEKAQKCKP3CbLeP01d39hXCvFYWWlgfAAciWAqA4EdAgUkYdojURmgHc115uD OlGZr0Eeu8KJxoAAh8Bx5JEiiSSpcKKCPCoRQnUgsCsCB5JH+EvHUe7kkVStWog8ahFEfSCg QuBQ8ogvYbkli+wMWaWF+xjkoYYMFYBADQLHkkd4eUdwi85/sOXRbx9HyT58A/Ko8QPUBQJq BA4mj+lkZbpMn70IoxY9qADyqEUQ9YGACoHDyWNZugivZiPyUNkPHwOByxA4njymTdKue1+x lf5+twQORB4lqKEOEChG4BTymO/mH8kd2DAt9gFUBAJFCNSTR1G3B1RC5HEAqGgSCKQRAHnA O4AAEChCAORRBJukkjZviaTNs77hnhs4Sw6qH8u4hvpocU58P71M511riB4ImvoWHlxILAzy kKCk/mbPHCjqzisrcDlpKpuvqm4ZV5o48nlUtnUydnH3p0QbinMb+1zUBHlUOXOisjZvyREy FLS5/Fr62fXds/5F9gIR8lWM4hrRhvtVeSb3j/Z7d71Bwh3DQ8fvU8/nTre8QR67e/i7waqH lY8QSNamKL+HrKljvjKKa0wG+dw/uu/HtAnPN9kvyxZqyVKQl4UzIsiDQ6igvC6lQ0GHu1fR rsV3F4Bs0D6u9NJFEjWMNdPpOLwnI8MX0Yd6+rwsnFVBHhxCBeX2nRzkUWD2gipanKXf+2/m lOZl4RQCeXAIlZSbD6+lTloCTkUd87geEXlQeG7sV5GXhbMUyINDqKScyjki+EVxSVfH1GmU PMzjegB5kI9rrU9f1ORl4XwL5MEhVFRu/UixUfKY0yssmwQ1uWWKDLtzJS3O1PfEv+UmKtzz IGzY3PV0y5eZtE6985jKNmcZV1nkkX66ImUXPx1l9nFxkIcF8jhzQKEvIHA+Ali2nI85egQC t0AA5HELM0IJIHA+AiCP8zFHj0DgFgiAPG5hRigBBM5HAORxPuboEQjcAgGQxy3MCCWAwPkI gDzOxxw9AoFbIADyuIUZoQQQOB8BkMf5mKNHIHALBO5DHr/f/df37y2MAiWAgAUEfr//9V// ySR9yD676KvmfttyEQ7oFgichMB9Ig+Qx0kug26AwIgAyAOeAASAQBECII8i2CSVLP503ILM FmSU+EfNN208mXAr8njKX5KtsZygrsXHgCzIbEFGgXtUfdJOXh2QR5UhE5Ut5hexILMFGY/w p6nN1vLq3Ic8+vdrSqkUewcalGza4kO9FmS2IOOBvtZaXp1XJ8881/ZR7fC+ZfemkOv/WEy9 YEFmCzKe430t7Hnoxlvj5KE7OjrSyBad3ILMFmQ80q/WthsgD7eEVOwxNk8e74NnlUKHGdpi eG1BZgsyHuZU24avJw/NfoeTvH3yaGXpYjG/iAWZLcj4EeShW7IYIY+3mG52UoRTx9ja4pGi BZktyHiMR/mtXht5eOkrheoaiDxGTVzei8v5Y05Q9Bizl3uJiIWAn/+ZhQtYFmQ82nIXkkeU RFumqxnyGLOJy4+RZOrjKyDw6Qi45FJlJ5qGyMMZGQTy6a4O/fdEoJw47Ox5eHjNIW4ZW+4J PdoCAjYR2GcMGYs8bJoKUgOBOyLwP6vTIqshASu9AAAAAElFTkSuQmCC</item> <item item-id="78">iVBORw0KGgoAAAANSUhEUgAAARAAAABaCAYAAABwvgmrAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAsgSURBVHhe7V3bkeM4DHQCm8fE4Cwm CeVxGTia+ZpMJhidSUmW+ATAh0VYfVVbdbskIbABtkBQJm4z/gMCQAAIFCJwKxx3/rCfab7d pvnnfE2gARBQiMDf/Ljf5vvjr0p3hQSyTPw2gTqqLI/BQOCJwN/jXvUiVkYghjzucyVpwnGA ABBwEPiZp8JoXhWB/Ey3uTzwWCOX2zN6ef6hQzcD6tLX/gkefHa7ZA1I556TXSprGZe1399j vt9SLwhqfKrds1PhQlkQkc5d0D86d8LH7JiDj5r/vz+eWq7/Ue1HM5u+x7FM99JDICbnUcwe /rZnMUyaRPz+vL/v8nj99/lI+zOte3T6F3bU3BnkIZa1L6S0Cbc+MQKhxqfaw7mWh+y1PpTD PTb3uE84PkutCardM7XBhn6xuoOUEIgBsyJhGmN3A26KcWMJWkfG4gzHxWAdc/sHanxtu4g/ Im/13Nyz/CGXtSxY82ac5ikTgVjnnaYgAqHGZ9ujiXZju4JtsNSHBP3jcyd87GknKiKn2kNT y7cyOgjEGKM4+rBIh2RhDRwnJeuUAbkcDZp/O1Dja9sl/CGde1a2EEcb9D8e60lZZguyhc+R RUeNp9qD+WS3SZnZS+fO7Z+cOxWBLPnAuzlQ2LYxjs9S7fG5Gt+ULDUVBCKdlA9NdMHmHCkZ IbhRh2H4zXgO6NT42nYBg4jnnpFdJytFIIfEeJcciLPRLz7Bk86d15+ee9LHnrQcbMOdPAbV njC08GWtgEAqty/2LRiJKLLOuiavDqywGXL5p9A4tt3LDRxzNrHx5e18BpHPPS27TlacQJx9 d1cC8d/ofAyXSErmQ5z++blTPhbTP9z2uL2odjtTUbpAAYE8J01kh48s/Qrnjqcn3HDSQdvN gE8/hwWQlHfcW2fG2+fUtjMXQNHcE7KrZEUIxM/89yKQ9TRCmiB03UG2DSa3jtTcWT4WxNrE SRd1krXI+5n4OaLxCUQYUkVdP5bvkCYSjzJKjJvJuVida9tTfNJi7pvsKlmh874SoP5RpJeg Xh5POX+i3W4X+QsiScvSuRP9yblTPkYliKn2zPtHkjK4BoFs5/fc48fgTbg45/4GS4SXW6RE ja9tZwYfx4Xnb6/K3sbSo8yjohQBbCTa8DuQ0oRp/C3k5U+o43AhVoGuhI/FCNUhnQjezJfm xxHI1OTT0/1bgdiHZGYbFJyxH96M4YLzPvLxt1n2DbAnWYPxte0lJML+iC4nXIjjS9T7CYR8 y4sw3KOgza6+TQMfknx4FiU7wse8bXDq5DB+SpOePAhE7BgYAASAwL5T5R/lqtjCtIlA4CBA AAhwEEAEwkEJfYAAEIhnewQfk40fgfx+z1/fvzA1EAACb0Lg9/vf/PUf72HjE8gzuYQtDM+Y 6AUEWiCALUwLFCEDCFwUARDIRQ2PaQOBFgiAQFqgCBlA4KIIgEAuanhMGwi0QAAE0gJFyAAC F0UABHJRw2PaQKAFAiCQFihCBhC4KAIgkIsaHtMGAi0QAIG0QBEygMBFEQCBWMPnf3ae9o33 /+x80aVl/RJ/dqVYxFCSyjq7fg71fAlLtJ47Vx7lk4m7PyIXNZmf9lOXJoNApBcIvXxoN6je +iUJ8uBeppRdT8JLcgI7+OPjf/+M+jrSuaUuKKJ8kmrfDWqv/mQUjwKBxC5nIW5jel0+o71+ ScAf8louSQ6R4krVv1mjrs+sr0PUdWFgSfkk1e7YMXrFYdzSIJCCy39Z9UWSNTzo+ics+Ud7 trqOrwCLJIEIZUVvJndII/+WpsbXtks2L+QlyYEwIgJhYEn5DNW+q+RfyZmf+eUJhHOlvjwH Yoyw3tfZ6/ZwfytFbVYZK6AOC/cBYllU/ZtV/CfX10nNTYZlQQ7kaDpB9GGzhx91H0jBz/ll xonnDPy1a2S+9uZdCcR/czFYItOlDotKAtkSw5esr5Ov6yKzSw2ByKIPEIg90BDW8HDWScRY VA0Pajy3vUX9Ep9MqrDwhBXJumh9HU5ZBj+hmSztUUEgBVvhy0cg0RorzCvtY/VHXskqDfVL oklUrwYwGwtPmLQ2Siwyukp9HYpARFhWEEiBrUEgxce4NoAjqnvZTWJQRd5PWFHHwE57wVuC v7GRHr3mJAtlUfVvUiVCP6K+Dq+uC69eD+WT6Xa35CrPa0AgFqf8RzphDY8NXMpY7QlEFuHw nMDLXixFkc6oC0PVv6Fqm1Dja9tFcEp9iqrr0vFDsnVeaT9PTxwEInIKdAYCQOCIAAgE/gAE gEAxAkUEkguj9+/n3ZBrL93YoHhxaroFx7jFyGEgEAACDb4DSSb1EvmBdR/a4Lun0HwgELg0 EHgrAkURiKOhlEBsXvHO+qGOGAkQiBgyDAACNQicQiD5o82K6YBAKsDDUCAgR+AcAon8slKu emQECKQJjBACBLgIDEkgxx8V7cnX9duEXPIEBMK1O/oBgSYInEMgvb6mBIE0cQoIAQJcBE4h ECqJigiEaz70AwLnIvB+AsEx7rkWx9OBQEMEuhNIkMO44UOyhvaDKCBwKgL1BHKq+t7DkQMZ yRrQ5QIIgEAuYGRMEQj0QgAE0gtZK5f7E+yuShQKZ1xVUCi5fphmXP3ZS3FO9F9vqHNSBqmy DA1PQUEg9d6ckCC8UKebHiWC+fVDSqTXjdGMa5w8OAWclpEZu5jDCdYPzDYZbXKRIJA6b06P ZtTy6PXoGrmvX1oTNW9qnlE1VimuAXWY34OZS5uYOFN2MZ8+cPjDXvg9TZlb8mTWAYHI8OL3 LrpUmC++V09+/ZBeGhByleIaEsjj+YOOPaqgFn/eLksZkfvhJrloVblMraJSa4JASpEjxsmu 4u+kRJVY6d686mHswfpxjW9jKALZR8XsEil16VcHsNsfTq0itikW+rt6XRgZXPze+h0dBMK3 dk1PKc7c/m65TLt1efwtiiKJmjDYSN+BqA+1uY5as3gKxqrHtUcEEsPxYD9RrSKZTRCByPDi 9xbV8uCLfV/PQQlEPa4dCCRajtJEIMuWpedN/iCQbitS+3HjoARSVcenm7ErBEtxjvWP/Fuu SBS2MAq2MMtms2GNlQofLRoqdeyihxQO0owrLwKR1yKi6socngsC0UIghesDw4CAEgSwhVFi KKgJBEZEAAQyolWgExBQggAIRImhoCYQGBEBEMiIVoFOQEAJAiAQJYaCmkBgRARAICNaBToB ASUIgECUGApqAoEREQCBjGgV6AQElCAAAlFiKKgJBEZE4LMI5Pd7/vr+HRFn6AQEPhKB3+9/ 89d/vKndeN1O7DXSz/lPhAGPBgLvQuCzIhAQyLv8Bs8BAhYBEAgcAQgAgWIEQCDF0HEGavzZ uQadNejI8Y+aPmNct/BxBHLn305bYz3GWI0XCmnQWYOODPeo6jJO3R4QSJUhM4M11i/RoLMG HXv51JpzkNST6ajKB+ZAnpU2plQ5v95I+vI1Xv6rQWcNOnb0tdHq9vxM/Ap34x/j2isEp7Vg T0crMkRrLOugQWcNOjLco0GXEXIgsvWmgEBkx0oNrJgUodHRNeisQceefrXLHoBAzHZSkHNU QSC2aI5gUt2MrTHU1qCzBh27OdVR8PkEIkmgGs11EMgo2xiN9Us06KxBx0sQiGz7oohAnqqa t9TpUYjG40YNOmvQ8R0Mcm4E4pTKZE5XSQSyzMbU1TidQ1TWhdHwkZYGHZmrqrjbiQQSFO7m TUIVgSxFnfhHTDwI0AsIXB0BU8Cq7KRTGYEYQ4NEru7umH9LBMrJQ1cOxMFsC3fLWLMl/JAF BHQi0GYNKYxAdJoLWgOBT0Tgf1yDZMnWsyp5AAAAAElFTkSuQmCC</item> <item item-id="79">iVBORw0KGgoAAAANSUhEUgAAALsAAAAXCAYAAABTTj7/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPPSURBVHhe7ZqLsaUgDIapy4KsY0uw gW3DZiyG5alAgvwg6qyHO7Nz95wr5MFHSIJCjp/hgR/xgPgRO4eZwwNywD4g+BkPDNh/ZqmH oQHsq5zFJJctccq2yEnMcv0PfLUtkxRCyPkxZTe5TMLIjP8xfmzw3/P2HEp+UfaHYNebVchp UsBPi0z3bANrwBALO9lc69xh071hjzf5m7K/A7sBTJ1A5iTqE1nLtGdgVwNNZLyy6V6xx1n8 Udkvw+4iCMmdypilT6yziupmHgug/f/dP3nYFe2XNt079lh/fVX2y7B3gjEBy+abT9QZJ7Cr KkenVU31w2v2mCMp2qTP+fJ+2Q2wJ0VZdjXPQKCQ62hCCz33XYEYmjKkoCHgxXZhJ8M9sJft 0f5D9a1bB0y2X7/c3Nbfx3pigQeTXZo7z2c17AbKHb5cynAIbIpsVQE/NT5w8p4zl2B3+u7K ZtIrE/XCaN0hjSFzIvaA+gYbgl2HJtkx6LT7RX3Hng5Nsstzn/EZwH7SWfDQMHlouht9y0pM s5y5TkUG5ObI7ospmsSryOILVQf7YmG1ESeINlx+rectFphogaqfU7ostktz6MU4A7EH0Ldp HRDZvvjWdnBrzM6RaWuH5iOyS3MX+IwulegOLBV79O+bAsq2ueuOz6pgHjwc7+RwllA3Hy0P wCNbObCh+wW09egicXHz2OLwODkz9gD6tqwDJNvAXrnGQLGOyiacnM4d80luUNMIy+euQV6U XUAE9ovdmIITD6C5NOb4jm0TAguU5s1Hjpq2PktBwy0haM9frq2ZHYusAy0OU6j4QhWZO025 mLAG2k3vCnNz83xef10gd/w8FNmxE4E7Rg8A22HHpPc+5er0RYBE7SBbgL9U2x8DQG8V7euR UlEY8LnDLv7E3OOfnUHM+PB2MZ2v2camgeewq9yB5udQGoMq0xm4Kn07y45MLhXoN913uOK2 tmNmCNcghjBmP7tdEv99zY73sHPzoZj0ee48jbG95aQ9BhWoqHadgavSt7NsBHbDyU232Gdz ZwtY20HbYffQl36bF59cFDe/tQD1W99XRt+rb/RnIyR8PngOReX6c7RANbXJXm+grbxWTXoD V6Nvb9m0aI4yCajWafRjcW7G1iBoCSiiO918hN7f9HMngr+YjyO4hf1s/kaTG4a5NGYNWo+k sA6KGv1CWdfXDe4ADtX3Dtl+Cejce8uTvAnaeJscrDY2d+yXsH0cwR5GdS8Dz93tiNrnG8gd Q4YHmjxwvRvTJHYMGh543gMD9ud9PiS+5IEB+0uOH2Kf98A/7HGJpRbnqnYAAAAASUVORK5C YII=</item> <item item-id="80">iVBORw0KGgoAAAANSUhEUgAAASYAAABaCAYAAAAVU/vUAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAuRSURBVHhe7Z3rkewoDIWdwM1jYugs JgnnsRl0NP2rM5lgvMZvg0ASGAzdZ6pu1W6BeXyIg8Bu1A34AwEQAIHKCHSVtSe9Oa9+6Lp+ eKWXhBJAAATUBP6G56MbHs8/9ZPHBz5ImGYgXQ9JSrIIPAwCFxD4ez6SHIQPESYjSo8hUaQv GA4UAQIgsBN4DX3k7uUjhOnVd0O8o7R4Wt3obY3/5C7o/Jy/Xl+6Gay5rvmfb9spfD6+46P9 xPY9ZvJp67I4Of3k0s/1UZ60sZt9HOyFjSs/hoHvGQWb6aji2O79v3dEfNvDfV/bydm4MaHn 8OgCToFJfzxHS9P9tS9MZqCiJ6e9/ZsHlBen3ZDoqn3pbvm0y+t73m5vyvY1tu86A5tza+vi +smlD8M08bbBcc89TPppnE9nk3z5MRToZ7Rs3FKmvm6Tn297uO9nUTIiyC2+XUiYJu16CObU uV+NC5MZhISDbkrtjYEGFH4WEmMI/dATHlMwnTyYN2K1rzjq57kVy7tIEysd0/foyajlTHE6 lsGlE/VNXNdx5Zhx5UeDIB7UsrGLsNvKtZ3r+yIkIRvfpMsITt+HPaYps35L17YwGcjR3pLh RYjQNHB+sft7Ppc3frSby6U7pmkZSuj50+TaCpq9MDWGiL5Hz0dlXVw/uXS3nZbHJFl8nMUp kjMHTcnmXJzrCbJsBIuPyIbXLZpA6CafeRQxjY02LUzazto2Qg6iEPS6PeHc3PBghLZihPB5 V0O9MKX1nZtt1vQ5eiv7cutfabl+culb9Yezm4PQrH1/rd6vfdYnLl/HgcqdNA5UO5m2s30/ NdJ3xnR42SSdL0onomFhStzGrS6rvTJKQS/nJvHCxJ0PUUaxHGoeKl0PMTWr0bqCOVtWcd91 E1I/+bh+culE+w4Tdt0u+8+YIsrXIdmlUyvalui656HhtvN9P3bEtys4nBmJbUY3XxsWpnEA mNP+85sH602GmckXuNFRwjQNJnfI7lutzm9c+pfgzQk1aZL6fi4wD2eun1y64x9vb1Hp7Y7N UVs+rUx52EyrauBsx992Wd83t9Z982y/ZRMLk5lu8k962hUmpWtImg11niTYg89lcYLgSZ9W bskAceUvPWLOxLwLeVLfle7BFXVx/Tyme18yLFtecowZ3lz9SiQHl8k905TYoCTPadu8nJuq +u4y2V7OEJ8scF675ujlu4VJ/Rqbd3P3HIShK1YXUvic593DT/n8SH9Nna0urp9cOrVonCYk c37Hli/vOZ8zbhzOn0McamHbLjy7FC2+nOd27v3XCFN/yafehwNSYnvlfPNh7fE1WzndahPy uPZtKf/NVWhqhPvOTypNDiXnyesJ9JNLtz4edT8BObfH+dCVLV/Tdy6vks1YnN8up8QwO5uN +iPfkBD6+wph4uwA6SAAAsUJQJiKI0eFIAACHAEIE0cI6SAAAsUJfIcwvX+Hn993cbioEARA II7A+/ff8POf7Nmm38pdc/gtA4VcIAACaQS+w2MaX4tCmNIMBU+DQEkCEKaStFEXCICAiACE SYQJmUAABEoSgDCVpI26QAAERAQgTCJMyAQCIFCSAISpJG3UBQIgICIAYRJhQiYQAIGSBCBM JWmjLhAAAREBCJMIEzKBAAiUJABhUtHWXv3Bxezi0q3rNoh7U8rFO9P2XQM2tmzugjzZzZ73 xuvjOGnZcPmlsQrHdnF3gtnp1hUqx6touIvhbAoQJs4utnTtJV12fu3/1xTvTNt3MVRj/Va4 9m+K18dx0rLh8ktjFZp2rQLnu0GVS5/7do5jx/V3T4cwSVlRq0foylIuZheXTtR3uoOZW824 8qX9nmw0Y1y5iLK3S/Raj9fHjYGWDZffe42wKz6GcSgOHJe+qFIgenS48xAmzjjWdOWF/PRF 7nu8MS7dbZZ1NW7JeGfKvkuRbsZLRp/5gnh9HCgtd21+36KzBhHwLX5c+tSvlKucdbHlvvp2 AXVYIS7eGJdubyGniL57XPe1PSXinan7zk24Q3pa2bFnTMcG2tsfN+10PiIeNwUET1YtG21+ dxu9CsriQZHCZHiF0pfOkN6ZnAk8JiEr/aBz8ca4dKJhN8U70/ddCHXaJR7Cca+PcdtUS7Q1 d6mfWxYSpX3VP5cfMW5yHKecWja6/HTfpy3aej++5zghlD53IM1bmh05eTTej/aY8sT04uKN cem2Re8eAr0VtD0IbfmeGRSzRZBOxqSyEzymadLdHK+PY6RlI83v6/u6RfMtEFy6emHxA4Aw ccZxgm2de2jidc3LgBsX7Fh/rfHOroj15uOcVHakMNUSr4+zPS0bSf5A37eXCp44cFz61h3t vCA4QJg447C2Dd3m1zOvtbmYXVx6VfHOuNfQYoiUCUZ+LuDbap2Uno4OKwoi6imfHbcUFrSH LLY57tML8RZ5aQeX35PujWOnQANhUsDav+2YY5jZcdqc+F1czC4uvap4Z9yHeyqQVmZ9rLS5 AL3HJF71Q+Wz45bCwiNOixfD2pxlM8f8ur6vHn4gEnRAmNJiGOKM6UoLQlkgAAIXEYDHdBFI FAMCIHAdgUhhMucrhIvHHe5e125dSWO7EIxAhwy5QeBOAhCmO+mjbhAAAZIAhAmGAQIgUB0B CFN1Q4IGgQAIQJhgAyAAAtURyCxM/EVnMxHue5Q5F/uzER9eHH5XZ3hoEAiECGQVpvMXoL4f 9u3ipb3lTjy0ECYxKmQEgRoIRAqTx8M5/kbG88tk5+qO6TqPfugf3cAJEzymGkwGbQCB/AQi hWm5rqI7/qiVu+rATf97PoeXYisXjQMeUzQ6PAgCdxCIFibqzIf+fczhnMm+qXDrseyMKRoQ hCkaHR4EgTsIJAmTusHeW+0gTGqWeAAEPphAWWHyvn2DMH2wjaFrIKAmkE+YvBEZqEPubxOm nFeIqG1A+ADaLATVSLa6xzOfMLEXnR3H75uEKeela7nmBNqci+w95dY/nhmFySC3PrDE4Xfe GG25rJyLV5ar3pRyW2xzSn81zzbAJrMwaWhlzFvTWznphfEZcaiLRpvVyKp+oIHxhDAVtiBd iJ3CjfNUhzbXMQ5XtaKF8YQwXTXawnJaMAq7K2izcHAbydbCeEKYShtTA260gwRtLm0leetr YDwhTHlNwC1dEvurdJu4+tBmjlBb6Q2MJ4SpuEnV/6qWUNOE2G/FAS8Vtsi5FKv62UCYStnC qZ66P26jkaDNt5hKtkrrHk8IU7aBR8EgAAKxBCBMseTwHAiAQDYCEKZsaFEwCIBALAEIUyw5 PAcCIJCNAIQpG1oUDAIgEEsAwhRLDs+BAAhkIwBhyoYWBYMACMQSgDDFksNzIAAC2QhAmLKh RcEgAAKxBCBMseTwHAiAQDYC3yFM79/h5/edDSIKBgEQuJbA+/ff8POfrMxOlq3CXDXdYFkh HjQJBGoj8B0eE4SpNrtDe0AgSADCBAMBARCojgCE6ZYhqfvKCRoJ2nyLqWSrtO7x/BphevSv bEOsK7j+S7rc/qDNujGuPXf94wlhKm1DDcT0cpCgzaWtJG99DYzndwjT8Bp6b7DNvDbglN7A RfBoc2GbKF1dAzb46h/D808Gpt3PBaaIwP0oT/f/tRA6x6aENt9vN1e2oP7x1M3XhoXJROZ+ DDUcM9VvFMQJ08iusz1Oajtw5exJLKtFzoldFj9ePRtjW4rJ2rQwjcqk6qx4lLUZG3CjsZXT Dmpj+Su3Qa0T0bYw1bKdayCmF334bW2FKeOuaX62yLkUv6rZ6LZxBlnjwjT2wEwmhYuYx07q f1VLbOYQVy6PMdxUar02aLylh/TUe6HXvjBN2tRVcNZU98dt9GxBm29SkUzVVjiexpOLeHv+ EcI0HoOPq7/8VWQmq0CxIAACJwLjJz1d3JvzDxEmQwPihFkBAvUQiBelzzhjOo3E6srGqXQ9 g4qWgECrBK6Zgx/kMbU6kGg3CICATeB/2nI0oR/+6REAAAAASUVORK5CYII=</item> <item item-id="81">iVBORw0KGgoAAAANSUhEUgAAALkAAAAXCAYAAABXu+7CAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPGSURBVHhe7VqJkesgDKUuF+Q6tgQ3 8NtwMy6Gj7kMCKwHPph4yMxONjFISHo6iZDjNTTwcQ2Ij8s3xBsakAPkAwSf18AA+edNPAQM QL7KWUxy2RKlbIucxCzXH9DVtkxSCCHnDod9n/cml0loeeO/jA0rbPe+HMfhnuL9IZDvTirk NCmgT4tMfbXCzg1Le/A2ICcOvc4XHL2HHE7dz/H+Dsi1cVXG0ZnnWjSrRnkX3gWQq8PriNji 6F3ksNp+kHdnkFvvJTVSNczkOqsorukY45v/33n14V0GuUJ5k6P3kcPY6EnenUF+EwgTo5ra 7qU+ohvvE5CrDmov3cJSZtsYp+8mh049kVPebb8GkCcNDy0KtYKPZggD2+7JtImy3zGdJE3P qZGp0al7xXKhmYDnvXNCaZ8BNz0xCnIss2FyuDOUeBs919oe483RLuOyGuQajB50qQJp+XG3 V1JwpsIHSvZ1KQdyqyAvV6GM0hEnjJAIb5B24AhZnya80XIlA/ImOWKA0ykWaPsm3jztM1wG ID/p1h1YMrVe5IWueYiQWBhNJmhtjuRZnrrIUxHFNaAW5IsBqYk0QYbJ1bD7fq55Q3gDtN3o TEyznHMTk2xVhzSeXNZNmr6UT6RD29Duusuds9X2iA452gwuo8sgGnW5VMc9p/XWTVW4JxN7 cEg9PJuLuAewI1lzgAbuByDeAO1NOZ8Z7d9QrpARIm8jSA5tyspzAg0wypvg5pR2LDO58Uwj ar42DSLEabRLUzUJFWa23ToJYZR4ADlXrhzfZUdunIFA3v9y47zi3nqQ85dBDMhBOeL7NeSc nO35AFgudUu087i8fq1fSjeuxuxx/UjcPlcyHcZvAjmYkupoI+ABGftlfCSvpchnHADg9Uzt DpB2gEsPcvEX4x3/bJmG+1V02PeHETql1yxj08ZzkOv6Pc1IQLkCHaWK9gdAbhvL5ux8ptQq 2ocuNbJ3AIYgLH623hE/X+P9+xqAHgSQ2xadlytmTpuMOpHGEzlfFe0fB3nSqCLqgdec0S42 pmYS5kHuwM696x8F2ait3y2o96sGHb3VRCN6br/P0YUFvLyQNp669/DRGx3ztRykhvYPg5zr YVpU5/awtDN6C4KUgCK4ZeYitP/1m43Y7i7NPffNkH3uZqpphL8id91eW66swQiRNMzxuO3e dIvSfgLkwejvtv6IntOPQcmvIq//KhSjnYxLA/tGIA+jrQMRXpubHbXr68A6Vg8N1Gvg+nSl nufYMTTwqgYGyF9V92DWQwMD5D20Pni+qoH/DQW1mm5X+UIAAAAASUVORK5CYII=</item> <item item-id="82">iVBORw0KGgoAAAANSUhEUgAAAIoAAABaCAYAAABnuc5LAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAUYSURBVHhe7Z3/saQgDMdt4Pp4NdjF NmEf14HV+Nd2ssVwgu6uP0BCMtyT5Hszb+ZmFtEkH0JAEzqHf9AAQQMdoU1bTabBdd3gprae uuLTvtzYd64fX6J7KAJlUUg3AJEYEa+xFw0gJaB4SHonHDSiEdfGxZMbmN5WBSjT0Lm0I1k9 TTd7m/lP5oIV9PUaXd+PrnQiah8UH5MkKTlOR35EcWHR05efhkoHTOOgeONdBK5+9HSHKcmD xRhRTlVf5VNQ26B4410FrzEogsEZqyJlfXmvUhL3Nw1KTtgQ6R+9R8wzECJRdX3lBtlBJw2D kpl2ZkHVGTcCNF/GvP62t2sYlHmezcUayqaLqOMTyDgN9C2FdkGhuM5YPCIKZg+xTeN95aZu HR6FAsq8W7DfrcXyeGt8M6AMpK1YBZtk2WCbJyNAySoWDbwGAAo4IGkAoJDUhEY2QHk+3M/j CWsLNPB8/HE/f2kdNL08pgWzNEVYbGXDo8zLY4AiwxugyPRn5mqAYsbUMkEBikx/Zq4GKGZM LRMUoMj0Z+ZqgGLG1DJBAYpMf2auBihmTC0TFKDs9Md7BR83ga6+AMrHyvhw6crnAJS3dlTl 4iRMLpARoLx1Kvjw+GQWhX0BlNXK/FSG8+jV2BdAASjnVNrIzAVQMPWQ0mYByi6Y1ZWLc3IM gtwlgILlMamsBUDBhhtpyxagkNSERgAFDJA0wATF5+VGstu5hWdIjypohI+rBcpbLgUoYhXa 6ACg2LCzWEqAIlahjQ4Aig07i6WsDMr+451zjdelWI0v/rv8XVdg9MWEv20P/78qW4hg9t6g BMN+DHgsyH+uaBTeunLKdebUAFByGsr+zvQoi9FPg3j7HUbkI5nd6/foyRaJZfcqBjxK1p7V GjBBWctt7kZ/7giP3O9hsU565V2sDXiUYpUdL2CD4js6jvB4zfRNnHJZwrPi0SgA5XdBKb57 8iClipAs24ooe1FsrP0FIo9Sfu9IbBOmG+4pFsQnAChERaWb1QMlGaxuguDQhl4RmS0tGRRd uTjX+kosSBIX1QNlLfC7WxllVkVsEHIXkkCxkNfzVtR3QFBPzagISggOlmrQ7w21TTC77JnE N9CoD5/j4/M7BRRBzsvpOe7aVwjXVr3PZxcNsS2O/+9RyGas35ACisJcnJhiX+O4nsp6m6mn vv3JdyCAojEXp5EYhWzG+g0BSkTH8ChnpRBAmXcPEyeAKToqbqcZgMIDRZDzEg9mb5gjBFAy sxfFo5g4r2erJ3gUnkcJV2HDLTXkKu+j1I9TSXcgeRRST2YbARSzpi8THKCU6ctsa4Bi1vRl ggOUMn2ZbQ1QzJq+THCAUqYvs60BilnTlwkOUMr0ZbY1QDFr+jLBbYCC42zLqIi0xnG2YhXa 6MCGR8G7HjHNAEWsQhsdAJSdnS18ZsCT0QwofTYHxEJeD19GgPL2KHfNxbnJc9kAZc5kGS4r Kcy0WPi4WiDjNNBTf7t2wzbvcq+/preQ18OXMa+/LRsNg5IvqMtX4nn4qOvLT3/ZGO+rh6ZB CdWcroQVuOUTKsr6KolPvC7aBiV8YX8x/VjI62HJWDbtKABlDViTXoW/dIxMPksVh8+9zhUw 6fHe7z6X9ybxkmtpCRr3KItgvu5cegbibUbFVaagL++BcqvFiPAqQFmSvOhLPfrI19bSe0FG 3nX7McrWkIDlGms+JDpilOh7Hd6o0eY/Fnne06VMJ0qmHp0mvpNU/wDkcSeIa3cspgAAAABJ RU5ErkJggg==</item> <item item-id="83">iVBORw0KGgoAAAANSUhEUgAAALkAAAAXCAYAAABXu+7CAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAO0SURBVHhe7ZqN0aQgDIapy4Ks40qw gWvDZiyGk1/5CeRF1J1TvpmbvV00CeEhJFEhx9/wwMs9IF4+vzG94QE5IB8QvN4DA/LXL/GY YAD5KmcxyWVLnLItchKzXP8DX23LJIUQcv6Bsd/SvcllEtrX8T+CnwZu7vLhiyBXm1TIadpB nxaZ7tUGX5+49Gu6DeRZMFnnjiBznw/fA7l28H7i6JOnL6I0U/453QXId8fpaHwmyNzowx9D bndvliM1YybXeY/iWo5ZAPP/Z/6+p7sM+U75qSBzpw9/DPlFECaONbndQ3XEJ3VXIN+rN5U2 hqnMtjEB52YfnoA8KTqyxIwbp8FWOzkvZOxvTCWZH5Gpo3PH51bEdqMnAa9baUJl1+AhLM5S g9o8S7LNPYfvkeCAQo6dqpgPOTvL3DVDrmH00OWT4MYvit2BmHTywYL53JCD3DrIz6uQRumI E0YpRDcoO9gI5J4+pdu56QAglp3PkzwFM91oukJAfmoevJ017gLIKxWzg4XIt6JdyI1XCD8d yV3BksrWv7sC1EK+GEhN1AoiFpVHqvu5AgrRDch2rTMxzXKmuhaU3xDdrhBU86VkkzIKreTI BqTwBE90ZB6cnQx30cOgfBdzx03veH9cj3dwKC+0zUXcA+xorhTQwPMBSDcge9s3n2nt4+kK pFtD3igbKhzRFiLHh9QNgyMzKK0fwUnVzlhv9sQzjah0bhrsUjLacePO6M7uCrMgB8hUunL8 Rra9uMUGdf+lWmrFe0HIQd3xMzFEdppalYJQEqX96Zi2bhnIT80jqHFq9WDAZf9j/dJx4zm2 /ev+oN0hgTqCjwU4BTloTZtsBERQcXYZJxsFvEU/H8lbpJlrQTsDLj3k4k/MO/7dKi3eT4+3 T67njjrk+5mZ599AugJZ1CSbAxHSWLiIKxbveLZwMeS2aMU6X8d8NdkK6BDq4ne7O+Lx9bif G7fuTzdQz9Jh99bTFfMAI2mdIYUnorxJ9g8gjwp0ZEIt11wIec3OYmFqOmEecgc796lfzLFR W38qBfunaverT248lN/irr5r88JT1x4+b0uPwM5aITK2RfbDkHN1R5/TfWqBRd6KMtZOwm9B kBJQBA8isAdZFRv2BHDPs9x3/4ZaYbzbd80CbLqyBi3ErGCOi6nuhaFAtwVaWfazkPvWZfY2 4XVvcnodHa+GYnYmxXBYeOK5t1m1q69v5nXcMDzQ6IH+7kqjwnH58MDTHhiQP+3xoe9xDwzI H3f5UPi0B/4BLm+1SkuPdTYAAAAASUVORK5CYII=</item> <item item-id="84">iVBORw0KGgoAAAANSUhEUgAAALYAAABaCAYAAAAVdqz9AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAdqSURBVHhe7Z3blaswDEVpYPqYGugi TdDH7SDV5CudpBguBhLwU37IE9mcWWu+HIR8vBGywWKY8QcFOlRg6K5Pj2kehml+dNexq3To Nd/HYR7vr6IOdwT2JsgwAekiIoQc/LqPRQGqE7AV1ONceJELGVK4cSjwmKfMu28XYD+mYfYH 6j2SD0s0X/7LbnG92dr6Q2lntyvgNj23f1/q57NvHB+6y77u8zje59TEpH2wVU7tFcZMTzZB 8+DuzdZxkbrl87XbGrrTBt/xpo50Cqnsp45Z42ArUQITRXW1D0aKoi6EjAgwd2RrA3GJtIt2 kyNiB9udk3MF+6Fz8vEubbWMLD0laRtsJUjoNuaCeBUxY9WkI1uv+31fNXKnClS7NQswwAwd v0JvBZbtLhDOSMZgu+lT02ArkSgxLBHJ6OCevDkHpHlbuTn2WaNQKuGw74r4q45hsNc7ZsKK V8NgE2nIon2fMOoXXlkfS8Gm8mOX/X3ieIJUTf5VahTmlh7vszINg70IROXKHaUP3kXAoj4W gL1H2fCkLm5VZHpQfmy9f0zxS7rtgh1za3Ll00WTRyM3b94WBZSnfU0nYiCj7O+Xa+S8h0o9 +4jYMWAvq5/600gs9xmJTPo6dtK8wgG2dXz8I/TLgD1FPWrs7aGKKykJ91HlsO6UgYqodvtn KU97QOPLkUMR/3jAE7tGDbDxVLpLBQB2l8OKTgFsMNClAtcA+3mbf2/PLgcQnXIr8Lz9zL// 4tRperkvbvIYJwR+JV+Ba0TsZdkIYMuHkdNDgM2pJmyJUQBgixkKOMKpAMDmVBO2xCgAsMUM BRzhVABgc6oJW2IUANhihgKOcCoAsDnVhC0xCgBsMUMBRzgVANiamnht1YaLqutBteuauspf vLd7bXVHzE0JlH335QCwP7pgo4GNCFXXg2pXW7TOpeTsjQLW+9/aBl7avi/KA+y3Mh3VAvHe 0lP76N0lvkdVqt1xPm1DMbXDhrIfyF0A9lucoo2uhsKd2KLqelDtvjvAZxcMsQ803f5xRoC9 a1FWmkAfwm5sUXU9qHYzzVsrSh219d46Pd7VpszaftH2HZcQUUfmfETXr612AyNxe04rCkTV 9aDaHc6cYH3vidT2MWowZ9g/BarYmjldg73McuxyWpFb/a3h68qWviph1/Wg2k11jk277lTD 3NSban87H1IRbfLYWy0QAyqO2inUxX5u9xal3Cs5OXNsYjc8dX5EbHckOdZZUVfErhprLNeR dT889fg+eTZRr4+078+7ELHxgEZTwL2uHKjrsUblUN0P4wGNVWrOaDer25L28YAmMK1CU28K IGL3NqLoT8nkUa9KfyxXZhZKrz0Y2MxbW2Fx9jMjNsAWN5JwSJ8t5T2gAdjgSLYCiNiyxwfe ZSoAsDOFw2GyFagMNvWSOdWui6e/kH7+KCbx+WhMHmVTWMG7qmDHvGR+POmLr1afrAPATpas 9QMywQ5Un38/Wcp4ydz9UswhMSJ267j9nf+ZYO+fj9Mef1IRt7S9QBRE7ALx2jw0G2zVXTOC hr5dsn222PUB91OeTX2yLldjgJ2rXLPHFYGd3Gvna4wnK1R78gn3AwB2rnLNHve3YO+fnPPv bKC+TJWpM8DOFK7dw+qBHfOSufmK4vI5euoD8FlSR4N9hboiWQpGHMSpXcTpiJ/UA9sVnbUd E9RL6OWd+1iIAvsKdUUYNdVMcWrH42NFsJWDiS+Zf3PymFpzI6S/VFs8zNhWOPvL5GNlsJm8 LDUTE7G72oBbKlji8ZzaJZ7a93OA/Vk4GT271GM+cK/LK7WUAxMzlhnO/nL5CLABdjFLALtY wkwDSEUyhYs8DKlIpFDcP4sBm6Pmxttvqba4da3RXyYfkYp8hORcspJqi4kaO8ue7+P51eGS miw8PgJsTUfOhwxSbfGA41jz2+Dea4y43xuqdW6HN3l7Hv/OQZYzxaQiLCeCESkKIGJLGQn4 waoAwGaVE8akKACwpYwE/GBVAGCzygljUhQA2FJGAn6wKgCwWeWEMSkKAGwpIwE/WBUA2Kxy wpgUBQC2lJGAH6wKXAPs523+vT1ZhYMx2Qo8bz/z7784H/v+HF6cBvhVIwpcI2LjXZFGcORz E2DzaQlLghQA2NpgSH3VlNOvWvTJ8vEyYI/kh7Wlbg7g9Ksy1B+NsdGgltK6XbVViwKbszaG VFu11ObsL5OP14jYqnQaVYyHc0OqVFtM0FhmOPvL5ONjii+b0e5y31qRalrw9v9xlhCQaouJ GcsMZ395fKTH+3yehsHeCtWHshHOwZFqiwca2wpnf1l8jEk9TydqGuyF7HCezXk7lWqLhRqH Ec7+MvhIBTHzFG2DTaUjUmuBcPrFAI3ThCgf09IQ1Z/GwV56oCKLNx/hXFaTaqsa2WLqiqho nVr6oX2wV7aHQK7N+ZBBqq3KcH+zroi6c1CrX47udwH2VrM7fimoFgawy62AeigUXvnynbET sFX3ADc3Vt+1lw91Hzm2pv47Vci7yr87kDj7pgDPGHYUsQEGFDgU+A+yP+4VKl0TqgAAAABJ RU5ErkJggg==</item> <item item-id="85">iVBORw0KGgoAAAANSUhEUgAAANYAAABjCAYAAADn5P7oAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAlISURBVHhe7V3t0fMoDEwDbx9PDeki TbiP6yDV5Fc6STE+g+3EH4AkLGxh783c3MzFYHalRSB4rFuLf8AAGFBn4Kbeo2aHr6a93Zr2 pdkn+gIDmxn4tM/7rb0/P9GejAqrH/itgaQ2+wA6KMbA53mPTvwGheVEdW8Tk0ExotAxGJAz 8GqbwKrKnLBeza0NByoHICC4z7O9n2q5CJzV2dP54P3ZTheGtoTl9lTR5R8crjqHS07/57Kn WxZO91yGhOWWgKlExbkMEfc54KxzApkvCe0Iy4XTZLICDlenw8WmkPPZ00Wt0YXNCGs6qLAp zmcI4DzZnnkSHIwIi1oGOhfkCmtI1d+6dL37NxoF++fsZfS1cLp+Bg78f62dB2rh5Npbnu+T t/j5sRFhdSQvsiprUDxDuKziT0yxg7yfMWoVVhpnL6rpZjp15iJ3II0WOvbk2VtjvLw+Xk0f hW0Ii9xfOVCRCOMyiaMofep9vrzwDjURbe9gnfi6REljMmIp4AzeWIk4Ms9fCjylgJNh7wID T3Y5bmkqElYnrdVJN3W1ZP375/kcrkhZXQrq4FxZP+CEezvd8n0a9pz3SflDecTmhNUwr1r4 0D/ZO4Tva03W3dElpl1h+R2lGs5ftLd4RUwHJ8fe5UXlmR4yg2YiFldYYnqiF3ltC0sbp0VR iTH2M046EUP9nvVSfqPrCCu2N4v+/4HELVeltrTl23DxZGCi8ONI38Luptj8K2Fb2mrinPUV mTC3jFXQ9pzCim7aQ2n1VMQaU9V5Kep+eZPXluVvHJz+Geoyc+U4OTx4QvfDaUtY70f793iz fCr9UEAs06whY2Ybs4b3psmbyf37untjJYUVirZEdjScOOiiWc04KR6GPY/bk++F8/341/79 ZyjdrrfHWhwYCpMXn9erv6UsCP8/px0OCLPaSueVOM7vkcLsgLhP+ozndmfA2TOWtvfeOG1F rM4R9YQlddDI8xni+N5wzmirNGp5NxljBc44zRAW5YJih5vcHhG3pQZT8HfxWIEzZQ0Ii/JV ocPN/kBT2JYaStHfhWMFTmKXf5lzrFyvFDnc8sLr7xDb3l3EBSHAGfCQfHsiYlGCEzncFmel BlL4d+CkCRZwBGFRdEbJHGazVCgSGIIaRvHfgbP/8xole0JYGz321V3mjX9VbmPnhpoDp8wY EJaMr8nTJ7tjGOUBOHNcBMLKYQ1twADBAIQFFwEDBRiAsAqQii7BAIQFHwADBRiAsAqQii7B AIQFHwADBRiAsAqQii7BAIQFHwADBRiAsAqQii7BAIQFHwADBRiAsAqQii7BAIQFHwADBRio UFi8j+gX4GrnLoGz7BeuypoTwirL74beISwIa4P7zJqyvtIEh6vZ4dauck57ImJpTQrq/ZzT 4SAsdUdhdIiINSEJwqo5Mici1voLNeFSOQzBcB9RFRa3dKbVv5DlCovCiVKpXPfTfC4srKE6 xfy7GoyPp2wdmaKweKUzUSp1q8m2t+dNIJQ9qd+3j1PWQ0BYiWp4rMoVsgHIkxcKpTW7l36/ a45SqRsMptFUwZ4+EKRL42qMVNLHWliBQfI6XBeS5rWbPMWKWDolRFEqVWydYg36SW5a7ogq dbr192JQvh2vhXVkJTymsNzodUprup6s7rF6G+nh/GG1WNVRB6flUqkKwlqSNK0VTH0QsVi1 EZRKbZ934oOU5SdyvTdQfkr9rjeSYE/CpeCn/ZT8OqUgYsl5iUWmVEnNjd9eP+RLuMJSqUOi apz8sr4xbwXnfMPuJ5Ivnp1xypIXwWzh2sUPj1js0pmxpWC/X/waJTNpY79U6klwkvbeH2cy 3T4/t7KSbufEqo2lUldlVTP2YTWUSj0LTqpU6gE4FQ+I98sKcqRFlc789cERzWLGIwdQT6nU OZQ6cfYYuKVxfUpoviIpYM8K7wqSLKg/4NPB0RrG69e55320P2TvkQ8fOMPc5dgTwiL8cH3G QjlunSVEgTNm1zx7QlgJnfTONj/RJ2XVLDNR04NPqvUxvwNnnPfckrAQVoRT+Qz+W7vPzu1c MbNphvEY7UTfCpwpg6BUqq67Zl/rWgzD+h4LOGV+I7AnIlaA2tg5nPi2v8AQMgvrPA2cUx4Z x0kCe0JYG30UJUQ3EmisuZY9Iaxsw3LOv7I7N9QQOHOMAWHlsIY2YIBxTOO2DjcTTBW9hGsC IQZxEQYQsS5iaMDclwEIa1++8baLMABhXcTQgLkvAxDWvnzjbRdhAMK6iKEBc18GIKx9+cbb LsIAhHURQwPmvgxAWPvyjbddhAEI6yKGBsx9GYCw9uUbb7sIAxUKi/cR/frtB5wnLeNzgGuy 7grC4Wp2uLVXndOeiFgHzB+8V57T4SAsnvV1n0LEmvAJYdUcmRGxdKcGxd4gLAhLy51UIxZV QnQctNW/kOUKi8KJUqla7inp57QRi1c6E6VSJc5S5lneBELZk/q9zNjjvdoS1vvR/j3eBAcK pTW7N/Tf0+u++YdSqXv73OJ9CvY0WCr1/fjX/v1X2Z/mrz8yKS+diVKpB+tp8noNe87RUP5Q HrutiMXaY/Wk6JTWdD1Z3WNp4/xhRalUCEuPAZRKRalUPW8ie6o2YpHIVg8IS6V6IY6lUmWF Eb6vFnw5VY4n1kJYKvVMOGeULHjYGac5Yd2ziuAunIwsnTl9PuaIEzFlFoo2Xyp1uemvFSdl 7wNwnlNYVOnM1MwWDASRlHAqzNRQKnU1/kpxiuztd+hdRUfhKkRoT1vCcoAFlRPTyydu6Uw6 eeGzVqJx1VkqtVacvR9w7T0ctRS256vphWvjS7ieHEOF2vwSwu2zZLObc9CqSqUCZ3KOltvz 58dGhNXPJhrbLL1kgM/td+LiCj6vtKbqeHM7A84Acxn2dBPV4MRmhOULYttTFntNnltaM1cL uu34ew/gjDM/DQ52hGVtOej54zpcfmlNXYHk9gacc+Zy7DnfzhgS1rD0OjJqLZdELoqKNruD eQ45xxKICjgFZLn8iNtzp7cE3/3Y0LMtYXltTarPy+CrPP29pOuTFyEydUtrqgw6oxPgHElT sGdgAjYnrD59KsvGZfjV5iZapTU3D6RwB8BJEeyEuZ6ADQrLAbEsLvr8izJFHb8DJ22nsKhc O6PCGsUVW47RkPEEGCjHwHgoHd93GRZWOVrQMxgozcD/8PEpbEplt/sAAAAASUVORK5C YII=</item> <item item-id="86">iVBORw0KGgoAAAANSUhEUgAAANkAAABCCAYAAADaH3P2AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAfqSURBVHhe7V3tkeMgDE0D18fV4C62 CfdxHbia/NpOUowv4C/AAklgbBlrZ3ZmZ21AeughIYLyGvVHEVAEqiLwqtr7lZ2/+/H16sf3 lTLo2DdH4DMO3Wvshk+RHg2SbALm1Su9iixDG68IfIauaMFujGSGYN1YuPCoeSkCAALvsc+M jJoi2bt/jeUObPKEeD8G9K/HXH+D0PQzjJ33/PtuN4z7wAMYz4a6bt/b35tcyPgsoszefx6T Hh4RsLI4xBa+WHtfnn1UcpHuRhdwDtNgt0MyY5g4MxDT2yY33dU0ya4x7kIKkjzU8cbRLCAb SQnjk0kWhtf7vuGuKLIv70Aki7e3uq4TEO6LrtXdzDN9EZqQa4RkZiLKkhwTSYwh92OPeTIw qWImfzMmzKsWjUcYn84xwNOY/hMrNlV2a5B9v/NkyfaA57PvL/JcrPt3uWOHjW2QzExMoRf7 DMOciSSEQJAFe8Yx7Q07k4BZwr7AaOnjETNcybAsQTmIULav+KJFkn0JrUDScLAm6H+i7gZJ Q3qOuTVBMq7S6VU+h2SEkCsazyPjkY4i8jOqnpdYgCEbbWpPNXv1rD2ZNeUpS2yjC2gvuwqb nU3O1p25qDdAsvJQ0Scdl2RUA5/2EvsVMDUeYRVfjJGztDoKZxua7QOW3du3ZJPMETK60FCx j+wq3TCUtcDwbK4Bkn2NF8n42I10JFu3T5YwSDZnEGkb4XQmDeQI5lFY40f8d0a4uPUE6BR6 7CNIBpH5Yt3fPf2o6P4kY7puPCFAJJldXSNAszbnifFSCYjU+LiSDk+A/ReS+EiRbE1qAIsa yYtHsXOiAAG6c7YoSrKdQRJIhnkYaOWNGm58PD+V7cV4ibMnDsOcvc/KAGoKPx4uehKwPRmA h4sdij1Hf8JeOtLd40jWH/oRD9jojcEvYSFttQ4OTKMhbZpkUChKGz/D2CKH0a7u7P0rm2RB 0iNIfJytewxFJRnHvvRdRSADASVZBmjaRBHgIKAk46Cl7yoCGQg8i2S/P+Pfn98MmLSJIpCP wO/Pn/HvP1r7JrKLxyY+aMDpW89G4Fme7Ju9UpI92+Cv0F4eyZAPnBaBpCQrgk8b5yEgjGTL eVHZVZQoFEqyPCvRVkUIiCHZcnA43SlSkhXNqjYWhYAckr3f03V7DRdFGYgKU46AGJKtqijJ ymdVexCFgJJM1HSoMC0iUJFkzm3V8CpD6tKgerIW7ezROlUkWSauSrJM4LSZVAQKSRbWtCsv U/ysxIfv7Wm3pqWaUqlcd8KCcI/QgSOfZPOVbj/ym0mXWUPCyvUYT5Z/CbDUnOW1vxMW22JA NfNMkiWKthx13buGJUg6jIYuKJKv8tcA58I+b4JFsgZkAr48kh16rfvEyZVEsqKiNCdidsZQ N8GCVEMSwCuPZKT6fmfMDnMMQSQrK6/G1Fv46/fD4ow92cUk45Vt83agYj6Ffz/DqsfU+2Fx BsmQgiefsu9BqzmbYkj2/VaIfbXbmkmfeqiW93w7LM4g2VzGDEw5g1nH8nlwe2jBk4FZ1Ecn PoIPhYvG4hSSLan28FzsgBT+sXz0exO0J1vrt2fVMKwJ0hV93ymFb8+ZiN9LN2GZl/hY56HC YXTNORZFsm2ylrLgehi9lUiXjcWpJKvJiAp9iyNZBR21S3EIFHoycfqkBVKS3WzC2hBXSdbG PKoWghFQkgmeHBWtDQSUZG3Mo2ohGAElmeDJUdHaQEBJ1sY8qhaCEVCSCZ4cFa0NBJRkbcyj aiEYASWZ4MlR0dpA4Fkk069OasNqb6aFfnXSzSZMxb0fAs/yZPqxqvtZaAMSK8kamERVQTYC SjLS/HBrAmLvB9WVd7XFsPbBFaNd+/AKUo1vyaFe98B0wZ5juiSwsGUytusz7t/Ucm6+eWCy wsb0OJJ1bHS5Fwrx9+3N7lWOsLwe1j58HrafjM69jzWVMjuSaNTag1xdQtkxXTAs9kZvse+G 6RuEWD+YLvHOlGQY0NyagNj7wHOvkAzWfpwMz10rbPvlH2CRI9OmGwe+Ze3QYdUexHTBnqO6 IFiE0pcUgMJkTdjRs0hmDJS7inGLvHDfD+uloO35q/dUT+Qokg1fFM0PIVzEdMGeQ4br6cLB IlGQF1tozfMcWed+3z0d+xdFFtnvGKB5YRO3XBn9fSe+d4hPbe8WE0pHwKEhHjVDOMkwXbDn e0lhXUhYlHgxs6SYaCFcoEmLF8/mGiAZr6iJXa+Z4HLft4bkGADefr9P8fd4rmnWIhjNk2G6 YM99kkG6ULEo9GIZdrDKbojIyAM0QTIbOjGUZocJWWGF4xWw9tHnQUgyl+arV5AG92Qodpiu i6XGdGFhQQ/ZQF9PlTVozNmPmaZtkMzuJRghI1RwNFUTEHs/upmfkxmU9ljYcsqXfhBIhumC PV+9fIQgVJIdUcORIus+TcSztXZINodnZG/GTd1i7wPG6RkB1j4SIi3EI+0TjtiXEUg2J0e2 44pQdkRXVBcEizXx4B6Z5OqOzQuwg/xuNbiRRCOebALD7GPIPFuMZT7YDIEzffn/c5IawZnV NLr/fH9ug7UPDmDDxMmhB7Axo4RJVorF/nwPO0yOY7FIvpepkGgRO/B6NQsEN5PdlCdbDb0w Ts+dK23XOAKG+IwtiYNGU55s8yhKtMYt/mT18gnWUOIjxHwJzfJWnpNnUIcTi8AxdtSgJxM7 YyrYQxH4D2pPaBIyaKNKAAAAAElFTkSuQmCC</item> <item item-id="87">iVBORw0KGgoAAAANSUhEUgAAAJQAAABaCAYAAABe3n8QAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAb7SURBVHhe7Z3blaMwDEBpYPpIDXSR JuhjO0g1fKWTFOPFNiQ8/JCMbAujOWd/ZvySdC0LgbWdkh/RAKEGOsKxaIcaB9V1gxppR5XR Tmngo159p/rXxzsKQ6DsortBUDpl+4ydP6/eu9mZAaVh6lVgA2RUkwyN08CoBscJwgqoceiU yzHZHTF5Lc8/22f2bIc21wE0LmfYe5v+/WvSRKGfz0v1u/n4AKVjJsgxp4XoXJBYZR+GMLGY G9RCak+bxienN7bUHqO8nBridUzFBCgNAzAAxwKlfVfpnZuG0LaXV04PONUeYrZHHw+gtPIg 3smcbEgPFexDYflMY3jlVEqHBntv7vpdppUdhtUbdjEfC6DWC4oqIQWoKflQ4ziIyhJqEADK bqq1R9fyVYwVVw6BAVCI4y7VQ7UG1PwA8nXq+rgrGYwffdQ3ZGEA1LS7MMpI8VCh3X7Kjfg7 myPI92QKOd4jazZx4TyOniuUbMwk4mbYcbAesj5QmPgp0UO1FZTPdlyOvQqbxQXoEra0D1Qo bXCIRRB7+UxfyDQAUEzeboikW86sE9GXFVADJjUeOfKOx4wvWLWBeur7QnukAVMdEID2bQBA TY97kRxbORmvC1SKcXZ9lox0P+3u7dMScHATBE8JvZxAAZfia1ZaxnsDNY729QTCpf8MNz+V JvU9SQmi+6ewjLcG6muXBCi+rxoS+iJ4oGuasM4UGfkA9X6qx/NNp0DMSGhlr1Ic6L6YhRG2 Ra8zTcb38089/jFJG6CCckJdY4+8zdcQaENRLhwxFnKdqTLy8VCTwNcAanliOiYsIXlKBAK0 TVFApcsoQCUH5bvEIq356UdDAXV4HAY/yQpQQaDmnRpyPWcMRY+Nf0TvOmllFKAARh1fBb9+ BKwnRxMqGQWooHU8X3/msGi1MWllFKCqGbLNiQWoNu1aTSoBqprq25xYgGrTrtWkEqCqqb7N iQWoNu1aTSoBqprq25xYgGrTrtWkEqCqqb7NiQWoNu1aTSoBqprq25xYgGrTrtWkuhRQyw0O qQ/FrD7UCt9LAbXZdtir6NG7a9U2dXhin5zM6kMtQtwHqEnitq6ic6sPZZG6FVD+mlJMvZO1 kKdSH7/6UB6gfB+oZ7xuPSsOdUkBe+QZZqQ+VO6t4/BQbqWbO/yYcjvYlWNvvQhQ2n1t64lW rw/lPPIqnc0lgIIUnsBuhEj7u9WHQnko/+UPC+GpYlcFgGorKJ9JXm6zVNgsrr3kBcqV6zkF TGzn5wbKlTYwRvhd2Ey6qJn7GhUAlGB9qMIygj2UTSrGC4Imu3hioOL1oXZHuwEuLt9+X/Cu D1VeRjBQ2Z+QsEDFPF7s74cANuE6Eff6UBVkJAeqmIeKAYP+OzalcI36UFs15JcRDFT2gLa0 h9oBh5VPtzcxZe4YCr0x/B1KyIgIykOJzQpPedSKRpU1TKudRLhk9FA2BsYkp9NkvO6rF7RK 3R2gDxvr3qm1k4iWjB6mpIy3Bgq/a3+vb1xplaS0AxoPXIfSMt4XKEB+B2Q6zjFUBRlvC5Tv aXTrZWhrJ4EAJWxUQ8bbAoWxG1XtJMycpdtSyShABS2XkOwsTcLp+WhlFKBOG0QGWGtAgBIe SDUgQJGqUwYToIQBUg0IUKTqlMEEKGGAVAMCFKk6ZTABShgg1YAARapOGUyAEgZINSBAkapT BhOghAFSDVwKKPux2PE/Plx+Zz89mWsnHdrhr0iRahoxWFxOqQ8VVyf2kgK2toHUh4rbgKDF pTzURl4sUNp3aQ+Xs+AHgUEOQ3jlrFSDIiLjrYCS+lA5iN+OyQeo91M9nm+4xAkeKvvtZ/jq 4S1D34UfvmfXXqturPh+/qnHP6U6uISZWuaOocyysTdnM8mKGTZ40eAS9aEw0hK2LQEU1S0Q hNjJV/OXOSJrNnHhfLNCz5W1Qg5Abj5HXgGg2grKZ+vyrw8FwDBHk9xAudIG8+9sHisx9sh9 Lw/gVYP1oQrLyMpD9Zirt5GgPFofat/fW/c7vHtY14eqION1gSL3kglPSNzrQx10lF9GPkDp J7CKSUd8fHW9+lAlZBwHGzrUTxuYd3CYcjNELupbgxIXQ2njXKY+VDEZfzZkANSvxjURKrhh UDFUWu0k3IIytM4towZ3joNZAGVejWACc1Kdw+OLq9WH+qkpr4xL/KTn4wFUrWPvm0WHHHu+ /7qkU9X2AnhjQYFKkXEbsjABSr8dmco7l7DM3v1r75jyUJA7DwWGxdGwoIzfmHJeBh+gDFNl dvv2QzbXA8G160Np2xaR0bEZWQFlv7qEHD9nti+8L1XtJPiM5Vumy6g33XEzMgPK7C0GUNHW TiqPCWTGMzK6YWIUlO8VsHwfXiE/BbHFbdvE7cLQQ93WWk0I/h/YEdEKQDiNXAAAAABJRU5E rkJggg==</item> <item item-id="88">iVBORw0KGgoAAAANSUhEUgAAAJUAAABKCAYAAACyyha1AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAX5SURBVHhe7Z3dtaQgDIBtYPvYGuzi NmEf24HVzNPtZIpxBXRG/iSBAEaz5+zTQgzJRxJZyQyL/BELEFtgIJZXLu41LcMwLa9ySSIB bYH3Mo/DMs5v9MzjhAtBZRY0TIJTkUcJJr/nsWhjXwQqBdS4FG4QAnOKiK8FXsuUmTEuAdVr GpZ2AWqLiMMaFde/6VCfGq+Mb2SZvyep+z0v4+BuHqT8doZaFqXvOC/YZNgfKlVDNTOUm2IN EHGwUuP9+fHUscNzhCol3/13mpoHE4/VetIbz5bYGSplpIZFeShSKKhjuzE1PvhSoUDzU7l2 zjTZkSolf31dUdAf95yGttkmVLDg02BfqJRRWxooBJB2bARs7HjlgxAoexpx/y0pv3+kMksa UeVJV6iwymLCdmis3uVuVArWOWY2dvw6I/AGe3gJcZ4Fla9qzr1ma7kHPzZEbv6OUDVOfRmQ QJ2+IRg8ErFqEjRUfs2mAWtOFs5XHaFaDZbxZlEUrZLpxpEOHa9hCRT87tsTNv1Fn9/++OU1 wZ/ZDypkSC2CaZ8cqp+ShbpTb7njdbEeNrh5EzweNzhpLKXPhaDClCrPgsqreQqPFE7qseAm 8ManjhQi6a91hEcW612hmrocoZ8fNqqaxT6XiY9PRiKXLIrDzw5AYd8AHwgVSSJ9nBA26a9P pHocDyQLFqhIzChCjhbgAdXvz/L351c8x8QCvz9/lr//YMpKTQWz0+NH8YhU65uQ1FR8WBWo +PiKjaYCFRtX8VFUoOLjKzaaClRsXMVHUYGKj6/YaCpQsXEVH0UFKj6+YqOpQMXGVXwUFaj4 +KqPpvrDwv2DQdgXnQJVH1fxeGrok2bATWSBiod7L6Jl+J6iq5xAdRF3cVAjeGMooHgmVG5P AEBvgBKryX8ol1ivfO52Ayh2aYMoUvlXrJVgfc+sxnfRAlU5GBQSgP3AiiKVd08R+FD0+gQq tMniE+zLGda1sOTF06o1VTxSJfXKMY9AlWO1CnMaQBW6/IhtJQNaORSqT+4/XMo8TcfIfk+B 1+lj7wK/5nBqzzo7Tl+h90Wn1gawvJt5gD2oSNOfudsWPyCzHeDcxj0zOBQqVP8q/OVMs77v LWTv3p/lhBZdWL7g2OZLrQ0A1DbEvq8Ia+VECpXpT1Sh0x0QKlSXvVS/p1Q/qeSN47r9oj7O Xnt2TW6kSq0NzlTWyKZQ1Y1Upg3PqBrM7v+tcJb6oA01jmY9Ouusr4Keg4lUoWZh5w3E3vO8 dWU2z7EiVc7asvAJTyKFCno4htYfFKkCvQ5OaoCgrqfRx4Zkn/+yGmv46QHeL+oIEaYjnQ8V fm1oj5xOKILKL9RhORe9BBBUIanxdIwzvN+gbE8/1ouJlTJz+kXthT3GjreBCo1F2YRsqAKp YdcEmiIi/aTCUfnwvKzWPjRQrafQkS6AGFjzXZYZqfIfmDUTAlWqsHYfnOr3pMaf9JMKOm6r o3R9g4aKLv2ZXqKJXllZjoBNug9UR4eeRaOPXRKv3cm3u0iB/HEmpl8UvlD/ujcUjemOFGAY 2aNuBJUOLXbze+ftj76flPtfHm56Odcnx2H+nFiKJzj8zFTwZlBlWkGmkVpAoCI1pwhTFhCo hANyCwhU5CYVgQKVMEBuAYGK3KQiUKASBsgtIFCRm1QEClTCALkFBCpyk4pAHlBJy2tWpErL a1bu4qEsj0gF+fSFh70foaVA9Qg3t12kQNXW3tvT+n2W0mK5bKBq+kvvVS3f9wO6qkvbtwzi F9+7/jbNbaDqfCdPoPpYoMMPc9eyfudLCbWWdZTL44e59ffnbW6C1DY67mpYbW1qyMf5ql/6 W9eOKf5qmIpK5u2hUukd0YikK1T62hFCWSoIyOXcPP1hN39fqO6SAjvfySPfJJZAXOpTUztD tWqAahVU13z50u97pKCiFLY/WX+oNFcVWhXlE5I584aHn8CGaK7BLgGVadED++WBTI/LNLQF MF1qbOEXgUopJWCh/V5tQj5Q16ipvKJQNTi7x/lVNZ9XE7yn8DL7XyhSVbOUCG5sgf81kUle P0fWtAAAAABJRU5ErkJggg==</item> <item item-id="89">iVBORw0KGgoAAAANSUhEUgAAAEkAAAAaCAYAAAD7aXGFAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAF9SURBVFhH7ZiLkYQgDIapi4Ko40qg GpqhmFwIq7tKwHhBZ8eLM47jigS+/Hm4Duw4JOAOR9gAMEgCERgkg4QEcgTvAiQBjN6Qhysp QXAOnEHi/Z+jRzgOfAimpF6I5JQgl4cWboJEY5AM0o5AhuhLEmbOMKhdpqTbldTzlIdIGfCO YynZb7V4rXGRklq7VbG1v/rokyqkRrkpkMRHip6Cjzazt/NavMb4CUh7MykgKB8FkKiKYs+B g68TVHUQqxpy0tVqrs7gBYL23yroKGntNXoLrQZUYUHevhrESO88pKKkAk4GCSOTJT0lznAS Uovu+0q3lF5Oqs6fColimCvR5bdRXvkSSPsl1k8bPPXhpvMhvT0Mtwx5djJsikQvUl4Kk0CS Ju4/KwlLQjdxs1VvgmM2U2gh3dwCbAvAhBZAxJOHtIijCbc2pxxVnQnVbd3IBc3kCUjt3ptm UjTbvxy0Ksn9bP+kPHv/ZHpEpgD5hHL2/smAiM8CSXN9OqRfFznUYjlGqkUAAAAASUVORK5C YII=</item> <item item-id="90">iVBORw0KGgoAAAANSUhEUgAAAJ4AAABKCAYAAABKKu1CAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZvSURBVHhe7Z3rkeMgDIDdwPVxNbiL bcJ9XAepJr+2kxTDGfCDt5CNQRDtzM7srAEL6UNCJMAk+Ic10EADU4N3wq98L2KaFvGGS3KJ 6hr4iNc8ifn1ufVmYuDpTk0LI3fLqhUqf17zLedACDwJ3SxuDqQKKudXnBp4i+ViZCID3nuZ BB1Ht3neafW+6y8cVqDy0kC6Lf3rTiOc5ylFfF5intwBar+/asSQ8swvgQ28NMCTczoy1Lnh XkMRhw8q79e3w5RbPzXd2AGzwZOD9tRfmTkYxq/L/sCD026RAHhSUYQSiZBHkQMjNqqh8sFE ScK4wRN6HvRqQigDL4vt8QJlFdgXvBAGNrssPuS2B08qjoy3W9UZgkwZNzI4sOWlxQxYwpBo L2mpZQ9pEShPEOp7PN2lGTVVag4eVuDrozKvZhCEhLGx5VcT2Zl71OOZ4BmJV1QWY55X1dtt ekU6kMbgEQuz28j1wlQx8ELzty2xMNybmrMZHs+aQ4Eeb/PaF7PNvOEZKoWzZWPwVqVXHp27 Uc8M08g2pfGxoTO3vAImlqTYWe3y1oAqFt2sMQe8zavWnsG8l/zlsLbgId3z9dGIqBmaz4HJ hTP/c8urcJpvFD0H1G3qDNhcijn/VmBFk5f6y1OYaROD5zEJLY+4FYDykIfyngPJQaS85d1S AwUxBrFFuwJvIflRRXpBWIZre90qXh70WNK6ymudniy5JpazgFx5+rIDyuBhhyqXL6IBBq+I GrkRrAYYPKzGuHwRDfQD3u+P+PvzW6TT3Eh7Dfz+/BF//+XJ0TyrpZlc5CmPS9ka6MfjrRka gzcOvgzeOLbsqicMXlfmGkdYBm8cW3bVEwavK3ONIyyDN44tu+oJg9eVucYRlsEbx5Zd9YTB 68pc4wjL4JGxJbTfloygRQRh8Iqo8W4j2C+U3n1f+/oMXnsbWFsYD3EafTO4ljoYvFqaTr0n dxMQBVkLyXARPOf8jeOr2IhNKtgODPwlAfx+W6zy6JW/BZ63JW7bD/DIVjkGjx49NyQqC94q yGNncQwMHnp/7g2DU6laHDzzrI+inRwZPOz+3KKKbdNYefDWrcXeITIl+jYyeO4ZKZsOscd5 lVBzrTaqgwceCxHr+dDgyU7zAnLM9MaeC+O8Drc0tBv+6pAaHryriumzXnGPByUX7PH6BKW0 1GXB4+WU0vYZtr1b4PknE/EC8rCkFO7YRfAKS5HTHM/xcrTUTRkGrxtTjSUogzeWPbvpDYPX janGEpTBG8ue3fSGwevGVGMJyuCNZc9uesPgdWOqsQRl8MayZze9YfC6MdVYgjJ4Y9mzTW+s KxDyPjZl8NqYapy3ul+DC94e5HeXwRsHASI9Me7XTUjE4BEx1yhiQN/H3PvZD3h83QBtNrcb J3MvAOTrBmibsz/peI7Xn83oSBw7KWK9vA/crc9zPDp2/CpJvhW8Y65hXBgcuxrTuYLT/Cr/ ObDtG7H9Ee94B88jQM+h9ktQG9sVWGBLpRta3VvCI+L3k1zk3tAtFQGGg7gx1S64A1T33Dr/ YmJV/ngf9jnc/n3sTrhstZQ7k09lssfBTc4N5N8CngThMnfexNg/FUEpeX9BYA+xtZwAPQ+c umC1f5O6A4h5Ecvs6CW0/7nimXz9eDxpJPA2aTmKZzGvSj5GIFjnWFla60Zu0054NJsN4Kr2 7bSA82gKjMeTg8D1JqH/nRJ9Xq9Va/InEGobn8n3XvI+WpPSt729USkPcuPaQ1lnjmTOOfSV 6+H2zU3oYW9qzJWCoKefw+3vMJmgpaELDQhT9uBC71OnQHieO8eWZ6XG4Okj0PBhNOcQoZin 8kG253SBWAitY1nPL7S/hefYIAlHZ9/jNQUvd76+daY5eOoINDR5iXNezs9vxDwFXH80HKXC BPQ+4/ml9vcsGPL+JoK0Qi3WgbQHDwq3QW+Tsa4Um1RDYETft03kc567oTkZ7sqFWn2OoQNv leQCF2YJzPG2EZxcLskc2U48iofPSCh0llssJ2wZD5IHat8UFJ9cGGmGSpyeWk7BJN/S22HP /SPg8XQX00smzoKs41FkXbfjof+dyky3555rd64B2tlyPMuG2seYNVb2wQVkjHi5iZ7TJhnw tLHz03GMbrjsUxrAZOG2DITAk4IxfE8hUr7d69DRmeNZWtnXxzAZXnm1covpEI9b+vHbIubx 2NzfooH/rLh7AdQqmv8AAAAASUVORK5CYII=</item> <item item-id="91">iVBORw0KGgoAAAANSUhEUgAAAFIAAAAaCAYAAAAkJwuaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIUSURBVGhD7ZjBsYQgDIapix5sgyo8 vBI8W4g3e/BuBd62A1ZAFDBIcIOzbwdndnbchRC+/ElQJutFQoCRWKlGZAVJJIIK8gmQTdPI tm2JlnrCzCw7ziRj4YfLbi67flSR0zTtDi3LUtYLMusGpBgCg4PQezn9TraujNdIpcTX66Ud iKly7rgT/fJRT+87AnKdqH3lnSwlTFCRSo3jOGq/+77XsE6q1FEWcg9+eJ/edSgbKdZ1+Ec5 GAe5kpSclQs2CNJVoFWlqpfe9TG4bNKICRcg15CrQJVK7xNIV43Wc6VOpUr133H5hT3u4NXm YDaDgBrG9tsliS8CqYBBl+2E0H/HxsPUOWCXUoLvz5ektlKerY0hMFiV7iizCVvj9kbEhRRQ J71I1BKKfLTZ2PRVKQx9PFWGNTIo5nPXbY0oP7URxTAy5MbxR/vtNM2cxZ25ex5bxZ0Ps+d6 ZWtlqBw4fbEgTTOg6Nr4A7lZ0zt9oEH6cx94RMSCRO+AZKAtPVyIbEVCc3eQ7M9nSne/NZyE fRI6GUbmYTCH8xupDc3V9BQ0Fxzt/Yyyn8GAdugNkLsDYY20EMt8G5Cqfqbs0xJCWqMCWU6J h9Lti4SU0pFbpx1WAqRNc9dTulpprKbs0VJCWKMCiVjqt4dUkETxjYLczolXz7bQgZzIrZ8z M6xPaJh3mA8cyP8r27wHiQqSKM4VJBHIN6Da2fDEPcBXAAAAAElFTkSuQmCC</item> <item item-id="92">iVBORw0KGgoAAAANSUhEUgAAAFIAAAAaCAYAAAAkJwuaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAI0SURBVGhD7ZnNsYMgEMepix7SBlXk 8ErwbCHe0kPuVpBbOiAuuIp8yKKLk3nBmcwbIyzLj/9+mCd0u1gICBYrzYhuIJlE0EBeAfJ2 u+n7/c601BVmRt1JoYXwP1J3Y931k4p8Pp+LQ6/Xq64XbNYtSDV4Bgdl9hJ8z7auTudIUOL7 /TYOpFQ5dtI5/fqnnt93AuQ00fgqO11LmFFFghofj4fxu+97AytQpTllpZfD9+/zu/Zlo9W0 jjwVg2mQE0ktRb3DjoJ0FYiqhHy5uU6DKyZNmLADcjpyOKha4R2AdNWInoM6QZXwbL22iT10 0Dq+Jn5HvRkkg4oVjPm7XRJfBBI2HrsQSOzZunEMHQvRDVObT+kwCfKLDPmS0AblYW70vYyr 0h1lN2HgRcMe4NJyVA1FXlpsMHwhhGOfjSp9WLlknnt+TILerIL2x/izppBDudPYsFG2xDEq Lmxmw3yFudJXTtqZOZ/uehumg3K21IbcKzxGFLRoWX3CGuCBLHeaOoMCkWqLaRyA2/SUe0Uq XBP7Z6lUqEjxty0yLPdz+EDezNljQnTQTFlrNA6Dbez90IZNuhvlusdwodg7SIBl2uFCFAMJ HiFMjr/wFlFqh4VKoZFTbZkLsoYSl3fwWelLAcsov5DB6eHWz9Ii476TOFU7l7uufn6aDtHA KSXiGrH2h7j+/xjG1dP+OsjUm9O2zZ37xL3e99dBloTV0NF+w2z/s0lSLWvSG8gSee6MbSCZ QH4AixmpgDVByqkAAAAASUVORK5CYII=</item> <item item-id="93">iVBORw0KGgoAAAANSUhEUgAAAFIAAAAaCAYAAAAkJwuaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAI8SURBVGhD7VjN0YMgEKUuekgbVJHD V4LnFOItPeRuBbmlA8KCaxAWBVz8khmccRwRlt23b39E6H6xICBYpHQhugPJRIIO5BlAXi4X fb1embY6Q8ykBym0EOEt9TC13T/JyMfjsSj0fD7basEm3QGpxkDgqKwt0TjbvjqdI4GJr9fL KpBi5TRIz/vtvb5vdwJIs9DqKgfdipgkI4GN9/vd6n273SxYESutl5VenB++71sd0kYrs488 FINpIA2SWop2ziaB9BmIrIR8uboOA1eMdMaCDSCNy8FRrcI7AtJnI2oO7ARWwrfPtU7ssYJB 4i+wYFRUwZjHNuV8EZAAGHVhJaS+fQz/hI4dW4x2Bh4L2wxCmgxIFhtYemZoA/MwN4Zq06z0 Z3lgEUqXJPsWjCzZP8dl4ZwV/TB8IYSpe8XKMEduevyfGUm1P/OYs6myCFmbXcFdgETGxc1s nK8wV4bM2cyTu62HKwbHwj+zIQ+dXlU4nb7YuZz3i1ilbE2Q1awBUPJZif2zVCpmpPhbY9ri 3S8Eofwa87nWlObPaRxdYx+GNhjlG8b1js06ysM+jpLPBUqRHAsEY45EEDmf9vBgZrl9Qmib J3gytU8RCJyTa9OOz8gWTHQ2ThYwe4PXTbHZYzonNmWyynLkIjsFJExokRt9o/bklwHANZsB SC5VfkoO1QPvtmeEhVQf+VNAMCi7PgL0TrEW2XOfuPVv34HM98Q45J1hnteQ5+v+JTO3TpJi FTuQTG7rQDIB+QYHl7ag65imFAAAAABJRU5ErkJggg==</item> <item item-id="94">iVBORw0KGgoAAAANSUhEUgAAAGEAAAAXCAYAAAAbfSF/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHqSURBVGhD7VfBsYQgDKUue7ANq/Dw S/BsId7swbsVeLODrFGjyAIGjH8dB2acHdeAj/fyElSQxs8ZUD9HkABAEuEBSZBESCI8gIEA CHmeQ1mWATN4ockJPJ6g6zpQSs3XMAzMWbywgwh9lW0vUiqDquctclfUk/CgA8ZxnPlxuSEW 7y5CU0wvKKAhRs37IKYbKCaw2RUVRfFo4Kd1i22TvE2hC9q2nYPrura74QJetwg8fPdFXUoC D6wIEfTMJzdgfziMC3i1ctRDlS01Dy93tixx3Gxqin1NWnv79S5yDx4IFEF3AZGOrsA94LN9 xOO1NuadOLMv7C/iiiBhlat44hMBZrJtgxLJ9iwUr+d0tBBOdX1rOtlUU//FCeb2ZPCEOAEz nnqBicbuBj2Kj9fdE/oKMu2E1FfV2rTDylG0E8waK4UnoBxRycGyY7sObriA9+AE07b2ksMR QeB0NKknhyf8dESZ/tXH1p6p/0+9IRZvxMcaR4To/I+Y+DQ8Z1v4xruJoP6Oerjv1+Z8En8G Re75S0RAwnXS/ff9HOuLlyOYs9KLRMDtErH+30UE7BeuOA51cjEvEIHvgIV0vOhjzeYIOXK5 K71MBN0NRAG/V3BJS3EmAxGno0SiNANJBGlGI9ZLIkSQJj3lA9t9b82SYHPqAAAAAElFTkSu QmCC</item> <item item-id="95">iVBORw0KGgoAAAANSUhEUgAAAGEAAAAXCAYAAAAbfSF/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIbSURBVGhD7VjBsYQgDKUue7ANq/Dw S/BsId7swbsVeLMDvsGNgoIJgi6zgzPOrkOAl7y8BBUyX1+PgPg6ggxAZhISSIJMQiYhgQh4 QCjLUtZ17TGDZ5qVwIuTHIZBCiHUPU0TcxbPzCBhbIptIyEK2Yy8RZ6ySgkPKGCeZxUflxru 4t1J6Kplg0p2GNHjs1ekO1ktYIsQFqPi0cAv61abkzynQAV93yvjtm3tagjA6yaBh+85q6Ak uIB1gwQ981EN0B+MKwCvVo5G2RRrzYP7nC1rduO4oZpLn/U5h/+XKfkMHulJgq4CdBNUAXGA sf26j9famLsKg4V94Vxe1vqnla/nNLHELQzPPt+SEERtgmDbLkxG25gv3ovT0cqsqutWqQEx dPMOCYDpYBw8PkqAjMdecAy2XQ26FR+vuyeMjSyugkyNhyrjSDy1HzWuHTi4jRlLDpQd222o IQCvoYRj1rrBfuqf0yDC6WgJWjw8/qcjzPS9B7p7G/aGu3hvvKxRBIRKwHd+ango/Ge8Gwni z+TD+qwkv/YJyp6CEmVcwxNlvacXceBVkYeA6kF1PeNbNGX/tC9qfVWD6YPBK1g4m1zg3UhA Mly/0KSRKOqXgynIhtuEgzaJOJnAKzgK2L6JfBSzNSuLgiJCdy5lfqMxGyb35PMGTtyDwmuQ oKsAF6Bq/3H8Ted+Za8bp6NfcT0dPzIJCXCRSUiAhH8Vjh8LcvBrXAAAAABJRU5ErkJg gg==</item> <item item-id="96">iVBORw0KGgoAAAANSUhEUgAAAGEAAAAXCAYAAAAbfSF/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIhSURBVGhD7VfBsYUgDKQue7ANq/Dw S/BsId7swbsVeLODfIMvCDzUBHCeB5xxHDXAspsloKBcP2dA/RxBAQBFhBckQRGhiPACBgQQ 6rqGtm0FLXihxQk8nmCaJlBK6XtZFmYrXpgjwtxVZiClKuhmXidPRb0JDzpgXVfNz5kbYvEe IgzNNkADAzHqv4uYHqDZwFYpKmbFY4Hf+m3MJHmTQheM46iD+74PuyEB77kIPHzPRSUlwQWs CBHszCc3YH1wrgS81nI0Q1ftax7e39ni/lfMdBqao0/q2zwv+3gGDwhFsF1ApKMrcA7477ji 8QYL80HcURf0N0PaPmDSciPwUCqe+EQATXbookQK/ZPivdgdWUTPHVReodZFqOrgrnanEOBO MA8eiRMw46kW+GSH3WBH8fGe14QA8b71HnWCv8bmwiNYjmjJwWUndDtuSMDrOMHP2su6cOmC DLujTfF8eOS7I8r0rzr2qZn2d6oNsXjjD2sJuwFBOeCHvg3PHXILrxFB/bl6cN6xOJNb/Pg7 DPn/72swc9OWf3hxjwdezTwSaJN49k5nHPqPBzKctB8vxiNtEMz6fQl8pQg3eI0IJMbZU58h Pm7RT+x4e+LuyPkuJTQqPpD1iIexW4saLrnRNV7FccCOYTYZr4vSNuGQY5LxsjvwDo+vFYAm dI7XEcF2ATXl1AY2byUwyED87qgQmo2BIkI2KuM7KiLEc5et5T+O9SvEynZp6gAAAABJRU5E rkJggg==</item> <item item-id="97">iVBORw0KGgoAAAANSUhEUgAAAGAAAAAXCAYAAAD0v0pBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHYSURBVGhD7VdbssMgCHVdLsj1uJps Jovhxkei4uNSNGOnQ2f60UIEz4EDUSCfrQiordElOAgBm4tACBACWggcYJQC9XwNHEOgkL/B 3hP2w2R55DkpqMK4HE8LWmmwJ43ZL+yAAJbObnBafYHQI+EEqy9gHjRW/66BPMwVT1uoMY6x uQSEi94s01mkcU308hWHwXakdPJp+edVOGvHaTfzC04OP20MswPwwYNARCjXuQ3a2hdNVY2h i1xTzNrLS4QKz7vzsbscXR5sCfomwItbY0lBvHYrPGr0rD0P18XI5Rg7lE3ApWheS6MENQdM aDTv17eHjL1OFoM0+/3fw6mskL4PBnZ25h07/BUHMNt+x+xXv5eee2bxCUiXS+Bh3U0kkTHk CpG/SKfdqzPLLcccuEhm7YPt5paeh6dlW1DJ+DOgtQHzdgf4Vp9YAjx5g9WVY3c5NTafcnEh rKmoeNIaivUNtdJpbdzFaRLELfxP9+jaH0lFJQkf2uNFvCpQ2n5GgrBut+O9SwClolyexSaC XpaqLWXWHmdac/vBlTZDAK1q3yWAlsPveDHehIWAlfQLASvRZJwlBDBAW/mIELASTcZZDAIY UeSRLgJCwObiEAKEgM0IbA7/B2cNABdyhelcAAAAAElFTkSuQmCC</item> <item item-id="98">iVBORw0KGgoAAAANSUhEUgAAADUAAAAXCAYAAACrggdNAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAEYSURBVFhH7ZaLDcMgDEQ9FwN5Hk/D MgzjEkhIAKe4VPmKSJWiKq55dz43wC+84IVMPKCe4uqNnXJMBhhg/qBVa3pbKIseJoFEQENO BVZAWcZFGTBMltgAsl4jVc/2Q27q6/tvGBwZBkOswdpAlWosgBdAVdi9Tln085sDBHWucCpB bXKldGkqTU6J9oYxkJyKzVrZDblI41zct4pLtwTR9+a4A2pV79dztcP07QmdkJlTLClRfBfH 0StukPFIp0RXYsY1QlaLYl2j9aJwRPMm1KvW547w+xOoMlfFSs//8BDr5REPeTTU2iNlUgmU j58k6W44z4Dq83hA5bo92andCRhQ/eHorLztW3onTygbUP+od2btK536ADzEChGPfq9ZAAAA AElFTkSuQmCC</item> <item item-id="99">iVBORw0KGgoAAAANSUhEUgAAAEAAAAAXCAYAAAC74kmRAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFtSURBVFhH7ZcBroMgDIY5FwfiPJyG y3CYTkBRaoEWN3XRJS9ZMqD9v7Y/PAUP/6iH64cXwNsBtyTgwWoFSqU/bX03S2fW9UppYGyJ Z95wBGbxxs2iHZgOhCC+gOTMBM7AckKLXgHAW52pSyh2yyNZ4C1oXMEgSFsg+4BaL4i3AsDU BBQF8fpLKbFRZKWiLTj9aJsRuEowSjJ2Ia52o8rLeld0L6/9kQeUxpNHMCeYZnExpt6Mlaa0 3Td93x+eowwBwB4hKCZpgmvyi5vujSj5BZ80oxvTEuEIkMAmtwi3SINzTqdxC6RDoruSRAOU +nUz2gFAzXtrzsnfRgBgkT137f3OLjleKL0GCbGjI4CrVm8hnOSw2srG9kNod+/PLc/1p23Q gYfQr8V/G2b7PBmA2Pa8p+m5Msaj8QHEueK/scdTOncnD8DPDO9csVQ0FoDyf4TyUcO5a6+X Wc+ABeDOAo7m9gI4SvDf9z++Az5r5phcoLtd2QAAAABJRU5ErkJggg==</item> <item item-id="100">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAF5SURBVFhH7ZfZscMgDEWpi4Koh2po xsXosXjBWIgLNvPyQWYyk0XRcpAuiqL1ILUY0IIQmmB1wm9D2MhqRUqlp7Zbc3KdueyV0gT8 JPr80U7YARi3F+7INEAEADdQznh4hg4PEsECQgqW6HuSzpIGHTWPqcdgC3GLkwxFaUtsP3D2 HfEyCIn+RfMAgtHsiNk25QqOhVZykQC1o2XjwLTPZjXcUkAs2CTGLU9dOO3D3sV8j07GD+/s hHrg3Fk+LiGYHOguVLlo+dfnvD/ZDEEoNWNEE9oQnuI0rVM6x4HN3atHGG+B9Un/0gSOXP4Z SzaAqV9Fo51A3PxLc89+NwJhJ3e1KSCML1W5LhK9VyRT8Mg4pITuC4ox0l1bJgrrHmgoL0uP vaDIvaVXeRLyslSlORsAyOkjs34IcQSwNfajHKe76YMQOwPfyadn/1EA/L/DNBH8qJIXbmAI aScoFp79PXIXv8hx+k9hCNMz+ccAC4KHvyAsCGkG/wDiqdzLhdP8EAAAAABJRU5ErkJg gg==</item> <item item-id="101">iVBORw0KGgoAAAANSUhEUgAAAGAAAAAXCAYAAAD0v0pBAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIhSURBVGhD7ViJkcMgDKQuCqIeV+Nm XAx3/EIIgX3EkDkyk8kkwnp29RGh92sqAmKq9W1cbwImJ8EmYBNAIXDpQwothHvL46rDdKp4 LpwPn+oMj51aeV1WlgT+QEuu9amSP0JIXXXpOrTk5CiSBSvAgx9BcuCwJKCgLFjy0I42rO/u dwd+Zt+SrnTkN9oPicMQxBFwHRJkU7+SoVVMZZAJOALasIbBocCCNlryGxlt8JNKPayAHseH Il1RRoFtQaAyDutwGQiz1SZVQZ6rKlNkLflv+veRb3w0dm4QZrxPLahaVm+gnmyQgPQGRcVQ zXBHgAUYk2vt5QSdWXfAyWCI9x2j11cfMpgB+eAr5lTopWGYlQcypvKhBQcYNQRHEFBmv9Pq ByzwN/jmfuLloS1zM8C2njCVnxOQQEjgpTlgf4tB1IIdUC1PWxAbeL7lqNP5X9uSoJxuUeD5 0HpC6CMIcLoAyIRS2jGKRJT95BoIiKP6fU8f7jmTgcTMFOgDqTcRkC8ueayNJmG9qc8AlskP VkCxNvatoXmFYkLhRod8L+LEseFqqcyNERWA+zY7B3rXwkddib+IFXu5xYS5K6DLWnGnaMnx /OM2snEtqIHcIlvTI34XeugPN2GiNBcK7Ftc6SOAzPZ0mfmWYFf0s48A3wOzmXBn61gx8kV8 6iQgraXxH8ePDuFF0HnBjRsEvODNPzSxCZhM+iZgEzAZgcnmfwDNiel9VITUmAAAAABJRU5E rkJggg==</item> <item item-id="102">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAF4SURBVFhH7ZhbEsMgCEVdlwtyPa7G zWQxNGoeSMBA+vLDznQ6bU2A4+VK62A+wE0GMCFkEUwljA1hgegdOFefPi43nZsgbGvLNSGp O31QJWwAjkJqgTIIur6+vwdXOREImKaHmCJ4F0DPVA2/v3DJcdf4ePNTAOcj8HqoeePNX6JX qwFBoPR2IH+AwBVcwEi5fEoJOTAJUmj+QQklLt11Th1ETymcHmKwhLMd5MCYfmtWd+aDk9oN 7njtZGmHcPWMEltJ4mgHDYT2xjbzMbmFtR3E9cRXhCROT2DaAfBnjBxZcCjQUyUA1/89Y/wY hNV3y7lMjiXZE76oBCEX+cgT2kE8TVpJkCOy7fkQrmYJe4J5IFEGMbXCsbg/LGWVtVDIsGTI rT8scS2CK7r7/ln1P7/qPQibKpQm/PPitAH1ENhdv05q2sAjrTP8dqg92ux6d5Qdqcx+LgYI +UZkWDKYz8hIjBBGLuV5bhPC2H+qPN9Z65VTCSuxFwAy3RcP7r8vAAAAAElFTkSuQmCC</item> <item item-id="103">iVBORw0KGgoAAAANSUhEUgAAAKAAAABaCAYAAAA/xl1SAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAb1SURBVHhe7Z3r0aM6DIZp4OsjNdBF mqCP7SDV5Fc6STFebDAYMEi2JezY2pkzO2dxhHj1IF/wpVPyRxTIqECX8d78t34PqusG9ea/ k9zBq8BXvfpO9a/vqT6VAjg9eDcIeiW8Gd9Xf5oIKgRQw9eri5euhJg06MNbDZ7aqDoA30On 4MQ3ZUi43BUnc5btxkw7/ndVzcC0UdqC7+YvcYMP35fq+5dyK+S6ANRtPpCqVWiw6Gks91W8 frtjIaS0lQjfIkjK81z7oKtj92WtCEAdyOsOx9QWGTPWWG5IyYD6Te521byGf/d2o3CgtIW6 oafQrT5sq+J6ANQiAint+3rNPeLEKtgHmwliRI+b0lYsgDf7oBOBDVU1ALoPBcchDUCTSffZ zpdFYEcUpS3E7fyDJYTPg/LBSRaVAAhXv1thBEBXj/tfgjVelQA4tiuC2l9pACrKKovSFir9 eApl8OE9TG3oOgBEtP8oM+BYbx7be0mdkF3bMdZWLICUz4P0wTaZBECkYD6A1yGflGGLtoZh rI7VATgEffpIrIKNipQDt5S2ot4o4ueBfWgcQFggKcGrgADIq69YBxQQAAWRrArUBeDnqR7P T1ZB5eZhCnyef+rxr6JhmLBOSJhYUppegboy4DiOJQDSQ8JpUQDkVFdsgwoIgKBEUoBTAQGQ U12xDSogAIISSQFOBQRATnXFNqiAAAhKJAU4FRAAOdUV26ACAiAokRTgVKBRADmmPZU2tSsW Gw5tzn1pEECOiZ+lrTFOhO+GdcHWw/YAJF77WuQa42j+CNc5I31oD0DihTdFrjFGBv9QjFgb jBvNAci39DCtDcjnFwaDqUwOHwTASfnjFhv4uM0lBcBgyWbodZOzmlVx4HQstmomDUDSNcYx JOjfsGkjveBVAba1r4kAsvkVQGMGH5qrgpdllORDDYkA2uWd5H4FAJjBhwYBNI2+aetekk0l lxGtwja7DAHPLcuhjVTBsdGQ3zEr0GgGZFZVzKMVuATQjvLHb2GL9oOmoCxKotHxRisXAM4b 7Yw7zUdtOXvjQyy3EgBzqJ50z3MA7eEuJIO0ST7ifywA4rUqpOQpgPqYg2kX86lXlHb8AOZp U7Y2m+0LgBihiyrjB3CX9aa2YMTG23c/qgB4t+LJ9/MCePwoPWWntTOy/3+fH/HjSTr72jG6 w99XPSIBMBmIuw14AJzg8gKw7L8MAcgx6RMhjQCIEKmsIkcAz06WNP9uD2WZARzP2+gXWJ0q OnHSp2TAsiDh9OYAoAm+t5pzOyM2S67QbdqJGWZVGJEkA3KywmJ7CyAw5LJC5quC13+Lm9go vWCWCBduNPJTnIZlfxTqmiHjACRQSjIggYj3mmABMMfERqmC7wWH6m4JAO7P2XWq5QwTG8MA jB8iOgpPactaT51baBrEYVPOTMx2ox/uqVPQdVeYgK9nSQC6g9Om87I4XPIwDKVvlLa28Olh sPhJIBF+QWcsQ9cXAC34uNPqEwAcb/B23prDGW2BbyBFTse0AROHiDZuUtoynfh85xhDJ8xD 15fXRx9EPQzoRV6RAFLQwmADAyDlEBGlLQNgrnOMdbIYwXFmiW9nQEHX51jqF1InIv4qmAEe CpMIACl76JS2to+f1gYM98szBGZhMo5B122bc652BcBzmsODc4+tvAD6nhH63Lq9rnVdZkwJ gBfplLLapLS1bVymLXAi8QvKws71TbY0bQlpA54iSDlERGmLEsBQv7zf/52PDcD1pfPkmcQC 9eTb64SQrn2NGO5AtXWh7AMZCfXLc79NFoWu7/yRDIgMEMm6YI7hplQAbafgfO3zOuPdarWb hncYVoOuO5oLgBCAcr0UBRqsgkuRXvwweXrsPbe1O5bEvSgFBMCiwtGeMwJgezEv6okFwKLC 0Z4zAmB7MS/qiQXAosLRnjMCYHsxL+qJBcCiwtGeM3UB+Hmqx/PTXhR/+Ik/zz/1+NfSMQ0/ HKwaXa8rAyJmRNcYxF9+JgHwl6NXge+NAkg5hapUW6l0UkwJg32oDsAemoJb7ITU0EmkcHDj S6wvFShn/E3ML9sDkHItb6m2EqAgW5uM9KEuAPXywcNM3p0SJAt2Zpul2kIG31eMbG0y0of3 MC3lrOO0TFO9Xu9lXeqyTEq/kLEHit3RBlzjVQmAa5viTF3KQJdq62cA1E2YuZFZDYBmTepV y7nUapPSLxIC+TOgbf9pd+sBEKqGQ9fMXgWzVFs/AeC2uVQRgKP6l1uJUQ53lGqLgkDeDLjZ yqOuDDiJf72dWKmDx5R+pULICOB+K48aAZx2CMVtkpgaKvl9iAJ6gftxpKKuKnjRQyAMQYO/ rB++yjohexlttfYDZ93xE5DpDnAMKs2AmfSW2wYr8B9ymF/bUhU1LgAAAABJRU5ErkJg gg==</item> <item item-id="104">iVBORw0KGgoAAAANSUhEUgAAANgAAABkCAYAAADkKP7jAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAnrSURBVHhe7V3ZseQqDHUCk8fE4Cxu Es5jMugEXhr9dTPpYPy8tLttdiQBBs5UTc1yQUgHHRaB0TDjFxAAAskQGJJJvoPg5zQPwzQ/ M+ryfDzmF6u91/x45NSYpeylcn+2L301DvP4sPd4owTbDR+mzI66EFqkSSk5ctzxS5LSWUqO X2OxEq/HaB3IGyTYSq5xdgwqYsBeBT3nSYRdu1T+bJDITKPYnm0/AFkwMKyWmiPYcxpkZpFY /5QeeaXlBduzOkrkACWtK1veewUzLKuY5bdrCeeHJULW6zGP43WL0BbB1j2X4CziB/9b4jlJ 7/VkZ4UYW2LL3st2dXuwDhhUksXLWpeLZ0I3RLAVDI+TryPMe1QblJFmXkIT277N8vN9nX38 XB3hl07U5C0SnXV8bhxgj0+E4+d23c4z2PvvzxNu2ux2M9u3Plb6Zx14Df3jhY8k67pUbIdg KxjO2WsfyfYiavRHD4qsS81Pp6jRSPXfhqXB7Kvj7910e0mnbirB1kHlO3BdcNmg1JdFRW03 kWkjCmGFQZS1Dl6HKzZDsLNR5n24I2Rv7IATIX3hftPS1FfHS7Al0JFqP+nUTSfYZdwykVMd 2Aravs3M6mxlmokC8CfLOg32jRDMv5wygvUJAJmWEOdZ7rp81CZK497PU+fTwXs50+S7Eoy3 Qbd5kUs3AYIpy237wkLedjIpDFDRZX39sRGCmfcBZ8x4BDsHM/R92CbbsTzdllXb/k3du30d 3VRd3TAHDLp7iP/T3mlPeewflYZ03eIIdjfbt+WpcQbLt0Tc+2Dv6zYI5t1/bRbbb3X4loia Z1/3cGFE0OtspFsCM5NlBguTG0o7V7mzbvEE88+yGW039SUryKEQM1DWsWXph2DLhalvkOMd 4fuM5pFBDmVNbxzFTYGQ0wz2Wq5U7fdM7MukZARz6hZPMG32Lmp7fGjdPvTQZTVHsCnk6sY5 TK9FldxhenXZpW38DWs8Z52iezB9GflVP45g28rgdrZHHA57FwA0WX0SzAsmsQDrgNu90S90 bh4ORM+2O1ACwcJdyF/SdBbkr/UuYSNYqTuVwYrvBXu2HQSLdBZycX8U07fO12cq/9EDWV3R ij3b7ujV92FzG0GO35/578+vqNvECjvCsrH17EGOmu4iRl4O9u4/67Hd1t+/P3/mv/8aCtMH BTnivT+8BvkGuGWJSJYXrrJYSbKuDdhuARF7MDHvOgQtziL4JbL8DXVxg08Ce7bdjCsIlsLf llvnIacF3qaXwIEgV73NiRTo2XYDgCCYiFepQpaRfBJ4k4MtI4lxHqE9265DA4KV8EG02Q0C IFg3XQ1DSyAAgpVAHW12gwAI1k1Xw9ASCIBgJVBHm90gAIJ109UwtAQCIFgJ1NFmNwiAYN10 NQwtgQAIJow6/6lr2etGwuY5xfVsuw0YEEzSA8mXXRUlpORI2uaTJaWzlByfvpl+DoKJAS37 aQV/NhAzLEBQz7a74QHBjPi0kPgggBdSRaRnHTF5tHc0zLDQZIFgQk4m/1mJ7KwgZKZ5OJoI bw26d3MCKaDoL0HpqtFldU2w7Zk1YyKHyhMfmJy3t4QXpIQNFtYzZPVLsJYTH2h+0mHCi5u8 7AuCefdg14dKt+I3T3yg84vxmrEvgcNNE14Yn0jPnfxh6Yh+CeZMTCDx6OZ9kj4Yne1gofEJ 6PMT1x47bprwAgRLseteRijKozfNJT5QsOUR7CvMlLzC+Fz4qf3cCS8+TWOJmIBhRILtmjSU +ECFtseEF0j+UJhgTSc+0BjWYcILemgdYXobNyNnMHtSBok9mCuxwtkA95v0/pRAgQNVlwkv aIfDZkRpsjoOcgQ6ZkixnhMf9Gx7gG+AYAEgeYv0nPigZ9u9juEJ0x83HW6fOucwNHKJGIBP YJGeEx/0bLvfPRwz2H7AOo6GbO1+uWVKFCPYNxdvvOG2PVhNdxGR9MEeFhi3xPZ6dpUjykY8 /Y53NIEaBQm23u6gzfQNJD7o2XaP21pnsDXCtkewzudDAiSwinjPmJxH3UsSbMVJ8CF5+dv5 KfuuZ9vduJoJZkrureUyTtlhRNlFCbbo3HPig55td7irkWD61RrDhVflLp/9vMZ+zmPTSz2f +n5SMhgTbX/klCbYigk7YYOEDOIAxaomobeEDJYR4pUNBNvJdHHq49/jkTEk9JT8ezhH259E 2lucYJH6onjzCOgEs91b2/7/HS0K+ADt8zHjuGz+xyEqAFDvDNa8v8DASAQ0gm3ObZxuTsGO gJvKr8djXqKTnyAJZrDInkHxJhC4EswTkt9npWn+b/3zs1x842CtG7oHqz2K2IQ/wAhhBEhX peI+ZgslmIBl2IMJgAgRkgiQCLZ9Mm+cwUyvC4Fgkh0GWXUhQCNY1MdsIFhdLgFtJRGgEew4 A/tELlz7JxBMssMgqy4EiAT7RgeP8zLJg2YyhNiDkaFDxTQIMAiWRiGWVBCMBR8qyyMAgslj ColA4IMACCbiDLT3GkSaLiakJpsl4gA0e0EwtoOG3stkN3QjATXZLHEflm4vCMZ124B7mdwm ble/Eps592EvmDPsBcG43ht16M5t7Cb1K7FZ7D4sw14QjOmzcdfGmI3dpHp9NvP2YBx7QTCm 03LAZzZdrHp9NoNgMs5S4hyMsXyQMbqAlOps5hEs7u7ttT8wg3H9M+peJrexm9SvzmYmwRj2 gmBsn6WHcNlNFxNQm81MgkXdvcUMlsAtaYeQCRTJKLImm7kEW2Gl2YsZLKNLoqn+EADB+utz WJwRARAsI9hoqj8EQLD++hwWZ0QABMsINprqDwEQrL8+h8UZEQDBMoKNpvpDAATrr89hcUYE QLCMYKOp/hAAwfrrc1icEYG2CPb7M//9+c0IH5oCAm4Efn/+zH//mXI014hcic9VasQJOmdD oK0ZDATL5jhoKAwBECwMJ5QCAiQEQDASbGol2qcMIk0XE1KDzSl0jPv0pTmCjVlSaZ69uraP DyUYWYPNKXSMf2MRBOP6G+PNPG7TxerXYLOwjtQ3Ftsi2JIVelITA6b2wuoegBEApAabhXWk vrH4nMb58WolTL991m3KsingVBYR9T1hxseiBpvT6RizB/v648CH/R4Sjik5lzbpOjKXBfHt 1GBzOh0jCLYuU98xgWYINp+MincdQg3hpQhBg/xVarA5mY7hBDsP9u0QLPcykfFmXn5mCLVY g83JdAwl2HW70hDBFidaR69s4foU4WAhIiQTU4PNqXQMI9g6e53TKrdFsI1jw5yNY8Q385L5 fxbBKQ5xpRVPoWMAwdbZU4lmN0ew/aHIPUSKX0AgHwLLUdGgR7IbJNgKKUiWz7HQ0rJuMpJr RaZRgh0kG+bBMKrAJYCADALHUtR+BtswwWQghBQgwEHgf3nxcLW2n/N4AAAAAElFTkSuQmCC</item> <item item-id="105">iVBORw0KGgoAAAANSUhEUgAAAKgAAABfCAYAAAB83IwVAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAeNSURBVHhe7Z3btawgDIZtYPcxNdjF NGEfpwOrmafpZIrhiI6jIpCAIXLJWWu/nMEQ/nyGi4Kdkn+iQMYKdBn7dt2116C6blCv65bE QhIFPmrsO9WPH6f1SgFdGt4NgmYSroiNfsbemUgqBFTD2SvPTUksr5ijUeClBktvVx2gr6FT cOJcMixczif9N0t3U6ae/nzdVHgAc7IN+6I11xosf0Zy+Iyq//32LdOPytqp67LGb3UBqsec IHWb4GBRJ1nmEELf/VSQ5mQb9kXDebg5zXE/Kiab0Lq739urCFAtpn9CtIx1prt4KjdcyaBz VjAyhQ6EKzOEpNCcbEO+2H432orr0fYXHbv6egDVYgEp8TOO3xn9xS7eBuMcLIIVg5xsQ76A N+UyH+j1hHXt5hE3sU4kayirAXTfKDhhXQN0zsSm0IhsAvulVE62IV/W319rzzRDuL9JLUMf yzjzpMsu2VQCKNy9H0UQQH96eG4sFKDm2Btce16g9Xd2WzwrAXRqNKLr2A3Fr83ioa4Pkypd ZXKyDfhiBXian/tXSKDfF2FewzLGrwNQxPiTMoNO/fB5vAmOx5DU5mQb8sXa5h2A1myqMyi8 Tr0O2QRQJDc2wLclrVaXmSzZ8ACl43dEb1cdoEPQoyNcN+NnF17AjmJ/vug+26d1TdCXo6/n dx+WmzdkFj8r8J3JV5NBwwCNR0eu5FFAAOXRWWqJVEAAjRROLuNRoC5A30/1eL55lJNaWBR4 P//U419Fy0wyBmXhhq2SujLotF4ngLKxw1KRAMois1QSq4AAGqucXMeigADKIrNUEquAABqr nFzHooAAyiKzVBKrgAAaq5xcx6KAAMois1QSq4AAGqucXMeiQKOAUr7GRmkLG3OK1wSxdZnl eNvbIKDwHm986ChtYWul2M+PrcsB528jEeUL2naf2gMU2uMdEjtKW4h6yfbzI+qyFmFur/ah PUApN6NR2kJAQ7afH1GXtQhze5sEFNpCGxI7Slsh9a5bQeKP7AmrbS19R3uby6CUIlPaCkPm nknSHe1tDtBpo7XjNJCI42oIbR1PhtufEmc73/QeQEm1Q96R7QEK7fFGCjcXo7QVUi94KEKQ MXzhG9rbHqDr9lmSpZI7lpnmO+PaiSh4JI2S/O1tENAtwOse7WuHzvIuXC/E3AUotXbwndIo oLAwUiIPBQTQPOIgXjgUEEAFjawVEECzDo845wV0ffbL/cQiOiyy7Thaulwv9AD6fVNlOluc 5KMAHAoIoBwqs9bhBnQ935HozHWWVgmgLDJzVuIEdDsfcllzu7ZWiGkSwbuFAihG6KLK2AE1 suYyFo14Vs0thQDKrXjy+qyAnt9a8X2RwfVUwzhRNwDwsBcndhoJoMmB4a7AAqgJlu/YZtf2 g3N3zZKFBVBufpLXdwbU9X2b+f+3rzJ4tx9c+KqDbrFk0ORxL6aCE6AzHNaFz+NkKXj7Acdq gGTQYsDDOnoEFIDI3k1j3qwxX9OyuSezeGzQWipH8KgTAhQDJ5Hk6Aya4hU5SIeYNqbwM8aP +65JC+ickTnWUL8CogBN8dJtir3qKfy8D7TYmtMBakyqYh0Mug4DKPHebu9kMch5ozCxn7Gu /No3f4QL/nRhbD2u69IAyjEhsrUIAyjhRjftQvBkERtBYj+x1R7Kmasx4BeMo2rxXpQE0ONd d9yhmPTNKASg54cQM2XTUORqdqAdg6bzMwCiG4A0vSMANKDBqYsKoMQKHydp5+QS/7QQ62hz gKbb202bQdP5iUXjWG57eLL2NDxPC9sDNNnebmJAk/kZB+hy1e5hzcWnhVgv2gOUdF/8XmZi QJP5iUVjKmdCCI3Vod8Dql6LNgjolglo9sX/pExwmML9C/XmexHuSW6aBzKNAhpxK8slHgXS wLks4/VK3xRdFfojZvFVtDOnRiR+WiiA5hTs0nxheFoogJYGRS7+JpgQ2ZomgOYS8ML84Hpa KIAWBkZr7gqgrUW8sPYKoIUFrDV3BdDWIl5YewXQwgLWmrsCaGsRL6y9AmhhAWvNXQG0tYgX 1l4BtLCAteauANpaxAtrb12Avp/q8XwXFgJx16fA+/mnHv/kdTuhJFMF6sqg8j5oppjFuyWA xmsnVzIo0CiglHt9KG2ZEU9p+ypd1JsE7f5UB2gPHl1CeSgXpS0HnCRfZb4Ko/vGAeW+WHV7 gFIeykVp68SA5Tge23lNFwEIvfz3onI/qGH6+osAGqTgdNpFP047yj3/KA/lorRlupzSdpCm x8LJDktz+PQalpNM6tjVOR924P9cDuWhXJS2zgnU8oU/pn1AOH45xqBbPCsBdNtH7RKZEipK WwKoJWL6hvyOIaoBdD5K0Tcwouw6KW0V0sVvbqbPoOsESddZD6BQN095KBelLeskyRiuZDBJ 4gP0OFyrCNBJQh1IZxalXBqitFXSMpP2NW0G1dlz/33YugCdGfUtgVAugFPacq836oPO0n/Q Fzc9WkolBFT3TMZqTHWALgJePdY7JGBSlkYBfTDueSWmQkDXu1wgpQGHw4odzsomSa5usoDP iXMwkGUd6zDJHaNKM2iW0RCnIhT4D7hbYL5FQkCDAAAAAElFTkSuQmCC</item> <item item-id="106">iVBORw0KGgoAAAANSUhEUgAAAIsAAABfCAYAAADYtjTGAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAZtSURBVHhe7Z3RkeMgDIbdwPaxNaSL NOE+roNUk6d0kmI4Y+wYsDFY/GRBaGdu5mbXVoT0IQnF4EHJj1gg0QJD4nVtXvYc1TCM6tmm 9l/W+q0et0HdHu/g5zKFxQx8GAWTq8S9H7fgBGMIiwblpk4myFX7dXj9U40HEZkdLM9xUPGA YiJP/LozTpboNUwRbPp3Fr7jtCFl2Z+WIff9ULfbQ9lJiRcsukaJErAZMHpp0Mt+mtMzkQoM UtYBKJ9BXtdRpyR7EjCCRRv9vJg1+XiKBNN1Y05k0bNu8FKdBtWbifGIMl2BlOWwgtDRTUd8 YNFGj4SK9+OxrIwy09ARGLPTCSsvpCwbFpBcPcFWs7KBxR5UfEbnwTJHKD+KHEWIuCJTYMHJ cgMLSK41CZnAEk9Brt8ElgSOl0s22zKBZcqtl+qFPFgUKMTP3kDKKpCGjIqmPuMBS0K9gows pij16pOsAhcka1fgYuSuKV5gSY/H1pXI5S5SFnbpvEpjB8t4qWWbmYZmK2Y0vHaAImWBmnL2 1FhWRGwiyzVYSOGk25s6jyzd+p00cIGFZLY+b+IFy+uufu+vPj35hVG/7j/q9x+jpbPULOWo 4RVZpr6HwCKwpFlAYEmzE/EqiSxEw/V4m8DSo9eJYxZYiIbr8TaBpUevE8cssBAN1+NtAkuP XieOWWAhGq7H2zqFpcSjALU97iCPKJxP6KSmXImHjGrbg3QASsa+oVVaf5EFvD+nyj1IDiuI fUNGYH+wgB+MrnIPkg0LcLzdwVJqf876eCV1K2wpvZByBRYTX/fbUC8vd/IKXKRT3SwE2mQm aWgxK3XLqQNUHiwt7BvqLrJA9/ogYUHuQdoVuLJvaJ8o/mzpPOeyzLNeSizpN722I0iuH7nR 79LZLALN8WGQA3g+psyEpZReOLn9paHLhavc0HlkEQAoFpDIQrFap/cILJ06njLsU1jW7z2o XUmKQln3JK2Gsj6h65tPYFmWWNNZsqQD9f7CrAJLUauHYVmPMIe0wouOYRMusBQ1dBAWfeiw Ofs0fpY7RkN6s+jz+QILxhUBKceweNHE1C6E4zqLqn4gXGApavFDWPbfgJpZ7xa65ndrF3QP k9sljZ94vY1TR7VNrvf/s2pbYPk2LD4ElrM+J0HuU4YffWaHfxz7pVQmsHwZltC7eebfL0eP H16jAVr+flAUHz6vERiaRJaiPicL36UhNyLYciPR4XTVJJGF7KGKbnRhiSyTw4Wu//X6OkKr bokeZiyroYq4OFQF0O4PgeJ93jdePZdcsyAfUUDKcidZbZ3zPFjmSJT6fp3ch4MS5l0SLMiH jJCy9tGYDyx2wev7MVgA5741LAJMCizIfUNIWbr9iXoPki1rbm9gXv9HiyzRrwAOogj1TPuE gHKpgwvcR4N+yBq6B8luooJKABIsnxngNOVMP2YLnV5TLlrgXqEi2I+OHkCI3HKBlOWOKDNl g+DwrUyCBeDWMiIS0hDSwUhZUFi8Z4z3tQ+tu94dLNDUgUxpDi2ZkcWStTU4t7qF2l3vDxbk /hykrEKwGLFWUzSju94fLGuIBhxB8dlSApG175aTl85+zQLqrncIyzbTMPuG6mzK+d+vndYt iYuPTmEpU183KzVx9SSwNOthpOJpBbXAgrR5C7IyuusCSwsOhupI764LLFBHtCKM1l0XWFrx bwV6CiwVOKEVFQSWVjxVgZ4CSwVOaEUFgaUVT1Wgp8BSgRNaUUFgacVTFegpsFTghFZUEFha 8VQFegosFTihFRV4wfK6q9/7qxXbN6fn6/6jfv8pNTSn+ZHCCQ9ssxjnHw2CV2QRWIpiJLAU NS8v4Z3CgnxutlZZh3k66/0C7GC5RR+JR25mr1VWGBR31+i1yNcfLMjN7LXK8hj4bDe+jWqc 3oYSnU8BhnjBoqYDgWLbGpC7CGuVtYPlMVlG/6Q9mB2KN8/R7GrksXSejXF+BCtyf3KtssLJ JQeWzbZMYNnePRwyWK0ORupVBBadcpf8xQaW+R2IZ0m51tSB1CtICz2yrPWKFs0HllgqQm5m r1UWHBY3vTOCZbKUnqXB6FLrchepVzAJk/osOqqY9ziYH16wzLycLRFrbaQh9QI15XT09FaY 7GAxy0TMwXvXWlecrtZnE+9XlwxhWfsKAgwN32NQWKahzUBraG/gFTg0r4LvituLaWQB21HE zRb4D5XmZknB+MFdAAAAAElFTkSuQmCC</item> <item item-id="107">iVBORw0KGgoAAAANSUhEUgAAAKYAAAAXCAYAAACBHjSnAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAM9SURBVGhD7VqLcewgDHRdLsh1vBLc QNpwMy6GmP8fLRxne16UmYyTM6yEWBZJySL4iyPwwggsL/SJXeIICCYmk+CVEWBivnJb2ClH zHNfxbIs1e/teH+w7Bqe8JVtz+VHWTHPXazLKvZzrrHvoh1iuw7Wul4HbN3Fva6z7dkx/3+I eWyX2m/ieOJQse3pQvYwMY3STJDmY7vUUuGcYl/tz9/VaIvOtufH/GFiTiJOopI637vUcxJ8 E4Ztq/DMjnknMbXCtYsLfXpcIQVWIlJ1qsUXgaGCEuWVqZ/9fmv1pb9o22rbopjUsfU4MGSa DM11h/7XsHVsfOyxA43ZprDrXJlOTEUwF9n5Ep9TJV18EGS3aRQxTYCc35UUQ6ljSBzENogd kLdIzCHbNlqeADF2vs6i8g3ZprFbXBkj5q43SJ+y4IQVCo/8ZJVVaFgxbeGRwqrPbWfBELPD byHnU9U9YrtUjCXYrlW3bmJDFROx7a7Ya59K2EUMGSuiI4PYprAJrgwRMyRjO7f4vmLGpy6/ uvS1aZXNH6LI7xIJVeDa1xpkG8A+rwOj82H8KodsK2J2YgNdDdR2JkFN7JgrQ8QsXQfxZ0Hu 0FSdD6tyIoiefKWr3H9WVHVqg0DbP1keqNhSaa+AxARtx8Ufgp2mHYXbbch2kGdneUqZK51/ kizJPKGKNdmn64qJI9p+DxET9K4PGyEPaDiXK6KwAkg5atrmz1RVF3DFEXP5F3O0/LvfYP/e LKg6v/x+eI1DE4kDBVy3Q2blpC7sh4hpihu0E9EViy5sv37FRkmykIj1302uFo0//HzD+Hh+ 8N6sKCV910KHBrevcn21JvkkUvwgvnRhP0DMqEhEFtQxpoVdLY5018MR0xKUeqqe10VMmb+o p2wPXU9ZYsin6mEa9VRP6UDwPsTvWOKHQ/PiR/nt8l+0pTPiRg/2zcSk8uiR5do5JHZhrYEY LJhSamtWCffDtIuMctpWtHtvG+yV95+sd2yuucqt3/JwZUUZ2gQf8QDFvpeYrf8oo9JBKgoY dtJgD/YkImZJzbDc07vZO55aIL//mxHorMr/ZpB41fdHgIl5f8zZIhABJiYQJB5yfwR+AYfR fqe255aWAAAAAElFTkSuQmCC</item> <item item-id="108">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGVSURBVFhH7VaJDcMgDGQuBmKOjsA0 LJNhXMxXlxjhQJJWEZWqKg0O3OXubAXrA2pxAIsEFMFSAiVhsxqUUs2vcRtY7e8bxzoo1GsL 2wX+6p9tblNeCZsFrTTYGpEzniQDexocGE9gg5+5E9bVrbNN7HKMBA+fBdskZ+JkrdLfkwDg zN4S3H8fDJE4vZPVIEH/QAKEQ1BLIEjGOoMYu2V/QYKPPgzI4n+0gjAQg2Ja4SsNlCYJklxK 4Z7PkPY8mAnxPYW0Tg9AYKdJvSuDsDkf2q28Is/8tm0kBM8+REKxxEFp3qIEiyRlxRHbMmfN bX2MBM8uAjLGW0EqY8lblqzpKIG28DhfcC096HlSCfiM0BYls8Fd3YHLBO4/kgspyx40NnNd 6vO2WZGl+aaQoF7ffJx9LVH63JoBEpIlAnIETEGffT0HTlrdsQM71caaQkIm44pfKYy5dQkQ CcLQjcoMU803Odf8fXWlAmpLzYHsVSc7ONIid0NcNSzlYDzb+/cC7xEju/+g7iADzK1aJGBj GOfvOZVvpJNUQwfFBYwAAAAASUVORK5CYII=</item> <item item-id="109">iVBORw0KGgoAAAANSUhEUgAAAQcAAABaCAYAAAC1zJM6AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAq/SURBVHhe7V3tkas6DE0Dt4+tIV1s E/TxOkg1+ZVOthhezEcwIFuSsYmFz87szL2LEdKRfJAFWLceP0AACAABAoGbSVSeXX+7df3T pPJQGgiURuCvf9xv/f3xd+hCxshhNPrWgRYOeR0nN4HA3+N+6CZqiBwcMdz7g2TYRFDASCCw IPDsu8Qs2ww5PLtbn54wTBnH7Z11vH/5dMsBOo4dfncXLn287529n+vfjpCi1vbYxEqVNZ4X 9d/fo78H7Qydv9Zn5adh6eljuPw7LY60tivGk7ZHYkxrm5N/f/TaRYYNcnBgpHn0HenbpcgI epggtuNl/1/kycYv9uyXSo4YVvol11i0tguI4eMHDsdZ1jJJwi6cx1AkGD5/INCPUH6dPYxP mCTHYyiGFWU7HUOxmxpnm1ti8DfFtf8NkIMD6kDxkWJlN9lCQUJNxJWM0dF+oA9ru/kP3Pnc 8egdVJkua22PcgNxZ4/h6Gh5WPO6Cdn1XSRzGAK363aZQ/R8wrZhvMavUji1OCrG07YzMbbV W3Tz0C8v6icHB3Ry1vBGkQrgwXk04dAB5jsrzurc+dxxUl9pEFNBs50sEdujl1Hi6GT9PR7T E6XIsmJOecnJLjj/o3Qsc+Cziqy2S7EK2q7JHOS2udjTTKXqyUFr0NbJ5GSM3Z2Dd/Z1tuDX BFaAc+czx2d9n/Ndd1g3p2VOatsjM+SYrFjNYFpKJNUcBgoan2ANGUpgXS26s4aN19ouG+8V 2AO2B2PMV1Vjm/JGWzk5HFxSzKktefcMFfmmQpA342cnjX/arx/Xa1/Z+X4NxZc/p9I5ag6y IJWlJcdk0eSwWgcnk4OnPzlR5HfWEBJa2yXj47ZzMbau58hrCbr5VDk5vEFiCkjrqv6mOu1m szTFW0XGulLcPb3gDsrzySZy/nCd8HF62SGo9lORnWR7YIockkXov62g5yCHKYtYZXI5ajha 27nxnO2iGBvufJEnPLQfn538yVfd5KBMg0g4qDU2U0jbyfFlSB3nC+HW+Zx8KuglN/wctn9u UkSdRozjnhw+xUbiceN+XUyQC5kl7At5WWo4WhyZ8azt0hgT478Ei2aZfn1y0D7K3LHxNi0N pHxzhsOdzx2niECzrlyRRg2PMpe6QN73HAKEsck010s+CaNSY7Q4KsfvYoKJsUnFFNsuRQ5d llcivaIV8Y4D/V7BskTZr+k2L6hslz7DZI6czx33i2wHCpJjDMVt100XJY4f4YJlUdKyYq0P VZDc+VZnsDdaa7sCd9J2Jsbc4nT7PozANpCDACQMAQItIgByaNHrsBkICBAAOQhAwhAg0CIC 1yGH12//8/tq0YewGQgUQeD1+6//+U8muvqnFXkKkjIwMAoIXB2B62QO7youyOHq4Qr7zkQA 5HAm2rgWEDCEAMjBkLOgKhA4EwGQw5lo41pAwBACIAdDzoKqQOBMBEAOZ6KNawEBQwiAHAw5 C6oCgTMRADmciTauBQQMIQByMOQsqAoEzkQA5JD8mfJJnxb7GxtsPt/2P/XWbAYaDjDFp8Ns lGplle7vwcn/Zv8PTjcOS+44J592ZuPkoNxo44Ph4gy7/RW2AZGKBRVYWlnb8bL/X6P/B21r 2Lbt5i4c1pz8yK1CsQP19b6tUPQMmCH8bNtlvb/Cjhv0vSaCYaXFlevPMe2jec3+H0zfCQ5L 7jiHXSQDbDtz4Db3JIC7TH+FrW0JWATjSimL3ii3lf4fzJ2dw5I7vtv6cLuVITIHEgHJtuDc +pze4LT+/gr7xIHoAJWwY7GTq8aV698xKXvl/h8h2zgsueOzn0V9LTZB0XTmIAU2UK4hG77G ewz4kgQFTTe8UH+Fqshh3n6/yf4f8b4TXIxyx/neKcgcaATYlCxWkjfeX6GiZcWoSqP9P7it 5bkYTT7O96RoOnMYG31s2seJ9/c33l+BLEimYrHLRw/gOsni+nNwSx4r/T84cuBilDvOyUdB MoQA9xhImTmQEy7E0NSy4sz+Cjtlxz6Sn9Q+1go+hstQddDJYvtzXLn/B9d3gsOSO87Jx7Ii xo9Lc1VJn4qPJEHNoPr+CgGCmPpoyPsqUvAqezew/Tmu0/9j30OC6zvBveTEHefkB6pqTb/n wN0AcRwINIxA2zWHhh0P04EAh0ASOXzeEiQam7r3/edO037reF8R+qUXTlXmODaYPQggTgcC awSSyGElIrSuDjZ0Jbob5/AKyCEHipABBJaq2uGaQ7DoFiCB5C7QyBwQt0DgTATKZQ5vK6i2 3ymtwEWAIHMQwYRBQECKQFFy2L9k5LIJ/s0sqfLb5Q2a2iQhh5OAAIlAWXKYXoZZ3qvp+tv9 8f5r+Mf/QMTfzGT4d2xHE2QOCHEgkBWBwuQwfaE3Ter9yx8ZbQE5ZAQTooDAOHelO4zRm71I 33Hnxk3eQOaAsAQCdSBQnhymwmTXvZcUUhpKwQaZQwpqOAcIBBE4hRzGPQncy1EFPQFyKAgu RLeIwHFyqAU1kEMtnoAeF0EA5HARR8IMIJAbAZBDbkQ/8rjPaItdOINgwefoGa6SJqIlXAN+ GIr770f7/m/oFQHhgwDKFyCHtAhlzuI24Chy0UxCJT05Ml1KLaYlXCN+cDU8UQFvlpH24iHI QR2gghPYXgICGV8YIu3J8QXVxks2givnB/e4X8INw2bH76eE98S3kkEOJSKd2/SzxDUzyBT1 5MhwnWQRjeAa94PLBt6T3m3pNy8rqCWFI1L3dywrxrtKLd9W8NuFJ0+Pk06ss+bQHq6UH4i9 PWciWNW7JL1T4uGEzKHAdGsviAuASIhsD1cpSa+3R5D3TgE5nBO5/lWMpr+LCdKgPBna5nCV +sEbt80isKyoa1lxrB/GyROOvJw0KE/WlevRcLI6+stpcQ20Ktj2WhkaAo3LiNgWjpIipm8T lhV6DwvOsPzIbXgsQLb6ExheeEhruKb3NlnKD0T3dKGXQA5CoPTDWnpZR49O+hnXwzW8lUGI pBV9KLCsqGxZkR75OBMIVIMAModqXAFFgEBdCIAc6vIHtAEC1SAAcqjGFVAECNSFAMihLn9A GyBQDQIgh2pcAUWAQF0IgBzq8ge0AQLVIAByqMYVUAQI1IUAyKEuf0AbIFANAiCHalwBRYBA XQhchxxev/3P76sudKENEDCMwOv3X//zn8wAuuOV7Nzyoyra7KW8sbgCECiPwHUyB5BD+WjB FZpCAOTQlLthLBCQIwBykGOlHGnx02ILOlvQURkq7PDv7K9xKXK4a7e6YZ2SOsDipiQWdLag Y2rMhM77Xh8RkENuXzp5FvsrWNDZgo4Z44nrX5HxUqSo65CD20cv1BKsNIpb+RY3QrWgswUd M8bat/uIPDt5p6y6H2UO+x52b4r4/o/FLdQt6GxBxzLR942ag24+VU4O4867NZQdLAaxBZ0t 6HgZcnBLOMVkqp4chrW+wqAyjnxLtZj+WtDZgo5Fgur8zEF7o62fHGpZWljsr2BBZws6XoIc dEsKZ7IBcpju2l/PHiw+crOgswUdS7DDuZnDqp2e0Bwb5DDwg6xFudDuxGEWX9axoLMFHRND JnjaieSwa8ors8UMOYwdm+SPYWTmYxQQuDoCrllO2hM/Q+QwvIkEgrh6LMO+jAikE4OdmsMK rjkFTWPDjMhDFBCoFIE8c8RY5lCpL6AWELggAv8DcKkrTo3+ijYAAAAASUVORK5CYII=</item> <item item-id="110">iVBORw0KGgoAAAANSUhEUgAAARAAAABaCAYAAABwvgmrAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAsgSURBVHhe7V3bkeM4DHQCm8fE4Cwm CeVxGTia+ZpMJhidSUmW+ATAh0VYfVVbdbskIbABtkBQJm4z/gMCQAAIFCJwKxx3/rCfab7d pvnnfE2gARBQiMDf/Ljf5vvjr0p3hQSyTPw2gTqqLI/BQOCJwN/jXvUiVkYghjzucyVpwnGA ABBwEPiZp8JoXhWB/Ey3uTzwWCOX2zN6ef6hQzcD6tLX/gkefHa7ZA1I556TXSprGZe1399j vt9SLwhqfKrds1PhQlkQkc5d0D86d8LH7JiDj5r/vz+eWq7/Ue1HM5u+x7FM99JDICbnUcwe /rZnMUyaRPz+vL/v8nj99/lI+zOte3T6F3bU3BnkIZa1L6S0Cbc+MQKhxqfaw7mWh+y1PpTD PTb3uE84PkutCardM7XBhn6xuoOUEIgBsyJhGmN3A26KcWMJWkfG4gzHxWAdc/sHanxtu4g/ Im/13Nyz/CGXtSxY82ac5ikTgVjnnaYgAqHGZ9ujiXZju4JtsNSHBP3jcyd87GknKiKn2kNT y7cyOgjEGKM4+rBIh2RhDRwnJeuUAbkcDZp/O1Dja9sl/CGde1a2EEcb9D8e60lZZguyhc+R RUeNp9qD+WS3SZnZS+fO7Z+cOxWBLPnAuzlQ2LYxjs9S7fG5Gt+ULDUVBCKdlA9NdMHmHCkZ IbhRh2H4zXgO6NT42nYBg4jnnpFdJytFIIfEeJcciLPRLz7Bk86d15+ee9LHnrQcbMOdPAbV njC08GWtgEAqty/2LRiJKLLOuiavDqywGXL5p9A4tt3LDRxzNrHx5e18BpHPPS27TlacQJx9 d1cC8d/ofAyXSErmQ5z++blTPhbTP9z2uL2odjtTUbpAAYE8J01kh48s/Qrnjqcn3HDSQdvN gE8/hwWQlHfcW2fG2+fUtjMXQNHcE7KrZEUIxM/89yKQ9TRCmiB03UG2DSa3jtTcWT4WxNrE SRd1krXI+5n4OaLxCUQYUkVdP5bvkCYSjzJKjJvJuVida9tTfNJi7pvsKlmh874SoP5RpJeg Xh5POX+i3W4X+QsiScvSuRP9yblTPkYliKn2zPtHkjK4BoFs5/fc48fgTbg45/4GS4SXW6RE ja9tZwYfx4Xnb6/K3sbSo8yjohQBbCTa8DuQ0oRp/C3k5U+o43AhVoGuhI/FCNUhnQjezJfm xxHI1OTT0/1bgdiHZGYbFJyxH96M4YLzPvLxt1n2DbAnWYPxte0lJML+iC4nXIjjS9T7CYR8 y4sw3KOgza6+TQMfknx4FiU7wse8bXDq5DB+SpOePAhE7BgYAASAwL5T5R/lqtjCtIlA4CBA AAhwEEAEwkEJfYAAEIhnewQfk40fgfx+z1/fvzA1EAACb0Lg9/vf/PUf72HjE8gzuYQtDM+Y 6AUEWiCALUwLFCEDCFwUARDIRQ2PaQOBFgiAQFqgCBlA4KIIgEAuanhMGwi0QAAE0gJFyAAC F0UABHJRw2PaQKAFAiCQFihCBhC4KAIgkIsaHtMGAi0QAIG0QBEygMBFEQCBWMPnf3ae9o33 /+x80aVl/RJ/dqVYxFCSyjq7fg71fAlLtJ47Vx7lk4m7PyIXNZmf9lOXJoNApBcIvXxoN6je +iUJ8uBeppRdT8JLcgI7+OPjf/+M+jrSuaUuKKJ8kmrfDWqv/mQUjwKBxC5nIW5jel0+o71+ ScAf8louSQ6R4krVv1mjrs+sr0PUdWFgSfkk1e7YMXrFYdzSIJCCy39Z9UWSNTzo+ics+Ud7 trqOrwCLJIEIZUVvJndII/+WpsbXtks2L+QlyYEwIgJhYEn5DNW+q+RfyZmf+eUJhHOlvjwH Yoyw3tfZ6/ZwfytFbVYZK6AOC/cBYllU/ZtV/CfX10nNTYZlQQ7kaDpB9GGzhx91H0jBz/ll xonnDPy1a2S+9uZdCcR/czFYItOlDotKAtkSw5esr5Ov6yKzSw2ByKIPEIg90BDW8HDWScRY VA0Pajy3vUX9Ep9MqrDwhBXJumh9HU5ZBj+hmSztUUEgBVvhy0cg0RorzCvtY/VHXskqDfVL oklUrwYwGwtPmLQ2Siwyukp9HYpARFhWEEiBrUEgxce4NoAjqnvZTWJQRd5PWFHHwE57wVuC v7GRHr3mJAtlUfVvUiVCP6K+Dq+uC69eD+WT6Xa35CrPa0AgFqf8RzphDY8NXMpY7QlEFuHw nMDLXixFkc6oC0PVv6Fqm1Dja9tFcEp9iqrr0vFDsnVeaT9PTxwEInIKdAYCQOCIAAgE/gAE gEAxAkUEkguj9+/n3ZBrL93YoHhxaroFx7jFyGEgEAACDb4DSSb1EvmBdR/a4Lun0HwgELg0 EHgrAkURiKOhlEBsXvHO+qGOGAkQiBgyDAACNQicQiD5o82K6YBAKsDDUCAgR+AcAon8slKu emQECKQJjBACBLgIDEkgxx8V7cnX9duEXPIEBMK1O/oBgSYInEMgvb6mBIE0cQoIAQJcBE4h ECqJigiEaz70AwLnIvB+AsEx7rkWx9OBQEMEuhNIkMO44UOyhvaDKCBwKgL1BHKq+t7DkQMZ yRrQ5QIIgEAuYGRMEQj0QgAE0gtZK5f7E+yuShQKZ1xVUCi5fphmXP3ZS3FO9F9vqHNSBqmy DA1PQUEg9d6ckCC8UKebHiWC+fVDSqTXjdGMa5w8OAWclpEZu5jDCdYPzDYZbXKRIJA6b06P ZtTy6PXoGrmvX1oTNW9qnlE1VimuAXWY34OZS5uYOFN2MZ8+cPjDXvg9TZlb8mTWAYHI8OL3 LrpUmC++V09+/ZBeGhByleIaEsjj+YOOPaqgFn/eLksZkfvhJrloVblMraJSa4JASpEjxsmu 4u+kRJVY6d686mHswfpxjW9jKALZR8XsEil16VcHsNsfTq0itikW+rt6XRgZXPze+h0dBMK3 dk1PKc7c/m65TLt1efwtiiKJmjDYSN+BqA+1uY5as3gKxqrHtUcEEsPxYD9RrSKZTRCByPDi 9xbV8uCLfV/PQQlEPa4dCCRajtJEIMuWpedN/iCQbitS+3HjoARSVcenm7ErBEtxjvWP/Fuu SBS2MAq2MMtms2GNlQofLRoqdeyihxQO0owrLwKR1yKi6socngsC0UIghesDw4CAEgSwhVFi KKgJBEZEAAQyolWgExBQggAIRImhoCYQGBEBEMiIVoFOQEAJAiAQJYaCmkBgRARAICNaBToB ASUIgECUGApqAoEREQCBjGgV6AQElCAAAlFiKKgJBEZE4LMI5Pd7/vr+HRFn6AQEPhKB3+9/ 89d/vKndeN1O7DXSz/lPhAGPBgLvQuCzIhAQyLv8Bs8BAhYBEAgcAQgAgWIEQCDF0HEGavzZ uQadNejI8Y+aPmNct/BxBHLn305bYz3GWI0XCmnQWYOODPeo6jJO3R4QSJUhM4M11i/RoLMG HXv51JpzkNST6ajKB+ZAnpU2plQ5v95I+vI1Xv6rQWcNOnb0tdHq9vxM/Ap34x/j2isEp7Vg T0crMkRrLOugQWcNOjLco0GXEXIgsvWmgEBkx0oNrJgUodHRNeisQceefrXLHoBAzHZSkHNU QSC2aI5gUt2MrTHU1qCzBh27OdVR8PkEIkmgGs11EMgo2xiN9Us06KxBx0sQiGz7oohAnqqa t9TpUYjG40YNOmvQ8R0Mcm4E4pTKZE5XSQSyzMbU1TidQ1TWhdHwkZYGHZmrqrjbiQQSFO7m TUIVgSxFnfhHTDwI0AsIXB0BU8Cq7KRTGYEYQ4NEru7umH9LBMrJQ1cOxMFsC3fLWLMl/JAF BHQi0GYNKYxAdJoLWgOBT0Tgf1yDZMnWsyp5AAAAAElFTkSuQmCC</item> <item item-id="111">iVBORw0KGgoAAAANSUhEUgAAALsAAAAXCAYAAABTTj7/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPPSURBVHhe7ZqLsaUgDIapy4KsY0uw gW3DZiyG5alAgvwg6qyHO7Nz95wr5MFHSIJCjp/hgR/xgPgRO4eZwwNywD4g+BkPDNh/ZqmH oQHsq5zFJJctccq2yEnMcv0PfLUtkxRCyPkxZTe5TMLIjP8xfmzw3/P2HEp+UfaHYNebVchp UsBPi0z3bANrwBALO9lc69xh071hjzf5m7K/A7sBTJ1A5iTqE1nLtGdgVwNNZLyy6V6xx1n8 Udkvw+4iCMmdypilT6yziupmHgug/f/dP3nYFe2XNt079lh/fVX2y7B3gjEBy+abT9QZJ7Cr KkenVU31w2v2mCMp2qTP+fJ+2Q2wJ0VZdjXPQKCQ62hCCz33XYEYmjKkoCHgxXZhJ8M9sJft 0f5D9a1bB0y2X7/c3Nbfx3pigQeTXZo7z2c17AbKHb5cynAIbIpsVQE/NT5w8p4zl2B3+u7K ZtIrE/XCaN0hjSFzIvaA+gYbgl2HJtkx6LT7RX3Hng5Nsstzn/EZwH7SWfDQMHlouht9y0pM s5y5TkUG5ObI7ospmsSryOILVQf7YmG1ESeINlx+rectFphogaqfU7ostktz6MU4A7EH0Ldp HRDZvvjWdnBrzM6RaWuH5iOyS3MX+IwulegOLBV79O+bAsq2ueuOz6pgHjwc7+RwllA3Hy0P wCNbObCh+wW09egicXHz2OLwODkz9gD6tqwDJNvAXrnGQLGOyiacnM4d80luUNMIy+euQV6U XUAE9ovdmIITD6C5NOb4jm0TAguU5s1Hjpq2PktBwy0haM9frq2ZHYusAy0OU6j4QhWZO025 mLAG2k3vCnNz83xef10gd/w8FNmxE4E7Rg8A22HHpPc+5er0RYBE7SBbgL9U2x8DQG8V7euR UlEY8LnDLv7E3OOfnUHM+PB2MZ2v2camgeewq9yB5udQGoMq0xm4Kn07y45MLhXoN913uOK2 tmNmCNcghjBmP7tdEv99zY73sHPzoZj0ee48jbG95aQ9BhWoqHadgavSt7NsBHbDyU232Gdz ZwtY20HbYffQl36bF59cFDe/tQD1W99XRt+rb/RnIyR8PngOReX6c7RANbXJXm+grbxWTXoD V6Nvb9m0aI4yCajWafRjcW7G1iBoCSiiO918hN7f9HMngr+YjyO4hf1s/kaTG4a5NGYNWo+k sA6KGv1CWdfXDe4ADtX3Dtl+Cejce8uTvAnaeJscrDY2d+yXsH0cwR5GdS8Dz93tiNrnG8gd Q4YHmjxwvRvTJHYMGh543gMD9ud9PiS+5IEB+0uOH2Kf98A/7HGJpRbnqnYAAAAASUVORK5C YII=</item> <item item-id="112">iVBORw0KGgoAAAANSUhEUgAAAR4AAABaCAYAAABudzkYAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAqtSURBVHhe7Z3tlfMoDIXTwNvH1JAu pgn3sR2kmvxKJynGa+w4sTFwJQwe4dw9Z3/s8mH0CG4E9qBLz39IgARI4GACl4OfV/9x966/ XLr+Xv9JfAIJfCGBZ3+7Xvrr7bnL9hMJzwTk0lFyds0INiYBAYHn7brrB/4kwuNE59rvFGEB blYhARL4ELj3Xebu4hTCc+8ufX6g84qULkO0NPwrDyGndsnnPm/99RITxFj79XhWEdy4jZzG 6f+bZ3+u7TmLT/ssN6kXdm4MrF3e925efTjX/GErzQb1h8oR24X/3Ry/3nrtxqt94XGLMW/V DfT87dkEHIvPx3HxR891QhM23n6c7O9O8X56rJ/h+Hzbd4jO2y7E2feL7L8/fpPV9zkv55Hj upoH1c4OtXMwbFvcdp81eh7qf+t/t+3Ca2bdrnHhcZB2HCSHIhI3wRILedrbusXe9V0i4hmd 0XWbiCfZPjCesX5sPHsWQ4btOZIzttE+K2TXqo9pMS1Ff+Q0/w/UHpUnI9VsCuGGWjbDa5Ok 7ag/VI76D1qh33K1LTwOYna0MxAMiczomLiYPW+31xuzxFZrDj+DQiJo/3ZuKuLB0VByiWTY nr3klM8Ki+1ywaV/lVF7VB6cF9nGg4ZKNttI1ZsHqD9UvtkFyOaZY6pZik0Lj9ZYfwoEJ6D4 1y51RvPaXmWd8YwhwvSGboysIvvnPdHOGIQEIimx7bpVqH5WNCJZRznLM5jVpEftQfk83vsc 3Y5nTTsi6wQuNZtXXzHbUX+ofB5qlG3MFmUQ0LDw7Nxm7V58YeFZ7XezhWfh3aDAyH6FUvIg nYA6iYntJrQi9zrcXKjJvBCm/7U9I1qfjcna+2c6Tuhd//N2+IgzHr0f0raj/lA5ZhtVHtWx R8PCMzgAHKqu30p4b4LcDINhZ3Lpbt9q+Sf8JYTnFf2sftFLRCa7bF9zqcN5/Waluy+EPjr2 5UF+ov04/Hh5eCuW2FonpklxNsh25NfscvxW797hOjOqdoVHGdoF50boPAccLn/62U7E98Gx 6HV3YCIHo5vtYWKRM4hdtivjoBLPWvaBFl9oeODsbjoAf22ngnMgT3ggKS0bZDvqD5Wj/sG2 UXrO893Ck/06/XMOU/Y7nogYeZHdelsBp3akAnqtmttvcNV7X5WD1+mbiM7fWka2GzMn1B6V h6LMnWdqcZpaPwDb4ZxGz0P9JyxRHDA3LTxdkU+VFwe5gW94Nt9zvLkLfgGztlrr8YQOl+Nj 0opF2nZtb+n6Ss7jQv9sj7ffiXgfufnbbtQelS8P+CseLk/MlGy8beJ2jiC/onLANvZTRuEp u2TYGwmQACagecvMiAfzZA0SIAEBAQqPABKrkAAJlCXwHcLz+O1/fh9lybE3EiCBbAKP33/9 z3+y5txqyTixFgmQACDwHRHP8MaozFstzicSIIESBCg8JSiyDxIgARUBCo8KFyuTAAmUIEDh KUGRfZAACagIUHhUuFiZBEigBAEKTwmK7IMESEBFgMKjwsXKJEACJQhQeEpQZB8kQAIqAhQe FS5WJgESKEGAwqOiiK4I8DtDOYdql5fM96S1XQM2t++DrhtZXqTkXZGxvI5DerGVhgy6BmPb l4Jl8CqWxJwsaDuFRzwL0KVIfkfh7Abx/Ez+BVZ57evke9LaLoY6VMzt+7PA2s1Xhjhp2Wjq z/yWV5CG51wqD1ZurjYKD/L9XA5zDHkdoXxMKCcRao/KS9y1nGu7lKmrp+U6NjlJvjLESctG UX9MNND5udxAHq5NQO8uYMvLqEHhQc6fy9HF114/4UvAG833pLRdinSsl9H3afKVIVBaNtL6 0VxumojHj9CRMetyCo+QF071IY142sv3pLZdyHQKeLTpbJadx8543P+3n68MYdKykdXHbER5 snbeK03hQd5/lcucuuxMlq9puX+2mu9Jb7sQaiXhGbcR8x3bWXdZC35EXmdT2jzgcjJ6UZb4 Kc0G5SB7773HC/n32E7hebEsntNo2keMuavnNx+t5nvK2Q6JF5h0exDsMBDxtJSvDEHSskH1 ERtpupoC54cUHuT8t8gH8qSL82q9w6Z0Pibk0L/K94TyK0kZhurt6nsrPO+D5xbylSFuWjag PmQjFR7tvA/YSeFBzn+Xa15VjnuIQWS2ryo/4WlL+Z6UtouZjqc8ujxaq75rfMcT6DOw0Mrk K0OgtGyU9TdzVJYnq4TtFB7k+8BEn7dO/h53k8MK5mNqKd+T4sM0FdOF+LyiFMjV+zEomyhx O566+coQrDT3bd40hZ8kHxAGUn+XyNVG4UF+ZzkJkEBxAhSe4kjZIQmQACKQKTxui7A8vwgc nqInH1nOy96PpM1nkQAkQOGBiFiBBEigNAEKT2mi7I8ESAASoPBARKxAAiRQmgCFpzRR9kcC JAAJVBae9TcFy7ti1iMTfAg2NIB/1hAzl4fLcCKwAgkcSaCq8Ky/cIz9Gb3kQqedSCg8OwGy OQmUJZApPJEIZflpeeCrSP+vZ99/O3Lt+m74a1d0dSQjnrLOZ28k8FcEMoVnvgVuefsYuhho Wy660KkEGUY8JSiyDxIoRiBbeNwI/AgkfD/H4pwn8HcfkyWyM55sqyk82ejYkARqENglPOoB RW8to/CoWbIBCTRM4FjhiUY2FJ6G5xCHTgJqAvWEJxjdbG+x/86tluLqArVLazXgmGuRPaZf W/6rJzyh6CZ6c9k3RTzKy5qOmZXgKRyzCTdkD8Ke/yoKz+fQ+J1tkYfLWXmksudbqYaKfE2l Hrm7nxbHvNvoSAcGWVQWnloklf1aequFLuRWmnZIdY75EMzVHmLQfxSeat4OdyxJQXLwkODj OGaIyHQFi/6j8Bw8ZSxOAoSAY0aEbJdb9B+F5+g5YzDshQg4ZojIdAWD/qPwHD1jtLmSjh5f 6HkcswUv5I/BoP8oPPnuzGxp79UmNoRjxows17DnPwrPn8wXWx9zyRBwzDJOVmvZ8h+Fx+o8 4bhI4MQEKDwndi5NIwGrBCg8Vj3DcZHAiQlQeE7sXJpGAlYJUHiseobjIoETE6DwnNi5NI0E rBKg8Fj1DMdFAicmQOE5sXNpGglYJUDhseoZjosETkyAwnNi59I0ErBK4DuE5/Hb//w+rPqA 4yKBryPw+P3X//wnM/siq2awlqUbCA3i4ZBI4GgC3xHxUHiOnld8HgkkCVB4OEFIgAQOJ0Dh ORy5e6CtKwpkCDhmGSertWz572uE59rdjcwIe5cyYTAcM2ZkuYY9/1F4jp4vBnMcQQQcM0Rk uoJB/32H8PRD6uRoMsGDp4zBi7chAY4ZIjJdwaD/7t21vz1l1Np9nT6eqXSD/Pz9PxZTjSAq HDMiZLvcnv9067Fh4XGZg6+9hWMee5MALxqOGTOyXMOc/9zWT7EYmxaeQXlUxlabSAbDXmgr xwwRma5gzH/aIKBt4bGy3TKY4wguGo4ZIjJdwZT/dNssx7Vx4RkscMqvCPHqTCZ7rzaxnRwz ZmS5hh3/uWjnKj1VfiFtX3hG7bkYOOux9TGXbMlwzDJOVmsZ8J+LvDLeLp9CeKavhuWv8qxO I46LBNoiMHzScsl7s3wS4XHuovi0NWk52rYJ5IvOOc54Vt6bQ888FW57InD0JHAEgTJr7EQR zxHQ+QwSIIESBP4HF6o9RPOBzpMAAAAASUVORK5CYII=</item> <item item-id="113">iVBORw0KGgoAAAANSUhEUgAAALkAAAAXCAYAAABXu+7CAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAPGSURBVHhe7VqJkesgDKUuF+Q6tgQ3 8NtwMy6Gj7kMCKwHPph4yMxONjFISHo6iZDjNTTwcQ2Ij8s3xBsakAPkAwSf18AA+edNPAQM QL7KWUxy2RKlbIucxCzXH9DVtkxSCCHnDod9n/cml0loeeO/jA0rbPe+HMfhnuL9IZDvTirk NCmgT4tMfbXCzg1Le/A2ICcOvc4XHL2HHE7dz/H+Dsi1cVXG0ZnnWjSrRnkX3gWQq8PriNji 6F3ksNp+kHdnkFvvJTVSNczkOqsorukY45v/33n14V0GuUJ5k6P3kcPY6EnenUF+EwgTo5ra 7qU+ohvvE5CrDmov3cJSZtsYp+8mh049kVPebb8GkCcNDy0KtYKPZggD2+7JtImy3zGdJE3P qZGp0al7xXKhmYDnvXNCaZ8BNz0xCnIss2FyuDOUeBs919oe483RLuOyGuQajB50qQJp+XG3 V1JwpsIHSvZ1KQdyqyAvV6GM0hEnjJAIb5B24AhZnya80XIlA/ImOWKA0ykWaPsm3jztM1wG ID/p1h1YMrVe5IWueYiQWBhNJmhtjuRZnrrIUxHFNaAW5IsBqYk0QYbJ1bD7fq55Q3gDtN3o TEyznHMTk2xVhzSeXNZNmr6UT6RD29Duusuds9X2iA452gwuo8sgGnW5VMc9p/XWTVW4JxN7 cEg9PJuLuAewI1lzgAbuByDeAO1NOZ8Z7d9QrpARIm8jSA5tyspzAg0wypvg5pR2LDO58Uwj ar42DSLEabRLUzUJFWa23ToJYZR4ADlXrhzfZUdunIFA3v9y47zi3nqQ85dBDMhBOeL7NeSc nO35AFgudUu087i8fq1fSjeuxuxx/UjcPlcyHcZvAjmYkupoI+ABGftlfCSvpchnHADg9Uzt DpB2gEsPcvEX4x3/bJmG+1V02PeHETql1yxj08ZzkOv6Pc1IQLkCHaWK9gdAbhvL5ux8ptQq 2ocuNbJ3AIYgLH623hE/X+P9+xqAHgSQ2xadlytmTpuMOpHGEzlfFe0fB3nSqCLqgdec0S42 pmYS5kHuwM696x8F2ait3y2o96sGHb3VRCN6br/P0YUFvLyQNp669/DRGx3ztRykhvYPg5zr YVpU5/awtDN6C4KUgCK4ZeYitP/1m43Y7i7NPffNkH3uZqpphL8id91eW66swQiRNMzxuO3e dIvSfgLkwejvtv6IntOPQcmvIq//KhSjnYxLA/tGIA+jrQMRXpubHbXr68A6Vg8N1Gvg+nSl nufYMTTwqgYGyF9V92DWQwMD5D20Pni+qoH/DQW1mm5X+UIAAAAASUVORK5CYII=</item> <item item-id="114">iVBORw0KGgoAAAANSUhEUgAAAIoAAABaCAYAAABnuc5LAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAUYSURBVHhe7Z3/saQgDMdt4Pp4NdjF NmEf14HV+Nd2ssVwgu6uP0BCMtyT5Hszb+ZmFtEkH0JAEzqHf9AAQQMdoU1bTabBdd3gprae uuLTvtzYd64fX6J7KAJlUUg3AJEYEa+xFw0gJaB4SHonHDSiEdfGxZMbmN5WBSjT0Lm0I1k9 TTd7m/lP5oIV9PUaXd+PrnQiah8UH5MkKTlOR35EcWHR05efhkoHTOOgeONdBK5+9HSHKcmD xRhRTlVf5VNQ26B4410FrzEogsEZqyJlfXmvUhL3Nw1KTtgQ6R+9R8wzECJRdX3lBtlBJw2D kpl2ZkHVGTcCNF/GvP62t2sYlHmezcUayqaLqOMTyDgN9C2FdkGhuM5YPCIKZg+xTeN95aZu HR6FAsq8W7DfrcXyeGt8M6AMpK1YBZtk2WCbJyNAySoWDbwGAAo4IGkAoJDUhEY2QHk+3M/j CWsLNPB8/HE/f2kdNL08pgWzNEVYbGXDo8zLY4AiwxugyPRn5mqAYsbUMkEBikx/Zq4GKGZM LRMUoMj0Z+ZqgGLG1DJBAYpMf2auBihmTC0TFKDs9Md7BR83ga6+AMrHyvhw6crnAJS3dlTl 4iRMLpARoLx1Kvjw+GQWhX0BlNXK/FSG8+jV2BdAASjnVNrIzAVQMPWQ0mYByi6Y1ZWLc3IM gtwlgILlMamsBUDBhhtpyxagkNSERgAFDJA0wATF5+VGstu5hWdIjypohI+rBcpbLgUoYhXa 6ACg2LCzWEqAIlahjQ4Aig07i6WsDMr+451zjdelWI0v/rv8XVdg9MWEv20P/78qW4hg9t6g BMN+DHgsyH+uaBTeunLKdebUAFByGsr+zvQoi9FPg3j7HUbkI5nd6/foyRaJZfcqBjxK1p7V GjBBWctt7kZ/7giP3O9hsU565V2sDXiUYpUdL2CD4js6jvB4zfRNnHJZwrPi0SgA5XdBKb57 8iClipAs24ooe1FsrP0FIo9Sfu9IbBOmG+4pFsQnAChERaWb1QMlGaxuguDQhl4RmS0tGRRd uTjX+kosSBIX1QNlLfC7WxllVkVsEHIXkkCxkNfzVtR3QFBPzagISggOlmrQ7w21TTC77JnE N9CoD5/j4/M7BRRBzsvpOe7aVwjXVr3PZxcNsS2O/+9RyGas35ACisJcnJhiX+O4nsp6m6mn vv3JdyCAojEXp5EYhWzG+g0BSkTH8ChnpRBAmXcPEyeAKToqbqcZgMIDRZDzEg9mb5gjBFAy sxfFo5g4r2erJ3gUnkcJV2HDLTXkKu+j1I9TSXcgeRRST2YbARSzpi8THKCU6ctsa4Bi1vRl ggOUMn2ZbQ1QzJq+THCAUqYvs60BilnTlwkOUMr0ZbY1QDFr+jLBbYCC42zLqIi0xnG2YhXa 6MCGR8G7HjHNAEWsQhsdAJSdnS18ZsCT0QwofTYHxEJeD19GgPL2KHfNxbnJc9kAZc5kGS4r Kcy0WPi4WiDjNNBTf7t2wzbvcq+/preQ18OXMa+/LRsNg5IvqMtX4nn4qOvLT3/ZGO+rh6ZB CdWcroQVuOUTKsr6KolPvC7aBiV8YX8x/VjI62HJWDbtKABlDViTXoW/dIxMPksVh8+9zhUw 6fHe7z6X9ybxkmtpCRr3KItgvu5cegbibUbFVaagL++BcqvFiPAqQFmSvOhLPfrI19bSe0FG 3nX7McrWkIDlGms+JDpilOh7Hd6o0eY/Fnne06VMJ0qmHp0mvpNU/wDkcSeIa3cspgAAAABJ RU5ErkJggg==</item> <item item-id="115">iVBORw0KGgoAAAANSUhEUgAAALkAAAAXCAYAAABXu+7CAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAO0SURBVHhe7ZqN0aQgDIapy4Ks40qw gWvDZiyGk1/5CeRF1J1TvpmbvV00CeEhJFEhx9/wwMs9IF4+vzG94QE5IB8QvN4DA/LXL/GY YAD5KmcxyWVLnLItchKzXP8DX23LJIUQcv6Bsd/SvcllEtrX8T+CnwZu7vLhiyBXm1TIadpB nxaZ7tUGX5+49Gu6DeRZMFnnjiBznw/fA7l28H7i6JOnL6I0U/453QXId8fpaHwmyNzowx9D bndvliM1YybXeY/iWo5ZAPP/Z/6+p7sM+U75qSBzpw9/DPlFECaONbndQ3XEJ3VXIN+rN5U2 hqnMtjEB52YfnoA8KTqyxIwbp8FWOzkvZOxvTCWZH5Gpo3PH51bEdqMnAa9baUJl1+AhLM5S g9o8S7LNPYfvkeCAQo6dqpgPOTvL3DVDrmH00OWT4MYvit2BmHTywYL53JCD3DrIz6uQRumI E0YpRDcoO9gI5J4+pdu56QAglp3PkzwFM91oukJAfmoevJ017gLIKxWzg4XIt6JdyI1XCD8d yV3BksrWv7sC1EK+GEhN1AoiFpVHqvu5AgrRDch2rTMxzXKmuhaU3xDdrhBU86VkkzIKreTI BqTwBE90ZB6cnQx30cOgfBdzx03veH9cj3dwKC+0zUXcA+xorhTQwPMBSDcge9s3n2nt4+kK pFtD3igbKhzRFiLHh9QNgyMzKK0fwUnVzlhv9sQzjah0bhrsUjLacePO6M7uCrMgB8hUunL8 Rra9uMUGdf+lWmrFe0HIQd3xMzFEdppalYJQEqX96Zi2bhnIT80jqHFq9WDAZf9j/dJx4zm2 /ev+oN0hgTqCjwU4BTloTZtsBERQcXYZJxsFvEU/H8lbpJlrQTsDLj3k4k/MO/7dKi3eT4+3 T67njjrk+5mZ599AugJZ1CSbAxHSWLiIKxbveLZwMeS2aMU6X8d8NdkK6BDq4ne7O+Lx9bif G7fuTzdQz9Jh99bTFfMAI2mdIYUnorxJ9g8gjwp0ZEIt11wIec3OYmFqOmEecgc796lfzLFR W38qBfunaverT248lN/irr5r88JT1x4+b0uPwM5aITK2RfbDkHN1R5/TfWqBRd6KMtZOwm9B kBJQBA8isAdZFRv2BHDPs9x3/4ZaYbzbd80CbLqyBi3ErGCOi6nuhaFAtwVaWfazkPvWZfY2 4XVvcnodHa+GYnYmxXBYeOK5t1m1q69v5nXcMDzQ6IH+7kqjwnH58MDTHhiQP+3xoe9xDwzI H3f5UPi0B/4BLm+1SkuPdTYAAAAASUVORK5CYII=</item> <item item-id="116">iVBORw0KGgoAAAANSUhEUgAAALYAAABaCAYAAAAVdqz9AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAeNSURBVHhe7Z3t1ZswDIVZoHu8M2SL LMEe3SDT5Fc2eYehMQRiG38IS7iyuT2nP1qwkK+fCGFsMUz4AwU6VGDork/PcRqGcXp217Gr dOh3etyG6fb4ZXW4I7AXQYYRSLOIUNL493FjBahOwDZQ3ybmj1zJkMKNrwLPaSy8+3YB9nMc pnig/kTy4R3N3395t7jebC39Sd7kfh/TbYgFjVh7VyfnLjqnistY+H+Dfpjr3x7T0cSkfbCN UNGR8dMTEwFK4e7N1he+fFAIgR1vbwLNd0zyOfN8fgJek5YcDUiNg21ESzwohqKN+SEURICp I1tL/mpgGqcxEbFnoMZxF7GT7QM6zefHNCc97B9PSdoG24iYuo+GIJ6FL5g16cjW7+PxmTVK pCJrChAEldB+S5RTETsfzVcz5sdxZF6gabBznQ1GimTOGH9w69NWKkf+pB9FObbR0cqzWdH6 Mya5IOYNXcNgZ9IQI23oFgiwLQTCYDs5bTHY1mWC6QY9Wi+W8uNts90w2O+8K5crd5Q+RO8l rD4GwPZnISTA/kRvJ5UoCDDPkT6l2y7YlFtTKJ9mPTx6uXnztvZgbw+GpOm4wA8jGJ2X2SgH 7ALtcqlnHxGbAvaa522KYrrPjfxnzGNHYPfuru6UIO2l1GXAHkmvGnt7qRKCIN1HA1F4HvgM sL0Hx3lacf+CJe5T+gGeOjPSdCpCA5sWDXCWfgUQsfWPETwsUABgF4iGJvoVuAbYr/v0c3/p Hw14KKbA6/5n+vlLM4ccm6YTzlKgwDUi9nu6Dw+PCmir6ALArig2LlVPAYBdT2tcqaICALui 2LhUPQUAdj2tcaWKCgDsimLjUvUUANj1tMaVKioAsCuKjUvVUwBg19MaV6qoAMB2xMay1T17 y7r0ra7Hbi3o2cenaV6PvflA2xkDsLeR7K0WSCg8Hu2jfz7t39/13LTz/boidu2X3VpsUgmG ZQ8r1mMbBjqqBRK94x/tYwgix8Z+G9e8XWwlKtc+d7xgr+Pad4C9KsHa6Oqh1ImtcPEaG+Zw RF4jdq597vg7BykrWDTHKUTsmUqUXwjE+WhEdTfb2jnwbhOuX3BojsKf9hn765g812pUc55N K2AEsD/jCbBDCcznwdCidYV4+a/9hmd34y2tvZ9TmwdFY3/dBe/swUSObQ0UZdlqJ+lDckat qI/urMf4tDb1Ru3ZMxeJ9rOz8ePhVIWwqRipiAv/rk5faY7Xc40Su28ksL2fWq4eYs5+qKBO 4NeMVATTffGyu7tZCb/UWCQVWUso5NrnjocgRipyMBVZHiGXT3hcuPB7eN44pYn3gsavC+IV b9/VLMkd98YED4/27YmSYyeTUxxsTQGkIq2NGPwlKVAItrn9BN7Z5x4MSC6dcBIi9gmi6jYJ sHWPD7wrVABgFwqHZroVANi6xwfeFSoAsAuFQzPdCpwMtjsvvP/GYu64K5674Nz7qGVq8S0e HnVTeIJ3p4Kd+zhl7rhYfwG2mJStGCoEO7IQxV47EPzmn/VxytzxgIKI2K1g9f/9LAR7XVJo r43NfbKMe5whFiI2Q7w2mxaDbbrrR9DUt0uWzxaHPuBO+HglV1uAzVWwufYssA/3NrcyK3f8 8AU/DQB2qXLNtqsLdnYtLW0R+WG1AfZhyVpvcB7YuY9T5o5LKksG+wrLViWFtW1Jasf38Tyw Y4vEtzyb9vFKfhffFkhgH625kfJMqy0RNQNGJPsr4+OJYBsHvRcwu4fH3HGZTpLAPlpzI8m1 2YntrX5kbTMTsiUk586MpHZCPp4MtpCXXDOUiF200TXimFZbXB1j7SX7K+QjwN4mTqyXR6u4 hZWItJZyEGImELDltJPyEWADbDZLkj9ktjPWeKJ2nxFD8naq1ZYUNb4dyf4K+YiI7aQdXvks 1gOfQltC0IQfHoX6K+QjwN6ElJyy0mpLiJo92UvZiu3ev683ctaVY3YBtqOM5EsGrbbOQkyy v3wfATZfQ1hQqADAVjgocImvAMDmawgLChUA2AoHBS7xFQDYfA1hQaECAFvhoMAlvgIAm68h LChUAGArHBS4xFcAYPM1hAWFCgBshYMCl/gKXAPs1336ub/4asFCMwq87n+mn780dwfaaQrP ouygUeg2XCpX4BoRG2CXE9JoS4Dd6MDB7bQCANvRR3LppVZbZ/0kJPvL9/EyYN+yG+C0bg6Q 9IsPTNiCPh8B9jpSkrUxtNo6jWvBOipCPl4DbPMh+mClV0tFyQ2pWm0JQbMzI9lfIR+fY+Bz jRHb7U73zRWpvM2mXiclSwhotSXEzM6MZH9lfMyPt32dhsFeCtWnP1MjV/RFcqAlbclAs7ei zkeTCmafqb79aBpsU78v2VnJ26lWW2eRLdlfAR9zQcy/RNtg59KR0OeyUVeEhpmkdrQrJs46 loYYQ42D/e6BATV6i5KcstJqi01NxIBkf3k+mmgd/mRM3G77YM9sD4lcW/Ilg1ZbPHDirSX7 W+ijuXPkZr8CprsAe6nZTZ8KKpQYzaorYKpPpWe+Yi51ArbpHuCuzt2pFyyHuo8c2xF3vXWW /cpPHScYJyogM4YdRWyibjjtEgr8A09763FTJ7RbAAAAAElFTkSuQmCC</item> <item item-id="117">iVBORw0KGgoAAAANSUhEUgAAANYAAABjCAYAAADn5P7oAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAlISURBVHhe7V3t0fMoDEwDbx9PDeki TbiP6yDV5Fc6STE+g+3EH4AkLGxh783c3MzFYHalRSB4rFuLf8AAGFBn4Kbeo2aHr6a93Zr2 pdkn+gIDmxn4tM/7rb0/P9GejAqrH/itgaQ2+wA6KMbA53mPTvwGheVEdW8Tk0ExotAxGJAz 8GqbwKrKnLBeza0NByoHICC4z7O9n2q5CJzV2dP54P3ZTheGtoTl9lTR5R8crjqHS07/57Kn WxZO91yGhOWWgKlExbkMEfc54KxzApkvCe0Iy4XTZLICDlenw8WmkPPZ00Wt0YXNCGs6qLAp zmcI4DzZnnkSHIwIi1oGOhfkCmtI1d+6dL37NxoF++fsZfS1cLp+Bg78f62dB2rh5Npbnu+T t/j5sRFhdSQvsiprUDxDuKziT0yxg7yfMWoVVhpnL6rpZjp15iJ3II0WOvbk2VtjvLw+Xk0f hW0Ii9xfOVCRCOMyiaMofep9vrzwDjURbe9gnfi6REljMmIp4AzeWIk4Ms9fCjylgJNh7wID T3Y5bmkqElYnrdVJN3W1ZP375/kcrkhZXQrq4FxZP+CEezvd8n0a9pz3SflDecTmhNUwr1r4 0D/ZO4Tva03W3dElpl1h+R2lGs5ftLd4RUwHJ8fe5UXlmR4yg2YiFldYYnqiF3ltC0sbp0VR iTH2M046EUP9nvVSfqPrCCu2N4v+/4HELVeltrTl23DxZGCi8ONI38Luptj8K2Fb2mrinPUV mTC3jFXQ9pzCim7aQ2n1VMQaU9V5Kep+eZPXluVvHJz+Geoyc+U4OTx4QvfDaUtY70f793iz fCr9UEAs06whY2Ybs4b3psmbyf37untjJYUVirZEdjScOOiiWc04KR6GPY/bk++F8/341/79 ZyjdrrfHWhwYCpMXn9erv6UsCP8/px0OCLPaSueVOM7vkcLsgLhP+ozndmfA2TOWtvfeOG1F rM4R9YQlddDI8xni+N5wzmirNGp5NxljBc44zRAW5YJih5vcHhG3pQZT8HfxWIEzZQ0Ii/JV ocPN/kBT2JYaStHfhWMFTmKXf5lzrFyvFDnc8sLr7xDb3l3EBSHAGfCQfHsiYlGCEzncFmel BlL4d+CkCRZwBGFRdEbJHGazVCgSGIIaRvHfgbP/8xole0JYGz321V3mjX9VbmPnhpoDp8wY EJaMr8nTJ7tjGOUBOHNcBMLKYQ1twADBAIQFFwEDBRiAsAqQii7BAIQFHwADBRiAsAqQii7B AIQFHwADBRiAsAqQii7BAIQFHwADBRiAsAqQii7BAIQFHwADBRiAsAqQii7BAIQFHwADBRio UFi8j+gX4GrnLoGz7BeuypoTwirL74beISwIa4P7zJqyvtIEh6vZ4dauck57ImJpTQrq/ZzT 4SAsdUdhdIiINSEJwqo5Mici1voLNeFSOQzBcB9RFRa3dKbVv5DlCovCiVKpXPfTfC4srKE6 xfy7GoyPp2wdmaKweKUzUSp1q8m2t+dNIJQ9qd+3j1PWQ0BYiWp4rMoVsgHIkxcKpTW7l36/ a45SqRsMptFUwZ4+EKRL42qMVNLHWliBQfI6XBeS5rWbPMWKWDolRFEqVWydYg36SW5a7ogq dbr192JQvh2vhXVkJTymsNzodUprup6s7rF6G+nh/GG1WNVRB6flUqkKwlqSNK0VTH0QsVi1 EZRKbZ934oOU5SdyvTdQfkr9rjeSYE/CpeCn/ZT8OqUgYsl5iUWmVEnNjd9eP+RLuMJSqUOi apz8sr4xbwXnfMPuJ5Ivnp1xypIXwWzh2sUPj1js0pmxpWC/X/waJTNpY79U6klwkvbeH2cy 3T4/t7KSbufEqo2lUldlVTP2YTWUSj0LTqpU6gE4FQ+I98sKcqRFlc789cERzWLGIwdQT6nU OZQ6cfYYuKVxfUpoviIpYM8K7wqSLKg/4NPB0RrG69e55320P2TvkQ8fOMPc5dgTwiL8cH3G QjlunSVEgTNm1zx7QlgJnfTONj/RJ2XVLDNR04NPqvUxvwNnnPfckrAQVoRT+Qz+W7vPzu1c MbNphvEY7UTfCpwpg6BUqq67Zl/rWgzD+h4LOGV+I7AnIlaA2tg5nPi2v8AQMgvrPA2cUx4Z x0kCe0JYG30UJUQ3EmisuZY9Iaxsw3LOv7I7N9QQOHOMAWHlsIY2YIBxTOO2DjcTTBW9hGsC IQZxEQYQsS5iaMDclwEIa1++8baLMABhXcTQgLkvAxDWvnzjbRdhAMK6iKEBc18GIKx9+cbb LsIAhHURQwPmvgxAWPvyjbddhAEI6yKGBsx9GYCw9uUbb7sIAxUKi/cR/frtB5wnLeNzgGuy 7grC4Wp2uLVXndOeiFgHzB+8V57T4SAsnvV1n0LEmvAJYdUcmRGxdKcGxd4gLAhLy51UIxZV QnQctNW/kOUKi8KJUqla7inp57QRi1c6E6VSJc5S5lneBELZk/q9zNjjvdoS1vvR/j3eBAcK pTW7N/Tf0+u++YdSqXv73OJ9CvY0WCr1/fjX/v1X2Z/mrz8yKS+diVKpB+tp8noNe87RUP5Q HrutiMXaY/Wk6JTWdD1Z3WNp4/xhRalUCEuPAZRKRalUPW8ie6o2YpHIVg8IS6V6IY6lUmWF Eb6vFnw5VY4n1kJYKvVMOGeULHjYGac5Yd2ziuAunIwsnTl9PuaIEzFlFoo2Xyp1uemvFSdl 7wNwnlNYVOnM1MwWDASRlHAqzNRQKnU1/kpxiuztd+hdRUfhKkRoT1vCcoAFlRPTyydu6Uw6 eeGzVqJx1VkqtVacvR9w7T0ctRS256vphWvjS7ieHEOF2vwSwu2zZLObc9CqSqUCZ3KOltvz 58dGhNXPJhrbLL1kgM/td+LiCj6vtKbqeHM7A84Acxn2dBPV4MRmhOULYttTFntNnltaM1cL uu34ew/gjDM/DQ52hGVtOej54zpcfmlNXYHk9gacc+Zy7DnfzhgS1rD0OjJqLZdELoqKNruD eQ45xxKICjgFZLn8iNtzp7cE3/3Y0LMtYXltTarPy+CrPP29pOuTFyEydUtrqgw6oxPgHElT sGdgAjYnrD59KsvGZfjV5iZapTU3D6RwB8BJEeyEuZ6ADQrLAbEsLvr8izJFHb8DJ22nsKhc O6PCGsUVW47RkPEEGCjHwHgoHd93GRZWOVrQMxgozcD/8PEpbEplt/sAAAAASUVORK5C YII=</item> <item item-id="118">iVBORw0KGgoAAAANSUhEUgAAAMkAAABCCAYAAAD9sfIeAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAesSURBVHhe7V3ZkeQgDO0ENo+NwVlM Es5jM+ho/DWZdDBeg43NIZA4TAPWVG3VzJpDeughAUZ+rfzDCDACQQRew+KzzOvrNa/LsAqy YjgCn/U9vdbp/cGLBkoMSJIdmNfM9MiyjIEqf95T1oQ5GEkEQaY1c+IYyDxYlQuBZZ0TI4uh SLLMrzXfgeyeCG9HgL55rPOfHdodHk09dxq06uMdRli82Tc93AB0l2Grruf1uy6ywP4qZ09U jej6ea/T9F5jg69xSCIGM9vQLuMKN7UPum58tkuXRnM2YsfGdkhYJnbeWWS37coKs42q+7pK 3TRjE38bRDTWg23pKsaJPmnsSA1CEjEQeYv03cjF4M/rjHkScFNAGOMxg4oZS/1+WKRs/zSs 3XB1Isrn2SQXHHH73qzaMGqbJFm6Q/0ZHbSl60bx6LBrDJKIgco0sM/7feyEUcMty9SCxlLR k0CEkLL5JxG67oDHQwjoeraCXjNBV+lrtwkpxlyGIEms0uHgPoUkvh01bW0AxMJ6HB8zaCH5 TY91ujHHs4VCLq8sgAdV/S3KE8v1i0vIpnSNnFQHIEl+qGUaTCxJiFvOhoG56wRzDROxRncc mh7WlSQJ7AFUqOZfk7Soa5zNDECSbRCQHQtz58XaqXGmzQiSyDCGeliltesNEwpsXyeGIPqi H/QknnAS9FzH5oFsp1Fdl5mOdf8kiXSd+BxNJIn0DB6gvQv7Y7F+p+FA6w903aBQCejuawP8 /0oTQoauMSE6k8RhDYEk6I6O57zB2t3SQxR7WxUns69E6hbwtX0MeRJ/OOg7W1HrEk+4lXBe 4WqcruvjSDIXPWKHSaKfBZxbpsAh22Vg2qJdbi3bh1jWAVsRozE9gjrcs88FnHON0/r8E4S/ zkUu/8Hq93T1TiURO1xDeJKyJEmfw7lmPwiwJ+lnrFjSLyHAJPkS8NxtPwg8iyS/P+vfn99+ RoclbQKB358/699/NFF4TULDiUsNhsCzPMm2HcsL98EsuII67ZEEecEuCxMmSRZ8T63cGEnU Hnneq+zewWSSPNXOs/RuhiTny2/zHHxVO1NbDreyAHxm5XZIsiz7VUkOt55piQ1r3QxJToyY JA2byzNFY5I8c9xZ6wgEbiSJ9dKe/oJf6Gode5KI4eOiNRC4kSSJ4jNJEoHjanchkEkSO58U 9eZdQJ2hSGJ609j0NHcN+j3t9qQr4R6QBlI6SY7rqGbkdJAmJ1PBMCRJv+RzjxHf2WpPul5k ppppIkkCqV5CV1XvHCdK2zUPExNyWlFUaLJMJ7pG5QzL9iToldQmh1KewVR7dysryUKj+PnE 6kRXes4wU9E0T9LrpwoqkiQvp1VfJOlP1xprki+TJC7tj+E3q3mS/gwnnZj96VqDJEiazk9s Ku708YmrWdGT+HNI3fTyZhwSZUt3Em5dStcgyZFQDNzSBHe9So8JnN5fZuBADiqrrUky8jyV RatCa93pWoUkG/BgRsICW8B3jmlNT5L8WYM7Abir7Z62gAUGtUgi8b7hMPGucZTYVNzdknr0 dMCWC3xPulYlSS6wletXJ0ll/bi7WxBI2wK+RZQKjTJJKoA8XhdMkvHGlDUqjACTpDCg3Nx4 CDBJxhtT1qgwAkySwoByc+MhwCQZb0xZo8IIMEkKA8rNjYcAk2S8MWWNCiPAJCkMKDc3HgLP Igl/emE8C66gEX96oQLI3EXfCDzLk/BrKX1b65ekZ5J8CXjuth8EmCTgWMW+9o2XN68cT6v5 pWysvnUlgZoLJ2iH1NfFMdmw50oIQn/Qjdfj3tL1SWvoE95UwlFlNdt7HEkm1MBiLxDh5Z3v mhs5ArD69nP7b6qB6OWouadiZdvJ7N5YpfSnylgTiMAKHTMKBpgu/jaYJDY2sTmksPJY+iWs PpR0A2szYDNRuacw2bDnmxzU/kS5SX6bxiSJmGDKcOTttA3mIQCwexZJxE3K6b1/B8X3E5vU ACsPPdf7RuqDmUiOG6EpxhOVeypFN+u+O6k/UUeMi0M6Mftv5Jm0nAbY+JUaV62dZbbDY7/5 9P/1XXmdNpytJDY9DlZePV+2mfKKqy8ZsPpytntZMhdJtoGvETDZsOdWZL9hD3mFnQhyjeaQ BAjfFKEoEZZWJk5WOzSlZ7gZgCS7+w8nVNmM2Z6tAuENBr4KN4w4XTN8rP6ZR0ATWm0CpHiS a/jbIIkMs9QuBimM3IkTqzuOs4d1QqaIzoYgiZytQkpjIYaNZVK4pBkoqT9zd2tecAPHJ1pC G5hs2HNDCKA/2yuQSEKQG1I+SlZtKkEmVburMUiChVyxOaSw8uCaRBtorD404FAdnBVWCYKx YbJhzxGSnIt6/QNPx+9yHgMzhYoJg75GOEWIklXVwsPzQUlygO/1JrFbhVh5wBhjtoDBxWyB 78CQck/RdLu2aH1bwMKUqKTUCeDBLmnxjunizjJGKEichAbxJLu24a3F8KGTc+6B5tcy23MW 4lh9Saprh6fMx4Bgo83VzS9bCknkSMk1yKl/EkF0z0DEMXGDYCiS7DNbgtsmzihcrGcEBDHp O1q6poORRIUATJSezbm87OkEEbIMSJIrVnZDoPLwc4stI6BC4jQPojQblCQtDxzL1hsC/wEy asRoxpWz3gAAAABJRU5ErkJggg==</item> <item item-id="119">iVBORw0KGgoAAAANSUhEUgAAAJQAAABaCAYAAABe3n8QAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAb7SURBVHhe7Z3blaMwDEBpYPpIDXSR JuhjO0g1fKWTFOPFNiQ8/JCMbAujOWd/ZvySdC0LgbWdkh/RAKEGOsKxaIcaB9V1gxppR5XR Tmngo159p/rXxzsKQ6DsortBUDpl+4ydP6/eu9mZAaVh6lVgA2RUkwyN08CoBscJwgqoceiU yzHZHTF5Lc8/22f2bIc21wE0LmfYe5v+/WvSRKGfz0v1u/n4AKVjJsgxp4XoXJBYZR+GMLGY G9RCak+bxienN7bUHqO8nBridUzFBCgNAzAAxwKlfVfpnZuG0LaXV04PONUeYrZHHw+gtPIg 3smcbEgPFexDYflMY3jlVEqHBntv7vpdppUdhtUbdjEfC6DWC4oqIQWoKflQ4ziIyhJqEADK bqq1R9fyVYwVVw6BAVCI4y7VQ7UG1PwA8nXq+rgrGYwffdQ3ZGEA1LS7MMpI8VCh3X7Kjfg7 myPI92QKOd4jazZx4TyOniuUbMwk4mbYcbAesj5QmPgp0UO1FZTPdlyOvQqbxQXoEra0D1Qo bXCIRRB7+UxfyDQAUEzeboikW86sE9GXFVADJjUeOfKOx4wvWLWBeur7QnukAVMdEID2bQBA TY97kRxbORmvC1SKcXZ9lox0P+3u7dMScHATBE8JvZxAAZfia1ZaxnsDNY729QTCpf8MNz+V JvU9SQmi+6ewjLcG6muXBCi+rxoS+iJ4oGuasM4UGfkA9X6qx/NNp0DMSGhlr1Ic6L6YhRG2 Ra8zTcb38089/jFJG6CCckJdY4+8zdcQaENRLhwxFnKdqTLy8VCTwNcAanliOiYsIXlKBAK0 TVFApcsoQCUH5bvEIq356UdDAXV4HAY/yQpQQaDmnRpyPWcMRY+Nf0TvOmllFKAARh1fBb9+ BKwnRxMqGQWooHU8X3/msGi1MWllFKCqGbLNiQWoNu1aTSoBqprq25xYgGrTrtWkEqCqqb7N iQWoNu1aTSoBqprq25xYgGrTrtWkEqCqqb7NiQWoNu1aTSoBqprq25xYgGrTrtWkuhRQyw0O qQ/FrD7UCt9LAbXZdtir6NG7a9U2dXhin5zM6kMtQtwHqEnitq6ic6sPZZG6FVD+mlJMvZO1 kKdSH7/6UB6gfB+oZ7xuPSsOdUkBe+QZZqQ+VO6t4/BQbqWbO/yYcjvYlWNvvQhQ2n1t64lW rw/lPPIqnc0lgIIUnsBuhEj7u9WHQnko/+UPC+GpYlcFgGorKJ9JXm6zVNgsrr3kBcqV6zkF TGzn5wbKlTYwRvhd2Ey6qJn7GhUAlGB9qMIygj2UTSrGC4Imu3hioOL1oXZHuwEuLt9+X/Cu D1VeRjBQ2Z+QsEDFPF7s74cANuE6Eff6UBVkJAeqmIeKAYP+OzalcI36UFs15JcRDFT2gLa0 h9oBh5VPtzcxZe4YCr0x/B1KyIgIykOJzQpPedSKRpU1TKudRLhk9FA2BsYkp9NkvO6rF7RK 3R2gDxvr3qm1k4iWjB6mpIy3Bgq/a3+vb1xplaS0AxoPXIfSMt4XKEB+B2Q6zjFUBRlvC5Tv aXTrZWhrJ4EAJWxUQ8bbAoWxG1XtJMycpdtSyShABS2XkOwsTcLp+WhlFKBOG0QGWGtAgBIe SDUgQJGqUwYToIQBUg0IUKTqlMEEKGGAVAMCFKk6ZTABShgg1YAARapOGUyAEgZINSBAkapT BhOghAFSDVwKKPux2PE/Plx+Zz89mWsnHdrhr0iRahoxWFxOqQ8VVyf2kgK2toHUh4rbgKDF pTzURl4sUNp3aQ+Xs+AHgUEOQ3jlrFSDIiLjrYCS+lA5iN+OyQeo91M9nm+4xAkeKvvtZ/jq 4S1D34UfvmfXXqturPh+/qnHP6U6uISZWuaOocyysTdnM8mKGTZ40eAS9aEw0hK2LQEU1S0Q hNjJV/OXOSJrNnHhfLNCz5W1Qg5Abj5HXgGg2grKZ+vyrw8FwDBHk9xAudIG8+9sHisx9sh9 Lw/gVYP1oQrLyMpD9Zirt5GgPFofat/fW/c7vHtY14eqION1gSL3kglPSNzrQx10lF9GPkDp J7CKSUd8fHW9+lAlZBwHGzrUTxuYd3CYcjNELupbgxIXQ2njXKY+VDEZfzZkANSvxjURKrhh UDFUWu0k3IIytM4towZ3joNZAGVejWACc1Kdw+OLq9WH+qkpr4xL/KTn4wFUrWPvm0WHHHu+ /7qkU9X2AnhjQYFKkXEbsjABSr8dmco7l7DM3v1r75jyUJA7DwWGxdGwoIzfmHJeBh+gDFNl dvv2QzbXA8G160Np2xaR0bEZWQFlv7qEHD9nti+8L1XtJPiM5Vumy6g33XEzMgPK7C0GUNHW TiqPCWTGMzK6YWIUlO8VsHwfXiE/BbHFbdvE7cLQQ93WWk0I/h/YEdEKQDiNXAAAAABJRU5E rkJggg==</item> <item item-id="120">iVBORw0KGgoAAAANSUhEUgAAAKUAAABSCAYAAAA1vBR7AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAcNSURBVHhe7Z3ZtaQgEIZNYPKYGMzi JmEek0FH0083kw7GEXBlsaoQWdp/zrkvAw3lz2exl92If1CgMgW6yuwZx/cwdt0wvqszDAbR CnzGV9+N/etDZz3JURGU5oG6ATheatEKfvx59ZccSyVQKiD78eILVkFzwIRNgfc4RPZ4VUD5 HroRDrJBoD+vsT8DT6X3r1HamZeHUo0hQWSDRKrh/zTcIryh6sqlY8zCUKpuG5OaRokcu2nI deop9YPJu/GyUCr3Di/ZIJOzM6G67/nJlLeUNHNRKKXGNth6X2ny2iUzoRyFzqcglOi62yR2 6o6XyQsXymmqIxmmFYRy93Btts4XWT2vEXdq4mL9Wf3uYaWEDaWaFPGX/MpBKXTpX0RAw4+i Ji0ecKf/o8aMkqHaF0Fp3nZKHD2+sYUNraXpvPYbbjWMU6HldYIGMe2NQjhU9tE26VKNY4rA UzYD5ZBsC2cTm4SSvS66lLmH0t4Kdfd69drdakRoL1hgrxjKUNm27eblugQmoPS3jtlnnUCY 1jsHhqfk7h7pGeYwWJ7SNOQefF3/8h8ez6rTd55Yaq+EydOyfV5fvaAROy4Sm5a8j/KUn9dr PlHE6Q7NHnuvDn4sXbivUZbtMachaU95bDDXU/Lt9S06ny9En5btA1Dg6WJA3P/mUVBuD86B 0tNlOfuzu8Mh3jHlsr1mwPYPF3Zjt6An4tq77HhJdkbcsm2PrXULPN9VAH2/bwPK35/x789v wufnNLKvumOXfNirdRrNhfo4hvSUHzwfyrV3mVhJtmPrg/L358/49x+vuYvOvqmJjtnwD/wF Zr3kRMedQm6zdttr2lAGu8CzNbjzmTBtbxoo9eFp22uj+7ZomAShoOS9V+tQml4S8not1egG qnWi4HkRNDwUlMHyfd08x1Puu+xr3bfpqi1vi4lOBVDq7S4LkLOG4XbfqweSlE9BKZ/onI+v b1gSEniNNsaUmTylGgIc1+Ksxe+zJRHO4rnze2vx/NJER9Dqh6yZFs8F5j0USoFCyJpdAUCZ XXJUSCkAKCmFkJ5dAUCZXXJUSCkAKCmFkJ5dAUCZXXJUSCkAKCmFkJ5dAUCZXXJUSCkAKCmF kJ5dAUCZXXJUSCkAKCmFkJ5dAUCZXXJUSCkAKCmFkJ5dAUCZXXJUSCkQCWXoornkGD5l2i49 +dE1Qd3IylMg4cn0S1Dax/P1lYQ7rmECSh4YBXNx4k9yzUsK5W2B8QEltz3L5NMn8jnxJ3nm JYWSe3mfZxq6b7FORX6gTq5Pw7Zaum/f7cFLoT1CosJTFsGNU+l6zbgWKO0xpbnhF75CKrsG C0/JgaJsnpj4k7TFSbtvE7OaEc2MtuuYA55SqtiF/NZltv0V4kTxJynjskIJT0k1R0vp8fEn qadMCqU3Bg1lASc9mae0vAAdcmL+1MYSecMdmhxftNDQJXCNVRL/kqOTN0+mK7S1jCndiU7d i+e8eJBbyzr3wK2oFlS6KekkviQ7/mUskXXGn6SeJtJTUsUmTk/hKRnxIA9WU1HGqHSFIxEP 87YlNKruwvEnKTqeA6WjRChy7pyRip1DpWswzuJhMuNfanPkYVlqjj8JKAMwmoi+4W8BLuPj 9+Lt9Cx0G55Q6dbygSegFif+5b6UdAGsvGN/huenYEqV/mBPqRxQ+HvhS9d72AzY5afSaSh9 TUgtqaUJ9QcoU7w+KcaUopnpPB4MBKRSk3b/SsPV+JKc6Gr0hzfJF6Jw/EkKied4SlE8yNmL nkDpjT/pCx+4m4EfVqCI+Jduw6XrvkvHnwSUqwKSeJDqR4H867iSSt9L7/OAEnvkE52t9nDd 2+dSEnyShCJNkP4cT7nzWKGvPbjxKe0tN3sdlkpfWiLULQviXwoaley+PVrccpAm0uaHQRmp En6WVQFAmVVuVMZRAFByVEKerAoAyqxyozKOAoCSoxLyZFUAUGaVG5VxFACUHJWQJ6sCgDKr 3KiMowCg5KiEPFkVAJRZ5UZlHAXagDL5p5U50iBPKQW+5tPKpQREvekVaMNT3naeMr2gKPG6 AoDyuoYoIbECgDKxoGmKOx6Jq+lYWZrnOy+lGSh7RuCAHILdX0fZD8Df/3x0DYCS1ihvjsrv ZOcQow0o1b3nOyIE51BYWkfll7qkjxOT/z2EI/fZ5XUxFaT5zRyYM01hVZdS+/XX+8WTtXVB KM2V1icMKx8PpRq+CBq6KJT6WqjA2Pvf6JtqeHj3LXU+ZaHUV15viup2E19RxfpC6jHiFkXV Vd2P5G1cGMpJwdtD59XQSs9dElJeUromWx5KzeUN4atrYPFgwwMXz1UPEbHCUgWUJnIFf8mg Ot5gkEcBXwQQnlCVQKmMBZi8JmshVzyQ6ukqgnIBUxqBrIVGeoqNyxDl2uS1Miif0nh4zjMF /gNKspctSI0JPAAAAABJRU5ErkJggg==</item> <item item-id="121">iVBORw0KGgoAAAANSUhEUgAAAEkAAAAaCAYAAAD7aXGFAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAF9SURBVFhH7ZiLkYQgDIapi4Ko40qg GpqhmFwIq7tKwHhBZ8eLM47jigS+/Hm4Duw4JOAOR9gAMEgCERgkg4QEcgTvAiQBjN6Qhysp QXAOnEHi/Z+jRzgOfAimpF6I5JQgl4cWboJEY5AM0o5AhuhLEmbOMKhdpqTbldTzlIdIGfCO YynZb7V4rXGRklq7VbG1v/rokyqkRrkpkMRHip6Cjzazt/NavMb4CUh7MykgKB8FkKiKYs+B g68TVHUQqxpy0tVqrs7gBYL23yroKGntNXoLrQZUYUHevhrESO88pKKkAk4GCSOTJT0lznAS Uovu+0q3lF5Oqs6fColimCvR5bdRXvkSSPsl1k8bPPXhpvMhvT0Mtwx5djJsikQvUl4Kk0CS Ju4/KwlLQjdxs1VvgmM2U2gh3dwCbAvAhBZAxJOHtIijCbc2pxxVnQnVbd3IBc3kCUjt3ptm UjTbvxy0Ksn9bP+kPHv/ZHpEpgD5hHL2/smAiM8CSXN9OqRfFznUYjlGqkUAAAAASUVORK5C YII=</item> <item item-id="122">iVBORw0KGgoAAAANSUhEUgAAAJ4AAABSCAYAAAClr220AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAcLSURBVHhe7Z3dlaUgDIBvA9vH1nC7 mCbsYzuwmvs0ndxiXH5EEQIkigYlc868zAiB5DOBIPCa5Ec0wKCBF4PMssjPML1ew/QpPylP XK6B7zS+X9N7/B6S3Bh4tlOvQZA7ZNULCn/H9yHn0BB4Grr3dPBFukDlImLVwGcadkamZsD7 DK9JHF2DUH/H6Z2DS///PU7UwNsGeHpMJ9Q1SN00aYdQGm/rsEsd8zUAng6xMpFolLrppYY/ WY9nGk4PufzgaVct3q5B7maHUAq1c8u116OYkR08aoMbtNAjm7SETyR4E9GBMIMnYbZNalXo dBMGLHhqekEZMjGD53WwTQs8qFVzjvSlJwvBbxAjNxkGNHh6IoJPh/GCR3TPD6Kg4a7oiQIA p/pbaQxHGTbdBLxQGYVZsHlLA+UFuSabJnC/mTfV1JX6v/UikUEQ8o+Tl5BtQt7aN2qaI2oX wePdCryhuFRhofMVWFyuKeQFNXQbgyTXhp0RIfBWA0fgnZ6XTMkOlxxj3ZGB7xY8EAqt0LSX yq6CZD3Y1ixmZjcMkcez4CuvovKPA+DxzlyFycqG+qb1t2NlgQyoKvAwjweooBj+FDBeuNko HmsItxQEyPqO4/zlDBTu7JpzUv6mO1DiNZ+MzcqG+kbwWHtg88s8HLzSFyxAePHWE43HUB7g 47yWGeeFY0bvg4Ui5OEYLy8/Nq4PGmUFIIbe9W2zbkrw8P2A9/sz/f35JfS3BF2qKguDHou5 UJUb423WHsngQW1Y5cMtdJMnytJhe+D9/vyZ/v7DmZN9VlueXCxrMmamum+WthoJ9ArzTNBM EsKvLaqAl5qBOiPVAU8l0uLxnIRaeKyGAs9MMJDJydJkBBzjBWCi81gAUCX5kRrqhVrz0oTD BuyYFueosk89a4xHHqMkYFhmdlhYfE9LyeOV5Pu2o08u1tKpiY3/BXeFdAoByEeBt6QPAC/k 8mdRXs58puMliKN0Qrh8lBlb7Qq1JfkEayYfvSiBTGjqo8Aj9FseZdaAgMdsgF7FC3i9Wp65 3wIeswF6FS/g9Wp55n4LeMwG6FW8gNer5Zn7LeAxG6BX8QJer5Zn7reAx2yAXsULeL1anrnf Ah6zAXoVL+D1annmfgt4zAboVfxO8FI7zZEfYO7RtvrkCPUh6J66myhTeY9rE31KN+IQeOAe UcQu8l06eTR4J+xx3aXk6wrVBU+1G96nUKFDTwaPeY9rBeuQq6gOnv2W/4SQ+2TwmDfekKmp UKA+ePOn5KVDW8htfzB43HtcybaoUOBy8LYH4OSPwNr0T8CrYO52qqgPnoRaunUl1GZ15m3o Tm86Lk0uxOMBOmbe40p/U46XqOvxzAbl8qF8u5r94FCrcgHBLUXX7nHdZY+DhQ6BFx1TesZs 1nXw0eDpTkoCOcXyfc5OOfg2SvHzNbDT453fsEjC4z0eg04ZRQp4jMrvWbSA17P1Gfsu4DEq v2fRAl7P1mfsu4DHqPyeRQt4PVufse8CHqPyexYt4PVsfca+C3iMyu9ZtIDXs/UZ+y7gMSq/ Z9ECXs/WZ+y7gMeo/NuLPnATkIB3e+vzdcB+TU65U21tq4DHZ7d7Szb7RNSVpwLeve14r9br r6WVp+si1JKvDb2XKe/UWh0mzc2YB8B75rWhd7Li7dqqNiK5+94OgCdjvNsZ/owGp07/8m93 tHL1hGI5JULAO8MYUmesgeCmSe/WS+qRJR14vOBtLmnIvMXB0RoutMz7huNtnf5e4tA4Qboh V3811i+6JrQXj/cuQQMYzuSa1thgNk5nr4zXcBHkmPqXO27jjdjmZAU/5UCsn87i+qJtu3HC pnEBL2Ee4BwXzBEbaO7Cq90RV71vxkh0qrIlLOT6RRjUBCA40aGxM/juE2r18WfR7dlUy9m3 Pu3x9P9VqkA9s4TTpMxSXXPbNgan1E+/Cv47jkpL+gd55fwBj0XVfPj8Z8Cfoch7koBR5r7l mc3xEFl4gTNLtHGgMqB3C9WLCG+p+u0cUl1b7/oMgZgyfwxeW2fw0WzJDJ495hYdBlM2QQHj F7YwQuOl7FgxOogn2SCg/lg+bU20cfD0y0YwJDt4JlNOaDBs6vQRa+jnS2cAzjPXPJhOWqk9 bpZM8fZth1qqA+EHjxpuk4P9xFFqiMnBnEX1ZrIBrqaOxPgFW/9SZb1QCy5vQQdCHh28FcvT wqyurgHw9LCHku5AvvmLsnDPb1M0nqZLnhA76I/Gd04GdpwHeVHEeLMIzfEHlnVeQlVtgGfY oxz+GCSQg4mCrmsbEoMEMDCxiMtYLS7pjDABvRkjlusn2CTx6EUJZGpDsxOpdGXNgGdnqfjp OFU/8vwZGsB661h2Q+AZ/yLwncHHKXXuh66dMd5GMS6MUmZ8p2hWKgU1UMc+jXk8sXUvGvgP Ua62CSpxnRQAAAAASUVORK5CYII=</item> <item item-id="123">iVBORw0KGgoAAAANSUhEUgAAAFIAAAAaCAYAAAAkJwuaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIUSURBVGhD7ZjBsYQgDIapix5sgyo8 vBI8W4g3e/BuBd62A1ZAFDBIcIOzbwdndnbchRC+/ElQJutFQoCRWKlGZAVJJIIK8gmQTdPI tm2JlnrCzCw7ziRj4YfLbi67flSR0zTtDi3LUtYLMusGpBgCg4PQezn9TraujNdIpcTX66Ud iKly7rgT/fJRT+87AnKdqH3lnSwlTFCRSo3jOGq/+77XsE6q1FEWcg9+eJ/edSgbKdZ1+Ec5 GAe5kpSclQs2CNJVoFWlqpfe9TG4bNKICRcg15CrQJVK7xNIV43Wc6VOpUr133H5hT3u4NXm YDaDgBrG9tsliS8CqYBBl+2E0H/HxsPUOWCXUoLvz5ektlKerY0hMFiV7iizCVvj9kbEhRRQ J71I1BKKfLTZ2PRVKQx9PFWGNTIo5nPXbY0oP7URxTAy5MbxR/vtNM2cxZ25ex5bxZ0Ps+d6 ZWtlqBw4fbEgTTOg6Nr4A7lZ0zt9oEH6cx94RMSCRO+AZKAtPVyIbEVCc3eQ7M9nSne/NZyE fRI6GUbmYTCH8xupDc3V9BQ0Fxzt/Yyyn8GAdugNkLsDYY20EMt8G5Cqfqbs0xJCWqMCWU6J h9Lti4SU0pFbpx1WAqRNc9dTulpprKbs0VJCWKMCiVjqt4dUkETxjYLczolXz7bQgZzIrZ8z M6xPaJh3mA8cyP8r27wHiQqSKM4VJBHIN6Da2fDEPcBXAAAAAElFTkSuQmCC</item> <item item-id="124">iVBORw0KGgoAAAANSUhEUgAAAFIAAAAaCAYAAAAkJwuaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAI0SURBVGhD7ZnNsYMgEMepix7SBlXk 8ErwbCHe0kPuVpBbOiAuuIp8yKKLk3nBmcwbIyzLj/9+mCd0u1gICBYrzYhuIJlE0EBeAfJ2 u+n7/c601BVmRt1JoYXwP1J3Y931k4p8Pp+LQ6/Xq64XbNYtSDV4Bgdl9hJ8z7auTudIUOL7 /TYOpFQ5dtI5/fqnnt93AuQ00fgqO11LmFFFghofj4fxu+97AytQpTllpZfD9+/zu/Zlo9W0 jjwVg2mQE0ktRb3DjoJ0FYiqhHy5uU6DKyZNmLADcjpyOKha4R2AdNWInoM6QZXwbL22iT10 0Dq+Jn5HvRkkg4oVjPm7XRJfBBI2HrsQSOzZunEMHQvRDVObT+kwCfKLDPmS0AblYW70vYyr 0h1lN2HgRcMe4NJyVA1FXlpsMHwhhGOfjSp9WLlknnt+TILerIL2x/izppBDudPYsFG2xDEq Lmxmw3yFudJXTtqZOZ/uehumg3K21IbcKzxGFLRoWX3CGuCBLHeaOoMCkWqLaRyA2/SUe0Uq XBP7Z6lUqEjxty0yLPdz+EDezNljQnTQTFlrNA6Dbez90IZNuhvlusdwodg7SIBl2uFCFAMJ HiFMjr/wFlFqh4VKoZFTbZkLsoYSl3fwWelLAcsov5DB6eHWz9Ii476TOFU7l7uufn6aDtHA KSXiGrH2h7j+/xjG1dP+OsjUm9O2zZ37xL3e99dBloTV0NF+w2z/s0lSLWvSG8gSee6MbSCZ QH4AixmpgDVByqkAAAAASUVORK5CYII=</item> <item item-id="125">iVBORw0KGgoAAAANSUhEUgAAAFIAAAAaCAYAAAAkJwuaAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAI8SURBVGhD7VjN0YMgEKUuekgbVJHD V4LnFOItPeRuBbmlA8KCaxAWBVz8khmccRwRlt23b39E6H6xICBYpHQhugPJRIIO5BlAXi4X fb1embY6Q8ykBym0EOEt9TC13T/JyMfjsSj0fD7basEm3QGpxkDgqKwt0TjbvjqdI4GJr9fL KpBi5TRIz/vtvb5vdwJIs9DqKgfdipgkI4GN9/vd6n273SxYESutl5VenB++71sd0kYrs488 FINpIA2SWop2ziaB9BmIrIR8uboOA1eMdMaCDSCNy8FRrcI7AtJnI2oO7ARWwrfPtU7ssYJB 4i+wYFRUwZjHNuV8EZAAGHVhJaS+fQz/hI4dW4x2Bh4L2wxCmgxIFhtYemZoA/MwN4Zq06z0 Z3lgEUqXJPsWjCzZP8dl4ZwV/TB8IYSpe8XKMEduevyfGUm1P/OYs6myCFmbXcFdgETGxc1s nK8wV4bM2cyTu62HKwbHwj+zIQ+dXlU4nb7YuZz3i1ilbE2Q1awBUPJZif2zVCpmpPhbY9ri 3S8Eofwa87nWlObPaRxdYx+GNhjlG8b1js06ysM+jpLPBUqRHAsEY45EEDmf9vBgZrl9Qmib J3gytU8RCJyTa9OOz8gWTHQ2ThYwe4PXTbHZYzonNmWyynLkIjsFJExokRt9o/bklwHANZsB SC5VfkoO1QPvtmeEhVQf+VNAMCi7PgL0TrEW2XOfuPVv34HM98Q45J1hnteQ5+v+JTO3TpJi FTuQTG7rQDIB+QYHl7ag65imFAAAAABJRU5ErkJggg==</item> <item item-id="126">iVBORw0KGgoAAAANSUhEUgAAAGEAAAAXCAYAAAAbfSF/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAHqSURBVGhD7VfBsYQgDKUue7ANq/Dw S/BsId7swbsVeLODrFGjyAIGjH8dB2acHdeAj/fyElSQxs8ZUD9HkABAEuEBSZBESCI8gIEA CHmeQ1mWATN4ockJPJ6g6zpQSs3XMAzMWbywgwh9lW0vUiqDquctclfUk/CgA8ZxnPlxuSEW 7y5CU0wvKKAhRs37IKYbKCaw2RUVRfFo4Kd1i22TvE2hC9q2nYPrura74QJetwg8fPdFXUoC D6wIEfTMJzdgfziMC3i1ctRDlS01Dy93tixx3Gxqin1NWnv79S5yDx4IFEF3AZGOrsA94LN9 xOO1NuadOLMv7C/iiiBhlat44hMBZrJtgxLJ9iwUr+d0tBBOdX1rOtlUU//FCeb2ZPCEOAEz nnqBicbuBj2Kj9fdE/oKMu2E1FfV2rTDylG0E8waK4UnoBxRycGyY7sObriA9+AE07b2ksMR QeB0NKknhyf8dESZ/tXH1p6p/0+9IRZvxMcaR4To/I+Y+DQ8Z1v4xruJoP6Oerjv1+Z8En8G Re75S0RAwnXS/ff9HOuLlyOYs9KLRMDtErH+30UE7BeuOA51cjEvEIHvgIV0vOhjzeYIOXK5 K71MBN0NRAG/V3BJS3EmAxGno0SiNANJBGlGI9ZLIkSQJj3lA9t9b82SYHPqAAAAAElFTkSu QmCC</item> <item item-id="127">iVBORw0KGgoAAAANSUhEUgAAAGEAAAAXCAYAAAAbfSF/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIbSURBVGhD7VjBsYQgDKUue7ANq/Dw S/BsId7swbsVeLMDvsGNgoIJgi6zgzPOrkOAl7y8BBUyX1+PgPg6ggxAZhISSIJMQiYhgQh4 QCjLUtZ17TGDZ5qVwIuTHIZBCiHUPU0TcxbPzCBhbIptIyEK2Yy8RZ6ySgkPKGCeZxUflxru 4t1J6Kplg0p2GNHjs1ekO1ktYIsQFqPi0cAv61abkzynQAV93yvjtm3tagjA6yaBh+85q6Ak uIB1gwQ981EN0B+MKwCvVo5G2RRrzYP7nC1rduO4oZpLn/U5h/+XKfkMHulJgq4CdBNUAXGA sf26j9famLsKg4V94Vxe1vqnla/nNLHELQzPPt+SEERtgmDbLkxG25gv3ovT0cqsqutWqQEx dPMOCYDpYBw8PkqAjMdecAy2XQ26FR+vuyeMjSyugkyNhyrjSDy1HzWuHTi4jRlLDpQd222o IQCvoYRj1rrBfuqf0yDC6WgJWjw8/qcjzPS9B7p7G/aGu3hvvKxRBIRKwHd+ango/Ge8Gwni z+TD+qwkv/YJyp6CEmVcwxNlvacXceBVkYeA6kF1PeNbNGX/tC9qfVWD6YPBK1g4m1zg3UhA Mly/0KSRKOqXgynIhtuEgzaJOJnAKzgK2L6JfBSzNSuLgiJCdy5lfqMxGyb35PMGTtyDwmuQ oKsAF6Bq/3H8Ted+Za8bp6NfcT0dPzIJCXCRSUiAhH8Vjh8LcvBrXAAAAABJRU5ErkJg gg==</item> <item item-id="128">iVBORw0KGgoAAAANSUhEUgAAAGEAAAAXCAYAAAAbfSF/AAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAIhSURBVGhD7VfBsYUgDKQue7ANq/Dw S/BsId7swbsVeLODfIMvCDzUBHCeB5xxHDXAspsloKBcP2dA/RxBAQBFhBckQRGhiPACBgQQ 6rqGtm0FLXihxQk8nmCaJlBK6XtZFmYrXpgjwtxVZiClKuhmXidPRb0JDzpgXVfNz5kbYvEe IgzNNkADAzHqv4uYHqDZwFYpKmbFY4Hf+m3MJHmTQheM46iD+74PuyEB77kIPHzPRSUlwQWs CBHszCc3YH1wrgS81nI0Q1ftax7e39ni/lfMdBqao0/q2zwv+3gGDwhFsF1ApKMrcA7477ji 8QYL80HcURf0N0PaPmDSciPwUCqe+EQATXbookQK/ZPivdgdWUTPHVReodZFqOrgrnanEOBO MA8eiRMw46kW+GSH3WBH8fGe14QA8b71HnWCv8bmwiNYjmjJwWUndDtuSMDrOMHP2su6cOmC DLujTfF8eOS7I8r0rzr2qZn2d6oNsXjjD2sJuwFBOeCHvg3PHXILrxFB/bl6cN6xOJNb/Pg7 DPn/72swc9OWf3hxjwdezTwSaJN49k5nHPqPBzKctB8vxiNtEMz6fQl8pQg3eI0IJMbZU58h Pm7RT+x4e+LuyPkuJTQqPpD1iIexW4saLrnRNV7FccCOYTYZr4vSNuGQY5LxsjvwDo+vFYAm dI7XEcF2ATXl1AY2byUwyED87qgQmo2BIkI2KuM7KiLEc5et5T+O9SvEynZp6gAAAABJRU5E rkJggg==</item> <item item-id="129">iVBORw0KGgoAAAANSUhEUgAAADQAAAAXCAYAAABEQGxzAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAEFSURBVFhH7ZaNDYQgDIWZqwN1nk7D MgzT8+9EGozP3kmIwcQYEwr93murQV92hZfx6ADq3dFOHUoqFDSE7eYI69glUOQJZIdY4UgS BFUAJaGsSiAF94AOghclUTJnL3mRKIKUgSJPMKy7ufYdzujfC70OdQPwFeTQR6A7c+Sh5MpG PO/Ddd1Vny598G1q+7wKtibfELs6FHIyto8y9N2cfitETETjkD2yrN19YBArP+lQ1Y2oPLmM iHg+FMy0SSLbwMDV8rlS2X+GBPuoKDlb93VFngaaZTAfVhDmouTO9G0B5PN2AK26DYf89eOI dPycvs4hh2wNQxwONczOcdQAcojWNOQDsQDFkxyRxuAAAAAASUVORK5CYII=</item> <item item-id="130">iVBORw0KGgoAAAANSUhEUgAAADUAAAAXCAYAAACrggdNAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAEYSURBVFhH7ZaLDcMgDEQ9FwN5Hk/D MgzjEkhIAKe4VPmKSJWiKq55dz43wC+84IVMPKCe4uqNnXJMBhhg/qBVa3pbKIseJoFEQENO BVZAWcZFGTBMltgAsl4jVc/2Q27q6/tvGBwZBkOswdpAlWosgBdAVdi9Tln085sDBHWucCpB bXKldGkqTU6J9oYxkJyKzVrZDblI41zct4pLtwTR9+a4A2pV79dztcP07QmdkJlTLClRfBfH 0StukPFIp0RXYsY1QlaLYl2j9aJwRPMm1KvW547w+xOoMlfFSs//8BDr5REPeTTU2iNlUgmU j58k6W44z4Dq83hA5bo92andCRhQ/eHorLztW3onTygbUP+od2btK536ADzEChGPfq9ZAAAA AElFTkSuQmCC</item> <item item-id="131">iVBORw0KGgoAAAANSUhEUgAAAEAAAAAXCAYAAAC74kmRAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFtSURBVFhH7ZcBroMgDIY5FwfiPJyG y3CYTkBRaoEWN3XRJS9ZMqD9v7Y/PAUP/6iH64cXwNsBtyTgwWoFSqU/bX03S2fW9UppYGyJ Z95wBGbxxs2iHZgOhCC+gOTMBM7AckKLXgHAW52pSyh2yyNZ4C1oXMEgSFsg+4BaL4i3AsDU BBQF8fpLKbFRZKWiLTj9aJsRuEowSjJ2Ia52o8rLeld0L6/9kQeUxpNHMCeYZnExpt6Mlaa0 3Td93x+eowwBwB4hKCZpgmvyi5vujSj5BZ80oxvTEuEIkMAmtwi3SINzTqdxC6RDoruSRAOU +nUz2gFAzXtrzsnfRgBgkT137f3OLjleKL0GCbGjI4CrVm8hnOSw2srG9kNod+/PLc/1p23Q gYfQr8V/G2b7PBmA2Pa8p+m5Msaj8QHEueK/scdTOncnD8DPDO9csVQ0FoDyf4TyUcO5a6+X Wc+ABeDOAo7m9gI4SvDf9z++Az5r5phcoLtd2QAAAABJRU5ErkJggg==</item> <item item-id="132">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAF5SURBVFhH7ZfZscMgDEWpi4Koh2po xsXosXjBWIgLNvPyQWYyk0XRcpAuiqL1ILUY0IIQmmB1wm9D2MhqRUqlp7Zbc3KdueyV0gT8 JPr80U7YARi3F+7INEAEADdQznh4hg4PEsECQgqW6HuSzpIGHTWPqcdgC3GLkwxFaUtsP3D2 HfEyCIn+RfMAgtHsiNk25QqOhVZykQC1o2XjwLTPZjXcUkAs2CTGLU9dOO3D3sV8j07GD+/s hHrg3Fk+LiGYHOguVLlo+dfnvD/ZDEEoNWNEE9oQnuI0rVM6x4HN3atHGG+B9Un/0gSOXP4Z SzaAqV9Fo51A3PxLc89+NwJhJ3e1KSCML1W5LhK9VyRT8Mg4pITuC4ox0l1bJgrrHmgoL0uP vaDIvaVXeRLyslSlORsAyOkjs34IcQSwNfajHKe76YMQOwPfyadn/1EA/L/DNBH8qJIXbmAI aScoFp79PXIXv8hx+k9hCNMz+ccAC4KHvyAsCGkG/wDiqdzLhdP8EAAAAABJRU5ErkJg gg==</item> <item item-id="133">iVBORw0KGgoAAAANSUhEUgAAAEAAAAAXCAYAAAC74kmRAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAFjSURBVFhH7VaLDYQgDO1cDMQ8TMMy DtM7weNTK7YKORI1uRhzpZ/X10cBH/7Aw+vHF4CXAVMisKAzgADxZ9xykqVHu9mGM9aLq5pw BLbiUxGxuGMQqH38PgctYlQBsDiTUAcweAq8GGeF4eLQ0NjeIhiHPA8iQGXTQx1CFmQA1iBg MZGHfitquGXKFRtAKXKrAvRiwL8KJmiF7tFuc6wg57zNmiFsPh2BWnj2Tur/zyhWJvQTs/Ru ZKgHYK8RIbYQBVYEc/JZB2qnOqFRjYR2BA7tZRrWuAWKIhkKsp0qKr3KAOTmvSWC3QCgGtCc u4EM+Gp92AHE1+DBCBzeGjUfKwbQrjV1QBhARf9k3F6E1jzre54sQorcri9Ck9wa1wDOp64D sFFVKLZ38xx2XgYA2+39BjYsy4GOZQBw3W6upwMz7uxaCMAalSxCCqHpnHNXdwoAusadxtkL wDSt+FMij2fABzn7mKgw1vAWAAAAAElFTkSuQmCC</item> <item item-id="134">iVBORw0KGgoAAAANSUhEUgAAAEEAAAAXCAYAAABUICKvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAF4SURBVFhH7ZhbEsMgCEVdlwtyPa7G zWQxNGoeSMBA+vLDznQ6bU2A4+VK62A+wE0GMCFkEUwljA1hgegdOFefPi43nZsgbGvLNSGp O31QJWwAjkJqgTIIur6+vwdXOREImKaHmCJ4F0DPVA2/v3DJcdf4ePNTAOcj8HqoeePNX6JX qwFBoPR2IH+AwBVcwEi5fEoJOTAJUmj+QQklLt11Th1ETymcHmKwhLMd5MCYfmtWd+aDk9oN 7njtZGmHcPWMEltJ4mgHDYT2xjbzMbmFtR3E9cRXhCROT2DaAfBnjBxZcCjQUyUA1/89Y/wY hNV3y7lMjiXZE76oBCEX+cgT2kE8TVpJkCOy7fkQrmYJe4J5IFEGMbXCsbg/LGWVtVDIsGTI rT8scS2CK7r7/ln1P7/qPQibKpQm/PPitAH1ENhdv05q2sAjrTP8dqg92ux6d5Qdqcx+LgYI +UZkWDKYz8hIjBBGLuV5bhPC2H+qPN9Z65VTCSuxFwAy3RcP7r8vAAAAAElFTkSuQmCC</item> <item item-id="135">iVBORw0KGgoAAAANSUhEUgAAAC8AAAAXCAYAAACbDhZsAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAEjSURBVFhH7ZXBEYQgDEWpix5sgyos grMN2AEtePXqUIE3O8gKGkEXdwPqus7AjKNoEn6eH2Xw4MEerB2y+LveXib/F+S15MAYmw8O Ut8li7aus40So2gBCvO2c1q9OUqBGCHwA90PwwBFUXgwEap3XjQdEhvVGSm4rmuoqsrGGjfg WF27Shokd12J5RVs15ri9p+v45UIEENrfihSlmVYsN9ICINbcOt71yBVPAlzIKjrOnvX2IdA PkwYfbtsZi5A/IA8qmma5k183/eTnXY9ryVw5shrKefNHGebVPKYZ+zjkzdztNTqJ7X1Z9ga FPHHvzb+BjX0cbRta5uxdoonQxEfXzUlI4tPoXZGTiZ/BsWUGgnkU5a5JieLv4br96qPJv8C Y9XzctMf2ZAAAAAASUVORK5CYII=</item> <item item-id="136">iVBORw0KGgoAAAANSUhEUgAAADkAAAAXCAYAAACxvufDAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGZSURBVFhH7VaJkcMgDFRdFEQdVwLV 0IyL0YH4QTwxds5zSWYyjI2QdrWSDOAH/OADOOKX5H9R+eFKHqgEIID7C3VM8q5Rels6IzXZ P5ikJ+iBIjoCfaK1fXouSB5KxKwBCJwm7s56PhSKGoOWCEIhq6fdA2lSkf28j0SyNuIOLZOa ZX3BEUeIQFdEvCsSqEmAL98YbovUAugXTVjQnLrBb1dJ05spdtnksRWiQbkfmnqGXcs0OMIA iWsbJEXjlBmR9D2b44qxOZAJWOpLehdBOcLzaTdLwWD/xXJ1nsrpKrUXph8mI8JkkO+B1ttZ JZHrv9Hg4Yh4H/3BMyyNNyhpZih9I1c/IQ3ehLH4hNRZH/Zlb5RnZbNfzuPLgMVbxKDh014e zl8GHjaNR90fScJPyXfl2ZZTULu23xg5lx8lZhZgDrL3HG4TYd9esyzJ2v5ylJsOI8lAtrfS EPBq02rL1az2ilW83wR0x3FYUdAFPqJi1Nxm8HCK3wFy12dBMlcxOF7pzV0Qd58/P13vRnah /y/JC5P5p65+Ad2UuEUBAtjmAAAAAElFTkSuQmCC</item> <item item-id="137">iVBORw0KGgoAAAANSUhEUgAAADkAAAAXCAYAAACxvufDAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAGGSURBVFhH7VaLEcMgCGUuB3KOjuA0 WSbDUP9RokWj9npNctfLmSK8xwMU8AYP3IAjPiT/ReUfV3JHJQAB3E+oncn7htLb2j1ys/Y/ TNIT9EARHYE6UWrv1sY+I7krEbMGIJBN3Mp63hUKimGTCEJhWU+XhJgTjc3y0R8OksYBSJ0v /9B1FyEu6w3OSoQs8QRj5qZFySFSDaA7TawKVLWSusTvJo8eDqom5Zo3eSq780OauprRPGoa NAyQ+D4HiZv7SZ6rx8bOyjXBdgALfXl24Pq3VjqdspXMe8u1aq9x1uEc0wmLpWyI88PpqpJ6 apz779PgaSJJiXD1z/0/LGbvEVIpV93XmZI06/WWoQAoownT1br8fBkwePNzk8wNP7guXAY4 gsMSTncQScIr51tc2xL1twjGfjrSAYeWmSGUkqqtwy2Isx/As2RrJBnI1t7mihUSwb2XIB1w Ci0KxjutVzwe5oUKGMCybGtGMlUxRGzq1WXw5ji+MF3nBP6ml4fkN7O9MtYbQTy0JdzIaT4A AAAASUVORK5CYII=</item> <item item-id="138">iVBORw0KGgoAAAANSUhEUgAAARAAAABaCAYAAABwvgmrAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAsgSURBVHhe7V3bkeM4DHQCm8fE4Cwm CeVxGTia+ZpMJhidSUmW+ATAh0VYfVVbdbskIbABtkBQJm4z/gMCQAAIFCJwKxx3/rCfab7d pvnnfE2gARBQiMDf/Ljf5vvjr0p3hQSyTPw2gTqqLI/BQOCJwN/jXvUiVkYghjzucyVpwnGA ABBwEPiZp8JoXhWB/Ey3uTzwWCOX2zN6ef6hQzcD6tLX/gkefHa7ZA1I556TXSprGZe1399j vt9SLwhqfKrds1PhQlkQkc5d0D86d8LH7JiDj5r/vz+eWq7/Ue1HM5u+x7FM99JDICbnUcwe /rZnMUyaRPz+vL/v8nj99/lI+zOte3T6F3bU3BnkIZa1L6S0Cbc+MQKhxqfaw7mWh+y1PpTD PTb3uE84PkutCardM7XBhn6xuoOUEIgBsyJhGmN3A26KcWMJWkfG4gzHxWAdc/sHanxtu4g/ Im/13Nyz/CGXtSxY82ac5ikTgVjnnaYgAqHGZ9ujiXZju4JtsNSHBP3jcyd87GknKiKn2kNT y7cyOgjEGKM4+rBIh2RhDRwnJeuUAbkcDZp/O1Dja9sl/CGde1a2EEcb9D8e60lZZguyhc+R RUeNp9qD+WS3SZnZS+fO7Z+cOxWBLPnAuzlQ2LYxjs9S7fG5Gt+ULDUVBCKdlA9NdMHmHCkZ IbhRh2H4zXgO6NT42nYBg4jnnpFdJytFIIfEeJcciLPRLz7Bk86d15+ee9LHnrQcbMOdPAbV njC08GWtgEAqty/2LRiJKLLOuiavDqywGXL5p9A4tt3LDRxzNrHx5e18BpHPPS27TlacQJx9 d1cC8d/ofAyXSErmQ5z++blTPhbTP9z2uL2odjtTUbpAAYE8J01kh48s/Qrnjqcn3HDSQdvN gE8/hwWQlHfcW2fG2+fUtjMXQNHcE7KrZEUIxM/89yKQ9TRCmiB03UG2DSa3jtTcWT4WxNrE SRd1krXI+5n4OaLxCUQYUkVdP5bvkCYSjzJKjJvJuVida9tTfNJi7pvsKlmh874SoP5RpJeg Xh5POX+i3W4X+QsiScvSuRP9yblTPkYliKn2zPtHkjK4BoFs5/fc48fgTbg45/4GS4SXW6RE ja9tZwYfx4Xnb6/K3sbSo8yjohQBbCTa8DuQ0oRp/C3k5U+o43AhVoGuhI/FCNUhnQjezJfm xxHI1OTT0/1bgdiHZGYbFJyxH96M4YLzPvLxt1n2DbAnWYPxte0lJML+iC4nXIjjS9T7CYR8 y4sw3KOgza6+TQMfknx4FiU7wse8bXDq5DB+SpOePAhE7BgYAASAwL5T5R/lqtjCtIlA4CBA AAhwEEAEwkEJfYAAEIhnewQfk40fgfx+z1/fvzA1EAACb0Lg9/vf/PUf72HjE8gzuYQtDM+Y 6AUEWiCALUwLFCEDCFwUARDIRQ2PaQOBFgiAQFqgCBlA4KIIgEAuanhMGwi0QAAE0gJFyAAC F0UABHJRw2PaQKAFAiCQFihCBhC4KAIgkIsaHtMGAi0QAIG0QBEygMBFEQCBWMPnf3ae9o33 /+x80aVl/RJ/dqVYxFCSyjq7fg71fAlLtJ47Vx7lk4m7PyIXNZmf9lOXJoNApBcIvXxoN6je +iUJ8uBeppRdT8JLcgI7+OPjf/+M+jrSuaUuKKJ8kmrfDWqv/mQUjwKBxC5nIW5jel0+o71+ ScAf8louSQ6R4krVv1mjrs+sr0PUdWFgSfkk1e7YMXrFYdzSIJCCy39Z9UWSNTzo+ics+Ud7 trqOrwCLJIEIZUVvJndII/+WpsbXtks2L+QlyYEwIgJhYEn5DNW+q+RfyZmf+eUJhHOlvjwH Yoyw3tfZ6/ZwfytFbVYZK6AOC/cBYllU/ZtV/CfX10nNTYZlQQ7kaDpB9GGzhx91H0jBz/ll xonnDPy1a2S+9uZdCcR/czFYItOlDotKAtkSw5esr5Ov6yKzSw2ByKIPEIg90BDW8HDWScRY VA0Pajy3vUX9Ep9MqrDwhBXJumh9HU5ZBj+hmSztUUEgBVvhy0cg0RorzCvtY/VHXskqDfVL oklUrwYwGwtPmLQ2Siwyukp9HYpARFhWEEiBrUEgxce4NoAjqnvZTWJQRd5PWFHHwE57wVuC v7GRHr3mJAtlUfVvUiVCP6K+Dq+uC69eD+WT6Xa35CrPa0AgFqf8RzphDY8NXMpY7QlEFuHw nMDLXixFkc6oC0PVv6Fqm1Dja9tFcEp9iqrr0vFDsnVeaT9PTxwEInIKdAYCQOCIAAgE/gAE gEAxAkUEkguj9+/n3ZBrL93YoHhxaroFx7jFyGEgEAACDb4DSSb1EvmBdR/a4Lun0HwgELg0 EHgrAkURiKOhlEBsXvHO+qGOGAkQiBgyDAACNQicQiD5o82K6YBAKsDDUCAgR+AcAon8slKu emQECKQJjBACBLgIDEkgxx8V7cnX9duEXPIEBMK1O/oBgSYInEMgvb6mBIE0cQoIAQJcBE4h ECqJigiEaz70AwLnIvB+AsEx7rkWx9OBQEMEuhNIkMO44UOyhvaDKCBwKgL1BHKq+t7DkQMZ yRrQ5QIIgEAuYGRMEQj0QgAE0gtZK5f7E+yuShQKZ1xVUCi5fphmXP3ZS3FO9F9vqHNSBqmy DA1PQUEg9d6ckCC8UKebHiWC+fVDSqTXjdGMa5w8OAWclpEZu5jDCdYPzDYZbXKRIJA6b06P ZtTy6PXoGrmvX1oTNW9qnlE1VimuAXWY34OZS5uYOFN2MZ8+cPjDXvg9TZlb8mTWAYHI8OL3 LrpUmC++V09+/ZBeGhByleIaEsjj+YOOPaqgFn/eLksZkfvhJrloVblMraJSa4JASpEjxsmu 4u+kRJVY6d686mHswfpxjW9jKALZR8XsEil16VcHsNsfTq0itikW+rt6XRgZXPze+h0dBMK3 dk1PKc7c/m65TLt1efwtiiKJmjDYSN+BqA+1uY5as3gKxqrHtUcEEsPxYD9RrSKZTRCByPDi 9xbV8uCLfV/PQQlEPa4dCCRajtJEIMuWpedN/iCQbitS+3HjoARSVcenm7ErBEtxjvWP/Fuu SBS2MAq2MMtms2GNlQofLRoqdeyihxQO0owrLwKR1yKi6socngsC0UIghesDw4CAEgSwhVFi KKgJBEZEAAQyolWgExBQggAIRImhoCYQGBEBEMiIVoFOQEAJAiAQJYaCmkBgRARAICNaBToB ASUIgECUGApqAoEREQCBjGgV6AQElCAAAlFiKKgJBEZE4LMI5Pd7/vr+HRFn6AQEPhKB3+9/ 89d/vKndeN1O7DXSz/lPhAGPBgLvQuCzIhAQyLv8Bs8BAhYBEAgcAQgAgWIEQCDF0HEGavzZ uQadNejI8Y+aPmNct/BxBHLn305bYz3GWI0XCmnQWYOODPeo6jJO3R4QSJUhM4M11i/RoLMG HXv51JpzkNST6ajKB+ZAnpU2plQ5v95I+vI1Xv6rQWcNOnb0tdHq9vxM/Ap34x/j2isEp7Vg T0crMkRrLOugQWcNOjLco0GXEXIgsvWmgEBkx0oNrJgUodHRNeisQceefrXLHoBAzHZSkHNU QSC2aI5gUt2MrTHU1qCzBh27OdVR8PkEIkmgGs11EMgo2xiN9Us06KxBx0sQiGz7oohAnqqa t9TpUYjG40YNOmvQ8R0Mcm4E4pTKZE5XSQSyzMbU1TidQ1TWhdHwkZYGHZmrqrjbiQQSFO7m TUIVgSxFnfhHTDwI0AsIXB0BU8Cq7KRTGYEYQ4NEru7umH9LBMrJQ1cOxMFsC3fLWLMl/JAF BHQi0GYNKYxAdJoLWgOBT0Tgf1yDZMnWsyp5AAAAAElFTkSuQmCC</item> <item item-id="139">iVBORw0KGgoAAAANSUhEUgAAAVQAAAPyCAYAAAAjSCdvAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAH3rSURBVHhe7Z27kfS4koXbgfHjt6F8 uEI7UVasMh6UvBFXvh6U1PpVr7rRFqy2HtQSfBRfIJFA5mGCxdMREzPTDWQCJ8GPeBH4evGH ClABKkAFTBT4MrFCI9kKfH19vcI//KECVOBzFOAT7RRLAtVJeLqlAkAFCFSguHumCVQn4emW CgAVmAD1+bp/3V6PX6A3sOnn/et1f0qc+Nc1C6jPezM9cH+JqiapvjrN7+txi2nd/X6o223V mFJ/VxeMBqiAqwIf00P9fdxeXzKadoL/Pl632+Pl9f44L1BHKM7l7n///mV4aX29Rqim/u76 HNA5FTBRYKOH2vfgng10+sWTr0nvNfQEl/Ca/27eE/magSv8rekJP0KvK/Rmbq/7vYHh20/f w3k/mHu2Bg1CefN7cKHM616Uia5JI/tA7WA06NNpNdavfXlE4pJ0qkzw9nu7v+7LHmp4QS1H OKFnPcQ+9Xdl2ZidCtSgwA5QwwM9PsQtMIeHYzUE7QDQMbAD4BRU7YP4hmoPyK3e4ezBS9ka Opvx3um///3vGaj/+7//e6759IGPRmPZy7IL2TZQl3Ue4NrHYqm9eDqgsaPskf8+Hv20Q2TI H9OyjeWk3Ev/07/bSUtLVMBNgV2gzoZ0swd3CtCm7NO/RR/w6QO4huRY+8XfkrbiAA+/DTD9 xz/+8frf//3f1nz49wqoDR685o03gRqrc1LfVPtZxCuVPPn3NVDnL83ewOTlmPp70iUTUIET KFAI1MDQcdg//e/5cHRcoAgA6XqtWwsaYVpz2pPt/385FdD//9gDjsMiwHOA6XYctsuyzNPW caMsWXO3veEtoG6DZxgtzKdAktPGLYytpzYI1BM82yyigwLFQB17pXOgRYEwq9gGxNrezHzl OG0rGI73Mv/nf/6nBcl//dd/tf/85z//ici711vGRqMcqGO5RsjHd2fsvdy2Xg6yOWUO+bGt g9bPqkA5UFuQNQBs5tXe82Qt31JbfGJAXa4A93ImbQ1AXW/hCT3UMOz/17/+1f7zf//3f5tA Tfby2mod00ON6rerQ+KlcFAPtd01sVwYXC1KLRYOk3PYZ32sWO6rKqAA6mRIPiNSZNGpfaiH XtTGcDG6Sp+yFcIWB0rogS0huu6lVjiH2tdnnEZILErFVs9XrRk/hzrEYVlubpu6KlquWW8V ULteSXqD93TL1XoOdbEtajJPOZ1z3dsmFNuDOgz5h3zRYX+yh+Sxyj++JLa2TS17y5Iedqd7 /tay+GOxNfc8jyU39l8TKleu9Yds7C/rada7D/XKTZJ1pwLnVeBDgNpPP8i6al20zvSl1Hnb F0tOBS6lwMcAdW871jqiZT1ay5aR9emppWPaogJUAKbABwEVphHEMIEKkZVGqYCrAgSqk/wE qpPwdEsFgAoQqEBx90wTqE7C0y0VACpAoALFJVCdxKVbKuCkAIHqJTzvlHJSnm6pAE4BAhWn 7a5lDvmdhKdbKgBUgEAFisshv5O4dEsFnBQgUL2E55DfSXm6pQI4BQhUnLYc8jtpS7dUwEsB AtVJec6hOglPt1QAqACBChSXc6hO4tItFXBSgED1El41h5o633R6VsGB5xaIDgR3EpxuqcAB ChCoB4gcc6Eb8qeAOvVIoDqFmG4vqACB6hT0OFAXBzcvDvAe79iaXj8zXM0yvVdqr4e6ONBb dbX0cJtAKEPj/zG//mZ+p1X83qu3/E3vVnaflVPA6JYKCBQgUAUiIZLsXtI3nOsaIHO7vUEz Hoi9uBalKWB7iv8bjltAXV8XI7sIMabA0lbiqhbBdMAA4JxjbUPJwt1h00sH19eFIyJIm1Rg rQCB6tQqNof8k2tZAmDu96bX1xJm2nuNDPlnwNoAahRq8qu0Z1LFbE1/JwDolvTdFS+JHm2f OcD0H//4x/vK8HB1OIHq1Kjp9kWgOjWC7TnUAMPu7qfnvYHKs7m3q+15jr/vrs5e3OUlAOre tdK5w+1oz3Z28+l8aiG31/m+9C96eeMYtADPAFH+UIEaFCBQnaKwDdQAotA7Gy7V60E6u7JF AVTVnOkoVhqoY9rxUkFZr7PLOQJ5D8bDZYzhEsboRYxO8aXbaypAoDrFfW+Vvx3qP4aeaQ/Y ZsFn7EWWAbXp8jZDaaObT1ND/pWu8eu+Y/LnDPlDDzUM+//1r3+1/yyvDncKL91eVAEC1Snw u9umWlh9TRajmoWp23SIXwjUodc37aW2vnJ6joNgfQ/y3X1MLEq10wH7fkoWpYJOS4j+5z// cYoq3V5dAQLVqQXs70OdA7MDzbRnWQrU+VC6K0MJTBdQHewstk2NQ/1ua9fuPGrhtqlhyD/o yWG/U4Om21YBAtWpIeg29jsVmm6pABXYVYBAdWogBKqT8HRLBYAKEKhAcfdME6hOwtMtFQAq QKACxSVQncSlWyrgpACB6iW86rQpp0LTLRWgApxDrbENcMhfY1RYJiqgU4A9VJ1+xbkJ1GLp mJEKVKsAgeoUGgLVSXi6pQJABQhUoLhclHISl26pgJMCBKqX8FyUclKebqkATgECFaft/mog geqkPN1SAZwCBCpOW1egXnKO1vI0Lad2cW638hPFzl3P7dITqE6RRQMPbd9Jtg23y5Ov6ird 1UqzPsznOgoQqE6xRgMPbd9Jtojb4UDuekrEkgQFpjdMXEcRAtUp1mjgoe07ybZyG44ITF+v Unhv1szb/EqX3Ctj5gW3tFUaiQPKMLtlorSc58pHoDrFCw08tH0n2eZuw5xpkqayq1T26xM/ TLsMqpa2SqNwXBnC8L9Mp9K6+eYjUJ30RwMPbd9Jtonb4c6t7ZK8LyW83V/32Y0HmaWP3TYw uZ02y5qlrSzHU+kityeU1idZhmsN/QnUZIPAJEADD20fo0qG1QCmRO/0t7mXK9weO7+CO8PH kDQGm9kNrxk2LW1luJ0lPbgM7R1pXSA+/odAdQoxGnho+06yvd3mPaS6OdTtG17zr4+xtFUa g8PLIHj5ldaltnwEqlNE0MBD23eSrXebHu7Py0egTvU4HKjt5ZBGt+36NrykdwI1KREmARp4 aPsYVaRWm3m56c2tyWw6oLbXby/9ccifVH2a4HnP781nOagkMYHqFAg08ND2nWTr3GYPIZVA jcGzdBHH0lZpEBzKkDdFU1ox/3wEqlMM0MBD23eSzQeo7ZC1uQr7vbLSXeNdth3I0lZpFI4v A4FaGivmEymABh7avqiSqERND+v++M2wruyhdt3iDqr9oTZlMB2KbGkrQ4ZZ0mPLQKCWxon5 RAqggYe2L6okKlE2UFEFoV2pAgSqVCmmK1IADTy0/aJKW2UiUK2UPMwOgXqY1Nd0hAYe2r5r 1AhUV/lLnBOoJaoxj1gBNPDQ9sUVRST8+X79+f5BWKZNkAI/33+9/vwNMl6RWa7yOwUDDTy0 fSfZOrfsobrKX+KcPdQS1ZhHrAAaeGj74ooiEhKoCFWhNglUqLw0jgYe2r5rBAlUV/lLnBOo Jaoxj1gBNPDQ9sUVRSQkUBGqQm0SqFB5aRwNPLR91wgSqK7ylzgnUEtUYx6xAmjgoe2LK4pI SKAiVIXaJFCh8tI4Gnho+64RJFBd5S9xTqCWqMY8YgXQwEPbF1cUkZBARagKtUmgQuWlcTTw 0PZdI0iguspf4pxALVGNecQKoIGHti+uKCIhgYpQFWqTQIXKS+No4KHtu0ZQDFTEEXW1HQVY GgmENttlIVBL48R8IgXQwEPbF1USlUgEVMQhyiOEym/xRJQrV+jjy0Cg5saI6bMUQAMPbT+r staJJUBtr/lY3GNUem1JU/72YrtwuHRz2dy9OWi6GKjG5SqS1qEMBGpRpJhJqgAaeGj70npC 0kmAanmxXgvUx6u7Wl455DcuV5G+DmUgUIsixUxSBdDAQ9uX1hOSTgBU3FXJOqDiyiVX2qMM BKo8PkxZoAAaeGj7BVW2y0KgqrQkUFXy7Wbmeag4bfeF7y97Q7m/OlBfsGGtroeKK1dGS4Jp s10G9lAz4sOk+QqggYe2n19jwxyCHmo4hPr2de/nPXvfikWpsfRKoMLKlaGvQxkI1Iz4MGm+ Amjgoe3n19gwhwSow7XP7+X45+vejAp01z+HOiiBCitXjr7cNpWjVk5aDvlz1DJMiwYe2r6h FPmmREAd4TdooYepBVBR5cqVkRv7cxWTpCdQJSoB0qCBh7YPkERuUgxUuUmmxCrAIT9W38tb RwMPbd81gASqq/wlzgnUEtWYR6wAGngS+8PXP8Vf/Yhra5yQQDUWFG+OQMVrfGkPEuBpBErb 7xdpbs0nlbdHs1Ryoh8C9UTB6opKoJ4uZOcqcBp4uvok7YctRGFbUey7bp1rfG4CFa+xsQcC 1VhQmpsrkASeUrCU/ed92ELUrfbarIBLC930jjW9YgJVKnQ16QjUakLxmQVJAU9b6137i15p N5e62ASvLcBm/m6qQTVvS6DCooMyTKCilKXdVgFPoK6/5V5CTgK9gn2M7TSDQW+YQD3dU0Sg ni5k5yqwH1A7WA7+Z/9+D8NTQM3/0uZ9nuiW78jvN6chCNRzNXYuSp0uXqcrsBtQh8WopWLt 74cDmXugNmeA3t6gm0wJlB5QzB7q6dqpVYHZQ7VSknaiCngBNSxGfUUnMKeLU0MvdoTobJ5V dVpRqvcraDDsoQpEqisJgVpXPD6uNC5ATWyRGqEZg974O/15mgHeikUwAvV0zwOBerqQnavA LkAVSxTgubiPqT8lKcxr6oEqLkg8IYGqFPD47ATq8ZpfyuOZgep+SDKBerpnhUA9XcjOVeD6 gbrcKzqZBnA4oHgWXTFQC7Z2bTYjS1uDE+3ZqsFOZrna2C12eUw/skj9fapPxld2BOq5+HS6 0p4BqNPN/u1i1vvBy982ZRogEVAty2hpaw7T0A7KP3IoKFdYUNxzmPr7O5ADyJdTQ1uzNDdF PU1bD9QYz0OFyrttvH6gNg/Kc9KbWX0qmtkzstRZAtTSrV2xclraCn3K9su08IK6N5/gKoBa UK7wYtznqaw8oQ63+73p7RKo0yZDoFo+6Bm26gZqRkU8kkqAqtrataiUpa0WqI/+rivlkD+7 XMFfA8IG4u8POmYvytTfe10CyEM+DvlXrZ9A9QBC45NAVQgvAKrlTgRLW/Na64CaX67IvVoD HNuCpf4+zNn2vVIClUBVPMamWQlUhZwEaitePlBjmqc+tJj/vR3qN1vn+gJwyL+QlD1UxXOt yUqgKtQTANV0a1f20FpaN10P1aaOqTJM/j7rzbZEJ1AJVGljx6YjUBX6SoBqubXL0tas2imY JTTKLVf0HIfJRxyJv+8dcJPaqcBtU4r2zqxpBQjUtEabKSRAHfZnvp/0yPyguAgF25NEtpVA za5jxN+s9536+6JS7KFyDlXUzg9IRKAqRBYBtZ1lbG8jGLTW3UpgaWuouxao6TqONzMMPhfH N662w6X+PokbgUqgKh5j06wEqkJOMVAVPpjVVAEO+U3lpLGlAgSqok0QqArxfLISqD66X8Yr gaoINYGqEM8nK4Hqo/tlvBKoilATqArxfLISqD66X8YrgaoINYGqEM8nK4Hqo/tlvBKoilAT qArxfLISqD66X8YrgaoINYGqEM8nK4Hqo/tlvBKoilATqArxfLISqD66X8YrgaoINYGqEM8n K4Hqo/tlvBKoilATqArxfLISqD66X8YrgaoI9c/368/3j8IAsx6twM/3X68/fx/t9Xh/PL7v eM1bjwSqQnj2UBXi+WRlD9VH98t4JVAVoSZQFeL5ZCVQfXS/jFcCVRFqAlUhnk9WAtVH98t4 JVAVoRYD1fLIvVptKXRss1ocIZguA4Ga1ogpFAoQqArxwjmcqSPisw9f3iuP5QHTlrYUGk5g GtpiUk6lKwJVKSCz7ytAoCpaiASoscOPY3dDSYpRqy1J2TfSvK8zud1f9+YQbgJVIeYkK1f5 bXTMtkKgZks2ydCcKr86aX5hz/JivVptKST8fTyaS6OPG/I/7/3V04oynyErgeoUJQJVI3wY Nt97IMTt2Fyx3Nmu1ZZGwTHvEXOo6XjZ1MXfCoHqFAMCVSd8ak6uVghalkun4JD7AKBKpmhs KuNuhUB1CgGBqhQ+9ZDWOky3LJdSwr7/3V5kiJxDTb38TKpRiREC1SkQBKpW+MQwMvfO+r3i 1GpLK+Ehc6jXGe4HOQlUk0aZb4RAzddslSP09ja7Vpbbk2q1ZaAheB9q6J3qru+2qONxNgjU 47SeeSJQbYQP985vD1dr3YxvWS6tjsA51NCzT+3G0Ba/svwEqlNACFQr4QMQrrElx0qxY+w0 W9u+9ndiHFOOY70QqMfq/fZGoFoKT6haqqm3dU2Ycg5V33KKLRCoxdJtZByG0dfrFVkrWW6P MWAPtbz1qHISqCr5mJkKVKkAgeoUFgLVSXi6pQJABQhUoLh7pglUJ+HplgoAFSBQgeISqE7i 0i0VcFKAQPUSvjmDMvRSUT/oHjCq3LRLBc6sAO6JPrMqB5QdDTy0/QMkogsqcDoFCFSnkKGB h7bvJBvdUoGqFSBQncKDBh7avpNsdEsFqlaAQHUKDxp4aPtOsu27DYelHPy547M5+f5XJUaz Gf7RnZ1/tp/r1b37cGHvsBcC1akVo4GHtu8k24bb5WlQB5WuAbjJOaJWdg6qduvGqsxWdg6s e3cfV/yLPAL1wEBMXaGBh7bvJFvErdd3/M336iY07aqk7+0dGZEr133QOX5eAYF6ZDuc+EID D23fSbaV2/3j+4CltO5ZWdsTVz2AIfO0Luuyqu1ZHoeYYStyPCGBKm54tgnRwEPbt1Wj0Nru AdOFNoXZnnfrQ1hse33CahQlq6vuvod/Lw/QJlCLmpQ+Exp4aPt6BbQWBFdrtFeXdB9QfK0O Op73RJZ/f99b3+Zf9uDi11jv50nVV1CflImdv2+XbdpD7f/7OdGt9rq3MV7EJ3Zvl0S7Ilvz oT+BKhEakAYNPLR9gCR5JlOX9DWXTN8bGHbTnMvV2fUiVpg6eEN1uVtg+f+xk+hTeZK1A84F 75ZtCdTwAhl73zNdWikjp/B71t3y0sNCW9NLCAnUZEPHJEADD20fo4rcavImzb0tVLFL96YA Tm2/ik01pPIIqgabD94t2xqos7W2GCyXi3GOdbe8lrvY1uTlTqAKGjoiCRp4aPsITeQ208Pj 6MMxOIgOCae92Pl0wGoxPzp3m8jzrtz2HU4BqJgL7fbKZgDUfgQwtLnUHV+xv5fWvRiCkcZW bmtsjwSq/Ck2TYkGHtq+qRjZxuJzmFMzOqCOltoh72IetbW9s2UqlqezOIItlr30htDR31DW yb8XjtZlywNqbXUP+2FX8+PREYigkSlsPe/dPC6BKtAZkQQNPLR9hCZim8n508aSZsi/Ksh8 DlYGvnWebnGs+Rig+drGEqhi3Ra95K43nA/UdC/6wLrH4KlalFrs3hDaGqagCNT81miSAw08 tH0TEUqNSIA6W5QKaynTXmXmotRi9TfaS4stXE1Wn3+bT1S7D0y3h/wyUBeItlu2fKCueueu dffdNjVEg0AtaJeWWdDAQ9u31CLbVgO4e9u7SvxMt02tPhXc3za1HEavFmoiXczdPIveoeU8 YkqG8PftsuUBte35V1f3jM34SbHKbBGoSWGxCdDAQ9vHqpMGpQioqEKqPijYX5Qy/JoVU/sr 131HUQIV09zEVtHAQ9sXVxSRUNpDRfhuR+2RvZhiX1tABe5DFZdNkPDKdSdQBQ3EKQkaeGj7 TrJ1br2BGuZnV19eSRXZA6r156zSMuWku3Ldt3ViDzWnDQHSooGHtg+QRG7y5/v15/tHnh6Q ctgmk296C6hn+pY/8zCVt0jnr/tWvH++/3r9+ZvbpvKfB6McaOCh7RvJUGbGvYfaFLv4hKQN qBTbK5NQlau4rB9Q9w3h2ENVtSh9ZjTw0Pb1Cigs1ADUsP3J8KR9+xOcFPoms1657nFxCNRk o8EmQAMPbR+rTsJ6FUANvdRH+3WM+qepjyGb1cURGbhy3SMCEaiiVoNLhAYe2j5OGYHlWoAa eql3gzul1DYEmpknuXLd12ISqOYNLM8gGnho+3m1NU5dDVCN60Vzp1WAQHUOHRp4aPuu8hGo rvLTOXuo1bUBNPDQ9l0FJVBd5adzArW6NoAGHtq+q6AEqqv8dE6gVtcG0MBD23cVlEB1lZ/O CdTq2gAaeGj7roISqK7y0zmBWl0bQAMPbd9VUALVVX46J1CrawNo4KHtuwpKoLrKT+cEanVt AA08tH1XQSsA6rM5gV/3kZTt55tHxuPKdd/SmftQj2yBEV9o4KHtu8rnDdTiw0EWqlnZOTIY VmW2snNk3Xd8EajOgUADD23fVT5XoNoes6fv7R0ZiSvXfV9nAvXIdsgeqq3aZkCd3qckLKJ1 z8ranrAaRcmsy2pmr+weqLgGZbYI1KIWZZcJ3YNE27dTosCSGVDzfdsfs2fb68uvkTxHnXXn rafyCH5wSjTw0PZdQ5MJ1Pba56+v/p/pafPLGz+bvzXH0t2iaUON49d/bNuXqBSAYHj1yfSm 19U1Lfs3ve7Xo9K6L674bhUPFwmWXFGjsMUeqqStA9OggYe2D5QmbToHqMs742f/v75C+Wty 3XR79fL0wYxdULdrP12V5oKsBqilV4os7Yf6fL26m1M7eN7eB7Yue3L91dJD/VL1qLXuMXi2 YCx4SSlsEaiStg5MgwYe2j5QmrRpDVBn1g3upF+CKF36VYoAbpPro/fKEoXMBMCpesSuj07l EWihrXvbq172RmM9TUFZNLYIVIHAyCRo4KHtI7VJ2s4Bat9TG/SYg8sAqLv2pzXZuqCu6ymO Pclk7TcTRIEwpI4Og6e92Pl0wArwMaBWUHcNBJdCamwRqOXt1iQnGnho+yYilBrJAuropB3C t/OjwxA7D6jtA7fTlVzbH3yPsIplD3b9gbqnU7i5u9K6K4bpkaHCRm83PX1AoJY+zEb50MBD 2zeSocxMIVA7Z9NeWT5Q0+Cbz12+F3qahad7M6eJBGq7GLM1d5ga8q8isa5HlXWP1Uu1KLWA p9AWgVr2KJvlQgMPbd9MiBJDOUBdQmY2v5YP1FUPddd+6Nk9mr0BI8ihQA27EN6LUsteZeai 1GIeMtpDraLu3DZV8gh9XB408ND2XQOSA9SmoONQvBvyj1DLA2rbA4wQcdv+sXOoHben276W Q9X9bVO79ai67mWb8eNtuMwWe6iuRHi990WiikGgApTdgIrM0/6ilMkqv6wgZamuXHeBYgSq QCRkEjTw0PaR2iRtZ/ZQk/akCWJ7MaV5+7nbNTgt96GKC5Of8Mp1F6hFoApEQiZBA09if1gw qb53tAyEF1A3vpSStZOtHqrxl1KywhSkin8pJTN09rqna0mgpjWCppAAT1OAtP1uAePWfKVT 9JmepnDavG5ADfOxpV81bUHlTN/yX7fuqSZLoKYUAv89DTxdAZL2hxXawq9KdKVT5nYEaliY KuvRbwC12J5Sw5LsxWX9gLon9CJQSxqUYZ4k8JS+UvbHr3OW33wrHYuya4aPjQNPoIa50Ee3 Ecrix/4EJ4tSbdm4ct33dSVQke1OYDsFPIGJ3SS79mN7DEsOkygq5HyvZJEJV6A2JW5OpHqf OVJUgT5TUw9DNmtKIs975brvqESgypsQJKUnUNffLMcgJ92Pt70daCVcO81g8N26N1BDL/Vu cKeU2gakaaYGtxeu+7Y0BKpHW5z49ANqB8/B/+zf71N7pF+f7H+jPpV4ftbmhv9FuTY/dXQH qnPjofvqFCBQnUPiBtSt773b3/eruIKDdiXfqH9uD9W58dB9dQoQqM4h8QJq+3lhdJl6sjgl OMFH8o16XOIPmEN1bjt0X58CBKpzTFyAmtgi1fU6769/Zh3amzGH+tZcuZmdQ37n1kv3SwUI VOc24QJUYZ3zDtotAaqwIFvJCFSlgMxurQCBaq1opr2agRq95Gzznh4CNTP0TP6BChCozkGt GqhZh/YSqM5Nie4rUIBAdQ5C1UAd7gp6L1713/1Hd7MTqM5Nie4rUIBAdQ5C3UAN4gA29ltp zjlUKyVpx0gBAtVIyFIz9QO1tGYH5CNQDxCZLnIUIFBz1AKkJVAVohKoCvGYFaEAgYpQNcMm gZoh1jKpG1Cl0yCKulWX9Ux1tpjPL6svgerccAlURQBcgCo930BRr+qynqnO8nMltmUury+B 6tx4CVRFADyAKjjfQFGjOrOepM5F50rEFFfUl0B1bsIEqiIAHkAVnG+gqFGdWU9S5/JzJRay K+pLoDo3YQJVEQAHoOZ9jquoW0VZz1dn3Ryqpr4EqnPDJVAVASBQFeLJs2oAI/dimZJAtVTz VLYIVEW4HICad76Bom41ZVUMgX2qoQOqJsbsofpE/O2VQFUEwAOoWecbKOpWU9bT1VkJVEV9 CVTnhkugKgLgAdSs8w0Udasqa/k2Ip9qKIGqiDGB6hNx9lAtdHcBaih42aZviyr72ThTnbVA LY8xgerXQlvP7KEqAuAGVEWZmfWjFSBQncNLoCoCQKAqxGNWhAIEKkLVDJsEaoZYy6QEqkI8 ZkUoQKAiVM2wSaBmiEWgKsRi1iMUIFCPUHnHB4GqCAB7qArxmBWhAIGKUDXDJoGaIRZ7qAqx mPUIBQjUI1RmDxWjMnuoGF1ptVgBArVYOpuM7KEqdCRQFeIxK0IBAhWhaoZNAjVDLA75FWIx 6xEKEKhHqMwhP0Zl9lAxutJqsQIEarF0NhnZQ1Xo+PP9+vP9ozDArFTAVoGf779ef/5uvoC0 NUtrUgUIVKlSkXTsoSrEY1aEAuyhIlTNsEmgZojFOVSFWMx6hAIE6hEqcw4VozJ7qBhdabVY AQK1WDqbjOyhKnR0A+qZjrJT6DvLeoY6I8qYdxQggWrV3grtEKiFwoVs4WT1+1NhoCTr2Q5b Lqnjam7l9bh9vb7eWj9f96+v1+3xa2HcyAYiLiOgpc2MQDUKZ6kZArVUOSegKu5sV9TUN+sZ 6mxcxvZiwual8XW7v+7Ny4RA9W2CYu8EqliqSMKmp3R7NOfnH/hzugvrDLQ5Q52Ny/j7eLy6 sU/ekP95v71Cx53bpgzaXYkJArVEtSFPaOz3vuFr7Mjznu9KZXndtlKeoc64MuYAdWyPBKq+ 3RVZIFCLZHtnGuasdFbkuXEPrrwMR6c8Q51xZcwA6mROn0A9upX2/ghUpfBHL0wZDy2VtT8m +xnqDCujHKjTlzuBekzTXHkhULXCHzzsV9zZrq2pW/4z1BlWRilQ5+2QQHVqrQSqgfChdyJd hlW7Q2zPURcKbOAMdUaVUQbU0DudbiMjUMFNcss8gWoj/PMu39qi94jYQK4vFdbCGeqMKKMA qKF3vNhtQqBiW+OmdQLVSvjQ8LstK/yhAscpED5yWO80IVCPi8DME4FqKTyhaqkmbaUUiMM0 5CJQU9qB/k6gWgs7DPuO3Z9qXQvaq1mBdBsjUJ3iR6A6CU+3VACoAIEKFHfPNIHqJDzdUgGg AgQqUFwC1UlcuqUCTgoQqF7ChxNtmn9QP+geMKrctEsFzqwA7ok+syoHlB0NPLT9AySiCypw OgUIVKeQoYGHtu8kG91SgaoVIFCdwoMGHtq+k2x0SwWqVoBAdQoPGnho+06y0S0VqFoBAtUp PGjgoe07ybbvNhyWEvkcsMqyXrJQ3cb4uu6ksg0EgWqrp9gaGnho++KKHpJweeLQIU7ppFCB 7t6mz/yijUAtbBTabGjgoe1r62+Xn9/x22l5pKXt7+GPLIW1LwLVWlGhPTTw0PaF1YQnkx3f JziKLVlSxBFxg9OabKfLEjQf2tfX1+Kkr/bA5+nfww2iGxcqRo6/S4ah8gQEqlOA0MBD23eS be5WdMB0/h3r67qhDjEOnmqynS5LgOlsDnQ5by2Kyajw8oDmKtqVohAEqkI8TVY08ND2NXW3 yZu+AqX0jvVV+Yzvfp/Zr8l2qiyxvy/Eko0Yppk+a+hPoNo83dlW0MBD28+usHUGwSV9pXes r4oKuwiu8VST7VRZYn+fvx3aw75vzUr+e0pga7g/yXf0DbbWTXFqj0BFqrtjGw08tH0n2d5u 8x5C3Rwq7qriZsAfVryX0BH0BCX659pOpR/+/mxX6QdoTlfrQ29zMSUgmScVvBwl9a0hDYHq FAU08ND2nWTr3aaH+/PyEaiTN1GzaBS/MkYE1CUwk3t/O8ju36WYG0/f1rfnnUB1ig0aeGj7 TrL1bpuHVDCUHMuoA2pVw/Ic4VND+KWtRPoocPtFtW1gyrR/3j/jXjACNaeBGqZFAw9t31CK fFPZQ0TZQ71ZENjd743HmmynyhKdQ51oG+2thh5qGpZ5Uzj5TeaoHATqUUov/KCBh7bvJFvn 9migVrW1KUf59Dao2NTI17u7uZwTjbyYZhDd+LtgNEGg5sSVaVcKoIGHtu8a0gao96x7o5U9 1I7i7Xfog66236P72V7tK03Wc17W9SekHYRzVvm7d+QtMc/q2uLEztlDFUtlmxANPLR9WzUy rWUDNdM+kx+uAIF6uOSf5RANPLR912gQqK7yI5wTqAhVL2QTDTy0fddQEaiu8iOcE6gIVS9k Ew08tH3XUP18v/58/7gWgc5tFfj5/uv1529bmx7WOIfqoXrjEw08tH0n2Tq37KG6yo9wzh4q QtUL2UQDD23fNVQEqqv8COcEKkLVC9lEAw9t3zVUBKqr/AjnBCpC1QvZRAMPbd81VASqq/wI 5wQqQtUL2UQDD23fNVQEqqv8COcEKkLVC9lEAw9t3zVUBKqr/AjnBCpC1QvZRAMPbd81VASq q/wI5wQqQtUL2UQDD23fNVQEqqv8COcEKkLVC9lEAw9t3zVUBKqr/AjnBCpC1QvZRAMPbd81 VASqq/wI5wQqQtUL2UQDD23fNVRioFoei2dpS6qexbGDUl/LdMfWl0AtjRPztQqggYe27xpG EVBzD1feq5GlLalyI9D272OS2stJd3x9CdSc+DDtSgE08ND2XUMqAWrqjvmcCljaEvht724K hzTf7s3dWakL7gQGc5McXN9QPAI1N0hMP1MADTy0fddwSoCae0HdXoUsbQmE+308Xs82ndOQ /+D6EqiCRsEk+wqggYe27xpfAVBTVyLnlN/SVo5fL6B61Jc91LyWwdQLBdDAQ9t3DSiBCpWf QC2Xl+ehlmunyokGHtq+qvLazAKgviyHrYa2wqV4Q2xW/16tPnHIr20qR+cnUI9WvPeHBh7a vpNsnVsJUFN3zOdUwNJWjl+vOVSH+nLIn9UwmHipABp4aPuuEZUAdbgOefOO+ZwaHL+NqH9z tFdXc9tUTqx807KH6qQ/Gnho+06yyXuoXVe2BdKgxe3xqyi2pS1pMZyG/ObapevLHmpaI6bY UQANPLR91+CKeqiuJaTzTAUI1EzBmHyuABp4aPuu8SRQXeVHOCdQEapeyCYaeGj7rqEiUF3l RzgnUBGqXsgmGnho+66hIlBd5Uc4J1ARql7IJhp4EvvDN+PHryIrA02gKgWsLzuBWl9MTlUi CfA0FUrbf77uzQEct1tzEMft0ayHn+iHQD1RsGRFJVBlOjHVhgJp4OmkS9oPX/983V/P2MlC Otf43AQqXuODPRCoBwv+ae6SwFNWOGU/fALZ7cvs9jrq9mjmFrbpHWt6xQRqruDVpydQqw9R 3QVMAU9b+l37i15pN5fa9Fa1TkX5u6kG1bwtgSpS+kyJCNQzRavCsnoCdX2a0B7ktr7W6fKM B3wIgNxOMxj0hgnUClu0rkgEqk6/y+f2A+oShBMorobhW9dw9Atak085U73c9yn0MwjvnLy0 B14C9eOeHwL140J6bIXcgDosRi2r2/7+9hoYuXsNR9RGgOyYP6ome6jHNrITeSNQTxSsGovq BdT2PM7oBOZ8cSr7Gg7xbgHOodbYHr3LRKB6R+Dk/l2AmoBefNguOfFoebxdKjghvWDOdcsM h/wpgU/3dwL1dCGrq8AuQC2SIAXUXJgWFWKeSQxUxJF7KT1K6ocoZ0k5/PIQqH7af4TnjwBq 2+M1WLXPjagIqIhDobcW6XIrME2PKKemPD55CVQf3T/G6+mBuljEOjQwEqAa3y2/u0inqbxx OUuLMt+FkVhcLHWyk49ABYh6JZOnBqp4AQoUUQlQDS/WC7XIXqSTVt24nFK3s3TLXRtbO0GK jMsyEagynZhqQ4EzA3VvT6nqCyhpaxEAFXcVsu0cKq6cUjGbdA4AXZaOQM2IF5OuFTgPUCuM HoFqHJT5otj6pVjwVVxmCQnUTMGYfK4AgapoEQKgtr2u5ZdfseuRs4th20PFlTO7Ym2Gdp9y +zXbMI+a/1VciWcCtUQ15nkrQKAqGoMEqLC75Y2BCiunQt/pCWSlX8VluidQMwVjcvZQzdqA BKjDFdLv8eu6p1VWHmOgwsqZUbslNFOLjqm/Z7gekhKoBaIxy6gAe6iK1iACarCP2DBvDVRU OfP0HYf63ZB/e3ER8yEHgZoXL6ZeKECgKpqEGKgKH8waUQAD0/aV0pzJe8gOEXBcv8D2aX5D AQJV0TQIVIV4hVnBX8URqIVxYbZOAQJV0RIIVIV4BVkP+CqOQC2IC7OMChCoitZAoCrEy8wK WICKlYBAzYwLk88VIFAVLYJAVYiXl/Wor+II1Ly4MPVCAQJV0SQIVIV4dWYlUOuMy2lKRaAq QkWgKsSrMyuBWmdcTlMqAlURKgJVIV6dWQnUOuNymlIRqIpQEagK8erMSqDWGZfTlIpAVYSK QFWIV2dWArXOuJymVASqIlQEqkK8OrMSqHXG5TSlIlAVoSJQFeLVmZVArTMupykVgaoIFYGq EK/OrARqnXE5TakIVEWoCFSFeHVmJVDrjMtpSkWgKkJFoCrEqzMrgVpnXE5TKgJVEaqf79ef 7x+FAWatTYGf779ef/6urVT55eHxffmameQgUBUysoeqEK/OrOyh1hmX05SKQFWEikBViFdn VgK1zricplQEqiJUBKpCvDqzEqh1xuU0pSJQFaESA9XyTilLW8u6I20rdG6zIu7QWpeJQNXG 6eL5CVRFAwiHHicvIFref6S59dTS1gZMzW9nVej7zjqCPim30h2BqhTw6tkJVEULkAA1dtJ8 uMrj9mj6XJk/lrZWPG1eDl+312NaqNJyZlZrL/n7YOnb/XW/7d2CauOUQLXR8bJWCFRN6Jve ZgqMMSi1YLy/nrmuLW0tfSNt59Zzkv738eh1OmbI/7wvXiqKsntm5bYpJ/UJVI3w4SHfB2Pb w1pCt/B+JEtb6w6qXTk1im7nPQKo6Xhi6mZvlUC111RkkUAVybSZKDVEtISgpS0CNRJSyRSO rrkclptAPUzquSMCVSl86iG0HEpb2jrJkH8sJr6Hmno5KlvKodkJ1EPlHp0RqFrhE8PE2Hxp 6WKPpa11F3U9r1taTq2k0fxooH7OcD/IR6BCGmHaKIGa1iiZIoBncz+P5VYnS1srojbzwV+T emi2dyUVK0iABWrond5mWxwKilhRFgLVKRgEqo3wz/velh7LDfOWtjag+tWAtfmnLsAAgRp6 /qndGjbN5DArBOphUnMOFSN1eOA/Y8sNRp9arYaeeMEWtlqr05eLQHUKEHuolsITqpZq4m19 Jkw5h4pvOZseCFRr8Ych+ef1eqyV8rP3+TFiD9WpdRGoTsLTLRUAKkCgAsXdM02gOglPt1QA qACBChSXQHUSl26pgJMCBKqX8P0WGZR7dA8YVW7apQJnVoBAdYoeGnho+06y0S0VqFoBAtUp PGjgoe07yUa3VKBqBQhUp/CggYe27yQb3VKBqhUgUJ3CgwYe2r6TbHRLBapWgEB1Cg8aeGj7 TrLtuw2HpXzg54wYrbtN9nWdG4Cp6ZFWCdQj1Z74QgMPbd9Jtg23y9Og6ipdzaXp7o7i12VW MSJQrZTMtIMGHtp+ZnWByfkdv17cz/22Xq9NngUCNU8vs9Ro4KHtmwmhNLR/fN9g3OIIOsvj +yxtTQVU2P3Ao/SUTasoO4FaJJs+Exp4aPt6BQws7B4wPYdp0KP8bnnLA6YtbUVg+q5k/kHV n3bYs0ELyzZBoGZLZpMBDTy0fRsVNFbSV2eY3S0fuy219JoSS1sznoYrshfnwmaXkUN/TYsM eQlUrYKF+dHAQ9svrLZdttQlfY0ns7vlLS/ps7Q1VdPI7iddmGfX2OSWCFS5VqYp0cBD2zcV o8BY3oOvm0O1vEba0ta8g9qs1i+vE4n1hlNaC15UKRNX/juB6hR9NPDQ9p1k692mh/vz8hGo 8njlaiu3fIWUBKpTlNHAQ9t3kq1328z1ZV3upgPqy2g43Rbe0hZgyN8VkXd0lbZvArVUOWU+ NPDQ9pXV12XPHpYqgdoOnReb37MXfIbOtaGt+ZjfrIx50ym6UH5abgLVKaJo4KHtO8nWuT0a qC/LrU6WtmZEbT8l/VJsmxqsEajlrZtALddOlRMNPLR9VeW1mRug3h+/GVaUPdSO4h2w+oPB dd/AW9qKQFVZRgI1o2ktkhKo5dqpcqKBh7avqrw2czZQtQ6vlZ9ALY83gVqunSonGnho+6rK azMTqFoFd/MTqOXyEqjl2qlyooGHtq+qvDYzgapVkEAFKUiggoRNmUUDD20/VT/o33++X3++ f6Aurmz85/uv15+/r6xAed0J1HLtVDnRwEPbV1Vem5k9VK2C7KGCFCRQQcKmzKKBh7afqh/0 7wQqWN6b4mQuaNGqN06gOoUIDTy0fSfZOrcEKlR+LkqVy0uglmunyokGHtq+qvLazASqVkEO +UEKEqggYVNm0cBD20/VD/p3AhUsL4f8pQITqKXKKfOhgYe2r6y+LjuBqtMvkZtD/nJ5CdRy 7VQ50cBD21dVXpuZQNUqyCE/SEECFSRsyiwaeGj7qfpB/06gguXlkL9UYAK1VDllPjTw0PaV 1ddlJ1B1+nHID9OPQIVJu28YDTy0fSfZOrcEKlR+zqGWy0uglmunyokGHtq+qvLazGKgIo7J q+0owKmYNvUlUMsbKIFarp0qJxp4aPuqymszi4CKOMh5BNb7HOfsuiDK1XbbecB0dizsMxCo 9pqKLKKBh7YvqiQqkQSosRs/S68taWcZmltFw8HNt3tzn9VX+aeZxuV6S2xolz3U8oZLoJZr p8qJBh7avqry2swSoBpfhvf7eLye3QRu2xMs7qEal+stpaFdArW8gRKo5dqpcqKBh7avqrw2 swCobY/S4p76VVl1QEWVy9IugVreQAnUcu1UOdHAQ9tXVV6bmUBdY97wBUKgljdQArVcO1VO NPDQ9lWV12YWALW5XH6jh7q4Djq7LLoeKqxchvUlULMbxTsDgVqunSonGnho+6rKazNLgNou 0izgqViUGousBCqqXIZ2CdTyBkqglmunyokGHtq+qvLazBKgGm4jmhdXCVRwub7eq2XP173Z lVBy3TWBWt5ACdRy7VQ50cBD21dVXptZBNTgxGajuy1QUeWys0ugljdQArVcO1VONPDQ9lWV 12YWA1Xr6Jr5CdTyuBOo5dqpcqKBh7avqrw2M4GqVXA3P4FaLi+BWq6dKicaeGj7qsprMxOo WgUJVJCCBCpI2JRZNPDQ9lP1g/6dQAXLy/NQSwUmUEuVU+ZDA09if/g+vfgzSqUGxdkJ1GLp JBk55JeoFE9DoJZrp8opAZ7GQdp+v63mFvlEU+P4iLwEKlRlArVcXgK1XDtVzjTwVOa7k5Ga fzZ/wib3sPE9dkqRzjU+N4EK1ZhALZeXQC3XTpUzCTyV9VcSqM/7sOm726tZsgG8vIhN73h5 cEmOMQI1R63stARqtmTvDARquXaqnK5AXfRKu7lU7TfuUjm6qQbVvC2BKhW7KB2BWiRbm4lA LddOldMTqOuj3mKQ6343lHMN3PlXSOMnjzuytNMMBr1hAlXV9lKZCdSUQtt/J1DLtVPl9APq EpQTaL6H4evvwJe92DBlMEI0PW3wPvF+BukpsNf/vTkNQaCq2l4qM4GaUohALVcIlNMNqMNi 1LJe7e9vr8dv84domgDZ/u+RhazoAcdRH+yhgpqUmVkCtVxK9lDLtVPl9ALqvGc5rUKil7m7 GyDdQx09cQ5V1XAOyEyglotMoJZrp8rpAtTEFqntxanljZpD1SfzqFmr9iGfYhGMQ35V20tl JlBTCnHIX64QKKcLUIvqsgXThbGtqYQin4lMYqBaHt9naWv+QlLteADoS6CWi8oearl2qpyn AGrbo5XOeWoPXs6QUwRUu3vqLe+8H2s5AppAzYh95UkJVKcAVQ/U6SLVUqPNRSvl/lJpLCRA Nbyn/mVpq6nje8dDM+1x11xJPbXV7p7oFw2lOm6kYw+1XEACtVw7Vc6qgZr8HDXSGzW5r0ko qQSohpfWWV+s9/t4vJ5tVZW9+uWLzWjahUAVtsNIMgK1XDtVzpqBurdndByeLjb2Zy1KqaQL XbzXvd3ftf1jfU/917J+yZeOpI7GQJW4FKQhUAUibSQhUMu1U+WsGaiqih2RmUDtVZ6/1NZz sQVfs/XTCLXN6x7RrCx8EKgWKhbYIFALRBuyCIBqOky3nD6YVVvZQ53YavcXL+ZRc79mG+Xl AdOlrZNALVVOmY9AVQgoAWo7JF/sdS2d57W0BQJqZ3bygUXp12zsoSoaJg9HUYmnyUygKtST AHW4QtrgnnrMtqkRgMXD6+UilNHXbJxDLW+b7KGWa6fKSaAq5BMBdQTWoLXuzNc6N/aPQ/1u yL87jypcOCRQy9smgVqunSongaqQTwxUhY9PzCrcVkWglgefQC3XTpWTQFXIR6AWiidbBCNQ C+VtshGo5dqpchKoCvkI1LR4iq/ZCNS0vFspCNRy7VQ5CVSFfASqQLzyr9kIVIG8G0kI1HLt VDkJVIV8BKpQvLKv2QhUobyRZARquXaqnASqQj4CVSFeOiuBmtaIQ/5yjSA5CVSFrASqQrx0 VgI1rRGBWq4RJCeBqpCVQFWIl85KoKY1IlDLNYLkJFAVshKoCvHSWQnUtEYEarlGkJwEqkJW AlUhXjorgZrWiEAt1wiSk0BVyEqgKsRLZyVQ0xoRqOUaQXISqApZCVSFeOmsBGpaIwK1XCNI TgJVISuBqhAvnZVATWtEoJZrBMlJoCpkJVAV4qWzEqhpjQjUco0gOQlUhawEqkK8dFYCNa0R gVquESQngaqQ9ef79ef7R2GAWfcU+Pn+6/Xnb2pUogA/PS1RzSAPgaoQkT1UhXjprOyhpjVi D7VcI0hOAlUhK4GqEC+dlUBNa0SglmsEyUmgKmQlUBXipbMSqGmNCNRyjSA5CVSFrGKgWt4D VautmI6yk/m3IkCglrdNzqGWa6fKSaAq5Au3eyavCu0BWN2tp5bl2oZp/MI+meYEqkynWCoC tVw7VU4CVSGfBKixK5XDtSDCmz9npavV1kLCAMK2Xd3ur/stdgOqTHMCVaYTgVquk3lOAlUj 6bMBxuP1u2ciBs8WjPfXM9d1rbZWQH30ddMN+Z/32+uxK26ugNdJzx6qU6wJVI3wARj7YGx7 a0voxnqagmLUamu76BqgprUVSHbZJASqU+gJVJ3wqWFprRC0LBcEqJLpFF3oPjo3geoUXgJV KXzqwa91mG5Zrk0Jy3uoqReVMmofn51AdQoxgaoVPjE0jc2XqhalFlMMNdgyByqH+9pWSaBq FSzMT6AWCjfNFqC2uX3KcntSrba2NCzroYbe6Y2rUaqGSaCq5CvPTKCWazdn6t72oFo341uW K6ZjAVBDjz61c8ImZB9thUB1Ci+BaiV8gAe3+ejUbLahlWwn0zn9yNwEqlNYCVRL4QnVcjUJ 03Lt1jkJVEs1M2wRqBliiZIOw+iCjfsi+5+WiHohIkqgIlQV2CRQBSIxCRU4mQIEqlPACFQn 4emWCgAVIFCB4u6ZJlCdhKdbKgBUgEAFikugOolLt1TASQEC1Uv4cMxa8w/qB90DRpWbdqnA mRXAPdFnVuWAsqOBh7Z/gER0QQVOpwCB6hQyNPDQ9p1ko1sqULUCBKpTeNDAQ9t3ko1uqUDV ChCoTuFBAw9t30k2uqUCVStAoDqFBw08tH0n2eiWClStAIHqFB408ND2nWSjWypQtQIEqlN4 0MDbsv++GbPftjWkG/59fy7P/pwLFL3CA6jhUN7krdGAMtA3QNQPN0mgOgXYC6iz6m5dWhcO bo4e5xZOJiq/njhf6s7frTmer+j653yHkxz0fbzmqoBVkZlAdQpD1UBtLiOOgnMTtCARB3+F t5WqSkXfzZXbPGc2tw0RqLmKGaWvG6iv1/PefMm1GGfHfheXowGywenvwV93JUc3DXHk9Rz0 fbzmRo+WqxkC1Un+2oH6Wl1yF3qtkh6L0bTAolfazWcedNYpfbdPxaGaOz2H1m4JVGtFhfaq B2rfK3x3UiW3fLbDZJue5HrxawlqCbjL7m5K+25x0/aahzhu957z7neS+R4a2ZbtTptxwVH2 IpL5Ttme67J9iaLwQTlZMgLVKWD1A7XvofREHYfAccFSuweWuwn2wbt8aCdweE8lpIAqvKm0 7Y1OF9okvoW2J9CN7lIo8j2HadBxbrtfTJvcXhrtaRb5TtueTwtdb9qAQCVQX5s3Bw/Dfumi kFUPdWvxq/39MO3QA/XRAbED9qQnFiuzuJcd6dFNfQtsv18wt3sznyzcGSGq9zAUb+obsx21 IZiukfhO2Y7ocvQ2O6fH+e2WQHWKwBl6qEGa0OO43xuQiTeCpnqOacG3F7+mPZ6hJznCb9YT i8FzNS+8LovIt8D2bwP6ZzcT2U4NSOQT+W7nNjNtC16IUt8rxXZts4eabu1MYaLAWYDaELXt /UmAMAoTHiTZvF3eAzpdKImBe/xdtGeUAkvi7wOw/xkWyJa7GDbzCoEq9N1BOjWHuk6z+0Is 8j2+LNa2J/OoBrs9TB64g4ywh3qQ0Es3VQDVqe42bmPD2LFHVARUYcHybAuBKvQ9T5ayvf/V W5HLBcyTI5ej9y7rKqXOTaCqJSwzQKCW6Tbm2gdq27OO9iILe87T4mbZTkFPo8OO7X7RCbJ3 N8s2sv4a7TB5CVSMrkmrBGpSokSC/SH/eh9tY06yKCUpVmwudtM2EigbtmeLd5IKZaTZs725 aJU7ZZRRnsqSEqhOASFQtcKvF6XahZV3r1S6tamkHDm2DwZqap64pLpDnqTtSF2tXmKach+Y l0A9UOypKwJVK3w/5H9Otk2tFkCkm+9LyiK1fSxQ9/YD5y0srjWR2V5s7OeiVEnjYp5cBQjU XMWYngrUrwB7qE4xIlCdhKdbKgBUgEAFirtnmkB1Ep5uqQBQAQIVKC6B6iQu3VIBJwUIVC/h ++/PUe7RPWBUuWmXCpxZAQLVKXpo4KHtO8lGt1SgagUIVKfwoIGHtu8kG91SgaoVIFCdwoMG Htq+k2x0SwWqVoBAdQoPGnho+06y0S0VqFoBAtUpPGjgoe07yUa3VKBqBQhUp/CggYe27yQb 3VKBqhUgUJ3CgwYe2r6TbHRLBapWgEB1Cg8aeGj7TrLRLRWoWgEC1Sk8aOCh7TvJRrdUoGoF CFSn8KCBt21/4wZMwQV2R0s1HBenPXZOXu7F0XPv21SHm1bllmIpj6/PWIqr+tZFLD83gZqv mUkOAjUlY38H/C1yIV4qa/Hf907A154671GfQYir+i5uCMUZCdRi6XQZCdSEfsN1GslT4nVx mOfePgxafb+8S3362l3Vt2XTENoiUIVCWSf7XKA2vSGDU9rDdSbdBXNH3u2euvSufOjvU5+u 1V7Vt/UzK7FHoEpUAqT5TKDGLs4rEG/RK+3m/wxuK00WZe+6EkXd3OoT3kfhipjxRXCcls6+ k7HGJCBQMbomrZ4HqMI7kdph5dCrTFZ/N8F6eL2EmQRu0jufpkXBADVdn1AGaXmF8eirJfM9 aLBle7gQsbkEsV2ok73cZL5TthcLhcetUBY1YgK1SDZ9pnMAdWzMe+147/K2oZ7Lf2/fF798 wIaHeHqjaQqowltJ+/vlx7oZDPlXNiX1EZZ3At1oPIp8z2Ea4jS33S9otdMv3U+0l1vkO227 vcn2XaAjp3/KnnECtUw3dS4/oO6sZE/mPt+QvN2bOVHBCrdVDzV6t3sj9+w++B6oj8mNp9Ne U2whS3SdsXRRKqRrhtGPrlf+NRlSrxqGpD6C8mbHIxRE4vsNyPDCisQ6amNj69208hLfKdsR XdSLg+ond98AgQoWeMu8H1BjPYz1m/+3gdWz64808BAAtU2b6jmmxZ73SKbpp2Ucen3j0HPW a4rBU7TPVrptqu9RChbfRPURlLckHiLfLVAzYy3YeSH1vWoRu7bZQ00/QRdN4QnUrvMyGUrv zn3mAHUAsGyOLe9hmr4IYuAefxftxQggsJzHHKcplqv7wgc74XN4CfwzLLot4byZVxgPoe/u pTn8SGwvpyciD3CR7/HlPQ7x5+Vq4yF4iXkihT1UJ/W9gSqvtuQhk1uzSRkbco6QKweqtHS2 muSV19b3vMYp2wKYSiVcv03bkdAapouEW1MJxX5tMxKotnqKrRGoYqkiCfeB2s4dRnt8hT3n jYffbME5q7wp6Gl0TS3K2eziiI9MpLaR9ddo1+UlUPUaFlkgUItk6zPtD/m7vZcLeIoWpaRl Mn6os8pr7HtW5b055PKPGnZVnS02Snqj+nl6aZRL0hGoJaoZ5CFQNSKuF6XaOeF3r1S6Dam0 DNZQyymvte+pBhHbornnQh2TtiPlMX0xFpZ7JxuBaq+pyCKBKpJpI1E/5H9Otk2tFit6SPUn Rm3vey0pBwJq0vIifA8arG3v7THWTnnIbM914aJUSXu9QJ7zAPUCwWAVqYCRAuyhGgmZa4ZA zVWM6alA/QoQqE4xIlCdhKdbKgBUgEAFirtnmkB1Ep5uqQBQAQIVKC6B6iQu3VIBJwUIVC/h +9VnlHt0DxhVbtqlAmdWgEB1ih4aeGj7TrLRLRWoWgEC1Sk8aOCh7TvJRrdUoGoFCFSn8KCB h7bvJBvdUoGqFSBQncKDBh7avpNsdEsFqlaAQHUKDxp4aPtOstEtFahaAQLVKTxo4KHtO8lG t1SgagUIVKfwoIGHtu8kG91SgaoVIFCdwoMGHtq+k2x0SwWqVoBAdQoPGnjb9jdurBRdYnes WMPxbtpj4kpKfbzvxTF1/YcfuzeqCip2fD3GQnn6FkgDSUKgQmRNGyVQUxr1d7Y31zUffwam h++90/Klt84uNfWox1AGT9+ptoX7O4GK03bXMoGaEH64jC15qjsggC6+tw+OLr6L3qUefTw8 fQOahNQkgSpVyjjd5wK16ZkYXPUbrjTpTtkXXtlsGB8f36kL8vLvdPKpRxcIT9+GTSHbFIGa LZlNhs8EqtEFaote6XB//fwOeZs4rKy4+d672mSt6+9veNns/LjVI7wDw9U04wvg0PiBmoXU LIEqVco4Xf1AHS7Cay6/axdIElcwt0M86VXAKRYs502XQJGAW3pH07ws6+F1zJfUds79T1Kg ynrssnoMdd/yndkGenMy3ynbi0U6j5XJgmeeQC0QzSJL3UDtFxTaIXf3s9fL2Ltsbajn8t/b l+YtH7QB6NNbTVNAFd4i2vakpgs+Et9C2/1URah3lAUr39IhfwSoRfWYw3RdTmEbKPKdtt3e YvsWTvYSsXgutTYIVK2Chfn9gLqzmjzMfQ4LCrO6bWy3GtJY9VCjvhsns/vbe6A+JreeTnvQ sYUsyfXDEt8C2+8XzO3ezCdLV+gli1LCXpukHu+XZHhRRcpZ0gZCW5D4TtmOaFy8MFf4fJZm I1BLlVPm8wNqrLcp6AGIVttTPce0aPOeyTT9tIxDT3Kchpj1oGPwFOyzFfkW2P5tQN/N9xoM +fsX1djLTcdKVI8WqJnlFLQBqe9VS9i1na5zumUdk4JAPUbnlRdPoHYdiclQOjn3uRzm7okW 0ibmW7eyJx7YEZoxcI+/i/ZmUjAQ+v7nI7IvdjNvPlDXUyTL1f0EXIT1mC/wScopaANFvscX zzjEX09HHL8XuQwMBGqZbupc3kCVV0DwIMmNGaWMTT+MoCkCqrBkebYloBI6fidD9NZS5US2 AaHtramEXPnA6QlUsMBb5k8B1H7BYXsByUm8ZkB9n2zL6UoxAY1gWF5c8izbKVCVlOJgoCLb QJZthJYl+u/nIVDtNRVZrB6os0UgUZUOTLQ/5O/2QS6mHSSLUpIaZNlGQOBAoCLbwJ7tzUUr 6QKfJJCYNAQqRtek1aqBmppvTNYOnWC9KNXOCb+/0JJubSopZ47tEwMV2QaStiO6Wb0QS0Ke kYdAzRDLMmnNQN3bV1rH/up+yP+cbJtafe4632JkO20htY0A6rBLY7pPU9sy1+VEtgGZ7bnG XJTSxvjD89cM1A+XntWjAjAF2EOFSZuYvO7Pu0S5RwMbVW7apQJnVoBAdYoeGnho+06y0S0V qFoBAtUpPGjgoe07yUa3VKBqBQhUp/CggYe27yQb3VKBqhUgUJ3CgwYe2r6TbHRLBapWgEB1 Cg8aeGj7TrLRLRWoWgEC1Sk8aOCh7TvJRrdUoGoFCFSn8KCBh7bvJBvdUoGqFSBQncKDBh7a vpNsdEsFqlaAQHUKDxp4aPtOstEtFahaAQLVKTxo4KHtO8lGt1SgagUIVKfwoIGHtu8kG91S gaoVIFCdwoMGHtq+k2x0SwWqVoBAdQoPGnjb9jduLxVcYne0VMMxbx5HBl7L9+KovP7gnq/V rQh5LcBTw7yS2qUmUO20zLJEoKbk6u9uv0UuxUtlVf/9ar43zm1d3biaI6ynhjnltE1LoNrq KbZGoCakGq7BSJ7uLpZcnvByvrcPwo5eSihR0lNDSflAaQhUkLAps58L1KZnsjo9P6XG+u/h SpPulH3EHUr75bme752bBQpfaJ4a5rc2uxwEqp2WWZY+E6ixy/OyZOkSLx7ibi5ucelegVlR lkv63ruqZR3T39/wotv58dRQFGRcIgIVp+2u5fqBulioSK0M9fNtFnc3rYeZy4daAm7pvU/z MKV9t8R/PW7NnU794s12nfPulJL5Hsq7ZXu4wHAon+RFJAWqbLQgq0eqnJntz+k5XrolUJ0C UTtQ21tE3xDdf5D2Ll0b6rn89zaElg/aCK7xorYUUIU3k/b3wo/vColvoe0JdKPvoiLfc5gG Tee2+4Wgdqpk6OxHevcr39Ihf6QdFNUjXc6c9uf0CEfdEqhO0fAD6s6K7jD3GZk3Sy5OWPVQ o3eyN0Ga3ePeA/UxufV0OiUQm/eTXEMs8S2w/X7B3O7NfLLwLnmJ73Y2JAAyXJkdsb15n/3t NWFspMVLFqWEPUZJPVLlLGl/Ts8xe6i1CO94Sd96TjI1lEv9fRA11XNMiz/vmUzTT8sw9CTH 4eysTjF4CvbZinwLbP82oH+2RZcP+UW+W6Bm2hYtKkm3TaXbgbQeq5awW86033TLOiYFe6jH 6Lzy4tdD7YrSNvz3Bu5hRX1ZzEmvRLxyH/JI5u1iHaXQ49zuTY3QjIF7/F20N50CS+Lvg+9/ hh7iUovNvEKgCn13kB5+JLaX0xNbjX3R+9zc2J8AW1E9xhfPOMU0r2PXI380r6f6fwhUpxh5 AzW72ltDuWxDFhliX3uND3sRUIXFyrMtgZ7Q8bpL1y6Mba8VSmGa4x/RUxSWs6r2t60ZgZrT ngzTng6oGcNXQ5k2TO0DtZ1vjfYiC3vO01Jk2XYCar9QZLHjYh4AY6BmlROppV2LJVDttMyy VDVQNxcNhAssWUqUJN4f8nf7WBfwlCxKSYqSZRsJgb15z9QilKSisTSGQJ0tMi58Vd/+2EMt bUGwfFUDNdYbtQKSiaLrRal2TvjdK5VubSopTI7tg4Gamicuqe4sjxFQk+WM6FZV+yNQ1U3J 2kDdQA21XSxUVLUo0A/5n5NtU6vyzctvO/yV2j4WqHv7gVPfZUjb99uHwqCsnDW3PwJV2l4O S1c/UA+Tgo6owMcowDlUp1ASqE7C0y0VACpAoALF3TNNoDoJT7dUAKgAgQoUl0B1EpduqYCT AgSql/COn546VZluqcDHK0CgOoWYQ34n4emWCgAVIFCB4nLI7yQu3VIBJwUIVC/hOeR3Up5u qQBOAQIVp+2uZQ75nYSnWyoAVIBABYrLIb+TuHRLBZwUIFC9hOeQ30l5uqUCOAUIVJy2HPLn anuSMy9zq8X0aAWMDm0xKCaBaiBiiQnOoU5VEx4yXCI081xGgUOvG99QlUB1am4E6iB8gCnq /E6n4NKtowLhJDKDg8QLa0CgFgqnzUagdgqGc0zjJ8HFTuVvMggu29PGxjY/62Grp8BaaCNO x00SqIL4IJIQqC1NX+uL2Qa1CSJEuyu3ea54hOG/7Rm4MuUIVJlO5qkI1NTtqOd6gLcbCOth /vCIDPoM/QlUUXDsE10eqGFYtnvqO0Fk3+o0Fs8Xj9BLVVwsUCQWgVokmz7T1YGabuzne4Dj rYL10D8thRaSL+1CuzvZCFR7TUUWrw3U1HA/SJgLIuT9TaKQbiSS1mO4eLC5bLD96MNvpVr3 YljcBXV0F3FWeEk708R2nZdAtdVTbO3aQG3gkVyFlYIoSD4+xK7PbzT6knp0MJ0uotSwp3Je HUk9ul0b40Kj/4b75/3YLXkEqhiBtgkvDVTRUGzn3vkJjN83aN7uDaS3tmDZxi7PmqAem/fQ HwuD/XoJ6hG5HrqNT/LlmadoTur01FKOtXRaAjWtESQFgfpM6rrupa17PL+PRzM5MPZS6+uh hq2zDVRmQ3hBzy15d31SPvME+fUQ1NO8lHODBCpY4FrMXx2o98evKBTtELI/SCb8e3tvYa1z qF015fWYTGFU+HaQ1WMyj+rYO22VPHilnz1U0WNtn4hAlQFVrnzdQM2tx/YHD3JLVaR0PvCG QK2iFeALQaAeDFTNJ6uavDlNqfWz1wtvu1xNmsIdAJq8OfWYpd140WnKkpGXQC0O3LkyEqhH AnXYklQGom6YW5ZX3CrbnlxqEaryemwuri0XC4+rB4EqboHnTnhpoP58v/58/xgHMN4TGnYB 3O73sp5dgERzGlZxr1BSS8EC1Cnq0W9fm039tvo9mr90P0fX4+f7r9efvyVBsEnDOVQbHbOt XBqoDUCki1JyYTeA+nx2D3PGMHH02W8ML8qbUfJ2F8B88W34/wFOvyeoR4/M5jjGSV0Wi1JH 14M9VHk7PHVKAtV6yJ9oDgVQfJ9YVJAX1jgLynLlehCosJZYl2ECtXagTr7mKoAYrLVll+Xa 9SBQYS2xLsMEat1AnR18nQ0xYFvLLMvV60GgAttiTaYJ1JqBujyoZJwTdN9rnwVU1oNArYl6 wLIQqDUDdRH4LIgBG03x4tp7iR27WyGn6hpNM/ISqDlBOXFaArUWoPa9uL2uZ8YDDG+Sm2Vh PWLaE6jwFlmHAwL1YKAmwv5sDlmpq0Rl7ZT1mOtGoJa1o9PlIlBrwddnnQHgPserfhJt40Gg qgNyDgMEai1APUd7YSnLFCBQy3Q7XS4ClUA9XaM9YYEJ1BMGraTIBCqBWtJumCdPAQI1T6/T piZQCdTTNt4TFZxAPVGwNEUlUAlUTfthXpkCBKpMp9OnIlAJ1NM34hNUgEA9QZAsikigEqgW 7Yg29hUgUC/SQghUAvUiTd21mgSqq/zHOSdQCdTjWtt1PRGoF4k9gUqgXqSpu1aTQHWV/zjn BCqBelxru64nAvUisSdQCdSLNHXXahKorvIf55xATQE1HEcXuVa5pqP0RM2F9RDJBEpEoIKE rc0sgUqgQq+mNm/w53wxEKjmDaFOgwQqgUqg4p9NAhWvcRUeCFQClUDFP4oEKl7jKjwQqAQq gYp/FAlUvMZVePAH6vpGzNsjBTkj6ZqFpXvSV+6cne1J70Y1bcxI67GMx73JWdOPtB5dHIb2 /eV8hQCBWlMbApbFFajtSvnXa97WBZe8WelhDtTxIXZ+fiMKSUDUaT99oQUQfH3VBFVJPZrX x72B6TsIXVwOe1FH1CdQrR7ayu34AXWnkT/vzUMc2apkraUIqBs9zlDG23ihXgee5iG+3V/3 5uGtD6iCerS6L+G5ATDrWIjtCerRvqjn7aeNzyReYndGCQlUIyFrN+MG1Eijz9eqedg1D4kI qK/Xupe2fhn8NreVdkPjWof8snqsYmASp/zI7uWQxGOenz1U2wjQ2qYCbkCN9oZyAtUNT1U9 QSFQQ6naIWTogfb/bA8f6wVqXj3Gl4P3/GOsVcjiMZlH1bx4c5rlRlr2UA1EPIOJUwK1hbHB nFgGUOWxrBuoufWoEabyOkxSql/gRV7fmQhUnX6nye0G1N2h5O/rd2Oh/z1XOektTnuOsf/e 7E0eCdR+AW4oX1HP+qjPXfuyRnU7Uz1mT+HiRXdwPQjU0yBRV1A3oPZzjXsP7SZ0TtdDXUxP FC66dcNc8Ir7btlOUo/NxbVhiuj4ehCoOk6dJrcfUMP6Tbdtag5V6bapY+dQ5QGNDPkXOwKK Fq5aG7dGLyBQUwtQZ6lHbGFwWnaHehCo8ifo1Cldgdoqp9nYH+ClAMyRQ/5ZK8l9GfT1BA/5 96ZT4qOFOuvRSb3Y2L+7KIWvB4F6akzKC+8PVHlZzVNCgJouZe6eyJC+7cWDgZou+TwF6xFG WLIXOoGa27pOmp5APegz17595H95NNlrWxFQWY9hyopAPSn6MMUmUI8DagehvC/AwkLU+AWl vEeEaS39YJr1GIRgDxXZ0M5om0A9Bqj5Pbr4/LJq25VBA2U95h94SOPBIb9B4zuDCQL1AKCm Vs+lDcV7yM96LCeR2UOVtt2rpCNQ8UBdfiYZ79UItos5A5X1WFAhIx7soV6EqAQqHqg5TenZ HLJSV4lySj+mZT3WOyKKvo4rk//1VZiP2ZQKEKi14OuzzgA4Eh7KR2Aju2082EPFRKk6qwRq LUCtrmmwQIYKEKiGYtZsikAlUGtun59SNgL1UyKZqAeBSqBepKm7VpNAdZX/OOcEKoF6XGu7 ricC9SKxJ1AJ1Is0dddqEqiu8h/nnEAlUI9rbdf1RKBeJPYEKoF6kabuWk0C1VX+45wTqATq ca3tup4I1IvEnkAlUC/S1F2rSaC6yn+ccwKVQD2utV3XE4F6kdgTqATqRZq6azUJVFf5j3NO oBKox7W263oiUC8SewI1BdRwrF7klP2Mo9vqaEqsh2ccCFRP9Q/0TaASqNKL5g5sljuuzvli IFDraD3wUhCoBCqBCn/Mmgtrb+PdYHh3PA/1AI2jLghUApVAxT99BCpe4yo8EKgEKoGKfxQJ VLzGVXggUK2BanvSu10jkc499ndbfQ23e8runbcrZ8qStB5dHIb2/eV8hQCBmorrh/ydQLUE 6vgQOz+/kdYpAVEH09tj1KTs2mjkwyGpx+vVXij4DkIXl2m9kCWM2SZQj1bcyd+lgfrz/frz /ZNQfqPH+by/vm7jhXodeJqH+HZ/3ZuHtz6gCuoR6vS17JFuAMypvb6aKwwDHFf6TuMRue66 jc8kXkcX/+f7r9efv4/zykv6jtN65unSQG0evPukN7YVgnUvbd3j+W1uK322Bmod8jcla6E/ Baag5xaBk1NTfbvNr4egnuBKsYcKFrgW8wRqasjfRWp5J/328LFeoObVY3w5eM8/xp4VWTwm 86iOvdNWSW6bqgV52HIQqDKgyqNQN1Bz61EjTOV1mKSMTmcUWSrKRKAWyXa+TATqQUBtH+hh 1TnyKauk6Rz1uWvrZ2MR50z1mGm6eNEdXA8CVdLAPyDN1YF6M189ivRQl/OQhb2lbpgL3sbU lm0D+Gepx+biWr+Y5VAPAvUDYCmpAoHaLSXZ/UiG/AUr5+0q9q3pOQKBmr0AVWk9YguDi10Z 83jj60Gg2j1hVVu6NFCbdfm7+WJFGqj5W3iCzQak4CH/e+vXe2pi3Bgf68jXWo/ugVts7N+J 8xH1eN4Lp3kK6cFtU4XCabNdG6g9qLQiSvP3c5ObQ+oNO+GBb3cVgIEqrUZXjgDbPEhctx4H t7MmkASquDXbJrw2UI/fztJGL2sOddKLrgWoQxNkPWRTMCFu5nP1+xwgUG05KbZ2daC2va2D G3tD1Pih1ZGohYWo8QvK0DMEzqGKW82bqKyHIB5Hz5+G6BCo2Y3ZJsPlgdrOtR0NKSlQlweV 7M9p2rSIHCusx/D8bL+TPdoXgZrTik3TEqj9EBzZS10OjUOvuGQxzHvIz3rMnz1BPN7zxqZP bdoYe6hpjSApCNRO1tnQGqD0fAU91iPue6N7YBc8wICiz0yyHhM5UvEofXEaBJFANRCxxASB OqgWhmZ5q9YleqfyPJtDVqy/3Ur5RPyd9QgvyKOnksZIEqiIVi2wSaBORfKEanr/qiCcFSRh PbpFRz+YhkZAoDo9CgTqUvhhQ7jvA+HUHOhWpUA9bYdAVQWyPDOBWq4dc1KBWhUgUJ0iQ6A6 CU+3VACoAIEKFHfPNIHqJDzdUgGgAgQqUFwC1UlcuqUCTgoQqF7C9ycLodyje8CoctMuFTiz AgSqU/TQwEPbd5KNbqlA1QoQqE7hQQMPbd9JNrqlAlUrQKA6hQcNPLR9J9nolgpUrQCB6hQe NPDQ9s1lyzrj09w7DUYV6DbMb1/dTdmWChCoTm0CDTy0fTvZ+q9ckKdO2RX2kpa6g1n4BZsk +ASqRCVAGjTw0PZtJPH8ht+mBtex4v+d/Bm0JlCdooQGHtq+hWxbR/ftXVoX6tV1ZheXwb0v uPM/uUqqTbqe+733/EvupCXbSOd4LJ6y5IdlJ1APk3ruCA08tH21bGHOVDLM37xieeN0pXYu dnJ9ibqgBxnYqufm3HJ3jqtEQssaeB3cbFkHpC0CFanujm008ND2dbJlXE+RC9TQdw1zfiUn 8+sqpcu9Wc8NcLot4nHovxdoAlX3GBTnRgMPbb+44u1oPeOCvgKgdtctn2fo32q5U+YwNbLs zcd+p4pJRmaPy+8yiuealEB1kh8NPLR9jWxZD2QJUNuDho8fDms02X0JrK78kF7SpyrRduac FyKoCLWaJVCdIoMGHtp+uWwZw/3dntveCfUfBtR+Ae49XxqG+65TGpkxLG8sp8tJoDqFDA08 tP1y2RrY5cCgpIfqMORvh+DvnQaL/5asHCXK3M4L93aCL+/N9s/7yaZUyhtsVk4CNUsuu8Ro 4KHtFyuRO1wsAOpnLUr1Sg/DfoeXRSzWWdM2xY3lfBkJVKeYoYGHtl8sGxqoe9umUtcP71VK k1cilgCU7b7de2K7maacGXkJ1HhQCVRJYwekQQMPbb9YkuahvT8yLmxO9FDXw+ytoWg3r1r6 CWU3pAd+fikA6iu5x/a4OhKoBGoxAxAZ0cBD2y/WJBeoxY7GjMMXSbemd3crgWK7CHQry2tQ fomJo+tIoBKoknZ5WBo08ND2i4XyAOrz2ayTNz8ZQ9oJjpsTl5qeaVHeYpWyM/4eXEcClUDN bqTIDGjgoe0Xa+MA1HdZC6D4/tSyIG+xRpqMBeUsqSOBSqBqmql5XjTw0PaLBfn5fv35/inO rsqYDZvJFq/svKqSlmfOLmdZHX++/3r9+bu8mJ+ak4tSTpFFAw9tv1i2E/VQZ6dhZYOqWCFd xsxyltaRPVT2UHUN1Tg3Gnho+8VynAaow4r5esO+ZJ9+sT7ajFlALa8jgUqgapuqaX408ND2 i8U4DVAXNcwCVbE6+oyacmbkJVAJVH1jNbSABh7afrEUVQK176ntdT0zYFOsjUXGzXLa1pFA JVAtmquZDTTw0PaLhfAEaqLQz8ej2171wT9WdSRQCdSqHhM08ND2i8WsEqh7J1cV17SyjLZ1 JFAJ1KoaOBp4aPvFYlYJ1OLaXDYjgUqgVtX40cBD2y8Wk0Atlq6mjAQqgVpTe3yfnYkqFIGK UpZ2gwIEKoFa1ZOABh7afrGY7KEWS1dTRgKVQK2pPbKHWlU0WJhcBQhUAjW3zUDTo3uQaPvF 4rCHWixdTRkJVAK1pvbIHmpV0WBhchUgUAnU3DYDTY/uQaLtF4vDHmqxdDVlJFAJ1JraI3uo VUWDhclVgEAlUHPbDDQ9ugeJtl8sDnuoxdLVlJFAJVBrao/soVYVDRYmVwEClUDNbTPQ9Oge JNp+sTjsoRZLV1NGApVArak9soe6E43hBs/hpbD8d3fKXnfYxzrN1jXSVYW/LUy6nn0dN44V bPPffE7IIlAJ1KqeKHQPEm2/WMzcHmp7vmcMkhunJyXvri8uOTbjVj3b+jS3rq68d+ebet0e QKASqNgHItM6Gnho+5nVHZOjgTr0/Jx6bhpd4i+ODXBugra4BFkZCVQCNavBoBOjgYe2X6zP AUBtxtIbvdriUuMz7pQ5XKT3teiKxn6HL+T0vXhz6x0fWc9cX7z1NFcxo/Ro4G3b37qYLTas NKrs1MwRQG0GyJ7D4SLV9l4Cq2tNQv1854rZQ2UPtaidozJ5A3U599b2eI4YJhOo8Sa126te zBeH4f4Rsdpp/AQqgYpiY5Hd2oD6OmpO7gigOgz52xdSs0gU/UeycpQoc7ui39sJvm4P39uv CFQCtQh8qEy1ATU8pJLn/hWG05re0QFA9dxOVNxeUi+BYdifSldcgLyMBCqBmtdiwKm9gRrr SaV7PQZzk2igxrZNtRAae4+yF8eiAaCvkRaAsn3p3ZvhfqwCB9eRQCVQwYjMM+8N1OUz2W0y 31no6EGVhm5CB2Ogpjf2L14CbT3yF3S6IT1w4U4A1G5aJjaSOL6OBCqBmkc8cOragNoO5Tc2 iqe+6Mnq7eYCVRuH1QJOwXXKrY1b08sFAlVTT4c6EqgEqqbJmuc9E1Dbynv1UM2Vz522CABu QIoe8pvWE19HApVANW2yWmO1AVW2kJP7oEZUOrqHupoKzfv+PejSTnOcCKiyWI7ClNSRQCVQ tQw0ze8N1PUwXTqc7XtspWo4ArWbupDWs+2WjzsaTgLUo+pIoBKopQiA5PMDKqQ6cqNOQE0u ukVqMNtKdgKgHllHApVAlT/0B6QkUA8QuXeR32vre6cbG/WLtl2Bq3t0HQlUAhXcpPPME6h5 ehWnlmxHkhivuYfqUEcClUCVPDaHpSFQj5F665PQeS+zPzBmr+tZMVA96kigEqjHPMFCLwSq UKgDkz0fPqffH1jFl1UdCVQC9ch2m/RFoCYlOjBBwWb/A0tn48q2jgQqgWrTLo2sEKhGQtKM iwIEKoHq0vC2nBKoVYWDhclUgEAlUDObDDY5gYrVl9axChCoBCq2hWVaJ1AzBWPyqhQgUAnU qhokgVpVOFiYTAUIVAI1s8lgkxOoWH1pHasAgUqgYltYpnUCNVMwJq9KAQKVQK2qQRKoVYWD hclUgEAlUDObDDY5gYrVl9axChCoBCq2hWVaJ1AzBWPyqhQgUAnUqhokgVpVOFiYTAUIVAI1 s8lgkxOoWH1pHasAgUqgYltYpnUCdVuw7rDkcG1z/J/ulL3usI/0NdKZgTkwebqefR03jhXM vTvKsmoEKoFq2Z7UtghUoYSbhydvnJ60eXe90J9Xsq16tvWJ3YNlcGGioq4EKoGqaD72WQlU oaa5QA1919DDvZ3sbNPNem6AcxO0Ql2VyQhUAlXZhGyzE6hCPQuA2l35fHuF259P87NT5vZE /sWwP/a7I+tKoBKoR7a3pK/LAvXn+/Xn+yepzztBCVDD9c/N/GuNl+ltVnzvJbC6fiXUz/eF 8fP91+vP3/IwXiXl11UqWls9LwvU3GukCdQwidEuwL1fEGG47zylwR4qe6hVMZVAFYajBKgO Q/6ti/LaOEu6yokyt/PCvZ3g6+Y8n0GgEqjCJ/iYZASqUOcCoH7WolSv0zDsd3hZxCJFoBKo wif4mGQEqlDnXKDGtk31v+s0L5x7RF8jLQBl6Jne781wP9bjPbiOBCqBKnyCj0l2ZaDeJEPg IQwJoCY39i/zF2436ob0sf2gRu1FANTX1h5bhzoSqASqUcu3MUOg2uiYb6VghbxdBLo1W7GA QM2vyE4OfB0JVALVtMlqjV0WqGFLk+MKdf78alhhb0CKHvJrG9Qk/xF1fN4Lp04M61mjKW6b corKdYHaA+po3Vsg5s+hBji1K+pnAOphdXSK4dFtpsAfgVogmkWW6wK1+zQ0ZxrVQu+3jaw5 1Elv+gxAHSqJrmPQwi2Apq3B3BiBai6pzOCVgdr29tweSPn8Yruq3p5s1fycCajtl2KyIXlJ HV1fiLLHyy0Vgeok/aWB2n7547XAI4VN9/lq7AhBt3eBuK0i6+gZO7EAbgkJVCfprw3URvQw LD2CTMvhb+hpliyK1dxDPbCO7zllp+emdrcEqlOELg/UlqnHHGAyP8h5+2zRXcDXDNR2RmJ6 KDeojqUvI6dnzMMtgeqheuOTQG0nJpuhv2yu74gwPR8nO0O1QJTyOoZpBK9pmoKKOmUhUL2E 7+fnUO7RwLYrdw1Q3Tj9366SFVjS1JEwlQaQQJUqZZwODTy0fVs5hvuh2AOy1VVrjXHJVZBA zVXMKD0aeGj7RjLQDBX4KAUIVKdwooGHtu8kG91SgaoVIFCdwoMGHtq+k2x0SwWqVoBAdQoP Gnho+06y0S0VqFoBAtUpPGjgoe07yUa3VKBqBQhUp/CggYe27yQb3VKBqhUgUJ3CgwYe2r6T bHRLBapWgEB1Cg8aeGj7TrLRLRWoWgEC1Sk8aOCh7TvJRrdUoGoFCFSn8KCBh7bvJBvdUoGq FSBQncKDBh7avpNsdEsFqlaAQHUKDxp4aPtOsqXdVn7MXroCTHFmBQhUp+ihgYe27yRbwu1w yj4PWakzPp9fKgLVKcZo4KHtO8m26XY4YPl2vze3mxKotcXnKuUhUJ0ijQYe2r6TbNtAfT6b 46qbHw75awvNpcpDoDqFGw08tH0n2dJuCdS0RkwBU4BAhUm7bxgNPLR9J9nSbgnUtEZMAVOA QIVJS6DqpB1Oi49c5bx3WyqBqpOduVUKEKgq+cozo3uQaPvlNQfnJFDBAtP8ngIEqlP7QANv 2/5Wz8/j9tFhm9PYC7092qWl8h8RUNd+O724O6BceOYMChCoTu3AG6irUfPz3l5tvTeaNpWq Bd/SXw86TSEygLp087w3UL19/lXSpnGksZkCBKpTg6gOqI0O7V7OQ4DS9ZKjvdEW7Ojecgfu +EuFvVSnR+Ij3BKoTmGsEajdHk4JzBogacAr9oMKThyooYeq6RyjSku751GAQHWKVZVAfW30 3GYaSdIkRG17oZ49wa051I1es1MbodvzKUCgOsXslEDt51nVC0eVAHXZG+0+X5X00J0aDd1W rwCB6hSiKoG6MxQfvpUfyi359yZ4d4f8v69f5UL/KqSrBbCtXrZB79upPdFtHQoQqE5xqBGo yUUpqx5q89X95qJUdPXfOkgEqrWitNcpQKA6tYTqgCreNmXUi+vBOe/FGmybEsUzXofkC0Vk m4murACB6hR9b6Cuh+w5c4ehh2mxqATY2C+KJzf2i2RiomwFCNRsyWwy+AHVpvy0QgWowFoB AtWpVRCoTsLTLRUAKkCgAsXdM02gOglPt1QAqACBChSXQHUSl26pgJMCBKqX8O3pRjj50T1g J9nolgpUrQDuia662v6FQwMPbd9fQZaACtSnAIHqFBM08ND2nWSjWypQtQIEqlN40MBD23eS jW6pQNUKEKhO4UEDD23fSTa6pQJVK0CgOoUHDTy0fSfZ6JYKVK0AgeoUHjTw0PadZKNbKlC1 AgSqU3jQwEPbd5KNbqlA1QoQqE7hQQMPbd9JNrqlAlUrQKA6hQcNPLR9J9nolgpUrQCB6hQe NPDQ9p1kA7rtDr3WHWsILB5Nn0IBAtUpTGjgoe07yQZ02wE1frU0b0MFCv9RpglUp3Cigbdn f34/VM7B0lixfMu1AdSmyjzJHxv3T7JOoDpF0w2oyxtHzW4gbU7Bvz2a26IKf1Dlauyuep3R Im4DtSHq68bbUAsDe61sBKpTvKsBqkn9De6ZMgP7okIWQH0Z1M9EZxqpXQEC1SlCbkDtbxwd /G/33nZ6bFPNjG9CNSvXUEYC1amFX9MtgeoUdz+gjhV+3odV7eU86rjivTdcns95xlbI17+b 33IaF19brjF/pEybFeKQ3+lR+Ci3BKpTOGsAalf1DiQD6N6QbG41vcdWvZd6mfVQl4aV5TLs oXJRyukhOaFbAtUpaG5AXc5VLhZcfh+PZsZwBK1sQcdgjhFSrqYe2iF//8KI6tBqV3idtiav U5ul27QCBGpaI0gKN6C2jJkPhePQFM6hvtUJ6Qvh0tuAlCsTqPKN/d1L5KsIqJq8kOZIo0YK EKhGQuaa8QSqrKy5QJVZ1afyL9cwLXK737N7qJq8eu1oAa0AgYpWeMM+gVoqfAVAfT67/bYF w/ZfRd5SxZjvOAUI1OO0nnkiUEuF9wfqOMvBOdTSKH5qPgLVKbIEaqnwBGqpcsyHV4BAxWsc 9UCglgpPoJYqx3x4BQhUvMYnBaqTMGdyWzCHajJdcCaNLlZWAtUp4PX3UJ2EOZNbAvVM0Tqk rATqITKvnRCoTsJbut0Ear/PdP+73ewtV5ZFpy2MAgQqRtekVQI1KdHpEzybr86KjzM8fe2v WQEC1SnuBKqT8Ie4rWjh7JD60smgAIHq1BYIVCfh6ZYKABUgUIHi7pkmUJ2Ep1sqAFSAQAWK S6A6iUu3VMBJAQLVS/j2pCKc/OgesJNsdEsFqlYA90RXXW3/wqGBh7bvryBLQAXqU4BAdYoJ Gnho+06y0S0VqFoBAtUpPGjgoe07yUa3VKBqBQhUp/CggYe27yQb3VKBqhUgUJ3CgwYe2r6T bHRLBapWgEB1Cg8aeGj7TrLRLRWoWgEC1Sk8aOCh7TvJRrdUoGoFCFSn8KCBh7bvJBvdUoGq FSBQncKDBh7avpNsQLfdgSbya6SBRaHp0ypAoDqFDg08tH0n2YBuN06Iet5byO4dbQosFE2f TAEC1SlgaODt2R/uhu/S3F6PSg7t9C3X9pF7bbluPNvU6VE5lVsC1SlcbkBte1z313Oo9/L/ i/VoTqnXQAdVrsaurHe5c4ZpezJ/PS+e4hAxI1wBAhUucdxBNUA1qX935YcMXBsOzcC+sG8B 1Ob1o66fic40UrsCBKpThNyA2lzKMV18WUOwvw+pPw1r1puNadXPMd7U8wbG5Zr0wGWg3ztl n0B1ekxO55ZAdQqZH1DHCj/vw6r2MJztwDGFYzevOZkimOg1n/OMrZCvfycBr7ZcY/5ImTbp yiG/06PwUW4JVKdw1gDUruodSFrQRYfdAbI784dmPdRlIJTlMuyhclHK6SE5oVsC1SlobkBd QjO14JL6e6ufwZAYUq5QNOWiVGzbVKvJ2PuVTSksGtrmFdRODZJuTRQgUE1kzDfiBtSWMfOh 8DYQ+nlNETFC2vjUgFQdSLkygZre2L94ebTAzd0BMMxT6/SS6sp0xylAoB6n9cyTJ1BlVc6B qcyiTSrncgWAzraH5V0ZPcw73+73ppdLoNq0iXqsEKhOsagaqP2QVrKAdKh8VZYrb7rj9/ls Zq3D1HWYNiBQD20/BzgjUA8QOeaiWqAWDWEPELHSchUvWBGoBzSa410QqMdr3nqsEqiiBSgH wSot196WsqRKBGpSojMmIFCdolYjUPf2lYrWpUBa1liurky5i1ETgQhUUGvxNUugOulfI1Cd pDidW1XPdKgtgXq6uEsKTKBKVAKkIVABoh5h0mr6gUA9IlqH+yBQD5e8c0igOgmvdLv1Wet8 SqTfZ7o3T0KgKiNRZ3YC1SkuBKqT8Ae6fT54huqBclfhikB1CgOB6iT8IW7zNvsfUiQ6OUQB AvUQmddOCFQn4emWCgAVIFCB4u6ZJlCdhKdbKgBUgEAFikugOolLt1TASQEC1Uv4/vg3lHt0 DxhVbtqlAmdWgEB1ih4aeGj7TrLRLRWoWgEC1Sk8aOCh7TvJRrdUoGoFCFSn8KCBh7bvJBvd UoGqFSBQncKDBh7avpNsdEsFqlaAQHUKDxp4aPtOstEtFahaAQLVKTxo4KHtO8lGt1SgagUI VKfwoIGHtu8kG91SgaoVIFCdwoMGHtq+k2x0SwWqVoBAdQoPGnho+06yAd32t6n2H1yM10kr TuUHlpam61SAQHWKCxp4aPtOsgHdbpwQ1V4O+PXyvAIGWGmaNlaAQDUWVGoODbw9+/M7murp gfmWa/vIveKbTaWNgek+RgEC1SmUbkBte1yT++CX/1+sR3NK/U1xoDKqXI1dWe9y5wxTq2tP irVlxrMoQKA6RaoaoJrUv7vyQwauDYdmYF/YtwDqy6B+JjrTSO0KEKhOEXID6mu++LKG4GJx JkXJfo7x9vhVKmlcrqE0BKoyLsyeowCBmqOWYVo/oI6VGC+cG+dR29+9IdpBbguW8znPJt9q hXz9Owl4teXaukivLd/mC4JDfsPmfVlTBKpT6GsAalf1CTQjc4XJBRmzHuoyEMpyGfZQkxo4 tSG6rU8BAtUpJm5AXc5V7i647PdQJ31d+zlUk3I1JdQO+WPbpvrfdTEs3CXBa6SdnjysWwIV q++mdTegtoyZD8V351HFK/cBvpPdAwW6QsqVCdT1tMUCmEvQFy2mdYtcs90WBXoxS30KEKhO MfEEalaVi4CR5aEscTXlCnCU91KHeefb/f66TbevlanAXJUpQKA6BeQ0QO3nWFOL/cfLuLOI dGBhcudXf5/PRtEwdf0gUA+M01GuCNSjlF74qRKo0V5fBXswayxXC0TOoTo9PtW6JVCdQlMl UGO90QAz8TwqSsxIb7SKcnWLXkVzoeyhohqLq10C1Un+OoHajkXbvafvxRl3mA4BqrVceXOo 7+ZGoDo9eVi3BCpW303r9QLVSZDTuiVQTxs6QMEJVICoEpMEqkSlCtPE9vGW9OLZQ60wuPoi Eah6DYssEKhFslWRaf7JbWzvbb/PdG9rBIFaRSytC0GgWisqtEegCoU6cbLnQ3Gc4YnrfeWi E6hO0SdQnYQ/xG0de2QPqSqdzBQgUJ0aBIHqJDzdUgGgAgQqUNw90wSqk/B0SwWAChCoQHEJ VCdx6ZYKOClAoHoJ3x/GjHKP7gGjyk27VODMChCoTtFDAw9t30k2uqUCVStAoDqFBw08tH0n 2eiWClStAIHqFB408ND2nWSjWypQtQIEqlN40MBD23eSjW6pQNUKEKhO4UEDD23fSTa6pQJV K0CgOoUHDTy0faRsoey1/aDLhLZfoie6TGj7HnWur+WWqHDCPGjgoe0jJf/EBy2lF+ucUuiY v2vjQKAeE6eVFzTw0PaRsmkbNaJs6DKh7Zdogi4T2r5HnQnUEtUN8qCBl2W/9BoPAx1iJuYP 2uKk/v6DiK+Mm0Ytiol++Fnnz4gzgWrxtBXYyAIe2v4JgLo6WrQt89frqNtYPYDKOjcN/2Rx JlALYGWRxReo/QHIw62dj/lFc/MDlOV3zlvoEmzEemsxcOZe4awpXxVAbSrAOmuimM6rjTOB mtYYksIPqN3Q6vZob4cPXYDXvQVrf/L8srcq7r02dkquAomoKwVqd7f9McDPetAazXJ7zqzz zhmytcY51nYhtKDRpAJuQI0Bcvo7MUCnVeygnAuRLZHEcOlfBlZ+94JWDVBZ5+SzpUmQFWcC VSO1bV4voEaHjLP7jeaLA0lY9XNcY49XrxOBunfiv+3Liy+RuQIEqv75dbFQL1BHOZ73MBUQ /okPq+dzrUPa/X9LwCsGakVDwVGrSP2TbyX5vHFN0xxXrHMKFpxDTSkE+rsXULtV08VNnbvD /OWc60IQxx5qtQs0wDlU1hn0QPZm2UPF6guz7gbUVz+kf/eaEotSol6g7TBU1EPd206juaJ5 I2/Wg4YCaqzObXnHXrGgM7xu02erc6/D3ugp+eBa1JlzqEmZD0vgB9RQxek8aTOcX2ybWg7l ZA9psBm7oz5fUt0m98ULIsv9dl4PoA5tZPz3cupl8SJrQZO76+FkdV6+4BWLqKuRWtNWsuJM oGY9XdDEvkCFVk1tvLRRD3O6t/u96bXlwT2Vt7RMUjGK7AeYzLaq5V1ffco6rwQNLwT5SwRd Z86hSlu8cToCdVvQIriEfvfz2fS9w3+EYXAmUBN5S8skbTY29vOmXlJ62ZTJPs5Ti7lzyug6 E6jSFm+cjkAFPmgFQH2XBjS3lmo+FvDKhcup6/yeO5b3TmcxAMWZQE21dNDfCVQCdaqAFqjd UDavV35qoA6FL5pD3R7FaONAoIKAmTJLoBKoVkDtYFrYU9uZItHCRfIMpNKk/543h4p+iRCo 6YhBUhCoBKoFUFU906EAoOFv6sGxATaBmtL5En8nUAlUNVBFe4QFj9OZgLoc4oeylxzKA6oz e6iC9oZIQqB6ALXfc7m3sRb0oKXaUElvbevTz3n1PqvO3QxFmOIYPmaIzRv71ZlATbV00N8J VCBQEzF7Ph7d9qqMnxLgZZhXbyhP+WKdUwp1f9fGmUCV6WyeikD1AGrexnf1kDyj1Wgf5G1X rHNGGAjUHLFqSkugegC1vAXggGfTMyqvmV8c0JqWaKItE3uoJaob5EED1aCINEEFqECmAgRq pmBWyQlUKyVphwrUowCB6hQLAtVJeLqlAkAFCFSguHumCVQn4emWCgAVIFCB4hKoTuLSLRVw UoBA9RK+35js5J5uqQAVAChAoAJElZjkkF+iEtNQgXMpQKA6xYtAdRKebqkAUAECFSiu6Rxq 6bmPq0IkbjF10oNuqcAnKECgOkVR3kNd3lJqU2CTY99sikIrVOBjFCBQnUIpA2qAqeLg4GTd wqk8hae8J20zARW4ngIEqlPMJUANx7PJrnBWVKL0PEmFS2alAp+qAIHqFNkkUMOcKZymXeXD 8P/2yD3Qzkk4uqUCFStAoDoFZx+oYai/PxSfH7KrnRbg0N+pGdDthylAoDoFdBeoYRi+1ztd rvgb7AAIgD6oQ+ykON1SAbwCBCpe46iHPaAm4WYA0FWhUhB30oluqcCZFCBQnaK1DdT0cL+Z 9WymBIY7dfYWrnJOa5f4dRKLbqnASRQgUJ0CtQ3UZj4z4xbH8aK25TzqCF3pUP55187FOolJ t1SgEgUIVKdAbAK1aOg9//rpvWDVLGzdm56sFKjJqQYnreiWCpxFAQLVKVIqoMbuJv8ae5e/ za2ez7ZeOUP+bvuUFL5OstEtFahaAQLVKTx7QL0L9oQu72SPg5BAdQov3V5UAQLVKfBaoMqK TaDKdGIqKmCjAIFqo2O2FQI1WzJmoALVK0CgOoWIQHUSnm6pAFABAhUo7p7pTaD+fL/+fP8Y lSpvyP/z/dfrz99GrmmGClxQAQLVKejsoToJT7dUAKgAgQoUt6iH2uxDlazyI4rNbVMIVWnz SgoQqE7RPqaHmlc5AjVPL6amAksFCFSnNkGgOglPt1QAqACBChSXQ34ncemWCjgpQKB6Cf/V nRa1+uEcqlNE6JYK6BUgUPUaFlngkL9INmaiAlUrQKA6hYdAdRKebqkAUAECFSgu51CdxKVb KuCkAIHqJTznUJ2Up1sqgFOAQMVpu2uZQ34n4emWCgAVIFCB4nLI7yQu3VIBJwUIVC/hOeR3 Up5uqQBOAQIVpy2H/E7a0i0V8FKAQHVSnnOoTsLTLRUAKkCgAsXlHKqTuHRLBZwUIFC9hOcc qpPydEsFcAoQqDhtoXOo4ai9Ydrga3KFtKY6PL5Pox7zUoHXi0B1agWqOdTnvYHp/fUcyr78 /8I6EaiFwjEbFegVIFCdmoIpUI3qQKAaCUkzl1WAQHUKvQqor+7yvcHG/d1VfXdZX/d+jrZL M+nN7tSXQHVqDHT7MQoQqE6h1AF1LPTzPoD19nr8ht8/W5jeuv9pf7r51jRUCVSnxkC3H6MA geoUSiug9shse6wtRKPzqQGyA3C3K0ygOjUGuv0YBQhUp1CqgLqEZnPK/20PmKm/T3qy6+kD J4HolgqcUAEC1SloKqCGgf17qN8N+bdB2M+3CkjJHqpTY6Dbj1GAQHUKpRaosmLLYTrMtQq4 K3PNVFTgggoQqE5BhwO1HebPF6dSVWUPNaUQ/04F9hUgUJ1aCBSo7RxrehFqWXUC1akx0O3H KECgOoUSBlThAlSs2gSqU2Og249RgEB1CiUKqPNv/MfN//sLV50IBKpTY6Dbj1GAQHUKJQqo muoQqBr1mJcK8HAUtzZAoLpJT8dUAKYAe6gwaROrgTwP1Ul5uqUCOAUIVJy2u5bZQ3USnm6p AFABAhUo7p5pAtVJeLqlAkAFCFSguASqk7h0SwWcFCBQvYTnHKqT8nRLBXAKEKg4bTmH6qQt 3VIBLwUIVCflOYfqJDzdUgGgAgQqUFzOoTqJS7dUwEkBAtVLeM6hOilPt1QApwCBitOWc6hO 2tItFfBSgEB1Up5zqE7C0y0VACpAoALF5Ryqk7h0SwWcFCBQvYTnHKqT8nRLBXAKEKg4bcvm UH++X3++f1xK9fP91+vP3y6u6ZQKfIQCBKpTGLVzqPODpPOvO4lVm+ehOjUGuv0YBQhUp1Cq gNreGXV/PYeyL/+/sE4EaqFwzEYFegUIVKemYApUozoQqEZC0sxlFSBQnUKvAurr9/W4jfdF 3d9d1aEy879/rRNEa02gOjUGuv0YBQhUp1DuAfUmBGAo+vM+gHWcR21/97bRwfX2+E3WlEBN SsQEVGBXAQLVqYFYAbUr/gSakWuk2wWs26NJtf9DoDo1Brr9GAUIVKdQbgK1WWq6p+C3XISK QHSslryH+rzb7BZwkpRuqYC7AgSqUwi2gRoAOFnB3yjfONTvhvy786gpQL97uWm/TnLRLRU4 hQIEqlOYtoHaDOCbIXrGNGq6BpJtVaGXa+o0XSymoAKfpgCB6hTRPaA2RDWGWzfs3+OlOcSd dKVbKuCpAIHqpP4uUNtFpsLhd7Q32szLRqcFhsor/DnpR7dUoEYFCFSnqOwDtSlUAGPREDzS Gw22duZRQ+9Usq3KSSq6pQKnUYBAdQpVEqgtU/eH6dtFX2zs31uUCtMLokUrJ6HolgqcSAEC 1SlYEqB2+0uRW5nCVEDh1IKTbnRLBWpWgEB1io4MqKFwKKgSpk6hp9sPVoBAdQquHKgDVMN+ U4ve5DAdYGHLSTy6pQKVKkCgVhoYFosKUIHzKfD/32H6Ccix99sAAAAASUVORK5CYII=</item> <item item-id="140">iVBORw0KGgoAAAANSUhEUgAAAKIAAABCCAYAAADUtg2ZAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAXASURBVHhe7Z3rkdwgDIDdwPVxNWwX 14T7SAeuxr+uky2GGGyveUsC4+OhzGQmGbNYSB+SYBE7Cf7DGqhAA1MFMrAIpTWwzmKaZrEW ec9bLK9JvJZ3Vu8MYpb6av/wDsk0l0FQH/17eWXBziDWzlKyfBLCl8h0VMS3r2JO9LwMIlHV rTRf50nQHeHhQafNi8q/9A6EeC/i9VoENVAziK2QRZFT5oQJEEl4r8+l534yTFNzRgaRYuAm 2kqAEhYm0pNNZihXeV+CdxPbsogaohnEJuAiCCmBSvCG7hvSPaLsS0JMEYNBJNi4haZUAEIA qhwxyRsePRInBIPYAl1oGRPDcqj/rP1HmiwMItrILTTccrMcL+YMcQ/PlBCrd7HO+O0jBrEF vrAyEsOh0a3X+8lFRzqIlDSBQcQauYV2OSBuO3+O95NwZnhYBrEFaErIuIE4Z32VYm1oZ0BI XTmzRywBxF/1mQ3ivYKzR7xXn+30xiC2Y6uuJWUQuzZvO4P7/RHfP7/VyPv78yW+/+HE4RwR p6c2WrFHbMNO3UvJIHZv4jYGyCC2YafupWQQuzdxGwNkENuwU/dSMojdm7iNATKIbdipeykZ xO5N3MYAGcQ27NS9lH2AKA9B4k/U1mhUt5bXPNYElzhC7aHnp1Z8J5sf0C8aROw4LiurUtOz 3hnJyZCnb1Tpo3Gm3b5uYz9tHIYRag89NyGURnOO2CcWn6MnPQpE7DhMCA29IWtZEkHUZ+zx 71XWup4z4fKWZiH2LrCvOPszg4wDlsdVGIu8GEj2vZUdbrUN12yzbxnAHNb01NF66nQ3IcMn jqH20PNNB/v9L7L6bd5qR/xH7KWeYM+MRs9siAERMQ6jU197pHg3gSiBuAq1FWgnUM6M0Gsb 3HpYs1D7ACt0+tcYONTXrhHXG6qZ4UKn+g4Un0PtoedKjuW4cStSdJR5/D7KAAZExDiMd2TI exuIRmgx4LOKavRnXretGyZWuG09A/tSGHqvRfPeUhCZ3VB76LnlmiLVbwVzRQSItHEck3xz Guvp7VUUw90k8QCIZijWw/InPH1C+pXk7iEp7C1sJcF9qaTAW2mWqnDj8iANXFp/sTJMuETT XBjoiwTgYqRSINq59bM5opXj2C///N8EAb4vJWAIZXTznXBfJ4ie1f4dIUgP5aT+YBCL5IkI EKkpi98G8GQ6UyZsTbR2MNZerAAgnp5oy4uMvAucLb5B2Cu5I9CBfYU9oroezQ4h4GLFCjl6 e1J/MIgxA5X0iGS9eHVWFYjaKtG3baIvRhRQp9dyBxG+bdSzsDH6CueIZwpwbek8tX1zyeSH 7W9zxFS9hNcL4eXTIznisVx1wumxjt2vzPVugNogWtszWm6p55SxzVTvqnkX0JDDDofuVgq0 0Qs9P41S8ar5Br0UXqwgN4eqbFbQy9w83j/fR7x5PLHuEj3igxIWeFXYKxZ4WWqXVXyzkio8 /XNDghjbFqKrsMQnHvDamFVziaEF+hwUxAc1XOurGMRaLTOYXAziYAavdbgMYq2WGUwuBnEw g9c6XAaxVssMJheDOJjBax0ug1irZQaTi6+lG8zgtQ6XPWKtlhlMLgZxMIPXOlwGsVbLDCYX GkTscbZTf/tZzs9RPOSxa/6ueTD+PsOVp3tASKh1zXb7WPGbqXgGkUEMa4Ba1+wpTsMeuWMQ RwVRQgP9WhSpCEwqMt0j8o9CDguihCZec0wri70UqRd0gdFffQyWRTcT/7xFZ9BC4ZAOolt0 5rtyxlEjKl+9PsUgdgaiKheN16redBVL/OY4aELYamcQewMRComk+uxNOcGcMgYiLSxLEzCI 3YF4wBP0itTtm0BojiyKpDek3mTBIPYIomIx9svz1Hpva0M7tjJPrFRkEDsFcV+1Pn0DsOee SqR+GUSkotps9iSM6RByjtgmXUSpzzCMu9OQ2Pm14Y28MzHUP3tEuub5EwU08B/vz6scIjBy yQAAAABJRU5ErkJggg==</item> <item item-id="141">iVBORw0KGgoAAAANSUhEUgAAAJgAAAC6CAYAAABSpoQcAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAApGSURBVHhe7Z3b1as4DIXTwPQxNdDF aYI+poNUk6fTSYphMLeYWyzZloLQPmv9L4Ox8daHrDCW9ejwDwoIKvAQ7Du768fj0YU//LOv wCWtCMDsgzXPAIDdx5aXnIkxwF5d2y+d7etXWo7jzx728Wi7nz3KryRgjgvAyIKNcDXP93LH +9n0sAGybxKuAXs/u2b1hv7GW5zHYJMHe8bPqWTgV3sAU3iepouYI+PqpWEE2H75ebVhOTgz 4P6NriVaCrD4mehepH/e5tl9/E+Fpx1eSABG92DblodvbQXDJLpIAbaOwShxGaUNd17v7tn0 L+DvAkLuA/+k/UEMxg9kR0938pdhgO+AbT3GaOg4NlopObwkX65nyQ64qLLtlsiVMS7pweiA jcvnF/gPrp2COis6xanJdlQL3LzdB7AA0zZGIQKm68G2PzwSy19NDzb0hZiL806sAYsD+uUX pb6gqRgsDvIHuJPBe4UYDAE9h6ul7SoGW3ui8Ovxm2F+9SuyB/4VfaZIwrWsbX2slv9J49ty mxFmZhnL4k3GPrRalNj3MwMw3/YXnz0AE5fY9wAAzLf9xWcPwMQl9j0AAPNtf/HZAzBxiX0P AMB821989gBMXGLfAwAw3/YXnz0AE5fY9wAAzLf9xWcPwMQl9j0AAPNtf/HZAzC2xON26f0W Hf5Wc/bQBm8AYCyjTXvxd8m/yJk8k9EeYHHuJnmzIYuiw8bLhsN+02K79WDImTwV2Bhg8Q7b RDbRasrlOZHvPtl3PCbgbIncaIwt1oMgtgAjJqGsTV1hP/6qQwpgSGubJTMF2LBMcZbFmhlF C2QpwABX/D7eFjCRnMjUEomcyV0sZgqwjrtEanow5EweBvq2ANuk0Q1eKpkzphCDIaC/y6/I 8CMu5+imEBfl50Su1dvHYMiZPP8MZMyDlX/PQg+6CgAwXb3djQbA3Jlcd8IATFdvd6MBMHcm 150wANPV291oAMydyXUnDMB09XY3GgBzZ3LdCQMwXb3djQbA3Jlcd8IATFdvd6MBMHcm150w ANPV291oxgDTrG72SVGrX4rGD2fGANMyzHZfvVxNAK0Z/WocY4ApebCjHapHpXZ+ZTVD494U sMI8yCOYBuhq7Yo1REjho94QsPI9+Ifpcdh3n4XavQCrlEUEwLJYOrzpNoBVzYPEElmNsNsA NihSyYONmUubeAtBfhZ09wJspKxrd8crcbXBZwquYmftbwhYmGqNPEh8aK0BmTHAakwZfWgq AMA01XY4FgBzaHTNKQMwTbUdjgXAHBpdc8oATFNth2MBMIdG15wyANNU2+FYAMyh0TWnDMA0 1XY4FgBzaHTNKQMwTbUdjgXAHBpdc8oATFNth2PdELDUfrA4M0kpS0kUrPW2onTdANGH2XXu ELBYA/uAvdpHVIyCU4FOBzRDgG0KIEwFGeZCH59EjcmD9eX3mn5na8jKfjya7vmeBf3mwTbe gFN4a2svTl3Lfjt283lAuuUPMp3YBcPoo2W1NARYKPIRlY4JRmmaxTDhTR6NNJc2/uypH97y BZYzwPZvf76x+HUt56SVZGWcr2aGByO9BaPXOWA/SrwIBmnbdloeYu92EIOtimidAHZYaCtV uu9kOtyiXVE3w8uw8rgUySLPW+J1KUMx25jyYKN3Gj3Tq+2XvVe/DA6Cfv77YdIHAbBvaW/c 5Svf883Wm4HJyCQvgJvJDqm5McCC8CGempM6JrBCLLJaAh/daqmhAlbp7a8H2GYeJJNmel1S 3/xGxgAb47A2BPADDBNwzzhIrrlE8gUd7ijwIqwl8rQYfQ6YmXNN3GYOsG1ybVgqmyYWNBOw qdj7qmRzdpHR9TNQ6lrmBfkH3upiCcL2ADsqSrrKws4FLLyKm88U7GA7ep05dS1zP1MMw1X8 tCLgxAwCJqACuhRTAICJSYuOgwIADByIKgDAROVF5wAMDIgqAMBE5UXnAAwMiCoAwETlRecA DAyIKgDAROVF5wAMDIgq4BKw0w2NolL77ByA+bS72qwBmJrUPgcCYC7snsoVlRMBgMlpe6Ge AdjKGNJB+Nf+OfmMNRESHfcoVzQjoSRjvvBgK9H4+Yzj7YX1KVe7dCVyG/e5ouMWbXnIAFgM WFayRoXlJ2tcjjs5esYKz014BAAWicRON6tU3Y09LsGw6yZHZ3BIeMr9gwGwTMBq1qfkADam tZ38nZ47AMCuEeRzl6pKHqwkj5LmzLBEXgOwo5S45GkkNWIZfh4lDay5VepAGF5vnNZYIrdq cfIZl3sr1KfMGpdq6mmJDGd5zMtrpWMSUk8AwFIK4XqRAgCsSD7cnFIAgKUUwvUiBQBYkXy4 OaUAAEsphOtFCgCwIvlwc0oBAJZSCNeLFABgRfLh5pQCACylEK4XKQDAiuTDzSkFAFhKIVwv UgCAFcmHm1MKALCUQrhepAAAK5IPN6cUAGArhbTK+0mOg0ofKeiXLcHJhpkNpNPiMh+rwm2f M/OT+yQrjEbpAh7sJh5syRFo2q5dVT6hYCDXBoBlAVYjDzIuknpi4H7PP9UTvfv6TaEK3Vz5 g3qfHFpjzwCMDVitPfh1AftMAzFY8qWRjpHO+08E37WyiIbkEgCWBEGqwRUBq5kHORZNPQYs L+8xtgQ8WJLLKwI2PDQ8WNJ22waIwRCDsaHh3ADA2IDNv9RKTqZBDMaBtHrb3y2R1afivkN4 MPcIyAoAwGT1dd+7S8DcW11RAACmKLbHoQCYR6srzhmAKYrtcSgA5tHqinMGYIpiexwKgHm0 uuKcAZii2B6Hugdg5NOhdc6G9wjS2ZyNAzYlOTD3B2uVUQFoprdMB7gIu0JPrRx2NJTsiAA+ FAXMerCw85PpuPZ6hKPDlY7zphjjjm1sAhZirmK6RnOG5bJ5vu9o20vMySBghKIHrNqLWCol SbQHWIDnq/fi13wMXqySQ5S0lcm+zQGWhIH8ySKyVxJak7a9xEMbAyy9PHJK430skO73EtYy +BDGAEun7OcBFjLSSj55GLS80iPbAoyylOUskdOvScRh9am7H2BZNR/HzxUADIB1LeWbVUbt RQBWH67QozkPRgIsQysAliEa4RYANokEwAi0ZDQBYAAsAxv6LbYA+/un+/fPX/rsGC3//vmn +/c/xg1oSlLAFmB98I4YjGTXyzQCYFgiRWEEYAAMgC0KYIkUhUGic3gweDAJrpY+ARgAA2CL AvhMIQqDROfwYPBgElxhidyqiv9VJMMZPBg8mAxZU683Box4VDgAA2Dxd7DvGUX5WmGJzNfu 253mPBgdMHgwGWR4vdoCLGyHJqf68wBD0gcPHGprY4Bx0ss4gHH6pUqLdkEBY4BxkjMYgFGy lcBLlgLmAOvTfxJHB8w60AFDgJ/FDukme4B11OWMChi1P5KeaLRRwCBg/QxIxzfRAMPxTbLv hE3ABsZSB9ARAMMBdLJ0WQzyP4rgCE1xOioMYNaDjXPPhQyHzlVgh9SFccBmyB7dg3Sg73Qq NaktST80SihwScBgtfso8D9SinNVfqdWGwAAAABJRU5ErkJggg==</item> <item item-id="142">iVBORw0KGgoAAAANSUhEUgAAAEAAAAAqCAYAAAADBl3iAAAAAXNSR0IArs4c6QAAAARnQU1B AACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAAI7SURBVGhD7VrbjYMwEHQD10dqcBc0 4T6uA6rhi04oZo/FgUBs7NmQ0y4kkSJFigHPePaNow//OFP4u0DOBeqgTQ3Ueke+HaDVe4uM EBDBuIBBX4MZWi8gLaXBAAEM3tOxg+wowMrZkqBOQBcc7R88AxuVsXwL5jG05H1LUoPQJYBt fhd9BL+28Zrc+X+pT1AkgKVfONGsQ2RSSuYiNwU9AliyUqfH1xQJIGIVSG6rRoB0oyM0LFII iVUioCL/JFqB4KfrZPdWImC0VdRjT7KXJTxdwMOqDgGoTCdHiIOZhSMxL7sEAA5vL709BQGh kvrFmL9Ogh6/a17+EgQcqXC+BAhyATUfUDOBayugb+jW9EcwFq/tmx+6/WK33yrgHnPXzqfm cLDHPK0an2NQAbH6WgPmUhXv0AiosElABoCoRXUZAvAmRFTIzrdkOzYV8AC+NBU+SgEM9rlA qRBwLQU8g10igrwYqXoDq2Fwe6LcrkojQxUcssCmD0B2/qY1XwJMJkJvOl3kNqgCMplp4qgz zztFNQh1hItzg32mL0NAeWp0ZgI4ulSbonFm6HloOmeb1WsiKfabolDrOh2NjVMPYP53ira4 fIJzP9ukYk1HCLKJk05HaJpfyDYagcYBSbnOOslorDrBeWk4KpM/U6qngOitCuPxzGnnCraV DZxsPD57bMELEqUoADnINHTqKmCx66MVp/y9gJkKAwTMzu1VEl4Hr+8DNoq8j8Dhl52k6/OZ oxEFIBXU/6z5A152Cna19DtjAAAAAElFTkSuQmCC</item> </binaryContent> </worksheet>